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DERIVED EQUIVALENCES FOR TRIANGULAR MATRIX RINGS

HIROKI ABE AND MITSUO HOSHINO

ABSTRACT. We generalize derived equivalences for triangular matrix rings induced by
a certain type of classical tilting module introduced by Auslander, Platzeck and Reiten
to generalize reflection functors in the representation theory of quivers due to Bernstein,
Gelfand and Ponomarev.

1. NOTATION

For a ring A, we denote by Mod-A the category of right A-modules, by mod-A the
full subcategory of Mod-A consisting of finitely presented modules and by P, the full
subcategory of Mod-A consisting of finitely generated projective modules. We denote by
A°P the opposite ring of A and consider left A-modules as right A°P-modules. Sometimes,
we use the notation X4 (resp., 4X) to stress that the module X considered is a right
(resp., left) A-module. We denote by X(Mod-A) (resp., D(Mod-A)) the homotopy (resp.,
derived) category of cochain complexes over Mod-A and by X?(P,) the full triangulated
subcategory of X(Mod-A) consisting of bounded complexes over P,4. We consider modules
as complexes concentrated in degree zero. For any integer n € Z we denote by (—)[n] the
n-shift of complexes. Also, we use the notation Hom*(—, —) to denote the single complex
associated with the double hom complex.

2. INTRODUCTION
Let R be a finite dimensional algebra over a field £ and M a finitely generated projective

right R-module. Set
kM 00
A_(OR) and e—(OI)eA.

As pointed out by Brenner and Butler (see [4, p.111]), we know from [1] (cf. also [3]) that
Ext)(A/AeA, A) ® Ae € Mod-A is a tilting module of projective dimension at most one
(see [6])) with

End sor (Ext}, (4/AeA, A) © Ae)P = ( g' H°mR,(cM B) ) ,

so that the triangular matrix rings

() e (5 2o

are derived equivalent to each other. Qur aim is to extend this type of derived equivalence
to the case where Mz has finite projective dimension.

The detailed version of this paper has been submitted for publication elsewhere.



3. GENERAL CASE

Let A be a ring and e € A an idempotent satisfying the following conditions:
(E1) Ae admits a projective resolution € : P* — Ae in Mod-eAde with P* € X>(P.4.), in
particular, d = proj dim Ae, s, < 00; ‘
(E2) p: Ae®.4. €A — A,z @ y — zy is monic;
(E3) ¢ : eA — Hom,4.(Ae, eAe),z — (y — zy) is monic;
(E4) if d > 0 then ¢ is an isomorphism and Ext! ,_(Ae,eAe) =0 for 1 < i < d; and
(E5) Tort4<(Ae,eA) = 0 for i # 0.
Set Ty = eA|d + 1], let T3 be the mapping cone of the composite
16 (€ @ese €A) : P* ®epc €A > Ae®p.eA— A

and set T* = T7 @ T;. Then the following hold.
Theorem 1. The complex T* € K*(P,) is a tilling complez with
Endx(Mod-4)(T") = ( exge Eﬂ?i&’;“/{:j“l’ eA) ) :
Remark 2. Assume Ext’,(A/AeA, A) =0 for i # d + 1. Then we have
Hom?y(T*, A)[d + 1] & Exti*'(A/AeA, A) @ Ae
in D(Mod-A°). Thus Ext5+!(A/AeA, A) ® Ae € Mod-AP is a tilting module with

eAe Extit!(A/AeA,eA) )

End gor (Ext3t(A/AeA, A) @ Ae)*P = ( 0 AfAeA

4. MAIN RESULTS

Let R and S be rings and M an S-R-bimodule satisfying the following conditions:
(M1) M admits a projective resolution P* — M in Mod-R with P* € X®(Pg), in partic-
ular, d = proj dim My < oo; and
(M2) Exth(M,R)=0fori<d.

Set
S M 0
A=(OR) and e=(01)eA.

Then the conditions (E1)-(E5) in the preceding section are satisfied. Also, we have
Ext4*'(A/AeA, eA) = Exth(M, R). Note that eAe = R and A/AeA = S as rings. Thus
by Theorem 1 the following hold.

Theorem 3. The triangular mairiz rings
S M R ExtH(M,R)
( 0 R ) and ( 0 s
are derived equivalent lo each other.

Consider next the case where R is a finite dimensional algebra over a field k and S = k.
Then by Theorem 3 the following hold.



Proposition 4. The triangular matriz algebras

(15 Jg) and (15 DExtj'}gM,R))

are derived equivalent to each other, where D = Homg(—, k).

Remark 5. Since the algebras above are trivial extensions of A = k x R by M and
DExt%(M, R), respectively (see [5]). On the other hand, if inj dim xR = inj dim Rg < oo,
then DA € Mod-A is a tilting module with A 2 End,(DA)(see e.g. [7, Proposition 1.6])
and M ®% DA[-d] = M ®% DR[-d] = Tor}(M, DR) & DExt4(M, R) in D(Mod-A).
Thus, if inj dim gR = inj dim Rg < oo, Proposition 4 is due to [8, Corollary 5.4] (see
also [2]).

REFERENCES

{1} M. Auslander, M. 1. Platzeck and 1. Reiten, Coxeter functors without diagrams, Trans. Amer. Math.
Soc., 250 (1979), 1-46.

[2] M. Barot and H. Lenzing, One-point extensions and derived equivalences, J. Algebra 284 (2003),
no. 1, 1-6.

[3] L N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel’s theorem, Uspechi
Mat. Nauk., 28 (1973), 19-38 = Russian Math. Surveys 28 (1973), 17-32.

[4] S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection
functors, in: Repregentation theory II, 103-169, Lecture Notes in Math., 832, Springer, 1980,

[5] R. M. Fossum, Ph. A. Griffith and I. Reiten, Trivial eztensions of ebelian categories, Lecture Notes
in Math., 4586, Springer, 1976.

[6] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc., 274 (1982), no. 2, 399-443.

[7] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986}, no. 1, 113-146.

[8] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), no. 1,
37-48.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF TSUKUBA
IBARAK! 305-8571 JAPAN

E-mail cddress: abeh@math.tsukuba.ac. jp

INSTITUTE OF MATHEMATICS

UNIVERSITY OF TSUKUBA

IBARAKI 305-8571 JAPAN

E-mail address: hoshino@math.tsukuba.ac. jp



THE NUMBER OF COMPLETE EXCEPTIONAL SEQUENCES

TOKUJI ARAYA

ABSTRACT. A complete exceptional sequence is very useful to investigate the category
of finitely generated modules over a finite dimensional algebra. The aim of this note is to
show how to find the all complete exceptional sequences over the path algebra of Dynkin
quiver of type (Ay).

1. INTRODUCTION

Let A be the path algebra of Dynkin quiver of type (A,) over a field k. We denote
by mod A the category of finitely generated left A-modules. The concept of exceptional
sequences was introduced by Gorodentsev and Rudakov [1]. It is very useful to investigate
mod A. A finitely generated left A-module E is called ezceptional if Hom,(E, E) & k and
Extl(E,E) = 0. We remark that E is exceptinal if and only if it is indecomposable.
Indeed A is the path algebra of (A,). A pair (E, F) of exceptional modules is called an
ezceptional pair if Hom, (F, E) = Ext}(F,E) = 0. A sequence ¢ = (Ey, E,,--- ,E,) of
exceptional modules is called an ezceptional sequence of length r if (E;, E;) is an excep-
tional pair for each 7 < j. An exceptinal sequence ¢ is called complete if the length of €
is equal to n. (Here, n is the number of simple modules in mod A). We put € the set of
complete exceptional sequences. Siedel [2, Proposition 1.1] proved that the cardinarity of
€ is equal to (n 4 1)*~!. There are a number of complete exceptional sequences. But it
is not easy to find all complete exceptional sequence. The main purpose is to get how to
find the complete exceptinal sequences completely by using the conbinatorics.

2. MAIN RESULT

First of all, we give a remark that € is independent of the orientation of (A,). Indeed,
let A’ be a path algebra of Dynkin quiver of type (A,) whose orientation is not equal to
A, and let €' be the set of complete exceptional sequences in mod A’. In this case, A and
A’ are derived equivalent and there exists a equivalence ¢ : D’(mod A) = D*(mod A’).
Therefore we can get the one to one correspondence ¥ : modA — mod A’ by ¢ and
the suspention functor in D®(mod A’). One can easily check that i gives the one to one
correspondence between € and €'. Thus we may assume the orientation of (A,) as follows;

e 53...%
Let I be the Auslander-Reiten quiver of mod A. We identify the set I'q of vertices in I'
with the class {X;;| 0 < i < j < n} of indecomposable A-modules. Then T is as follows;

The detailed version of this paper will be submitted for publication elsewhere.



Xon

/\

Xo(n-1) Xin
/ N/ \
. Xin-1)
/ / N\, \
Xoz X(n-2)n
/N S N
X X12 X(n—z)(n-l) X(n—l)n
We consider a circle with n+ 1 points labelled 0,1,2,- - - , n counter clockwise on it. We

put ¢(z, 7) the chord between the points ¢ and j. We denote by Cr4, the set of chords in
the circle. Since C,+; = {¢(%,7)| 0 < i < j < n}, there exists a one to one correspondence
®:Ty— Cn+1 defined by ‘I)(X.'j) = C(i,j).

For ¢ = (B, Es, -+ ,E,),€ = (B, Ej,--- ,E.) € €, we define ¢ ~ ¢ by @, E; =
@}, E{. Then ~ is an equivalent relation on €. We shall prove the following theorem.

Theorem 1. & gives a one to one correspondence between €/ ~ and the set of non cross-
ing spanning trees by ®(¢) := {B(E,), P(E2), -+ ,B(E,)} for each e = (B, Ey,--- ,E,).

Here, we call a graph T a non crossing spanning tree if the following conditions are
satisfied; ‘

(i) the chords in T form a tree,
(ii) the chords in T meet only at endpoints.

It is known the number of noncrossing spanning trees. We get the following corollary.

_— . 1 3n
Corollary 2. The cardinarity of €/ ~ is egual to Tl (n ) .

Proof of Theorem 1. For X € I'y, we consider the following four classes.

Hi(X) = {Y €| Homy(X,Y) # 0},
H_(X) = {Y €] Homy(Y, X) # 0},
£+(X) = {Y eTo| Exth(X,Y) #0},
E_(X) = {Y ey Exti(Y,X) #0}.
Then one can check the followings by using Auslander-Reiten sequence;
H+(Xi.j) = {Xs,tliSSSj-l,J’StSn}a
H_(Xij) = {X.mlOSSSi,i'l‘lStSj},
E+(Xij) = {Xeyl0<8<i-1,i<t<j—-1},
8_(X¢J) = {X,,,|i+1§s§j,j+15t$n}.



Furthermore, we consider the following four classes for each X € I'g;
P(X) = {Y| Both (X,Y) and (Y, X) are exceptional pair.},

_ (X,Y) is an exceptinal pair,
Be(X) = { Y | (Y, X) is not an exceptinal pair. [’
_ (Y, X) is an exceptinal pair,
B-(X) = { Y| (X,Y) is not an exceptinal pair. | *

P(X) = {Y| Both (X,Y) and (Y, X) are not exceptional pair.}.
Note that

P(X) = Fo\ (H+e(X)UE(X)UH_(X)UE_(X)),
PBe(X) = He(X)UEL(X))\ (H-(X)UE (X)),
P_(X) = (H-(X)UE(X))\ (H+(X)UEL(X)),
PX) = HA(X)UELX)) N (H_(X)UE_(X)),

we get the followings for each X;; € Ig;
P(Xij) = {(Xop)0<s<t<iFU{Xa|i+1<s<t<j-1}
U{Xss| FSs<t<n}U{X,|0<s<i-1,j+1<t<n},
PirXig) = {Xegl 0Ss<i-1}U{Xie) j+18t<n}U{X5li+1<s<5 -1},
P_(Xiy) = {(Xiel i+1<s<j-1JU{X5|0<s<j -1} U{X;el j +1 <8< n},
PXis) = {Xu|0<s<i-1i+1<t<j-1}
U{Xseli+1<s<j-1,j+1<t<n}.
We apply @ for each above classes, we get followings;
S(P(Xis)) = {c(5,0)]0<s<t<Li}U{e(s,t)]i+1<s<t<j—-1}
U{e(s,t)l j <s<t<n}u{c(s,t)] 0<s<i-1,j+1<t<n},
B(P+(Xis)) = {e(s,9)|0<s<i-1}U{c(i,t)| j+1<t<n}
U{e(s, i)l i+1<s<j—1},
B(P-(Xiy)) = {c@t)i+1<s<j-1}U{c(s,5)|0<s<j-1}
U{c(,t)l j+1<s<n},
P(P(Xij) = {c(s)0<s<i-Li+1<t<j—1})
U{c(s,t)li+1$s$j—1,j+1§_t$n}.
Thus we have followings;
e Y e P(X) & &(Y) does not meet to &(X).

o YeP.(X) & P(Y) meets P(X) for some vertex ¢ and P(Y) is the chord moved
®(X) around a vertex i counterclockwise across the interior of the
circle.

o YeP_(X) & &) meets $(X) for some vertex i and $(Y') is the chord moved
&(X) around a vertex i clockwise across the interior of the circle.



o YeP(X) & P(Y) meets to $(X) at interior of the circle.

Therefore for any ¢ € €, each chords in ®(¢) do not meet each other at interior of the
circle.

For X), Xs,-++ , X, € Iy, suppose {®(X,), ®(X3), - ,d(X,)} makes a cycle. We may
assume P(X,) meets ®(Xy4,) at a vertex i, for each £ = 1,2,--- ,r (where X,y =
Xl) and il >ip > 00 >4, Then1 (XhX?)r (X21X3)1"' r(Xr-—th) and (erXl) are
exceptional pairs but (X>, X;), (X3, X2),:*+ , (Xr, Xe-1) and (X, X;) are not exceptional
pairs. Therefore any permutatin of (X, X,,---, X;) is not an exceptional sequence.

Thus we get ®(¢) is a non crossing spanning tree for any ¢ € €.

For ¢ = (E\,E,,--- ,E,),¢ = (E{,E;,--- ,E]) € € suppose $(¢) = P(¢'). Then
{®(E1), B(E2), - ,9(Er)} = {®(E:), P(ER), -, d(E,)}- Since ® : Ty — Cuy, is one to
one, we get ¢ ~ €.

Conversely, suppose T = {¢;,¢2,+* ,¢n} C Ch41 is 2 non crossing spanning tree. We
put X; := ®~1(c;) for each i. If there exists a pair (X;, X;) (¢ # j) such that both (X;, X;)
and (Xj, X;) are not exceptional pair, then ¢; crosses c; at interior. Thus, there does not
exist a such pair.

If there exists a subsequence {X,,,Xa,, *Xe.} such that (Xa,, Xas), (Xaz)Xas),

-+ (Xap_ysXa.), and (X,,, X,,) are exceptional pairs but (X,,, Xa,), (Xag, Xa;), -,
(Xary Xa,_, ), and (X, , Xa, ) are not exceptional pairs, then {c,,Cag, * - , Ca, } makes a cy-
cle. Therefore there exists a parmutation o such that (X1, Xo(), - - - Xo(n)) is a complete
exceptional sequence. a

Example 3. If n = 3, the following quiver is the Auslander-Reiten quiver of mod A.

X03
/N
Xo2 Xi3
/NN
XOl X12 X23

In this case, there are 16 complete exceptional sequences and 12 non crossing spanning
trees. The followings are the complete exceptional sequences and corresponding non
crossing spanning trees.

0 0

l \
3 1 3 1——

2 2

(Xo1, Xoz2, Xo3)  (Xa2, X13, Xo1)  (X2s, Xo2, X12)  (Xos, X13, X23)

3

0 0
1/,\3 L
) AN



1 0\3 1/0\3 1/0\3 1/0 3
NN, N

(Xos, X23, X12)  (Xo1, Xo3, X23) (X2, Xo1, Xos)  (Xa3, X12, Xo1)

0\ /0 / 0 0\
1\—— 3 1 /3 1—/ 3 1 N 3
2 2 2 2
(Xoa: X12, X13)  (Xas, Xo, Xo2) (Xi3, Xa3, Xo1)  (Xoz, Xoa, X12)
(X12, Xo3, X13)  (Xo1, X2z, Xo2)  (X13, Xo1, Xa3)  (Xo2, X12, Xo3)
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SOME REGULAR DIRECT-SUM DECOMPOSITIONS IN MODULE
THEORY

ALBERTO FACCHINI

ABSTRACT. We review recent results about a weak form of the Krull-Schmidt Theorem
that holds in some classes of modules.

1. INTRODUCTION

This is a survey about some direct-sum decompositions of modules with regular and
interesting behaviors presented in two talks given in Shizuoka at the “Fortyfirst Sympo-
sium on Ring Theory and Representation Theory” (September 5-7, 2008). In particular,
the first half of the paper will be devoted to describing some notions that have proved to
be useful in the study of direct-sum decompositions. The symbol R will always denote
an arbitrary associative ring with identity 1p # Og, and modules will be unital right
R-modules unless otherwise stated explicitly.

Our aim is to describe the direct-sum decompositions Mp = M, & --- & M, of a fixed
module Mp into a direct sum of finitely many direct summands M,,..., M,. Several
behaviors can take place. The best case we can have is when we have uniqueness up to
isomorphism, as in the case of the celebrated Krull-Schmidt Theorem, which we all know:

Theorem 1. [Krull-Schmidt Theorem] Every module M of finite composition length is a
direct sum of indecomposable modules. If

M=M1®"'@M=Nl$"'®Ns

are two decompositions of M into direct sums of indecomposables, thent = s and there is
a permutation o of {1,2,...,t} such that M; = N, for everyi=1,2,...,t.

A theorem of this kind appeared for the first time in a paper of Frobenius and Stick-
elberger [19], who proved the structure theorem of finite abelian groups (finite abelian
groups are direct sums of cyclic subgroups whose orders are powers of primes, and these
powers of primes are uniquely determined by the group). The Krull-Schmidt Theorem
was later generalized by Azumaya in 1950 to infinite direct sums of modules with local
endomorphism ring [3]. Important work on the Krull-Schmidt-Azumaya Theorem can be
found in Harada [20]), who introduced the use of factor categories in this setting. For
an interesting survey on these results and their relation with the exchange property and
extending modules, see [24].

Partially supported by Ministero dell’Istruzione, dell'Universitd e della Ricerca, Italy (Prin 2007
“Rings, algebras, modules and categories”) and by Universitd di Padova (Progetto di Ricerca di Ate-
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Uniqueness of direct-sum decomposition is an exception in Module Theory, and we will
give in §4.1 an easy example of failure of the Krull-Schmidt Theorem for finitely generated
modules over a noetherian commutative integral domain. A different possibility we can
have decomposing a module Mg is that the module Mp possesses only finitely many
direct-sum decompositions up to isomorphism. This is the case of finite-rank torsion-free
abelian groups [23].

Another possible case we can meet is that of the modules Mg that do not decompose
in a unique way up to isomorphism, but their direct sums enjoy some kind of regularity.
We see in §4.2 that this happens for modules with a semilocal endomorphism ring, for
instance for artinian modules. Several other possibilities can occur: a module can be a
direct sum of indecomposables or not, can be decomposable but with no indecomposable
direct summands, and so on.

2. COMMUTATIVE MONOIDS, ORDER-UNITS,
AND THE BERGMAN-DICKS THEOREM

Fix a class C of right R-modules. We want to study the direct-sum decompositions of
the modules belonging to C. We will assume that C is closed under isomorphism, direct
summands and finite direct sums. For every module Ag, let (Ag) := { Br | B & Ar}
denote the isomorphism class of the module Ag. Set V(C) := { (Ar) | Ar € C}. Assume
that V(C) is a set!. Define (Ag) + (Bgr) := (Ar @® Bg) for every Ap, Bp € C. Then V(C)
becomes an additive commutative monoid, which is clearly the algebraic structure that
describes the direct-sum decompositions in C.

In our first example (the Krull-Schmidt Theorem, that is, Theorem 1), C is the class
of all right R-modules My of finite composition length, and V(C) turns out to be a free

commutative monoid, that is, a monoid isomorphic to Ngx) for some set X. In this
example, X can be any set of representatives, up to isomorphism, of the indecomposable
R-modules of finite composition length.

All the monoids we will consider in this paper are commutative, and the operation
will be denoted as addition. Thus our monoids will be commutative additive semigroups
with a zero element 0. For such a monoid M, U(M) will denote the set of all invertible
elements with respect to the addition, that is, all elements @ € M with an opposite
—a in M. A commutative monoid M is said to be reduced if U(M) = {0}. For every
monoid M, the quotient monoid M/U(M) = {z+U(M) |z € M } is a reduced monoid.
For any class C of modules, the commutative monoid V(C) is reduced. The converse
appears in the following wonderful theorem, due to Bergman [4, Theorems 6.2 and 6.4]
and Bergman-Dicks [5, p. 315]. See [12, Corollary 5].

This is an odd assumption, because in Axiomatic Set Theory, where elements of sets are sets, V(C)
can never be a set. More precisely, V(C) cannot be a set by Zermelo’s Sum Axiom (Union Axiom) of
General Set Theory, which is the axiom that guarantees that the union of a set of sets is still a set
(“for any set S there exists the set whose elements are the elements of the elements of $”). This set
theoretical difficulty can be avoided fixing once for all a set of representatives of V(C) up to isomorphism.
Hence, when we say “assume that V(C) is a set” we mean “assume that V(C) can be put in one-to-one
correspondence with a set”, that is, a class whose cardinality can be measured with a cardinal number.



Theorem 2. Let k be a field and M a reduced commulative monoid. Then there exist
a right and left hereditary k-algebra R and a cless C of finitely generated projective right
R-modules with C closed under isomorphism, direct summands and finite direct sums, and
V()= M.

This theorem gives, in a sense, a complete answer to what can be done with our
description of direct-sum decompositions in a class C of modules making use of the monoid
V(C).

If, instead of the direct-sum decompositions of the modules in a class C, we want to
study the direct-sum decompositions of one fixed module Ag, t he following refinement
of the construction of V(C) is sufficient. Given a fixed module Ag, we can construct the
class add(Ag) whose elements are all modules B isomorphic to a direct summand of A%
for some integer n > 0. This is the smallest class of right R-modules containing Ag
and closed under isomorphism, direct summands and finite direct sums. For instance,
if Ag is the right module Rg, then add(Rpg) is the class proj-R of all finitely generated
projective right R-modules. For any ring R and module Ag, we will denote with V{(R) and
V(AR) the monoids V (proj-R) and V(add(ARg)), respectively. Clearly, for every module
Ag, the element (Agr) of the monoid V(Ag) is a special element: it is an order-unit in the
commutative monoid. Let us briefly present order-units, monoids with order-unit, and
the category of commutative monoids with order-unit.

An element u of a commutative additive monoid M is an order-unit if, for every z € M,
there exist y € M and an integer n > 0 with z + y = nu. For instance, the element {Rp)
of the commutative additive reduced monoid V(R) is an order-unit. More generally,
as we have said above, (Ag) is an order-unit in the monoid V(Agr). The category of
commutative monoids with order-unit has as its objects the pairs (M, u), where M is a
commutative monoid and u € M is an order-unit, and as morphisms f: (M,u) = (M', )
the monoid homomorphisms f: M — M’ that preserve the order-units, that is, such that
f(u) = /. Notice that V' is a functor of the category of associative rings with identity
into the category of commutative monoids with order-unit.

Clearly, as the commutative monoid V(C) describes the direct-sum decompositions of
the modules in a fixed class C, so the commutative monoid with order-unit (V(addARg), (4Ar})
describes the direct-sum decompositions of a fixed module Ag.

For any given module Ag, we can consider the endomorphism ring E := End(Az) and
the covariant functor
Hompg(ARg, —): Mod-R — Mod-E.

By restriction, the functor Hompg(Ag, —) induces a categorical equivalence between the
full subcategory of Mod-R whose class of objects is add(Ag) and the full subcategory of
Mod-E whose class of objects is proj-£ [10, Theorem 4.7]. This equivalence induces an
isomorphism (V(add(AR)), (Ar)) = (V(E), {Eg)) of monoids with order-unit. Therefore,
in the study of “pathologies” of direct-sums, we can suppose Az = Rpg, that is, it suffices
to study direct-sum decompositions of finitely generated projective modules.

Similarly, notice that the contravariant functor

Homg(—, R): Mod-R — R-Mod



induces by restriction a duality between the full subcategory of Mod-R whose class of
objects is proj- R and the full subcategory of R-Mod whose class of objects R-proj consists
of all finitely generated projective left R-modules. This duality induces an isomorphism
of monoids with order-unit (V(proj-R), {(Rg}) = (V(R-proj), (rR)). In other words, in
the definition of the monoid V' (R) there is no difference considering right or left finitely
generated projective modules. The monoid V(R) is the object of study of Non-Stable
Algebraic K-Theory, as the Grothendieck group Ko(R) is the object of study of (classical)
Algebraic K-Theory. Here the Grothendieck group Ko(R) is the enveloping group of
V(R), and its elements are the stable isomorphism classes [Pg] of the finitely generated
projective R-modules Pr. There is a pre-order (=reflexive, transitive and translation-
invariant relation) on Ko(R), for which the positive cone (=set of non-negative elements
of Ky(R)) is the image of the universal mapping ¥r: V(R) — Ko(R). If J(R) denotes
the Jacobson radical of R, the canonical projection p: R — R/J(R} induces a pullback
diagram

vy B vwiR)
Yrl 4 Yriary

Ko(R) K°—(§’) Ko(R/J(R))

in the category of commutative monoids [2].
We can adapt the Bergman-Dicks Theorem (Theorem 2) to monoids with order-units
as follows.

Theorem 3. Let k be a field and let M be a commultative reduced monoid with order-
unit u. Then there ezists a right and left hereditary k-algebra R such that (M,u) end
(V(R), {RRr)) are isomorphic as monoids with order-unit.

3. LOCAL MORPHISMS AND SEMILOCAL RINGS

3.1. Local morphisms. In Algebraic Geometry and Commutative Algebra, local mor-
phisms are defined as the ring morphisms ¢: R — S, between local commutative rings
(R, M) and (S,N), for which (M) C N. Here M and A denote the maximal ideals
of R and S respectively. More generally, let R and S be arbitrary associative rings with
identity (not necessarily commutative and not necessarily local). We will say that a ring
morphism ¢: R — § is local if, for every r € R, ¢(r) invertible in S implies r invertible
in R. These two definitions coincide in the case of R and S local commutative rings. The
notion of local morphism for non-commutative rings was introduced, in the case in which
S was a division ring, by Cohn (8].

Here is a list of trivial properties of local morphisms. Their proofs follow immediately
from the definition. Let ¢: R — S, ¥: § — T be ring morphisms.

(1) If ¢ is a local morphsm, then ker(p) C J(R).

(2) If ¢ is onto and is a local morphism, then ¢(J(R)) = J(S), and the induced
morphism M, (¢): M,(R) & M,(S) between the n x n matrix rings is local for every
n>1.

(3) If ¢ and 3 are local morphisms, then so is 3 o .

(4) If the composite morpisms ¥ o ¢ is local, then ¢ local.



(5) If I is any two-sided ideal of R contained in the Jacobson radical J(R), the canonical
projection R — R/I is a local morphism.

3.2. Semilocal rings, dual Goldie dimension. A ring R is a semilocal ring if R/J(R)
is a semisimple artinian ring. (In Commutative Algebra a commutative ring is semilocal
if it has only finitely many maximal ideals. The two definitions coincide in the case of
commutative rings, but notice that a semilocal non-commutative ring can have infinitely
many maximal right ideals, as the example of the ring M, (k) of n X n matrices over an
infinite field k£ shows.)

The relation between the notions of semilocal ring and local morphism is given by the
following theorem, due to Camps and Dicks [6].

Theorem 4. A ring R is semilocal if and only if there exists a local morphism of R into a
semilocal ring, if and only if there exists a local morphism of R into a semisimple artinian
ring.

The notion of semilocal ring is also related to the notion of dual Goldie dimension.
Goldie dimension can be defined not only for modules Mg, but more generally for any
modular lattice L with a greatest element 1 and a least element 0 [10, §2.6]. If £L({Mpg)
denotes the lattice of all submodules of a module Mz, the Goldie dimension dim{Mg) of
the module Mg coincides with the Goldie dimension dim(L(Mpg)) of the lattice L{Mp).
The dual Goldie dimension codim(Mpg) of a module Mg is by definition the Goldie di-
mension of the dual (=opposite) lattice of the lattice L(Mg). The next result describes
the relation between the notions of semilocal ring and dual Goldie dimension of a ring.

Proposition 5. A ring R is semilocal if and only if the dual Goldie dimension of the
right R-module Ry is finite, if and only if the dual Goldie dimension of the left R-module
rR is finite. Moreover, if these equivalent conditions hold, then

codim(Rg) = codim(rR) = dim(R/J(R)).

In this proposition, note that R is semilocal exactly when R/J(R) is semisimple ar-
tinian, that is, when R/J(R) is a direct sum of simple modules, and in this case the
Goldie dimension dim(R/J(R)) of R/J(R) is simply the number of direct summands in
a direct-sum decomposition of R/J(R) into simple submodules, that is, into simple right
ideals of R/J(R). The next theorem is related to Theorem 4 and Proposition 5.

Theorem 6. (6] If R = S is a local morphism between two rings R and S, then codim(R)
< codim(S).

3.3. Modules with semilocal endomorphism rings. The reason why we are inter-
ested in semilocal rings is that we want to study modules whose endomorphism ring is
semilocal. Having a semilocal endomorphism ring is a finiteness condition on modules.
For instance, a module with semilocal endomorphism ring is always a direct sum of finitely
many indecomposable modules, it is not a direct sum of infinitely many non-zero modules,
and it is directly finite. The class of the modules with semilocal endomorphism rings is
closed under direct summands and finite direct sums. We will see in §4.2 that direct-sum
decompositions of modules with semilocal endomorphism rings are described by reduced
Krull monoids, and this implies a regularity in the behavior of direct-sum decompositions.



We begin with a proposition that shows how the property of having a semilocal endo-
morphism ring is related to restriction of scalars.

Proposition 7. [15] Let R — S be a ring morphism, and let Mg be an S-module with
End(Mpg) semilocal. Then End(Ms) is semilocal.

The proof is incredibly easy. The embedding
End(Mg) — End(Mpg)

is a local morphism, because an S-endomorphism is an S-automorphism if and only if it
is an R-automorphism. Hence Theorem 4 applies.

4. EXAMPLES. KRULL MONOIDS.

This Section 4 is devoted to analyzing some examples of modules with semilocal endo-
morphism rings.

4.1. Noetherian modules, artinian modules. QOur first example of class of modules
with semilocal endomorphism rings is the class of all artinian right modules over a fixed
ring R. Recall that the Krull-Schmidt Theorem (Theorem 1) holds for modules of finite
composition lenght. Now a module has finite composition length if and only if it is both
noetherian and artinian. A very natural question is therefore whether “noetherian” or
“artinian” are sufficient conditions for the Krull-Schmidt Theorem to hold.

It is very easy to construct examples of noetherian modules for which the Krull-Schmidt
Theorem does not hold. For instance, take a non-local noetherian commutative integral
domain of Krull dimension > 2, for example R = k[z,y| (the ring of polynomials in two
indeterminates = and y with coefficients in a field k). Then R has two distinct maximal
ideals M,, M,, necessarily non-principal. Thus Rg = M; + M,. The exact sequence
0= M NM, = M & M; - R — 0 splits, so that

(4.1) M & My = Rp & (M) N M,).

But M, and M, are non-cyclic modules, and Rp is a cyclic module, so that the two
direct-sum decompositions (4.1) are not isomorphic.

It was Krull who first asked in 1932 whether “the Krull-Schmidt Theorem holds for
artinian modules” [22]. That is, any artinian module is a direct sum of indecomposables,
but is such a direct-sum decomposition unique up to isomorphism? The first examples
showing that there exist artinian modules with non-isomorphic direct-sum decomposi-
tions were given by Facchini, Herbera, Levy and V4dmos in [16]. Nevertheless, direct-sum
decompositions of artinian modules, and more generally of any class of modules with
semilocal endomorphism rings are regular, because their behavior is described by a Krull
monoids.

4.2. Krull monoids and regular decompositions. Krull monoids are the analogue
for commutative monoids of what Krull domains are in Commutative Algebra. They
were introduced by Chouinard in [7]. In Commutative Algebra we can fix a field F,
take a family of valuations on F, consider the corresponding valutation subrings, and
their intersection, when it is of finite character, is called a Krull domain. Then we can
consider the fractional ideals, construct the divisor class semigroup, and so on. We have



a perfectly similar case when we deal with commutative monoids instead of commutative
integral domains. We can fix an abelian group G, take a family of valuations on G,
consider the corresponding valutation submonoids, and their intersection, when it is of
finite character, is called a Krull monoid. Then we can consider the fractional ideals,
construct the divisor class semigroup of the Krull monoid, and so on. For the details, see
[7]. For us, now, it is sufficient to know that the finitely generated reduced Krull monoids
are the monoids isomorphic to monoids of the form G NN}, where ¢ > 0 is an integer and
G is a subgroup of the free abelian group Z'.

Theorem 8. (14, 26] For every artinian module A, the monoid V(AR) is a finitely gen-
erated reduced Krull monoid with order-unit (Ag). Conversely, for every finitely generated
reduced Krull monoid V with an order-unit u there exists an artinian module Ar with

(V(AR),{4r)) = (V,v).

More generally, for any class C of modules with semilocal endomorphism rings with
C closed under isomorphism, direct summands and finite direct sums, the monoid V{C)
turns out to be a reduced Krull monoid [11]. Notice the geometric regularity implied by
Krull monoids. In the language of Minkowski’s Geometry of Numbers, a subgroup G of
Z' is represented by a “lattice”, that is, a structure with a very regular geometric pattern
(Here we are using the word lattice with a meaning completely different from the meaning
employed until now in this paper.) If V is a reduced Krull monoid, then V = N; NG
is the intersection of the lattice G C Z* with the positive cone Nj. The failure of the
Krull-Schmidt Theorem is minimal in this case, due only to the presence of the border of
N{ NG. Hence, when V(Apg) is a Krull monoid that is not free, Krull-Schmidt uniqueness
fails, but direct-sum decompositions still have a very regular geometric pattern.

4.3. Further examples. Let us pass to present other examples of modules with semilocal
endomorphism rings. The following result is well known. For a proof, see [15, Proposi-
tion 3.1].

Proposition 9. Every finitely generated module over a commutative semilocal ring has
a semilocal endomorphism ring.

Here is an extension of the previous proposition.

Proposition 10. [15, Theorem 3.3] Every finitely presented module over a semilocal ring
has a semilocal endomorphism ring.

Notice that we have extended the class of rings (from commutative semilocal rings
to arbitrary semilocal rings), but we have to restrict the class of modules (from finitely
generated modules to finitely presented modules). Proposition 10 cannot be extended
to finitely generated modules over non-commutative rings: there exist finitely generated
modules over non-commutative semilocal rings whose endomorphism rings are not semilo-
cal [15, Example 3.5].

Here are further examples of modules with semilocal endomorphism rings. We say that
a module M is quotient finile dimensional if every homomorphic image of M has finite
Goldie dimension.



Corollary 11. [15, Corollary 5.8] Every submodule of a quotient finite dimensional in-
jective module has a semilocal endomorphism ring.

Recall that a module M is uniserial if, for any submodules A and B of M, either
A C Bor BC A Thus a module M is uniserial if and only if the lattice L{M) of its
submodules is linearly ordered under set inclusion. Clearly, uniserial modules are quotient
finite dimensional. A module is serial if it is a direct sum of uniserial submodules. Hence
a module is serial and has finite Goldie dimension if and only if it is a direct sum of finitely
many uniserial submodules.

Corollary 12. [15, Corollary 5.10] Let E be an injective serial right module of finite
Goldie dimension. Then the endomorphism ring of every submodule of E is semilocal.

For further examples of modules with semilocal endomorphism rings, see [15] and [21].

5. MONOGENY CLASS, EPIGENY CLASS

5.1. Biuniform modules. We say that two right R-modules Ar and Bp belong to the
same monogeny class, and write [Ag]m = [Bg]m, if there exist a monomorphism Ar — Bpg
and a monomorphism Br — Ag. Similarly, we say that Ar and Bg belong to the same
epigeny class, and write [Ag]. = [Bge, if there exist an epimorphism Az — Bp and an
epimorphism Br — Ap.

Recall that a module Ap, is said to be: uniform if it has Goldie dimension 1, that is, it
is non-zero and the intersection of any two non-zero submodules is a non-zero submodule;
couniform if it has dual Goldie dimension 1, that is, it is non-zero and the sum of any two
proper submodules is a proper submodule; biuniform if it uniform and couniform. For
instance, uniserial non-zero modules are biuniform modules.

Theorem 13. [10, Theorem 9.1] Let Ap be a biuniform module over an arbitrary ring R
and let E = End(ARg) be its endomorphism ring. Let I = { f € E | f is not injective}
and K = {f € E | f is not surjective}. Then I and K are two-sided completely prime
ideals of E, and every proper right ideal of E and every proper left ideal of E s contained
either in I or in K. Moreover, ezactly one of the following two conditions hold:

(a) Either E is a local ring, or

(b) E/J(E)= E/I x E/K, where E/I and E/K are division rings.

From Theorem 13 we get the following weak form of the Krull-Schmidt Theorem, proved
by the author in [9, Theorem 1.9).

Theorem 14. Let Uy, ..., Uy, W, ..., Vi be biuniform right modules over an arbitrary
ring R. Then the direct sums Uy ®---® U, and V, ®- - - ®V; are isomorphic if and only if
n =t and there are two permutations o,7 of {1,2,...,n} such that [Ulm = [Vo(i)lm and

[Ud)e = [Vep)e for everyi=1,2,...,n.
This theorem allowed us to solve a problem posed by Warfield in [25].

5.2. Cyclically presented modules over local rings. We will now present some re-
sults proved in [L]. Recall that a right module over a ring R is said to be cyclically
presented if it is isomorphic to R/aR for some a € R. For any ring R with identity, U(R)
will denote the group of all invertible elements of R.



If R/aR and R/bR are cyclically presented modules over a local ring R, we say that
R/aR and R/bR have the same lower part, and write [R/aR); = [R/bR], if there exist
u,v € U(R) and r,s € R with au = rb and bv = sa. (The reason why we give this
definition is that in this way two cyclically presented modules over a local ring turn out
to have the same lower part exacly when their Auslander-Bridger transposes have the
same epigeny class; cf. [1].)

We will now describe the endomorphism ring of a cyclically presented module. Clearly,
the endomorphism ring Endg(R/aR) of a non-zero cyclically presented module R/aR is
isomorphic to E/aR, where E := {r € R| ra € aR} is the idealizer of aR.

Theorem 15. Let a be a non-zero non-invertible element of a local ring R, let E be the
tdealizer of aR, and let E/aR be the endomorphism ring of the cyclically presented right
R-module R/aR. Setl .= {r € R|ra€aJ(R)} and K .= J(R)YNE. Then I and K
are completely prime two-sided ideals of E containing aR, the union (I/aR) U (K/aR)
is the set of all non-invertible elements of E/aR, and every proper right ideal of EfaR
and every proper left ideal of E/aR is contained either in I/aR or in K/aR. Moreover,
ezactly one of the following two conditions hold:

(a) Either E/aR is a local ring, or

(b) I and K are not comparable, J(E/aR) = (I N K)/aR, and (E/eR)/J(E/aR) is
canonically isomorphic to the direct product of the two division rings E/I and E/K.

Theorem 16. (Weak Krull-Schmidt Theorem) Let a,...,an,b,...,b; be non-invertible
elements of a local ring R. Then
R/a,R®---®R/a,R and R/L,R®---&® R/b,R

are isomorphic right R-modules if and only if n =t and there are two permutations o, 7
of {1,2,...,n} such that [R/a;R|; = [R/bs)R|: and [R/a;R]. = [R/b:)R]. for every
i=12,...,n

This has an immediate consequence as far as equivalence of matrices is concerned.
Recall that two m x n matrices A, B with entries in a ring R are eguivalent, denoted
A ~ B, if there exist an m xm invertible matrix P and an n x n invertible matrix @ with
B = PAQ. We denote by diag(a;, ...,a,) the n x n diagonal matrix whose (i, 1) entry is
o; and whose other entries are zero.

Corollary 17. Leta,,...,an,by,...,b, be elements of a local ring R. Then diag(a,,...,a,)
~ diag(by, ..., bs) if and only if there ezist two permutations a,7 of {1,2,...,n} with
[R/a:R): = [R/b,yR]: and [R/a:R). = [R/brsR]e
foreveryi=1,2,...,n.
6. KERNELS OF MORPHISMS, COUNIFORMLY PRESENTED MODULES

6.1. Kernels of morphisms between indecomposable injective modules. The
next results are taken from [17]. We say that two modules Ar and Bgr have the same
upper part, and write [Ag]. = [Bg]u, if there exist a homomorphism ¢: E(Ag) ~ E(Bg)
and a homomorphism v: E(Bg) — E(Ag) such that ¢}(Bgr) = Ag and ¢~ (Ag) = Bg.
Here E(—) denotes the injective envelope.



We need some further notation for the statement of the next theorem. Let E,, By, E}, E;
be indecomposable injective right modules over an arbitrary ring R, and let ¢: E; —
E,,¢': E| — Ej; be two non-injective morphisms. Any morphism f: kerp — kery/
extends to a morphism f,: E; — E]. Hence f; induces a morphism f;: E,/kery —
E;/ker ¢', which extends to a morphism f: E; — E;. Thus we have a commutative
diagram with exact rows

0 - kerp - E 5H E
s ia A
0 - ker¢) » E S E,.
Notice that f; and f, are not uniquely determined by f.

Theorem 18. Let E, and E, be two indecomposable injective right modules over an ar-
bitrary ring R, and let p: E, — E, be a non-zero non-injective morphism. Set S :=
Endg(kerp), I: = {f € S| f is not injective} = { f € S | fi is not injective} and
K: = {f € S| f2 is not injective} = {f € S| f ' (ker o) properly contains kery }.
Then I and K are two completely prime two-sided ideals of S, and one of the following
two conditions hold:

(a) Either S is a local ring, or

(b) S/J(5)) = S/I x S/K, where S/I and S/K are division rings.

Theorem 19. (Weak Krull-Schmidt Theorem) Let ¢;: F;; — E;2 (i = 1,2,...,n) and

@i Bjy = Ej, (i=1,2,...,t) be n+1t non-injective morphisms between indecomposable
injective modules Ei\, B2, By, B},
over an arbitrary ring R. Then @7 keryp; = GB}__.lker«p;- if and only if n = t and
there ezist two permutations 0,7 of {1,2,...,n} such that [kerpi}m = [kery))m and

[ker p;)u = [ker ]y for everyi=1,2,...,n.

Hence, also in this case we find the same behavior: at most two maximal ideals and
the same weak form of the Krull-Schmidt Theorem. Now we will present a further class
of modules over arbitrary rings with exactly the same behavior. It extends the class of
cyclically presented modules over local rings we have met with in §5.2.

6.2. Couniformly presented modules. These modules have been introduced and stud-
ied in [13).

It is easily seen that a projective right module Py is couniform, that is, has dual Goldie
dimension one (cf. §5.1) if and only if Pr is the projective cover of a simple module, if
and only if End(FPR) is a local ring, if and only if there exists an idempotent e € R with
Pr = eR and eRe a local ring, if and only if P is a finitely generated module with a
unique maximal submodule 1, Lemma 8.7].

We say that a module My is couniformly presented if it is non-zero and there exists an
exact sequence

(6.1) 0—Cr— PrR—Mg—0

with Pr projective and both Cr and Px couniform modules. Under these hypotheses,
(6.1) will be called a couniform presentation of the couniformly presented module Mpg.



For such a module Mpg, every endomorphism f of Mg lifts to an endomorphism f; of
the projective cover Pg of Mg, and we will denote by f, the restriction of f to Cr. Hence
we have a commutative diagram

0 - Cp = PR = Mg = 0
ni i lr

0 - CR = PR —)MR—)O.

Theorem 20. Let 0 - Cr — Pr = Mp — 0 be a couniform presentation of a couni-
formly presented module Mp. Let K = {f € End(Mg) | f is not surjective} and
I:={f € End(MR) | fi: Cr = Cr is not surjective}. Then K and I are completely
prime two-sided ideals of End(MRg), and the union K U I is the set of all non-invertible
elements of End(Mg). Moreover, exactly one of the following two conditions hold:

(a) Either End(Mp) is a local ring, or

(b) J(End(MRg)) = KNI, and End(Mg)/J(End(MR)) is canonically isomorphic to the
direct product of the two division rings End(MR)/K and End(MRg)/I.

If Mg and M}, are two couniformly presented modules with couniform presentations 0 —
Cr — Pp = Mg — 0 and 0 = Ci = P = Mp — 0 respectively, we say that Mg and
Mgy, have the same lower part, and write [MRg]: = [Mg]e, if there are two homomorphisms
fo: Pr — Pp and fy: Pp — Pgsuch that fo(Cr) = Cy and f3(CR) = Cr. (The definition
of “having the same lower part” had been given in §5.2 only for cyclically presented
modules over local rings. Here we are giving it for arbitrary couniformly presented modules
over arbitrary rings.)

Theorem 21. (Weak Krull-Schmidt Theorem for couniformly presented modules) Let
My, ..., M, Ny, ..., N, be couniformly presented right R-modules. Then the modules M, ®
- @® M, and N, & --- & Ny are isomorphic if and only if n = t and there are two
permutations 0,7 of {1,2,...,n} with (M), = [Nyyle and [Mi]e = [Nyyle for every
i=1,...,n

6.3. Relation between upper part and lower part. We have seen that kernels of
morphisms between indecomposable injective modules are described by their monogeny
class and their upper part. Couniformly presented modules are described by their epigeny
class and their lower part. Let us explain the reason of this symmetry.

Let R be a fixed ring. Let { E) | A € A} be a set of representatives up to isomorphism of
all indecomposable injective right R-modules. Set Eg := E(®xeaEy) and S := End(ER),
so that gEg turns out to be an S-R-bimodule and H := Hom(—, sEg): Mod-R — S-Mod
is an additive contravariant exact functor.

If X is the full subcategory of Mod-R whose objects are finite direct sums of kernels
of morphisms between uniform (equivalently, indecomposable) injective right R-modules,
and C is the full subcategory of S-Mod whose objects are finite direct sums of cokernels
of morphisms between couniform projective left S-modules, then the restriction H =
Hom(—,sEg): K = S is a duality. It exchanges monogeny and epigeny (and upper part
and lower part) as stated in the next proposition.

Proposition 22. Let Kgr and Ky, be the kernels of two non-zero non-injective morphisms
between uniform injective right R-modules. Then:



(a) [Kalm = [Kplm if and only if [H(KR)]. = [H(KR)]..
(b) [Kalu = [Kglu if and only if [H(Ka)le = [H(Kg)]e.

7. SEEKING A GENERAL THEORY

We have seen three pair-wise incomparable classes of modules with the same behavior:
(1) The class of biuniform modules. It contains the class of uniserial modules. These
modules are described by their monogeny classes and their epigeny classes. (2) The class
of all couniformly presented modules. It contains the class of all cokernels of morphisms
between projective couniform modules, which in turn contains the class of all cyclically
presented modules when the base ring R is local. These modules are described by their
lower parts and their epigeny classes. (3) The class of all kernels of morphisms between
uniform injective right R-modules. They are described by the monogeny classes and the
upper parts, and there is a duality between this class and the class of all cokernels of
morphisms between projective couniform modules. It would be easy to construct further
examples of classes of modules with exactly the same behavior. For instance, fix two
simple non-isomorphic right R-modules Sy and S;. Then the class of all artinian right
R-modules with socle isomorphic to S} & Sz has this kind of behavior.

P. Pifhoda and the author have found a general theory, a general setting able to describe
all these particular classes [18]. We say that a ring S has type n if the factor ring S/J(S)
is a direct product of n division rings, and we say that a right module My over a ring R
has type n if its endomorphism ring End(Mpg) is a ring of type n. A ring R has type 1 if
and only if it is a local ring, if and only if there is a local morphism of R into a division
ring.

Lemma 23. The following conditions are equivalent for a ring S with Jacobson radi-
cal J(S) and a positive integer n.

(i) n is the smallest of the integers m such that there exists a local morphism of the
ring S into a direct product of m division rings.

(i) S has ezactly n distinct mazimal right ideals, and they are all two-sided ideals in
S.

(i) The ring S has type n.

The natural question is: if 7 is the full subcategory of Mod-R whose class of objects
consists of all indecomposable right R-modules of type 2, does a weak Krull-Schmidt
Theorem hold for 77

Let C be a full subcategory of Mod-R whose objects are indecomposable modules. A
completely prime ideal P of C consists of a subgroup P (A, B) of Hompg(A, B) for every pair
of objects A, B € ObC such that for every A, B,C € Ob(, every f: A — B and every
g: B = C one has that gf € P(A,C) if and only if either f € P(A,B) or g € P(B,C).
In all the previous situations, we have a pair of completely prime ideals P, @ of C with
the property that, for every object A € ObC, and endomorphism f € End(A) of A is an
automorphism of A if and only if f ¢ P(A4, A)U Q(A, A).

If C is a full subcategory of 7', M is an object of Z, and I is a fixed ideal of Endg(M),
let Z be the ideal of the category C defined as follows: a morphism f: X — Y is in
Z(X,Y)ifand only if Bfa € I for every a: M — X and every 8: Y — M. We call Z the



ideal of C associated to I. It is the greatest among the ideals I’ of C with Z'(M, M) C I,
and in this case, as it is easily seen, Z(M, M) = 1.

We can associate to the category C a graph G(C). The edges of G(C) are the isomor-
phisms classes (M) := {Y € Ob(C) | Y & M in Mod-R}, where M ranges in Ob(C);
the vertices of G(C) are the ideals Z in the category C associated to a maximal ideal J of
End(Mg) for some M € Ob(C); for every M € Ob(C), the endomorphism ring End(Mg)
has exactly two maximal ideals [, I3, and the edge (M) connects the vertices Z; and Z,.

Theorem 24. Let C be a full subcategory of T. A weak Krull-Schmidt Theorem holds for
C if and only if the graph G(C) does not contein a subgraph isomorphic to the complete
graph K.

For suitable rings R, the graph G(7") contains a copy of the complete graph Kj, so that
a weak Krull-Schmidt Theorem does not hold for 7.
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PICARD GROUPS OF ADDITIVE FULL SUBCATEGORIES

NAOYA HIRAMATSU AND YUJI YOSHINO
(OKAYAMA UNIVERSITY)

1. INTRODUCTION

Let k be a commutative ring and let A be a commutative k-algebra. We denote by
A-Mod the category of all A-modules and all A-homomorphisms. Let € be an additive
full subcategory of A-Mod. Since A is a k-algebra, every additive full subcategory € is
a k-category. A covariant functor € — € is called a k-linear automorphism of € if it is
a k-linear functor giving an auto-equivalence of the category €. We denote the set of all
the isomorphism classes of k-linear automorphisms of € by Aut,(€), which forms a group
by defining the multiplication to be the composition of functors.

Our study was motivated by the following computational result. Recall that a local
ring (A, m) is said to have only an isolated singularity if A, is a regular local ring for all
prime ideals p except m.

Theorem 1. Let A be a Cohen-Macaulay local k-algebra with dimension d. Suppose that
A has only an isolated singularity. Then,

Autk.,,;g(A) (d # 2)

Aut.o(A4) x CUA) (d=2),

where CM(A) is the additive full subcategory consisting of all mazimal Cohen-Macaulay
modules and C¢(A) denotes the divisor class group of A.

Aut(CM(A)) = {

In this note we generalize this computation to much wider classes of additive full sub-
categories € of A-Mod, and we shall show a certain structure theorem for Auty(C€).

2. AUTOMORPHISM GROUPS

Throughout the paper, k is a commutative ring and A is a commutative k-algebra.
When we say that € is a full subcategory of A-Mod, we always assume that € is closed
under isomorphisms, and we simply write X € € to indicate that X is an object of
€. Suppose that we are given an additive full subcategory € of A-Mod and an additive
covariant functor F' : € — €. Recall that F is a k-linear functor if it induces k-linear
mappings Hom4(X,Y) = Hom,(F(X), F(Y)) for all X,Y € C.

Definition 2. Aut;(C€) is the group of all the isomorphism classes of k-linear automor-
phisms of €, i.e.

F is a k-linear covariant functor that } =

Auty(€)={ F: € | gives an equivalence of the category €

The detailed version of this paper will be submitted for publication elsewhere.



Note that the multiplication in Aut,(€) is defined to be the composition of functors, hence
the identity element of Aut,(C) is represented by the class of the identity functor on €.

We denote by Auty.,g(A) the group of all the k-algebra automorphisms of A. For
o € Aut,,(A), we can define a covariant k-linear functor o, : A-Mod — A-Mod as
in the following manner. For each A-module M, we define o.M to be M as an abelian
group on which the A-module structure is defined by aom = o~(a)m fora € A, m € M.
For an A-homomorphism f : M — N, we define o.f : 6.M — o.N to be the same
mapping as f. Note that o. f is an A-homomorphism, since (0. f)(aom) = f(o~(a)m) =
o~ (a)f(m) = ao(0.) f(m) for all a € A and m € M. Notice that o, is a k-automorphism
of the category A-Mod.

Definition 3. Let € be an additive full subcategory of A-Mod. Then € is said to be
stable under Auty.g(A) if 0,(€) C € for all 0 € Auty ,5(A).

Note that if € is stable under Auty.,4(A) then o,|¢ gives a k-automorphism of € for all
o € Auty.(A). Therefore we have a natural group homomorphism ¥ : Autgag(A) —
Aut,(€) which maps o to the class of 0. |¢. It is easy to verify the following lemma.

Lemma 4. Assume that € is stable under Auty..y(A) and that A € €. Then the natural
group homomorphism ¥ ; Auty...(A) = Aut,(€) is an injection.

By this lemma, we can regard Aut;..iz(A) as a subgroup of Auti(C).

Definition 5. Let N be an A-module. Given a k-algebra homomorphism o : A — A, we
define an (A ®; A)-module N, by N, = N as an abelian group on which the ring action
is defined by (a®b)-n = ac(b)n for a®b € A®, A and n € N. In such a case, we
can define a k-linear functor Homy4(N,, —) : A-Mod — A-Mod, for which the A-module
structure on Hom4(N,, X) (X € A-Mod) is defined by (b- f)(n) = f((1®b)-n) for
f € Hom4(Ny, X), b€ Aand n € N.

If o is a k-algebra automorphism of A, then it is easy to see the following equality of
functors holds:
(071). o Homy4(N, ) = Homy(N,, ).

The following theorem is one of the main results of this note.

Theorem 6 ([2, Theorem 2.5]). Let A be a commutative k-algebra and let € be an ad-
ditive full subcategory of A-Mod such that A € €. For a given k-linear automorphism
F € Aut,(C), there is a k-algebra automorphism 0 € Auty.uy(A) such that F is iso-
morphic to the composition of functors 6. o Homa(N, —)|c, where N is any object in €
satisfying F(N) & A in €.

Proof. We give below an outline of the proof. See [2, Theorem 2.5] for the detail.

Since A is commutative, the multiplication map ax : X - X by an element a € A is
an A-homomorphism for all objects X € €. Thus we can define a natural transformation
a(a) : F - F by a(a)(X) = F(ax) : F(X) = F(X). Denote by End(F) the set of all
the natural transformations F' — F', and this induces the mapping

a:A—=End(F); aw~ F(a)).



Note that End(F) is a ring by defining the composition of natural transformations as
the multiplication and it is also a k-algebra, since F is a k-linear functor. By using
the fact that F is an auto-equivalence, it is straightforward to see that « is a k-algebra
isomorphism.

Since F is a dense functor and A € €, there is an object N € € such that F(N) & A.
For such an object N, we can identify Ends(F(N)) with A as k-algebra through the
mapping A — End4(F(N)) which sends a € A to the multiplication mapping ar(n) by @
on F(N). Thus we have a k-algebra homomorphism

B:End(F) = Ends(F(N)) 2 A; o~ p(N).

We easily see that 3 is a k-algebra isomorphism.
Now define a k-algebra automorphism ¢ : A = A as the composition of a and 3;

A =2 End(F) 2 Endy(F(N)) —=— A
a — F(ay) — Flapy) —— o(a).
Then, for each object X € €, we have isomorphisms of k-modules;
F(X) —=— Hom(F(N), F(X)) —— Homa(N,-1,X)
T —— (zran:l=z) ——  Fl(zpp),

whose composition we denote by yx. Since F~}(a(a)r(n)) = a(n) holds for a € A, we can
show that ¢x is an A-module isomorphism for all X € €. Since it is easily verified that
@y is functorial in X, we have the isomorphism of functors F = Hom4(N,-:, ), and the
proof is completed. O

3. PICARD GROUPS

In this section, we study the group of all the A-linear automorphisms of an additive
full subcategory of A-Mod. As in the previous section € is an additive full subcategory
of A-Mod. We always assume that € contains A as an object.

By virtue of Theorem 6, we have the following corollary.

Corollary 7 ([2, Corollary 3.1]). For any element [F] € Auty(€), there is an isomor-
phism of functors F = Homa(N, —)|¢ for some N € €.

Taking this corollary into consideration, we make the following definition.

Definition 8. We define Pic(€) to be the set of all the isomorphism classes of A-modules
M € € such that Hom (M, —)|¢ gives an auto-equivalence of the category €. That is,

Pi¢c(€) = {M € € | Hom,4(M, —)|e gives an (A-linear) equivalence € — €}/ = .

We define the group structure on Pic(€) as follows: Let [M] and [N] be in Pic(€). Since
the composition Hom 4 (M, —)|¢ o Hom4(N, —)|¢ is also an A-linear equivalence, it follows
from Corollary 7 that there exists an L € € such that

HOIDA(L, —)Ic o HomA(M, —)|€ [o] HOIDA(N, —)lg



We define the multiplication in Pic(€) by [M]: [N] = [L]. Note that
Hom4(M, =)|e © Homu(N,-)|lc = Homs(M ®4 N, -)|ec
o HomA(N, —)|¢ [o] HomA(M, —)|¢,

and hence [M]-[N] = [N]-[M]. In such a way Pic(€) is an abelian group with the identity
element [A]. We call Pic(€) the Picard group of €.

Note from Yoneda’s lemma that the multiplication in Pic(€) is well-defined. Further-
more, the mapping Pic(€) — Aut4(€) which sends [M] to Hom(M, —)|¢ is an isomor-
phism of groups by Corollary 7. Since Aut,(€) is naturally a subgroup of Aut,(€), we
can regard Pic(€) as a subgroup Aut,(C€) through the isomorphism Pic(€) = Aut,4(€).

Assume furthermore that an additive full subcategory € is stable under Auty.aig(A).
Then we have shown by the above argument together with Lemma 4 that Aut,(€) contains
two subgroups, Pic(C) and Auty.,gz(A). Moreover, Theorem 6 implies that these two
subgroups generate the group Aut,(€). Thus it is straightforward to see that the following
theorem holds.

Theorem 9 ([2, Theorem 4.9]). Assume that an additive full subcategory € is stable un-
der Auty..15(A) and assume that A € €. Then there is an isomorphism of groups

Autk(et) &~ Autk.,,;g(A) X PlC(@)
Now we give several examples for Pic(€).

Example 10 ([2, Example 3.8, 3.11]). We denote by A-mod the full subcategory consist-
ing of all finitely generated A-modules. We also denote by Proj(A) (resp. proj(A)) the
full subcategory consisting of all projective A-modules (resp. all finitely generated pro-
jective A-modules). If A is an integral domain, we denote by Tf(A) (resp. tf(A)) the full
subcategory consisting of all torsion free A-modules (resp. all finitely generated torsion
free A-modules). Let € be one of the full subcategories A-Mod, A-mod, Proj(A), proj(A),
Tf(A) and tf(A). Then we have an isomorphism Pic(€) = Pic A, where Pic A denotes
the (classical) Picard group of the ring A, i.e. Pic A = {invertible A-modules}/ & . See
also [2, Proposition 3.7].

Example 11 ([2, Example 3.9, 3.10]). Let A be a Krull domain and let Ref(A) be the
full subcategory consisting of all reflexive A-lattices. (Respectively, let A be a Noetherian
normal domain and let ref(A) be the full subcategory consisting of all finitely gener-
ated reflexive A-modules.) Then there is an isomorphism Pic(Ref(A)) = C¢(A) (resp.
Pic(ref(A)) = C¢(A)), where C¢(A) denotes the divisor class group of A.

Example 12 (|2, Example 3.12]). Let (4, m) be a Noetherian local ring. We consider the
full subcategory d2!(A) of A-Mod which consists of all the finitely generated A-modules
M satisfying depth M > 1. If depth A > 1, then Pic(d2!(A)) is a trivial group.

4. P1carD GROUP OF CM(A)

In this section, let (A, m) be a Cohen-Macaulay local k-algebra, i.e. A is a Noetherian
local k-algebra with maximal ideal m and satisfies the equality depth A = dim A. We focus
on the additive full subcategory CM(A) consisting of all the maximal Cohen-Macaulay



modules over A and we give the reason why Theorem 1 holds. See [3] for the details of
CM(A).
For the Picard group of CM(A), we have the following result.

Theorem 13 ([2, Theorem 5.2]). Let A be a Cohen-Macaulay local k-algebra of any di-
mension. Suppose that A is regular in codimension two, i.e. A, is a regular local ring for
any prime ideal p with ht(p) = 2. Then Pic(CM(A)) is a trivial group.

Proof. If dim A = 0, then CM(A) = A-mod and hence Pic(CM(A)) = Pic A is a trivial
group by Example 10. If dim A = 1, then CM(A) = d2!(A) and we have shown in
Example 12 that Pic(CM(A)) is again a trivial group. If dim A = 2, then our assumption
means that A is a regular local ring hence a UFD. Note that CM(A) = ref(A) in this
case. Therefore Pic(CM(A)) = C¥(A) is a trivial group.

In the rest we assume d = dim A > 3. Let [M] € Pic(CM(A)). Assuming that M is
not free, we shall show a contradiction. Take a free cover F' of M and we obtain an exact
sequence 0 — QM) — F — M — 0. Note that the first syzygy module (M)
belongs to CM(A). Apply Hom4(M, —) to the sequence, and we get an exact sequence

0 — Hom (M, Q(M)) — Hom (M, F) = Homa(M, M) L ExtL, (M, Q(M)) .

Notice that f # 0, since we have assumed that M is not free. Because of the assumption,
we see that Exty(M,Q(M)), = 0 for all prime ideals p with ht(p) = 2. This implies
that dim Exth(M,Q(M)) < d — 3, hence the image Im(f) is a nontrivial A-module of
dimension at most & — 3. In particular, we have depth Im(f) < d — 3.

On the other hand, since Hom4(M, —)|cm(a) is @ functor from CM(A) to itself, the
modules Hom 4 (M, Q(M)), Hom4(M, F) and Hom4(M, M) have depth d. Hence we con-
clude from the depth argument [1, Proposition 1.2.9] that depth Im(f) > d — 2. This is
a contradiction, and the proof is completed. a

As in Theorem 1, let A be a Cohen-Macaulay local k-algebra of dimension d that has
only an isolated singularity. We give a proof for the equalities in Theorem 1. If d # 2,
then we see from Theorem 13 that Pic(CM(A)) is a trivial group, hence Aut,(CM(A)) =
Autgq5(A) by Theorem 9. On the other hand, if ¢ = 2 then A is a normal domain
and we have CM(A) = ref(A), hence Pic(CM(A)) = C¢(A) by Example 11. Therefore
Aut,(CM(A)) = Autyag(A) x C2(A) by Theorem 9.
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LEFT DIFFERENTIAL OPERATORS OF MODULES OVER RINGS
HIROAKI KOMATSU

ABSTRACT. We define left differential operators of modules which several algebras act
and study their fundamental properties. We also characterize separable algebras by
making use of our left differential operators.

1. FF

Osborn 7] 3 & Ut Heyneman-Sweedler [2] IZ#4% 2 TR S TR OMLREF ORI,
Sweedler (8] I2 & o THAMBTERAILRENTDOEH, ThiTFMMBICHEZ L 558
derivation DS B LD TH Y, MEMBEIZIEE & 3 derivation (IZ11E VLS T
ot LEHE>TH, WTHER derivation & 72 HIZBMRAIT HILB = & [6] IR
EhTw3. BEOBIZE [3), [4], 5] Kb 5.

AR TIL, derivation 2 VET AL I RBMAMBFEHEATS. Tk, BOFEHRTFE
BAWESHETROGEMIT EERYT 3.

FRXEFBALT, KIIWICHTE2ATITREBER2RT. 4, WERWVWT, 2R
TR TBIT2 AL, 2R LOMBIITRCHMTHIESHIERTILDE TS,
HZTR ROBAETHRE R° TET.

2. ERMHTATF

S={R, ..., R} 2 KZxROFWELTD. KMPEMH, £i=1,...,niZ>n
TERMBMEL LD, i£jDLER L ROEABTRLZGE, MEESMBL®
5 ESNBOMOEB/ fREDi=1,...,n K50 TH R, BMRMERTHI L&, f
* SHERNBH LS. A SHMBECHER S MBI DWW THRBRICERTS. SEosm
BMLEMBENIZHLT, MxND»bKNE~ORBRHEER ¢ T ¢(ua,v) = p(u, av)
(ueM,veN,a€R;,i=1,...,n) E{ETHOOTRTERRT S KM#EE2 MsN
TEL, SEDOFUVILEERES.

IhbOBMEFIFHFLVWLDOTIERY. R=R ®x---®x R, BT, ESMEIRE
RMBICME ST, SHBEBERIT RBEENERICHL2L6T, SEOFVABITIRE
OF Y AVHICa b2, EOLTSMBEZRLHLEZONLED L, §4 TR B
ERFEELRVWETRTCOFIATREL LG TT.

M,N2EShBL+5. fe€Homg(M,N) & a€ R; 123 LT {f,a} € Homg (M, N)
EFROLICEDS.

{f,a}(u) = f(av) - af(u) (u€ M)
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¥k, F C Homg(M,N) & AC R icxtL, {{f,a} | f € F, a € A} TEREhK
Homg(M,N) © K 889 MEE% {F,A} TERL, ¥ p>0iZxd 2 {F A}, KDL
ICIRMEIZED B,

{F,A}O = F) {F1 A}p+l = {{F) A}pn A}
Definition 1. S={R;, ..., R.} ¥ K ZTROFMEL L, M, N 2ESMBLT5.
¥, p=(p1,... ,pn) ZHABYDIRFRLTS. fe Homg(M,N) T

{' v {{f» Rl}pn R2}p3) trty Rn}p,. =0

ERETHLOERp DERBRAF LY, MM6N~Op 0EMIBEHFOLEE
DI(M,N) TRT.
Example 2. n =1 OFE, ¥ (p) DEBITWMA T L Sweedler (8] ® p— 1 KEMIEA
FOZILTHS.

Example 3. S = {R, R°} £¥5. RRIZROBRAEBTRTHS. fe DVVR M) T
f(1) =0 2=+ H DX RH 6 REHINEE M ~O derivation iZflli2 672vy, T Z &b
b, § LOEMSIE T derivation #—IL LIz bDERB Z LN TES.

S={Ry,..., R} * KBEXROFMREL L, R=R, @« ---®x R, £ BL. p=
(P1y- -+ , o) EHABBOIRFXTE TS, v€ Ri®kRi L a€ R XL T [u,a] =ua—au
EBL. UCR®kR &£ ACR L, {[u,0]|uel, ac A} CERENT Ri®kR;
O KMSMBEE [U Al TRL, Blp> 0t 5 [U A, 2RO LD ICRHOICEDS.

[U: A]O =U, [U, A]p+l = [[U» A]p’ A]
R ®x R IKBWT [1©1, R, CER SN R GRS MBEY 1P THT. #Hi P =
R;®x R; TH5.
Ig=I'®k-- @I
LpE, BEER LI S bBELID
B=R'® @& 1213

D&%

78 Ig =5 JE
E¥5. 22T, 0=(0,...,0) TH3. wi=13((101)® - ®(1®1) L%, Ef

ds:R— J8
¥, &2(z)=uwiz (€ R) CTEDD. ROEBIZFTT LT, df € DE(R, JE) ThY,
BpDT~TOEHITEEAFIX 4 L SHAMERLDERERL LTHLNS.

M, NZ2EShELTS. BRAZRAESR o M 5> R®s M &, MOESEER 1)
BRWT, 8D p € Homs(JP ®s M, N) iZ3 LT

n5(M, N)(p) = p(d§ ® ly)on € Homg(M, N)



LERTD. WD, 75(M,N)(p)(u) = pws ®u) THS.

Theorem 4. EDOREDTIZ, df € DYR, JF) THY, BRILIRAYER
n5(M, N) : Homs(JE ®s M, N) = DE(M, N)
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3. SyREtE

SHETROBEOHRL LT, SRROFBREOHHELZEETS. KESTBRO
RENLBLNZBR RARAMERYES ROy R+ RBAETI L&, RIIVMET
BREEELN 3. Zhit, R» 5 RFEAIINEE~D derivation 233~ TP derivation TH 3
ZLIFMETHD. €~ T, S={R, R’} ¢ BT, T_ATOESMEM IZHLT

DIY(R, M) = Homp(R, M) + Homg. (R, M)
BRYU-SZ LI bRETHD. “OWENID, KOERIZARTHS .

Definition 5. S={R,, ..., R,} # K SRBOABBELL, 1=(1,...,1) &T5.
KL, n>1Thd. T_TOESME M, NItHLT

DY(M, N) = i'; Homg (M, N)

BRI LE, ST THIL ).
ROERIL, AREOSEEL FBETRLEOPIHDY EZRLTNS.
Theorem 6. S = {Ry, ..., R} OFD n—1 @ARHMWETRL OIE, SIIYMANTHS.
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Theorem 8. EDESDTT, EEDESME M, N LHEABKROIEFS p=(p1,.-. ,Pn)
LT,

n5: (M, N) : Homs(JE ®s M, N) — DE(M, N)
ERRRARNERTHS.

Riz, SHEIZSWTERT S, HUTHEELLVWES, Theorem 7RI L2V,
T TCREEZBOTROEEYEZXD.

Definition 9. K $TB RIZAH LT S = (R, R°} L8, +_TOESMEMIZHLT
DR, M) = Homg(R, M) + Homge (R, M)
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ON FILTERED SEMI-DUALIZING BIMODULES

HIROKI MIYAHARA

ABSTRACT. In this paper, we study the homological property of Rees modules of finitely
generated filtered modules. In particular we state on Gorenstein dimension (more gen-
erally G¢-dimension in the sense of T. Araya, R. Takahashi, and Y. Yoshino (1]} of Rees

modules.

1. INTRODUCTION

Semi-dualizing bimodule was introduced by T. Araya, R. Takahashi and Y. Yoshino in
(1], which is a generalization of semi-dualizing module in commutative ring theory. For
a semi-dualizing bimodule C and a finitely generated module M, they also introduced
Gc-dim M, which is a generalization of Gorenstein dimension of M, and extended the
notion of Cohen-Macaulay dimension for modules over commutative Noetherian local
rings to that for bounded complexes over non-commutative Noetherian rings. On the
other hand, in [3] with K. Nishida, we showed the following:

Theorem A. Let A be a filtered ring, and M a finitely generated filtered A-module with
good filtration. Then the Gorenstein dimension of M is less than or equal to the Gorenstein
dimension of associated graded module of M.

In Section 2, we study the filtered semi-dualizing bimodules and give a generalization
of Theorem A without proof.

In Section 3, we state on Gorenstein-dimension of Rees modules. For a filtered (A, A')-
bimodule C, we show that if the associated graded bimodule grC of C is semi-dualizing,
then Rees bimodule C of C is semi-dualzing (proposition23), and we compare
Gyc-dimgrM with Gz-dimM for a finitely generated filtered A-module M.

In the rest of this section, we shall recall some definitions and properties on filtered
ring theory.

Definition 1. Let A be a ring. A family FA = { F,A | p € Z} of additive subgroups of
A is called a (positive) filtration of A, if

(1) FACFpnAforalpeZ,

(2) FA=0,ifp<0

(3) 1€ FoA,

(4) (FpA)NF4A) C Fpiqh for all p,g € Z, and

(5) A= Upez FpA.

The detailed version of this paper will be submitted for publication elsewhere.



A ring A is called a (positive) filtered ring, if it has a filtration. If a ring A has a filtration
FA, then @,z FpA/Fp-1A is a graded ring with multiplication o,(a)oy(b) = 0psg(ab)
where g, : F,A — F,A/F, 1A is a canonical map, and ¢ € F,A, b € FA. We denote
by grA the above associated graded ring of A.

Definition 2. Let A be a filtered ring with a filtration A, and M a A-module. A family
FM ={F,M | pe Z} of additive subgroups of M is called a filtration of M, if

(1) FMC FpMioralpeZ,

(2) FM=0forp<x0,

(3) (FpA)FyM) C FpiqM for all p, ¢ € Z, and

(4 M= Upez FoM
A A-module M is called a filtered A-module if M has a filtration. If a left A-module M has
a filtration FM, then @, FpM/F,. 1M is a graded left grA-module with action
op(a)Ty(z) = Tpiq(az) where ¢ € F A, z € FyM, and 74 : FoM — FoM[Fo M is
a canonical map. We denote by grM the above associated graded grA-module of M.

Let A, A’ be filtered rings. A (A, A’)-bimodule M is called a filtered bimodule if there
exists a family FM of subgroups of M such that (,M,FM) and (My,, FM) are filtered
modules.

Definition 3. Let A be a filtered ring with a filtration FA. Then the graded ring
®pezFpA is called the Rees ring of (A,F), and denoted by A. Similarly, for a filtered
left module (M, FM) over a filtered ring (A, FA), the graded left A-module DpezFpM is
called the Rees module of M, and denoted by M.

Let A be a filtered ring. Then the Rees ring A has the canonical central regular element
X = (01p)pez € A where §;; is the Kronecker’s delta. Suppose that (M, FM) is a filtered
A-module. Then,

(1) A/XA = grA (as graded ring) and M/XM 2 gr-M (as graded module).

@M/A-X)M=M
Definition 4. Let (A, FA) be a filtered ring. A filtration FM of a A-module M is called
good, if there exist p;,--- ,p, € Z and my,--- ,m, € M such that for all p€ Z

FpM = Z(-F p-p )
i=1
From the above definition, we can easily check the following:
(1) For a filtered A-module (M, FM), FM is good if and only if gr=M is a finitely
generated grA-module if and only if Misa finitely generated A-module.
(2) Suppose that (A, FA) is a filtered ring. If M is a finitely generated A-module, then
M has a good filtration.

Definition 5. Let (M,FM), (N,FN) be filtered A-modules. A A-homomorphism
f: M — N is called a filtered homomorphism, if f(F,M) C FpN for all p € Z.
Further, f is called strict, if f(FpM)=Imf N F,N for all p € Z.



Remark 6. (1) The composition of two filtered homomorphisms is also a filtered
homomorphism, but it need not be strict even if both of them are strict.

(2) Let f: M — N be a filtered homomorphism, then f indeuces canonical additive
maps fp : FoM/Fp s M — F,N/F, N given by z + FpuyM +— f(z) + FpuaN. It
is clear that grf = @pczf, defines a graded homomorphism from grM to grN. Note
that (grg)(grf) gr(gf) for any filtered homomorphisms f : M — N,g:N— L

Similarly, f = ®pezf|r,m defines a graded homomorphism from M to N, and if=g f
holds.

Lemma 7. Let (¥) : L LM 25 Nbea sequence of filtered modules and filtered
homomorphisms such that gf = 0. Then

(1) The sequence
gr(+) : gL Zh oM £ N
is ezact if and only if (*) is exact and f,g are strict.
(2) The seguence
) : L RNy RN
is ezact if and only if (%) is ezact and f is strict.

Lemma 8. ([2] Chapter III Proposition 2.2.4) Let M and N be filtered A-modules. Then
gr Ext) (M, N) is a subfactor of Ext} (gr M,gx N) for each i > 0.

2. SEMI-DUALIZING FILTERED MODULES
First, we recall the definition of semi-dualizing bimodules.

Definition 9. ([1] Definition 2.1) Let R, R’ be Noetherian rings. An (R, R')-bimodule C
is called a semi-dualizing bimodule if the following conditions hold:
(1) The right homothety R’-bimodule morphism R — Hompg(C, C) is a bijection,
(2) The left homothety R-bimodule morphism R — Hompg:(C,C) is a bijection,
(3) Extik(C,C) =0 for all i > 0, and
(4) Extgp(C,C)=0for allz> 0.

Definition 10. ([1] Definition 2.2) Let R, R’ be Noetherian rings and C a semi-dualizing
(R, R')-bimodule. An R-module M is called C-reflexive if the following conditions hold:

(1) Exth(M,C) =0 for all i > 0,
(2) Exth(Homg(M,C),C) =0 for all i > 0, and
(3) The natural morphism

M — Homg/(Homg(M, C),C)
is a bijection.



Definition 11. ([1] Definition 2.3) Let C be a semi-dualizing (R, R')-bimodule and M
an R-module. If there exists an exact sequence

0—m X, — Xy — - — X — M—0
where each X; is a C-reflexive R-module, M is called that G-dimension is less than or

equal to n (denoted by Ge-dimM < n). If Go-dimM < n and Ge-dimM £ n — 1, then
we say Go-dimension of M is equal to n (denoted by Ge-dim M = n).

Remark 12. (1) In [1], a semi-dualizing bimodule was defined over a left Noetherian ring
R and a right Noetherian ring R'. In this paper we assume that both R and R’ are (left
and right) Noetherian rings.

(2) The ring R itself is a semidualizing (R, R)-bimodule and the R-reflexive modules
coincide with the modules whose Gorenstein dimension are equal to 0. Moreover, in the
case of C = gRp, we have Go-dim M = G-dim M.

The following lemma is indispensable for the study of filtered semi-dualizing bimodules.

Lemma 13. Let (C,F) be a filtered (A, A')-bimodule such that gagr=C and grzCep are
finitely generated. If gr-C is a semi-dualizing (gr A, gr A’)-bimodule, then C is a semi-
dualizing bimodule.

Proof. Assume that f : A’ — Hom,(C,C) is the right homothety A’-bimodule
morphism, and ¢ : gr A’ — Homg(gr C,gr C) is the right homothety gr A’-bimodule
morphism. Since there is a natural graded monomorphism

4 : gt Hom, (C, C) — Homg(gr C,gr C),

we get the following commutative diagram:
gr N — Homg,(gr C,gx C)

®

wi |

gr Hom, (C,C) T) Homg, (gr C,gr C)

Since ¢ = o grf is an isomorphism from the assumption, ¥ is an epimorphism. Thus
f is a A’-isomorphism. It follows from the lemma 8 that gr Ext}(C, C) is a subfactor of
Ext}, (gr C,gr C) for each i > 0. Therefore Ext}(C,C) = 0 for all i > 0. Similarly, we
can prove that the left homothety morphhism g : A — Homy/(C, C) is a bijection and
Ext}.(C,C) = 0 for all i > 0. Therefore C is a semi-dualizing bimodule. O

Definition 14. We say that a filtered (A, A’)-bimodule C is a semi-dualizing filtered
bimodule if gr C is a semi-dualizing (gr A, gr A’)-bimodule.

All semi-dualizing filtered bimodules are semi-dualizing bimodules by lemma 13. In the
rest of this section, C is a semi-dualizing filtered (A, A’)-bimodule.



In [1], it is proved that Go-dimM < k if and only if Go-dimQ*M = 0, where Q*M
is the k-th syzygy of M (Lemma 2.7). Applying this lemma, we can prove the following
result in a completely similar way to the proof of Theorem A. So we give only the result
without proof.

Proposition 15. Let M be a filtered A-module. Then the following inequality holds:
Geo-dimM < Gge-dimgrM

3. G¢-DIMENSION FOR REES MODULES

Throughout this section, we denote by X (resp. X') the canonical central regular
element (d1p)pez € A (resp. (81p)pez € A') where §;; is the Kronecker’s delta. First of all,
we shall recall the Rees theorem, that is

Theorem 16 (Rees theorem). ([4] Theorem 9.37) Let R be ¢ ring, T € R a ceniral
reqular element, and M a T-torsionfree left R-module (T'-torsionfree means that left mul-
tiplication by T is injectoin). Then

Ext’_,';/TR(A, M/TM) = Ext‘;i*-l(A, M)
for any left R/T R-module A and n > 0.
Since M/XM = grM, M is X-torsionfree for any M € filtA, and A/XA = gryA, we
can get the following:
Ext?,;(erM, grC) = Ext2*}(M/X M, C)

In order to prove our main theorem, we give some easy lemmata without proofs.

Lemma 17. Assume that M, N are filtered A-modules. Then there exists a natural iso-
morphism Hom4(M, N) = Homz(M, N)

Lemma 18. Assume that M € filtA and
Ext0(erM, grC) = Exty, (Homg s (grM, grC), grC) = 0.

Then, the natural map ¢ : M — Homp.(Homy(M, C),C) is bijective if and only if the
natural map ® : grM — Homg s/ (Homg s (grM, grC), grC) is bijective.

Lemma 19. Let M € fltA. Then, the natural map

¢ : M — Homp«(Homy (M, C), C)
is strict isomorphism if and only if the natural map

& : M — Homg;(Homz(M,C),C)

is isomorphism.
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Note that f is a strict A’-isomorphism if g is a bijection as in the proof of the lemma 13.
Hence f is an isomorphism. Since 9 is also an isomorphism from the remark 17, h is an
isomorphism. Similarly, we can show that the left homothety A-bimodule morphism is
bijective. Therefore C is semi-dualizing,.

O

Now we can show the main theorem of this paper.

Theorem 24. Let M be a filtered A-module. Then Gg-dim}—\/? = 0 i and only if
Ggc-dimgrM = 0.

Proof. Assume that Gé-dimﬁ = 0. Since Extf{o(ﬁ ,C) = 0, we have
Ext;,{’(ng, grC) = 0 from the lemma22. Moreover we get the following short exact
seqence from the (}) in the remark 20:

0 — (M)* — (M)" — Ext} (M/XM C)—0
By the remark 17, we get the following commutative diagram:
0 — (M) — (M) — Ext%(ﬁ/Xﬁ/f,é) — 0
0— M — M+ — M /XM~ —0 (})°
Thus, grM* & M*/XM* = Ext,(M/XM,C) = (gt M)* by Rees theorem. By taking the

long exact sequence of (})*, we get Extg,?.((ng )*,grA) = 0. Hence it follows from the

lemma 18 and 19 that the natural map

® : grM — Homgy (Homga(grM, grC), gxC)
is an isomorphism. Therefore Gy c-dimgrM = 0.
Conversely, assume that Ggzc-dimgrM = 0. By the remark 20, the lemma 22 and the
Rees theorem, we can show

Ext>%(M, C) = Ext2°((M)",C) =
Therefore Gc-;.-dimM = 0. Since Gg,c-dxm oM =0,

Ext>0(grM, grC) = Ext 78 (Homg (gt M, grC), grC) =

and the natural map & : grM — Homg, s/ (Homg.s(grM, grC), grC) is an isomorphism.
Therefore the natural map

v:M— Hom;\-,(HomK(M, C),C)
is an isomorphism from the lemma 18 and 19. Hence, Gé-dimfvf =0.

We can show the following by induction on Ggc-dim grM.



Corollary 25. For any finitely generated filtered A-module M with good filtration,
Ggo-dimgrM = Gz-dim M
holds.
In particular, in the case of C = yA,, we can get the following.

Corollary 26. G-dimgtM = G-dimM for all finitely generated filtered A-module M
with good filtration.
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NOTES ON THE FEIT-THOMPSON CONJECTURE

KAORU MOTOSE

ABSTRACT. In this paper, we present partial solutions about Feit Thompson Conjecture.

Key Words:  primes, divisor, greatest common divisor, relatively prime,
2000 Mathematics Subject Classification: Primary 11A15 ; Secondary 20D05, 20D10.

Feit and Thompson [2] conjectured that F' = (¢° — 1)/(g — 1) does not divide
T = (p* — 1)/(g — 1) for distinct odd primes p < g (see also [6]).

In the paper [1, p.1], it was mentioned that if it could be proved, Odd paper [3] could
be shortened by nearly 50 pages (see also [4, p.125]).

Stephan [6] conjectured that F and T are relatively prime. However, using computer,
he found a common divisor r = 112643 = 2pg + 1 for a pair p = 17,¢ = 3313.

This is a rare example by the equation ¢* = 1 mod p? for this pair (see [5]).

He also confirmed that r is the greatest common divisor of F and T by computer, so
this example leaves Feit-Thompson conjecture unresolved.

At the present, it is known by computer that no other such pairs exist for p < g < 107
and p= 3 < g < 10M (see [4]).

The next is easily proved as in my talk.

Proposition. In either case of the next conditions, F does not divide T.

(1) ¢=1modp.
(2) p=3< g and F is composite.
(3) p=3 and ¢=1mod 4.

(4) r=2p+ 1 is prime, Legendre symbol (];3) =1, and ¢ Z 1 mod r.
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HOCHSCHILD COHOMOLOGY OF BRAUER ALGEBRAS

HIROSHI NAGASE

ABSTRACT. Suppose B is an algebra with a stratifying ideal BeB generated by an
idempotent e. We will establish long exact sequences relating the Hochschild cohomology
groups of the three algebras B, B/BeB and eBe. This provides a common generalization
of various known results, all of which extend Happel’s long exact sequence for one-point
extensions. Applying one of these sequences to Hochschild cohomology algebras modulo
the ideal generated by homogeneous nilpotent elements, we obtain, in some cases, that
these algebras are finitely generated.

1. INTRODUCTION

Let B be an algebra with a stratifying ideal BeB generated by an idempotent e and
HH"(B) the nth Hochschild cohomology group of B. In [11], we obtain a long exact
sequence

.+~ Ext}.(B/BeB, BeB) — HH"(B) —» HH"(B/BeB) ® HH"(eBe) = -+,

which is a generalization of Happel's long exact sequence in [9]. Moreover this is a
generalization of various known long exact sequences in the case of triangular matrix
algebras by Michelena and Platzeck in [13], Green and Solberg in [8] and Cibils, Marcos,
Redondo and Solotar in [2], and in the case of algebras with heredity ideals by de la Peiia
and Xi in [14].

For any finite dimensional algebra B with a stratifying ideal BeB, we will apply our
long exact sequence to the quotient of the Hochschild cohomology algebra HH*(B) modulo
the ideal A3 generated by homogeneous nilpotent elements. We denote by HH (B) the
graded factor algebra HH*(B)/Np.

In [16], for any finite dimensional algebra A, Snashall and Solberg studied support
variety by using Hocschild cohomology algebra HH*(A) and conjectured that HH (A4) is a
finitely generated algebra. Green, Snashall and Solberg have shown the conjecture to hold
true for self-injective algebras of finite representation type [6] and for monomial algebras
(7). Recently Xu has shown that there exists a counter example to the conjecture in [17].
We are, however, interested in the condition when HH (A) is finitely generated.

Applying the long exact sequence above to Brauer algebra Bi(n,d), we obtain an em-
bedding

HA (Bi(n,d)) — HH (kE,) x HH (kZp-2) x --- x BH (kZ,)
where I, is the symmetric group on m letters, k3Xy = k and ¢ is 0 or 1 depending on
whether n is even or odd (see Proposition 5). By using this embedding, we obtain the
result that HH (Bi(n, §)) is finitely generated in some cases.

The detailed version of this paper will be submitted for publication elsewhere.



2. STRATIFYING IDEALS

In this section we recall some results about Hochschild cohomology groups of algebras
with stratifying ideals in [11]. The following definition is due to Cline, Parshall and Scott
([3], 2.1.1 and 2.1.2), who work with finite dimensional algebras over fields. We keep our
general setup of algebras projective over a commutative noetherian ring.

Definition 1. Let B be an algebra and e an idempotent. The two-sided ideal BeB
generated by e is called a stratifying ideal if the following equivalent conditions (A) and
(B) are satisfied:
(A) (a) The multiplication map Be ®.p. ¢B — BeB is an isomorphism.
(b) For all n > 0, Tort8¢(Be,eB) = 0.
(B) The epimorphism B — A := B/BeB induces isomorphisms
Exty(X,Y) ~ Exty(X,Y)
for all A-modules X and Y.
The following remark can be used to check if an ideal is stratifying.

Remark 2. Let e be an idempotent element in B. Then BeB is projective as a left (resp.
right) B-module if and only if eB (resp. Be) is projective as a left (respectively right)
eBe-module and the multiplication map Be ®.p5. eB — BeB is an isomorphism.

Heredity ideals are examples of stratifying ideals, thus our results will extend results
obtained in [14]. On the other hand, for any triangulated algebra B has an idempotent
e such that BeB is projective. By Remark 2, BeB is a stratifying ideal. Thus our
results also will extend results of [2, 8, 13]. There are, however, plenty of other examples.
Stratifying ideals and stratified algebras occur frequently in applications, for example
in algebraic Lie theory in the context of Schur algebras and of blocks of the Bernstein-
Gelfand-Gelfand category of a semisimple complex Lie algebra.

From now on, we assume that BeB is a stratifying ideal of B and we put A := B/BeB.

Theorem 3. There are long ezact sequences as follows:
(1) --- - Ext}.(B, BeB) - HH"(B) - HH*(4) —> - ;
(2) --- - Ext}.(A, B) > HH"(B) - HH"(eBe) — - -- ;and
(3) --- — Ext%.(A, BeB) —» HH"(B) 5 HH"(A) ® HH"(eBe) — - .
We remark that by using the partial recollement of bounded below derived categories
D+ (mod A) 7— D*(mod B) —= D*(mod eBe),

we also can obtain the long exact sequence (3).
We also note that Suarez-Alvarez [15] independently has obtained the first long exact
sequence in Theorem 3 above by using different methods based on spectral sequences.
Recall the notation that A/p is the ideal of HH*(B) which is generated by homogeneous
nilpotent elements, and HH (B) is the factor algebra HH*(B)/Np.

Corollary 4.
(1) Let f : HH*(B) — HH'(A) x HH*(eBe) be the graded algebra homomorphism in
sequence (8) above. Then (Ker f)? vanishes.



(2) The induced homomorphism f : HH (B) — HH (A) x HH (eBe) is injective.

We note that the the graded algebra homomorphism in Corollary above was studied in
the case of a one point extension by Green, Marcos and Snashall [5].

3. BRAUER ALGEBRAS

Finally we give an example of an algebra occurring in algebraic Lie theory, see for
instance [12] or [10] for the properties of Brauer algebras used in this example. We denote
by £, the symmetric group on n letters and k an algebraically closed field. For any
natural number n and any § in k, we denote by By(n,d) the Brauer algebra.

Proposition 5. If 6 is not 0 or n is odd, then there is an injective graded algebra homo-
morhism
HH (Bi(n,6)) —= A (kZ,) x HH (kZn-3) X -+ - x HH (kX,)

where kKXo = k and t is 0 or 1 depending on whether n is even or odd.
Proof. For any Brauer algebra By(n,d), if 6 is not 0 or n is odd, then there is a filtration
0< Iy < Lyys <+ < I < Iy = Bi(n,9)

such that the subquotient I,/1,_; is a stratifying ideal of B, = By(n,6)/I,-2 ,where t is 0
or 1 depending on whether 7 is even or odd and I, = 0 if s < 0 (see [10]). Moreover there
is an idempotent e, in B, such that I,/I,_, = B,e,B,, e,B,e, & kI, and e, is the identity
of B, (see [4]). By Corollary 4, there exists an injective graded algebra homomorphism

HH (B,) = HA (B,,;) x HA (kZ,).
Since B; = Bg(n,d) and B, 2 kL, the claim follows. O

Corollary 6. Suppose that § is not 0 or n is odd. If the characteristic of k is either zero
or bigger than n, then HH (By(n,d)) is a finitely generated algebra.

Proof. If the characteristic of k is either zero or bigger than n, then for any s < n, kLI,
is semisimple and HH (kX,) & k™ where m is the number of the blocks of kE,. By
Proposition 5, HH (Bx(n,d)) is a finitely generated algebra. (]

Corollary 7. HH"(Bk(2,6)) and HH (Bk(3,6)) are finitely generated algebras.

Proof. By Proposition 5, there exists an embedding

as a graded algebra homomorphism. Since kX, = k and kX; is a self-injective algebra
of finite representation type, HH (kZ3) x HH (kX;) is isomorphic to a product of some
polynomial algebras in one variable k[z] and some copies of the ground field & (see [6]).
Because any graded subalgebra of a product of some polynomial algebras with one variable
k[z] is a finitely generated algebra, we obtain the result that HH (By(3,4)) is a finitely
generated algebra.

By Proposition 5, if ¢ is not zero, then there exists an embedding

HH (Bi(2,8)) = HH (kZ;) x HH (k%)




as a graded algebra homomorphism. Since kXy = k and kX, is a self-injective algebra
of finite representation type, HH (B(2,d)) is a finitely generated algebra by the same
argument above. If § = 0, then By(2,4) is isomorphic to

k x k|z])/z? (chark # 2) or k|z, y]/(z?, zy, ¥*) (chark = 2).

Since both are radical square zero algebras, HH (By(2,0)) is a finitely generated algebra
(see [1] or [7]). O
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DESCENT OF DIVISOR CLASS GROUPS
OF KRULL DOMAINS

HARUHISA NAKAJIMA

ABSTRACT. For a pair of Krull domains (A, B) such that Q(B)/Q(A) is a field extension
of their quotient fields and @(A) N B = A, we study on the relation between the divisor
class groups Cl(A) and Ci(B) by A. Magid’s diagram showing finite generation of class
groups of rings of invariants (cf. [4]). We define the descent properties with the existence
of the canonical morphism of class groups in the sense of Magid and obtain a ladder
property of these descents. This can be applied to regular actions of algebraic tori on
affine normal varieties and characterizes freeness of monomials of prime relative invariants
on these varieties, Furthermore we define certain subgroups of class groups of normal
domains and their invariant subrings which determine a class of modules of relative
invariants to be free.

Key Words:  Krull Domain, Class Group, Relative Invariant, Algebraic Torus.

2000 Mathematics Subject Classification:  Primary 13A50, 14L24; Secondary 13C20,
14L30.

1. INTRODUCTION

In this paper, we denote by (A, B) a pair of Krull domains such that the quotient field
Q(B) of B is an extension of Q(A) satisfying A = Q(A) N B, which is called a generic
dominant Krull pair. This is related to invariant theory of normal varieties as follows:
Let (X, G) be a regular action of affine algebraic group G on an affine normal variety over
an algebraically closed field K. Then, putting A = O(X)® and B = O(X), we obtain
a generic dominant Krull pair (A, B), where @(X) denotes the affine algebra of regular
functions on X.

We now introduce the notations which are used throughout in this paper (cf. [1] for
a general reference). For a Krull domain R, let Ht,(R) := {9 € Spec R | ht(P) = 1},
Div(R) := the divisor group of R, Prin(R) := the group of principal divisors of R and
CI(R) := the divisor class group of R. Let Ip(D) denote the divisorial fractional ideal
of R defined by a divisor D € Div(R). For a non-empty Y C Q(R) such that R-Y is
a fractional ideal of R, let (R - Y)™ denote the divisorialization of R-Y in R and put
divg(Y) := the divisor defined by (R-Y)™. Let vgyp stand for the discrete valuation
defined by P € Ht,(R).

At first we review A. Magid’s descent (cf. [4, 5]) of a generic dominant Krull pair (4, B).
Let X,(B) be the set {P € Ht,(B) | B N A = q} which is non-empty for q € Ht,(A).

The detailed version of this paper will be submitted for publication elsewhere.



Moreover put
zai= Y e(P,q)-diva(P) € Div(B)
PeXq(B)
where e('B, q) denotes the reduced ramification index of B over q. Set Ht,(A, B) :={P €
Ht,(B) | PN A € Ht (A)}. We define the subgroup

E*(A,B) = ( P Z-xq) & ( é zZ -diva(‘m)
B

q€Ht (4) €Hty (B),ht(PnA) 22
of Div(B) and the homomorphism
¥ 5 E(A,B) T @ Z-z,— Div(4)

q€Ht, (A)
induced by ®} p(z,) = diva(q) € Div(A). Moreover we set

F(A, B) := (Prin(B) N E*(4, B))/divs(U(2(4))),

E(A, B) := E*(A, B))/divs(U(2(4))
respectively. Then one has the following commutative diagram with exact rows and
columns (e.g., [5]) which is called the Magid diagram of (A, B):

0 — FA,B) — E(A,B) — CI(B)
a8

W(A,B) — Cl{A) — Y(A,B) — O

0 0

where &, p is the homomorphism induced by ¢ 5 and the groups W(A4, B) and Y(4, B)
are naturally defined.

Definition 1.1. A generic dominant Krull pair (A4, B) has the (MDP), if the Magid
diagram induces the following diagram with exact rows

E(4,B) &% c|(B) — 0

= [-73

E(A,B) 222, ci(4) — 0
On the other hand, define ¢p 4 : Div(B) — Div(A) by

¢5,4(D) = Z (mg}(i:itm (— [— ;(g’%‘l)])) - diva(q) € Div(A)

qeHt1(A)
where D = Y g . (p) p - dive(PB) € Div(B) and | - | denotes the Gauss symbol.
Put BU(4, B) := @ygnaze Z - diva(P) and Div(4, B) := g puqey Z - diva(B).



Definition 1.2. The following conditions are considered for the pair (A, B):
(1) BU(A, B) C ker(E*(A, B)-222:CI(B))
(2) For Div(A, B) 3 Dp 2 0 s.t.
suppg(Do) := {P | vap(Ip(Do)) # 0} F P: V principal prime
and for E*(A,B) 3 D 2 0s.t. D+ Dy : principal, we require that ¢p 4(D + D) is
principal.
(8) The canonical morphism E*(A, B) — Cl(B) is surjective.
We say that a generic dominant Krull pair (A4, B) has the (TDP), if these three conditions
hold for (A, B).

In the next section we summarize our results on the (MDP) and (TDP) for generic
dominant Krull pairs. In Sect. 3 we apply the results to the case where A is obtained as a
subring of invariants in B under the action of an algebraic torus and characterize freeness
of monomials of prime relative invariants. In Sect. 4 we study on the relation of certain
class groups and freeness of a class of modules of relative invariants. Consequently we
see a numerical criterion of obstructions of an algebraic torus of equidimensional actions.
The detailed account of this part can be found in [8].

2. DESCENT PROPERTY IN ABSTRACT CASE

At first we point out the elementary relation between (MDP) and (TDP) in a general
situation.

Proposition 2.1. For a generic dominant Krull pair (A, B), the (TDP) holds if and only
if the (MDP) and (2) of Definition 1.2 hold.

Then we must have the following criterion that (TDP) holds for (A, B) which is useful
in invariant theory of algebraic tori.

Theorem 2.2. For a generic dominant Krull pair (A4, B), the following conditions (i} and
(ii) are equivalent:
(i) (A, B) has the (TDP).
(#i) The following three conditions hold:
(a) (A, B) has the (MDP).
(6) | {B € Xo(B) | divs(B) € Prin(B)}| 2 | Xo(B)| — 1 for any q € Hty(A).
(c) P € X4(B) s.t. e(P,q) > 1 = divg(P) € Prin(R), for any q € Ht,(A).

The next result is another version of Theorem 2.2 which is useful in showing the ladder
type induction of descents of class groups of a sequence of generic dominant Krull pairs.

Theorem 2.3. The following conditions (i), (ii) are equivalent:
(i) (A, B) has the (TDP).
(#i) The following four conditions hold:
(a) E*(A, B) — CI(B) is surjective.
(b) BU(A, B) C ker(E*(A, B) — CI(B)).
(c) | {P € X4(B) | diva(B) € Prin(B)}| 2 | Xo(B)| - 1 for any q € Ht;(A).
(d) B € X,(B) s.t. e(P,q) > 1 => dive(P) € Prin(R), for any q € Ht;(A).



We now consider an intermediate subring M of the extension B/A of rings as follows.

Notation 2.4. Let M be a subring of B containing A as a subring such that M =
Q(M) N B. Then there exist the Krull pairs as follows; i.e., (4, B), (M, B) and (A, M).

From now on to the end of this section, we use Notation 2.4 and describe how the
descent properties of (A, M) and (M, B) induce one of (A, B).
Proposition 2.5. Suppose Ht,(A, B) C Ht,(M, B). Then
¢s.m(E*(A, B)) C E*(4, M)
and the following diagram is commutative:
E*(A,B) 224, E*(A,M)
= o &% a¢
E*(A,B) —=5 Div(A)
This proposition is only a technical assertion, however from this we deduce the next
two propositions.
Proposition 2.6. Suppose that Ht,(A, B) C Ht,(M, B). If (A, M) and (M, B) have the
(MDP), then the canonical morphism E*(A, B) — CI(B) is surjective.
Proposition 2.7. Suppose that Ht,(A, B) € Ht,(M, B). If (A, M) has the (MDP) and
(M, B) has the (TDP), then (A, B) has the (MDP).

Consequently we must have the following theorem which gives an inductive examination
on the descent properties of a sequence of generic dominant Krull pairs. In fact consider
a descending chain of normal series of subgroups

G=Gy>G >G> > Gy ={e}

and a homomorphism G — Aut(B). We have a chain of generic dominant Krull pairs
(BGn-t, BGn), (BCn-3, BG»-1),...,(B%, B%) and the study on the descent property of
(B, B) can be reduced to the one on the sequence.

Theorem 2.8. Suppose that Ht,(A, B) C Ht,(M, B). If both (A, M) and (M, B) have
the (TDP), then (A, B) has the (TDP).

We have studied on the implication concerning the descent property of (A, B) = ones
of (A, M) and (M, B) under some conditions which is the converse of the assertions in
the results as above, however we omit to state the results in this paper.

3. FREE MONOMIALS OF PRIME SEMI-INVARIANTS AND DESCENT PROPERTY

Let R be a Krull domain on which a group G acts as automorphisms and let Z*(G, U(R))
denote the (additive) group of 1-cocycles of G on U(R). For any x € Z}(G, U(R)), put

Ry ={a € R|o(a) = x(0) - a}
whose elements are known as invariants of G in R relative to x and is regarded as an
RC-module.



Since (RS, R) is a generic Krull pair, we immediately have its Magid diagram with P.
Samuel’s diagram (cf. [2]) in the Galois descent method

Prin(R)® —— Div(R)* —— CI(R)

Prin(R)N E*(RS,R) —— E*(RS,R) —— CI(R)

0 — F(RC,R) —— E(R°,R) —— CIR)
®RC.R
W(RC,R) —— CKR®) —— Y(R°,R) — 0
0 0

where F((R®, R) can be regarded as a subgroup of the first cohomology group H*(G, U(R)).
In this section we apply the results in Sect. 2 to the generic Krull pair induced by the

action of an algebraic torus defined over an algebraically closed field K of characteristic

zero. Let X(H) be the rational character (additive) group of an algebraic group H.

Notation 3.1. Let G be an affine algebraic group over K whose identity component G°
is an algebraic torus and let (X, G) be a faithful regular action of G on an affine normal
variety X over K. Put R := O(X) on which G acts naturally.

Recall that (X, G) is said to be stable, if X contains a non-empty open set consisting
of closed G-orbits.

Definition 3.2. For {f),...,fa} C R such that f; are prime in R; the set {f,,..., f,} is
defined to be (R, G)-free, if there exist rational characters x; € %(G) (1 < k¥ < n) such
that

Ryp e = RE. Hf::h (Vix € Z,)
k=1
where Z; denote the additive monoid of all nonnegative integers.

As in the statement preceding to the ladder property in Sect. 2, from Theorem 2.2,
Theorem 2.3 and Theorem 2.8 we deduce the following characterization of (R, G)-freeness
of prime relative invariants on X in the sense of the descent property defined in this paper:

Theorem 3.3. Under the circumstances as in Notation 3.1, suppose that Zg(G®) = G, H
is a closed normal subgroup such that the induced action (X//H, G/H) is stable. Suppose
that one can choose prime semi-invariants f; (1 £ ¢ £ n) of G on R in such a way that
H = nNL,Gy,. If rank(G/H) = n, then the following conditions are equivalent:

(¢) The generic Krull pair (R®, R¥) has the (TDP).

(i) There exists a finite normal subgroup N of G generated by a part of the union of
inertia groups at principal ideals in Ht,(R®, R) under the action of G such that
there exists an (R, G)-free prime set {gy,..., 9.} contained in R" satisfying HN =
n?=lei'



Remark 3.4. The equivalence in Theorem 3.3 does not hold without assumption that
{f1,..., fa} consists of prime elements. There are counter-examples for a set {f, ..., fa}
containing a non-prime element. One might generalize this in the case where f;’s may not
be prime, although the conditions should be complicated.

4. SUBGROUPS OF CLASS GROUPS AND MODULES OF RELATIVE INVARIANTS

We now return to the general case where R is a Krull domain acted by a group G as
automorphisms which is treated in the former half in Sect. 3 and introduce some subsets
of the group of the l-cocyles of G. From now on to the end of Proposition 4.12, without
specifying we suppose that the equality Q(R®) = Q(R)€ holds.

Definition 4.1. Put Z!(G,U(R))? := {x € 2*(G,U(R)) | R, # {0}} and
Z(G,U(R)), := {x € Z'(G,U(R))* | 3fp € R,\{0} such that
vap(fp) =0 mod (e(B, P Nq)) (VP € Hyy(R%, R))}.
Let Z}(G, U(R))(2) denote the set of all x € Z'(G,U(R)) such that {0} # R_, € P for
all P € Ht, (R) satisfying ht(93 N R®) 2 2 and put
ZH(G, U(R) = Z4(G, U(R))@) N (~Z4(G, U(R)a):

Definition 4.2. An effective divisor D € Div(R) is said to be minimal effective relative
to (R, R), if D has a decomposition D = D, + D, for 0 £ D, € E*(R®,R) and
0 £ D, € Div(R), then the divisor D) must be equal to zero.
With each x € Z4(G,U(R))® we can associate the divisor D(x) minimal effective
relative to (R®, R) as follows:
Lemma 4.3. Let x be a cocycle in Zk(G, U(R))®. Then:
(:) There exists a unique minimal effective divisor D(x) on R relative to (R®, R) such
that, for a nonzero element f € R,,
E*(R®,R) 3 diva(f) - D(x) 2 0.
Moreover D(x) does not depend on the choice of a nonzero element f € R,.
(i) If x € Z4(G, U(R))., then the divisor D(x) and D(my) defined in (i) for x and mx
satisfy m - D(x) = D(my) in Div(R) for any m € N.
The next criterion for the individual RS-module R, to be R®-free can be easily shown
in [7].
Proposition 4.4 ([7]). Without the assumption that Q(R€) = Q(R), for any cocycle
X € Z'(G,U(R))®, R, is RC-free of rank one if and only if the following conditions are
satisfied:

(i) dim Q(R®) ®zc R, = 1.
(i) There exists a nonzero element f € R, satisfying

(4.1) Yq € Ht;(R®) = 3IP € Xo(R) such that vag(f) < e(B,q)

If these equivalent conditions are satisfied, R, = R® - f for any nonzero element f € R,
such that (4.1) holds.



We apply Proposition 4.4 to some restricted x and obtain the corollary which shall be
needed.
Corollary 4.5. Let x be a cocycle in Z}(G,U(R))®. Then R, is RC-free if and only.
if D(x) + BU(R®,R) > divg(f) for some nonzero f € R,. In the case where x €
(-ZL(G,U(R))2), Ry = RC as RS-modules if and only if D(x) = diva(f) for some
nonzero f € R,.

Moreover the equality R, = RC - f holds, in both the cases where these equivalent

conditions are satisfied.
By the choice of x, Lemma 4.3 and Corollary 4.5, we see

Proposition 4.6. Let x € ZL(G,U(R)).N(—Z}(G, U(R))(z))- Suppose that there exists
a nonzero element g € R, satisfying the condition as follows; for any ! € IN and G-
invariant principal ideal R- h in R containing ¢' such that divg(k) € E*(R®, R),

3n € N such that (k"- U(R))N R # 0= (h-U(R))NRC #0.

Then the following conditions are equivalent:
(i) D(x) is a principal divisor and there exists & number m € IV such that R, = R®

as RG-modules.
(ii) For any m € N, Ry & RC as RC-modules.
(iii) R, = RC as RG-modules.

Corollary 4.7. Under the same circumstances as in Proposition 4.6, suppose that there
is a number m € N satisfying R, = R® as R°-modules. Then the divisor class [D(x)]
in CI(R) has a finite order and the following equality holds;

ord([D(x)]) = min{g € N | Ry, & R® as RG-modules}.
Proof. Since p - [D(x)] = [D(px)] in C(R) for any p € N as in Proposition 4.6 and

n - [D(x)] = 0 (cf. Corollary 4.5), the former assertion is obvious and the latter one
follows from Proposition 4.6. O

Definition 4.8. For x € Z'(G, U(R))#®, the R°-module R, is RC-isomorphic to a nonzero
integral ideal I of RC and the divisor class of the divisorialization I in Cl( R®) is denoted

to [Ry]

Proposition 4.9. Let x be a cocycle in ZL(G, U(R)). N Z1(G, U(R))(2)- Then, for a

number n € N, R,, & RS as RC-modules if and only if n - [R,]| = 0 in CI(RC).
Combining Corollary 4.7 with Proposition 4.9, we immediately have

Theorem 4.10. Let x be a cocycle in Z}(G,U(R))e N ’Z‘,{z(G, U(R)) and suppose that

there exists a nonzero element g € R, satisfying the condition as follows; for any [ € NV
and G-invariant principal ideal R - h in R containing ¢’ such that divp(k) € E*(G, R),

3n € N such that (A" U(R))NR® #0= (h-U(R))NRC £ .
If [R,] € tor(CI(R?)), then
. ord([R,]) in CI(R®) = ord([D(x))) in CI(R),
which is equal to min{q € N | Ry, = RC as RC-modules}. 0

_:)2_



Definition 4.11. Let UrCl(R, G) denote the subgroup of CL(R) generated by
{IDO)) | x € ZH(G, U(R)). N Z}(G, U(R)},

where [D(x)] denotes the divisor class  of D(x) € Div(R). Define CI(R,G) to be the
subgroup ({[Ry] | x € ZK(G, U(R))e N Z4(G, U(R))} ) of CI(RE).

The next result follows easily from Theorem 4.10.
Proposition 4.12. Suppose that the canonical image of the semigroup Z4(G, U(R)), N
(—(ZK(G,U(R))z)) in H'(G, U(R)) does not contain a non-trivial torsion element. Sup-
pose that CI(R,G) is a torsion group. If one of exp(UrCl(R,G)) and exp(Cl(R,G)) is
finite, then

exp(UrCl(R, G)) = exp(CI(R, G)),

which are equal to

max {min{g € N | Ry = R} | x € ZH(G, U(R)) N ZX(G, U(R))}. D

Hereafter let (X,G) be a regular faithful stable action of an algebraic torus G on an
affine normal variety X defined over an algebraically closed field K of characteristic zero
whose coordinate ring O(X) denoted to R. We have the canonical pairing G x X(G) —
U(K).

Definition 4.13. Let R(R, G) be the subgroup of G generated by the set consisting of
Zp(G)'s for all P € Ht, (R, R) such that ‘P are not principal which is called the mazimal
non-principal pseudo-reflection subgroups of the action (X,G). Here Iyp(G) stands for
the inertia group of P under the action of G. Put R(R,G) := (Ugene,(re.rIn(G)).
Clearly both R(R, G) and R(R, G) are finite (normal) subgroups of G. In the case where
exp(UrCl(R, G)) is finite, define
Obs(R, G) := {o € G | *PU'CURE) ¢ R(R, G)},

which is called the obstruction subgroup for cofreeness of (X, G).
Lemma 4.14. We have X(G)**R6) = ZL(G, U(R))..

With the aid of [10], the following proposition is shown in [6].

Proposition 4.15. Suppose that both X and (X, G) are conical. If the action (X, G) is
equidimensional, then CI(R, G) is a torsion group.

Applying Theorem 4.10 to this, we must have

Theorem 4.16. Suppose that both X and (X, G) are conical. Then the following con-
ditions are equivalent:
(i) The action (X, G) is equidimensional.
(ii) The exponent exp(UrCl(R, G)) is finite and the action (X//Obs(R, G), G/Obs(R, G))
induced naturally is cofree.



Especially if R is factorial, the obstruction subgroup Obs(R, G) should be a trivial
group by its definition. It is not hard to formally generalize Theorem 4.16 to in the
case where (X, G) may not be stable. For linear representations of connected algebraic
groups with affine rings of invariants, V. G. Kac and V. L. Popov have conjectured that
equidimensionality of these actions implies cofreeness, which is known as the Russian
conjecture (cf. [3, 9]) and is partially related to this theorem.

REFERENCES

[1] H. Bass, Algebraic K-Theory, W. A. Benjamin, Inc., New York 1968.

[2] R. M. Fossum, The Divisor Class Groups of a Krull Domain, Springer-Verlag, Berlin Heidelberg New
York 1973.

[3] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213.

[4] A. Magid, Finite generation of class groups of rings of invariants, Proc. of Amer. Math. Soc. 60
(1976), 45-48.

(5] H. Nakajima, Class groups of localities of rings of invariants of a reductive algebraic group, Math,
Zeit. 182 (1983), 1-15.

16] , Equidimensional actions of algebraic tori, Annales de L'Institut Fourier 45, 681-705 {1995).

7] , Divisorial free modules of relative invariants on Krull domains, J. Algebra 282 (2005),
540-565.

[8] , Reduced class groups grafting relative invariants. to appear.

[9] V. L. Popov, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl. Math. Mono-

graphs 100, Amer. Math. Soc., Providence 1993.

[10] D. H. Wehlau, Equidimensional varieties and associated cones, J. Algebra 159 (1993), 47-53.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

Josal UNIVERSITY

KEYAKIDAI 1-1, SAKADO 350-0295 JAPAN



THE MODULI SPACES OF NON-THICK IRREDUCIBLE
REPRESENTATIONS FOR THE FREE GROUP OF RANK 2

KAZUNORI NAKAMOTO AND YASUHIRO OMODA

ABSTRACT. There are several types among irreducible representations. Considering such
types as “thick” and “dense” gives us rich problems on representation theories, and the
first step to describe the moduli spaces of representations. The moduli of irreducible
representations for the free group F; is very big, and difficult to be investigated. However,
we can describe some parts of the moduli of irreducible representations by using the
notion of thickness. In this talk, we describe the moduli of 4-dimensional non-thick
irreducible representations for the free group of rank 2.

1. INTRODUCTION

BOBMRADPTYH, E6ICW 21D FADRBUTHEEN, TANREARKRGR
RGRIEGCEIBEREEE, RADOTD 2574 2R TIROREMVEELX TSNS, BEBEE
FORBAL, 2 04T OITERTCHHITI2EEZBETNIRS L XHESDT
HBY, TOLOEHHAREF OBHRRIIEL DV TET, 02650 L 5B LT,
EIORRTIVDODDLMNSRWRRTH -7, 7245, thick % dense & v 5 8 LW ST
L0, BEHRBRIIV D90 ‘B toalEha I L Bbha, KkoOfid b RAEERER
FWHATEN, JITRESILTOhbhBE LS 2 EEYEx, BRATYOLY 2
TEREITWADON:E, “BEHIZ“‘XoKEOA ICAXBETRRTREZWEES,

thick & W 388, AR SL(2,Z) &\ ) BB OBEHRR L FARIBICE X ey
DTHB, BHRBABEOREMEETHA ) EBoT b, EixWoblRiI+5b
TRV ERSE, thick &V 54RTED1}F, W OREHREMN thick ThH1E2WM<5Z
&L igote, thick &V I ARIDEML, BOREp: G - GL(V) D p(G) X GL(V) D
$C, EHNFRRIVDLELTERD, “thick THB" EWHA A—TUhHED, thick &
D HEVIES T 5 dense bRIEET, GL(V) DR TOB p(G) BIERKICELLHBLEVSA
A=V LBEHBRABFOREMHFETE S “RRKROKEE” LW 5BEMLLAMEMITE,
BERIFB L 6 4K thick & FEEIN AR EH B2V E BB TV, EiZED
T2 <, irreducible, thick, dense DRIz ¥ ¥y 7Hdh 5 Z LKW DA, XKD
HBLAIZ25,

BHEBED () BRDET 254 8EIRS>TWBED, £FLTEELTTAORER
BEYIVWIBEL LTV EINEZHARIOBEEMERG>TELHART —ROTHD
R, TORKEDBVWIREERMBKTH S,

Theorem 1 (Teranishi [4]). AR QM; x My|PCLe @ Poincaré &I Pyo(s,t) KT
Exbh3,

The detailed version of this paper will be submitted for publication elsewhere.



R42(sit)
Py2(s,t) dim Q[M, x M,)ESke . 5 : ,
wal g; Ma > Ml T Qaa(s,t)

s—s——c.
— N

Quz(s,t) = (1 - s)(1 =1 =)A= s - )1 = 1)1 - 3)(1 - tY)
x (1= st)(1 — s¥42)2(1 - st?)(1 - s%t)
x (1 —st®)(1 - $3)(1 - s%h)(1 - s't?)

Raa(s,t) =1+ 83 + 5% + 2533 + $%4 4 ' + 250 + %8 + %3
+ 38 + s4° + S5t 4+ 5% + 25%¢° + 8 + B¢t 4 25548
+ 2555 + 2558 + 2587 + 257t8 + 257t7 + B8 + 548
+ 5%° + 578 + 817 + %5 + 2588 4 5T + %7 + 5%¢°
+ thB + 239t9 + sgtlo + letQ + sl2tl2_

4 X 4TTH 2WMORERBTT 5, TOMEITLMIEN LRV, FERICEHMETHD L
WOEBEMNS EIRWEIREEZERIHL THHObho 2y, o f@BLELHA I,
L, RAENLTEIWVEEZYVHLT, BAVEEZERIEE S LW DIZ—o0
THRAL LT, BOLhBEZETHAI,

FORVEBEEOIHT—2DE o»it L LT, thick, dense & W o7& & fbdzn
Fixhev, BBEBEOBEHRRADOET 2 T4 OPIZ, thick AN S LS M SR dense #
BNbRIMESNH D, BEHRBOEDS 2574 NBE I RS>TVEINERARLVOTHS
B, TFIIENELFRTAI0L, non-thick ZEEHBREANRE I R-TWENEHARLS
VI DOREBHEOELDTATFTTHB, RERICPRTHD LREMICSHVERDEN,
EHICHAVDOTH D, 17, BMATIEHOE LAFHLTWARWOT, Theorem 1 MAR
DEOHFFRITLURDMNSLRNVWEETTH S,

D%, non-dense REEHVIRBAMNE I MR- TWNBEDH, HEIZdense RAMNY 54-T
WADD, LS DTHBN, FTE-OBSIILE S, £/, BERHLBROBEHHE
Mthick THAINEINTH L bhroTWiY, WaldWnRBZ EnhB,

2. m-THICK AND m-DENSE

UT, k&, VEEEDOnKRRE~RZ bVEM, GE2BLETDH, £, p: G- GL(V)
EGORBRLT D,

Definition 2. p: G = GL(V) # m-thick TH2 &I, dmV, =m 23V OEZOHS
R MVERV &, dimVo=n-—m B3V OERORHSZ b WVIZHLT, H
BgEGHTFELT, (p(gVi)dVo=V BRI 2L&E WD, £, pHsthik THD
LI, 0<m<nRABEBOBE mITH LT, pMBm-thick ThiE&EEI,

Definition 3. p: G = GL(V) 3 m-dense TH D LiL, p POFEHEIND G OABRA
A™p: G = GLA™V) BEERTH D L E &2V 5, £/, phldense THH LIL, 0<m<n
RABEBOEE mIZR LT, pAm-dense ThHBEEEVS,



Definition 4. &8 p: G = GL(V) &% L T, G RZ perfect pairing

A"V x A™™V o AV ek
(z,v) = TAY

¥E2D, BHEMW CAVIZHLT, WLCA*™™V %
Wi:={ye A" ™V |zAy=0for Yz € W}
LEDD, WRGRERRZEM2L, Wb GARERIEMLERS,

Proposition 5. p: G = GL(V)IZ2WT, m-thick THDHZ L & (n—m)-thick THD =
LIRFHETH D, £/, m-dense THDIZ L L, (n—m)-dense THDZ LIZFHATH S,

Proof. m-thick & (n—m)-thick XEHETH S Z &1, EEL Y BHSH, T/, Proposition
45y, APVHEBEROTHDZL L, AV BN THI I LIIRAETHS, 0 Lh
5, m-dense & (n — m)-dense IXFHETH B Z & b3, 0

Proposition 6.

m-dense = m-thick = 1-dense & 1-thick < irreducible

Proof. 39" I'm-dense = m-thick) #R¥, V, L EEhETAV OmKRE, (n—m)K
iﬁ;ﬁgrﬂﬂk—;—éo ‘/l = (elseQ)"' 1em), ‘/2 = (f11f21"' )fn—m) t:‘a<o PZ"S ,’n_dense—e
Hhid, {A™p(g)(erAezA---Aen) | g€ G} R A™V Z span THDT, A™p(g)(erAex A
o Aem) AN A frm #FOERRB geGHEND, ThiT, (p(gVi)d Vo=V 2E
BkL, m-thick CHDZ &N f, £, N-dense = 1-thick)] bFALIZ LT3,

lirreducible = l-dense)] TH 5 Z LIXEFHE L VAL A, #iX I'm-thick = irreducible)
EREIELV, p BB TRVWEEET DL, VOHRATRWGARERSZEM V' B HFE
T3, t:=dimV' ¢¥ L, bLL<min(mn-m)Rb, VVCW, V' CWVLRBLIL,
VOmKTRBELEMV, & (n—m) REHHZEM Ve 2@ Y Lhid, p(gW & Ve i3
V' 2&8L0T, (plgWV)oVe=V L0 BRV, Z0L &Y, m-thick TRV LD
MNB, 2T, €omFEEFL>n-—-mOLEZEZNTLV, HHELYmM<n-m&
LTH—iEx bRV, m<i<n-mDEEFE, LV TV & i2dEd WV &L
hif, YARGeGRHLTYH (p(gV)e Vo=V ERVBRV, £, m<n-m<!{
o, VCWVc VI ERBEIWVVEENIE (W) +VaCV £V LD, WTh
12 LT % m-thick Tix72 D¢, I'm-thick = irreducible) 23V X7, 0

£ Proposition 2> 5 &F 5 IR D Corollary 30525,
Corollary 7.
dense = thick = irreducible
Corollary 8. n<3¢953, DL %,
dense &> thick <> irreducible

E® Corollary 55, dense, thick, irreducible DELSR TN DD, 4 RFTLUEDRERN
Bl eRbnd, £ LT, EBIC dense, thick, irreducible DRIZIX¥ vy TH3H 5,



Example 9. G 2 HMBBEL T5, GOBHRRAD O L, BBROKREEFADREp: G >
GL(V) DR¥En DB 4LLETHD LT D, ZDEE, piLdense TRV,

mME, Ampin LY KERREORBREE23, (REIZLVBEERE RG22, ZOf)
%, BB TdH B dense TRUVWWIEE XD,

thick T 5 & V5 &ftix, FEBEITOLMAYFEN, Zhik, BRER¥THOLXEPZ L
A2V, T LAABRER S FA 2kl vots, REZE L (7) @@ok
FEEHLEEBPRS, LHLRERL, ZZCIERED thick & SMR4E2RRFELT
B<,

Definition 10. B4 ~XZ7 MZHW C A"V IZHWT, W K realizalble (EEFHE) Th
B, VOBHBIEHA7 MMEMV = (e, 6,... ,em) BIFELT, egAA---Ae, €W
LRRBEEERWVI, U, esNea A --Nep , eWDZEEZAV e W EELSZ EIZT B,

Proposition 11. p 23 “m-thick TRWY WS Z L &, D G-FE realizable 4322
W, C A™V &3 G-FXK realizable R ZEM W, C A™™™V BFEELT, WiAW, =
{wl Awy €A™V | w € Wy, wp € Wz} =0 BRIV ZLHT LIZIFETH 5,

PT‘OOf- %ﬁ:%;f’t—r Wl, Wg i Ehicbk L& 59 Wl, Wz i< realizable fﬁ@’(", Vom
KR ZHV BEU(n—m) RETHBIEM V2 BHFEELT, A"V eW, A" "L eW,
LB, EIAR, RBECEDEARIEGRHELTY, po)VidV,=V LR VBN,
Z X m-thick TR2WZ L 2EkT B,

BT m-thick TRAWLEET 2, 0L, VOmKTHHEMV, BETR(—m) K
FEBSYZEM V, REFELT, FARGEe GIZHLTY, ploVid Ve =V ERVBRW,
{(Amp)(9)(A™V1) | g € G} CAEREN D AV OB EME W), {(A""p)(9)(A"™V5) |
g € G TEBRENS A" ™V OBHZEME W, &1 5, Wi, Ws it G-FZ realizable #%
ZMTHY, Wi AW, =0%27cF, SLELY, EEAWZT, u}

Remark 12. “dense T2V &\ &efh % E? Proposition &4t &-&TRB T3 &, “thick
TRUV fff L “dense TRV RUENRHBELPLHL 25,

[p M “m-dense TRV E WS Z &L, HDG-AERREMW, CA™V LHBG-FE
ggﬁgﬂﬂ Wz g APV 73‘#& l/'C. Wl/\W2 = {wl/\IU2 €A™V I w € Wl,‘w: c Wz} =0
BEYIAIDTELIIEHETH 5, )

LLF @ Proposition {X8ERA2 L TRAT 5, 4 RTREL, 5 RILKRBI thick THHH
DLB+EREEE XS,

Proposition 13. k 2 VMK L 35, 4RTXKB p: G - GL(V) L LT, KiXRA
ETH3,
(1) p : thick
(2) p : 2-thick
(3) p ¢ irreducible 7»> A% : G - GL(A?V) B2 kmA2v L 3 KT G-FEBS 2 M)
W C ATV 2872,

Proposition 14. k X REMAKL T, 5RTKB p: G - GLV) I LT, RiXE
HETHS,
(1) p : thick



(2) p : 2-thick
(3) p : irreducible 2> A?p : G = GL(A?V) 5 G-AEMHIZEMW C AW T4 <
dmW <6722 bDEFIR,

wix, thick ©i33 22 dense TRVWHITH S,

Example 15. £k =C, G =GL(2,C) £ T 5. Vigssp) ¥ G D highest weight (a + ,b) 72
LEERNERBLLETH, DLk E,

a>3 = V4 is not dense
a=3,4 = V(a+b,b) is thick

¥z,
a=3,4 = Vs is not dense, but thick

3. MODULI OF REPRESENTATIONS

OHTH, RADEVaTFA, EKEBK2OBHRE R 04 RTEHRADEY 2
FAREOWTERT S, LT TiX, BEELE kIEED 2 TROVWABMRAETSHS LEE
1—60

mBEELLT,
Rep,,(G)air := {p | p : n-dimensional (absolutely) irreducible representation of G}

EBL, Eiz, 2200 nKTRB p,p KRETH D LiX, H5 P € GL, (k) BEELT,
PpPl' =g BRYIUDLEEE V), p2EURAOCFEMER% o] LRI, DL,

Chn(G)air == {[p] | p : n-dimensional (absolutely) irreducible representation of G}

B4,

Rep,(G)air B EV Chn(Gair 1X, &k LD scheme &725, < EI L (RLTED
DEHEHBHDIZLEEMTEI L), WLOPDOREFEXTER SN IR ESHREICL
5o Chn(Glair PZ b %, GOnKREEPRADEY 274 LBRE, BEHURREADEV 2T
A4k, ERVEENRRAOBERICHIELTEY, TAHLOANREE > T—o0RFZx
RickoboTh B,

B PGL,(k) := GLa(k)/k* D Rep,(Glair ~DIER% p » PpP ' TEDHD L,
Ch,(G)air = Rep,(G)air/ PGL, TH 3.,

F={(ap) #iK 20808 L T3, UT, G=FRLLTHAEFR O 4RERBRUC
BRoTRANEY 2T A Chy(F)ayr TERDZLILT S, —RICHBBEOBEHRIUIE
BicHBEDT, TOLIETV 2T LI BTEMR/BREZHEST, BERORANEDIDL
WHADLEHEMIZLE L X LS ETH0ITTHS,

Proposition 16. Chy(F)ar i3 17 RITHH BB EHGETH D,

Outline of Proof. R BHMETHHZ LIIRVHT, REI1TKRFTLZONE T 7 ICHHA
T3, LbORBlopiE5x5ZLe, FRb,OERETa,fDTEXp(a),p(B) 25X LI
BMETHB, £oT, HRO4AKREEREEXDILHICNR, 4 RERATHIZ 252l k



W, 28, RADEZ2 7M1 OPTRORATHD Z Litopen 2FHTHD Z LITERE
T3¢, BRHTHHLWIRHIZAS UH 2 TTFRTZ RHEICHEHET,

dim Rep,(F2)air = dim GLq(k) x GLy(k) = 42 + 4% = 32

B
dim PGLy(k) = dim GL,(k) — dimk* =4 - 1=15
v,
dim Chy(F)air = dim Rep,(F3)air — dim PGLy(k) = 32 - 16 = 17
k23, o

BRORBEDEY 254 DP T, HHRHEMN dense ThHD, b L ithik THdEWVWISR
{iXopen 2 &HETHB, 0¥, BEHRBEDEY 27414 DH B A Tdense b L < i thick
ThhiE, TOEF S dense b L iL thick THAZ ENWVWE D, TZIT, 2EDLHI 2
EBELTELS,

Definition 17.
Chp(G)aense := {[p] | p : n-dimensional (absolutely) dense representation of G}

Chn(G)enicx = {[o] | p : n-dimensional (absolutely) thick representation of G}
LB, DL E,
Chn(G)air 2 Cha(G)thick 2 Cha(G)dense
BV,

ZFE'mﬁﬂ)Eﬁli. Chq(Fz)nm_gMck = Ch4(FQ)m‘r \ Ch4(F2)gh,'d¢ T#)éo non-thick 4 &
FEEIRBRDE Y 2 7 4 Chy(F2)non-thick 13, BERIRBDE Y 2 F A Chy(F2)air PF TH
BEOERTR, TOFTIRE I R-TWIOI W50, SEIOEETH S,

[p] € Chy(Fa)non-thick ZE X Do A2p: Fy & GL(A?V){Z2WT, Proposition 13 & 9,
FBAERSTBEW CAV LT, dmW =2%723dmW =3 L R23bD02Lh3,

TR, dmW=20,& %525, KOGHEIZdnW =2 DBEOREDERLE
BLNHREBOTHD, AR LTRENT S,

Proposition 18. p : G — GL(V) % 4 IR3T non-thick EHMIRBR L T5. G FEBIE
MW CAW LLT, dmW =2LR23000B N2 LEERL, L&, VoORE
e, e,€3,ea MEELT, W={eyAes,esNey) WOEBRDge GIIALT

_{ A 0 0, A,
p(g) = ( 0, Az) or (A2 0, )
ERBLOBLEND, ZIT, ALAIR2Xx21TFITH S,



Definition 19. FOEH{LERIZBWT,

o= %)

0, A
plg) = (Az; 0: )
DFDITH % type — EPFEXRZ EIZT B,

DIDITH % type +,

ZZ '(;, dimW =2 @%’%@ Ch4(F2)n¢m_¢h;¢k 0)&&‘35‘25&%?&’% L J: 50
Definition 20.
S4(F2)+,-) = {p € Repy(F)air | ) : type +, p(B) : type — }

S4(F2)(-,+) = {p € Repy(F2)air | p(e) : type —, p(B) : type +}

S4(F2)(--) = {p € Repy(F)air | pa) : type —, p(B) : type — }

LB< ° if.‘.‘., Em%&ﬂ ¢(+'_) . S4(F2)(+__) 4 Ch.;(Fg)m_u.id, %%i, ﬁ]ﬁ': ¢(_'+),
¢(—.—) %)%7\.'_60 :@t %’

Ch(+,-) := Im¢(+,_)
Ch(—,+) := Im¢(_'+)

Ch(—, —) = Im¢(_,_)
LEET D,

KicdimW =30 L xx2Ex2%5, ROMEIZAmW =3 DEESORIADFERLERT
»bH, TNHIERA L TEAMNT S,

Proposition 21. p : G = GL(V) % 4 R3T non-thick BEWRA L +5, G FEH =M
WCAWLLT, dmW =223 bOREERET, dmW =3¢23b0NRLthdeL
RE® L, DL, H22002RTEMIRE 0,00 BVFELT, p& @ p iXFET
53,

dimW =3 DFAICHET HRMRTEERLTHI I,

Definition 22. 4
Paim=3 : Cho(F2)air X Cha(F)air --+ Chy(F3)non—thick
(01, p2) = g1 ®p
OB OAA% Ch(dim = 3) £ K<,

IRTLIRKERBERRDIENTE D,



Theorem 23. Chy(F2)non-thick PEER7HRIX
Chy(F2)non-thiek = Ch(+, =) U Ch(—, +) U Ch(—, —) U Ch{(dim = 3)

5z b5, 7, dimCh(+,-) = dim Ch(~,+) = dim Ch(—, =) = 9 > Ch(+, )N
Ch(—,+)NCh(~,~) # 8 TH 3,

Tk, BE&EriC Ch4(F2)nm_gh,'¢k DEATE I 2o TWBEDOH, BERIIE I R-TNWE
Dhy, & 52 non-dense BEARKIT? RBWRRE2WE H T, BMERIKBEIOHERIZT,
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IWASAWA ALGEBRAS, CROSSED PRODUCTS AND
FILTERED RINGS

KENJI NISHIDA

ABSTRACT. We apply the theory of crossed product to Iwasawa algebra A(G) = A(H) =
(G/H). A J-adic filtration of A(H) can be extended to that of A(G). We study Goren-
stein dimension of a graded module over A{G).

1. INTRODUCTION: IWASAWA ALGEBRAS

Let p be a prime integer and Z, denote the ring of p-adic integers. A topological group
G is a compact p-adic analytic group if and only if G has an open normal uniform pro-p
subgroup H of finite index [6]. The Iwesawe elgebra of G is defined by

A(G) := im Z,[G/N]},
where N ranges over the open normal subgroups of G.

The ring theoretical survey of Iwasawa algebras is given by K. Ardakov and K.A.
Brown [1]. In this paper, we address crossed products and filtered rings arising from
Iwasawa algebras. Therefore, we direct our attension to the fact that a ring A(G) is a
crossed product of a finite group G/H over a ring A(H) (Iwasawa algebra of H): A(G) &
A(H)*(G/H). Since the topological group H has good conditions, a ring A(H) has good
properties among them, we need:

(1) local with the radical J := radA(H) and A(H)/J & [F,, a field of p-elements,

(2) a filtered ring with the J-adic filtration whose associated graded ring is isomorphic
to a polynomial ring Fp[z,- -+ , Z4], where d = dimG is a minimal number of generators
of G as a topological group.

(3) a left and right Noetherian domain,
(4) Auslander regular with gldimA(H) =d + 1.
(cE. 1], [4], [5], 6], [12])
2. A CROSSED PRODUCT AND A FILTERED RING

2.1. Let R be aring and A a finite group. A crossed product S ([8], [11]) of a group A
over a ring R, denoted by S := Rx A, is a ring such that:

1) Ris asubring of R+ A
2) A= {a:ac A} is a subset of R * A consisting of units of R+ A
3) R+ Ais a free right R-module with basis 4

med version of this paper will be submitted for publication elsewhere.



4) For all a,b € A, the equalities 4R = Ra and @bR = abR hold.

Remarks. (see [11]) (1) We may assume 14 = 15. A left R-module R x A is also free

with basis A. Usually, we write
R«A=(PaRr.
acA

(2) There exists a map 6 : A = AutR such that rda = ar’®, r € R, a € A. In what
follows, we shortly write 7@ = ar®. There exists a map 7 : A x A - U(R) such that
@b = abr(a,b). In order to assure the associativity of R * A, maps o, 7 satisfy some
conditions (see [11]).

We start with the theorem which implies that the Iwasawa algebra is Auslander Goren-
stein.

A ring R is said to satisfy Auslander condition, if, for all finitely generated left R-
module M, for all i > 0 and for all right R-submodules N of Extxz(M, R), grade of N is
greater than or equal to i, where grade of an R-module X is inf{j > 0 : Ext%(X, R) # 0}.

Theorem 1. Let S = R* A be a crossed product. Then idR = idS holds, where id stands
for injective dimension. Moreover, if R satisfies Auslander condition, then S satisfies it,
too.

Proof. It follows from (2] that, for all finitely generated left S-modules M and for all
i>0,
Exti(M, S) & Exti(M, R).

The statement is an easy consequence of this formula. O

Since gldimA(H) = d+ 1, we see idA(H) = d+ 1. Hence A(G) is Auslander Gorenstein
of idA(G) =d +1.

2.2. Aring R is called a filtered ring with a filtration F = {F;R};cz if
i) ;R is an additive subgroup of R for all i € Z and 1 € /R,
i) FiRC FiR (i€ ),
iti) (FR)(FR) C FusR (1,5 € Z),
iv) Uiz R R = R.
(i)

Let S = R* A be a crossed product and further, assume that R is a filtered ring. Then
a filtration F is called A-stable, if

v)(FiR*C FiRforalla€ Aand i € Z.

Let grR = ®pezFpR/Fp-1 R an associated graded ring of R. Then forming a crossed
product ‘+’ and an associated graded ring ‘gr’ commutes each other.



Theorem 2. Let R, A, S be as above. Assume that R is a filtered ring with an A-stable
filtration such that every unit of R sits in FoR\ F_R. Then F' := {F!S}iez, FiS =
®acald(FR) (i € Z), is a filtration of S and there is a ring isomorphism

greS & (greR) + A,

We put the J-adic filtration F = {F;A(H)}iez of A(H) by

_ _ [ I (E<0)

A= { As 20

It follows from [1],[4],[6],[12] that the associated graded ring satisfies grrA(H) & F,[zo, - - - , Z4].
Since J* C J for all & € AutA(H), the J-adic filtration F of A(H) is G/H-stable.

Since A(H) is a local ring, all units of A(H) sit in A(H) \ J, i.e., in FoA(H) \ F_,A(H).

Therefore, we see grA(G) = grA(H) * (G/H).

3. GRADED MODULES OVER A CROSSED PRODUCT

Let S = Rx A be a crossed product of a finite group A over a ring R. We assume that
R is Noetherian, so that S is , too. A left S-module with a decomposition M = @, 4 M,
as an abelian group is called a (strongly) A-greded module, if aRM, C My, (BRM, = M,,)
for all a,b € A. By the decomposition S = @aca8R, S itself is an A-graded module with
S, = @R, so S is an A-graded ring ([9], [10]). Since GRbR = abR, § is a strongly graded
ring, therefore, every graded module over S is strongly graded ([9]).

Let f € Homg(M, N) for M, N graded S-modules. We call f a graded homomorphism
of degree a € A, whenever f(M;) C N, for all b € A. We put, for a € A, Hom,(M, N) =
{f € Homg(M, N) : f is graded of degree a}. Then Homg(M, N) = ®scaHom,(M, N)
holds.

Proposition 3. Let N be a left R-module and M a left graded S-module. Then there
erists an isomorphism Hompg(M;, N) = Hom, (M, Homg(S, N)).

Proof. Note that Homg(S, N) is graded by the grading Homg(S, N),. = Homg(a"'R, N),
acA O

Lemma 4. [2] Define e : Homg(S, R) — S, bya(f) = 3., 4(8)~ f(&) for f € Homg(S, R).
Then a is an S-R-bimodule isomorphism.

Combining Proposition 3 and Lemma 4, we get

Corollary 5. Let M be a graded S-module. Then there is an isomorphism of right R-
module: Homg(M,, R) = Hom, (M, S).

We study Gorenstein dimension(cf. [3]), one of the important homological invariants of
a Noetherian ring. An R-module M is said to have Gorenstein dimension zero, denoted
by G-dimgM = 0, if M** = M and Ext%(M, R) = Ext§.,(M*, R) = 0 for k > 0, where
M* = Homg(M, R). For a positive integer k, M is said to have Gorenstein dimension
less than or equal to k, denoted by G-dim M < k, if there exists an exact sequence
09 Gy— =Gy — M — 0 with G-dim G; = 0 for 0 < i < k. We have that G-dim



M < k if and only if G-dim Q*M = 0. It is also proved that if G-dim M < co then G-dim
M = sup{k : Ext%(M, R) # 0}.
For a graded S-module, G-dimension is controlled by an R-module.

Theorem 6. Let M be a graded S-module, then G-dimgM = G-dimgMM;

We will prove this theorem in the following.

Let M = @®,caM, = @eeca@M, be a graded S-module. Note that M = S ®z M,.
Then a right S-module M* = Homg(M, S) = @,csHom,(M, S). We see Hom,(M, S) =
Hom, (M, S)a and M* is a graded right S-module of grading Homg(M, S), = Hom, (M, S)a.
By Corollary 6, it holds that Hom, (M, S) = Homg(M,, R), hence M* = ®,M;&, whare
M; = Homp(M,, R). Similary, there is an isomorphism M** = @,aM;".

Let 8 : M — M** be a canonical evaluation map. Then 8 is a graded homomorphism
of degree 1. Therefore, the following holds.

Lemma 7. M is reflezcive as an S-module if and only if M, is reflezive as an R-module.

Concerning extension groups, the following holds.

Lemma 8. Exti(M,S) = 0 if and only if Extly(M;,R) =0 for alli > 0.
Proof. The combination of isomorphisms:

Exts(M, S) = Extq(M, R) ((2])
Exth(S ®r My, R) & Exth(M;, Homg(S, R))
Homp(S,R) 2 S (Lemma 4)
induces an isomorphism
Exts(M S) eaGAExtR(Ml,aR)
Consequently, the assertion holds. O
We deal with the case of G-dimension zero. Note that (M*), = M; for a graded
S-module M.
Theorem 9. Let M be a graded S-module. Then G-dimgM = 0 if and only if G-
dimgM, = 0.

Let --- = P, = Py = M; — 0 be a projective resolution of an R-module M,, for a
graded S-module. Then .- = S®r P, = S®r Py = S®r M; — 0 is a projective
resolution of an S-module S ®g M; = M. Hence O*'M =2 S®x M), and then (¥*M), &
Q(M,). Hence G-dimsQ*M = 0 if and only if G-dimgQ'M; = 0 by Theorem 9. This
proves Theorem 6.



3.1. Concluding Remarks. Let M be a graded A(G)-module and take a good filtration
of M, ([7]). Then the following (in)equalities hold:

G-dimy )M + m-depth(grM,;) < d +1

gradey oM + dimg gy (grMh) = d + 1,
where m is the “maximal ideal of grA(H) = Flzo, - , z4).
These formulae will be able to apply to homological theory of modules over the Iwasawa
algebra. For example:
Suppose that gri, is Cohen-Macaulay, then M is perfect, i.e., gradesigy M = G-dimp ) M.
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SUPPORT VARIETIES AND THE HOCHSCHILD COHOMOLOGY
RING MODULO NILPOTENCE

NICOLE SNASHALL

ABSTRACT. This paper is based on my talks given at the ‘41st Symposium on Ring The-
ory and Representation Theory’ held at Shizuoka University, Japan, 5-7 September 2008.
It begins with a brief introduction to the use of Hochschild cohomology in developing the
theory of support varieties of [50] for a module over an artin algebra. I then describe the
current status of research concerning the structure of the Hochschild cohomology ring
modulo nilpotence.
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INTRODUCTION

This survey article is based on talks given at the ‘41st Symposium on Ring Theory
and Representation Theory’, Shizuoka University in September 2008, and is organised
as follows. Section 1 gives a brief introduction to the use of Hochschild cohomology in
developing the theory of support varieties of [50]. Section 2 considers the Hochschild co-
homology ring of Q-periodic algebras. In [50] it had been conjectured that the Hochschild
cohomology ring modulo nilpotence of a finite-dimensional algebra is always finitely gen-
erated as an algebra. Section 3 describes many classes of algebras where this holds, that
is, that the Hochschild cohomology ring modulo nilpotence is finitely generated as an
algebra. The final section is devoted to studying the recent counterexample of Xu ([57])
to this conjecture.

Throughout this paper, let A be an indecomposable finite-dimensional algebra over an
algebraically closed field K, with Jacobson radical r. Denote by A® the enveloping algebra
A" @4 A of A, so that right A®-modules correspond to A, A-bimodules. The Hochschild
cohomology ring HH*(A) of A is given by HH*(A) = Ext}.(A, A) = @0 Exth. (A, A) with
the Yoneda product. We may consider an element of Ext}. (A, A) as an exact sequence of

This paper is in final form and no version of it will be submitted for publication elsewhere.



A, A-bimodules 0 = A = E* = E*"! = ... = E' 5 A — 0 where the Yoneda product
is the ‘splicing together’ of exact sequences.

The low-dimensional Hochschild cohomology groups are well-understood via the bar
resolution ([41] and see [3, 39]), and may be described as follows:

e HH%(A) = Z(A), the centre of A.

e HH(A) is the space of derivations modulo the inner derivations. A derivation is a K-
linear map f : A — A such that f(ab) = af(b) + f(a)b for all a,b € A. A derivation
f A > Ais an inner derivation if there is some z € A such that f(a) = ax — za for
alla € A.

. HH2(A) measures the infinitesimal deformations of the algebra A; in particular, if
HH?(A) = 0 then A is rigid, that is, A has no non-trivial deformations.

Recently there has been much work on the structure of the entire Hochschild cohomol-
ogy ring HH*(A) and its connections and applications to the representation theory of A.
One important property of Hochschild cohomology in this situation is its invariance under
derived equivalence, proved by Rickard in [48, Proposition 2.5] (see also [39, Theorem 4.2
for a special case). It is also well-known that HH"(A) is a graded commutative ring, that
is, for homogeneous elements n € HH"(A) and § € HH™(A), we have n8 = (-1)™"én.
Thus, when the characteristic of K is different from two, then every homogeneous element
of odd degree squares to zero. Let A denote the ideal of HH*(A) which is generated by the
homogeneous nilpotent elements. Then, for char K # 2, we have HH*+!(A) C WV for all
k > 0. Hence (in all characteristics) the Hochschild cohomology ring modulo nilpotence,
HH*(A)/N, is a commutative K-algebra.

Support varieties for finitely generated modules over a finite-dimensional algebra A
were introduced using Hochschild cohomology by Snashall and Solberg in [50], where it
was also conjectured that the Hochschild cohomology ring modulo nilpotence is itself a
finitely generated algebra. We remark that the graded commutativity of HH*(A) im-
plies that AV is contained in every maximal ideal of HH*(A) and so MaxSpec HH*(A) =
MaxSpec HH*(A)/A. Although the recent paper [57] provides a counterexample to the
conjecture of [50), nevertheless finiteness conditions play an key role in the structure of
these support varieties (see [15]), so it remains of particular importance to determine the
structure of the Hochschild cohomology ring modulo nilpotence.

1. SUPPORT VARIETIES

One of the motivations for introducing support varieties for finitely generated modules
over a finite-dimensional algebra came from the rich theory of support varieties for finitely
generated modules over group algebras of finite groups. For a finite group G and finitely
generated X G-module M, the variety of M, Vg(M), was defined by Carlson (10] to be
the variety of the kernel of the homomorphism

- ®x M: H™(G, K) - Ext}s(M, M).



This map factors through the Hochschild cohomology ring of K'G, so that we have the
commutative diagram

H (G, Ky —=2Y_ Ext}o(M, M)

~-®xcM
HH*(KC)

Linckelmann considered the map — ®x¢ M: HH*(KG) — Extys(M, M) when studying
varieties for modules for non-principal blocks ([43]).
Now, for any finite-dimensional algebra A and finitely generated A-module M, there is

a ring homomorphism HH"'(A) 2l Ext) (M, M). This ring homomorphism turns out
to provide a similarly fruitful theory of support varieties for finitely generated modules
over an arbitrary finite-dimensional algebra. As usual, let mod A denote the category of
all finitely generated left A-modules.

For M € mod A, the support variety of M, Vin-(a)(M), was defined by Snashall and
Solberg in [50, Definition 3.3] by

Vitn-(ay(M) = {m € MaxSpec HH*(A)/N | Annyy-(a) Ext} (M, M) C m'}

where m’ is the preimage in HH*(A) of the ideal m in HH*(A)/N. We recall from above
that MaxSpec HH*(A) = MaxSpec HH®(A)/N.

Since we assumed that A is indecomposable, we know that HH°(A) is a local ring. Thus
HH"(A)/N has a unique maximal graded ideal which we denote by mg so that my, =
(rad HH®(A), HH2'(A))/N. From [50, Proposition 3.4(a)], we have mg, € Viyye(ay(M) for
all M € mod A. We say that the variety of M is trivial if Viyn+(a)(M) = {mg}.

The following result collects some of the properties of varieties from [50]. For ease of
notation, we write V(M) for Vuyn+(2)(M). We also denote the kernel of the projective
cover of M € mod A by Qx(M).

Recall that we assume throughout this paper that K is an algebraically closed field. This
assumption is a necessary assumption in many of the results in this article. However, it is
not needed in all of [50], and the interested reader may refer back to [50] to see precisely
what assumptions are required there at each stage.

Theorem 1.1. ({50, Propositions 3.4, 3.7]) Let M € mod A.

(1) V(M) = V(Qa(M)) if Qa(M) # (0),

(2) VM, & Ma) = V(M)UV(M,),

(3) If0 = My = My = M3 —= 0 is an ezact sequence, then V(M,,) € V(M) UV (M,,)
whenever {iy,%2,%3} = {1,2,3},

(4) If Exti (M, M) = (0) for i > 0, or the projective or the injective dimension of M is
finite, then the variety of M is trivial.

(8) If A is selfinjective then V(M) = V (T M), where 7 is the Auslander-Reiten translate.
Hence all modules in a connected stable component of the Auslander-Reiten quiver
have the same variety.

For a finitely generated module M over a group algebra of a finite group G, it is well-
known ([10]) that the variety of M is trivial if and only if M is a projective module. In



contrast, it is still an open question as to what are the appropriate necessary and sufficient
conditions on a module for it to have trivial variety in the more general case where A is
an arbitrary finite-dimensional algebra. There are some partial results for a particular
class of monomial algebras in [25] (see Section 3). Nevertheless, the converse to Theorem
1.1(4) does not hold in general, and a counterexample may be found in [52, Example 4.7].

However, this question was successfully answered by Erdmann, Holloway, Snashall,
Solberg and Taillefer in [15], by placing some (reasonable) additional assumptions on A.
(Recall that we are already assuming that the field K is algebraically closed.) Specifically,
the following two finiteness conditions were introduced.

(E‘gl) H is a commutative Noetherian graded subalgebra of HH*(A) with H® =
HHY(A).

(Fg2) Exty(A/r,A/x) is a finitely generated H-module.

As remarked in [15], these two conditions together imply that both HH*(A) and
Extj (A/r, A/x) are finitely generated K-algebras. In particular, the properties (Fg1) and
(Fg2) hold where A = KG, G is a finite group, and H = HH*'(A) ([21, 54]). With condi-
tions (Fgl) and (Fg2), we have the following results from [15], where we define the variety
using the subalgebra H of HH*(A), so that V(M) = MaxSpec(H/ Anny Ext} (M, M)).

Theorem 1.2. ([15, Theorem 2.5]) Suppose that A and H satisfy (Fgl) and (Fg2).
Then A is Gorenstein. Moreover the following are equivalent for M € mod A:

(i) The variety of M is trivial;

(ii) M has finite projective dimension;

(i) M has finite injective dimension.

Theorem 1.3. ({15, Theorem 4.4]) Suppose that A and H satisfy (Fgl) and (Fg2).
Given a homogeneous ideal a in H, there is a module M € mod A such that V(M) =

VH (a).

Theorem 1.4. ([15, Theorem 2.5 and Propositions 5.2, 5.3]) Suppose that A and H
satisfy (Fgl) and (Fg2) and that A is selfinjective. Let M € mod A be indecomposable.
(1) Vu(M) is trivial & M is projective.
(2) Vu(M) is a line & M is Q-periodic.

Our final results in this section concern the representation type of A and the structure
of the Auslander-Reiten quiver; for more details see {15, 52]. First we recall that Heller
showed that if A is of finite representation type then the complexity of a finitely generated
module is at most 1 ([40]), and that Rickard showed that if A is of tame representation type
then the complexity of a finitely generated module is at most 2 ([47]). However there are
selfinjective preprojective algebras of wild representation type where all indecomposable
modules are either projective or periodic and so have complexity at most 1. Nevertheless,
the next result uses the Hochschild cohomology ring to give some information on the
representation type of an algebra.

Theorem 1.5. ([15, Proposition 6.1]) Suppose that A and H satisfy (Fgl) and (Fg2)
and that A is selfinjective. Suppose also that dim H > 2. Then A is of infinite repre-
sentation type, and A has an infinite number of indecomposable periodic modules lying in
infinitely many different components of the stable Auslender-Reiten quiver.



We end this section with the statement of Webb’s theorem ([55]) for group algebras of
finite groups and a generalisation of this theorem from [15].

Theorem 1.6. ([55]) Let G be ¢ finite group and suppose that char K divides |G|. Then
the orbit graph of a connected component of the stable Auslander-Reiten quiver of KG is

one of the following:
(a) a finite Dynkin diagram (.@ﬂ,ﬂ?n,Es'-,_.a),
(b) a Euclidean diagram (A,,Dp, Es 74, A12), or
(¢) an infinite Dynkin dicgram of type A, Doo 01 AZ.

Theorem 1.7. (|15, Theorem 5.6]) Suppose that A and H satisfy (Fgl) and (Fg2) and
that A is selfinjective. Suppose that the Nakayama functor is of finite order on any inde-
composable module in mod A. Then the tree class of a component of the stable Auslander-
Reiten quiver of A is one of the following:

(a) a finite Dynkin diagram (A,,D,,Eg7.s),

(b) a Euclidean diagram (An,lﬁi,,,lis,y,s,ﬁn), or

(c) en infinite Dynkin diagram of type Ao, Do or AZ.

We remark that the hypotheses of Theorem 1.7 are satisfied for all finite-dimensional
cocommutative Hopf algebras ([15, Corollary 5.7)).

For more information, the reader should also see the survey paper on support varieties
for modules and complexes by Solberg [52]. In addition, the paper by Bergh [5] introduces
the concept of a twisted support variety for a finitely generated module over an artin
algebra, where the twist is induced by an automorphism of the algebra, and, in [6], Bergh
and Solberg study relative support varieties for finitely generated modules over a finite-
dimensional algebra over a field.

2. §1-PERIODIC ALGEBRAS

We now turn our attention to the structure of the Hochschild cohomology ring. One
class of algebras where it is relatively straightforward to determine the structure of the
Hochschild cohomology ring explicitly is the class of Q-periodic algebras. We recall that
A is said to be an Q-periodic algebra if there exists some n > 1 such that Q3. (A) & A as
bimodules. Such an algebra A has a periodic minimal projective bimodule resolution, so
that HH*(A) & HH™(A) for i > 1, and is necessarily self-injective (Butler; see [34]).

There is an extensive survey of periodic algebras by Erdmann and Skowroniski in
(18]. Examples of such algebras include the preprojective algebras of Dynkin type where
28.(A) = A as bimodules ([49]; see also [19]), and the deformed mesh algebras of gener-
alized Dynkin type of Bialkowski, Erdmann and Skowronski (7, 18]. For the selfinjective
algebras of finite representation type over an algebraically closed field, it is known from
[34] that there is some n > 1 and automorphism ¢ of A such that Q7. (A) is isomorphic
as a bimodule to the twisted bimodule ;A,. It has now been shown that all selfinjec-
tive algebras of finite representation type over an algebraically closed field are 2-periodic
([13, 16, 17, 18]).

The structure of the Hochschild cohomology ring modulo nilpotence of these algebras
was determined by Green, Snashall and Solberg in [34].



Theorem 2.1. (|34, Theorem 1.6)) Let K be an algebraically closed field. Let A be a
finite-dimensional indecomposable K-algebra such that there is some n 2 1 and some
automorphism o of A such that QR.(A) is isomorphic to the twisted bimodule \A,. Then

HH'(A)/N%‘{ ﬁ[z] or

If there is some m > 1 such that Q(A) = A as bimodules, then HH*(A)/N = Klz],
where = is in degree m and m is minimal.

Additional information on the ring structure of the Hochschild cohomology ring of the
preprojective algebras of Dynkin type A, was determined in [19], of the preprojective
algebras of Dynkin types D,, Es, E7, Eg in [20], and of the selfinjective algebras of finite
representation type A, over an algebraically closed field in [16, 17].

Given that the Hochschild cohomology ring of these algebras is understood, this nat-
urally leads to the study of situations where the Hochschild cohomology rings of two
algebras A and B can be related. This enables us to transfer information about the
Hochschild cohomology ring of, say, an (-periodic algebra, to other algebras. Apart
from periodic algebras, there are other algebras where the Hochschild cohomology ring is
known, and these provide additional examples where the transfer of properties between
Hochschild cohomology rings may also be studied. One such class of examples is the class
of truncated quiver algebras, which has been extensively studied in the literature by many

authors.

Happel showed in [39, Theorem 5.3] that if B is a one-point extension of a finite-
dimensional K-algebra A by a finitely generated A-module M, then there is a long exact
sequence connecting the Hochschild cohomology rings of A and B:

0 —» HH%(B) = HH%(A) = Hom,(M, M)/K —
HH!(B) — HH(A) - Ext, (M, M) = --.
.-+ = Exty (M, M) - HH*Y(B) - HH™ (A) = Ext{ (M, M) — - .-
It was subsequently shown by Green, Marcos and Snashall in [29, Theorem 5.1] that there
is a graded ring homomorphism
HH*(B) - HH*(A)& X
which induces this long exact sequence, where K is the graded K-module with Ky = K

and X,, = 0 for all n # 0.
These results were generalized independently to arbitrary triangular matrix algebras
by Cibils [12], by Green and Solberg [36], and by Michelena and Platzeck [44].

A recent result of Konig and Nagase, ([42, 45]), has related the Hochschild cohomology
ring of B to that of B/BeB in the case where B is an algebra with idempotent e, such
that BeB is a stratifying ideal of B.

Theorem 2.2. ([42]) Let B be an algebra with idempotent e such that BeB is a stratifying
ideal of B and let A be the factor algebra B/BeB. Then there are long ezact sequences
as follows:



1. --- = Ext}.(B, BeB) =+ HH"*(B) - HH"(A) = .-+
2. .-+ — Ext}.(A,B) = HH"(B) - HH"(eBe) — - - ;and
3. --- = Ext}.(A, BeB) = HH"(B) —» HH"(A) @ HH"(eBe) — - - - .

3. THE HOCHSCHILD COHOMOLOGY RING MODULO NILPOTENCE

The definition of a support variety in [50] led us to consider the structure of HH* (A)/N
and to conjecture that HH"(A)/N is always finitely generated as an algebra. A counterex-
ample to this conjecture was recently given by Xu in [57); nevertheless the Hochschild
cohomology ring modulo nilpotence is finitely generated as an algebra for many diverse
classes of algebras.

The Hochschild cohomology ring modulo nilpotence is known to be finitely generated
as an algebra in the following cases.

e any block of a group ring of a finite group ([21, 54));

e any block of a finite-dimensional cocommutative Hopf algebra ([24]);

o finite-dimensional selfinjective algebras of finite representation type over an alge-
braically closed field ([34]);

o finite-dimensional monomial algebras ([35] and see [32]);

e finite-dimensional algebras of finite global dimension (see [39)).

For the last class of examples, if A is an algebra of finite global dimension N, then
HH(A) = Ext}.(A,A) = (0) for all i > N. Hence HH*(A)/N = K. In [39], Happel
asked whether or not it was true, for a finite-dimensional algebra I' over a field K, that if
HH"(T') = (0) for n > 0 then the global dimension of I" is finite. This question has now
been answered in the negative by Buchweitz, Green, Madsen and Solberg in [8] by the
following example.

Example 3.1. ([8]) Let

Aq = K (z,9)/ (2%, 2y + quz,y?)
with ¢ € K\ {0}. If g is not a root of unity then dim HH*(A,) = 0 for i > 3. Moreover,
A, is a selfinjective algebra so has infinite global dimension.

We also note from (8] that dim A4 = 4, dimHH"(A;) = 5 and HH'(A)/NV = K.

However, the situation for commutative algebras is very different, as Avramov and
Iyengar have shown.

Theorem 3.2. ([1]) Let R be a commutative finite-dimensional K -algebra over a field
K. If HH*(R) = (0) for n >> 0 then R is a (finite) product of (finite) separable field
extensions of K. In particular, the global dimension of R is finite.

We now turn to a brief discussion of the Hochschild cohomology ring modulo nilpotence
for a monomial algebra, which was studied by Green, Snashall and Solberg. Let A be a
quotient of a path algebra so that A = KQ/I for some quiver @ and admissible ideal 7
of KQ. Then A = KQ/I is a monomial algebra if the ideal ] is generated by monomials
of length at least two. It should be noted that monomial algebras are very rarely selfin-
jective and so do not usually exhibit the same properties as group algebras. However, the



Hochschild cohomology ring modulo nilpotence of a monomial algebra turns out to have
a particularly nice structure.

Theorem 3.3. (|35, Theorem 7.1]) Let A = KQ/I be a finite-dimensional indecompos-
able monomial algebra. Then HH*(A)/N is a commutative finitely generated K -algebra
of Krull dimension at most one.

For some specific subclasses of monomial algebras, the structure of the Hochschild
cohomology ring modulo nilpotence was explicitly determined in [32]. One of the main
tools used was the minimal projective bimodule resolution of a monomial algebra of
Bardzell [2]. In order to define the particular class of (D, A)-stacked monomial algebras,
we require the concept of overlaps of [27, 38}; the definitions here use the notation of [32).

Definition 3.4. A path g in X Q overlaps a path p in KQ with overlap pu if there are
paths u and v such that pu = vqg and 1 < {(u) < €(g), where ¢(z) denotes the length of
the path z € K Q. We illustrate the definition with the following diagram. (Note that we
allow ¢(v) = 0 here.)

v
P

A path g properly overlaps a path p with overlap pu if g overlaps p and ¢(v) > 1.

Let A = KQ/I be a finite-dimensional monomial algebra where I has a minimal set of
generators p of paths of length at least 2. We fix this set p and now recursively define
sets R™ (contained in K Q). Let

R° = the set of vertices of Q,
R! = the set of arrows of @,
R? = p

For n > 3, we say R? € R? maximally overlaps R*~! € R"~! with overlap R"* = R* u if
1. R*~! = R*~2?p for some path p;
2. R? overlaps p with overlap pu;
3. there is no element of R2 which overlaps p with overlap being a proper prefix of pu.
The set R" is defined to be the set of all overlaps R™ formed in this way.

Each of the elements in R™ is a path in the quiver Q. We follow the convention that
paths are written from left to right. For an arrow « in the quiver Q, we write o(a) for the
idempotent corresponding to the origin of o and t(a) for the idempotent corresponding
to the tail of « so that a = o(a)at(a). For a path p = oy - - - am, we write o(p) = o()
and t(p) = t(om)-

The importance of these sets R™ lies in the fact that, for a finite-dimensional monomial
algebra A = KQ/I, [2] uses them to give an explicit construction of a minimal projective
bimodule resolution (P*,5*) of A, showing that

P = @RneRnAO(Rn) QK t(Rn)A
We now use these same sets R™ to define a (D, A)-stacked monomial algebra.



Definition 3.5. ([32, Definition 3.1)) Let A = K'Q/I be a finite-dimensional monomial
algebra, where I is an admissible ideal with minimal set of generators p. Then A is said
to be a (D, A)-stacked monomial algebra if there is some D > 2 and A > 1 such that, for

alln > 2 and R" € R™,
3D if n even,
YR =

D+ A4 ifnodd.
In particular all relations in p are of length D.

The class of (D, A)-stacked monomial algebras includes the Koszul monomial algebras
(equivalently, the quadratic monomial algebras) and the D-Koszul monomial algebras of
Berger ([4]). Recall that the Ext algebra E(A) of A is defined by E(A) = Extj(A/r,A/7).
It is well-known that the Ext algebra of a Koszu) algebra is generated in degrees 0 and 1;
moreover the Ext algebra of a D-Koszul algebra is generated in degrees 0, 1 and 2 ([28]).
It was shown by Green and Snashall in [33, Theorem 3.6] that, for algebras of infinite
global dimension, the class of (D, A)-stacked monomial algebras is precisely the class of
monomial algebras A where each projective module in the minimal projective resolution
of A/t as a right A-module is generated in a single degree and where the Ext algebra of
A is finitely generated as a K-algebra. It was also shown, for a (D, A)-stacked monomial
algebra of infinite global dimension, that the Ext algebra is generated in degrees 0, 1, 2
and 3.

Theorem 3.6. [32] Let A = KQ/I be o finite-dimensional (D, A)-stacked monomial
algebra, where I is an admissible ideel with minimal set of generators p. Suppose char K #
2 and gldimA > 4. Then there is some integer r > 0 such that

HH*(A)/N = K[z, ... ,2,)/(ziz; for i # j).

Moreover the degrees of the z; and the value of the parameter r may be explicitly and
eastly calculated.

We do not give the full details of the z; and the parameter r here; they may be found
in [32]. However, it is worth remarking that, given any integer > 0 and even integers

n,..., Ny, there is a finite-dimensional (D, A)-stacked monomial algebra A with
HH*(A)/N 2 K[z, ... ,z,])/(zizj for i # j)
where the degree of z; isn;, foralli=1,... ,r.

In [25], necessary and sufficient conditions are given for a simple module over a (D, A)-
stacked monomial algebra to have trivial variety. Referring back to Theorem 1.1(4), this
goes part way to determining necessary and sufficient conditions on any finitely generated
module for it to have trivial variety for this class of algebras.

We end this section with a class of selfinjective special biserial algebras Ay, for N > 1,
studied by Snashall and Taillefer in [51]. The study of these algebras was motivated by
the results of [14] where the algebras A, arose in the presentation by quiver and relations
of the Drinfeld double D(A,4) of the Hopf algebra A, 4 where d|n. The algebra A, 4 is
given by an oriented cycle with n vertices such that all paths of length d are zero. These



algebras also occur in the study of the representation theory of Uy(sly); see work of Patra
([46]), Suter ([53]), Xiao ([56]), and also of Chin and Krop ([11]). The more general
algebras Ay occur in work of Farnsteiner and Skowronski [22, 23], where they determine
the Hopf algebras associated to infinitesimal groups whose principal blocks are tame when
K is an algebraically closed field with char K > 3.

Our class of selfinjective special biserial algebras Ay is described as follows. Firstly, for

m 2 1, let @ be the quiver with m vertices, labelled 0,1... ,m — 1, and 2m arrows as
follows:
-3 R a
NS

Let a; denote the arrow that goes from vertex i to vertex i + 1, and let &; denote the
arrow that goes from vertex i+ 1 to vertex i, for each 1 =0,... ,m — 1 (with the obvious
conventions modulo m). Then, for N > 1, we define Ay to be the algebra given by
Ay = KQ/In where Iy is the ideal of K'Q generated by

_ . N n N .
GiGit1, Gi-1bi-g, (0:Gi)" — (Gi-y@i-), fori=0,1,... ,m—1,

and where the subscripts are taken modulo m. We note that, if N = 1, then the algebra
A, is a Koszul algebra. (We continue to write paths from left to right.)

Theorem 3.7. ([51, Theorem 8.1]) For m > 1 and N > 1, let Ay be as defined above.
Then HH*(AN) is a finitely generated K -algebra. Moreover HH* (AN)/N is a commutative
finitely generated K -algebra of Krull dimension two.

Furthermore, if N = 1 then [51] also showed that the conditions (Fgl) and (Fg2) hold
with H = HH*(A,).

4. COUNTEREXAMPLE TO THE CONJECTURE OF [50)

The previous section concerned algebras where the conjecture of [50] concerning the
finite generation of the Hochschild cohomology ring modulo nilpotence has been shown
to hold. In this section we present a counterexample to the conjecture of [50]. In [57], Xu
gave a counterexample in the case where the field /i has characteristic 2. It can easily be
seen, for char K = 2, that the category algebra he presented in [57] is isomorphic to the
following algebra .A given as a quotient of a path algebra. Moreover, we will show that this
algebra .4 provides a counterexample to the conjecture irrespective of the characteristic
of the field.



Example 4.1. Let K be any field and let A = KX Q/I where Q is the quiver

and I = {a?,b%,ab — ba, ac).

The rest of this section is devoted to studying this algebra A and to showing that
HH*(A)/N is not finitely generated as an algebra.

We begin by giving an explicit minimal projective resolution (P*,d*) for A as an A, A-
bimodule. The description of the resolution given here is motivated by [31] where the
first terms of a minimal projective bimodule resolution of a finite-dimensional quotient
of a path algebra were determined explicitly from the minimal projective resolution of
A/x as a right A-module of Green, Solberg and Zacharia in [37]. This same technique for
constructing a minimal projective bimodule resolution was used in [26] for any Koszul
algebra, and in [51] for the algebras Ay which were discussed at the end of Section 3.

From Happel [39], we know that the multiplicity of Ae; @ e;A as a direct summand
of P is equal to dim Ext}(S;, S;), where S; is the simple .A-module corresponding to the
vertex i of Q. Following |31, 37), we start by defining sets g in X Q inductively, and then
labelling the summands of P® by the elements of g". The set g° is determined by the
vertices of @, the set g' by the arrows of @, and the set g> by a minimal generating set
of the ideal J.

Let

=19 =e, gl = e},
d={p=a29=-b g=c},
92 = {93 = d?, 9? = ab - ba, g% = b, gg = ac}.

Forn>3andr=0,1,...,n, let
= (-1)p
p

where the sum is over all paths p of length n, written p = aya5 - - - &, where the o; are
arrows in @, such that

(i) p contains n — r arrows equal to a and r arrows equal to b, and

(ii) s§= 20,-=bj-
In addition, for n > 3, define

g =a""e.

Forr =0,1,...,n, we have that g} = e;gl'e) so we define o(g?) = e; = {(g7). Moreover

o(gn+1) = €1 and t(gq,,) = e2. Thus

P = @2 Ao(g]') ®x H(g7)A.



To describe the map d": P" — P™~!, we first need to write each of the elements g" in
terms of the elements of the set g™}, that is, in terms of gf~,... ,g""!. The following
result is straightforward to verify.

Proposition 4.2. Suppose n > 2. Then, keeping the above notation,

@ =9'a =agp™!

o =gle+ (-1)"grTb = (-1)"(agr~l +bgfZ}) for1<r<n-1
gt =(-1)"giiib = (-1)"bgR=}

grha =g'c = aga".

We define the map d°: P? — A to be the multiplication map. To define d* for n > 1,
we need one further piece of notation. In describing the image d"(o(g") ® t(gF')) in the
projective module P"~!, we use a subscript under @ to indicate the appropriate summand
of the projective module P*~!. Specifically, let — ®, — denote a term in the summand
of P*-! corresponding to g*~!. Nonetheless all tensors are over K; however, to simplify
notation, we omit the subscript K. The maps d*: P* —» P™! for n > 1 may now
be defined. The proof of the following result is omitted and is similar to those in [31,
Proposition 2.8] and [51, Theorem 1.6].

Theorem 4.3. For the algebra A of Ezample 4.1, the sequence (P*,d') is a minimal
projective resolution of A as an A, A-bimodule, where, for n > 0,
n+l
P" = €D Ao(g}) ® (g)A,
r=0
the map d° : P° — A is the multiplication map, the map d' : P! — P® is given by
d'(o(g7) ® t(97)) =

—o(9) @ b+ b®ot(g]) forr=1;
o(g}) ®c— c® t(g}) forr=2;
and, for n > 2, the map d" : P" — P™"! is given by d"(o(g7) ® t(g")) =
o(g3) ®o a + (—1)"a Qo t(g7) forr=0;
o(g7) ® a+ (—1)"0(g7) &1 b
+(=1)"*"a ® t(g) +6®r_1 t(g?)) forl<r<n-1;

(=1)"0(gn) ®n-1 b+ b®s_1 t(gn) forr =n;
o{gpn,1) ®o c+ (—1)"a ®n t(gh,,) forr=n+1.

Proposition 4.4. The algebra A of Ezample 4.1 is a Koszul algebra.

{ o(g3) ®oa—a®t(g)) forr=0;

Proof. We apply the functor A/t ® 4 — to the resolution (P*,d*) of Theorem 4.3 to give
a (minimal) projective resolution of A/ as a right A-module. Thus A/t has a linear
projective resolution, and so .4 is a Koszul algebra. a

Since, A is a Koszul algebra, it now follows from [9] that the image of the ring ho-
momorphism @ = A/t ®4 — : HH'(A) — E(A) is the graded centre Zg(E(A))
of E(A), where Z (E(A)) is the subalgebra generated by all homogeneous elements
z such that zg = (—1)8l#lgz for all g € E(A). Thus ¢/ induces an isomorphism



HH*(A)/N & Z;(E(A))/Nz, where Nz denotes the ideal of Zg(E(.A)) generated by all
homogeneous nilpotent elements.

From [30, Theorem 2.2, E(A) is the Koszul dual of A and is given explicitly by quiver
and relations as E(A) = KQ°P/I*, where Q is the quiver of A and I* is the ideal
generated by the orthogonal relations to those of /. Specifically, for this example, E(A)
has quiver

aO
R
0
)

.4

and J* = (2°°+b°°,b°c°), where, for an arrow a € Q, we denote by a® the corresponding
arrow in Q°P. Moreover, the left modules over E(.A) are the right modules over K Q/{ab+
ba, bc).

It is now easy to calculate Zg(E(A)) to give the following theorem. The structure of
HH*(A)/N for char K = 2 was given by Xu in [57].

Theorem 4.5. Let A be the algebra of Ezample 4.1.

1.
~ | K® Klo,blb if charK =2
Zg(E(A)) = { K@ K[a?, )0 if charK #2,
where b s in degree 1 and ab is in degree 2.
2.
. K & K|a, bJb if charK =2
HH(A)/N = { K @ K[, B)b* if charK # 2,
where b is in degree 1 and ab is in degree 2.
3. HH*(A)/N s not finitely generated as an algebra.

This example now raises the new question as to whether we can give necessary and
sufficient conditions on a finite-dimensional algebra for its Hochschild cohomology ring
modulo nilpotence to be finitely generated as an algebra.
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QF-3' MODULES RELATIVE TO TORSION THEORIES AND OTHERS

YASUHIKO TAKEHANA

Let R be a ring with identity, and let Mod- R be the category of right R-modules. Let
M be a right R-module. We denote by E{M) the injective hull of M. M is called QF-3’
module, if E(M) is M-torsionless, that is, E(M) is isomorphic to a submodule of a direct
product IIM of some copies of M.

A subfunctor of the identity functor of Mod-R is called a preradical. For a preradical
o, T, := {M € Mod-R ; o(M) = M} is the class of o-torsion right R-modules, and
Fo :={M € Mod-R ; o(M) = 0} is the class of o-torsionfree right R-modules. A right
R-module M is called o-injective (resp. o-projective) if the functor Hompg( , M) (resp.
Homp(M, )) preserves the exactness for any exact sequence 0 -+ A - B - C — 0
with C € T, (resp. A € F;). A right R-module M is called 0-QF-3’ module if E,(M) is
M-torsionless, where E (M) is defined by E,(M)/M := o(E(M)/M).

In this note, we characterize o-QF-3’ modules and give some related facts.

1. QF-3' MODULES RELATIVE TO HEREDITARY TORSION THEORIES

In (1], Y.Kurata and H.Katayama characterized QF-3' modules by using torsion the-
ories. In this section we generarize QF-3’ modules by using an idempotent radical. A
preradical o is idempotent (resp. radical) if o(0(M)) = o(M) (resp. o (M/a(M)) = 0) for
any module M. For modules M and N, ky(M) denotes N{ker f ; f € Homg(M, N)}. Itis
well known that &, is a radical for any module A and that 7, = {M € Mod-R; Homg(M,
A) =0} and F;, = {M € Mod-R ; M CIIA}.

Theorem 1. Let A be @ module and ¢ o preradical. Then the following conditions (1),
(2) and (3) are equivalent. If o is an idempotent radical, then (1), (2), (3) and (4) are
equivalent. Moreover if o is a left exact radical and A is o-torsion, then all conditions
are equivalent.

(1) A is a 0-QF-3’ module.

(2) ka(E-(A)=0

(8) ka(2) = kg,(a)(-)

(4) ka(N) = NN ks(M) holds for any module M and any submodule N such that
M/N is o-torsion.

(5) Let M be a module and N a submodule of M such that M/N is o-torsion. Then
for any nonzero f € Homp(N, A), there ezists p € Hompg(A, A) and f € Hompg(M, A)
such thatp-f=f-i#0.

(6) Let0 —» N 5 M - L > 0 be an ezact sequence such that L is o-torsion. If
Hompg(f, A) =0, then Hompg(N, A) = 0.
(7) For any module M and a submodule N of M,

The detailed version of this paper will be submitted for publication elsewhere.



() fMeT, and M/N €T, then N € Tx,.
(i) If N € Fi, and M/N € F,, NT,, then M € F,.
(8) If M € Fi,, then E,(M) € Fi,.
(9) If N is an essential submodule of a module M such that M/N € T, and N € Fi,,
then M € Fy,-

As an application of Theorem 1, we give a characterization of the ring having the
property that a right maximal quotient ring @ is torsionless.

Corollary 2. Let Q be a mazimal right quotient ring of R. Then the following conditions
are equivalent.

(1) @ is torsionless (i.e., Q@ CIIR).

(2) kr(@)=0

(3) kr(-) =kq(-)

(4) ka(N)= NnNkgr(M) holds for a module M and any submodule N of M such that
Homg(M/N, E(R)) = 0.

Proposition 3. If o is a left exact radical, (7) of (i) is equivalent to the condition (10)
Ten = Trg, iy

For a module M, Z(M) denote the singular submodule of M, that is ,Z(M) :={m €
M ; (0:m) is essential in R}, where (0:m) = {r € R; mr = 0}.

Proposition 4. If o is a left ezact radical and A € T, N Fz, then (7) of (i) is equivalent
to the condition (1), that is, E,(A) C IIA is equivalent to the condition that Ty, is closed
under taking o-dense submodules.

A module N is called a o-essential extension of M if N is an essential submodule of M
such that M/N is o-torsion.

Lemma 5. Let o be an idempotent radical and M a o-essential extension of a module
N. Then E,(M) = E,(N) holds.

Proposition 6. Let o be an idempotent radical. Then the class of o-QF-8' modules is
closed under taking o-essential ezxtensions.

2. 0-LEFT EXACT PRERADICALS AND 0-HEREDITARY TORSION THEORIES

A preradical ¢ is left exact if {(N) = N nt(M) holds for any module M and any
submodule N of M. In this section we generalize left exact preradicals by using torsion
theories.

Let o be a preradical. We call a preradical t o-left ezact if t(N) = N Nt(M) holds for
any module M and any submodule N of M with M/N € T,. If a module A is 0-QF-3’
and t = k,, then t is a o-left exact radical. Now we characterize o-left exact preradicals.

Lemma 7. For a preradical t and o, let t,(M) denote M Nt(E,(M)) for any module M.
Then t,(M) is uniquely determined for any choice of E(M).

Lemma 8. Let t be a preradical and o an idempotent radical. Then ¢, is a o-left exact
preradical.



Theorem 9. Let o be an idempotent radical. We consider the following conditions on a
preradical t. Then the implications (5) « (1) & (2) — (3) & (4) kold. Ift is a radical,
then (4) — (1) holds. Ift is an idempotent preradical and o is left ezact, then (5)() — (1)
holds. Thus if t is an idempotent radical and o is a left ezact radical, then all conditions
are equivalent.
(1) t is a o-left ezact preradical.
(2) (M) =MnNtE,(M)) holds for any module M.
(3) F: is closed under taking o-essential extension, that is, if M is an essential exten-
sion of a module N € F, with M/N € T,, then M € F;.
(4) F; is closed under taking o-injective hulls, that is, if M € F;, then E,(M) € F..
(5) For any module M and a submodule N of M,
(2) Te is closed under taking o-dense submodules, that is, if M € T; and M/N € T,
then N € T,.
(#) Fe is closed under taking o-eztensions, that is, if N € F, and M/N € F; N T,,
then M € F..

A torsion theory for Mod-R is a pair (7, F) of classes of objects of Mod-R satisfying
the following three conditions.
() Homg(T,F)=0foralT€ T and F € F.
(i) If Homg(M,F)=0forall F€ F,then M € T.
(##8) If Homg(T,N)=0for all T € T, then N € F.
Weput t(M) = TN (= NN ), then T =T; end F = % hold.

TSNcM
For a torsion theory (7,F), if T is closed under taking submodules, then (7, F) is

called a hereditary torsion theory. T is closed under taking submodules if and only if F
is closed under taking injective hulls.

Now we call (T, F) a o-hereditary torsion theory if T is closed under taking o-dense
submodules. If o is a left exact radical, 7 is closed under taking o-dense submodules if
and only if F is closed under taking o-injective hulls by Theorem 9.

Proposition 10. Let t be an idempotent preradical and o o radical such that F, is
included F,. If F, is closed under taking o-injective hulls, then F, is closed under taking
injective hulls.

Thus if ¢ is a left exact radical, 7, 2 7; and (7,F:) is a o-hereditary torsion theory,

then (7;, F;) is a hereditary torsion theory.

Proposition 11. If o(M) contains the singlar submodule Z(M) for any module M, then
a o-left exact preradical is a left exact preradical.

Theorem 12. Let o be a left exact radical. Then (T,F) is o-hereditary if and only if there
ezists a g-injective (o-QF-3') module Q such that T = {M € Mod-R ; Homa(M, Q) =
0}.

Proposition 13. Let o be an idempotent radical and (T, F) a o-hereditary torsion theory,
where T = {M € Mod-R ; Homg(M, Q) = 0} for some ¢ QF-8’ module Q in F. Let M
be a o-torsion module. Then M is in F if and only if M is contained in a direct product
of some copies of Q.



3. CQF-3’ MODULES RELATIVE TO TORSION THEORIES

A preradical ¢ is called epi-preserving if t(M/N) = (t(M) + N)/N for any module M
and any submodule N of M. A short exact sequence 0 - K(M) = P(M) > M -0 is
a projective cover of a module M if P(M) is projective and K (M) is small in P(M).

In {2], F.F. Mbuntum and K. Varadarajan dualized QF-3' modules and characterized
them. Let M be a module with a projective cover. M is called a CQF-3’ module if P(M)
is M-generated, that is, P(M) is isomorphic to a homomorphic image of a direct sum
@®M of some copies of M. In this section we generalize CQF-3' modules and characterize
them.

A short exact sequence 0 = Kg(M) — P,(M) - M — 0 is called g-projective cover of
amodule M if P,(M) is o-projective and K,(M) is o-torsion and small in P,(M). If o is
an idempotent radical and a module M has a projective cover, then M has a o-projective
cover and it is given K,(M) = k(M)/o(K(M)), P,(M) = P(M)/a(K(M)). Now we call
a module M with a projective cover a o-CQF-8’module if P,(M) is M-generated. Let
tp(N) denote the sums of images of all homomorphisms from M to N for a module M
and a module N.It is well known that t4 is an idempotent preradical for any module A
and Tz, = {M € Mod-R ; ®A - M — 0} and F;,= {M € Mod-R ; Hom(A, M) = 0}.

Theorem 14. Let o be a preradical, and suppose that a module A has a o-projective
cover 0 = K,(A) = P,(A) = A— 0. Consider the following conditions.

(1) P,(A) is a 0-CQF-3’ module.

(2) ta(P.(4)) = Po(A)

(3) ta(d) =tea(-)

(4) ta(.) is a o-epi-preserving preradical, that is, toA(M/N) = (ta(M) + N)/N holds
for any module M and any submodule N € F,.

(3) (i) T, is closed under taking F,-extensions, that is, to(M) = M holds for any
module M and any submodule N of M such that M/N € T;, end Ne F,NT,,.

(i) Fi, is closed under taking F,-factor modules, that is, M/N € F,, holds for any

module M € F;, and any submodule N € F, of M.

(6) T, is closed under taking o-projective covers, that is, P,(M) € T;, holds for any
module M € Ty,

(7) Ti, is closed under taking o-coessential extensions, that is, for any module M if
there ezists a small submodule N in F, such that M/N € T;, then M is in T;,.

(8) If Hompg(A, f) = 0, then Homg(A, M/N) = 0 holds for any module M and any
submodule N € F,.

Then (1) = (2) = (3) = (1) and (4) — (1) hold. If o is idempotent, then (3) — (4),
(1) — (8) and (6) — (5),(7) hold. If o is a radical, then (7) — (6), (4) = (2),(6) hold.
If o is an epi-preserving radical and A is in F,, then (8) — (5) holds, moreover if o is
idempotent then (5) — (2) holds.

Thus if o is an epi-preserving tdempotent radical and A is in F,, all condilions are
equivalent.

Proposition 15. Let o be an epi-preserving idempotent radical. Then the following
conditions on a module A are equivalent.



(1) F, is closed under taking F,-factor modules.
(2) '7:‘4 = }-tp.,(A)

Lemma 16. Let o be an idempotent radical. If N is in F, and is a small submodule of
M, then P,(M/N) =2 P,(M) holds.

Proposition 17. Let o be an idempotent radical. The class of ¢ CQF-3’ modules is
closed under taking o-coessntial extensions, that is, if a module M has a smell submodule
N € F, such that M/N is a 0-CQF-38’ module, then M is also a 0-CQF-3' module.

4. g-EPI-PRESERVING PRERADICALS AND 0-COHEREDITARY TORSION THEORIES

In this section we characterize o-epi-preserving preradicals when R is a right perfect
ring.

Theorem 18. Let R be a right perfect ring and o an idempotent radical. Consider the
following conditions on a preradical t.

(1) t is an o-epi-preserving preradical, that is, t(M/N) = (t(M) + N)/N holds for a
module M and any submodule N € F, of M.

(2) T: is closed under taking o-coessential extensions, that is, for any module M if
there ezists a small submodule N in F, such that M/N € T; then M is in T;.

(3) T is closed under taking o-projective covers, that is, P,(M) € T; holds for any
module M € T,.

(4) () Fi is closed under taking F,-factor modules, that is, M/N € F; holds for any
module M € F; and any submodule N € F, of M.

(i1) T is closed under taking F,-extensions, that is, t(M) = M holds for any module
M and any submodule N of M such that M/N € Ty and N € F, N T;.

Then (4) « (1) = (2) <> (3) hold. Ift is an idempotent preradical,then (3) — (1) holds.
If o is an epi-preserving preradical and t is a radical, then (4) — (1) holds. Thus if o is
an epi-preserving idempotent radical and t is an idempotent redical, then all conditions
are equivalent.

We call a torsion theory (7, F) o-cohereditary torsion theory if F is cosed under taking
Fo-factor modules for an idempotent radical o.

Theorem 19. Let R be a right perfect ring and o an epi-preserving idempotent radical.
Then a torsion theory (T, F) is o-cohereditary if and only if there ezists an o-projective
(0-CQF-3’) module @ such that F = {M € Mod-R ; Homg(Q, M) = 0}.

Proposition 20. Let R be a right perfect ring, o be an idempotent radical and (T, F) be
a o-cohereditary torsion theory, where F = {M € Mod-R ; Homg(Q, M) = 0} for some
0-CQF-3’ module Q € T. Let M be a o-torsionfree module. Then M € T if and only if
M is generated by Q.

5. 0-STABLE TORSION THEORY AND 0-COSTABLE TORSION THEORY

A torsion theory (7, F;) is called stable if T; is closed under taking injective hulls. In
this section we generalize stable torsion theory by using torsion theories.



Proposition 21. Let o be an idempotent radical end L a submodule of a module M.
Then the implications (1) = (2) — (3) hold. Moreover, if o is a left ezact radical, then
(3) = (1) holds.

(1) L is o-complemented in M, that is, there ezists a submodule K of M such that L
ismazimal in Ty = {L; ; LC M, LiNnK =0,M/(L; + K) € T,}

(2) L=E,(L)NnM.

(3) L is o-essentially closed in M ,that is, there is no o-essential extension of L in M.

We call a preradical t o-stable if 7; is closed under taking o-injective hulls. We put
X(M):={X; M/XeT}and NNA(M):={NNnX; X € X(M)}.

Theorem 22. Let t be an idempotent preradical and o an idempotent radical. Then the
following conditions (1), (2) and (3) are equivalent. Moreover, if o is left exact and Ty is
closed under taking o-dense submodules, then all the following conditions are equivalent.

(1) t is o-stable, that is, T; is closed under teking o-injective hulls.

(2) The class of o-injective modules are closed under taking the unique mazimal t-
torsion submodules, that is, t(M) is o-injective for any o-injective module M.

(3) E,(t(M)) C t(E,(M)) holds for any module M.

(4) T: is closed under taking o-essential ertensions.

(5) If M/N is o-torsion, then N N A(M) = &X,(N) holds.

(6) For any module M, t(M) is o-complemented in M.

(7) For any module M, t(M) = E,(t(M)) N\ M holds.

(8) For any module M, t(M) is o-essentially closed in M.

(9) For any o-injective module E with E/t(E) € T,, t(E) is a direct summand of E.

(10) E,(t(M)) = t(E;(M)) holds for any module M.

If T; is closed under taking o-dense submodules, then (1) — (4) — (5) hold. Moreover,
if o is left ezact, then (1) = (6) and (3) — (10) hold.

It is well known that if R is right noetherian, £ is stable if and only if every inde-

composable injective module is t-torsion or t-torsionfree. By using Theorem 1 in [3], we
generalized this as follows.

Theorem 23. Let t be an idempotent radical and o a left ezact radical. Then

(1) Ift is o-stable, then (x) every indecomposable o-injective module E with E/T(E) €
T, is either t-torsion or t-torsionfree.

(2) If the ring R satisfies the condition (*) and the ascending chain conditions on
o-dense ideals of R, then T, N T, is closed under taking o-injective hulls.

We now dualize o-stable torsion theory. Let R be a right perfect ring. We call a
preradical ¢t o-costable if F, is closed under taking o-projective covers.

Theorem 24. Let o be an idempotent radical. Then a radical t is o-costable if and only
if the class of o-projective modules is closed under taking the unique mazimal t-torsionfree
factor modules, that is, P/t(P) is o-projective for any o-projective module P.

6. o-SINGULAR SUBMODULES

Let o be a left exact radical. For a module M we put Z,(M):={meM; (0:m)is
o-essential in R} and call it o-singular submodule of M. Since R/(0: m) € Tz NT,, then



Zs(M) C Z(M)nao(M) = Z(a(M)) = 0(Z(M)), and so Z,(M) = {m € M ; mR €
TzN7T,}. Since Z and o is left exact, Z, is also left exact. We will call M o-singular
(resp. o-nonsingular) if Z,(M) = M (resp. Z,(M) = 0).

Proposition 25. Let o be an idempotent radical and E a o-nonsingular module and T =
{M € Mod-R ; Homg(M, E) = 0}. Then T is closed under taking o-essential extensions.
Therefore a torsion theory (T, F) is o-stable, where F = {M € Mod-R ; Homg(X, M) =
0 forany X € T}.
Proposition 26. Let o a left ezact radical. Then the following facts hold.

(1) If N is o-essential in M, then Z,(M/N)= M/N.

(2) A right ideal of R is g-essential in R if and only if Z,(R/I) = R/I.

(3) Let M be a o-nonsingular module and N a submodule of M. Then N is o-essential
in M if and only if Z,(M/N) = M/N.

(4) For a module M, Z,(M/Z,(M)) = M/Z,(M) holds if and only if Z,(M) is o-
essential in M.

(8) For a simple right R-module S, S is o-nonsingular if and only if S is o-torsionfree
or projective.

(6) If R is o-nonsingular, then Z, is left ezact radical.

(7} If M/N is o-nonsingular for a module M and a submodule N of M, then N is
o-complemented in M. If M is o-nonsingular, then the converse holds.

7. 0-SMALL AND 0-RADICAL

Let o be a left exact radical. A submodule N of 2 module M is called o-dense in M if
M/N is g-torsion. A module M is called o-cocritical if M is o-torsionfree and L is o-dense
in M for any nonzero submodule L of M. It is well known that nonzero submodule of
g-cocritical module M is essential in M. A module M is called o-noetherian if for every

ascending chain h C L C L C I, C--.--- C M, (where UI; is o-dense in M), there
exists a positive integer k such that I, is o-dense in M. Let J,(M) denote NN;(M/N; is
o-cocritical).

Now we define o-small submodule as follows. A submodule N of a module M is called
o-small in M if M/(N + X) € T, implies M/X & 7T, for any submodule X of M.

Theorem 27. J,(M) contains Y N(N is o-small in M). Conversely if M be a o-
noetherian module, then J,(M) coincides with 3" N(N is o-small in M ).

Remark 28. We can see in [4] that the definition of o-small is different from ours.

(B.A.Benander’s definition). N is g-small in M if M/(N'+ X) € T, and M/X € F,,
then M = X for any X of M, where 6(M/N) = N’/N.

Benander’s definition of o-small is a stronger condition than ours.

In fact, if M/(N + X) € T,, then M/(N' + X) € T,. We put X'/X := o(M/X).
Ther M/X’ € F,. Since M/(N’' + X) € To, M/(N' + X’) € T,. Thus M = X’, and so
M/X € T,, as desired.
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ABOUT DECOMPOSITION NUMBERS OF J,

KATSUSHI WAKI

ABSTRACT. The decomposition numbers with some unknown parameters of non-principal
blocks of the Jargest Janko group J; [5] for characteristic 3 are determined. We also con-
cerned with the decomposition numbers of maximal 2-local subgroups [6] of Jq in odd
characteristics. We used the character table library in GAP[4)

Key Words: Sporadic group J;, Green correspondence, Modular representation.

1. NOTATION

Let G be a finite group. Let p be an odd prime such that p devides the order of
G. We denote by BlY(G) a set of p-block of G with positive defect. For A € BI}(G),
we denote by Irr(A) a set of irreducible ordinary characters in A and by IBr(A) a set of
irreducible Brauer characters in A. Let k(A) and {(A) be numbers of irrecucible characters
in Irr(A) and IBr(A), respectively. Let I be the trivial character of G. Let bp(G) be
the principal block of G i.e. by(G) € BL}(G) and Ig € Irr(b(G)). We denote by D(A)
the decomposition matrix of A with respect to Irr(A) = {xi1,--- . xa(4)} and IBr(4) =

1(A)

{#1,--- . oia)}- So D(A) is the k(A) x I(A)-matrix {d;;} such that x; = Zd"j(pj for
i=1

i=1,...,k(A) on p'-elements in G.

Let k be an algebraically closed field. Let H be a subgroup of G. We called a kG-
module M is a trivial source module if M is a direct summand of the induced module
of the trivial kH-module. Since trivial source modules have some good property, it is
important to find may trivial source modules. In particular, simple trivial source modules
are very important.

2. FONG’S THEOREM

Let X be a normal p'-subgroup of G. Let b be a p-block of X. Since X is p'-group,
Irr(d) has only one irreducible character £. Let T = T'(b) be an inertial group of b in G.
If a p-block B of T is a direct summand of e;kT" as a k-algebra, we call that B covers b.
We denote by BI(T'|b) the set of all p-blocks of T which cover b. In [3], Fong showed the

following two theorems.

Theorem 1. (2B in [3]) Let A be a p-block in BI(G |b). Then there is a p-block B in
BU(T|b), such that the following are true:

(i) A and B have a defect group in common.

The detailed version of this paper will be submitted for publication elsewhere.



(1) There is o I-1 height-preserving correspondence beiween the irreducible ordinary

characters of A and B.
(iii) There is a I1-1 correspondence between the irreducible modular characters of A and

B.
(iv} With respect to these correspondences of characters, the matrices of decomposition
numbers and Cartan invariants of A and B are same.

Let s be the Schur multiplier of T/X.

Theorem 2. (2D in [3]) Let B be a p-block in BI(T |b). Then there is a group T with
a cyclic normal p'-subgroup Z and p-block B in BI(T |b) where b is a p-block of Z such
that the following are true:

(i) B and B have isomorphic defect groups.
(ii) There is a I-1 height-preserving correspondence between the irreducible ordinary
characters of B and B.
(iii) There is a I-1 correspondence between the irreducible modular characters of B and
B.
(iv) With respect to these correspondences of characters, the matrices of decomposition
numbers and Cartan invariants of B and B are same.
The group T has the following structure:
(a) Z is the center of T.
by T/Z2=T/X.
(¢) The order of Z is s.
In case that the irreducible character £ is linear and T is a semidirect product of X
with T/X. It is easy to see that the p~block bis the principal block. Thus we can identify
p-blocks in BI(T'|b) with p-blocks in BI(T/Z) = BI(T/X). So the next corollary follows.

Corollary 3. If § is a linear character and T is a semidirect product of X with T/X,
then there is a bijection beiween p-blocks in BI(T |b) and BI(T/X) such that the same
statements in Theorem 2 hold.

3. DECOMPOSITION MATRIX OF J,

Let G be the largest Janko group Ji. The order of G is 231.3%.5-7-11%.23-29-31-37-43.
There are non-conjugate involutions s, t in G such that K := Cg(s) & 2}*'2.3My,:2,
Ce(t) 2 2'1:Myy:2. The centralizer Cg(t) is contained in a subgroup H = 2!3:My,. The
subgroups H and K are the maximal subgroups of G.

In [6], B. Kleidman and R. A. Wilson investigate these groups in detail. The character
tables of these groups are found by GAP[4]. We apply Fong’s theorem for getting the
decomposition numbers of these maximal 2-local subgroups H and K.

Proposition 4. Let p be an odd prime. Then oll D(B) and D(C) where B € Bl} (H)
and C € BIJ (K} are determined.

In case that p = 3, let
Bl;(H) = {B3m BSb, BZ) Blaa res )Blp}



B3 (K) = {Cs4, Cspy Caay Cap Chq,--- ,Cin}
BI$(6.M22:2) = { X34, X3p, X2ay Xao X1as. .- » X14}
where indeces of each p-blocks indicate its defect.

10 1
(1) D(B.) and D(Cy.) are [0 1] or |1
11 1

(2) D(Baa) = D(bo(M24)), D(B3) = D(bo(My2-2)), D(By) = D(bo(2%As))
(3) D(Csa) = D(X3a), D(Css) = D(Xn), D(C2a) = D(X2a), D(Cp) = D(X)

From above decomposition matrices, ] can calculate projective indecomposable charac-
ters of H and K. By inducing these characters to G, we can get projective characters of
G. Using tensor of characters and Green correspondence between G and H or G and X,
we can prove the following proposition.

Proposition 5. Let p = 3 then Bl}(G) = {Asq, A3, A2, Ara, A, Are, Ara}. The almost
all decomposition numbers (=entries of decomposition matriz) of non-principal blocks are
determined the followsing. The indeces which we put on the irreducible ordinary characters
are same one in [2].

10 1
(1) D(Ay.) are (O 1) or (1)
11 1

1

(61 )

001

0 001

2) D(A4)=]1 00 0 1

11010

00101

01110

\1 0111/

where Irr(As) = {X14, X21, Xa2s, X27, X28, X30, Xa1, Xas,\xu}'
1
01
1 01
0101
0010 1
0001 1
0000 o 1
() DAz)=| g g ¢ o a+1 1

0000 a+1 1
0 011 Ji] 01
0000 ae+8+y+1)1 1 1
0000 a+8+y+1|1 101
1100 B+2y+1 |01 11

\1 111 28+29+2 |02 1 1)




where 0 £ a$3, 08087, 05a+B+v£15, 0S5 8+v=S12 and
Irr(Ag) = {X2, X3, X12, Xa3, X217, X18, X22, X23, X24, X256, X38, X39, X44, X50}-

4. GREEN CORRESPONDENCE AND TRIVIAL SOURCE MODULE

In G, there are 2 simple modules M, and M, with dimension 1,333. In this section, we
see that these modules are trivial source modules.

Let x2 and x3 in Irr(Ag) of degree 1,333. Then these two characters are corresponding
to M, and M,.

Let P be a Sylow 3-subgroup which is isomorphic to the extraspecial group of the order
27. The center of P denote by Z := Z(P). We can get the following inclusion.

ZCPCNG(P)=(2xP:8):2C No(Z) 26 Mp:2CKCG

Let F and f be the Green correspondence with respect to (G, P, Ng(Z)) and (G, P, Ng(P)),
respectively.

Proposition 6. The simple modules M, and M, are trivial source.

Proof:

Since the restriction of x, to K is a direct sum of 640e € Irr(C3;) and 693¢ € Irr(C)y)
and the restriction of 640a to Ng(Z) is a direct sum of 10a € Irr(X3) and 210¢c + 420a €
Irr(Xa) by GAP, F(M,) = 10a. Moreover we can check that the restriction of 10a to
Ng(P) are a direct sum of la and 9a by MAGMA[1]. Thus f(M,) = la. So M, is the
direct summand of the induced module 1a€ and M, is the trivial source module. For M,,
we can prove by the same way. a

There is an irreducible character @ in B3, with degree 45. This character is correspond-
ing to simple trivial source module. Since 8C has a direct summand X2 + Xxa4, there are
a trivial source module M which is corresponding to x2 + x44. S0 we can prove that the
top and the Socle of M are isomorphic to M,. I hope that I can determine the unknown
number # and v by the investigation of the Loewy structure of M.

REFERENCES

[1] W.Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language, J. Symbolic
Comput., 24(3-4), 235-265, 1997

{2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Claredon
Press, Oxford, 1985

[3] P. Fong, On the characters of p-solvable groups, Trans. A.M.S. 98, 263-284, 1961

(4] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4{.4; 2003,
http://wuvw.gap-system.org

[5) 2. Janko, A new finite simple group of order 86,775,571,046,077,562,680 which possesses Maq and
the full covering group of My, as subgroups, J. Algebra 42, 564-596, 1976.

[6] Peter B. Kleidman, Robert A. Wilson, The mazimal subgroups of Jy, Proc. London Math Soc.(3) 56,
485-510, 1988



DEPARTMENT OF MATHEMATICAL SCIENCES
FACULTY OF SCIENCE

YAMAGATA UNIVERSITY

YAMAGATA, 990-8560 JAPAN

E-maoil address: waki®sci.kj.yamagata-u.ac.jp



POLYNOMIAL INVARIANTS OF FINITE-DIMENSIONAL HOPF
ALGEBRAS DERIVED FROM BRAIDING STRUCTURES

MICHIHISA WAKUI (FaASFiBA)

ABSTRACT. We introduce invariants of a finite-dimensional semisimple and cosemisimple
Hopf algebra A over a field k by using the braiding structures of 4. The invariants
are given in the form of polynomials. The polynomials have integral coefficients under
some condition, and become stable by taking some suitable extension of the base field.
Furthermore, the polynomials give invariants of the representation category of a finite-
dimensional semisimple and cosemisimple Hopf algebra under k-linear tensor equivalence.
By using the polynomials, we can find some pairs of Hopf algebras, whose representation
rings are same, but representation categories are different.

1. INTRODUCTION

Given a quantum group, namely, a Hopf algebra with a braiding structure, we have
a topological invariant of low-dimensional manifolds, for example, (framed) knots and
links. Such an invariant is so-called a quantum invariant. It is well-known that quantum
invariants are not only powerful tool for investigating topologies of low-dimensional mani-
folds, but also closely related to mathematical physics as well as other areas, for example,
number theory, gauge theory, and so on.

Although in many investigations on quantum invariants, topological problems of low-
dimensional manifolds are studied under a fixed Hopf algebra, in this research, we fix
a framed knot or link, and study on representation categories of Hopf algebras. In
this article, by using quantum invariants of the unknot with (41)-framing, for a finite-
dimensional semisimple and cosemisimple Hopf algebra A over a field k, polynomials
Pf’ (z) (d=1,2,---) are introduced as invariants of A, and properties of them are stud-
ied. That polynomials are defined as in the following form thanks to some results of
Etingof and Gelaki[5] (for detail see Section 2):

P,(,d)(:t:) = t[ H (:z: - M) € kiz],

i=1 R:braidings of A dim M‘

where {M,---, M,} is a full set of non-isomorphic absolutely simple left A-modules
with dimension d (so, dim M; = d for all 7), and dimgpM; is the quantum invariant of
unknot with (+1)-framing and colored by M;. In algebraic language, dimgM; is the
category-theoretic rank of M; in the left rigid braided monoidal category (4M™,cp)
[10], where 4Mf? is the monoidal category of finite-dimensional left A-modules and A-
homomorphisms, and cp is the braiding of 4M'4 determined by R.

The detailed version of this paper will be submitted for publication elsewhere.
This research is partially supported by Grant-in-Aid for Scientific Research (No. 19540025), JSPS.



Each polynomial Pf,d) (=) has the following properties. All coefficients of the polynomial
are integers if k is a finite Galois extension of the rational number field @, and A coincides
with the scalar extension of some finite-dimensional semisimple Hopf algebra over Q. The
polynomial becomes also stable by taking some suitable extension of the base field, more
precisely, there is a finite separable field extension L/k so that Pf‘? (z) = Pﬁ) (z) for any
field extension E/L.

It is more interesting to note that our polynomial invariants give an invariant of rep-
resentation categories of Hopf algebras, that is, if representation categories of finite-
dimensional semisimple and cosemisimple Hopf algebras A and B are equivalent as k-
linear tensor categories, then Pf;‘) () = P,‘,d)(:c). In general, if representation categories of
two finite-dimensional semisimple Hopf algebras A and B over an algebraically field k of
characteristic 0 are equivalent as k-linear tensor categories, then their representation rings
are isomorphic as rings (with =-structure)[13, 15]. However, the converse is not true. For
example, by Tambara and Yamagami[18], it was proved that three non-commutative and
semisimple Hopf algebras C[Dg), C[Qs], K of dimension 8 over the complex number field
C have the same representation ring, but their representation categories are not mutually
equivalent, where Djg is the dihedral group of order 8, Qg is the quaternion group, and Kj
is the Kac-Paljutkin algebra[6, 11]. This result is generalized by Masuoka[12) in the case
where the base field of Hopf algebras is-an algebraically closed field of characteristic 0 or
p > 2. In this article, we give an another proof of Tambara and Yamagami’s result by
using our polynomial invariants, and furthermore, give other examples of pairs of Hopf
algebras, whose representation rings are same, but representation categories are mutually
different (see the final section).

Throughout this article, we use the notation ® instead of ®;, and denote by ch(k) the
characteristic of the field k.

Acknowledgement. The author would like to thank Professor Akira Masuoka and Professor
Ikuo Satake for helpful advice.

2. DEFINITION OF POLYNOMIAL INVARIANTS

In this section, we introduce invariants of a semisimple and cosemisimple Hopf algebra
of finite dimension over an arbitrary field. They are given by polynomials derived from
the quasitriangular structures of the Hopf algebra, and become invariants under tensor
equivalence of representation categories of Hopf algebras.

Let us recall the definition of a quasitriangular Hopf algebra [3]. Let A be a Hopf algebra
and R € A® A an invertible element. The pair (A, R) is said to be a quasitriangular Hopf
algebra, and R is said to be a universal R-matriz of A, if the following three conditions
are satisfied: :

(i) A<P(a) =R-A(a)-R™! foralla€ A,

(i) (A®id)(R) = Ri3Rys,

(ili) (id ® A)(R) = RusRuz.



Here AP =T oA, T: A®A— A®A, T(a®b) =b®a,and R;; € A® A® A is given
by Ru = R® 1, R23 =1 ® R, R13 = (T® ld)(Rz3) = (ld@T)(Ru)

If R=Y,® ® £ is a universal R-matrix of A, then the element u = Y_; S(G)a; of A
is invertible, and has the following properties:

(i) S%*(a) = uau~! foralla € A,

(i) Sw) = 5 S(8).

The above element u is called the Drinfel'd element associated to R. If the characteristic
of k is 0, and A is semisimple or cosemisimple of finite dimension, then the Drinfel’d
element u belongs to the center of A by the property (i} and S? = id, [8).

Let (A, R) be a quasitriangular Hopf algebra over a field k and « the Drinfel’d element
associated to R. For a finite-dimensional left A-module M, we denote by dimgz M the
trace of the left action of # on M, and call it the R-dimension of M.

To define polynomial invariants, we use the following result on a semisimple and
cosemisimple Hopf algebra of finite dimension due to Etingof and Gelaki [5, Corollary
3.2(ii), Corollary 1.5].

Theorem 1 (Etingof-Gelaki). Let A be a semisimple and cosemisimple Hopf algebra
of finite dimension over a field k. Then

(1) (dim M)1; # O for any absolutely simple left A-module M,

(2) the set of universal R-matrices Braid(A) is finite. (]

Let A = (A, A, ¢, 5) be a semisimple and cosemisimple Hopf algebra of finite dimension
over a field k. For a finite-dimensional left A-module M with (dim M)1, # 0, we set

P = - gi—FARM .
am(z) Rei}ém(m dan)

This is a polynomial in k[z]. Furthermore, for each positive integer d we define a polyno-
mial P{?(z) in k[z] by

Pz(id)(z) = H Pam, (z)!

i=1
where {M, - -+ , M,} is a full set of non-isomorphic absolutely simple left A-modules with
dimension d. If there is no absolutely simple left A-module, then we set P,gd)(a:) =1

Example 2. Let G be the cyclic group of order m, and k a field of ch(k) { m which
contains & primitive m-th root of unity. Then, the polynomial invariant P,g:c)'.](:z:) of the
group Hopf algebra k[G] is given by the formula

m-1 m=1
P!i;é](m) = ]___[ (2? - w“’q) = H(zm - l)wd(j’.m)_
d,j=0 §=0

For a k-bialgebra A we write 4M for the k-linear monoidal category whose objects
are left A-modules and morphisms are left A-homomorphisms. Two bialgebras A and B



over k are called monoidally Morita equivalent if monoidal categories sM and pM are
equivalent as k-linear monoidal categories.

Lemma 3. Let A and B two Hopf algebras of finite dimension over k. If a k-linear
monoidal functor F : ;.M — gM gives an equivalence between monoidal categories, then
dimM = dim F(M) for a finite-dimensional left A-module M, and there is a bijection
® : Braid(A) — Braid(B) such that dimgM = dimg g F(M) for o finite-dimensional
left A-module M and o universal R-matriz R € Braid(A). O

From the above lemma we have the following theorem immediately.

Theorem 4. Let A and B be semisimple and cosemisimple Hopf algebras of finite di-
mension over k. If A and B are monoidally Morita eguivalent, then Pf,d)(z) = Pg‘)(:c)
for any positive integer d. O

3. PROPERTIES OF POLYNOMIAL INVARIANTS

In this section, we describe properties of polynomial invariants P,gd) (=) defined in Section
2.

Lemma 5. Let (A, R) be a quasitriangular Hopf algebra over a field k and u the Drinfel’d
element associated to R. If A is semisimple and cosemisimple, then w@mAP =1,

Proof. Let us consider the following sub-Hopf algebras B and H of A :
B:={(a®id)(R) |a€ A"},
H:={(d®a)(R)|a€ A" }.

By [14, Proposition 2], the Hopf algebra B is isomorphic to the Hopf algebra H**P. Let
(D(H), R) be the Drinfel'd double of H. By [14, Theorem 2], there is a homomorphism
F:(D(H),R) — (A, R) of quasitriangular Hopf algebras. It follows that the Drinfel'd
element @ associated to (D(H),R) satisfies (i) = u. Since A is semisimple, sub-Hopf
algebras H and H**°P = B are also semisimple (9, Corollary 2.5]. Thus H is semisimple
and cosemisimple. So, we have #¢™H#)” = ] by [4, Theorem 2.5 & Theorem 4.3], and
whencea u@imH)® — 1 Since dim A is divided by dim H [14, Proposition 2], we have
yldimA) — 1, g

For a field K, let Z; denote the integral closure the prime ring of K, that is, if the char-
acteristic of X is 0, then Zy is the ring of algebraic integers in K, and if the characteristic
of K is p > 0, then Z is the algebraic closure of the prime field F, in X.

From the above lemma, we have:

Proposition 6. Let H be a semisimple and cosemisimple Hopf algebra of finite dimension
over a field K. Then, for any absolutely simple left H-module M, the coefficients of the
polynomial Py p(z) are in Zy. Therefore, P},d)(a:) € Zk|z) for any positive integerd. O



Next, we examine relationship between polynomial invariants and Galois extensions of
fields. Let K/k be a field extension, and H a Hopf algebra over K. By a k-form of H we
mean a Hopf algebra A over k such that H & AX = A® K as K-Hopf algebras]l, p.181].

Theorem 7. Let K/k be a finite Galois eztension of fields, and H a semisimple and
cosemisimple Hopf algebra of finite dimension over K. If H possesses a k-form, then
PY(z) € (kN Zx)|z] for each positive integer d. O

We have two corollaries as applications of the above theorem.

Corollary 8. Let K be a finite Galois extension field of Q, and H a semisimple Hopf
algebra of finite dimension over K. If H possesses a Q-form, then P (z) € Zjz] for a
positive integer d, where Z is the rational integral ring.

Proof. By [7] a semisimple Hopf algebra over a field of characteristic 0 of finite dimension is
cosemisimple. So, the semisimple Hopf algebra H is also cosemisimple. Since QNZx = Z,
applying Theorem 7 to H, we have Pff (z) e Z[z]. O

Corollary 9. Let I' be a finite group, and K a finite Galois extension field of Q. Then,
Pf(?”(a:) € Z[z] for a positive integer d. 0
Next, we discuss on stability of polynomial invariants under extension of fields.
Let A be a Hopf algebra over a field k, and L a commutative algebra over k. Then,

Al = A® L becomes a Hopf algebra over L. Furthermore, if R =}, &; ® 5; is a universal
R-matrix of A, then

RE=) (®1k)®. (i®1k) € Al®LA

is a universal R-matrix of AL. .

Let alg, denote the k-additive category whose objects are commutative algebras over
k and morphisms are algebra maps between them. Let A and B be two Hopf algebras
over k. For a commutative algebra L € gk, we set

Hopf(A® L,B ® L) := { the L-Hopf algebra maps AQ L — B®L },

and for an algebra map f : L; — L, between commutative algebras L, L, € % and
¢ € Hopfy,(A® Li,B ® L,) we define a map f.p € Hopfr,(A ® L, B® L) by the
composition:

A®L, 2, AQ (L ® Ly) = (A® L) ® L, 2224 (B® Ly) ® L,

1458/, (BRLy)® Ly ¥ B (Ly® L) ——223 B® Ly,

where 1, is the multiplication of Ly, and  : L, — L) ® L, is the k-algebra map defined
by n(y) = 1, ® y (y € L,). This k-linear map f.¢ is directly defined by

(fo)e®y) =Y b® Sy, (vla®1s) =2 n ® )

— 100 —



forall a € A, y € L,. Let Set denote the category whose objects are sets and morphisms
are maps. Then we have a covariant functor Hopf{A, B) : g._lgk — Set such as

for an object: L+~ Hopf (A® L,B® L),
for a morphism: f+~— (Hopf(A, B)(f):p— f.tp).

If A and B are of finite dimension over k, then the functor Hopf(A, B) can be rep-
resented by some finitely generated commutative algebra Z € alg, [20, p.4-5 & p.58].
Furthermore, if A is semisimple, and B is cosemisimple, then the representing object Z
is separable and of finite dimension[5, Corollary 1.3). This fact leads to the following
theorem.

Theorem 10. Let A be a cosemisimple Hopf algebra over a field k of finite dimension.
Then, there is a separable finite extension field L of k such that

(i) there are only finitely many universel R matrices of AL, and
(ii) for any field extension E/L, the map Braid(AX) — Braid(A®), R —— RE is
bijective. O

Corollary 11. Let A be a semisimple and cosemisimple Hopf algebra over a field k of
finite dimension. Then, there is a separable finite extension field L of k such that for any
field extension E of L and any positive integer d, P;‘Q(z) = P‘f,‘?(z) in Efz]. O

4. EXAMPLES

In this section, we give computational results of polynomial invariants for several Hopf
algebras. By comparing polynomial invariants one has new examples of pairs of Hopf
algebras such that their representation rings are isomorphic, but they are not monoidally

Morita equivalent.
Let N > 1 be an odd integer and n > 2, and consider the finite group

Gun=1{h, t, w |3 =h" =1, w" =~V tw=w"t, ht = th, hw = wh).

The group Gy, is non-commutative, and the order of it is 4Nn. We remark that if N =1,
then Gy, & Dy, the dihedral group of order 4n. Let k be a field of ch(k) { 2Nn which
containg a primitive 4 Nn-th root of unity. The group algebra k[Gy»] has a Hopf algebra
structure in a usual way. At the same time, one can define another Hopf algebra structure
on k|Gpy] as follows. '

AR)=h®h, A@)=h"wt®@et+t®et, Aw)=wew+w™' Qeuw,
eh)=1, ,e(t)=1, e(w)=1,
S(h)=h"t, S@t)=(-ew+e)t, Sw)=ew™ +ew,

= 101 —



1+RN 1—;.

where eg = “5—, €1 = . We denote this Hopf algebra by An,. If we set
5\ = -1 (n is even),
+1 (nis odd),

then the Hopf algebra Ay, is isomorphic to the Hopf algebra A ~ which is introduced by
Satoshi Suzuki[16]. Properties of the Hopf algebras A,, are stuched in detail in (2], and
A, especially coincides with the Kac-Paljutkin algebra Kj [6, 11], which is the unique
non-commutative and non-cocommutative semisimple Hopf algebra of dimension 8 up to
isomorphism.

Let w € k be a primitive 4Nn-th root of unity. Then, a full set of non-isomorphic
(absolutely) simple left k|G y,]-modules is given by

{‘/l'jkli,j::o,l, k=0;2:"' ,2N_2}
U{ Viklk:O,l,..- 2N-1,5=12,--- ,n—1, JEk(mod2) },
where the action );;x of k[Gwnn) on Vijx = k is given by

2kn

Xiik(8) = (—1), xize(w) = (1Y, xie(h) = {:z(k iy (n is even),

(n is odd),

and the left action pjx of kK[Gnn) on V. = k@® k is given by

01 24N 0 %m0
ij(t) = (1 0) ) ij(‘w) = (wo w—2jN) ) ij(h) = (wo kan) .

Since Ay, is isomorphic to the dual Hopf algebra, we can compute P(d) (z) (d=1,2)
by using the data of the braidings of A};\ determined by S. Suzuki[16]. We set

0 (nis even),
() = { (n is odd).

Proposition 12. (1) In case of n > 3,

—1N=1
H [ (x — w8ris®yin(g — =8ine®(_1)8)4n  if n is even,
(1 _ =0 i=0
PAA)V..("”) =4 No1No) .
H H - w—Bma )4::(1.2 w—din(2s+1) )2n ifn is odd,
3=0 i=0
N-1252 y_1n
P,(f) (:z:) = H H H H(xz _ w-4in(2s+1)’-2N(2¢—1)’(2j+1-¢(n)))
Nn

s=0 t=1 i=0 j=0

n-3+( n N—ln-1

% H H H H(x w's'"""4N¢’(2J+1—¢(n)))2

=0 i=1 i=0 j=0
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(2) In case of n =2,

N-1N-1
!(‘lllz(z) H H(x - w—lﬁia’)lﬁ(z +w'8"’)a(z +w-lﬂis’)8,
s=0 i=0
N-1N-1
an}z H H(z +w—16t(20+1)’)(x -8:’(2a+l)’)2- 0
s=0 i=0

On the other hand, we can determine the universal R-matrices of the group Hopf algebra
k[GNn] by using the method developed in [19), and compute the polynomial invariants

k[a,., ](z) (d=1,2).

Proposition 13. (1) In case of n > 3,
—1N-1

H I] (z ~ w8nis*)8n if n is even,
(1) =0 i=0
B [Gan(x) N-1N-1 R
1'[ 1‘[ (.’l: w-sma )4n(x _w-4m(2a+l) ) z'fn is odd,
8=0 i=0
2 N-1n-1

IGN"](.’Z: H H H H($2 - w-«h’n(2g+1)’-4~j(2¢_l)2)

=0 =1 i=0 §=0

1 n=2+¢(n Ne=ln-1

N
x H H H H(x _ w—Sina’—Bth’)2_

8=0 t=1 =0 j=0
(2) In case of n = 2,
N-1N-1

(1) —-lGu’
‘“[GNn] ]._.! r-!(x w '
= 1=
N-1N-1 \ \
2 — . - .
élc):m](x) H H(xq — wl8i(2s+1) )(zz — - Bi(2s+1) )2. O
8=0 i=0

By comparing polynomial mvanants of two Hopf algebras Ay, and k[Gn,), we see
immediately that if n is odd, then P ( )= P,if?; (@) for d =1,2. So, our polynomial
invariants do not detect the reprwentatlon categories of Ay, and k[Gnn) for an odd
integer n. However, for an even integer n our polynomial invariants are useful.

Theorem 14. Let N > 1 be an odd integer and n > 2, and let k be o field of ch(k) { 2Nn
which contains a primitive ANn-th root of unity. If n is even, then two Hopf algebras Ay,
and k[Gn,] are not monoidally Morita equivalent. ]

Example 15. For a non-negative integer h, ®, denotes the h-th cyclotomic polynomial.

Then, by using Maple12 software, we see that the polynomial invariants of Hopf algebras
k[Gny) and An, for N =1,3,5 and n = 2,3,4 are given as in the following list.
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P,ﬁlDa](x) =2%-2s%4+ 222 -1,
PR (x)=2*+22° - 227 - 1,
(2)(9:) =28 — 2054 22% — 222 + 1.

Since polynomials P,il Ds] (z), 'ﬁl% ](z), (2)(::) are all different, we conclude that by The-

orem 4 the Hopf algebras k[Ds], k[Qs), K3 are not mutually monoidally Morita equivaleat.
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