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Y. Hirano (Naruto Univ. of Education), S. Koshitani (Chiba Univ.), M. Sato (Yamanashi
Univ.) and K. Oshiro (Yamaguchi University).

The Proceedings of each Symposium is edited by program organizer. Anyone who wants
these Proceedings should ask to the program organizer of each Symposium or one of the
committee members.
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PREFACE
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DERIVED EQUIVALENCES AND SERRE DUALITY FOR
GORENSTEIN ALGEBRAS

HIROKI ABE AND MITSUO HOSHINO

ABSTRACT. We introduce a notion of Gorenstein algebras of codimension ¢ and demon-
strate that Serre duality theory plays an essential role in the theory of derived equiva-
lences for Gorenstein algebras.

1. INTRODUCTION

Let R be a commutative noetherian ring and A a Noether R-algebra, i.e., A is a ring
endowed with a ring homomorphism R — A whose image is contained in the center
of A and A is finitely generated as an R-module. Let ¢ > 0 be an integer. Assume
Ext&(A, R) = 0 for i # c and set

Q = ExtS (4, R).

We call A a Gorenstein R-algebra of codimension c if Ry, is Gorenstein for all p € Suppg(A)
and § is a projective generator for right A-modules. If A is a Gorenstein R-algebra of
codimension ¢, then we will show that  lies in the center of the Picard group of A
(Proposition 12), that £ is a dualizing complex for A if sup{dim R, | p € Suppg(A)} < o
(Proposition 9), and that Anng(A) contains an R-regular sequence x;,---,z. and A is
a Gorenstein S-algebra of codimension 0, where S is the residue ring of R over the ideal
generated by z,,- - , z. (Proposition 13). Also, we will see that our Gorenstein algebras
are Gorenstein in the sense of [11) (Proposition 7). In particular, commutative Gorenstein
algebras are Gorenstein rings. We refer to [11] for properties enjoyed by Gorenstein
algebras and for the relationship of the notion of Gorenstein algebras to the theory of
commutative Gorenstein rings.

Our main aim of this note is to demonstrate that Serre duality theory plays an essential
role in the theory of derived equivalences for Gorenstein algebras. In Section 3, we will
extend Serre duality theory (cf. [8]) to Noether algebras. We will see that for an arbitrary
Noether R-algebra A there exists a bifunctorial isomorphism in Mod-R

Hommpmoda-ay(Y*, X* ®% V°) & RHomj (X", Y*)"

for X* € D®(mod-A)g,g and Y* € D(Mod-A), where V* = Hom}p(A, I*) with /* 2 minimal
injective resolution of R and (—)* = HompMmea.5)(—, R) (Proposition 16). On the other
hand, we know from [1, Theorem 4.7] that if V* is a dualizing complex for A and if
inj dim 4A = inj dim A4 < oo then — ®% V* induces a self-equivalence of D®(mod-A).
Assume A is a Gorenstein R-algebra of codimension ¢. Let P* € K®(P,) be a tilting
complex and B = Endaxmod-4)(P°). In Section 4, we will ask when B is also a Gorenstein

The detailed version of this paper will be submitted for publication elsewhere.



R-algebra of codimension c. Set v = — ®% Q. Then by Serre duality theory we have an
isomorphism of B-bimodules

Hompmod-4)(P*, vP"[i]) = ExtF*(B, R)

for all i € Z. On the other hand, denoting by S the full subcategory of D~(Mod-A)
consisting of complexes X* with Hompqmod-4)(P°®, X*[i]) = 0 for i # 0, we have an equiv-
alence Hompqmod.4)(P®, =) : § — Mod-B (see [18, Section 4]). Thus B is a Gorenstein
R-algebra of codimension ¢ if and only if add(vP*) = add(P*) (Corollary 21). Unfortu-
nately, this is not the case in general (Example 23). However, B is a Gorenstein R-algebra
of codimension ¢ with Ext&(B, R) = B as B-bimodules if and only if A is a Gorenstein
R-algebra of codimension ¢ with 2 22 A as A-bimodules (Corollary 22).

We refer to (7], [12] and [20] for basic results in the theory of derived categories and to
(18], [19] for definitions and basic properties of tilting complexes and derived equivalences.
Also, we refer to [10] for standard homological algebra in module categories and to [16]
for standard commutative ring theory.

2. PRELIMINARIES

Notation. For a ring A we denote by Mod-A the category of right A-modules and by
mod-A the full subcategory of Mod-A consisting of finitely presented modules. We de-
note by Proj-A (resp., Inj-A) the full subcategory of Mod- A consisting of projective (resp.,
injective) modules and by P4 the full subcategory of Proj-A consisting of finitely gen-
erated projective modules. We denote by A°P the opposite ring of A and consider left
A-modules as right A°»-modules. Sometimes, we use the notation X4 (resp., 4X) to
stress that the module X considered is a right (resp., left) A-module. In particular, we
denote by proj dim X4 (resp., proj dim 4X) the projective dimension of a right (resp.,
left) A-module X. Similar notation is used to denote the injective dimension.

In this note, complexes are cochain complexes of modules and, as usual, modules are
considered as complexes concentrated in degree zero. For any n € Z we denote by H*(-)
the n-th homology of a complex. For an additive category B, we denote by X(B) (resp.,
X*(B), X~ (B), X*(B)) the homotopy category of complexes (resp., bounded below com-
plexes, bounded above complexes, bounded complexes) over B. For an abelian category
A, we denote by D(A) (resp., D~(A), D*(A), D®(A)) the derived category of com-
plexes (resp., complexes with bounded above homology, complexes with bounded below
homology, complexes with bounded homology) over A. We always consider X*(B) (resp.,
D*(A)) as a full triangulated subcategory of X(B) (resp., D(A)) closed under isomor-
phism classes, where * = +, — or b. In particular, for a noetherian ring A, we identify
D*(mod-A) with Dy, 4 4(Mod-A), the full triangulated subcategory of D*(Mod-A) con-
sisting of complexes X* with H*(X*) € mod-A for all n € Z, where * = — or b. We
denote by Hom®(—, —) (resp., — ®" —) the single complex associated with the double
hom (resp., tensor) complex and by RHom®(—, —) (resp., — ®" —) the right (resp., left)
derived functor of Hom®*(—, —) (resp., — ®° -).

Finally, for an object X in an additive category B, we denote by add(X) the full
subcategory of B whose objects are direct summands of finite direct sums of copies of X.



Preliminaries. Throughout this note, R is a commutative noetherian ring. We denote
by dim R the Krull dimension of R, by Spec(R) the set of prime ideals of R and by
(=), the localization at p € Spec(R). For an R-module M, we set Suppp(M) = {p €
Spec(R) | My # 0} and Anng(M) = {z € R | zM = 0} and we denote by Er(M) an
injective envelope of M in Mod-R. We set
D = RHom%(-, R) : D(Mod-R) — D(Mod-R).
Then for any X*,Y* € D(Mod-R) we have a bifunctorial isomorphism
Bxs,ye : Homp(moa-r)(X*, DY*) = Hompimoa-r) (Y*, DX°).
For any X* € D(Mod-R) we set
fxo = Q}E.ng(idDX') X' = sz..

We recall several basic results on Gorenstein dimension for finitely generated R-modules
and bounded complexes of finitely generated R-modules (see e.g. [9] for details).

Definition 1 ([3]). A module M € mod-R is said to have Gorenstein dimension zero if
the canonical homomorphism

M — Homp(Homg(M, R),R),z — (f — f(z))

is an isomorphism and Ext(M, R) = Exti(Homg(M, R), R) = 0 for i > 0. We denote by
Gr the full additive subcategory of mod-R consisting of modules which have Gorenstein
dimension zero. Note that Pr C Gr. Next, a module M € mod-R is said to have finite
Gorenstein dimension if M has a left resolution P* — M with P* € X*(Ggr).

Definition 2. A complex X* € D®(mod-R) is said to have finite Gorenstein dimension
if X* = Y* in D(Mod-R) for some Y* € X®(Gg).

Remeark 3. For any M € mod-R the following are equivalent.

(1) M has finite Gorenstein dimension as a module.
(2) M has finite Gorenstein dimension as a complex.

Lemma 4 ([14, Proposition 2.10]). For any X* € D®(mod-R) the following are equivalent.

(1) X* has finite Gorenstein dimension.
(2) H(DX*) =0 for i > 0 and £x. is an isomorphism.

Throughout the rest of this note, A is a Noether R-algebra, i.e., A is a ring endowed
with a ring homomorphisin R — A whose image is contained in the center of A and A
is finitely generated as an R-module. Note that Anng(A) coincides with the kernel of
the structure ring homomorphism R — A and that Suppp(A) coincides with the set of
prime ideals of K containing Anng(A). We fix a minimal injective resolution R — I* in
Mod-R and set V* = Homg(A, I*) € X*(Mod-A°®), where A® = A°° @z A. Note that
V* € X*(Inj-A) and V* € X*(Inj-A°). We refer to [12] for the definition and basic
properties of dualizing complexes.

Lemma 5 ([1, Propositions 3.7 and 3.8]). The following are equivalent.
(1) V* is a dualizing complez for A.
(2) R, is Gorenstein for all p € Supp(A) and sup{dim Ry | p € Supp(A)} < oo.



3. GORENSTEIN ALGEBRAS
Throughout the rest of this note, ¢ > 0 is an integer.

Definition 6. We say that A is a Gorenstein R-algebra of codimension c if the following
conditions are satisfied:
(1) R, is Gorenstein for all p € Suppz(A);
(2) Extz(A, R) = 0 for i # c; and
(3) Extk(A, R) is a projective generator in Mod-A.
Throughout this section, we assume Exti(A, R) = 0 for i # c and set
Q = Ext(A, R).
Note that V* = Q[~c] in D(Mod-A°). Also, Hi(V*) = Ext}(A, R) for all i € Z.
We know from the following proposition that our Gorenstein algebras are Gorenstein
in the sense of [11]. So we refer to [11] for properties enjoyed by Gorenstein algebras and

for the relationship of the notion of Gorenstein algebras to the theory of commutative
Gorenstein rings.

Proposition 7. For any p € Suppg(A) with R, Gorenstein the following hold.
(1) Qp # 0 and hence dim R, > c.
(2) Ext'kv(R,,/pR,, Q) =0 fori<dim R, —c.
(3) inj dim Q,, =dim R, —c.

If R, is Gorenstein for all p € Suppg(A), then A has finite Gorenstein dimension as an
R-module.

Lemma 8. The following are equivalent.
(1) A has finite Gorenstein dimension as an R-module.
(2) Exty(Q,9Q) =0 fori> 0 and A S Ends(Q),a — (w— aw).
(3) Extiiep(2,2) = 0 for i > 0 and A = End e ()P, a — (w > wa).

Throughout the rest of this section, we assume further that R, is Gorenstein for all
p € Suppg(A). Then by Lemma 8 and we have Ext4(Q,Q) = Extyop(Q,Q) = 0 for
i > 0 and € mod-A® is faithfully balanced, i.e., A = Endz(Q),a — (w — aw) and
A S End e ()P, a — (w — wa).

Proposition 9. The following are eguivalent.

(1) sup{dim R; | p € Suppg(A)} < .
(2) Vi=0 fori> 0.
(3) inj dim Q4 < co.
(4) inj dim 49 < oo.

We refer to [17] for tilting modules. Note however that a module is a tilting module
if and only if it is isomorphic to a tilting complex in the derived category (see e.g. [2,
Proposition 3.9)).

There is another notion of Gorenstein algebras. Consider the case where R is an
artinian Gorenstein ring. Then an Artin R-algebra A is sometimes called Gorenstein if



inj dim 4A4 = inj dim A4 < co (see e.g. [4]). It follows by [17, Proposition 1.6] that an
Artin R-algebra A is Gorenstein in this sense if and only if Homg(A, R) € mod-A® is a
tilting module. We extend this fact to Noether algebras.

Proposition 10. Assume sup{dim R, | p € Suppg(A)} < 00. Then the following are
equivalent.

(1) 2 € mod-A® is a tilting module.

(2) proj dim 482 = proj dim §24 < co.

(3) inj dim 4A = inj dim A4 < oc0.

Proposition 11. The following are equivalent.

(1) Q€ Py and Q € Pyen.

(2) add(§2) = P4 in Mod-A.

(3) &dd(Q) = PAop in Mod-A°P.
Proposition 12. Assume A is a Gorenstein R-algebra of codimension c. Then S lies in
the center of the Picard group of A.

As for the ring structure of a Gorenstein R-algebra A, we may restrict ourselves to the
case where ¢ = 0.

Proposition 13. There erists an R-regular sequence z,,--- ,%. in Anng(A). Set S =
R/(zy,- - ,zc) with (z,,- -+ ,z.) the ideal of R generated by z,,- -+ ,z.. Then the following
hold.

(1) A has Gorenstein dimension zero as an S-module.

(2) Homg(A, S) = Q in Mod-A°®.

(8) S4 is Gorenstein for all q € Suppg(A).

4. SERRE DUALITY

In this section, we will extend Serre duality theory (cf. [8]) to Noether algebras. We

set
(—)' = Hom«D(Mod.R)(—, R) . D(MOd-R) — Mod-R.
Note that (—)* = H(D(-)).

Recall that a complex X* € D®(mod-A) is said to have finite projective dimension if
HompMod.4)(X*[—i], —) vanishes on mod-A for i 3> 0. We denote by DP(mod-A)gpa the
full triangulated subcategory of D®(mod- A) consisting of complexes which have finite pro-
jective dimension. Note that X®(P4) = DP(mod-A)gq canonically. Similarly, a complex
X* € DP(mod-A) is said to have finite injective dimension if Hompmod.4)(—, X *[]) van-
ishes on mod-A for i 3> 0. We denote by D®(mod-A)gq the full triangulated subcategory
of D®(mod-A) consisting of complexes which have finite injective dimension.

Definition 14. We say that A has Serre duality if there exist a self-equivalence of a
triangulated category F : D®(mod-A) = D®(mod-A) and a bifunctorial isomorphism in
Mod-R

Hompmod-4)(Y*, FX*) = RHom}(X*,Y*)*
for X* € D®(mod-A)ge and Y* € D(mod-A). If this is the case, we call F a Serre
functor for A.



Note that if A has finite global dimension then D®(mod-A)gg = DP(mod-A) and that
if R is selfinjective then we have bifunctorial isomorphisms in Mod-R

RHom’,(X*,Y"*)" = H(DRHom$(X*,Y*))
= DH°(RHom%(X*,Y*))
= Homp(mea-4) (X, Y°)*
for X*,Y* € DP(mod-A). These facts would justify the definition above.
Remark 15. Assume there exists a Serre functor F : DP(mod-4) = DP(mod-A) for A.
Then the restriction of F' to D®(mod-A)spq is unique up to isomorphism and the following
hold.
(1) F induces a self-equivalence of D®(mod-A)gq and there exists a tilting complex

P* € X®(P,) such that FA = P* in D(Mod-A) and A = EndaMod-4)(P°).
(2) For any i € Z we have a functorial isomorphism in Mod-A®P

Homopuod-4) (M, FA[i]) & Exti(M, R)
for M € mod-A. In particular, H'(FA) = Ext%(A, R) in Mod-A¢ for all i € Z.
(3) Assume Ext)(A, R) = 0 for 7 # c and set Q = Ext}(A4, R). Then FA = Q[~¢] in
D(Mod-A) and 2 € mod-A® is a tilting module.
Proposition 16. We have a bifunctorial isomorphism in Mod-R
Hompqea-4)(Y*, X* ®5 V*) 2 RHom}(X*,Y*)*
for X* € D®(mod-A)sps and Y* € D(Mod-A).
Corollary 17. Assume A is o Gorenstein R-algebra of codimension c. Then A has Serre
duality with a Seere functor
- ®% V* : D*(mod-A) S D®(mod-A).
Theorem 18. Assume that R, is Gorenstein for allp € Suppg(A) and that sup{dim R, |
p € Suppp(A)} < 0. Then V* € DP(mod-A®) and the following are equivalent.

(1) A has Serre duality with a Serre functor

- ®% V* : DP(mod-A) S DP(mod-A).
(2) A and A°® have Serre duality.
(3) inj dim 4A = inj dim A4 < oo.

5. DERIVED EQUIVALENCES

Throughout this section, we fix a tilting complex P* € X®(P,) and set B = Endaxmod.4)(P")-

Note that B is a Noether R-algebra and that there exists a tilting complex Q* € X®(Pp)
such that A = Endx(Mod-B)(Q.)-

Proposition 19. The following hold.
(1) Anng(A) = Anng(B) and hence Suppg(A) = Suppg(B).
(2) If A has finite Gorenstein dimension as an R-module, then so does B.
(3) Ifinj dim 4A = inj dim A4 < o0, then inj dim gB = inj dim Bp < oo.



Throughout the rest of this section, we assume Ext%(A,R) = 0 for i # c. We set
Q = Extk(A, R) and

v=—@%0N: D (mod-4) — D~ (mod-A).

We denote by S the full subcategory of D~ (Mod-A) consisting of complexes X* with
Hompmod.a)(P*, X*[4]) = 0 for i # 0. In the following, we define add(P*) as a full subcat-
egory of D~(Mod-A). However, the canonical functor X(Mod-A4) — D(Mod-A) induces
an equivalence between add(P*) defined in X®(P,) and add(P*) defined in D~ (Mod-A)
(cf. [13, Remark 1.7]).

Remark 20. Assume R, is Gorenstein for all p € Suppg(A) and add(§2) = P4 in Mod-A.
Then by Proposition 11 we have a self-equivalence v : P4 = Py4.

Theorem 21. The following hold.
(1) Ext(B,R) =0 fori# c if and only if vP* € S.
(2) Assume vP* € §. Then Ext%(B, R) is a projective generator in Mod-B if and
only if add(vP*) = add(P").
(3) If @ = A in Mod-A®, then Extih(B,R) = 0 for i # c and Ext3(B,R) = B in
Mod-Be.

Corollary 22. Assume A is a Gorenstein R-algebra of codimension c. Then B is a
Gorenstein R-algebra of codimension ¢ if and only if add(vP*) = add(P*).

Corollary 23. The following are equivalent.
(1) A is a Gorenstein R-algebra of codimension ¢ with Exty(A, R) = A in Mod-A®.
(2) B is a Gorenstein R-algebra of codimension ¢ with Extg(B, R) &£ B in Mod-B¢®.

Example 24. Assume R is a Gorenstein ring containing an R-regular sequence zy,:-- , Z, Z.
Set S = R/(z\,--- ,z.) with (z1,- -+ , z.) the ideal of R generated by z,, - , z. and define
Noether R-algebras A, B as follows:

0= (5 9) wa 0= (5 8.

In [2, Example 4.7], we have constructed a tilting complex P* € X®(P,) such that
B = EndxMod-4)(P*). Also, we have seen that A is a Gorenstein S-algebra of codimension
0. Thus A is a Gorenstein R-algebra of codimension c. On the other hand, Ext%(B, R) # 0
fori=cand c+1, so that vP* ¢ S.

Consider the case where A is a Gorenstein R-algebra of codimension ¢ and Extg(B, R) =
0 for i # c¢. At present, we do not know whether or not B is a Gorenstein R-algebra of
codimension ¢. The example above does not tell us anything about this question.
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AUSLANDER-REITEN CONJECTURE ON GORENSTEIN RINGS

TOKUJI ARAYA

ABSTRACT. The Auslander-Reiten conjecture is related closely to the Nakayama con-
jecture. In this lecture, we consider the Auslander-Reiten conjecture for a Gorenstein

rings.

1. INTRODUCTION

The Nakayama's 1958 conjecture (NC) is a one of most famous and important conjecture
in ring theory.

(NC) Let 0 =pA — I® — [' — ... be a minimal injective resolution of an artin algebra
A. If all I/ are projective, then A is self-injective.

Auslander and Reiten conjectured the generalized Nakayama conjecture (GNC) in |3]

(GNC) Let 0 »pA — I = I' — ... be a minimal injective resolution of an Artin
algebra A. For any indecomposable injective A-module [, I is a direct summand of some
D,

They showed that (GNC) holds for all artin algebras if and only if the following con-
jecture (ARC’) holds for all artin algebras.

(ARC?) For an Artin algebra A, if M is a finitely generated A-module and Ext} (M, M®
A) =0 (Vi > 0), then M is projective.

M. Auslander, S. Ding, and @. Solberg widened the context to algebras over commu-
tative local rings [2].

(ARC) For a commutative Noetherian local ring R, if M is a finitely generated R-module
and Ext),(M, M & R) =0 (Vi > 0), then M is free.

They showed in [2] that if R is a complete intersection, then R satisfies (ARC). We
shall show the following main theorem.

Theorem 1. Let R be a Gorenstein ring. If R, satisfies (ARC) for all p € SpecR with
htp < 1, then R, satisfies (ARC) for all p € SpecR.

The detailed version of this paper will be submitted for publication elsewhere.



2. MAIN RESULTS

Through in this paper, we denote by R the d-dimensional commutative Gorenstein
local ring with the unique maximal ideal m. We also denote by mod R the category of
finitely generated R-modules and by CM R the full subcategory of mod R consisting of
all maximal Cohen-Macaulay modules.

We give a following condition to consider the Auslander-Reiten conjecture.

(ARC) For M € mod R, suppose Exti(M, M & R) =0 (i > 0), then M is free.

The main theorem of this paper is following;

Theorem 1. If Ry satisfies (ARC) for all p € SpecR with htp < 1, then R, satisfies
(ARC) for all p € SpecR.

It is difficult to check the freeness of modules in general. We give a following theorem
to check the freeness of vector bundles.

Theorem 2. We assume dimR =d > 2. Let M € CMR be a vector bundle. Suppose
Ext& (M, M) = 0, then M is free.

We say M is a vector bundle if M, is a free R,-module for all prime ideal p which is
not maximal ideal m. We want to omit the assumption M is a vector bundle in Theorem
2. But there is a counterexample if M is not a vector bundle.

Example 3. Let k be a field. We set R = k{z,y, z]/(xy) be a 2-dimensional hypersurface
and M = R/(z). In this case, we can check that Extp(M, M) = 0 if and only if 1 is odd.
In particular, we see that Exth '(M, M) = 0 even if M is not free.

We prepare a lemma to show Theorem 2.

Lemma 4. [9, Lemma 3.10.] Let R be a d-dimensional Cohen-Macaulay local ring and w
be a canonical module. We denote by (—)V the canonical dual Hom p(—,w). For vector
bundles M and N € CM R, we have a following isomorphism;

Ext},(Hom (N, M), w) = Ext& (M, (tr N)¥)
Here, Hom (N, M) is the set of stable homomorphisms.

Proof of Theorem 2. Let M € CM R be a vector bundle and we assume Extd™!(M, M) = 0.
We take a minimal free resolution of M;

Fo:-e-o.mo |- Fp—-> M-\
Apply (=)* := Hom g(—, R), we get exact sequence;

0 M - Fy o F —2trM — 0.

Since R is Gorenstein and M is maximal Cohen-Macaulay, we have Q?M = (tr M)*(=
(tr M)V). Therefore, we have



> Ext¥(M, (tr N)*)
&~ Exti(M, QM)
~ Exty (M, M)=0.

Ext (M, (tr N)Y)

Since M is vector bundle,

Hom z(M, M), = Hom 5 (M), M;) = 0 (Vp # m).
Thus we have Hom 5(M, M) has finite length and we have

Hom o(M, M) = Ext(Ext%(Hom z(M,M),R),R)
> ExtR(Exti(M, (tr M)V),R) =0
Thus we get M is free. O

Proof of Theorem 1. We put P := { p € SpecR | R, does not satisfy (ARC) } and assume
B # ¢. Let g be a minimal element in P and replace R with R,. By the minimalty, R is
a d(> 2)-dimrnsional Gorenstein local ring which does not satisfy (ARC) but R, satisfy
- (ARC) for all prime p # m. There exists M € mod R s.t. ExtL(M,M & R) = 0 (Vi > 0)
but M is not free. Since Exth(M, R) = 0 ( > 0), M is maximal Cohen-Macaulay. For
any p # m, Exty (M,, M,®R,) = 0 (Vi > 0) and R, satisfies (ARC), we have M, is a free
R,-module. Thus we get M is vector bundle. Furthermore, Ext% (M, M) = 0 implies
M is free. ("."Theorem 2.) Therefore we get contradiction and we have P = ¢. O
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ON COLOCAL PAIRS

YOSHITOMO BABA

ABSTRACT. In [9, Theorem 3.1] K. R. Fuller characterized indecomposable injective
projective modules over artinian rings using i-pairs. In [3] the author generalized this
theorem to indecomposable projective quasi-injective modules and indecomposable quasi-
projective injective modules over artiniain rings. In [2] the author and K. Oshiro studied
the above Fuller’s theorem minutely. Further in [12] M. Hoshino and T. Sumioka ex-
tended these results to perfect rings. In this paper we studies the results in [3] from the
point of view of (2}, [12].

1. ON FULLER’S THEOREM AND PAST RESULTS

Throughout this paper, we let R be a semiperfect ring. By Mg (resp. gM) we stress
that M is a unitary right (resp. left) R-module. For an R-module M, we denote the
injective hull, the Jacobson radical, the socle, the top M/J(M), and the composition
length of M by E(M), J(M), S(M), T(M), and |M|, respectively. Further we denote
the right (resp. left ) annihilator of T in S by rg(T’) (resp. I5(T)).

Definition 1. Let M, N be R-modules. We say that M is N-injective if, for any sub-
module X of N and any R-homomorphism ¢ : X — M, there exists ¢ : N — M with
@|lx = ¢. And we say that M is N-simple-injective if, for any submodule X of N and any
R-homomorphism ¢ : X — M with Imy simple, there exists ¢ : N — M with @¢|x = ¢.

Definition 2. Let e, f be primitive idempotents in R and let g be an idempotent in R.
We say that R satisfies a.[e, g, f] if rgrslerg(X) = X for any right fRf-submodule X of
gRf with ryps(eRg) € X. And we say that R satisfies ayle, g, f] if lergTors(Y) =Y for
any left eRe-submodule Y of eRg with l,z,(gRf) C Y. Further we say that (eR, Rf) is
an injective pair (abbreviated i-pair) if S(eRg) = T(fRg) and S(gRf) = T(gRe).

The following theorem is given by K. R. Fuller in [9]. By this theorem, indecomposable
projective injective right R-modules over right artinian rings are characterized using i-
pairs.

Theorem 3. (Fuller) Let R be a right artinian ring and let e, f be primitive idempotents
in R. Then the following are equivalent.

The detailed version of this paper will be submitted for publication elsewhere.



(a) eRg is injective with S(eRR) = T'(fRg).
(6) (eR,Rf) is an i-pair.
(c) R satisfies a,le, 1, f] and ayle, 1, f]-

In [2] Theorem 3 is minutely studied by the author and K. Oshiro over semiprimary
rings as follows.

Theorem 4. (Baba, Oshiro) Let R be a semiprimary ring and let e, f be primitive
idempotents in R.
(I) The following are equivalent.
(¢) eRg is injective.
() (i) There ezists a primitive idempotent f in R with (eR, Rf) an i-pair.
(#) R satisfies ayle, 1, f].
(IT) Suppose that (eR, Rf) is an i-pair.
(1) If ACC holds on right annihilator ideals, then
(1) arle, 1, f] holds,
(#1) the eguivalent conditions in the following (2) hold.
(2) The following are equivalent.
(@) |emeeR] < o0.
(b) [Rfyas| < oo.
(c) Both eRg and rRf are injective.

Theorem 4 is further considered over perfect rings by M. Hoshino and T. Sumioka in
[12]. And the following theorem is given.

Theorem 5. (Hoshino, Sumioka) Let R be a left perfect ring and let e, f be primitive
tdempotents in R.
(I) The following are egquivalent.
(¢) eRg is R-simple-injective.
(b) There erists a primitive idempotent f in R such that
(i) (eR,Rf) is an i-pair.
(i) R satisfies a.[e, 1, f].
(IT) Suppose that (eR, Rf) is an i-pair. Then the following are equivalent.
(a) IeReeRl < 00.
(b) |Rff_qf| < 0.
(c) Both eRp and rRf are injective.

On the other hand, in [3] the author generalized Theorem 3 to indecomposable projec-
tive quasi-injective modules and indecomposable quasi-projective injective modules over
artiniain rings as follows.

Theorem 6. (Baba ) Let R be a semiprimary ring and let e, f be primitive idempotents in
R. Suppose that DCC holds on {rgs(I) | erel C eR}. Then the following are equivalent.

(a) eRp is quasi-injective with S(eRg) = T(fRR).



(6) E(T(rRe)) is quasi-projective of the form pRf /rrs(eR).
(c) S(eRg) = T(fRgr) and S(.reeRf) is simple.

2. ON COLOCAL PAIRS

Definition 7. Let M be an R-module and let e, f be primitive idempotents in R. We
say that M is colocal if S(M) is simple and essential in M. And we say that (eR, Rf) is
a colocal pair ( abbreviated c-pair) if both eRfsry and .g.eRf are colocal.

First we characterize a,[e, g, f] using a quasi-projective right R-module eR/l.gr(Rf)r
in case that (eR, Rf) is a c-pair.

Proposition 8. Let ¢, f be primitive idempotents in R and let g be an idempotent in R.
Suppose that (eR, Rf) is a c-pair.
(1) Consider the following two conditions:
(@) R satisfies ar[e, g, f).
(6) eR/l.r(Rf)r is gR/r r(eRg)-simple-injective.
Then (a) = (b) holds. And, if fRf is a right or left perfect ring, then the converse
also holds.
(2) The following are equivalent.
(¢) eR/l.r(Rf)r is gR/lgr(Rf)-simple-injective.
(@) (i) The condition (b) holds.
(i) ars(eRg) = 0.

Definition 9. Let M be an R-module. We say that M is simple-quasi-injective if M is
M-simple-injective.

Next we give an equivalent condition of a quasi-projective module eR/l.z(Rf) to be
simple-quasi-injective. This proposition will give more important successive results.

Theorem 10. Let R be a left perfect ring and let e, f be primitive idempotents in R with
eRf # 0. The following are equivalent.
(a) eR/l.r(Rf)r is simple-quasi-injective.
(b) (i) (eR,Rf) is a c-pair.
(31) R satisfies arle, e, f].

As a corollary we have the following interesting result.

Corollary 11. Let R be a semiprimary ring, let e, f be primitive idempotents in R with
eRf # 0. Suppose that ACC holds on right annihilator ideals. Then the following are
equivalent.

(a) rRf/rrs(eR) is quasi-injective.



(6) eR/l.r(Rf)r is quasi-injective.
(¢) (eR,Rf) is a c-pair.

Next we characterize indecomposable projective simple-quasi-injective modules and in-
decomposable quasi-projective R-simple-injective modules, which is a generalized result
of Theorem 5 (I).

Theorem 12. (1) Let R be o right perfect ring and let f be a primitive idempotent
in R. The following are equivalent.
(e) grRf is simple-quasi-injective.
(b) There exists a primitive idempotent e in R such that
(1) S(rRf) = T(rRe),
(¢8) eRfrry is colocal,
(#%2) R satisfies aye, f, f].
(2) Let R be a left perfect ring and let e, f be primitive idempotents in R. The
following are equivalent.
(a) eR/l.p(Rf)r is R-simple-injective.
() (i) S(rRS) is simple essential with S(rRf) = T(sRe),
" (i) eRfyny is colocal,
(iti) R satisfies a.[e, e, f].

Further we generalize Theorem 5 (II) to c-pairs. We note that, in the following theorem,
the equivalence between (c) and (d) is already given by Hoshino and Sumioka in [13].

Theorem 13. Let e, f be primitive idempotents in R and let g be an idempotent of R.
Suppose that (eR, Rf) is a c-pair and fRf is a left perfect ring. Then the following are
equivalent.
(a) (3) eR/l.r(Rf)r is gR/rsr(eRg)-injective.
(¢8) rRf/rrs(eR) is Rg/lpy(gRf)-injective.
(6) () eR/l.r(Rf)r is gR/r,r(eRg)-simple-injective.
(38) rRf/rrs(eR) is Rg/lpy(gRf)-simple-injective.
(c) |(gRf/rers(eRg))sas| < oo.
(@) |ere(eR/lers(9RF) | < oo.
(e) ACC holds on {ryrs(I) | erel € eRg}
(& DCC holds on {lp,(I') | Itp; € gRf})-

As a corollary we obtain the following corollary. We note that, in the following theorem,
the equivalence between (c) and (d) is already given by Hoshino and Sumioka in [13].

Corollary 14. Let e, f be primitive idempotents in R. Suppose that (eR, Rf) is a c-pair
and fRf is a left perfect ring. Then the following are eguivalent.

(e) Both eR/l.p(Rf)r and rRf/rps(eR) are injective.

(b) Both eR/l.p(Rf)r end rRf/rrs(eR) are R-simple-injective.

(¢) | Rf/rre(eR)spy < o0.

(d) IcRceR/lcR(Rf) |< ca.



() ACC holds on {rrs(I) | crel C eR}.

Last we give another corollary.

Corollary 15. Let e, f be primitive idempotents in R. Suppose that (eR, Rf) is an i-pair
and fRf is a left perfect ring. Then the following are equivalent.

{a) Both eRg and grRf are injective.

(b) Both eRg and pRf are R-simple-injective.
(c) |Rfsrs| < oo

(d) ,eReeRI < 00.

(e) ACC holds on {rgs{I) | erel CeR}.
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ON RINGS ALL OF WHOSE IDEALS ARE N-PRIMARY

Yasuyuki Hirano and Hisaya Tsutsui

Abstract: Let k be a positive integer. The structure of rings all of whose ideals are n-
primary for some positive integern < k is studied and several examples of such rings are
constructed. Rings all of whose nonzero ideals are n-primary for some positive
integern< k is also considered.

Throughout this paper, we assume that a ring R is associative with an identity element but
not necessarily commutative.

Definition. An ideal P of a ring R will be called right &-primary if there exists an
integer &£ 21 minimum with respect to the following condition: for any ideals /,J of
R, IJ c P implies/ c P, or JYc P. Anideal P ofa ring R will be called left &-
primary if there exists an integer k 2 | minimum with respect to the following
condition: for any ideals 1,/ of R, IJ < P implies Jc P,orI* ¢ P. A ring R will
be called right (left) k&-primary if 0 is a right (left) &-primary ideal. A ring R will be
called fully right (left) k-primary if there exists an integer & 21 minimum with
respect to the following property: every ideal of R is right (left) »-primary for some
positive integer n< k. A fully right and left -primary ring will be called a fully -

primary ring,.

The properties of commutative rings in which all ideals are primary were studied by
Satvanarayana [9] and Chaudhuri [3]. Let R be a commutative Noetherian ring. An ideal
A of R is called irreducible if there are no ideals B,C properly containing 4 such

that A = BN C. It is well-known that an irreducible ideal is primary. Hence if the set of
ideals is linearly ordered, then every ideal J of R is primary. However, we should not
that a ring in which every ideal is primary is not necessarily a fully k-primary ring. The
formal power series ring R = Z,[[x]] is an example of a ring in which every ideal is
primary but not a fully k-primary ring.

A commutative fully 1-primary ring is a field. The ring Z, of integer modulo » is fully
k-primary if and only if n = p* for some prime p. Ifaring R has a unique maximal
ideal M and M' =0 for some integer 1 21, then it is clear that R is fully &-primary for
some integer k¥ <t, and M is the only prime ideal in R. A fully right(left) &-primary ring
has a unique maximal ideal but in general the maximal ideal of a fully

! The detailed version of this paper has been submitted elsewhere.



right(left) k-primary ring does not have to be nilpotent (Example 1). However, if the
center of a ring R is not a field, then R is fully right (left) k-primary if and only if

M* =0 where M is the unique maximal ideal of R (Theorem 2 ). A commutative
ring R is fully &-primary if and only if R has a unique maximal ideal M and

M* =0.(Theorem 3). This result can be extended to PI- rings (Theorem 4) and FBN
rings (Theorem 5). We will show a necessary and sufficient condition

for a ring to be fully right (left) k-primary (Theorem1). Using this condition, one can
show thatif aring R is a fully right (left) k-primary ring, so are any nby 7 matrix rings
overR, and eRe for any idempotent element ein R. Hence, fully right (left) primary is
a Morita invariant property. Among other observations, we will point out that if a

ring R is not n-primary but all nonzero ideals of R are n-primary for some positive
integern < k, then R has either one or two minimal nonzero ideals.

Recently, Gorton-Heatherly [7] investigated some characteristics of a k-primary rings and
ideals. They started their paper by showing any powers of a maximal ideal of a ring are
right and left k-primary for some integer &, while not all right k- primary ideal is left
primary. We begin our paper by a few examples that show a fully left (right) k-primary
ring is not necessarily a fully right (left) k-primary ring. These examples also show that
the maximal ideal of a fully left (right) &-primary ring is not necessarily nilpotent.

abe F} , a subring (without identity) of M, ,(F) where

Example 1. Let ={[g 3]

Fisafield. Let P=1|0 ©
0 0

ae F} , the only nonzero proper ideal of S. Consider

R={(s,t)] s € S,1 € F} with component-wise addition and the multiplication defined by

bt
(S, X(53,) = (8,5, + 5,8, + 5,8, 4t,). (SxF-—)S isdefined by[f)l z].t=[cg 0])

Then R is a ring (with identity) and it has two nonzero proper ideals M ={(s,0)|s € §}
and 1={(p,0)|peP}. Since M =M, =0, MI =1, and IM =0, R is a fully left

, 00
2-primary ring but not a fully right 2-primary ring. If we use §' = {[ b] a,beF } for
a

the same construction, we can obtain a right fully 2-primary ring that is not fully left 2-
primary. O

If we slightly modify the example above, we can obtain other examples of our interest.
The following is an example of a ring that is not fully 2-primary, not fully right k-primary
for any £, but it is fully left 3-primary.



b
Example 2. Let §= {[: 0] abeT } » a subring (without identity) of M,,,(T) where

T is a ring with unique nonzero proper ideal P and P* =0 (e.g., Z,).

Consider R= {(s, r)|seS,re Z,} with component-wise addition and the multiplication
defined by (s,,4,)(5;.8,) = (8,5, + 5,1, + 5,0,, 41,) . ( Give Z, -module structure on S by the
obvious manner.)

Let I, ={(s,0)| se S}, I, ={(p,0)| p € R} where

b b
ﬁ:{[g ojlaeP,beT},Iz={(p,0)|peP2} where}’z={[:)z 0]

0 b
1,={(p.0)| p P} where P,={[0 0]

0 b]
P, ={[0 0 beP}.
Since 1,1, =0 and /, is idempotent, R is not a right fully k-primary ring for any integer

k. Since I,I, =1, for t=1,2,3,4, LI, =0, 17 =1,#0, and I, =1, =12 =0, R is not
fully left 2-primary but a fully left 3-primary ring. OJ

a,beP},

beT}, and I, ={(p,0)| p € P,} where

A right ideal I of a ring R is called eventually idempotent if there is a natural number »,

in general depending on / such that " = I"*'. Clark [4] studied the structure of rings in
which every right ideal is eventually idempotent (called eventually idempotent rings.) If,

for a ring R, there is a natural number 7 such that I” = I™' for all ideals 7 of R, then

the least such » is called the idempotent bound for R. By Proposition 1 of Clark [4],
Proposition | below, and Example 3 below, the class of eventually idempotent rings
with idempotent bound £ strictly contains the class of fully right k&-primary rings.

Proposition 1. If aring R is fully right k-primary then I* = I** for any ideal .

Example 3.

(A) Let R={(a,b)|a,be F} where F isafield, with component-wise addition and

multiplication. Then R is an eventually idempotent ring with idempotent bound 1,
known in literature as a fully idempotent, but R is not a fully right (left) 4-primary ring
for any positive integer k. [



b
(B) Let R= {{: ] a,b,ce F} , where F is afield. Then R has three nonzero proper
¢

wseff o}t o o)

Since I, and I, are idempotent and I =0, R is eventually idempotent with idempotent
bound 2. However, since I, and [, are idempotent and 1,J, =0, R is not fully right 4-

primary for any positive integer k. [J

Notice that the ring in Example 3 has two maximal ideals. It is an immediate
consequence of the next proposition that a fully right &-primary ring has a unique
maximal ideal.

Proposition 2, If a ring R is fully right k-primary then for any ideals 7,J of R, one of the
following conditions must hold:

l.IgJ
2. JclI

3. 1'=J"
Corollary 1. The set of prime ideals in a fully right k-primary ring is linearly ordered.

By Example 2 and 3, we see that the conditions given in Proposition 2 are not sufficient
for a ring to be fully right (left) k-primary.

Theorem 1. A ring R is fully right k-primary if and only if R is eventually idempotent
with idempotent bound &, and for any ideals 7 andJof R, I=1J ,J=JI,or I'=J*. A
ring S is fully left k-primary if and only S is eventually idempotent with idempotent
bound %, and for any ideals / and Jof S, J=XJ,I=JI,or I* = J*.

Theorem 2. Let R be a ring whose center Z(R) is not a field. Then R is a fully right
k -primary ring if and only if R has a unique maximal ideal M and M* =0.

Theorem 3. Let R be a commutative-ring. Then R is fully k-primary ring if and only if
R has a unique maximal ideal M and M* = 0.

As a natural generalization of commutative rings, we consider rings that satisfy a
polynomial identity.



Theorem 4. Let R be a Pl-ring. Then the following are equivalent:

(1) R is a fully right k-primary ring.
(2) R is a fully left k-primary ring.
(3) R has a unique maximal ideal M and M* =0.

Recall that a Pl-ring is fully right and left fully bounded.

Theorem S: Let R be a FBN (fully right bounded right Noetherian) ring. Then the
following are equivalent:

(1) R is a fully right k-primary ring.
(2) R is a fully left k-primary ring.
(3) R has a unique maximal ideal M and M* =0.

We now consider a subring S of a fully 4-primary ring R that might help in studying the
structure of R.

Lemma 1: LetR be a fully k-primary ring with idempotent maximal ideal M . LetL be
an ideal of M when we consider M as a ring without identity. Then L is an ideal of R.

An ideal of a maximal ideal of a fully & -primary ring R (when I is considered as a ring
without identity) is in general, not an ideal of R as the following examples shows.

Example 4. Let R={(, )|, € P, , €T} where T is a ring with unique nonzero

proper ideal 7 and P? = 0; with component-wise addition and multiplication defined
by (a, b)(c, d)=(ac, ad + bc) . Then R is a fully 2- primary ring whose only nonzero

proper ideals is the maximal ideal ¥ =0®R . Let I =0®Q(V2). Then I is an ideal of

M when M is considered as a ring without identity but not an ideal of R. O
Lemma | above yields the following Theorem.

Theorem 6. LetR be a fully &- primary ring whose maximal ideal M is idempotent. Let
Z(R) be the center of R. ThenS =M + Z(R) s a fully k- primary ring. FurtherRand §

have the same set of proper ideals.



Theorem 7. LetRand S =M + Z(R) be as stated in Theorem 4. Then

(1) R is semiprime if and only if S is semiprime

(2) R is prime if and only if § is prime

(3) § is semiprimitive if and only if R is semiprimitive.
(4) § is right primitive if and only if R is right primitive.
(5) § is right Artinian if and only if R is right Artinian..

Definition. A ring R will be called almost fully right (left) k-primary if there exists an
integer £>1 minimum with respect to the following property: every ponzero ideal of R
is right (left) n-primary for some positive integer n < k. A almost fully right and left k-
primary ring will be called an almost k-primary ring.

Theorem 8. An almost fully right 4-primary ring R has one or two maximal ideals.
Further, R has two maximal ideals if and only if R is a direct sum of two simple rings.

Theorem 9. An almost fully right x-primary ring R that is not fully right A-primary has
one or two minimal non-zero ideals. If R has exactly one minimal nonzero ideal, then
every nonzero ideal contains the minimal ideal. Further, if R has two minimal ideals,
then R is a direct sum of two fully right k-primary rings.

Note that a direct sum of two fully right k-primary rings is not necessarily almost fully
right k-primary. For example, Z, is a fully 2-primary ring but Z, & Z, contains nonzero
ideals that are not 2-primary.

Theorem 10. If a ring R has a unique minimal nonzero ideal L and J(R) =0, thenR is
almost fully right k-primary if and only if R is fully right k-primary R.

If an almost fully right k&-primary ring R has two maximal ideals M, and A,,then
M,nM, =0. Thus, if R has a unique minimal nonzero ideal, then since every nonzero

ideal contains the minimal ideal, R must have a unique maximal ideal. The example
below shows that the converse of the statement is false.

Example 5. Let R be a simple domain but not a division ring, and let 0 #ae R.
Consider S ={(r, ,)|, € aR, r, € aR + Z(R)} with component-wise addition and

multiplication defined by (a, b)(c, d) = (ac, ad + bec + bd). Let
I, ={(r,9)|r,seaR},l, ={(r,0)[reaR},and I, ={(r,-r)| r € aR}. Then since



I1,,1,,1,are all idempotent but 1, -1, =0, S is an almost 2-fully primary but not a 2-
primary ring, with unique maximal ideal /, and two minimal ideals 7,
and 1,.00

Theorem 11. A PIring R is almost fully right & -primary if and only if

(1) R has a unique maximal ideal M and M* =0,

(2) R is a direct sum of two simple Artinian rings,

(3) R has a unique maximal ideal M and M"* is the unique minimal nonzero ideal of R
and every nonzero ideal contains M tor

(4) R has a unique maximal ideal M and M* = M**'is a minimal nonzero ideal of R
and there exists exactly one nonzero ideal that does not contain M*.

Theorem 12. A FBN ring R is almost fully right £ -primary if and only if

(1) R has a unique maximal ideal M and M* =0,

(2) R is a direct sum of two simple Artinian rings,

(3) R has a unique maximal ideal M and M" is the unique minimal nonzero ideal of R
and every nonzero ideal contains M*, or

(4) R has a unique maximal ideal M and M* = M**'is a minimal nonzero ideal of R
and there exists exactly one nonzero ideal that does not contain M*.
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A TILED ORDER OF FINITE GLOBAL DIMENSION WITH
NO NEAT PRIMITIVE IDEMPOTENT

HISAAKI FUJITA AND AKIRA OSHIMA

Let R be a discrete valuation ring with a unique maximal ideal 7R and a quotient
field K, and let F = R/wR be the residue class field. Let n > 2 be an integer and
{Xj | 1 £4,7 < n} a set of n? integers satisfying

i =0, Aie + /\kj > /\,'j, /\,'j + A_-,"' >0 (if 1 7& j)

for all 1 <14,4,k < n. Then A = (7*/R) is a basic semiperfect Noetherian R-subalgebra
of the full n x n matrix algebra M, (/). We call such A a tiled R-order in M (K).

Let S be a semiperfect Noetherian ring and e a primitive idempotent of S. Following
Agoston, Dlab and Wakamatsu [1], we call e a neat primitive idempotent if Ext§(V, V) = 0
for all ¢ > 1, where V is a simple right S-module with Ve # 0 (see [5], too).

It was proved by Jategaonkar [7] that for a fixed integer n > 2, there are, up to
isomorphism, only finitely many tiled R-orders of finite global dimension in M,(K). The
literature contains a number of papers concerned with determining tiled R-orders of finite
global dimension. Tiled R-orders of global dimension two were studied by Roggenkamp
and Wiedemann in connection with the interest of orders of finite lattice type (see [2],
(11], [12], [20]). As for the problem to determine the maximum finite global dimension
among tiled R-orders in M,(K) for a fixed n, some authors studied tiled R-orders having
large global dimension, but it is not known what is the maximum (see [4], [5], [6], [7],
(8], [9], [14], [17], [18]). In such examples, neat primitive idempotents play an essential
role when we compute global dimension inductively. Then in [5], we posed a question
“Does any tiled R-order of finite global dimension have a neat primitive idempotent?”,
which can be considered as an improved version of Jategaonkar’s conjecture disproved by
Kirkman and Kuzmanovich [9] and [4] for all n > 6.

We notice that in those studies, almost all known results hold if R is an arbitrary discrete
valuation ring. However, among other things, Rump [14] proved that global dimension
gldim A of a tiled R-order A = (7*4 R) is determined by the set {);; | 1 <i,j < n} and
char F (characteristic of F'), and that if gl.dim A < 2 then gl.dim A does not depend on
char F, by using matroid theory (see Tutte [19]). Moreover, he provided an example of
a tiled R-order A in M,(K) such that gl.dim A = 3 if char F # 2, and gl.dim A =4 if
char F = 2, where n = 14. In accordance with matroid theory, Rump calls a tiled R-order
regular if its global dimension does not depend on char F', and he added the following
sentence: “For the present, at least, we have demonstrated that the problem to determine
the tiled orders of finite global dimension can hardly be solved without a careful inspection
of regularity.”

In this report, we announce a new example of non-regular tiled R-orders. Namely, for
an arbitrary prime p, we construct a tiled R-order A in M,(K) such that gl.dim A = 5
if char F' # p and gl.dim A = oo if char F = p, where n = 4p + 5. Moreover, in the

The detailed version of this paper has been submitted for publication elsewhere.



computation of gl.dim A, we see that A has no neat primitive idempotent. Thus, if
char F # p, A is a counterexample to the question mentioned above.
1. EXAMPLE

Let (P, <) be a finite poset. We can consider P a finite quiver P = (Py, P;) as follows.
Py is the set of vertices in P, that is, the set P itself. P, is the set of arrows of P defined
by a — b € P, provided a < b and there is no z € Py with 2@ < z < b. Note that the
order of P is generated by P;. That is, for a,b € Q, a < b if and only if there is a path
from a to b in the quiver P.

From a given finite poset P with n vertices, we can construct a tiled R-order A =
(m*=vR) in M,(K) by defining A,y = 0if z < y, and A,, = 1 otherwise.

The following is the example of our tiled R-order.

ExXAMPLE. Let p be an arbitrary prime, and put ! := p + 1. Then we define a finite
quiver P = (P, P;) as follows. The set P, has the following 4{ + 1 (= 4p + 5) vertices.
Po:={ai by, ¢, di|1<i<}u{d)
The set P, has the following 5! + {2 (= p* + 7p + 6) arrows.
bi—a (1igl) bi—ai (15i<])
cg—a (15ig!) a—a (1Lig))
di—c¢ (1<i<l) di—-byu (1<i<,1<k<p)
d—¢ (1<i<])

where we consider the indices i of a;, 4 modulo Z. Let A be the tiled R-order in M,(K)
corresponding to P, where n = 4p + 5. Then

5 if charF#p

gldimA = { oo if charF =p.

Moreover, all primitive idempotents e; (1 < i < n) of A are not neat.

In the case of p = 2, the quiver P and its tiled R-order A in M;3(K) are as follows.

a) Qs as

Peh % :
ds d da d



(R1r1r1r1r1r1r1r1r1r1r1r1r\
* R 7 nm™nm® T AT
# #«n R ™7 ©™nm® ®®"x®x AT T
RR®TTR®TOT " T™m™ AT T T T
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RRRR=~"R=" " RR=~n =
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RRRRR®TTXTO RRR®~TTa" R~
\RRRxRmTR=TR R~ R

where m = 7R.

Let J(A) be the Jacobson radical of A. We compute minimal projective resolutions of
J{A)e; (1 < i < n) by using Rump’s theory [14], which is slightly modified in the detailed
version of this paper.

The exponent matrix (A;;) of a tiled R-order A = (7% R) defines an infinite poset 2,
(called o-poset in [14] with an automorphism o of £, ). If R is the formal power series ring
F[t]] in the indeterminate ¢, then there is a correspondence between left A-lattices and
bounded finite dimensional Q,-representations over F (see Zavadskij and Kirichenko (21],
[22), Roggenkamp and Wiedemann [13], de la Pefia and Raggi-Cérdenas [3], and Simson
[15])). Using this correspondence, in [14], Rump develops an axiomatic theory to compute
global dimension of arbitrary tiled R-orders.

REMARK. In [14], Rump provided an example of a non-regular tiled R-order in M,4(K)
with char F = 2, which is constructed from a finite poset. A similar finite poset can be
found in [16]. Oshima [10] extended Rump’s example to the case of an arbitrary prime p,
that is, he constructed a tiled R-order A in M, (K) such that gl.dim A = 3 if char F # p,
and gl.dim A = 4 if char F = p, where n = 8p — 2.

As suggested in [14], it may be an interesting problem to find smaller size n which
admits non-regular tiled R-orders. When p = 2, our example provides a non-regular tiled
R-order in M,(K) such that n = 13 < 14, at present, that is the minimum among known
examples.
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ON HOCHSCHILD COHOMOLOGY RING OF
AN ORDER OF A QUATERNION ALGEBRA

TAKAO HAYAMI

ABSTRACT. We will give an efficient bimodule projective resolution of an order I', where
I' is an order of a simple component of the rational group ring QQ2- of the generalized
quaternion 2-group Q- of order 2"+2. Moreover we will determine the ring structure
of the Hochschild cohomology HH*(I'} by calculating the Yoneda products using this
bimodule projective resolution.

1. INTRODUCTION

The cohomology theory of associative algebras was initiated by Hochschild [6], Cartan
and Eilenberg [1] and MacLane [7]. Let R be a commutative ring with identity and A an
R-algebra which is a finitely generated projective R-module. If M is a A-bimodule (i.e., a
A® = A®g A°P-module), then the nth Hochschild cohomology of A with coefficients in M is
defined by H*(A, M) := Ext}.(A, M). We set HH"(A) = H™(A, A). The Yoneda product
gives HH*(A) := @5, HH"(A) a graded ring structure with 1 € ZA ~ HH%(A) where
Z A denotes the center of A. HH*(A) is called the Hochschild cohomology ring of A. The
Hochschild cohomology ring HH*(A) is graded-commutative, that is, for « € HHP(A)
and B € HHY(A) we have a8 = (—1)"fBa. The Hochschild cohomology is an important
invariant of algebras. However the Hochschild cohomology ring is difficult to compute in
general.

Let G be a finite group and e a centrally primitive idempotent of the rational group ring
QG. Then QGe is a central simple algebra over the center K. We set I' = ZGe. Then I' is
an R-order of QGe, where R denotes the ring of integers of K. The author is interested in
the Hochschild cohomology ring HH*(I") of an R-algebra I', which is an invariant of the
finite group G and the central idempotent e. On the other hand, a ring homomorphism
¢ : ZG — TI';z — ze induces a ring homomorphism HH*(I") = H*(G, I"), where I’
denotes I regarded as a G-module by conjugation and H*(G, ,I") denotes the ordinary
cohomology ring of G with coefficients in yI". In fact, we consider that the study of the
ring structure of H*(G, yT") and the ring homomorphism gives us much helpful information
about HH*(I'). So there are some examples of the ring structure of H*(G, 4I") and the
ring homomorphism HH*(I') — H*(G,yI") ([4], [5]). The Hochschild cohomology ring
HH*(I') is in general hard to compute, however it is theoretically possible to calculate if
an efficient I"®-projective resolution is given. In this paper, as an example of it, we will
give the ring structure of the Hochschild cohomology HH*(I"), where I is an order of
a simple component of the rational group ring of the generalized quaternion 2-group of
order 27+2.

The detailed version of this paper will be submitted for publication elsewhere.



Let G be the generalized quaternion 2-group of order 2"+2 for r > 1:
Qr=(z,y|z¥" =127 =P yzy ' =z7").

We set e = (1 — 2% )/2 € QG and denote ze by ¢, a primitive 2"+-th root of e. Then e
is a centrally primitive idempotent of QG and QGe is the (ordinary) quaternion algebra
over the field K := Q(¢ + ¢™!) with identity e, that is, QGe = K & Ki ® Kj & Kij
where we set i = 2% ‘e and j = ye (see [2, (7.40)]). Note that 2 = j2 = —e,ij = —ji
hold. In the following we set R = Z[¢ + ('], the ring of integers of K, and we set
I' =7ZGe = R® R( ® Rj & R(j. Note that R is a commuting parameter ring, because
y commutes with z + z=!. Then I' is an R-order of QGe. In particular if 7 = 1,
I'=Ze® Zi ® Zj ® Zij is just the (ordinary) quaternion algebra over Z with identity e.

We will give an efficient bimodule projective resolution of I", and we will determine the
ring structure of the Hochschild cohomology HH*(I") by calculating the Yoneda products
using this bimodule projective resolution. This paper is a summary of [3].

2. A BIMODULE PROJECTIVE RESOLUTION OF I"

In this section, we state a I"*-projective resolution of I". For each ¢ > 0, let Y; be a
direct sum of ¢ + 1 copies of I' ® I'. As elements of Y;, we set

{(0,...,0,e®e,0,... 00 (f1<s<gq+1),

0 (otherwise).

Then we have ¥, = @z:i I’cf,‘[‘. Let ¢t = 2". Define left I"-homomorphisms r : ¥; —
Iicy—eand é,: Y, > Y, (g>0) given by

'_Cc;_l A (-1)-92¢5e3715¢ — ) for g even, s even,

t—1

DTG+ (DTl v T} for g even, s odd,

o(cg) = | =%ar

Sttt ot (_1)("‘3“)/2jc;:}j —¢;Z)  for godd, s even,
=0

CCpmr = Cga§ + (=121 ¢ + €7 for g odd, s odd.

.

Theorem 1. The above (Y, n,8) is a I'®-projective resolution of I'.

Proof. By the direct calculations, we have 7 -6, =0 and &5 - 8,41 =0 (g > 1).

To see that the complex (Y, 7, d) is acyclic, we state a contracting homotopy. In general,
it suffices to define the homotopy as an abelian group homomorphism. However, we can
see that there exists a homotopy as a right I"-module, which permits us to cut down
the number of cases. We define right I"-homomorphisms T_; : I' = Yo and T, : Y —
Yo41 (g 2> 0) as follows:

T.(m)=¢y (foryel).



If ¢(> 0) is even, then

4

0 (k=0, s=1),
k-1
Ty(ctet) = | lXEC"““c},ﬂc‘ (1<k<t s=1),
0 (s(> 2) even),
[ —¢Fegi (s(=> 3) odd),
'(—1)"’203“1' (k=0, s=1),
k-1
T (¢ jet) = < (-1)* (ZC""“‘c;HC‘j + C"c§+1j) 1<k<t s=1),
=0
("jc;j'_} (s(> 2) even),
[0 (s(> 3) odd).
If ¢(> 1) is odd, then
(0 (0<k<t-2, s=1),
. k=t-1, s=1)
T k. sy cq+l ( ’ )
alCeg) = | 0 (s(> 2) even),
[ —C*egin  (s(2 3) odd),
((-1)@72 (el 3¢+ (M2 5C) (k=0, s=1),
T (ijcs) = 4 (_1)(q+l)/2<k-lc§+1jc (1 < k< t, s= 1),
! ? ¢kieyt) (s(> 2) even),
L0 (s(= 3) odd)
Then by the direct calculations, we have
b1 Ty + Ty 16, = idy,
for ¢ > 0. Hence (Y, ,§) is a I"®-projective resolution of I'. ]

3. HOCHSCHILD COHOMOLOGY HH*(I")

In this section, we will determine the ring structure of the Hochschild cohomology
HH*(I'). This is obtained by using the I"®-projective resolution (Y, w,8) of I stated in
Theorem 1. In the following we denote a direct sum of ¢ copies of a module M by M9.

3.1. Module structure. In this subsection, we give the module structure of HH*(I").
As elements of I'*!, we set

. J(0,...,060,...,0) (fl<s<q+1),
0 (otherwise).

Then we have I'"+! = @It I'ik.



Applying the functor Homp.(—, ") to the resolution (Y,,4), we have the following
complex, where we 1dentify Homp.(Y,, I') with I'"*? using an isomorphism Homp(Y;, I")

= I f o I F()ed:

(Hompe(Y,T),6%): 0T LAPCIL AL UL A LRI :

=Y ¢ + ((-1)92CGyi¢ + 9)it] for g even, s even,

=0
(€7 = YO e + (1)@= D 25 — )it for ¢ even, s odd,

—(C1 = YO eor + (1) D 2Gy5 4+ )it for g odd, s even,
t-1

E ¢t 1l G+ ((_1)(11—:)/2(_7'7_7'( - 7)41} for g odd, s odd.
L i=0

In the above, note that

= {0 0,%,0,...,0) (fl1<s<g+1),
L ) (otherwise),

q+l('7" ) =4

for y € I', and so on. By the direct calculations, we have the following theorem:

Theorem 2. (1) If r =1, then we have

e _ |2 (n=0),
HHNI) = {(Z/2Z)2"“ (n > 1).
(2) If r > 2, then we have
R (n =0),
HH™T) =< (R/(¢+ ()R (n odd),

R/2R&® (R/(C+("HR)™  (n(#0) even).

3.2. Ring structure. Recall the Yoneda product in HH*(I'). Let a € HH"(F) and
B € HH™(I'), where & and 3 are represented by cocycles fo : Yo @ I'and fg: Y — T,
respectively. There exists the commutative diagram of I"-modules:

6n+m+l 6n+m\ 6m+3 6m+1 lﬂ N
oo — Yarm > Yine y Y y I
“nl ml nol ”
- — Y, y enn +y y Yo y I' » 0,
Jn+l bn . 51 6] T

where y; (0 < I < n) are liftings of fz. We define the product a - 8 € HH™*™(I") by the
cohomology class of f,u,. This product is independent of the choice of representatives
fa and fp, and liftings u; (0 <! < n).

First, we consider the case r = 1. Note the Hochschild cohomology ring HH*(I') is
graded-commutative. From Theorem 2 (1), HH*(I') is a commutative ring in this case.



We take generators of HH!(I") as follows (see [3, Theorem 2 (1))):

A=, B=(jy, C =i + (il
Then we have 24 = 2B = 2C = 0. We calculate the Yoneda products. Then HH™(I') (n >
2) is multiplicatively generated by A, B and C, and the equation A% + B2+ C? = 0 holds.

Moreover the relations are enough. Thus we can determine the ring structure of HH*(I')
in the case r = 1 (see [3, Section 3.1] for details).

Next, we consider the case » > 2. The computation is similar to the case where r =1,
however it is more complicated. By [3, Theorem 2 (2)], we take generators of HH(I') as
follows:

A= (e-nC)i, B=(—n¢iu, C= (¢ —nj +(F ~ n¢i)s.
In the above n denotes 2¢/(¢ + (~') € R (see also [3, Lemma 2.1]). Then we have
(C+¢NA=(C+¢)B=(¢+(T)C =0.

Note that products of A,B,C and X € HH"(I') (n > 0) are commutative, because
HH*(I') is graded-commutative and the equations 24 = 2B = 2C = 0 hold. We calculate
the Yoneda products. Then the following equations hold in HH?*(I'):

A= &, AB = ji, AC = (ji - ji3, B® = 2""'n( + (&,
BC =2""n(e —n()dd, C* =2 1n¢e + C& + 3.
In particular, generators of HH?(I') except (e — n()i} are generated by the products of
A, B and C, and the equation A% 4+ B%+ C? = 0 holds.

In the following, we put D = (e — n¢):} which is a generator of HH?(I"), and then we
have 27D = 0 and BC = 2" '5D. Similarly, we calculate the Yoneda products. Then
HH™(I') (n 2 3) is multiplicatively generated by A, B,C and D, and the relations are
enough. Thus we can determine the ring structure of HH*(I") in the case r > 2 (see (3,

Section 3.2] for details).
Finally we state the ring structure of the Hochschild cohomology ring HH*(I'):

Theorem 3. (1) If r = 1, then the Hochschild cohomology ring HH*(I') is isomorphic
to

Z|[A, B,C)/(24,2B,2C, A® + B? + C?),
where deg A = deg B =degC = 1.
(2) If r > 2, then the Hochschild cohomology ring HH*(I") is isomorphic to
R[A,B,C,D)/((¢+¢ A (C+¢)B,(C+¢")C,2'D,
A%+ B? + C%, BC - 27" 'yD),
where R = Z[( + ("], deg A=deg B=degC =1 and deg D = 2.

Remark 4. In the case r = 1, this cohomology ring is already known by Sanada [8, Section
3.4]. In (8], he treats the Hochschild cohomology of crossed products over a commutative
ring and its product structure using a spectral sequence of a double complex. As a special
case, he determines the Hochschild cohomology ring of the quaternion algebra over Z.
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REMARKS ON QF-2 RINGS, QF-3 RINGS AND HARADA RINGS

KEN-ICHI IWASE

1. INTRODUCTION

In the procedings of the 1978 antwerp conference, M.Harada studied those rings whose
non-small left modules contains non-zero injective submodules. K.Oshiro called perfect
rings with this condition “left Harada rings”. These rings are two sided artinian, right QF-
2, and right and left QF-3 rings containing QF rings and Nakaeyema rings, and moreover,
these rings have left and also right ideal theoretic characterizations.

The purpose of this paper is to study the following well known theorems (see Anderson-
Fuller [1]) :

Theorem I. Right or left artinian QF-2 rings are QF-3.

Theorem II. For a right or left artinian ring R, R is QF-3 if and only if its injective
hull E(Rg) is projective.

Theorem III. Every Nakayama ring R with a simple projective right ideal is
expressed as a factor ring of an upper triangular matrix ring over a division ring,.

In Theorems I, I, we are little anxious whether the assumption “right or left artinian”
is natural or not. This assumption also appears in the following well known theorem due
to Fuller [6] :

Let R be a right or left artinian ring and let e be a primitive idempotent in R.
Then eRp is injective if and only if there exists a primitive idempotent f in R such
that S(eR) = fR/fJ and S(Rf) = Re/Je, where S(X) and J mean the socle of
X and the Jacobson radical of R, respectively.

In Baba-Oshiro [2], this theorem is improved for a semiprimary ring with “ACC
or DCC” for right annihilator ideals, where ACC and DCC mean the ascending chain
condition and the descending chain condition, respectively. As the condition ACC or
DCC for right annihilator ideals is equivalent to the condition ACC or DCC for left
annihilator ideals, the replacement of “right or left artinian” with “semiprimary ring with
ACC or DCC for annihilator right ideals” is quite natural.

In this paper, from this view point, we improve Theorem I as follows: Semiprimary
QF-2 rings with ACC or DCC for right annihilator ideals are QF-3. For Theorem II,
we show that, for a left perfect ring R with ACC or DCC for right annihilator ideals,
R is QF-3 if its injective hull E(Rg) is projective. For Theorem III, using the structure
theorem of left Harada rings, we improve the theorem as follows: Left Harada rings with
a simple projective right ideal is expressed as a factor ring of an upper triangular matrix
ring over a division ring.

The detailed version of this paper will be submitted for publication elsewhere.



2. IMPROVE VERSIONS OF THEOREM I AND THEOREM II

Recall that a right R-module M is called uniform if every non-zero submodule of M is
essential. We note that, if R is left perfect, Mg is uniform if and only if Mg is colocal.

The uniform dimensionof a module M is the infimum of those cardinal numbers ¢ such
that #7 < c for every independent set {N;}:er of non-zero submodules of M. We denote
the uniform dimension of M by unif.dimM, where #J means the number of elements of
I

PROPOSITION 1. (c.f.[3, Proposition.3.1.2]) Let R be a ring. We consider the

following four conditions.
(a) R is right QF-3.
(b) R contains a faithful injective right ideal.
(¢) For any projective right R module Pg, E(Pg) is projective.
(d) E(Rp) is projective.
Then the following hold.

(1) (@) = (b) holds. Further, if R is a left perfect ring, then () = (a) also holds.
(2) If R i left perfect, then (b) & (c) holds.

(3) If ACC or DCC holds on right annihilator ideals, then (d) = (b) does.

(4) (c) = (d) holds in general.

Remark : By Proposition 1, when R is a left perfect ring, we have (¢) & (b) & (c)
and (@) = (d), but in general (d) = (a) is not true.

For example, for the set @@ of rational numbers and the set Z of integers, we consider
R = (% g . Then gR is noetherian and has a faithful injective right ideal, so that
E(Rg) is projective, but R does not have minimal faithful right R module. (c.f. [18,
Theorem 6.2 (Vinsinhaler)])

The following Theorem is due to K.R.Fuller.

THEOREM A. ([1, Theorem 31.3]) Let R be a right or left artinian ring and let
f € Pi(R). Then grRf is injective if and only if there is a primitive idempotent e in R
such that S(rRf) & T(rRe) and S(eRg) = T(fRg).

Using this Theorem A, he showed that every right or left artinian QF-2 ring is QF-3.

Y. Baba and K. Oshiro improved Theorem A in [2] as follows:

THEOREM B. ([2]) Let R be a semiprimary ring which satisfies ACC or DCC for right
annihilator ideais and let e, f € Pi(R). Then the following conditions are equivalent:

(1) RRf is injective with S(rRf) = T(rRe).
(2) eRp is injective with S(eRg) = T(f Rr).

Now we show the following.



THEOREM 2. If R is a semiprimary @F-2ring with ACC or DCC for right annihilator
ideals, then R is QF-8.

3. AN IMPROVE VERSION OF THEOREM III

For our purpose, we need the following structure theorem due to Oshiro ([15]-[17]):

THEOREM C. Let R be a basic left Harada ring. Then R can be constructed as an
upper staircase factor ring of a block extension of its frame QF-subring F(R).

In order to understand this structure theorem, we must review the sketch of the proof
of Theorem C (for details, see Baba-Oshiro’s Lecture Note).

Let F be a basic QF-ring with Pi(F) = {ey, ...,e,}. We put A;; := e;Fe; for any 1, j,
and, in particular, put Q; := A;; for any i. Then we may represent F as

An Ap -+ Ay h Az - Ay
F o= An An - Ay | _ [Aa Q2 -+ Ay
Ayl A:ﬂ e Aw Ayl e Ay.y-l Qy

For k(1), ..., k(y) € N, the block eztension F(k(1),...,k(y)) of F is defined as follows:
Foreachi,se {1,...,y}, 7€ {1,...,k(®)}, t€{1,...,k(s)}, let

Qi if i= S, ]S t
Pij,st = J(Qt) if i= 8, .7 > t,

A, if 4#s,
and
Pasi  Pase - Py
Pli,s) = Pi2',sl Pi?..ﬂ PiQ,:vk(s)
Puatiys1 Pz -+ Pik(i;.sk(a)

Consequently, when i = s, we have the k(7) x k(¢) matrix

Qi cee vee Qi
Pi,i = | (@)

J(@) -+ J(Q) @
which we denote by Q(), and, when i # s, we have the k(i) x k(s) matrix

Ais -+ A
P(z’ s) = e
Ais ot Ais



Furthermore, we set

P(1,1) P(1,2) --- P(1,y)
= FE), k) = | P20 PR PG
P(y,1) P(y,2) --- P(y,y)

Q1) P(1,2) --- P(Ly)
P(2,1) (2) - P(2,y)

Pw1) P2 - QW)

Since F is a basic QF-ring, we see that P is a basic left Harada ring with matrix size k(1) +
.-+ k(y). We say that F(k(1), ...,k(y)) is a block extension of F for {k(1), ...,k(y)}.
In more detail, this matrix representation is given by

( Punn - Puaky 0 Pugt o Puagkg)
Py -0 Pagyary o0 Py 0 Paygkty)
P =F(k(1),...,k(y)) = : : : :
Paon -+ Bauwqy 0 Pay 0 Pk
\Pukmyar - Pukwar) 0 Pyt 0 Pokiy)aks)/

If we set

Pij = (Dijis »
where this means an element of P which the (i, ij)-position = 1, and another positions
are 0.

Foreachi=1,...,y, j=1,...,k(z), then {p;;}}_ '-‘S) is a well-indexed set of a complete
¥, ) Yi=1j=1

set of orthogonal primitive idempotents of P = F(k(1), ..., k(y)).
For Pi(P), we note that

PiiPr 2 pa J(P)5
foranyi=1,...,yand j =1,..., k().
Given the situation above, the following are equivalent:
(1) Fis a QF ring with a Nakayama permutation:

( e - e )
(1) "** Caly))
(2) P= F(k(l) .,k(y)) is a basic left Harada ring of type (x) with a well-indexed
set Pi(P {p.,}i’_ ;_'
Let R be a basm Harada ring. We call R a basic Harada ring of type () if there
is a permutation o of {1,2,...,m} such that (e;1 R, Res(jjn(s(j)) is an ¢-pair for every
j€{L,2,...,m}.



From now on, we assume that the Nakayama permutation of F is
€) v ey
(1) ‘' Eofy)/)’
and

we take the block extension P = F(k(1), ...,k(y)) of F. Leti € {1, ...,y} and consider
the i-pair (e;F; Fey(;)). Put S(A;;) = S(Q A,,) = S(A 'JQ,~)' Then we define an upper
staircase left Q(2)- right Q(o(¢))-subbimodule S(i, o()) of P(i,0(z)) with tiles S(A;;) as
follows:

(I) Suppose that i = o(i): Then we see from above argument that S(A;;) is simple
as both a left and a right ideal of Q; = Ay. Put Q := @;, J := J(Q;) and S := S(Q;)-
Then, in the k(Z) x k() matrix ring,

=pPei=|"7 i,
R

we define an upper staircase left Q(i)- right Q(i)-subbimodule S(i,1) = S(i, o(i)) of Q(:)
as follows:

S(z,4) = : ( the (1,1)-position = 0),

0

where, for the form of S(i,1), we assume that
(1) the (1,1)-position = 0,
(2) when @ is a division ring, that is, @ = S,

0--0 S
S(i,i) = o

0 0
Then, since S is an ideal of Q, we see that S(,%) = S(i,5(2)) is an ideal of Q(7).
We let Q(t) = P(i,0) = P(4,0)/S(, o(1)) for the subbimodule 5(i, o(i)). In Q(i), we
replace @ or J of the (p,q)-position by @ = @/S or J = J/S, respectively, when the
(p, q)-position of S(,%) is S. Then we may represent Q() with the matrix ring which is

made by these replacements.
For example,




) QQRQQQQ, 0SSSSS
JQ@eeegeg JQQRQQQ| [0osssss
=] 7 eQeeef_(/JJeee@l l05S5S5SS
YElo o g Q@ |V J I QQQ 0000SS
J J J JQ JJJJQQ 0000SS
J J J JJ J J J JJ@Q 00003SS

(IT) Now suppose that i # g(i): Put §:= Si() = S(g,Aisqi)) =S (Aw(i)q,(,.,)' Then S
is a left Q;- right Q,(;)-subbimodule of A = A;;(;). In the left Q()- right Q(o(z))-bimodule

A - A

P(i,o(3)) = ( ) (k(2) x k(o(2))-matrix ),

A .- A
we define an upper staircase subbimodule S(z, 0(?)) of P(3, (i) with tiles S of P(¢, o(¢))
as follows:

0---0 S
S(i,0(i)) = ( the (1, 1)-position = 0)
0

and put P(i,0) := P(i,0(?))/S(i,0(i)). We may represent P(i,o) as

A---A A
P(i,0) =
A
Next we define a subset X of P = F(k(1), ...,k(y)) by
X(1,1) X(1,2) --- X(1,y)
X = X(2,1) X(2,2) --- X(2,9)
X1 X2 - Xy

where X (¢,7) (C @;) and X(3,7) (C P(i, 7)) are defined by

a0 if i#e(),
X(i1) = {S(i, i) if i=0(i),

C o 0 if j #o(1),
X“”_{S@ﬁ if §=o(i).



Then we see that X is an ideal of P = F(k(1), ..., k(y)). The factor ring F'(k(1), ..., k(¥))/ X
is then called an upper staircase factor ring of P = F(k(1), ..., k(y)). If, in the represen-
tation

P(l)l) P(112) P(l,y)
P = F(k(1), ....k) = | @Y P& - P2y |
P(y,1) P(y,2) -+ P(y,v)

we replace P(i,c(i)) with P(Z,0(i)) and put P:= F(k(1),...,k(y))/ X, then it is conve-
nient to represent P as follows:

/p(l,l) ..+ P(1,0(1)) p(l,y)\
B = P@,1) --- P(i,0(3))
\P(y,1) - - o Plyo@) - Py

From the form of P together with ¥ > 1, where the k appears in the matrices above
(), (IT), we can see that P = F(k(1), ...,k(y))/X is a basic left Harada ring. More-
over, by the upper staircase form of S(z,0(i)), we have left Harada rings P = P, =
F(kQ),....,k¥)), P, 5, ..., P, P = P and canonical surjective ring homomorphisms
@i : P, = P,y with ker¢; a simple ideal of P; as follows:

PSP 2 p 2 p=P=FkQ1),...,ky)/X.
The following is the fundamental structure theorem (see Oshiro [17]).

THEOREM D. For a given basic @QF-ring F', every upper staircase factor ring P/X of
a block extension P = F(k(1), ..., k(y)) is a basic left Harada ring, and, for any basic left
Harada ring R, there is a basic QF-subring F(R) which is called the frame QF-subring,
R is represented in this form by F(R).

Using this theorem, we show the following

THEOREM 3. Let R be a basic indecomposable left Harada ring. If R has a simple
projective right R-module, then R can be represented as an upper triangular matrix ring
over a division ring as follows:

LN

D] 0

=)
iR




By THEOREM 8 we have the following corollary.

COROLLARY 4. (c.f.[]1, Theorem 32.8]) Let R be a basic indecomposable Nakayama
ring. If R has a simple projective right R-module, then R can be represented as a factor
ring of an upper triangular matrix ring over a division ring.
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SOME CONGRUENCES CONCERNING FINITE GROUPS

KAORU MOTOSE

ABSTRACT. In this paper, we present a lemma about orders of normal subgroups in a
transitive group of prime degree. This lemma has an application to prove simplicity of the
alternative group As of degree 5, and 4-transitive Mathieu groups My, M)z, Mas, Mag.
Please use this lemma for your lecture to your students about group theory or Galois
theory. I present some comments to Feit-Thompson conjecture. I think also it is not so
popular, to mathematician, even to finite group theorists and number theorists.

Key Words:  Sylow theorem, Alternative groups, Mathieu groups,
2000 Mathematics Subject Classification:  Primary 20B20 ; Secondary 20B05, 20B35.

Sylow theorem states that the number of distinct p-Sylow subgroups is congruent
to 1 modulo p. In this paper, we call it Sylow congruence and using this, we shall
present a lemma to prove the simplicity of the alternative group As and Mathieu groups
My, Mya, Mas, Moy Moreover, we shall give some comments to Feit-Thompson Conjec-
ture. The part up to Theorem 9 was written in considering for education to students.

Congruences in finite groups are important between group theory and number theory.
It is the most important congruence in group theory that the order |H| of subgroup H of
a group G is a divisor of |G|. For the proof of this, we use all conditions in the definition
of the group. Apply this to the unit group of the residue ring Z/nZ, we have Fermat little
theorem and Euler theorem.

Let ', be the set of complex numbers of order n and we define cyclotomic polynomial
®a(z) = [l er.(z — 7). Then formula 2 — 1 =[], ®4(z) yields form classifying orders
in the group of roots of 2™ — 1 = 0, which is equivalent to the definition of the cyclotomic
polynomial ®n,(z). It follows from this formula that the group F; is cyclic, where F, is
a finite field of order ¢ and F, = I, \ {0}. Usually, we prove this using orders of two
elements in the abelian group IF;.

From Sylow congruence, non cyclic groups of order pg with primes p < ¢ have a normal
g-Sylow subgroup and ¢ distinct p-Sylow subgroups. Groups of this kind are there infinite
many for a fixed prime p by the Dirichlet theorem which can be proved by cyclotomic
polynomials in case ¢ = 1 mod p. These groups suggest Burnside’s p’¢* theorem.

1. Some notations and elementary results

In this section we shall give some notations and elementary well known results. Let G
be a finite group and let A be a finite set. We say A is a G-set if satisfying the following

The detailed version of the rest from Lemma 10 will be submitted for publication elsewhere.



conditions
P e (@), =a"anda’ =aforacAand gheg.

Weset Gr = {g € G| o = a for all € T'} for a subset I of A. In case G5 = {1},
we say A is a faithful G-set or G is a permutation group on A. We can classify elements
in G-set A by orbits a® = {a% | g € G} for a € A and we obtain

A= Uaf, and [A] = Z [ag].
k k
We set G, = {g € G | of = a} for @ € A. Then G, is a subgroup of G. Since a? = o is
equivalent to G,g = G,h, we have
|G| = [°||Gal.

Let G be a permutation group on A. G is transitive if there exists ¢ € G with o = 8
for arbitrary o, 8 € A. G is k-transitive (k > 2) if G, is (k — 1)-transitive on A \ {a}.

Lemma 1. Let G be 2-transitive on a finite set A and let {1} # N be a normal subgroup
of G. Then we have

(1) G =GoaUGLxG, for z & G,.

(2) G=G,N and N is transitive on A.

Proof. (1) Let g € G\ G, then a # of and a # of. Since G is 2-transitive, there exists
h € G, such that a® = o**. Thus g(zh)~! € G, and so0 g € Gozh C Go2G,.

(2) If N C G,, then we have a contradiction

NcC n 9 'Gag = n Gas = Ga = {1}.
9€CG 9€C
Hence we have N ¢ G, and there exists n € N \ G,. Since G is 2-transitive,

G = Ga| JGanGa C GaNGa = GoN and A = € = oV = a”.

A transitive group G is regular on A if G, = 1 for some a € A. Moreover, for
subset T of G, we set normalizer Ng(T) = {g € G | g'Tg = T} of T and centralizer
Co(T)={geG|gt=tgforalit €T} of T.

Lemma 2. Let G be 2-transitive on a finite set A and let N # {1} be a regular normal
subgroup of G.
(1) N ts elementary abelian and |A| = |N| is a power of a prime.
(2) If Go is simple, then G, is a subgroup of Aut(N) = GL(s,Fp) where Aut(N) is
a automorphism group of N, |A| = |N| = p*, and GL(s,F,) is the general linear
group over a prime field IF,.

Proof. (1) We prove that G, is transitive on N \ {1} by the action n9 = g~!ng for
n € N\ {1} and g € G,. Let s # t be arbitrary elements of N\ {1}. Then o*,a* € A\{a}
and there exists g € G, such that o = o' because G, is transitive on A \ {a}. Hence
we have gtg~! = s from o*9 = of = o and gtg~'s~! € N, = {1}.



Thus zP = 1 for all z € N since N contains an element of a prime order p and G, is
transitive on N \ {1} by the action a? = gag™! for a € N and g € G,.

Thus N is a p-group and the center Z # 1 of N is normal in G (see the paragraph
before Lemma 8). Hence it follow from the next that N = Z, namely, N is elementary.

GaZ =G =GN, GoNZ={1}=G,NN
On the other hand,
p* = [N| = [No|le™[ = [&"] = [A].

(2) If GaNCg(N) # {1}, then G4 = G, NCg(N) since G, is simple and Cg(N) is normal.
Thus G, C Cg(N) which is a contradiction to that G, is transitive on N \ {1}. Thus it
follows from the above that

ICa(N)| = la®™)| = |A] = |a"| = |N|
Thus this implies N = Cg(N) from N C Cg(N). Hence we have

Ga ® GoN/N = G/N = Ng(N)/Ce(N)
is a subgroup of the automorphism Aut(N) of N by considering map n — g~ 'ng for
n€ N and g €G.

In the next well known theorem concerning the simplicity of groups, (1) is useful for
multiply transitive groups. (2) is useful for linear groups. As the corollary of (2), (3)
is useful for As and PSL(2, K), where K is a field with |K| > 4. In this theorem, it is
unnecessary to assume A is finite and G is finite.

Theorem 3. Let G be 2-transitive on a set A. Then we have
(1) (see [7, p-22) and [8, p. 263]) If G, is simple and G has no regular normal subgroups
# {1}, then G is simple.
(2) (Iwasawa, 1941, see [8, p. 263]) If G = G’ and G, has a normal solvable subgroup
H such that G = (z7'Hz | z € G), then G is simple.
(3) (Corollary of (2)) If G = G’ and G, # {1} is solvable, then G is simple.

Proof. Let N # {1} be a normal subgroup of G.

(1) We have G = G,N from Lemma 1 (2) and G,[|N # {1} since G has no regular
normal subgroups. G, (N # {1} is normal in G, and so G, = Go[|N C N from the
assumption. Hence we have G = G,N = N because G is 2-transitive.

(2) HN is normal in G by G = G,N. Hence we have

G=(z"'Hz|z€G)CHN and G = HN

Thus we have a contradiction such that a non solvable group (G/N)Y = G/N = HN/N
and a solvable group H/H N N are isomorphic.
(3) Weset L = (G, | a € A). If L = Gg for some 8 € A, then L = G, for all
a € A because these are conjugate and L is normal. Hence we have a contradiction
L =Ngea Go = {1}. Since G, is maximal from Lemma 1 (2), we have
L={z"'Gz |2€G) =G

Thus G is simple from (2).



Another proof. We have G = G,N from Lemma 1 (2). G, has a normal subgroup H
such that G,/H is abelian. Noting HN is normal in G, Hence G/HN = G,N/HN is
abelian because this is a homomorphic image of abelian group G,/H. Thus G = G' C HN
and G = HN. H has a normal subgroup K such that H/K is abelian and G/KN =
HN/KN is abelian. Thus G = G' C KN and G = KN. We continue this process and
we have G = N.

The next (1) is trivial and is needless to prove. However it is very important to obtain
all conjugate classes of the symmetric group S,. If students don’t know (1), then it needs
much calculations to prove (2).

Remark 4. (1) (k)7'°7 = k°7 for k € A, namely, we have
T ivig ) (e -+ Js) - (ke - k)T = (845 - - 40) (5135 -+ 37) -+ (KTHS - K])

and
gy = ( 1 27 ... 7 )
197 907 ... p°T .
(2) Using the above, we have 7~1(12)(34)7 = (1727)(374") for o = (12)(34).
Thus subgroup V = {(1),(12)(34), (13)(24), (14)(23)} is normal in the symmetric group
Sy of degree 4.

The next are well known and appears in many text books for students. Note that
product of permutation should be left hand in this paper because actions on A is right
hand.

Remark 5. We may write here 1,2,3,4,5 instead of arbitrary ky, ko, k3, ke, ks € A, re-
spectively, in (2) and (3).
(1) An(n > 3) is (n-2)-transitive on A = {1,2,...,n} = {a),ay,...,an} since either o
or T = 0(an-1an) is an even permutation for k% = a; for all k.
(2) An(n > 3) is generated by 3-cycles in virtue of (12)(23) = (132) and (12)(34) =
(12)(23)(23)(34) = (132)(243).
(3) An(n 2 5) is perfect, namely A, = A}, by (2) and

(123) = (23)(45)(123){(23)(45)} " (123)""

2. Some proofs of simplicity of A;

The simplicity of the alternative group As is important for history of mathematics and
education on students studying group theory and Galois theory. There are many proofs
about this.

Method 1: Ajs is 3-transitive and generated by 3-cycles. Non trivial normal subgroup
contains a 3-cycles.

Method 2: The numbers of elements in five conjugate classes are 1,12,12,

20,15 and any partial sums of these containing 1 is not a divisor of 60.

We shall give another two proofs using the above lemmas and theorem.



Theorem 6. A; is simple.

Proof 1. Stabilizer A4 of 5 is solvable because A4 has a normal subgroup
vV = {(1), (12)(34), (13)(24), (14)(23)} such that A,/V and V are abelian (see Remark 1
(2)). As is perfect by Remark 2 (3) and 3-transitive by Remark 2 (1). Thus As is simple
by Theorem 1 (3).

Proof 2. Let {1} # N be a normal subgroup of As.

If 5 | | V| then N contains all 5-cycles from Sylow theorem and so |[N] > 4! =24. If N
is regular then |N| = 5 and so we have a contradiction from the above.

Thus N is not regular, namely, M = A; NN # {1}. Since A5 and A4 are 2-transitive,
As = AN and A; = A3M, and so A5 = AqN = A3M N = A3N. In case A3NN = {1}, we
have || = 20 contradicts to the first statement in this proof. Hence A3 = A3NN # {1}
from |A3| =3 and A5 = N.

Theorem 7. A,(n > 5) is simple.

Proaf. We may assume n > 6. Let {1} # N be a normal subgroup of A,. In case N is
regular, n = p* from Lemma 2 (1) where p is prime, and A,_, is a subgroup of GL(s, p)
from Lemma 2 (2). Thus we have the next contradiction from p* =n > 4.

@V = | Aoy < [GL(s, )| = [Tizh(p* — p*) < E5L

Thus N is not regular, namely, N N A,_, # {1}. We may assume inductively A,_, is
simple. Hence A, = Ap-1 NN C Nandso A, = A, 1N=N
(see also Theorem 1 (1) ).

3. Transitive groups of prime degrees

Weset Ar={a € A|a' =aforallt € T} for a subset T of G. Considering G-set G
for p-group G by conjugation, (1) in the next shows that the center G¢ of p-group G is
non trivial. (2) is also proved by elementary number theory or as the special case to cyclic
group of order p°r in the following proof of Sylow theorem. However, the next proof is
very simple.

Lemma 8. (1) |A| = |Ag| mod p for a p-group G and G-set A.
e
(2) per = r mod p for a prime p.

Proof. (1) 1t follows from |G| = |Ga, ||| that

|a] = |Agl+ ) |af| = |Ac| mod p.
laf1>1

(2) Compare coefficients of zP° in both sides of the next equation.
(z+1)P" = (2 +1)" in F,[z].

The following is the proof of Sylow theorem by H. Wielandt. This is useful to the order
of non trivial normal subgroup of a transitive group of a prime degree.



Theorem 9 (Sylow). We set |G| = pr with (p,7) = 1, and np, > 0 is the number of
distinct p-Sylow subgroups. Then ny, = 1 mod p, in particular, there ezists a p-Sylow
subgroup, and a p-subgroup is contained in t~1St for t € G and a p-Sylow subgroup S. In
particular, p-Sylow subgroups are mutually conjugate.

Proof. We set A = {S C G| |S| = p*}. Then A is G-set by S9 = Sg for g € G. We
also consider S € A is G(s)-set by s* = sh for s € S and h € G{s). We can see that Gs)
is a p-subgroup because [s9(5}] = |sG{s}| = |Gs}| for all s € S and so |G(s)| is a divisor
of |S|. Using |G| = |G : G{s}||Gs}|, we can see Gysy is a p-Sylow subgroup if and only if
P /|G : G(s)|. Hence we have

er
0#r= (pe) =|A|=ZIG:G{5}|En,rmodp.
P SeA
From this congruence, we have n, = 1 mod p.
Let H be a p-subgroup and let G/S be the set of right cosets of a p-Sylow subgroup
S. G/S is H-set by (Sg)* = Sgh.

0£r=|G/S|=|(G/S)g| mod p.
Hence |(G/S)#| # 0 implies there exists St with StH = St and so tH C StH = St.

In the next lemma, [Ng(P)| = pr is the foundation on the proof of simplicity of
multiply transitive groups As, M1, M2, Mo, Mog.

Lemma 10. Let p be a prime and let G be a transitive group on a set A, where |A| = p+s
with 8 < p. We set |G|/p = r mod p, where 0 < r < p. Then for a p-Sylow subgroup P of
G, we have

Ce(P)=P, r|p—1 and |[Ng(P)| = pr.

The following lemma gives structure of normal subgroups in a transitive group of prime
degree. The assertion |{G/G’| | r follows from Lemma 10.

Lemma 11 (5, p. 607). Let G be a transitive group of odd prime degree p on a set A and
let G' # {1} be the commutator group of G. We set |G|/p = r mod p, where 0 < r < p.
Then we have

(1) G’ is contained in all non triviel normal subgroups.
(2) G/G' is cyclic, |G/G'| | r and T | p—1.

Corollary 12. (1) Let G be transitive on a set A of a prime degree p > 3 and |G|/p =
rmod p, where 0 <r <p. Thenr |p—1.
If N is a non trivial normal subgroup of G, then |G|/r | |N|.
If G be 3-transitive and (r, g%) =1, then G is simple.
(2) Let G be 2-transitive on a set A of a degree p + 1, where p > 3 is prime but not a
Mersenne prime and |G|/p=r mod p, where 0 < r <p. Thenr |p-1.
If N is a non trivial normal subgroup of G, then |G|/r | |N|.

If G is 4-transitive and (r, ,J,%) =1, then G is simple.



Example 13. (1) Simplicity of groups As, My, M\2, Ma3, My, follows from Corollary
12, founded on Lemma 10, because As, M);, Ma; are 3-transitive and these orders
are 60, 11-10-9-8, 23.22-21- 2048, respectively and because M9, My, are
4-transitive and these orders are 12 - |My,|, 24 - |Mys|, respectively (see [6, p.303],
[7, p- 298] and [8, p. 292]).

(2) If M;2 has a transitive extension G = M3, then we set p = 13 and % =12-11-
10-9-8 = (—1)°5! = 10 mod 13. Thus r = 10 is not a divisor of 12 = p — 1. Hence
there does not exists M3 (see [6, p. 302] and [8, p. 298]).

The next is well known and shows that transitive groups of odd prime degrees are closed
to simple groups.

Theorem 14. Let G be a transitive group of odd prime degree p on a set A and let G’
be the commutator group of G. Then we have

(1) IfG' =1, then |G| =p.

(2) (Galois) IfG'#1 and G" =1, then G is an affine group over a prime field F,.

(3) If G" # 1, then G’ is simple. In particular, G = G' implies G is simple.

Proof. (1) We have G = Cg(P) = P from Lemma 10 (1).

(2) G’ is transitive, abelian and of degree p. Hence G' = P from (1) and P can be
identified to the additive group (F,,+) of F;. A subgroup G, P has the order p|G,| = |G|
since Go NP = P, = 1. Hence G = G, P Since G' = P = Cg(P), G = Ng(P), we have
G, = G/P is a cyclic subgroup of

Aut((Fp, +)) = {z 2 sz [ s € F;}
and the action of G, to P by conjugation is the same with the multiplication in [,

(3) We have G' = G" from G > G" # {1} and Lemma 11 (1). Let H # {1} be normal
in G’. Then H D G”" = G’ from Lemma 11 (1) since G’ is transitive and of degree p.

4. Some comments to Feit-Thompson Conjecture

In this paper we shall give some comments to Feit-Thompson Conjecture (see below
Conjectures 1 [2] and 2 [9]). For distinct primes p and g, we set

A= ®y(g) = (¢" ~ 1)/(g — 1) and B = B,(p) = (p* - 1)/(q - 1).
Conjecture 1. A does not divide B for A < B (see [2]).

In the paper [1, p.1] and the book [4, p.125], it was mentioned that if it could be proved,
it would greatly simplify the very long proof of the Feit-Thompson theorem that every
group of odd order is solvable (see [3]).

(1) in the next is fundamental to consider Conjecture 1 because of B > Aforg > p > 2.

(2) is very easy but it is slightly useful for using computer and a starting point for
Conjecture 1. As a special case of (2), we may assume p and ¢ are odd for Conjecture 1.

In case p = 3, it seems to be very important from [2]. In this case, we may consider
g = —1 mod 6 noting (2) and q is odd. Moreover we may assume A is prime from (3).



mt—1 nm

Comment 1. (1) —7 >
(2) In case g = 1mod p, then A does not divide B.

(3) In case p =3 < q and A is composite, then A does not divide B.

(4) In case p=3,7< q and ¢ =2 or 4 mod 7, then A does not divide B.

-1 X
3 for integers n > m > 2.

Conjecture 2. A and B are relatively prime (see [9]).

If a prime number r divides both A and B then r = 2Apg + 1 for some integer A (see
Comment 3 (3)). Using computer, Stephens found a counterexample p = 17,¢ = 3313
and r = 112643 = 2pg + 1 and confirmed that r is the greatest common divisor of A and
B by computer, so this example leaves conjecture 1 unresolved (see [9]).

At the present, it is known by computer that no other such pairs exist for p < ¢ < 107
and p=3 < g < 10M (see [4)).

We don’t know that Conjectures have some relations with (2) and (3).

Comment 2. If p = 17 and q = 3313, then we have

(1) (Stephens [9]) (Dp(q), 2q(p)) = 2pg + 1.
(2) p’;—' = 1mod q.
(3) ¢"7 =1 mod p2.

In general, there are few prime numbers p satisfying congruence
=1
a"z = 1mod p? for a fixed natural number @ > 1 with (@, p) = 1. For example,

a | 2 | 3 | 17 |3313
3 < p< 131077 3511 11 46021,48947 | 7,17
(p<6x10% | (p<107)

(1) and (2) in the next are not useful to the computer but may be useful to consider
Conjectures. Here the notation |c|; means the order of ¢ mod d for natural numbers ¢ and
d with (¢,d) = 1.

The conjecture 1 is now open in case p = 3 mod 4 and ¢ = 3 mod 4 though there are
another unsolved cases.

Comment 3. Let p, g are distinct primes. We set pj +qk =1, { = pj® +qk?, a =
(pg)t, and 1 < d is a common divisor of ®,(q) and ®,(p). Then the following hold.

(1) p=lgla and g = p|a-

(2) @® =p, a? = ¢ mod d and pq = |a|q namely, Pyq(e) =0 mod d.
(3) 2pq | v(d).

(4) If p=3mod 4, then d = 1 mod 4.

(5) If p=3 and g = 1 mod 4, then A does not divide B.
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AN INTRODUCTION TO NONCOMMUTATIVE ALGEBRAIC
GEOMETRY

IZURU MORI

ABSTRACT. Since classification of low dimensional projective varieties has been active
and successful in algebraic geometry for many years, one of the major projects in noncom-
mutative algebraic geometry is to classify low dimensional noncommutative projective
varieties defined by Artin and Zhang. In this note, we will survey this project. Clas-
sification of noncommutative projective curves were completed by Artin and Stafford
(1995). For classification of noncommutative projective surfaces, we have the following
conjecture due to Artin (1997); every noncommutative projective surface is birationally
equivalent to either (1) a quantum projective plane, (2) a quantum ruled surface, or (3) a
surface finite over its center. Classification of quantum projective planes were completed
by Artin, Tate and Van den Bergh (1990}, however, classification of the other types of
surfaces together with the above conjecture are still open.

1. QUASI-SCHEMES

Throughout, let k¥ be an algebraically closed field. In this paper, we assume that all
rings, schemes and abelian categories are noetherian. First, we define the basic object of
study in noncommutative algebraic geometry.

Definition 1 (Artin-Zhang 1994 [6], Van den Bergh 2001 [18]}. A quasi-scheme (over k) is
a pair X = (mod X, Ox) where mod X is a (k-linear) abelian category, and Ox € mod X
is an object. Two quasi-schemes X and Y are isomorphic (over k) if there exists a (k-
linear) equivalence functor F : mod X — modY such that F(Ox) & Oy.

The above definition was modeled by the following example.

Example 2. A (usual) scheme X is a quasi-scheme X = (mod X, Ox) where Ox is the
structure sheaf on X, and mod X is the category of coherent Ox-modules.

Notion of quasi-scheme includes noncommutative schemes.

Example 3. For a ring R, the noncommutative affine scheme associated to R is a quasi-
scheme Spec R := (mod R, R) where mod R is the category of finitely generated right R-
modules. In fact, if R is commutative and X = Spec R in the usual sense, then the global
section functor I'(X,-) : mod X — mod R induces an isomorphism of quasi-schemes
(mod X, Ox)} — (mod R, R).

Example 4. For a graded ring A, the noncommutative homogeneous affine scheme asso-
ciated to A is a quasi-scheme GrSpec A := (grmod A, A) where grmod A is the category
of finitely generated graded right A-modules.

This is an expository paper. The detailed version of this paper will be submitted for publication
elsewhere. ’



The most important example of a quasi-scheme in noncommutative algebraic geometry
is the following.

Example 5 (Artin-Zhang 1994 [6]). For a graded ring A, the noncommutative projective
scheme associated to A is a quasi-scheme Proj A := (tails A, .A) where
o torsA = {M € grmod A | M,, = 0 for all n >> 0} is the full subcategory consisting
of torsion modules,
e tails A = grmod A/ tors A is the quotient category,
o 7 : grmod A — tails A is the quotient functor, and
e A=7AE€ tails A

Note that M = N in tails A if and only if M5, & Ny, in grmod A for some n.
The above definition was inspired by the following classical result.

Theorem 6 (Serre 1955 [15]). If A is a commutative graded algebra finitely generated in
degree 1 over k and X = Proj A in the usual sense, then the composition of functors

mod X —— grmod A — tails A
F — [(X,F) = @,z ['(X, F(n))
induces an isomorphism of quasi-schemes (mod X, Ox) — (tails A, A).

If A is a graded domain finitely generated in degree 1 over k of GKdimA = d + 1,
then it is reasonable to call Proj A a noncommutative projective variety of dimension
d. In particular, we call Proj A a noncommutative projective curve (resp. surface) if
GKdimA = 2 (resp. GKdimA = 3). Since noncommutative projective curves were
classified by Artin and Stafford (1995) (3], the next project is to classify noncommutative
projective surfaces. This project is still wide open. We only have the conjecture below.

If A is a graded domain over & and X = Proj A, then we define the function field of X
by

k(X) := {a/b| a,b € A are homogeneous elements of the same degree}.
We say that two noncommutative projective varieties X and Y are birationally equivalent
if k(X) = k(Y') as k-algebras.

Conjecture (Artin 1997 [1]) Every noncommutative projective surface is birationally equiv-
alent to one of the following:

(1) a quantum projective plane.

(2) a quantum ruled surface.

(3) a surface finite over its center.

Classification of quantum projective planes were completed by Artin, Tate and Van den
Bergh (1990)[4], however, classification of the other types of surfaces together with the
above conjecture are still open.

2. WEAK DIVISORS

Definition 7. [8] Let X be a quasi-scheme over k. A weak divisor on X is a k-linear
autoequivalence D : mod X — mod X.



We denote by WPic X the group of weak divisors on X. For D € WPicX and n € Z,
we denote the n-fold composition of D by
D" :mod X — mod X
M = M(nD).

If X is a (usual) scheme over k and D is a Cartier divisor on X, then

~®x Ox(D) :mod X — mod X
F = F(D) .= F @0, Ox(D)
is a weak divisor. More generally, the pair (¢, £) where ¢ € Aut X is an automorphism
of X and £ € Pic X is an invertible sheaf on X defines a weak divisor by
D=(0,L): mod X — mod X
F— F(D) := 0.(F ®oy L).
In fact, if X is a smooth projective variety with an ample or anti-ample canonical divisor,
then every. weak divisor is given by the pair as above (7).

If X is a quasi-scheme over £k and D € WPic X, then we can construct a graded algebra
over k by

B(X, D) := (P Homx (Ox, Ox(nD))

ne€Z
with the multiplication defined as follows:
Homy (Ox,Ox(mD)) x Homx(Ox, Ox(nD)) (a,b)
l l
Homx(Ox, Ox((m + n)D)) ab:=a(nD)ob

Ox —— Ox(mD)
0] [
Ox —2— Ox(nD) 22, Ox(mD)(nD)= Ox((m + n)D).
Example 8. If A is a graded algebra and X = GrSpec A, then
(1) : grmod A — grmod A
M- M(1)

where M(1); = M;,, is a weak divisor on X, and

B(X,(1)) = €D Homgmoa 4(4, A(n)) = A.

neZ

Example 9. Let X be a projective scheme over k. If D is a very ample divisor on X,
then B(X, D) is a homogeneous coordinate ring of X so that X = Proj B(X, D).



3. NONCOMMUTATIVE PROJECTIVE CURVES

We have a nice characterization of a quasi-scheme to be a noncommutative projective
scheme as in the commutative case.

Definition 10 (Artin-Zhang 1994 [6]). Let X be a quasi-scheme over k£ and D € WPic X
a weak divisor. We say that D is ample if
o {Ox(—nD)}nen is a set of generators for mod X, and
e for every epimorphism M — A in mod X,
Homyx (Ox(—nD), M) = Homy (Ox(—nD),N)
is surjective for all n > 0.

Roughly speaking, D € WPicX is ample if and only if Ox(—nD) is a projective
generator for mod X for n > 0.

Definition 11 (Artin-Zhang 1994 [6]). We say that a graded algebra A satisfies x; if
dimy Ext}(4/A>1, M) < oo for all M € grmod A.

The following result, analogous to the commutative case, is a characterization of a
quasi-scheme to be projective.

Theorem 12 (Artin-Zhang 1994 [6]). Let X be a Hom-finite quasi-scheme over k. Then
X £ Proj A for some graded algebra A satisfying x, if and only if X has an ample weak
divisor. In fact, if D is an ample weak divisor on X, then X & Proj B(X, D).

Let X be a (usual) scheme over k. Recall that the pair (¢, L) € Aut X x Pic X defines
a weak divisor D = (o, £) € WPic X. We denote B(X,0,L) := B(X, D). If D is ample,
then X 2 Proj B(X, o, L), so we call B(X,0,L) a twisted homogeneous coordinate ring
of X. Note that if & # id, then B(X, g, £) is typically a noncommutative graded algebra
over k.

The following results says that every noncommutative projective curve is isomorphic
to a commutative one, which completes the classification of noncommutative projective
curves.

Theorem 13 (Artin-Stafford 1995 [3]). If A is a graded domain finitely generated in degree
1 over k of GKdim A = 2, so that Proj A is a noncommutative projective curve, then there
ezist a commutative projective curve X and an ample weak divisor D = (o, L) on X such
that A, = B(X, 0, L)>n for some n. In particular, Proj A = Proj B(X,0,£) = X.

4. QUANTUM PROJECTIVE PLANES

Next, we will define quantum projective planes and explain their classification.
Definition 14 (Artin-Schelter 1987 [2]). A graded algebra A is called a quantum poly-
nomial algebra if

e gldimA =d < o0, .
o Hy(t) = ZieN(dimk A =(1- t)—d, and
k ifi=d

* Extly(k, 4) = {o if i d.



Since the only commutative quantum polynomial algebra is a commutative polynomial
algebra generated in degree 1 over k, if A is a quantum polynomial algebra of gldim A =
d + 1, then it is reasonable to call Proj A a quantum projective space of dimension d. In
particular, we call Proj A a quantum projective plane if gldim A = 3.

Let X be a (usual) scheme over k. Recall that every very ample invertible sheaf £ €
Pic X on X defines an embedding into a projective space X — P(V*) where V = I'(X, £)
and V* is the vector space dual of V. If ¢ € Aut X is an automorphism of X, then we
can construct a quadratic algebra

AX,0,L) :=T(V)/({feV&V] flr, =0}
where
Lo == {(p,o(p)) | p€ X} CP(V") x P(V")
is the graph of X under o.

There is a natural graded algebra homomorphism (often surjective) A(X,0,L) —
B(X, 0, L), which induces a map of quasi-schemes (often an embedding) Proj B(X,a, L) —
Proj A(X, o, L).

The following result completes the classification of quantum projective planes.
Theorem 15 (Artin-Tate-Van den Bergh 1990 [4]). A groded algebra A is o quantum
polynomial algebra of gldim A = 3, so that Proj A is e quantum projective plane, if and
only if A= A(X,o0,L) where either

(1) X =P, L = Ox(1), and o € AutP?, or
(2) X c P? is a cubic divisor, L = Ox(1), end 0 € Aut X such that
a* (L) # L, but (0%)'(L) ®ox L = 0*(L) Box 0" (L).
Example 16. For a generic choice of (g, b, c) € P?

A= k{z,y, 2)/(cx? + bzy + ayz, azz + cy® + bzz, byz + azy + c2?) & A(X,0,0x(1))

is a quantum polynomial algebra of gldim A = 3 where
X =V((a®+ 8 + P)zyz — abe(z® + 4* + 2%)) c P2

is a smooth elliptic curve and ¢ € Aut X is the translation by the point (e,b,c) € X in
the group law of X. The above algebra A is called a 3-dimensional Sklyanin algebra.

5. QUANTUM RULED SURFACES

Let X be a smooth projective curve over k. We will define a quantum ruled surface
over X. First, we recall a commutative ruled surface over X.
One of the characterizations of a ruled surface over X is a scheme defined by P(£) :=

Proj S(€) where
o £ is a locally free Ox-module of rank 2, and
e S(£) is the symmetric algebra of £ over Ox.
Note that S(£) = T(£)/(Q) where

e T(€) is the tensor algebra of £ over Ox, and
e Q C £ ®oy € is an invertible Ox-subbimodule locally generated by the sections

of the form zy — yz.



We will extend this construction.

Recall that if R is a commutative ring, then R-R bimodules can be identified with
R ® R-modules. If X = Spec R, then Spec(R® R) = X x X, so X-X bimodules can be
identified with X x X-modules.

Definition 17. Let X be a smooth projective variety over k. A coherent Ox-bimodule
is a coherent sheaf M on X x X such that

pri:SuppMCXxX—- X
are finite for i = 1,2 where pri(z;, z2) = z; are projection maps.

We say that a coherent Ox-bimodule £ is locally free of rank r if pri.€ are locally free
ofrank r on X fori=1,2.

If X is a smooth projective variety over k, then every coherent locally free Ox-bimodule
£ of rank r has a right adjoint £* which is also a locally free Ox-bimodule of rank 7, that
15,

HomX(- ®0x 8| —) = Homx(—-, - ®0x 8.)
We say that an invertible Ox-subbimodule @ C £ ®¢, £ is non-degenerate if the compo-
sition
E'@ox Qo E' ®oyE®o, E—E
is an isomorphism.

For the rest of this section, let X be a smooth projective curve over %.

Definition 18 (Van den Bergh 1996 [17]). A quantum ruled surface over X is a quasi-
scheme P(€) := (mod IP(£), Op(s)) where

e £ is a locally free Ox-bimodule of rank 2,

o Q C & ®oy £ is a non-degenerate invertible Ox-subbimodule,

o A=T(E)/(Q) is the graded Ox-algebra,

e modP(£) = tails.4, and

o Op(cy = m(Ox ®oy A) € modP(£), called the structure sheaf on P(£).

It is known that P(£) is independent of the choice of a non-degenerate Q. In fact, Q is
not even needed to define P(£) [19].

Although quantum ruled surfaces have been studied intensively (e.g. (9], [11], [12], {13],
[14], [19]), classification of them is still wide open. We will end this paper by showing a
recent progress on it.

Theorem 19. [10] If £ is a locally free Ox-bimodule of rank 2, and L, M are invertible
Ox-bimodules, then
P(L ®ox € @0, M) ZP(E).

Corollary 20. [10] If € is a decomposable locally free Ox -bimodule of rank 2, then P(€) =
P(Ox @ L) for some invertible Ox -bimodule L.

Every invertible O x-bimodule is isomorphic to
Ly :=priL Qox.x Or,

where (0, £) € Aut X x Pic X [5], so quantum ruled surfaces P(£) such that £ are decom-
posable are also classified by the triples (X, 60. L).
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PRIMITIVITY OF GROUP RINGS OF
ASCENDING HNN EXTENSIONS OF FREE GROUPS

TSUNEKAZU NISHINAKA

ABSTRACT. Let H be a group, and let ¢ : H — H be a monomorphism. The ascending
HNN extension corresponding to ¢ is the group H, = (H,¢tt='ht = p(h)). A ring is
(right) primitive if it has a faithful irreducible (right) module. Let F be a free group
and K a field. We give a necessary and sufficient condition for the group ring K'F, to
be primitive.

1. INTRODUCTION

Let H be a group, and let ¢ : H — H be a monomorphism. The ascending HNN
extension corresponding to ¢ is the group H, = (H,t|t"'ht = ¢(h)). A ring is right
primitive if it has a faithful irreducible right module. One can analogously define left
primitive and generally two propreties are not equivalent. For our purpose, the two
concepts are equivalent, for the group ring possesses a nice involution. Let F be a free
group and K a field. Our purpose of this paper is the study of primitivity of the group
ring KF,,.

If H # 1 is a finite group or an abelian group, then the group ring K H can never
be primitive. In fact, the only primitive commutative rings are fields, and in the case of
finite H # 1, the density theorem would imply that primitive K H be simple, but the
augmentention ideal belies that. The first nontrivial example of primitive group ring was
offered by Formanek and Snider (7] in 1972. After that, many examples which include the
complete solution for primitivity of group rings of polycyclic groups settled by Domanov
[3], Farkas-Passman [4] and Roseblade [14] were constructed. Perhaps one of the most
interesting result is the one on free products obtained by Formanek:

Theorem 1. ([6, Theorem 5]) Let K be a field and G = A * B a free product non-trivial
groups (except G = Zy X Zz). Then KG is primitive.

As a special case of the theorem, says K F is primitive for every field K provided that F
is a nonabelian free group. Moreover, in the same paper, he remarks

Theorem 2. ([6]) Let G = (t) x F be the direct product of a free group F and the infinite
cyclic group {t). Then KG is primitive if and only if |K| < |F| (the cardinality of K is
not larger than that of F).

It is not difficult to see the result applying to the case of the cyclic extension of F by (t)
(see Theorem 3 (i) below).

Now, the ascending HNN extension H, of a group H, which is a generalization of the
cyclic extension of H by (t), is a well-studied class of groups. For example, Feighn and

The detailed version of this paper has been submitted for publication elsewhere.



Handel [5] described all subgroups of ascending HNN extensions of free groups and showed
that ascending HNN extensions of free groups are coherent (that is, their f.g. subgroups
are finitely presented). Hsu and Wise [9] have recently shown that ascending HNN exten-
sions of polycyclic-by-finite groups are residually finite (that is, each nontrivial element
of those groups can be mapped to a non-identity element in some homomorphism onto
a finite group). They also study on residual finiteness for ascending HNN extensions of
finitely generated free groups, which is conjectured in [8] (the condition 'finitely generated’
cannot be dropped [1] ). More recently, Borisov and Sapir, in their paper [2], have shown
that the conjecture has a positive solution. That is, the ascending HNN extension F, of
a finitely generated free group F is residually finite [2, Theorem 1.2]. Then by reduction
method based on residual properties and on series in groups, we can see that K'F, is
semiprimitive (that is, the Jacobson radical is trivial) if the characteristic of K is zero.
One might therefore hope that K F, is semiprimitive for any field K. In this paper, we
shall show that K F,, is semiprimitive for all K even if the rank of F is countably infinite
(Corollary 10). In fact, K'F, is often primitive, which is our main result:

Theorem 3: ([11, Theorem 1.1]) Let F be a nonabelian free group, and F, the ascending
HNN eztension of F' determined by .

(1) In case p(F) = F, the group ring KF, is primitive for a field K if and only if either
|K| < |F| or F, is not virtually the direct product F x Z.

(i) In case o(F) # F, if the rank of F is at most countably infinite, then the group ring
KF, is primitive for any field K.

2. ASCENDING HNN EXTENSIONS OF FREE GROUPS

Throughout this paper, F' denotes the nonabelian free group with the basis X, and
F, = (F,t|t") ft = o(f)) denotes the ascending HNN extension of F determined by ¢.
Let H be a group and N a subgroup of H. We denote by [H : N] the index of N in H.
For a group N', H is said to be virtually N’ if N’ is isomorphic to N and [H : N] < 0.
If h is an element of H, we let Cy(h) denote the centralizer of k in N. Let C(H) be the
center of H and A(H) the FC center of H, that is A(H) = {h€ H | [H : Cx(h)] < o0}.

If f is a non-trivial element in F then Cr(f) is infinite cyclic, and so A(F) = C(F)
is trivial. On the other hand, A(F,) is not trivial in general. However, if A(F,) is
non-trivial then A(F,) = C(F,) and F, is virtually the direct product F' x Z:

Lemma 4. Let F be e nonabelian free group.

(i) A(Fp) = C(F,).

(i) C(F,) # 1 if and only if F,, is virtually the direct product F xZ. When this is the case,
@ is an automorphism of F and there exist n > 0 and f € F such that C(F,) = (t"f).

Proof. Since A(F,) 2 C(F,), we may assume A(F,) # 1. Let 1 # g € A(F,).
We shall show C(F,) = (g). Since [F, : Cr,(g)] < oo, we have [F : Cr(g)] < oo,
which implies ¢ € F because of A(F) = 1. By the normal form theorem, there exist
n,! > 0 and f € F such that ¢ = t"ft~!, where f & @(F) if n # 0 and [ # 0. Then
replacing g by ¢! if necessary, we may assume that n > | > 0, and then f ¢ o(F)



unless ! = 0. Since [F,, : Cr,(g)] < 00, there exists m > 1 such that t™gt~™ = g, and so
tmn fi-t-m — gn f4=l thus f = p™(f) € o(F). Hence we get { = 0, that is g = t"f with
n > 0. Then we may assume that n is minimal in {n' > 0 | t" f' € A(F,) with f! € F}.
Again by [F, : Ck,(g)] < oo, there exists k > 0 such that for each z € F, z*gz~* = ¢,
and so zFgz~* = z*t" fzF = 2o (z)* fz~k = 1" f; thus ¢*(z)* = (fzf~!)*. This implies

¢"(z) = fzf~! because F is a free group (c.f. [10]). In particular, ¢™(f) = f and also
a: € Cr,(g)- Furthermore we see that ¢" is an automorphism and so is ¢.

Now, if f =1, then g = " € C(F,), which completes the proof, and therefore we may
assume f # 1. Since F is free, as is well known, Cr(f) is cyclic, and thus Cr(f) = (h)
for some 1 # h € F and f = h™ for some m # 0. Then A™ = f = ¢*(f) = ¢*(h)™,
and so ¢"(h) = h. Moreover, @(h) = ¢™(p(h)) = fo(h)f~!, which implies ¢(k) € Cr(f)
and thus @(h) = h' for some ! # 0. Since h = ¢"(h) = A", we have that I = 1, that
is, p(h) = h. Hence we get that ¢(f) = f which means g € C(F,). We have thus seen
that the assertion of (i) holds and C(F,) 2 (g). Conversely, C(F,) C (g). In fact, if
a1 € C(F,), then we may assume that g, = t™ f, for some n, with n, > n and for some
fi € F. It is obvious that g; € C(F,) if and only if o(f)) = f; and ™ (z) = fizf]}
for every z € F. Let ny = mn + k, where m > 0 and 0 < k¥ < n. For each z € F,
hefit = o™ (z) = ¢*(p"™(z)) = ¢F(f"zf~™) = f™p*(z)f~™, and therefore, if we put
fo = f™f1, then ¢(f2) = f2 and ¢*(z) = fozf;! for every z € F; thus t*f, € C(F,).
By the minimality of n, we get k = 0. That is, f, € C(F) = 1, and so f; = f™. Hence
we conclude that g, = t™" f™ = ({*f)™ = g™ € (g).

Since FC(F,) = F(g) ~ F x Z and [F FC(F,)] = [F(t) : F{t"}] < co, we see that
F, is virtually F x Z. Conversely, if F,, is virtually F x Z, then there exists 1 # g € F,
such that g € A(F,), and so g € C(F,) by (i); thus C(Fq,) # 1. This completes the
proof. O

In what follows, for f € F and { > 0, we denote by fl the element #' ft=% of tiFt—i.
The next assertions are elementary and some of them can be found in [5].

Lemma 5. Let Ny be a subgroup of F with @(Ng) € Ny. For each non-negative integer
i, let N; = tiNyt™t and N = UZ,N;.

(i) N; =~ Ny and N; C Ny, where the egquality holds if and only if o(No) = Ny

(ii) If No is a normal subgroup of F, then N is a normal subgroup of F,.

(iii) If [Ni, N;] is the derived subgroup of N, then [N, N] = U2 [N;, N; ]

(vi) If the rank of Ny is finite and @(Ng) C Ny, then o([No, No)) C [Ng, No].

3. PRIMITIVITY OF GROUP RINGS OF F,

We will start this section with presenting the next two lemmas which are basic results
on group rings (c.f. [13]).

Lemma 6. Let K be a field, H a group and N a subgroup of H.
(i)([16, Theorem 1]) Suppose that N is normal. If A(H) =1 end A(H/N) = H/N, then
KN is primitive implies K H is primitive.



(ii)([15, Theorem 3]) If A(H) is torsion free abelian and [H : N] is finite, then KN is
primitive implies K H is primitive.

Lemma 7. ([12, Theorem 2|) Let K be a field and H a group. If A(H) =1 and KH is
primitive, then for any field extension K' of K, K'H is primitive.

In view of Lemma 4, 6 (ii) and Theorem 2, we have immediately

Corollary 8. ([11, Corollary 2.6]) Let K be a field, and suppose that C(F,) # 1. Then
the group ring KF, is primitive if and only if K is any field with |[K| < |F|.

In what follows, let F' be a free group with a countably infinite basis X, and F, =
(F,t|t"! ft = o(f)) the ascending HNN extension of F determined by ¢. For an element
w in F, R(w) denotes the reduced word equivalent to w on X, and we set £(w) = {z*' €
X*!| zis a letter contained in R(w)}. For a non-negative integer i, let G; be the subgroup
of F, generated by {t'ft™* | f € F}, and G = UR,G;. Moreover, let K be a field with
| K| 5 |G|, and KG denotes the group ring of G over K.

Let N be the set of positive integers. Since |[KG| = |N|, there exists bijection s from N

to the elements of KG except for the zero element. Let s(i) = s; = ;=1 Q5 f[ "], where
aij € K, f.’j EF,m>01;2>0 and f;‘[_:‘ij] = t“jfejt_“j € G satisfying

(3.1) sl glodse 5 2 i and gy ¢ o(F) i 1 £ 0.

For s; above, we set i = maz{h; |1 < j < my}, S1 = " (fi;) |1 < j <
m,), and for ¢ > 1, inductively ¢; = maz{gi_1 + 1, & |1 < j € m;} and S; =
L(p% 4 ( fig), 9% %-1(z) | 1 < j < my, z € Si-1). We choose three elements z), z12 and
z13 in X \ S; which are different from each other, and set B) = E = {z11, Z12, 213} and
SB1 = £(<p7*"" (z) | z € By). Moreover, for i > 1, we set mductlvely B; = {z:, Zi2, Zis},
B = B._l U B;, where z;,Ti5,zi3 € X \ (Si U Sp,_, U B,_ ) with 24 # ziw ( £ #
K ), and Sg, = £(¢%+~%(z) | £ € Sp,_, U B;). Because |X| is countably infinite,
X\ (SiuSg,_,U 5:1) is non-empty for every ¢ > 0, in fact, it is an infinite set, and
thereby the above argument is valid. Then we have that

(3.2) i#i = B;N By =0,
(33) i' _>_ 1= {:r:gl,:r:,-lz,z‘-q} N 2((Pq‘,-‘ij (fij) I 1 S ] S mi) = (D,
(3.4) i>i= {:r;:l,x,-rg,:r.-:a} NL(e% %(zy) |[1<k<LI) = 0.

Here we define the element &(s;) in KG for each s; as follows;
65 elo) = AWt 4 alf ol g oalthlel el

where 2= xi2 I3 and {.’Bﬂ,l‘,’g,l‘g} = B;.

The next lemma plays an essential role in the proof of our main result Theorem 3.



Lemma 9. ([11, Lemma 3.3]) Let £(s;) be as defined by (3.5) and let p= Y 22, e(s;)KG
be the right ideal of KG. Then p is a proper right ideal of KG.

The proof of the above lemma is not short and so we omit it. The reader should refer
to the paper [11]. By making use of the above lemma, we can prove Theorem 3:

Proof of Theorem 3 (i): If ¢(F) = F then F,/F is isomorphic to {t), and so
A(F,/F) = F,/F. In addition, if C(F,) = 1 then A(F,) = 1 by Lemma 4 (i). By
[6, Theorem 2], KF is primitive for any field K, and therefore it follows from Lemma 6
(i) that K'F, is primitive. By virtue of Lemma 4, C(F,) # 1 if and only if F, is virtually
F x Z, and hence the result follows from Corollary 8.

(i1): If o(F) # F, then &(F,) = C(F,) =1 by Lemma 4. By virtue of Lemma 7, we
may assume that K is a prime field. For each non-negative integer i, let G; = t!Ft~%,
and G = UR,G;. Moreover, let D; = [G;, G;] = ti[F, F]t™%, the derived subgroup of G;,
and D = UZ,D;. If we put Ny = F in Lemma 5 (ii), then the lemma asserts that G
is a normal subgroup of F,. It is obvious that F,/G is isomorphic to (t}, and thereby,
by virtue of Lemma 6 (i), it suffices to show that KG is primitive. If the rank of F is
finite, then Dy = [F, F) is a free group of countably infinite rank. If we put Ny = Dy
in Lemma 5 (i), then the lemma asserts that D; is isomorphic to Dy and D; C Dy (
in fact, ¢(Dy) # Dy; thus D; C Dy by (iv)) for every i > 0. Since G is locally free
by lemma 5 (i), we see that the finite conjugate center of G is trivial. Moreover, G/D is
abelian by Lemma 5 (iii), and therefore, again by Lemma 6 (i), it suffices to show that
KD is primitive. In other words, we may further assume that the rank of F' is countably
infinite. Then K G satisfies all of the conditions supposed in Lemma 9.

Let (s;) be the element in KG defined by (3.5), and let p = Y 2, &(s:) KG be the right
ideal of KG. By Lemma 9, p is a proper right ideal of KG, and therefore, p is extended
to a maximal right ideal p,, of KG. To complete the proof, we shall show that KG acts
faithfully on the irreducible module KG/p,,. Let & be the kernel of the action of KG
on KG/pn so that, certainly, £ C p,. Now, if k£ 5 0, then x contains the element s; for
some i € N, and therefore, by (3 5) the definition of £(s;), we see that £(s;) — g; € & C pp,

where g; = a.v;a:lg']z[q'] I loi] [q' is a trivial unit in KG. On the other hand, £(s;) is also
contained in p,,; thus we conclude that g; € p,,, a contradiction. Hence the action is
faithful, and KG is primitive. O

As a corollary of Theorem 3, we finally state the semiprimitivity of F,,.

Corollary 10. ([11, Corollary 3.7]) Let F be a nonabelian free group of at most countably
infinite rank, and F,, the ascending HNN extension of F' determined by ¢. If K is any
field then the group ring K'F, is semiprimitive.

Proof. Let Ky be the prime field of K. Since |Ky| < |F|, by virtue of Theorem 3,
KyF, is primitive and so semiprimitive. As is well known, semiprimitive group rings are
separable algebras, thus semiprimitivity of group rings close under extensions of coefficient
fields, and therefore K'F,, is semiprimitive. O
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HOCHSCHILD COHOMOLOGY AND STRATIFYING IDEALS
HIROSHI NAGASE

ABSTRACT. Suppose B is an algebra with a stratifying ideal BeB generated by an
idempotent e. We will establish long exact sequences relating the Hochschild cohomology
groups of the three algebras B, B/BeDB and eBe. This provides a common generalization
of various known results, all of which are extending Happel's long exact sequence for one-
point extensions. Applying one of these sequences to Hochschild cohomology algebras
modulo nilpotent shows, in some cases, that these algebras are finitely generated.

1. INTRODUCTION

Hochschild cohomology is not functorial. Thus there is no natural way to relate
Hochschild cohomology of an algebra to that of its quotient or subalgebras. Still it is
natural to try to find a way relating cohomology of an algebra B to that of an ’easier’
or 'smaller’ algebra A, such as a quotient modulo an idempotent ideal or a centralizer
subalgebra. One such situation is that of B being a one-point extension of 4, which has
been studied by Happel in [7]. More recently, Happel’s long exact sequence has been gen-
eralized to the case of triangular matrix algebras, for example by Michelena and Platzeck
in [10], Green and Solberg in [6] and Cibils, Marcos, Redondo and Solotar in [2]. On the
other hand, in [11], de la Pefia and Xi have generalized Happel’s long exact sequence to
the case of algebras with heredity-ideals.

Here, these results will be extended further. A natural common generalization of both
triangular algebras and algebras with heredity ideals are algebras with stratifying ideals;
indeed, heredity ideals are stratifying and any triangular matrix algebra has stratifying
ideals such that the quotients are the respective triangular parts. A stratifying ideal of a
finite dimensional algebra B is generated by an idempotent e in B. By one of our long
exact sequences in Theorem 6

-+ = Ext}.(B/BeB, BeB) — HH"(B) — HH"(B/BeB) @ HH"(eBe) — --- ,

we can compare Hochschild cohomology groups of three algebras B, B/BeB and eBe.
We will get this long exact sequence, and another two long exact sequences (Theorem
6), by using elementary homological methods based on a key observation in triangulated
categories, see Lemma 1.

For any finite dimensional algebra B, we will apply our long exact sequence to the
quotient of the Hochschild cohomology algebra HH*(B) modulo the ideal Mg generated
by homogeneous nilpotent elements. We denote by HH (B) the graded factor algebra
HH*(B)/N5.

In [13], Snashall and Solberg conjectured that HH (A) is a finitely generated algebra for
any finite dimensional algebra A. Green, Snashall and Solberg have shown the conjecture

The detailed version of this paper will be submitted for publication elsewhere.



to hold true for self-injective algebras of finite representation type [4] and for monomial
algebras [5].

In Corollary 7, for any algebra B with a stratifying ideal BeB, we get an injective
graded algebra homomorphism

HH (B) — HH (B/BeB) x HH (eBe)

Applying this embedding, we verify the conjecture for the case of Brauer algebra By(3,6)
in Example 13. Moreover, we consider a condition when the above embedding induces
an isomorphism HH (B) = HH (eBe) of graded algebras. By using this isomorphism, we
can produce many examples of finite dimensional algebras for which the conjecture holds,
including an algebra which is neither self-injective nor monomial (Example 12).

2. A GENERAL LEMMA

Throughout this paper we assume that & is a commutative noetherian ring and algebras
are associative unital k-algebras that are projective as k-modules. For any algebra A,
mod A denotes the category of finitely generated left A-modules, A¢ the enveloping algebra
A ®, A°?, HH"(A) the n-th Hochschild cohomology group of A with coefficients in A
itself and HH*(A) the Hochschild cohomology algebra ¢, HH"(A). It is known that
HH"(A) = Ext7.(A, A) as groups and HH*(A4) = @, Ext}. (A, A) as graded algebras.

For simplicity we will use the language of triangulated categories only in Lemma 1
below. Let 7 be a triangulated category with a shift functor 7. For any X and Y in T
and any n € Z, we denote by 7"(X,Y’) the morphism group 7(X,T"Y) and by 7*(X, X)
the graded ring @®nez7™(X,X). If T is a derived category D(Mod A®) for some algebra
A, then T"(A, A) = Ext’. (A, A) & HH"(A) as groups and T*(A, A) = HH*(A) as graded
algebras. The following is the key lemma of this paper.

Lemma 1. Let T be a triangulated category. Suppose there is a triangle X =Y — Z —
in T such that T"(X,Z) =0 for all n € Z.

(1) We have the following three long ezact sequences:
o TYX) =T Y)=2TZ,2) - T, X))o -
= TYZ,Y) > TY,Y) > THX, X) > T (Z2,Y) > -+ ; and
= TYZ,X)I T, Y)Y =2 TYZ,2)e THX,X) > TH(Z,X) > ---.
(2) Let u : T*(Y,Y) = T*(Z,2) x T*(X,X) be the graded ring homomorphism in-
duced from the third long ezact sequence. Then (Keru)? vanishes.

The following facts are well-known (see [1]).

Lemma 2. Let X be an A-B-bimodule, Y a B-C-bimodule and Z an A-C-bimodule.
Then there are the following isomorphisms:

(1) If Tor?(X,Y) = 0 and Ext:(Y,Z) = 0 for all i > 1 then, for anyn > 0,
Ext’,_o(X ®pY, Z) = Ext,_p(X,Homc(Y, 2)).

(2) If Tor?(X,Y) = 0 and Ext},(X,Z) = 0 for all i > 1 then, for anyn > 0,
Exth_o(X ®pY, Z) & Exty_o(Y, Homu(X, Z)).



3. STRATIFYING IDEALS

In this section we study Hochschild cohomology groups of algebras with stratifying
ideals. The following definition is due to Cline, Parshall and Scott ([3], 2.1.1 and 2.1.2),
who work with finite dimensional algebras over fields. We keep our general setup of
algebras projective over a commutative noetherian ring.

Definition 3. Let B be an algebra and e = e? an idempotent. The two-sided ideal BeB
generated by e is called a stratifying ideal if the following equivalent conditions (A) and
(B) are satisfied:
(A) (a) The multiplication map Be ®.p. eB — BeB is an isomorphism.
(b) For all n > 0: Tort2%(Be,eB) = 0.
(B) The epimorphism B — A := B/BeB induces isomorphisms
Ext}(X,Y) ~ Extp(X,Y)

for all A-modules X and Y

The following remark can be used to check if an ideal is stratifying.

Remark 4. Let e be an idempotent element in B. Then BeB is projective as a left (resp.
right) B-module if and only if eB (resp. Be) is projective as a left (respectively right)
eBe-module and the multiplication map Be ®.p. eB — BeB is an isomorphism.

Proof. Suppose that BeB is a projective left B-module. Then Be ®; eB — BeB splits
in mod B. Multiplying by e on the left hand side, eBe ®; eB — eB splits in mod eBe.
Thus eB is a projective left eBe-module. Let X be the kernel of the multiplication
map Be ®.p. eB —+» BeB. Multiplying by e on the left hand side, eX is the kernel of
the multiplication map eBe ®.p. €eB — eB. But the latter multiplication map is an
isomorphism, and therefore eX = 0. Applying the functor Hompg(—, X) to the short
exact sequence 0 =+ X — Be ®.p. eB — BeB — 0, yields a short exact sequence

0 — Homg(BeB, X) - Homp(Be ®.p. eB, X) = Homp(X, X) = 0,

because BeB is a projective left B-module. Since the middle term Hompg(Be ®.g.
eB, X) = Hom.g.(eB,eX) = 0, we get Endg(X) = 0 and thus X = 0, so that the
multiplication map Be ®.p. eB —» BeB is an isomorphism.

The converse is shown by using the isomorphism

Homg(BeB, —) = Hompg(Be ®,g. €B,—) = Hom,g.(eB, Homg(Be, —)).
O

Heredity ideals are examples of stratifying ideals, thus our results will extend results
obtained in [11]. On the other hand, for any triangulated algebra

5= (i o)

= 1):

and the idempotent



we have BeB = eB, so that BeB is a stratifying ideal. Thus our results also will extend
results of [2, 6, 10]. There are, however, plenty of other examples. Stratifying ideals and
stratified algebras occur frequently in applications, for example in algebraic Lie theory in
the context of Schur algebras and of blocks of the Bernstein-Gelfand-Gelfand category of
a semisimple complex Lie algebra.

From now on, we assume that BeB is a stratifying ideal of B and we put A := B/BeB.

Proposition 5. For any ¢ > 0, the following hold:
(1) Extp.(BeB,A)=0.
(2) Ext} .(BeB, BeB) & Ext{,p.).(eBe, eBe).
(3) Ext’\c(A, A) = Extz. (A, A).
(4) The isomorphisms in (2) and (8) preserve Yoneda products.

Theorem 6. There are long exact sequences as follows:
(1) --- = Ext} (B, BeB) - HH"(B) - HH*(A) — -- - ;
(2) --- = Extg. (A, B) - HH"(B) - HH"(eBe) — - -- ;and

(3) --- = Ext}.(A, BeB) - HH"(B) 5 HH"(4) @ HH"(eBe) — - - - .
Proof. By Lemma 1 and Proposition 5 . a
We remark that by using the partial recollement of bounded below derived categories
D*(mod B/BeB) —— D*(mod B) —— D*(mod eBe),

we also can get the long exact sequence (3).
We also note that Suarez-Alvarez [12] independently has obtained the first long exact
sequence in Theorem 6 above by using different methods based on spectral sequences.
Recall the notation that Mp is the ideal of HH*(B) which is generated by homogeneous

nilpotent elements, and HH (B) is the factor algebra HH*(B)/N3.

Corollary 7.
(1) Let f : HH*(B) — HH'(A) x HH*(eBe) be the graded algebra homomorphism in
sequence (8) above. Then (Ker f)? vanishes.
(2) The induced homomorphism f : HH (B) — HH (A) x HH' (eBe) is injective.

Proof. By Lemma 1 and statement (4) of Proposition 5.

4. EXAMPLES

By adapting the well-known recursive constructions of quasi-hereditary algebras, we
construct for any algebra C' a new algebra B which is an extension of C' and has a
stratifying ideal. We will compare the Hochschild cohomology algebras of C and of B.
For simplicity we will assume all algebras to be finite dimensional and split over a field k.

Let A and C be algebras, M a C-A-bimodule and N an A-C-bimodule. For any
morphism g : M @4 N — rad C of C-C-bimodules, we can define a split extension A of
A by N®c M (where N ®c M multiplies trivially with itself) so that we get an algebra
(with multiplication induced by u)



_ (A N
B—(M C).

=6 3);

we observe that A = B/BeB, that C = eBe and that the multiplication map Be ®.g.
e¢B — BeB is an isomorphism. We keep the notation above in this section.

Lemma 8. If Tora(N, M) =0 for any n > 1, then BeB is a stratifying ideal.

Lemma 9. Let A be the ground field k. If cM and N¢ are projective C-modules, then
deeA < 2.

Lemma 10. Let D be a finite dimensional algebra, split over the field k.

(1) Let n be the number of blocks of D. Then 1% N (D) = k" as an algebra.
(2) If chark # 2, then HIT (D) & HH"™(D) := @nyoHH " (D).
Proposition 11. Let A be the ground field k. If cM and N¢ are non-zero projective

C-modules, the number of blocks of C 1is the same as that of B. If chark # 2, then
HH (B) = HH (C) as graded algebras.

Proof. By Lemma 10, it is enough to show that HH " (B) 2 HH" " (C). By Lemma 8,
BeB is stratifying. By Lemma 9, Theorem 6 and HH‘(A) k, we have that HH"(B) &
HH"(C) for any n > 3 and HH2(B) — HH*(C) is surJectlve Hence, by Corollary 7,

HH"(B) =~ HH'(C) for any n > 2. By Lemma 10, dim, HH' (B)= the number of blocks

of B equals the number of blocks of C=dimj AH" (C). Therefore HH™ ™ (B) = HH *"(C)
as graded algebras. 0O

For the idempotent

The following example shows that we cannot drop the condition chark # 2 in Proposion
11 above.

Example 12. Keep the notation in the previous section. Let A be the ground field k, C
a truncated polynomial algebra k[z]|/(zP). UM =C, N=C,p: M®s N > radC is
defined by (1 ®1) = 2% and 1 < ¢ < p, then B is given by the following quiver

=210

with two relations ¢® = 0 and ab = ¢?. Note that B is neither self-injective nor monomial
unless ¢ = 1. By Proposition 11, if chark # 2, then HH (B) = HH (C). Since HH (C) is
a finitely generated algebra (see [4]), so is HH (B).

On the other hand, if chark = 2, ¢ = 1 and p = 2, then HH (B) = klz, 2]/(z® — 2?)
with deg z=2 and deg z=3 by [13] and HH (C) £ k|x] with deg z=1 by (8] or [4]. Hence
HH (B) is strictly contained in HH (C), so that we cannot drop the condition chark # 2
in Proposition 11.



Finally we give an example of an algebra occuring in algebraic Lie theory, see for

instance [9] for the properties of Brauer algebras used in this example.

Example 13. Let B be a Brauer algebra Bi(3,d), where § is in k. B has a stratifying

id

eal BeB such that eBe = k and B/BeB = kL3, where I; is the symmetric group on

three letters. By Corollary 7, there exists an embedding

as

HH (B) — HH (kZ3) x HH (k)
a graded algebra homomorphism. Since kX3 is a self-injective algebra of finite rep-

resentation type, HH (kZ3) is isomorphic to a product of some polynomial algebras in
one variable k[z] and some copies of the ground field & (see [4]). Because any graded

su

balgebra of a product of some polynomial algebras with one variable k[z] is a finitely

generated algebra, we get that HH (B(3,4)) is a finitely generated algebra.

10.

11.

12.

13.
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ON CONTRAVARIANTLY FINITE SUBCATEGORIES OF FINITELY
GENERATED MODULES

RYO TAKAHASHI

ABSTRACT. This paper studies contravariantly finite resolving subcategories of the cat-
egory of finitely generated modules over a commutative ring. The main theorem of this
paper implies that there exist only three contravariantly finite resolving subcategories
over a henselian Gorenstein local ring. It also implies the theorem of Christensen, Piep-
meyer, Striuli and Takahashi.

Key Words:  contravariantly finite subcategory, resolving subcategory, Gorenstein
ring, Cohen-Macaulay ring, maximal Cohen-Macaulay module, totally reflexive module.
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INTRODUCTION

The notion of a contravariantly finite subcategory (of the category of finitely generated
modules) was first introduced over artin algebras by Auslander and Smalg [6] in connection
with studying the problem of which subcategories admit almost split sequences. The
notion of a resolving subcategory was introduced by Auslander and Bridger [3] in the
study of modules of Gorenstein dimension zero, which are now also called totally reflexive
modules. There is an application of contravariantly finite resolving subcategories to the
study of the finitistic dimension conjecture [5].

This paper deals with contravariantly finite resolving subcategories over commutative
rings. Let R be a commutative noetherian henselian local ring. We denote by mod R
the category of finitely generated R-modules, by F(R) the full subcategory of free R-
modules, and by C(R) the full subcategory of maximal Cohen-Macaulay R-modules. The
subcategory F(R) is always contravariantly finite, and so is C(R) provided that R is
Cohen-Macaulay. The latter fact is known as the Cohen-Macaulay approximation theo-
rem, which was shown by Auslander and Buchweitz [4].

In this paper, we shall prove the following amazing theorem; the category of finitely gen-
erated modules over a henselian Gorenstein local ring possesses only three contravariantly
finite resolving subcategories.

Theorem A. If R is Gorenstein, then all the contravariantly finite resolving subcategories
of mod R are F(R), C(R) and mod R.

This theorem especially says that if R is a commutative selfinjective local ring, then
there are no contravariantly finite resolving subcategories other than F(R) and mod R.

The main theorem of this paper asserts the following: let X’ be a resolving subcategory
of mod R such that the residue field of R has a right X-approximation. Assume that

The detailed version of this paper will be submitted for publication elsewhere.



there exists an R-module G € X of infinite projective dimension with Ext'}i(G, R) =0 for
i> 0. Let M be an R-module such that each X € X satisfies Ext%(X, M) = 0 for i >> 0.
Then M has finite injective dimension. From this result, we will prove the following two
theorems. Theorem A will be obtained from Theorem B. The assertion of Theorem C is
a main result of [10], which has been a motivation for this paper. (Our way of obtaining
Theorem C is quite different from the original proof given in [10].)

Theorem B. Let X # mod R be a contravariantly finite resolving subcategory of mod R.
Suppose that there is an R-module G € X of infinite projective dimension such that
Exty(G, R) =0 for i 2> 0. Then R is Cohen-Macaulay and X = C(R).

Theorem C (Christensen-Piepmeyer-Striuli-Takahashi). Suppose that there is a nonfree
R-module in G(R). If G(R) i3 contravariantly finite in mod R, then R is Gorenstein.

Here, G(R) denotes the full subcategory of totally reflexive R-modules. A totally reflex-
ive module, which is also called a module of Gorenstein dimension (G-dimension) zero,
was defined by Auslander [2] as a common generalization of a free module and a maximal
Cohen-Macaulay module over a Gorenstein local ring. Auslander and Bridger [3] proved
that the full subcategory of totally reflexive modules over a left and right noetherian ring
is resolving. The other details of totally reflexive modules are stated in [3] and [9].

If R is Gorenstein, then G(R) coincides with C(R), and so G(R) is contravariantly finite
by virtue of the Cohen-Macaulay approximation theorem. Thus, Theorem C can be viewed
as the converse of this fact. Theorem C implies the following: let R be a homomorphic
image of a regular local ring. Suppose that there is a nonfree totally reflexive R-module
and are only finitely many nonisomorphic indecomposable totally reflexive R-modules.
Then R is an isolated simple hypersurface singularity. For the details, see [10].

CONVENTIONS

In the rest of this paper, we assume that all rings are commutative and noetherian, and
that all modules are finitely generated. Unless otherwise specified, let R be a henselian
local ring. The unique maximal ideal of R and the residue field of R are denoted by m and
k, respectively. We denote by mod R the category of finitely generated R-modules. By a
subcategory of mod R, we always mean a full subcategory of mod R which is closed under
isomorphisms. Namely, in this paper, a subcategory A" of mod R means a full subcategory
such that every R-module which is isomorphic to some R-module in X is also in X.

1. CONTRAVARIANT FINITENESS OF TOTALLY REFLEXIVE MODULES

In this section, we will state background materials which motivate the main results of
this paper. We start by recalling the definition of a totally reflexive module.

Definition 1. We denote by (—)* the R-dual functor Homgz(—, R). An R-module M is
called totally reflezive (or of Gorenstein dimension zero) if

(1) the natural homomorphism M — M** is an isomorphism, and
(2) Extp(M, R) = Extp(M*,R) = 0 for any i > 0.



We introduce three subcategories of mod R which will often appear throughout this

paper.
We denote by F(R) the subcategory of mod R consisting of all free R-modules, by
G(R) the subcategory of mod R consisting of all totally reflexive R-modules, and by C(R)
the subcategory of mod R consisting of all maximal Cohen-Macaulay R-modules. By
definition, F(R) is contained in G(R). If R is Cohen-Macaulay, then G(R) is contained
in C(R). If R is Gorenstein, then G(R) coincides with C(R).
Next, we recall the notion of a right approximation over a subcategory of mod R.

Definition 2. Let X be a subcategory of mod R.

(1) Let ¢ : X = M be a homomorphism of R-modules with X € X. We say that ¢
is a right X -approzimation (of M) if the induced homomorphism Homg(X’, ¢) :
Hompg(X’, X) — Homg(X’, M) is surjective for any X' € X.

(2) We say that X is contraveriantly finite (in mod R) if every R-module has a right
X-approximation.

The following result is well-known.

Theorem 3 (Auslander-Buchweitz). Let R be a Cohen-Macaulay local ring. Then C(R)
is contravariently finite.

Corollary 4. If R is Gorenstein, then G(R) is contravariantly finite.
The converse of this corollary essentially holds:

Theorem 5. [10] Suppose that there is a nonfree totally reflezive R-module. If G(R) is
contravariantly finite in mod R, then R is Gorenstein.

This theorem yields the following corollary, which is a generalization of [12, Theorem
1.3].

Corollary 6. Let R be a non-Gorenstein local ring. If there is a nonfree totally reflezive
R-module, then there are infinitely many nonisomorphic indecomposable totally reflezive
R-modules.

Combining this with [13, Theorems (8.15) and (8.10)] (cf. [11, Satz 1.2) and [8, Theorem
B]), we obtain the following result.

Corollary 7. Let R be a homomorphic image of a regular local ring. Suppose that there
is a nonfree totally reflerive R-module but there are only finitely many nonisomorphic
indecomposable totally reflezive R-modules. Then R is a simple hypersurface singularity.

2. CONTRAVARIANTLY FINITE RESOLVING SUBCATEGORIES

In this section, we will give the main theorem of this paper and several results it yields.
One of them implies Theorem 5, which is the motive fact of this paper.

First of all, we recall the definition of the syzygies of a given module. Let M be an
R-module and n a positive integer. Let

Fo=(-"F%F_ ™. 33 F 50



be a minimal free resolution of M. We define the nth syzygy Q"M of M as the image of
the homomorphism d,,. We set Q°M = M.
We recall the definition of a resolving subcategory.

Definition 8. A subcategory X of mod R is called resolving if it satisfies the following
four conditions.
(1) X contains R.
(2) X is closed under direct summands: if M is an R-module in X and N is a direct
summand of M, then N is also in X.
(3) X is closed under extensions: for an exact sequence 0 - L - M — N — 0 of
R-modules, if L and N are in X, then M is also in X.
(4) X is closed under kernels of epimorphisms: for an exact sequence 0 = L - M —
N = 0 of R-modules, if M and N are in X, then L is also in X.

Now we state the main theorem in this paper.

Theorem 9. Let X be a resolving subcategory of mod R such that the residue field k has a
right X -approzimation. Assume that there erists an R-module G € X of infinite projective
dimension such that Extp(G,R) = 0 for i > 0. Let M be an R-module such that each
X € X satisfies Exth(X, M) =0 for i > 0. Then M has finite injective dimension.

We shall prove Theorem 9 in the next section. In the rest of this section, we will state
and prove several results by using Theorem 9. We begin with two corollaries which are
immediately obtained.

Corollary 10. Let X be a resolving subcategory of mod R which is contained in the
subcategory { M | Ext(M,R) = 0 for i > 0} of mod R. Suppose that in X there is an
R-module of infinite projective dimension. If k has a right X -approzimation, then R is
Gorenstein.

Proof. Each module X in X satisfies Exth(X, R) = 0 for i 3> 0. Hence Theorem 9 implies
that R has finite injective dimension as an R-module. a

Corollary 11. Let X be one of the following.
(1) G(R). ,
(2) The subcategory { M | Extx(M,R) = 0 fori > n} of mod R, where n is a non-
negative integer.
(3) The subcategory { M | Exth(M,R) =0 fori > 0} of mod R.
Suppose that in X there is an R-module of infinite projective dimension. If k hes a right
X -approzimation, then R is Gorenstein.

Proof. The subcategory & of mod R is resolving. Since A’ is contained in the subcategory
{M | Extz(M, R) = 0 for i 3> 0}, the assertion follows from Corollary 10. (]

Remark 12. Corollary 11 implies Theorem $. Indeed, any nonfree totally reflexive module
has infinite projective dimension by [9, (1.2.10)].

For a subcategory X of mod R, let X! (respectively, *X’) denote the subcategory
of mod R consisting of all R-modules M such that Extyz(X,M) = 0 (respectively,



Exto(M,X) = 0) for all X € X and i > 0. Applying Wakamatsu’s lemma to a re-
solving subcategory, we obtain the following lemma.

Lemma 13. Let X be a resolving subcategory of mod R. If an R-module M has a right
X -approzimation, then there is an exact sequence 0 - Y - X — M — 0 of R-modules
with X e X andY € X.

By using this lemma and the theorem which was formerly called “Bass’ conjecture”,
we obtain another corollary of Theorem 9.

Corollary 14. Let X be a resolving subcategory of mod R such that k has e right X-
approzimation and that k is not in X. Assume that there is an R-module G € X with
pdr G = 0o and Extp(G,R) =0 for i 3> 0. Then R is Cohen-Macaulay and dim R > 0.

Before giving the next corollary of Theorem 9, we establish an easy lemma without
proof.

Lemma 15. (1) Let X be a contrevariantly finite resolving subcategory of mod R.
Then, k € X if and only if X = mod R.
(2) Let X be a resolving subcategory of mod R. Suppose that every R-module in +(X*)
admits a right X-approzimation. Then X = +(X1).
(3) Let M and N be nonzero R-modules. Assume either that M has finite projective
dimension or that N has finite injective dimension. Then one has an equality

sup{ i | Exth(M, N) # 0} = depth R — depthp M.

Now we can show the following corollary. There are only two contravariantly finite
resolving subcategories possessing such G as in the corollary.

Corollary 16. Let X' be a contravariantly finite resolving subcategory of mod R. Assume
that there is an R-module G € X with pdy G = 0o and Exty(G,R) = 0 for i 3> 0. Then
either of the following holds.

(1) X =modR,

(2) R is Cohen-Macaulay and X = C(R).

Proof. Suppose that X # mod R. Then k is not in X. By Corollary 14, R is Cohen-
Macaulay.

First, we show that C(R) is contained in X. For this, let M be a maximal Cohen-
Macaulay R-module. We have only to prove that M is in +(X1). Let N be a nonzero
R-module in Xt. Theorem 9 implies that N is of finite injective dimension. Since
M is maximal Cohen-Macaulay, we have sup{i | Exti(M,N) # 0} = 0. Therefore
Exth(M,N) =0 for all N € X* and i > 0. It follows that M is in L(X1), as desired.

Next, we show that X is contained in C(R). We have an exact sequence 0 — Y —
X = k= 0with X € X and Y € X+ by Lemma 13. Since k is not in X, the module
Y is nonzero. By Theorem 9, Y has finite injective dimension. For a nonzero R-module
X' in X, we have equalities 0 > sup{7 | Extp(X',Y) # 0} = depth R — depthg X' =
dim R—depthg X'. Therefore X' is a maximal Cohen-Macaulay R-module, as desired. O

Next, we study contravariantly finite resolving subcategories all of whose objects X
satisfy Extﬁo(X , R) = 0. We start by considering special ones among such subcategories.



Proposition 17. Let X be a contravariantly finite resolving subcategory of mod R. Sup-
pose that every R-module in X has finite projective dimension. Then either of the following
holds.

(1) & = F(R),

(2) R is regular and X = mod R.
Proof. If X = mod R, then our assumption says that all R-modules have finite projective
dimension. Hence R is regular. Assume that X # mod R. Then there is an R-module M
which is not in X. There is an exact sequence 0 Y - X - M — 0 with X € X and
Y € X! by Lemma 13. Note that Y # 0 as M ¢ X. Fix a nonzero R-module X' € X.
We have Exth(X',Y) = 0 for all i > 0, and hence pdy X' = sup{i | Exth(X",Y) #
0} = 0 by the Auslander-Buchsbaum formula. Hence X’ is free. This means that X is
contained in F(R). On the other hand, X' contains F(R) since X is resolving. Therefore
X = F(R). a

Combining Proposition 17 with Corollary 16, we can get the following.

Corollary 18. Let X' be a contravariantly finite resolving subcategory of mod R. Suppose
that every module X € X is such that Extp(X,R) = 0 for i > 0. Then one of the
following holds.

(1) X = F(R),

(2) R is Gorenstein and X = C(R),

(3) R is Gorenstein and X = mod R.

Proof. The corollary follows from Proposition 17 in the case where all R-modules in X" are
of finite projective dimension. So suppose that in X' there exists an R-module of infinite
projective dimension. Then Corollary 16 shows that either of the following holds.

(1) X =mod R,

(2) R is Cohen-Macaulay and X = C(R).
By the assumption that every X € X satisfies Exth(X,R) = 0 for i > 0, we have
Exti(k,R) = O for i > 0 in the case (i). In the case (ii), since Q%% is in X' where
d = dim R, we have Exti}¢(k, R) & Ext}(2%, R) = 0 for i > 0. Thus, in both cases, the
ring R is Gorenstein. O

Finally, we obtain the following result from Corollary 18 and Theorem 3. It says that
the category of finitely generated modules over a Gorenstein local ring possesses only
three contravariantly finite resolving subcategories.

Corollary 19. Let R be a Gorenstein local ring. Then all the contravariantly finite
resolving subcategories of mod R are F(R), C(R) and mod R.

3. PROOF OF THE MAIN THEOREM

Let M be an R-module. Take a minimal free resolution F, = (--- L g Fy - 0)
of M. We define the transpose Tr M of M as the cokernel of the R-dual homomorphism
d} : F; — F} of d;. The transpose Tr M has no nonzero free summand.

For an R-module M, let M*M be the ideal of R generated by the subset

{fz) | feM ,zeM}



of R. Note that M has a nonzero free summand if and oaly if M*M = R.

Proposition 20. Let X be a subcategory of modR and 0 — Y Lx s M-oo0an
ezact sequence of R-modules with X € X andY € X*. Let G € X, set H = TrQG,

and suppose that (H*H)M =0. Let0 - K S F 2 H — 0 be an ezact sequence of
R-modules with F free. Then the induced sequence

0 — K@rY 22 ForY 222% HerY — 0

is ezact, and the map h ®gr Y factors through the map F®r f: F®rY — F ®z X.
Proof. We can show that there is a commutative diagram

0 —s H®RY —5 HOrX ——= H@M —0

alg ﬂl ‘710
0 —— Homg(H*,Y) N Homg(H*, X) LN Homg(H*, M) — 0
with exact rows, and see that 6 is a split monomorphism. Thus, the homomorphism

h®gY factors through the homomorphism F®p f. We have isomorphisms Torf(H,Y) =
Torf(TrQG,Y) 2 Homg(QG,Y) = 0, which completes the proof of the proposition. [

Now we can prove the following, which will play a key role in the proof of Theorem 9.
Proposition 21. Let X be o subcategory of mod R which is closed under syzygies. Let
0—=Y = X = M — 0 be an exact sequence of R-modules with X € X andY € X*.
Suppose that there is an R-module G € X with pdg G = oo and Ext'R(G, R) = 0 for
i> 0. Put H; = TrQ('G) aend assume that ((H;)*H)M =0 for i > 0. Let D =
(DJ)J>0 mod R = mod R be a contravariant cohomological 6-functor. If D¥(X) = 0 for
>0, then DI(Y) = DI(M) =0 for j > 0.
Proof. Replacing G with QG for i >> 0, we may assume that Ext,k(G R) = 0 for all
i> 0and that (H:;)'H:)M =0foralli >0. Let F. = (- S & F_, %' ... 8
R L SN 0) be a minimal free resolution of G. Dualizing this by R, we easily see that
H; = (Q*3G)* and QH; = (Q*2G)" for i > 0. By Proposition 20, for each integer i > 0
we have an exact sequence

0 (O*2G)° ®rY = (Fiua)" @ Y & (0%3G)" @Y = 0
such that f; factors through (Fi.2)* ® X. The homomorphism D(f;) factors through
D¥((Fit2)* @r X), which vanishes for j 3> 0. Hence D?(f;) = 0 for j > 0, and we obtain
an exact sequence
0= D¥((Fisa)® @ Y) = D((Q*G)" @r Y) T D ((Q*G) @z Y) = 0

for 2 > 0 and j > 0. Thus, there is a sequence

Dj((Qi+2G)- ®rY) iy Dj+l((Qi+3G)- ®rY) Eitlg+ Dj+2((9i+4G)- ®rY) R A
of surjective homomorphisms of R-modules, and ¢;; is an isomorphism. It follows that

Di((Fiy2)* ®rY) =0 for i > 0 and j > 0. Thus we have D¥(Y) = 0 for j > 0, and
Di(M) = 0 for j > 0. D



Now we can prove our main theorem.

Proof of Theorem 9. Since k admits a right X-approximation, there exists an exact se-
quence 0 - Y — X — k — 0 of R-modules with X € X and Y € X! by Lemma 13.
For an integer i > 0, put H; = Tr Q(Q!G). The module H; has no nonzero free summand.
We have (H;)"H; # R. Hence ((H;)"H;)k = 0 for ¢ > 0. Applying Proposition 21 to the
contravariant cohomological d-functor D = (Exty( ,M)); 0, we obtain DI(k) = 0 for
7 > 0. Namely, we have Exth(k, M) = 0 for j > 0, which implies that M has finite
injective dimension. O
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