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Organizing Committee of The Symposium on
Ring Theory and Representation Theory

The Symposium on Ring Theory and Representation Theory has been held annually
in Japan and the Proceedings have been published by the organizing committee. The
first Symposium was organized in 1968 by H. Tominaga, H. Tachikawa, M. Harada and
S. Endo. After their retirement, a new committee was organized in 1997 for managing
the Symposium. The present members of the committee are Y. Hirano (Naruto Univ.
of Education), S. Koshitani (Chiba Univ.), K. Nishida (Shinshu Univ.) and M. Sato
(Yamanashi Univ.).

The Proceedings of each Symposium is edited by program organizer. Anyone who wants
these Proceedings should ask to the program organizer of each Symposium or one of the
committee members.

The Symposium in 2007 will be held at Tokyo as the joint Symposium with the 5th
China-Japan-Korea international Symposium on ring theory for Sep. 10 - 15.

Concerning several information on ring theory group in Japan containing schedules of
meetings and symposiums as well as the addresses of members in the group, you should
refer the following homepage, which is arranged by M. Sato (Yamanashi Univ.):

http://fuji.cec.yamanashi.ac.jp/ ring/ (in Japanese)
civil2.cec.yamanashi.ac.jp/” ring/japan/ (in English)

Kenji Nishida

Matsumoto, Japan
December, 2006
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PREFACE

The 39th Symposium on Ring Theory and Representation Theory was held at Hi-
roshima University on September 16th - 18th, 2006. The symposium and the proceedings
are financially supported by Iku Nakamura (Hokkaido University) JSPS Grant-in-Aid for
Scientific Research (A), No.16204001, and Kiyoichi Oshiro (Yamaguchi University) JSPS
Grant-in-Aid for Scientific Research (B), No.18340011.

This volume consists of the articles presented at the symposuim. We would like to
thank all speakers and coauthors for their contributions.

We would also like to express our thanks to all the members of the organizing commitee
(Professors Kenji Nishida, Shigeo Koshitani, Masahisa Sato and Yasuyuki Hirano) for
their helpful suggestions concerning the symposium. Finally we would like to express
our gratitude to Professor Fujio Kubo and his students of Hiroshima University who
contributed in the organization of the symposium.

Mamoru Kutami
Yamaguchi, Japan
January, 2007
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CHARACTER THEORY OF SEMISIMPLE
BI-FROBENIUS ALGEBRAS

YUKIO DOI

ABSTRACT. Bi-Frobenius algebras, or briefly bF algebras, were introduced by the author
and Takeuchi in [DT]. They are Frobenius algebras with conlgebra structures, and gen-
eralize both finite-dimensional Hopf algebras and scheme rings (Bose-Mesner algebras)
of (non-commutative associntion) schemes. In this paper we discuss the character theory
of symmetric Frobenius algebras and its application to our bF algebras. Our approach
to the representation theory of symmetric algebras was inspired primarily by the work of
Geck-Pfeiffer [(GP]. But our methods are very different. We begin with a general discus-
sion of symmetric Frobenius algebras and their properties, and prove the semisimplicity
criterion in terms of the volume.

i

RA 7=y A8 (RIS bF B IXERERTE Yy MRBOaR xRk LTt
H - &> THAI I (DT)). H3BORMEMEEL DTORZYARBOLT
H3. FLT A 70Xy ARBOETx 7 5 AR EL (group-like algebra)([D2])
NH3. 7YVVI— a3y AF—LIZ{THT 3 Bose-Mesner KEUEHRI(ILL 2 DTH
2. AHLETIRHRBROBAN L3 702y ZAREUCOWVTOBRBIRTS. FhnmR
RAEBXLFELAY. ZORFTROTOAR=T ZRBOBEH Sk (1), /34
7Oy AREOERMHERSIL 2M), INBENSEE SR 2— LOEMEHE
WA/ AICED, Geck-Pleiffer Iz &k 2RO ((GP)) DEHN R (3 i)
Z2175.

1. 7Oz A8 A

L1 JARZVARE. kL 2Bk L, Hom® @ 3 k LT 3. A % (k LD) R
L3 LE, DHZEM A = Hom(A, k) QROERICE DM A Bt x5 :

(@ = f)(®) = flba), (f<a)b)=f(eb) (a,bEA).
AN L, HRXTAY A L 9 A" DH (4, 9) TER
8:A—> A" a— (¢ —a)

NEMERIZELDENS, HBAMBLELT AL A~ BMEAMTHZLWS L THAS.
ODITNEH . A~ - A" LERAM . A A" LDER I =00 ZHETRL

< @(a),b >=< i(a),8(b) >=< 8(b),a >=< ¢ — ba>=<a —=$,b>.
TelL, 8% < f,a> & f(a) BRT (f€ A", ac A). LIENST, B
&:4- A, a— (a—¢)

The detailed version of this paper will be submitted for publication elsewhere.



NE ANBRNESX3. 6 QLAY
0: 4@ A%, 4o 4" End(A). (1.1)

2E(ERIL, TORBTId, KHIETE AQADT Yz @y 77U~y AREK
(A ¢) OTHBEL L X, EHRXD

z rd(yia)=a (a € A) (1.2)
THB. (2.} %1 RELCENE ¢(niz;) = 6; DD LD, Fiz (1.2) @SR
ZM(@}/,’ =z:c,-®y,~a (ae A), (1.3)

2. EE, EBO be A KL,
O(D_oz: ®y)(t) = 3 azip(ub) = b (by (12))
=D zid(yiab) = (Y 2 ® 5ia) (8).
XoT ADTv:=Y, iy QD Z(A) KB, v ZT7UR=Y AR (4,9) DRY 21—
LLER UEDERNG,

v BAITE = A BSRAIRE (& < I¥HM)|

DIEBICbIE (T, vz @ y MDD BFEANEETICEZHNS) . TOMICDON
T3 TERT S (¢ MNFHNT k OBED 0 ZSHELL).

BRO: A" > AROS) =Y, f(z:)y CEBTS, RELY 20y & (4,¢) DR
MEE CDLE, feA, ac AICHL

8(8(f))(a) = (¢ = 8(f))(e)
= ¢(Z flzi)pa) = Z f(z:)9(via)

= f(Q_z9(ne) = f(a)

THBINH, 000 = idy.. 0 ZEYMHTHINS, 612 0 OWEHE —HL, B o = id,
MDD, REMICHETLT

D dlazlui=a (a€A). (1.4)

2185.
FARNC, C & (k LO)RE, FOREE A:C-CQRC, R¥fiiZc:Cok L
T3, ce CIML, Al ®

Zc(”®c‘2’ : i >4 ZCI R c2
{c)

-2 -



TEY. BHZER C (3 convolution Fl (f * g)(c) = T fa)g(ce) I & b 5K (e HiMiHL
JT) &Y, CRROEMICE N C- mBtrin3 :

f—=c:= Zc,](q), c— fi= Z](c,)cz.
ARRTTHRABC & C DTt DM (C,t) NROZMFEHI-TLE, 7OXZIIARR
BThanS:

B x:C"—C, k(f) =(t — f) HEHH,
Thi (Ct) BT7a~_=I ARMTHE T LLAETH 5.
1.2. HBHETONZIXARE. T 2R (4,9) IKHL,

¢(ab) = ¢(bN (a))  (a,b€ A)

BHRETREBECAKMN A S ADP—BNICEES. ThE A D¢ icMT3hLAaS
BRLVS. N =idyg DL E (THDE ¢(ab) = ¢(ba)), (A,¢) IRHETOAXZI AR
THB LS, ERERCHAHRREVS e H 5. Wit INEBEOMEIZDOVWTR
MRLD D,

1 (A0 270U, T, n.0y EZTOPNEBELTS. (4,) HHFHL
BCH 3 1-DDBEREMLI,
Z$i®yi=zyi®xi (1.5)

BROIUDTETH 5.

AR, (1.5) DD IO ERETIIE, EFD aec A ITHL,
N(a) =12 3" zig(uiN(a)) = Y day)zi =19 Y~ glazi)y; =" a

LEh, (A¢) BIHFREELERS. RN =id ETHIE,
Y wd(@ia) = ) wgaz) =P a

;C;zbb. ChiZ O, yi®z) =id ZEKT 3. Lo THHEEDERLD (1.5) HRD
2. O

¥ A DEEAIXRRORBIRSE o TET. T4b5 R, : A > A b ba LEBEZE,
Tr: End(A) = k Z@HO M L—XBHE LizL &, xala) =Tr(R.) TH3.

ROFE 2 INFHREOEETR G ICEWTF—LAEBLDTHB. RDKLH
SNIHREAVWTHAETNS  FRATR FVER M CHLTR—-RB M M =
End(M), (f @ m)(n) := f(n)m Z{T>7 ¥, Tr(f @m)= f(m) DY ILD.

#E 2 (A9 EHHRREEL, v 2EFORY 2—LETE. TOLE
xa(a) = ¢(va)  (a € A)
MDD, &I, ¢(v) = dim A.



A, R, (b) = ba =Y, z:¢(yiba) THEMNS
R, = Z(a—*d)*-y,)@z, in A" ® A.

LIEH 2 T xale) = ¥, d(yzia) =19 3, d(zipie) = ¢(va). m]

2. AL 7A=Y AR

21. HZHBXTRBEL, RRBMEEA - H > HQH, e: H -k 28DL93. I
EU A, e ORBSRIEELAV. JToeH™, te HBEXILE BB S H-HZ%

S(h)i=t—(h—=¢)=>_ ¢(tih)ts

TEHTS. RO (BF1) 5 (BF6) ZHI=T L ¥, 48 (H,¢,t,8) Z/I\47AR=Z0X
£88 (bi-Frobenius algebra) 72135 < bF ML & XK.
(BF1) e IRR¥t, $hbb e(hh) = e(h)e(l), (1) = 1.
(BF2) H OREWAIT 113 AQ) =101 2H/=T.
(BF3) (H,¢) & 7a~=9 A{LH.
(BF4) (H,t) @7aR=J AR
(BF5) S XRIREu, hbB S(hh) = S(W)S(h), S(1) = 1.
(BF6) S IRARMEE, ThabbE AS(h) = X S(hey) ® S(hqy), (S(h)) = e(h).
S Z bF RBOT > FR— R XED, Ky TREDT > FH— ROEKMY: S+id = uoe =
id* S EHELTHWEN. Sh)=t~(h—=¢)=(x08)(h) THD, x, ¢ WG TH
50T S LeMHHLnd. KoT h=Y S tz)o(t1h) DMEED he HIZHLTWVZ,

Y st e

M (H,¢) DIFHBREREZ B Lhbhole. .

bF R H = (H,¢,t,S) BEBITTH 205, TOINEM H 3EREDORR
Biclx-> T3, filld convolution T, RBIA(N) =Y i foe H*QH = (H®H)"
(>

Af(h@Y =" AW L) = f(h),  (f€H", hileH)

THEALN3. ZLTAM (H",1,4,5") B bF REEL T LHBRICHEIHENS. T
%2 H O bF LS.

2.2. bF REOA. (1) BR. AR G OHR kG 2EX3. BHOKE Alz) =2
x, e(z) = 1 (z € G) TRRBL LS. ¢ € (kG)" % ¢(9) = 6y, CTERL, t:=3 g€
kG 95 Do Lt MOEONIEBH S h — T o(th)t, FRIEMTELS G >
z—rleG—HTB &Y (kG,9,t,5) B bF RETHBLibhs. &
F BF1,2,5,6 (Zf9884x\ . BF34 OF xv 713 S LM THB I LHh LT3, h¥h
6 —ROFRRTKEODORRY H MH-T, 3 o€ H*, t € H hLESN =B

=kol HRYHLTIL, ¢« RLBICLMHP LIS (dimH =dimH" ZhB5). &»
'( BF3,4 BV ILD. (kG,¢) DINBEIZ T, z7'®z, KV a—Lid |G|-1 TH3B. B
EMCY gt '@z=3  cz®z! '(557)‘6 E1IER ¢(zy) = o(yz), (z,¥€G)
b‘ﬁﬁh\&bsh’c (kG, ¢) cmﬁmmm

- 4 -



(2) Ry 7B H ZERRTEY 7TREL T3, H- BXU H OERISZON (9,t) T
P(t) =1 ZATEDEREE BND). ThHLBLNTER S XKy TREO7VF
R— FESE—HT 3 (DT, 24 Example)). X<HSN T3 XS IKHRRTRY 7R
BO7»FH—Fidelig, Lieh>TBF34 #H7L, £/ BF5,6 AL TWV3EH
5, (H,¢,t,9) 13 bF REL 3. (H,¢) OXHEEIX bF REEFEIL T 5-1(t) 9t T
H5Z6h, RV a2—LR37FR—-ROHEE,S

v=>_ 57 ta)tr = ST _ t1S(ta)) = £(t)

LB, (FEbF REOKRY 2—Lid v =8 t)t; £TT. chEMBIcxSE
V. )

(3) HWIRHNRE. A2REGc: Aok ZEOHBERT (k) RBE L, BT 1 238
(k) EEB = (b = Lby,...,bs} PIEEENTVBET S, EHIC 2 =id EHETE
EEREOFRE S:B - BAEALNTVWTRDIZRGRATLE, 44 (A,¢,B,9)
Z MOV (group-like algebra) £S5, (BRAF 1,5,k 3 055 d £ TEML)

(G1) e(bi) = e(bs) #0; T=FEL b W& S(by) &

(G2) pf; = pliie. T2TEL P & B ICHT BAGEER, ie., bibj = T, kb

(G3) p?j = .'j-E(b.').

TOLE, &b ML Ab) = gsbi@b EBVT, A RRRBITES (REGTIZH]
BDILGXbNice). o, t ABRZERT o) =60, t:=3 ;b EBL. TOLE,

4 LI

> byt = ; md’(b-’bﬂbi = 2:.; ml’?jb-' =) = b
&%&D, (A,¢,1,5) 3 bF REUCES. (4,9) BIHBE T, 5600 BB, KYa—
Lid v =3, gobi-bs THOMCHNHRETH 3.

(4) AF =LK k=C BHEBEL) L L, X ={z;,...,z.} ZERKE LTS, ERIES
X x X OFFHRE (Thdb X OMR) RICHL, ZOEER% 'R = {(y,)|(z,y) € R}
LERTD. Fleze XKML, Ri):={ze X |(z,2) e R} &BL. X x X D(H
) @l

X xX =RyU---URy

DL D 3 4% (AS1), (AS2), (AS3) 2H7=d L ¥, M (X, {R}ocica) BT VY I—V3
v AF =L (association scheme) F/2IXBUC A F—L L5 ([BI},[Z)).
(AS1) Ry = {(z.z)|z € X }.
(AS2) & R ICXL, Y(Ri)=R; BT je{0,...,d} WFETS.
G=iT&HY. LEN>TYR) =R, 0°=0TH5.)
(AS3) & Ri, Rj, Ry BXU (,y) € Re XL, |Ri(2)N Ry-(y)| D R DT (,9)
DY HIC &b —E(HicEB. Ofli% pf; THT

R DBYEITF (adjacency matrix) & b, TEY. Thdb b ik n = |X| RELFTHT,
%0) (i,]) ’&ﬁ‘i (.’L‘,',.’L‘j) € Rk 0)&% 1, (I,‘,IJ') ¢ Rk 0)&% 0 T‘b%. bo =17 (mﬁlﬁ

- 5 —



5I[) TH b (AS1), b; DEREITH *(b) & b THD (AS2). F7z (AS3) 16

d
bib; = Zp:;bk (i, =0,...,d)
k=0

DRED LD, Lid o T by, ..., bs DEEE | REEG 2K A RLTHIR M, (C) DG RE%E
BT, CORMARTVII—Y 3y AF—LA (X, {Ri}ocica) WC{THiT 5 Bose-Mesner
FBUE 7= MIHIC X +— LI, (scheme ring) £V D. B = {by,..., b} & A DEETHY,
T O b DETICH S 1 OBEBUS—FM 0. BLB. TOfEMHE o, THL, W
% R; DHEIEE (valency) & & &

e:A—k eb)=0a, S:A— A Sb;)=b-= ‘(b)

LBLTLET, AF—LR A (C L) HRORBUCL BT EMNAATES. t=b +
o+ by BITRTORDD1 D5 J THY, e(t) =|X|=n TH%. ADKY2—Lid

1, 1
= — Yh by + oo+ — b)b
v I+al(l)|+ +ad(d)d

TH%. HHAH A — M,(C) BAF—LR A OREFRREL LK. TOE[I ()9 T
H5, 1IEL ¢(b,,) = oi-

—BMHE ZAF— LD, X x X ZHARE {(z,2)|z € X} LEZOHIME TN
TH5LDTHS (BRABAF—LLEVD). WETHBBTINIBATH I L bi=J -1
TH3, ELJBIRTOEST 1D 0 RN EFTH. -2 =0-2+1]=
nJ—2J+I=mn-1)+n-2)J-1I) L5, {{HiT%AF—LEDRRXI
1 b
1[1 b
bldb (n—1)+(n—2)b

eb)=n—-1 S=id, v=2+22b TH3.

2.3. BAHDOWT.. H=(H,¢,t,85) Z—HD bF REELT3. Ky RELERICLT,
H I L TP OBREHERTES. Thbb H OERPLE Th=c(h)[, YVhe H %
HIeFILC € H WS, BRRIC hA =e(h)A, Yhe H %J}t‘d‘m A€ H % H OE#RS
LW, H O () RO 2&OESBIEME [T (f;) THRT. —SiciE—RLzw.

BL [ = f MO DL E, H Z8E (unimodular) THBH L WD, TDLERES
o)lZﬂth‘tc( h, BoEmEBuC [, THRT

Tt bF A8 H* = (H", 1,6, ") m%mﬁgmm

/H = {ye H*| Y. 2(h)ha = v(h)1, Vh € H}

BB, HRRE ye [ @ yxf=fU(VfEH) &
Z’Y(hl)f(hz) = (1)7(h) (Vfe H*, Vhe H) & 3 y(hi)he =y(h)1 (Vh € H).
RIS, fp.={)€ H" | £ A(h) = A(W)1, Yk € H}.

l;:‘ REUOHARHZER | BLUZOR 1 LLTELHE. AR —PREINT
W5,




E® 1. (DT}, D1], [D2)) (H,¢,t,S) Z—HD bF RFLT 3.
(1) A D LD,
p-t=e=5"t)=¢, ¢(t)=1=9(S"'(t)), (2.1)
Y orS )@t =) S t)@uh  (heH), (2.2)
S o(hh)S(h) =Y d(l)hy (b, € H) (2.3)
(2) R o—BHENRD LD, {bLLiZ

r ) r )
/ = kt, / = kS~(t), / = k¢, / =k(poS™!).
H H H* He

M. (1) S (t) @t B (H,9) ODFHMEETH B0 6, (1.2), (14) &b
S ST t)p(th) =h =Y $(hS7t))ts  (h € H).

CDRIC e ZHLUT o(th) = e(h) = p(hS~'(t)), LIz >Top—t=e=8t)=¢ T
HY, h=1%2RAFThiE o(t) = 1 = ¢(S7}(2)) 2185.
(2.2) & (1.3) B8RS, R (2.3) 9. X bF REH- 1T (2.2) ZHEAT B L

Y 128560 =) S @) @S  (fEH).
Lichio T
Y f(@)62(S T @))di(y) = ) (ST @)1 (1) f(v2) (S € H, T,y € H)
L7zhin T
Y 16uS T =2)) = D> ¢S @)y (3, y € H).

TTTl=8Yz), h=y &BFIE (2.3) BES NS, ((2.3) DEEEEHICDONTIE DT,
Proposition 3.2(a)] 2.)

(2) fE&DE H mBE M, £ H B NiCxL,

MH:={meMm-h=meh), Vhe H}, UN:={neNh-n=¢clh)n, VheH)}

L. BT [ AT HIicHT s HY O LTHB. M = H- DS,
(H) = ke THRTLRABHICONS. TOHELHEX (21) D (¢ —t) =6, BLU
HE H-OMDE HIEER 0: H = H", h— (¢ — h) L2HBEDLEBLT,
S =kt %2183, FRIC e = S71(1) = ¢ D5 [}, = kS™'(1) 2195, TORBEIU bF
REY H- CHBATBLT [ =ko, [j. = k(¢oS™) %183, 0

bF fREK H DIEROTE h L, ht RERERNCES. Ko THIO—RIE (E8
1D (2) 6, ht = a(h)t ZHT=TREE o € Alg(H, k) PFETS. TDa% HIC
N9 B EBEBAEY (right modular function) £ 5. H BB THBLiE a=c DT LT
B3. o(t)=1(2.1) &, a(h) = ¢lah)t) = o(ht) = (t = ¢)(h). £>T
ki3,

Bot§ bF (R H* OR@HMEIL A(e)=a®a 2H7=F H DL a #0 T,

> mhg(hy) = d(h)a,  (he )



TEBEETNE. BN TH3. HH a=o(ta=Tho(tr) =6 1.

%1 (HetS8) ZbF ¥, o % HOEHMWERETS.
(1) RD (a)-(c) {IEHETH 3.
(a) H D8 (b)tefl, (o) t=S().
(2) HDERE = e(t)#0 = H HBHR
(3) H D ¢ IcM9 2% LEA SRR

N(h) = 3—2(Za(h,,)h2) (h e H).

(4) ¢(hl) = ¢(lh), Y h, L€ H <= H HMBFEHD §? =id.
B)Y L ®@t,=181 <> ¢€ [ MDS? =id.

AEH. (1) (a) = (b) XEA. ) = (c) Lt BERIDES, §7'(t) GRS THSZ (SD
REEE). o TRIPO—EEXD, ST\ () =M &3 Ae k IMEET B, TOMUIC ¢
RIEECTE, (21) &D A=1%83. LiEN>T S (1) =t Tibb S(t)=t L X
3. ()= (a): [ =kt =kS\(t) = [}

(2) fEED h e H ITHL,

t(ht) = tta(h) = te(t)a(h), (th)t = tte(h) = te(t)e(h)
MDD, o Te(t) #0585, a=c ibY HIZMHATHS. Ric H HNERME
5e(t) 0 THRTLEMMTRYT. L e(t) =045, 2=tet) =0 THBIMD, ki
BREQTHRVRERATFTINERS. &> T H IFERMTERL,
(3) (2.3) Hfibh 3.

N(h) =) d(tN(R)S7(tz) (by (1.2))
=Y ¢(ht))S7!(tz)
o= S o(hty)S(t2))
= 572> _a(t)hy) (by (2.3))
=S572() "a(h)he) (by 4(t) =1)
(4) <) i (3) HhSHLH. =) h= S""’(Z(h)a(h,)hg) LEBE, SHh) =T alh)hs

THB. CNCe RBIFETILT, e=aHT3. LEN-T S =id L T3.

(5) i& (4) DIHTHB (H~ Iz (4) ZEA). o

3. M7 Oy ZRBDIEHER

Geck-Pleiffer D&Y [GP] D 7 S T—MROMFUICIHT 2 RBENRHE ATV 3.
Z OWHER TH 5l H AR (FEAECHROMLER &) KOV TRELDHHI &
DELSYBTER L EBANS.

(A, 0) Z—ROMFR (TUR=ZVA)RBLL, Lo, 0y 2ZONNEEL TS, it
BEfk & QRBEAkE L, E5IC A EHMTHE LRETS. A OEHIEEOREE

_8_



Irr(A) T#HT. HHABROERED, o(ab) = o(be) PMERD a.be ATLTRED IS
T3, Lo TELHIBNTVARESIC o (IBHIEHD 1 REBTRES ©

¢ = Z 1y X (ny € k), (3.1)
x€elrr{A)
(A BRITHAIROEMTH D, KEHKD LOBIEER » - M. (k) — k T r(ab) = 7(ha) &
AT ELOILFEED FL—ABERDA A S—HEDORLHEVD G, )
x € lrr(A) ICHEET 2.0 () NEFTE ¢, TRT. FED x. v e lrr(A), a€ A
WEMUT, ylae,) = l(a)dyy MDD LICHEHEET S, o(vey) % 2 HIFIDHIETEHE
LTWT S, ST Cu:=Y oy 1 (A,¢) DRV 2—4L. T,

$lvey) =V N7 myp(vey) = nyx(v).

velrr{A4)

—h, Hif2 XY g(vey) = xaley) = x(1)? THB. TUHOREBICROERZES :

E% 2. k2UBEK (A, ¢) ZREMONHARLE TS, TOLELEED x € rr(A4)
it

nyx(v) = x(1)° (3.2)
HUK D 37D,

RUa—Lvi=Y 8 (t)t, DE#ES H XDEREE IEWMTH -2, oM
REZSD.

2 (Ao ZEROoDEL FOMNHREBLL, v 2ZDOKRKV2—LETS. &L AN
BBt 5, v EMEICRS. £ IMREBEE S,

v= Z %ep vl = Z XT) (3.3)

x€lrr(A) X xElrr{ A)

AR, RBURRHATAI LICKD, F IFBEIREREL TRV, BEU 0 THEM S,
(32) &P x(v) #0, ny # 0 THB. KV a—L v BPLTTHEINDS, v =3 c1ma) ¥xex
DBICINT B, 1L ay e k. TOLE, x(v) = ayx(ey) =ax)((l) TH3. £-T(3.2)
EHVCa =X =X 5. LENST, v= 3 () o 215, ML
d0 'Cfétll‘i)‘B v 0)_.[,@19‘.73“]‘31171 BT o™ = 3 e e CTHFABNS. o

B 3. k2 0OREEAL TS, (A, ¢) BHEMIHHRBEL, Y, 2.0y 2%
DIRIEEEEL T 3.

(1)

Ex = "xZX(xi)Jn = —((:))_ ZX Ti )i (3.4)
(2)({EARDULIEME ) x, v € Irr(A) KX L,
ZX(T- () = ZX(T: )¥(1) = dyw (3.5)

_9_



A, (24) ZE-T
ey =3 Z¢(6’x$i)yi = Z ( Z n.;,z,’)(ex-’l:.-))ya = fix ZX(I‘)y‘
i i welrr(A) '

2183, Thic v ZRLT
X(1)dy = plex) = nye Y x(@:)$(wi)-

O
ER. (1) n, ORI - %2 x I{IBET B Schur element LW\, [GP] Tl o TELT
V3. (32) &Y, o= -’dl-; L3,
2 FR (xl¥) =X, x(v“z. Yo(y) DY LD, K, (3 3) 2T

> xto zw(w) = 3 x( 3 resn ) viu) = Zx () = (xI9).
i i P
B C DFREME > THEEROER 2R L (D2, Theorem 1.5].

B kB0 OREEKETS. M3 IKBVT, (xlv) = X} T x(=)v(m) LTh
&, (xXl) = by LT3,
(1) A=kG (B8) DS, v=|G1 r:f»

(xl) = Zx
|G| TG
(2) BFERTEEMSEE » 7RE H OBE, 880 OFEDL L&Y ST =id MDD
(Larson-Radford DER! AR, WRENHEHED M 1KHB). LEA>TH 1
D(2),4) &b, FED0#¢e [ HLT(H,¢) IHRBLES. Ehv=c)1
Mo

(xI¥) = (t)zx(saz W) = 5 Zx(mw(saz).

(3) 4HIBE bF RRIK (H,6,1,5) DBE, & ﬂ’ﬂﬁzm:vh. St =id VR BDE S Db
b‘gﬁb‘ LVHAT, SP=id Thabd ¢ DNFHERRELTHEL. v=Y 5 (L)
ThHy,

(x#) =&)Ex(5‘" (t2))(ts)-

(4) BRI (A,6,B = {by,...,bs},S) DIRA, ANEETHET L L v = T, 7bicbs
MUMITTH ST LIXEHET,
_x() ¥
~ x@) 2;
C LOBBNIRE (A,e,B = {b,..., b}, S) 75\, HZ3AF—LIATHIT 5 AF— LR
THB L E, AZXAF—LEA (scheme type) 'C‘E% LERTUICTR. AF—LMNCEB
TeHDYERMZRD S LI ALTRERETH B L BbIhE, AF—LYWTHB2
WCIAEER pf; DT RTIREEH (). = e(b) EERH) THHT LIBUEUTHBT L



BEGH. LALINEY TR TEY. XOFROBEIAF— LU THE1:HDH
Nz BRN2E5X3.

ER 4. (A, B,S) ik C LOBRMERT, &e(b) NINTEERBLTE. DL E,
AZERMT, LH>T ADRY 2—LBTHETHS (R2). L ADFAF—LY
56, EEDOBHMER x KU my = e(t)n, = %%’ WIERHTHS. LI x(v) 3E
it 8

W, ADEROE z= T A0 WU, T:=30 Nb &5 2L, N\
DUHIE. T, 2 #0745 25@3) #0 THAI L RAHT 3.

#(zS(Z)) Z MAp = Y Adje(bi)dy = D AXe(b) > 0
1% i

ThHY, Thho eI z8@) #0 2183, ST AMNEBMHUTEVERETSZ L, (Ja
cobson) 2t J XX O THNRERATF TN THB. r#£0e J ZRE, y:=25F)eJ
B LOBRED, y£0THD, Lhd
5(F) = $(zS(T)) = S(zS(2)) = $*(2)S(T) = zS(F) = y

THBEN5, ¥ =ySFH) #0THB. CORMAERDIET LT y™ # 0 HMERDERK
miICHUTKILT . T JARERATTVTHBLICFETS. Lieh»T A
BB,

B, ADRF—LBET D L&, ADOEHERR (Fiid) DG c(t)d = erl“m)e(t)n,‘x
THBTLhEREEBILEBENS.

SRfl. 3XTT S =id H3BHRIRBOEEIREINTED (D2)), /8T A—42—
pe,BeCILED AL (3) TEENS.

p,q(3) 1 bl b2
1 1 b by
by |b p+(p—1- Bq)b + Bpby Baby + (p — Bp)b,
by | b Baby + (p — 8p)ba g+ (q—Bg)h +(a—1-p+ Gp)h

e(by) =p, e(by) = q, v =3 + 2=1fralp, 4 e=p-13Bre)),
B =0 OPER, {EHOHTIEBIERE UL, TIRRADE > ch3 |

A1 b b | x(w) || my
€ 1 p q ptg+1 1
1 +q+1
x |1 -1 0 ITT " &;21_2
X2 1 p -l1-p {p+ )Z+q ) P_.q‘._l

P, qEN, p<q LT BLE, BHAEXD, A 3) NAF—LAES p+1| g HBH
THB. WMCCNPRD DL E, Fh—TbIFRF—L GD(;L + 1,p+ 1) B EXH
N3 ([B, Example 2.2]) : =75 AN p+1 AOERNS X2 I TANERT L +14
H3L95. ERSUDMEE X LT3 (X|=p+q+1 TH3B). X xX 03 3aH
Ro={(z,z)z € X}, Ri={(z.9)lz#y, z,yBE U IS5 R}, R; = (RyUR,) ({ith®H)



WAF—LEED. THIIRIT 2 AF—LERIE A (3) KFLV I LPHENIDLNS.
TDXHLT
AL (3) MAF—LB = p+1!4

Bbhic

ZDH L, HIREED Frobenius-Schur OFEMAMER 0 O—KOREIAK 1D bF R
EHUTHIETERZ L by TRECH L TR I TIHIRTI N TS (L) (/TR
FTEORBMRBOBEE XUTEREZORE . TV IL—Ya b AF—LA\DIEH T ED
BEEDE KON, OB TEIL LTS,
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LINEARITY DEFECT OF GRADED MODULES
OVER KOSZUL ALGEBRAS

KOHJI YANAGAWA

ABSTRACT. We study the regularities and linearity defects of graded modules over a
Koszul algebra. These invariants are closely related to Koszul duality. We mainly con-
sider 1 Koszul commutative nlgebra A and its dual A'. We also introduce resnlts on
monomial ideals in an exterior algebra E := A (y1,...,¥ys), which is a primary example
of a Koszul algebra. The linearity defects of monomial ideals in E have combinatorial
interest, and the results in this part belong to joint work with R. Oknzaki.

1. INTRODUCTION

Let A = @,y Al be a Koszul algebra over a field K := Ao, and *mod A the category
of finitely generated graded left A-modules. The Koszul duality is a certain derived
equivalence between A and its Koszul dual algebra A' := Ext% (K, K).

For M € *mod A, set 3, ;(M) := dimxm"A(M, Ky fP:--->P P> M=
0 is a minimal graded free resolution of M, then P, = @, S(—j)?-+*). We call

reg4(M) :=sup{j—i|i€N,j€Z with 3;;(M) #0}

the (Castelnuovo-Mumford) regularity of M. When A is a polynomial ring, reg,(M) has
been studied by many authors from both geometric and computational interest. Even
for a general Koszul algebra A, reg,(M) is still an interesting invariant closely related to
Koszul duality (see Theorem 5 below).

Let P, be a minimal graded free resolution of M € *mod A. The linear part lin(P,) of
P, is the chain complex such that lin(R,); = P, for all i and its differential maps are given
by erasing all the entries of degree > 2 from the matrices representing the differentials of
P,. According to Herzog-Iyengar [7], we call

Ida(M) := sup{i | Hi(lin(P,)) # 0}

the linearity defect of M. This invariant is related to the regularity via Koszul duality
(see Theorem 7 below).

In §4, we study the regularities and linearity defects of modules over a Koszul com-
mutative algebra A or its dual A'. Even in this case, it can occur ld4(M) = oo for
some M € *mod A, while Avramov-Eisenbud [1] showed that reg,(M) < oc for all
M € *mod A. On the other hand, Herzog-Iyengar 7] proved that if A is complete inter-
section or Golod then ld4(M) < oc for all M € *mod A. Initiated by these results, we
will show the following. Since the results in §4 have not been written elsewhere, we will
also give precise proofs.

The detailed versions of this paper will be submitted for publication elsewhere,



Theorem A. For a Koszul commutative algebra A and N € *mod A', we have;
(1) If reg 4(N) < o0, then 1d 4(N) < o0.
(2) If A is a complete intersection, then regy(N) < oo for all N € *mod A".
(3) If A is Golod and N has a finite presentation, then reg(N) < oo.

Let E := A{m,...,yn) be the exterior algebra. It is a primary example of a Koszul
algebra. Eisenbud et. al [5] showed that ldg(N) < oo for all N € *mod E (now this is
a special case of Theorem A). If n > 2, then sup{ldg(N) | N € *mod E} = c0. On the
other hand, we can prove that there is a uniform bound C such that

ldg(E/J) < C  for all graded ideals J of E.

While we know little about the actual value of C, we can treat Idg(E/J) very precisely
if J C E is a monomial ideal. In §5, we collect results in this direction. Most results in
this section belong to joint work with R. Okazaki of Osaka university.

For a simplicial complex A C 2l (here [n] := {1,2,...,n}), set Ja := ([T;cr® |
F C [n],F ¢ A) to be a monomial ideal of E. Note that any monomial ideal of E is of
the form Ja for some A. Recently, Ja has become an important tool of Combinatorial
Commntative Algebra.

Theorem B. (Okazaki-Y [10]) With the above notation, we have the following.
(1) dg(E/Ja) < max{1,n — 2}.
(2) ldg(Ja) only depends on the topology of the geometric realization |AV| of the
Alezander dual AY of A {and char(K)).
(3) If n > 4, we have ld(E/Ja) =n—2 <= A is an n-gon.

2. KoszuL ALGEBRAS AND KoszuL DuALITY

Let A = @), Ai be a graded algebra over a field K := Ap with dimg A; < oo for all
i € N, *Mod A the category of graded left A-modules, and *mod A the full subcategory
of *Mod A consisting of finitely generated modules. We say M = @, ., M; € *Mod A
is quasi-finile, if dimy M; < co for alli and M; = 0 for i « 0. If M € *mod A4, then
it is clearly quasi-finite. We denote the full subcategory of *Mod A consisting of quasi-
finite modules by qf A. Clearly, gf A is an abelian category with enough projectives. For
M € *Mod A and j € Z, M(j) denotes the shifted module of M with M(j); = M,;. For
M,N € *Mod A, set Hom 4(M, N) := @),z Hom=poq A(M, N(3)) to be a graded k-vector
space with Hom , (M, N); = Homxygoq 4(M, N(%)). Similarly, we also define Ext’,(M, N).

Set m := €,,, Ai, and regard K = A/m as a graded left A-module. For M € of 4,
i€Nand j€Z, set

Bi, (M) = dimg Ext}y (M, K)_;.

Note that M € qf A has a minimal graded free resolution P, : --- = P, —» Pp - M — 0,
which is unique up to isomorphism. In this situation, we have P, = Djez S(—5)Ps 00,
It is easy to see that §; (M) < oo for all 4,5. But, if A is not left noetherian, then
Bi(M) := Zjezﬂij(M) can be infinite even for M € *mod A.

We say A is Koszul, if §; ;() # 0 implies i = j, in other words, the left A-module K
has a graded free resolution of the form

e A=) — e — A(=2)% — A(-1)®P S A — K 0.



Even if we regard K as a right A-module, we get an equivalent definition.

The polynomial ring K|z, ..., z,] and the exterior algebra A (y1,...,yn) are primary
examples of Koszul algebras. Of course, there are many other important Koszul algebras.
In the noncommutative case, many Koszul algebras are not noetherian.

Koszul duality is a derived equivalence between a Koszul algebra A and its dual A'. A
standard reference of this subject is Beilinson et.al [2]. But, in this paper, we follow the
convention of Mori [9].

Recall that Yoneda product makes A' := @),y Ext;(K, K) a graded K-algebra. If A is
Koszul, then so is A' and we have (A")! = A. The Koszul dual of the polynomial ring S :=
K|[z,,...,z,| is the exterior algebra E := A (y,,...,ys). In this case, since S is regular
and noetherian, the Koszul duality is very simple. It states an equivalence D*(*mod S) &
Db(*mod E) which is sometimes called Bernstein-Gel’fand-Gel’fand correspondence (BGG
correspondence for short). In the general case, the description of the Koszul duality is
slightly technical.

Let C(qf A) be the homotopy category of cochain complexes in qf A, and C'(qf A) its
full subcategory consisting of complexes X* satisfying

X;=0 fori»0ori+j 0.

We denote for D'(qf A) the localization of CT(gf A) at quasi-isomorphisms.

We denote V* for the dual space of a K-vector space V. Note that if M € *Mod A
then M~ := P, ,(M_;)" is a graded right A-module. And we fix a basis {z,} of A, and
its dual basis {y,} of (4;)" (= (A");). Let (X*,8) € C'(qf A). In this notation, we define
the contravariant functor F : CT(qf A) — C'(qgf A') as follows.

Fa(X*) = @D Apy; @k (XIP)
with the differential d = d' + d” given by
d: Aq+J DK (X"”) 3a®@m+— (—1)”Zy,\a ®@mz, € .43,+j+1 DK (X{;’;l)'

and
d": A, @k (XIP)" 3 a®@m+— a®9%(m) € Ay,; @k (XI777)".

The contravariant functor Fy : C'(qf A') — CT(qf A) is given by the similar way. They
induce the contravariant functors ¥4 : D'(qf A) — D'(af A') and F,: : Di(qf 4') —
D'(qf A).

Theorem 1. The contravariant functors F4 and F 4 give an equivalence
D' (qf A) = D'(gf A')°P.
The next result easily follows from Theorem 1 and the fact that F4(K) =
Lemma 2 (cf. [9, Lemma 2.8]). For M € qf A, we have
Bi,;(M) = dim H=I(F4(M));.



3. CASTELNUOVO-MUMFORD REGULARITY AND LINEARITY DEFECT
Throughout this section, A = @y Ai is a Koszul algebra.

Definition 3. For M € qf A, we call
reg (M) :=sup{j—i|i€eN,jeZwith § ;(M)#0}

the (Castelnuovo-Mumford) regularity of M. For convenience, we set the regularity of the
0 module to be —oo.

If M ¢ *mod A, then 8o, ;(M) # O for arbitrary large j and reg, (M) = oo. So reg4(M)
is essentially an invariant of M € *mod A. But we regard it as an invariant of M € qf A
for later convenience. The following is clear.

Lemma 4. (1) For M € qf A, we have
reg,(M) < oo = Fi(M) < oo for alli => M has a finite presentation.

(2) Let 0 > M' = M — M" — 0 be a short exacl sequence in of A. If two of M, M’
and M” have finile regularity, so does the third.
(3) If M € *mod A has finile length, then reg, (M) = sup{i | M; # 0}.

If A is a polynomial ring K[z, ...,,] (more generally, A is AS regular), then reg,(M)
of M € *mod A can be defined in terms of the local cohomology modules Hi (M), see
[6, 8, 15]. If A is commntative, it is known that reg,(M) < oo for all M € *mod A (see
Theorem 8 below). But this need not be true in the non-commutative case. In fact, if
A is not left noetherian, then A has a graded left ideal I such that 3,(A/I) = co. In
particular, if A is not left noetherian, then reg,(M) = oc for some M € *mod A. The
author does not know any example M € *mod A such that 3;(M) < oo for all 7 but
reg (M) = oc.

The next result directly follows from Lemma 2.

Theorem 5 (Eisenbud et al [5], Mori [9]). For M € qf A, we have
reg (M) = —inf{i | H'(Fa(M)) #0}.

Let P, :--- = P, —» Py = M — 0 be a minimal graded free resolution of M € qf A.
The linear part lin(P,) of P, is the chain complex such that lin(P,); = P; for all ¢ and
its differential maps are given by erasing all the entries of degree > 2 from the matrices
representing the differentials of P,. It is easy to check that lin(R,) is actually a complex,
but it is not acyclic in general.

Definition 6 (Herzog-Iyengar [7]). Let M € qf A and P, its minimal graded free resoln-
tion. We call

Ida(M) := sup{i| H;i(lin(P,)) #0}
the linearity defect of M.

We say M € *mod A has a linear free resolution if there is some I € Z such that
3i i(M) # 0 implies that j — i = /. It is easy to see that

reg,(M) = inf{i | My; := @ M; has a linear free resolution}.
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Fori € Z and M € qf A, My denotes the submodule of A generated by the degree
t component M;. We say M € qf A is componentwise linear, if My has a linear free
resolution for all ¢ € Z. For example, if M has a linear free resolution, then it is com-
ponentwise linear. Note that M can be componentwise linear even if it is not finitely
generated. For example, @,y K(—1) is componentwise linear. It is easy to see that
Ida(M) = inf{i | Qi(M) is componentwise linear }, here Q;(M) is the ith syzygy of M.

Clearly, we have ld4(M) < proj.dim4(M). The inequality is strict quite often. For
example, we have proj. dim (M) = oo and Id4(M) < oo for many M. On the other hand,
sometimes Id (M) = .

The next result connects the linearity defect with the regularity via Koszul duality.

Theorem 7 (cf. [15, Theorem 4.7)). For M € qf A, we have
Id (M) = sup{ reg(H (Fa(M))) +i|i € Z}.

Proof. For a complex X*, H(X*) denotes the complex such that H(X*)' = H(X*) for
all ¢ and all differentials are 0. Let P, be a minimal graded free resolution of M. Then
lin(P,) is isomorphic to F 4 (H(Fa(M))) (this is proved in [15] under the assumption that
A is selfinjective, but the assumption is clearly irrelevant). So the assertion follows from
Theorem 5. a

4. KoszuL. COMMUTATIVE ALGEBRAS AND THEIR QUADRATIC DUAL

In this section, we study a Koszul commutative algebra A and its dual A'.

Theorem 8 (Avramov-Eisenbud [1)). If A is a Koszul commutative algebra, then we have
reg,(M) < oo for all M € *mod A.

On the other hand, even if A is Koszul and commutative, 1d 4(4f) can be infinite for
some M € *mod A, as pointed out in [7). In fact, if [d4(M) < oo then the Poincaré series
Par(t) = 2 ;en Bi(M) - t! is rational. But there exists a Koszul commutative algebra A
such that Py;(t) is not rational for some M € *mod A. But we have the following.

Theorem 9 (Herzog-Iyengar [7]). Let A be a Koszul commutative algebra.
(1) If A is complete intersection, then lda(M) < oo for all M € *mod A, while

sup{1da(M) | M € *mod A } = o in most cases.
(2) If A is Golod, then 1d 4(M) < 2-dimg A; < 00 for all M € *mod A.

Now we are interested in reg,:(/N) and 1d 4:(N) for a Koszul commutative algebra A.

Theorem 10. If A is a Koszul commutative algebra, we have the following.
(1) Let N € *mod A'. If reg(N) < oo, then Id 4(N) < oo.
(2) The following conditions are equivalent.
(a) lda(M) < oo for all M € *mod A.
(b) If N € *mod A' has a finite presentation, then regy(N) < 00.
(3) Let N € of A'. If there is some ¢ € N such that dimg N; < ¢ for all i € Z, then
1d4:(N) < o0.



Proof. (1) The complex F4:(N) is always bounded above. Hence if reg:(N) < oo then
H(Fa(N)) # 0 for only finitely many i by Theorem 5. Thus the assertion follows from
Theorems 7 and 8.

(2) The implication (a) = (b): First assume that N € *mod A' has a finite presen-
tation of the form A'(—1)®%t — A'® N — 0. Then there is M € *mod A with
M = @, M: such that Fa(M) gives this presentation. Since ld4(M) < oo, we have
reg 4(N) < oo by Theorem 7.

If N € *mod A' has a finite presentation, then for a sufficiently large s, N>, := @5, Ni
has a presentation of the form A'(—s — 1)® — Al(—g)®% — N>, — 0. (To see this,
consider the short exact sequence 0 — N>, — N — N/N5, — 0, and use the fact that
reg(N/N»,) < 5.) We have shown that rega(N5,) < 0o. So reg(N) < oo by the
above short exact sequence.

The implication (b) = (a): Set s := min{i | M; # 0}. Then we have a finite presenta-
tion A'@x (M,y1)" = A'®k(M,)" = H™*(Fa(M)) — 0. Hencereg 4 (H™5(Fa(M))) < o0
by the assumption. Let & be the differential map of the complex F,(M). By the exact
sequence

0 — Imd—*! — A' @k (M,)” — H™*(Fa(M)) — 0,
we have reg 4(Im 8*~!) < oo. Similarly, by the short exact sequence
0 — Kerd™* ! — A'@ (M,4)" — Imd™""! — 0,
we have reg ,1(Kerd~*~!) < 0o. Consider the short exact sequence
0 — Imd™*? — Kerd™*+' — H™*"}(Fa(M)) — 0.

Since there is a surjection A' ®x (My42)” = Im9~%-2, Imd~*"% is finitely generated.
Hence reg 5 (H~*"'(Fa(M))) has a finite presentation, and its regularity is finite by the
assumption. So we also have reg ,:(Im 872"2) < co. Repeating this argument, we can show
that reg i (H(Fa(M))) < oo for all i. On the other hand, by Theorem 5 and Theorem 8,
H*(F4(M)) # 0 for only finitely many i. So the assertion follows from Theorem 7.

(3) Let X be the set of all graded submodules of A%¢ which are generated by elements
of degree 1. By Brodmann [3], there is some C € N such that reg,(M) < C for all
M € X. To prove the theorem, it suffices to show that reg(H!(F4(N))) +i < C for all
i. We may assume that i = 0. Note that HO(F 4 (N)) is the cohomology of the sequence

A®k (M) T Ak (No)" L Ak (N-y)™.

Since Im(8°)(—1) is a submodule of A®dimk N-1 ¢ A®¢c generated by elements of degree
1, we:have reg 4,(Im(8°)) < C. Consider the short exact sequence

0 — Ker(8%) — A ®k (No)* — Im(8%) — 0.

Since reg 4(A®x(Np)*) = 0, we have reg 4(Ker(8°%)) < C. Similarly, we have reg,(Im(8~"))
C. By the short exact sequence

0 — Im(37") — Ker(8°%) — HO(F4(N)) — 0,
we are done. 0

Corollary 11. If A is a Koszul complete intersection, then reg,(N) < oo and ld4(N) <
oo for all N € *mod A'.



Proof. If N € *mod A' has a finite presentation, we have reg 4, (N) < cc and Id4(N) < o0
by Theorem 9 (1) and Theorem 10. On the other hand, it is know that A' is noetherian.
Hence all N € *mod A' has a finite presentation. So we are done. O

Proposition 12. Let A be a Koszul commutative algebra which is Golod. If N € *mod A'
has a presentation of the form A'(~1)®% — A'®% o N — 0, thenregy(N) < 2-dimy A;.

Proof. Follows from Theorem 9 (2) and the argument similar to the proof of Theorem 10
(2). (]

In the situation of the above proposition, A is not necessarily noetherian. So it can
occur reg4(N) = oo for some N € *mod A' even if A is Golod.

5. LINEARITY DEFECTS OF FACE RINGS

Let S := K]z,,...,z,] be the polynomial ring, and £ := A (y1,...,¥,) the exterior
algebra. The next result is now a special case of Theorem 10, but it initiated the study
on linearity defect.

Theorem 13 (Eisenbud et. al. [5]). We have ldg(M) < oo for all M € *mod E.

If n > 2, there is no uniform bound for l[dg(M), that is, sup{ldg(M) | M € *mod E } =
00. On the other hand, we have

ldg(M) < ™ 2=V (¢:= max{dimg M; | i €Z})

for M € *mod E. This bound follows from Brodmann's bound for the regularity of
M € *modS. We also remark that the above bound seems very far from sharp. For
example, the author does not know a graded ideal J C F with Idg(E/J) > n — 1. When
J is a monomial ideal, we can actually prove that Idg(E/J) < n —1.

Set [n] := {1,2,...,n}. We say A C 2" is an (abstract) simplicial complez, if F € A
and G C F imply G € A. For a simplicial complex A C 2/*, we have monomial ideals

In=(J]z| FCn,FgA) ofS,
ieF
and
Ja = (Hy,- |[FCn,FgA) of E.
i€F
We call K[A] := S/I, the Stanley-Reisner ring of A, and K{A) := E/Ja the exterior
face ring of A. Both are very important in Combinatorial Commutative Algebra, see

[4, 12]. In this section, we introduce the results on the linearity defects of K[A] and
K({A). See [10] for detail.

Theorem 14 (Okazaki-Y [10]). For a simplicial complex A C 2", we have
lde(K(A)) = lds(K[A]).



There might exists a direct proof of the above result. But, in [10], we use the fact
that BGG correspondence D*(*mod S) 2 D*(*mod S) has special meaning for K[A] and
K(A) (this is the author's previous result, see [13]). From this, we can show that both
lds(K(A)) and ldg(K({A)) equal

(5.1) max{ i — depthg( Ext3*(Jav,9)) |0 <i<n}.

Here
AV:={FCln]|In]\FgA}

is the Alezander dual of A (it is easy to check that AV is a simplicial complex again).
We also remark that the number in (5.1) is closely related to the notion of sequentially
Cohen-Macaulay modules (c.f. [12, Theorem 2.11]).

Theorem 14 suggests that we may set

1d(4) := lds(K[A]) = lde(K({A)))-

A simplicial complex A gives the topological space |A| which is called the geometric
realization of A. In other words, A is a “triangulation” of |A|. It is well-known that many
homological/ring theoretical invariants of K|A] only depend on the topological space |A|
(and char(K)). But, for Idg(K[A]), the Alexander dual AV is essential.

Theorem 15 (Okazaki-Y [10]). IfA # 27 for any T C [n], 1d(Q) is a topological invariant
of the geometric realization |AV| of the Alezander dual AV.

The above result follows from the fact that 1d(A) equals the number given in (5.1) and
“sheaf method” in the Stanley-Reisner ring theory, which was introduced by the author

([14]).
As a remark, 1d(A) depends on the characteristic char(K) of K. In fact, when |AY| is
homeomorphic to a real projective plane P2R, we have

3 ifchar(K) =2
1 otherwise.

1d(A) = {

The earlier (and slightly weaker) version of the next result was first given in the thesis
of T. Rémer [11), and treats ldg(K (A}). Later, it was improved by the author in [15].
The original proofs were slightly complicated. But, now we can give a simple proof which
uses Theorem 14 and the fact that if a free module S(—1i) appears in the minimal graded
free resolution of K[A] then i < n.

Theorem 16 (Herzog-Romer, Y [15)). For a simplicial complez A C 2!, we have
Id(A) € max{1, n—2}.

So it is natural to ask which simplicial complex attains the equality 1d(A) = n— 2. For
an answer, the following holds.

Theorem 17 (Okazaki-Y [10]). If n > 4, we have Id(A) = n — 2 <= A is an n-gon
(i.e., |A| is a circle).



To prove the theorem, we use ld(A) = ldg{K[A)). If A is an n-gon, then 3,-;(K[A]) =
0, Bn-2.n(K[A]) # 0 and B,_3,n-1(K[A]) = 0. Hence we have [H,_2(lin(P.))]n # 0,
where P, is the minimal graded free resolution of K[A]. The proof of the converse can be
reduced to the case when dim A =1 (i.e., A is essentially a simple graph). Regarding A
as a graph, we say a subgraph C of A is a minimal cycle, if it is a cycle with no chords.
In this terminology, A is an n-gon if and only if A itself is a minimal cycle. Anyway, the
assertion essentially comes from the following fact: If dim A = 1, H,(A; K) is generated
by H,(C; K) for minimal cycles C of A, in other words, we have a surjection

(5.2) B HI(CK)— H(AK)—0.

C:minimal cycle

Example 18. The Alexander dual of the 3-gon is homeomorphic to the Mabins band.
So the above theorem states that if [AY| is homeomorphic to the Mobius band then
1d(A) = 3, and any triangulation of the Mobius band requires at least 5 points. In this
sense, the problem on “ a simplicial complex A € 2 with small n - 1d(A)” is weakly
related to the classical combinatorial problem on “a triangulation with small number of
vertices”. For example, if |AY| is homeomorphic to the cylinder or the real projective
plane and char(K) = 2, then Id(A) = 3. In both cases, there is a triangulation with 6
vertices (this is the smallest possible number), and then we have Id(A)=3=n-3.

For a simplicial complex A C 2/ and Fc [n], the restriction Alr := {G € A |G C F}
is a simplicial complex again. If dim A = 1 and 1d(A) > 2, then we have

1d(A) > min{ #F —2| Alpisa #F-gon}.

But the inequality can be strict.
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LONG EXACT SEQUENCES COMING FROM TRIANGLES

AMNON NEEMAN

ABSTRACT. Suppose we are given a homological functor, from a triangulated to an
abelian category. It takes triangles to long exact sequences. It turns out that not every
long exact sequence can occur; there are restrictions.

CONTENTS
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0. INTRODUCTION

Suppose A is a sufficiently nice abelian category, so that it has a derived category
D(A). This will happen, for example, if A has enough projectives, or if it has enough
injectives; for details see Hartshorne [2] or Verdier [3, 4]. Given a distinguished triangle
in D(A)

X —Y — 72 —3XX,
we can form the long exact sequence in cohomology. We deduce in A a long exact
sequence

oo+ —> H™}(Z) —> H(X) — HY(Y) — H(Z) — H}(X) —> - --

We can wonder what long exact sequences can be obtained this way.
It is clear that any sequence of length four is obtainable. If we have an exact sequence
in A

0 A B c D =0
then it is very easy to deal with it; consider B and C as objects of A C D(A), and
complete the morphism B — C into a triangle in D(A). The reader can easily check
that the long exact sequence, obtained from the functor H applied to this triangle, is
nothing other than

0 A B C D 0.

Key words and phrases., Triangulated categories, homological functors.
The research was partly supported by the Australian Research Council.
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The remarkable fact, which I do not fully understand, is what comes next. It turns out
that not all sequences of length five

0 A B C D E 0

are the long exact sequences of triangles. Any exact sequence of length five defines a
class in Ext%(E, A), or equivalently a morphism E — Y34 in D(A). It turns out that
the sequence will be the long exact sequence of a triangle if and only if this class in
b‘xti(E‘, A) vanishes. In this article I will only prove the necessity, but the sufficiency is
easy enough.

More is true. Given any distinguished triangle X == Y — Z %5 ©.X in the derived
category D(A), we can look at its long exact sequence in cohomology. It can be chopped
into bits of length five, for examp]e

0 — K — H(x) % oy 2 pogzy g —o0,

where K is the kernel of H%(u) : H%(X) — HO(Y), while Q is cokernel of H%(v) :
HYY) — H%Z). We will prove thal, for every such length-five bit, the corresponding
element in Ext}(Q, K) vanishes. 1 know that this vanishing is necessary, but have no
idea whether it suffices. In other words, I do not know whether it characterizes the long
exact sequences coming from triangles in D(A).

In the proof we will be slightly more general. We will start with an arbitrary triangu-
lated category T, possessing a {—structure; the reader is referred to Beilinson, Bernstein
and Deligne |1] for the definitions and elementary properties of {—structures. We will
let A be the heart of the t—structure. We will assume that T is nice enough so that the
inclusion A — T factors through a triangulated functor F : D®(A) — T; this is a very
weak hypothesis, usually satisfied. We recall that, for any pair of objects A, B € A, we
have

HomDo(_A)(A, B) = Homg-(A, B) , HOme(A)(A, EB) = Homg,(A, EB) .

The reason for the first equality is that A embeds fully faithfully in both D*(A) and 7T, and
the second equality is because both groups classify extensions0 — B — E — 4 — 0
in A. But it is perfectly possible for a non-zero morphism a : A — L™ B, in the calegory
Db(A), to map to zero in T; all we learn, from the discussion above, is that this can only
happen if n > 2.

What we will prove, in the generality of triangulated categories T with f~structures,
is the following. Given any triangle X —— ¥ —= Z -5 £X in the category 7, we can
still look at its long exact sequence in cohomology. It can still be chopped into bits of
length five, for example

0 — K — HoX) 22 goryy 29 poz) — 0 — 0.
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Every such length-five bit corresponds to an element in Ext:jl(Q. K), that is to a mor-
phism a : Q — Z3K in Db(A). We will prove that the functor F' : D®(A) — T must
take a to zero.

1. THE PROOF
Before all else we need to fix our conventions for this section.

Notation 1.1. Let 7 be a triangulated category with a t—structure. Let A be the heart of
this t—structure. Assume that the category 7 is “natural” enough so that the embedding
of A into T extends to a triangulated functor F : D¥(A) — T. We fix these assumptions
throughout the section.

Let us also fix the notation that H : 7 — A will be the homological functor sending
an object X € 7 to the truncation H(X) = (XSO)ZO. We will let H*(X) = H(Z"X).

With these conventions, we are ready to state and prove our main observation:
Lemma 1.2. Let X — Y — Z — T X be a triangle in T, and suppose that
(1) X and Y lie in TS1NT20,
(2) Z lies in A = 750N 720,
This implies that the functor H sends the triangle to the long ezact sequence
(*) 0— HYX) — HY) — HY(Z) — H'(X) — H'(Y) —> 0
with all the other terms vanishing. In the abelian category A, this 5-term ezacl sequence
defines a class in Ext3 (H\(Y), H%(X)). This class can also be viewed as a morphism
a: H(Y) — T3H(X), in the derived category Db(A).
We assert that, under the funcior F : DY(A) — 7T, the image of a vanishes.
Proof. Consider the commutative square
X—Y

L

X?:l > yZl
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We may complete to a 3 x 3 diagram, were the rows and columns are triangles

b Y -7 — %X
X2 y2! l - £X2

LXS0 — 5y — pK — 52X <0

|

X LY £Z - 52X !

and the proof is by studying this 3 x 3 diagram. In the second row, we have that
£X = H'(X)and LY = H'(Y) are both in A C 7, and that the morphism £X — LY
is surjective; it is the morphism H!(X) — H!(Y) in the long exact sequence (*) of the
lemma. The second row reduces to the short exact sequence in A

0— ] — HY(X) — HY{(Y) —0,

and the map Y2! —, | is the image, under the functor F : D¥(A) — T, of the
morphism in D?(A) defining the extension 0 — J] — HY(X) — HY(Y) — 0.
So much for the second row. Now look at the commutative diagram

Z— 33X
] —EX2! —3Yy2! |
If we apply to it the functor H, we discover the diagram
H%(Z) — H(X)
H%(I) — HY(X) — HY(Y).
Both Z and [ lie in the heart A, and the diagram above identifies for us the map Z — I
as the factorization of the morphism from Z = H%(Z) to H!(X) through the kernel of
H'(X) — H(Y), which is the image of Z — H!(X). Now the column
K—Z—1—3%YK

is a triangle, which reduces to the short exact sequence 0 — K — Z2 — I — 0
in A C T7. We also learn that the map I — YK is the image, under the functor
F :D*(A) — T, of the morphism in D*(A) corresponding to the extension.
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Next consider the commutative square

Y — K

|

Y—2Z
If we apply the functor H we learn that the map Y<? — K, which is a map between
objectsin A, is just the factorization through K of the morphism H%(Y) — H%Z)=Z
The triangle
XS0yt g 7X<0

is therefore nothing fancy; it is simply the exact sequence 0 — H%(X) — HY%(Y) —
K — 0 in A. Moreover, the map X — T£X=0 is just exactly the image, under the
functor F : D¥(A) — 7, of the morphism in D®(A4) corresponding to the extension.

What we have learned so far is that three of the six triangles, in our 3 x 3 diagram,
amount to short exact sequences in A

0 — HY(X) — HO(Y) K 0
0— K Z -1 0
0 I - H\(X) — H'(Y) — 0

Moreover, the differentials of these triangles are the classes of the three extensions, and
are also part of our 3 x 3 diagram. The composite of these three differentials is the map

Y2l —— g
LK — 3?X=0 '
which the reader will find in our diagram. The commutativity of
Y2l —»j —— rpx2!
LK — 32X<0 J

coupled with the vanishing of Y 2! — 7 — T£.X21, tells us that this composite vanishes.
In the category T the three extensions compose to zero. O

Proposition 1.3. Let the conventions be as in Notation 1.1. Suppose X — Y —
Z = X is a triangle in T. Complete HY(X) — H°(Y) — H%(Z) to an eract
sequence

0 —= K — Ho(x) 9 H°(Y) 79 w02y —@—o0,
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where K must be the kernel of HO(u) : HY(X) — HO(Y), while Q is forced to be the
cokernel of H(v) : HO(Y) — H%(Z). The sequence defines an element in Extﬁl(Q, K),
or equivalently a morphism a : Q@ — L3K in Db(A).

We assert that the functor F : D*(A) — T takes a to zero.

Proof. Consider the commutative square

X Y

Lo

X320 — y20

It may be extended to a morphism of triangles, which we will write

X Y Z -3 X

R

X' Y’ VAL X!
That is X’ = X2% and Y’ = Y20, We have
(1) X’ and Y’ belong to 72°, while Z' belongs to 721,
(2) The three maps
HOX) — HYX'), HOY)— HOY), H%Z)— H(Z')

are all isomorphisms. For X’ = X2% and Y’ = Y 2° this is obvious, by the defini-
tion of the functor H in terms of truncations. For Z’ consider the commutative
diagram with exact rows

HY(X) — HYY) — H%(Z) — H'(X) — H\(Y)
NN
HY(X') — HY(Y') — H%(Z') — H(X') — H}(Y")

We know that p, o, p and Zo are isomorphisms. The 5-lemma permits us to
conclude that so is 7.

Now apply the dual construction; consider the commutative square

1 <0 n<0
(Y= — (2%

|

YI ZI
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We can extend to a morphism of triangles

XII Y" > ZII > ZX"

N

X' Y’ z' X! i
as before, this means Y = (Y)% and Z” = (Z')%°. We leave it as an exercise to the
reader to check that

(1) X" belongs to T<!NT20, and Y belong to A = TS9N 720, while Z” belongs to
TONT2-1,

(2) The three maps
HYX") — HY(X'), HYY")— H(Y'), H%Z")— H%(Z')

are all isomorphisms.

The proposition now follows from Lemma 1.2, applied to the triangle £-1Z" —
X! — Y — 7, 0

REFERENCES

1. Alexander A. Beilinson, Joseph Bernstein, and Pierre Deligne, Analyse et topolegie sur les éspaces
singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (Irench).

2. Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, vol. 20, Springer-Verlag,
1966.

3. Jean-Louis Verdier, Catégories dérivées, état 0, SGA 4.5, Lec. Notes in Math., vol. 569, Springer-
Verlag, 1977, pp. 262-308 (French).

, Des catégories dérivées des catégories abeliennes, Asterisque, vol. 239, Société Mathématique

de France, 1996 (French).

CENTRE FOR MATHEMATICS AND ITS APPLICATIONS, MATHEMATICAL SCIENCES INSTITUTE, JOHN
DEDMAN BUILDING, THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT 0200, AUSTRALIA
E-mail address: Amnon.Neeman€anu.edu.au



ON S-COHN-JORDAN EXTENSIONS

JERZY MATCZUK

ABSTRACT. Let a monoid S act on a ring R by injective endemorphisms. A series of
results relating various algebraic properties of R and that of the S-Cohn-Jordan ring
extension A(R;S) of R are presented. For example: primeness, Goldie conditions and
other finiteness conditions are considered. Some problems and possible applications will
be also discussed.

1. INTRODUCTION

Let R be an associative unital ring and ¢: R — R an injective endomorphism of R.
Jordan [2) constructed a minimal, in a sense that A = 372, 0~*(R), over-ring A of R such
that o extends to an automorphism of A. Then he began systematic studies of relations
between various algebraic properties of R and that of A. The motivation for such studies
was the observation that this knowledge can often be used for reducing the investigation of
a skew polynomial ring R[z; o] of endomorphism type, to the case of the skew polynomial
ring A[z; 0] of automorphism type, which is much easier to handle. Examples of such
approach one can also find in [6] and (7).

Instead of looking at the action of a single endomorphism ¢ on R one can consider the
action of a monoid. Let S denote a monoid which acts on R by injective endomorphisms.
That is, a homomorphism ¢: S — End(R) is given, such that ¢(s) is a monomorphism,
for any s € S. We say that an over-ring A(R; S) of R is an S-Cohn-Jordan extension of
R if it is a minimal over-ring of R such that the action of S on R extends to the action
of S on A(R; S) by automorphisms (Cf. Definition 1).

A classical resnlt of Cohn (see Theorem 7.3.4 [1)) says that if the monoid S possesses a
group S™'S of left quotients, then A(R;S) exists, moreover it is uniquely determined up
to an R-isomorphism.

The above mentioned theorem of Cohn was originally formulated in much more general
context of §)-algebras, not just rings. The construction of A(R;S) was given as a limit of
a suitable directed system.

The possibility of enlarging an object and replacing the action of endomorphisms by
the action of automorphisms is a powerful tool, similar to a localization. Perhaps this was
the reason that the theorem of Cohn was formulated and reproved in various algebraic
contexts (see for example (3], [9], (10], [11], [12]).

The aim of the paper is to present a series of results relating various algebraic properties
of R and that of the S-Cohn-Jordan extension A(R;S) of R. For example: primeness,
Goldie conditions and other finiteness conditions are considered. Most of the presented

The paper is in a final form and no version of it will be submitted for publication elsewhere.



results can be found in full details in [7]. Some problems, questions and applications are
also discussed.

2. PROPERTIES OF S-COHN-JORDAN EXTENSIONS

Henceforth R stands for an associative ring, ¢: S — End(R) denotes the action of a
monoid S on R by injective endomorphisms. For any s € S, the endomorphism ¢(s) €
End(R) will be denoted by ¢,.

Definition 1. An over-ring A(R; S) of R is called an S-Cohn-Jordan extension of R if:

(1) the action of S on R extends to an action of S (also denoted by ¢) on A(R;S) by
automorphisms, i.e. @, is an automorphism of A(R; S), for any s € S.

(2) every element a € A(R;S) is of the form a = ¢, '(b), for some suitable b € R and
s€S.

Henceforth, as in the above definition, ¢, will also denote the automorphism ¢(s) of
A(R;S), where s € S.

As it was mentioned in the introduction, the extension A(R;S) exists provided the
monoid S possesses a group of left quotients. Recall that this is the case exactly when
the monoid S is left and right cancellative and satisfies the left Ore condition, that is, for
any 8,93 € S, there exist £,,%3 € S such that £,5; = 23.

In the case S = (o) is a cyclic monoid, Jordan recognized A(R;S) as a subring of the
left localization of the Ore extension R[z;a| with respect to the set of all powers of the
indeterminate z.

When the monoid S possesses a group of left quotients, then one can construct A(R;S)
in a similar way as Jordan did. Namely, let us consider the skew semigroup ring R#4S.
One can check that elements of S are regular in R#4S and S is a left Ore set in R#,S.
In particular, we can consider the left localization T = S~!(R#,S) of R#4S. For any
s € S and r € R, we have st = @,(r)s in R#4S. Thus one can think of s™!Rs as the
preimage (¢;)"!(R) of R in T. The Goldie condition implies that A = |J,cgs™'Rs C T
is a subring of T. In fact it is easy to see that A = A(R;S) (Cf. Lemma 2.1 [7]), in this
case.

Suppose that A(R;S) exists and the action of S on R is faithful, in the sense that ¢
is an injection. Then the action of § on A(R;S) is also faithful. This means that the
monoid S embeds in a group (the group of automorphisms of A(R; S)). However even in
this case, conditions for existence of A(R;S) seem to be not clear and we may formulate
the following;

Problem 2. Suppose that S acts faithfully on R.
(1) What are the necessary and sufficient conditions for the existence of A(R;S)?
(2) Assume that A(R;S) exists. What are the necessary and sufficient conditions for
uniqueness of A(R;S)?
(3) Let T be a submonoid of S. Suppose that A(R;S) exists. When does A(R;T)
exist? If so, is it naturally embedded in A(R;S)?

The Definition 1 reminds somehow the definition of a left localization of R with respect
to a multiplicatively closed set. In this way, the analogue of a common left denominator



for a finite set X of elements of A(R;S), should be an element ¢,, for some s € S, such
that @,(X) C R. It is easy to see that, for any finite subset X of A(R;S), such element
6, do exists. This suggests that the relations between some algebraic properties of R
and its S-Cohn-Jordan extension A(R;S) should be similar to those between R and its
localization. This is indeed the case. In particular we have:

Proposition 3. (Cf. [7})
(1) Let T denote one of the following classes of rings: the class of all division, simple,
von Neumann regular, prime, semiprime rings, rings having finite block theory. If
Re T then A(R;S)eT.
(2) Let P denote one of the following classes of rings: the class of all domains, reduced
rings, n X n matriz rings, commulative or, more generaily, rings salisfying e fized
polynomial identity. Then A(R;S) € P ifand only if R P.

The properties listed in the statement (1) of the above proposition do not pass down
from A(R;S) to R. Indeed, the following easy example shows that A(R;S) can be a field
with R being not simple.

Example 4. Let A = K(z; | i € Z) be the field of rational functions over a field K in
commuting indeterminates {z;}:cz and S = (o), where ¢ is the K-automorphism of A
given by a(z;) = Ty, for i € Z. Let us set R = K(x; | i > 1)[zo] € A. Then S acts in
a natural way on R and for any a € A, there exists n > 1 such that ¢™(a) € K(z; |1 >
1) € R. This means that A = A(R; S).

Example 1.10 7] offers a prime ring R such that A(R; S) is not semiprime. Example 1.15
[7] shows that there exists a ring R having infinitely many central orthogonal idempotents,
while A(R; S) has no nontrivial central idempotents, i.e. A(R;S) has a finite block theory
but R does not.

Theorem 5. (Cf. [7]) Suppose A(R;S) exists. Then:
(1) A(R;S) is semiprime if and only if for any nonzero left ideal I of R, there erists
s € S such that (Ro,(I))? # 0.
(2) Suppose that R is left noetherian. Then R is prime (semiprime) if and only if
A(R; S) is prime (semiprime).

When R is one-sided noetherian, then there exists a finite common bound on the
cardinality of sets of orthogonal idempotents of R (as otherwise R would have infinite
left Goldie dimension). Thus Proposition 1.14 [7] yields immediately the following:

Theorem 8. Suppose that R is a one-sided noetherian ring and A(R; S) erists. Then R
has finile block theory if and only if A(R; S) has finite block theory. Moreover if @}, e;R
is a decomposition of R into indecomposable blocks, then @;_, e;A(R;S) is a block de-
composition of A(R; S).

Much more can be said about the relations of R and that of A(R;S), provided the
monoid S has a group of left quotients. The idea, which goes back to Jordan [2], is to
compare left ideals I of A(R; S) with its orbits {¢,(/)NR | s € S} in R. Animportant role
is also played by S-closed left ideals J of R, i.e. left ideals J such that A(R;S)JNR = J.



The following theorem (Cf. Theorem 2.19 and Corollary 2.20 of [7]) offers complete
characterization of artinian property of A(R; S).

Theorem 7. Suppose that S possesses a group of left quotients. Then:

(1) Thering A(R;S) is left artinian if and only if there exists a finite bound on lengths
of chains of S-closed left ideals of R. Moreover, if one of the equivalent conditions
holds, then the length of A(R;S) as a left A(R;S)-module is equal to the length of
the longest chain of S-closed left ideals of R.

(2) If R is left artinian then so is A(R; S).

In the case S is a cyclic monoid, the above theorem was proved in [2]. Surprisingly, the
proof of the theorem in the general case seems to be easier than the argnments used in
the case S is a cyclic monoid.

Making use of Theorems 5, 6, 7 and some localizations technics one can prove the
following two results (Cf. [7]):

Theorem 8. Suppose S possesses a group of lefl quotients. If the ring R is left arlinian,
then:

(1) R is a semisimple ring if and only if A(R; S) is a semisimple ring.

(2) fR= @Ll e;R, with e;R = M, (B;), is a block decomposition of the semisimple
ring R, then A(R;S) = @Ll e;A(R; S) is a block decomposition of A(R;S) and
e;A(R; S) = My, (D;) for some division ring. Moreover, for 1 < i <k, the division
ring D; is an extension of B;.

In the case S = (o) being a cyclic monoid the above theorem was known in special
cases. Namely, the first statement was proved in [2], the second one appeared in [4].

From now on Q(R) will denote the classical left quotient ring of a semiprime left Goldie
ring R and udim R will stand for the left uniform dimension of R.

Theorem 9. Suppose S possesses a group of left quotients. Let R be a semiprime left
Goldie ring. Then A(R;S) is also a semiprime left Goldie ring. Moreover Q(A(R; S)) =
A(Q(R);S) and udim R = udim A(R; S).

Contrary to the artinian property, the sitnation with the noetherian property of A(R; S)
seems to be not clear at all. Even when S is a cyclic monoid, one can find examples of rings
R and A(R; S) showing that one of those rings is left noetherian but the other is not left
noetherian. Nevertheless Jordan [2] succeeded to give necessary and sufficient conditions
for A(R;S) to be left noetherian, in the case S is a cyclic monoid. The characterization
was given in terms of properties of the lattice of S-closed left ideals of R.

Problem 10. To characterize the left noetherian property of the S-Cohn-Jordan exten-
sion A(R;S) in terms of properties of R and the action of S.

If G = S!S is the group of left quotients of S, then we have seen that A(R;S) can be
considered as a subring of the left localization S~!(R#,S) of R#,S. Using this approach,
one can see that there is a natural isomorphism between A(R; S)#+G and S™!(R#,5).
Since the left noetherian property of a ring is preserved nnder left localization with respect
to a left Ore set, we have:



Proposition 11. Suppose S possesses a group of left quotients. If the ring R#4S is left
noetherian, then A(R;S) is also left noetherian.

3. EXAMPLES OF APPLICATIONS

As it was briefly mentioned at the end of the previous section, when S has the group G
of left quotients, then R#,S C A(R; S)#4+S C A(R; S)#4G = S~}(R#4S). This means
that problems concerning the skew semigroup rings R#4S can often be reduced to the
skew group ring A(R; S)#¢S. The following theorem is an example of such application.

Theorem 12. (Cf. [7]) Let S be a monoid having a poly-infinite cyclic group of left
quotients. Suppose that S acts on a semiprime (prime) left Goldie ring R by injeclive
endomorphisms. Then the skew semigroup ring R#,S is a semiprime (prime) left Goldie
ring and udim (R#4S) = udim R.

The idea of the proof of the above theorem is as follows. By Theorem 9, A(R;S) is a
semiprime left Goldie ring and the assumption imposed on the group G = S~'S of left
quotients of the monoid S imply that A(R; S)#4G is a semiprime left Goldie ring. R#,S
is a subring of A(R; S)#4G such that S~!(R#4S) = A(R; S)#+G. Thus the localization
S~'(R#4S) is a semiprime left Goldie ring. Hence the ring R#,S is also semiprime left
Goldie.

It was proved in [5] that the property of being a semiprime left Goldie ring lifts from a
ring R to its Ore extension R|z;a,d], where o is an automorphism and ¢ a o-derivation
of R. This result was extended in [4] to the following theorem.

Theorem 13. Let R be a semiprime left Goldie ring, o, § an injective endomorphism
and a o-derivation of R, respectively. Then R|z;0,8) is also a semiprime left Goldie ring
and udim R|z;0,4] = udim R = udim A(R; (0)).

One of the key ingredient in the proof of the above theorem was the use of the (o)-
Cohn-Jordan extension A(R;(¢)) and Theorem 9.

Mushrub in [9] investigated the left uniform dimension of skew polynomial rings Rz; o],
where o denotes an injective endomorphism of the ring R. He proved, in particular, that
udim R[z;o] = udim A(R; (o)) (for a short proof see Lemma 3.2 [4]). He also constructed
examples showing that:

1. For any n € N, there is a commutative ring R (not semiprime) with an injective
endomorphism ¢, such that udim R =n and udim R[z; 0] = 1.

2. There exists a domain R of infinite left uniform dimension and an injective endo-
morphism & of R such that udim R[z;o] = 1.

The following guestion comes from [9].

Question 14. (Mushrub) Let R be a semiprime ring of finite left Goldie dimension.
Suppose that ¢ is an injective endomorphism of R. Is udim R = udim R|z; a]?

As we recorded earlier, udim R|z; o] = udim A(R; {#)}), for any injective endomorphism
a of R. Thus the above question of Mushrub can be be read as a question: Is udim R =
udim A(R;(a))? Therefore, the following question can be viewed as a generalization of
Question 14.



Question 15. Suppose that R is a semiprime ring of finite left Goldie dimension acted
by a monoid S which has a group of left quotients. Is udim R = udim A(R; S)?

The left uniform dimension is preserved under left localizations with respect to Ore
sets of regular elements (Cf. Lemma 2.2.12 [8]). This implies that udim R#,S =
udim S~'(R#4S) = udim A(R; S)#4G. Thus Theorem 12 yields that Question 15 has a
positive answer if the group G = S~1S is poly-infinite cyclic and R satisfies the ACC on
left annihilators. This also means that Question 14 has a positive answer if one addition-
ally assume that R has the ACC on left annihilators. The last fact was observed earlier
in [4].
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A CONSTRUCTION OF LOCAL QF-RINGS
WITH RADICAL CUBED ZERO

I. KIKUMASA, K. OSHIRO AND H. YOSHIMURA

ABSTRACT. The purpose of this paper is Lo give a construction of local QF-rings with
Jacobson radical cubed zero. From our construction, we can foresee that there are many
QF-rings which are not finite dimensional algebras over ficlds. Needless to say, local QF-
rings together with local Nakayama rings are important artinian rings in the sense that
these rings are parts of QF-rings and Nakayama rings. Furthermore, as we mention, local
QF-rings are important for the study on the Faith conjecture, since the Faith conjecture
is not solved even for local semiprimary one-sided selfinjective rings with Jacobson radical
cubed zero.

1. INTRODUCTION

There are many open problems on @F-rings. The two most famous, longstanding,
unsolved problems are the Nakayama conjecture and the Faith conjecture. One may
refer to Nicholson-Yousif [16] for the Faith conjecture, as well as for several more recent
questions on @QF-rings.

The Faith conjecture. Is a semiprimary right self-injective ring a @F-ring? Faith
conjectured “no” in his book [6].

The Faith conjecture is not solved even for a local semiprimary ring with radical cubed
zero. Thus we record:

Problem 1. Is a semiprimary local right self-injective ring with radical cubed zero a
Q@F-ring? .

The following result gives some information on this question.

Fact 1. (Baba-Oshiro [2]) If R is a semiprimary ring, then R is a right self-injective ring
if and only if R is a right simple-injective ring. In particular, if R is a local semiprimary
ring with radical J cubed zero, then R is right self-injective if and only if pJ?,J3 are
simple and, for any mazimal right submodule M of J, there exists a € J \ J? satisfying
aM =0.

We now provide a careful analysis of Problem 1 and translate this problem into a
problem on two-sided vector spaces over division rings.

In order to do so, let R be a local semiprimary ring with J? # 0 and J? = 0, where
J := J(R) denotes the radical of R. Let D denote the division ring R/J and put J = J/J*.

The detailed version of this paper will be submitted for publication elsewhere.



Then, J and J? are (D, D)-bispaces. We denote by Soc?(R) and Soc"(R) the left and the
right socle of R, respectively and by {z(A) and rg(A) the left and the right annihilator of
a subset A of R, respectively.

We now record some properties on R.

Fact 2. (1) If gSoc!(R) and Soc"(R)r are simple, then rlp(A) = A and lgrg(B) =
B for any finitely generated right submodule A and for any finitely generated left
submodule B of J, J?* = Soc!(R) = Soc’(R), and pJ* and J% are one-dimensional
spaces.

(2) If Jgr is finitely generated and grSoc*(R) and Soc™(R)g are simple, then R is QF.
For this QF-ring R, we can make a new QF-ring T of graded type as follows:
Consider the (D, D)-bispace T = D x J x J?. In T, we define a multiplication by
sclting

tity = (dids, d\@z + @1dy, d 53 + 51d2 + @1a2)
for ty = (dy, @1, 1) and ty = (dp,@3,52) € T, where @ = a; + J> € J/J? =: J.

Then, T is a QF-ring with J(T) =0x Jx J?, J(T)>) =0x0x J? and J(T)* = 0.
(In general, R¥T.)

Fact 3. Assume that Ry is (simple- Jinjective. Then

(1) rSoc*(R) and Soc"(R)p are simple.

(2) For any mazimal submodule M of Jp, aM = 0 for somea € J\ S.

(3) Trlr(A) = A for any finitely generated submodule A of Jg and lgrp(B) = B for
any finitely generated submodule B of pJ.

(4) Put J* = Homp(Jg,J3). Then, for anya € J, the map a — (a). (left multipli-
cation) gives an (R, R)-bimodule isomorphism and a (D, D)-bispace isomorphism:
rRJR= rJR G@DJD%’DJ'D. _

(5) Puta =dim(Jp). Ifa is finite, then R is QF, while if a is infinite, then dim (pJ)
= (#D)* = #R > a; in particular, if a = ¥y end #D = R, then dim(pJ) = R,
where #£A denotes the cardinal number of a set A.

Most known information on R emanates from Fact 2 and Fact 3. In particular, (4) in
Fact 3 is important for investigating Problem 1.

2. LocAL QF-RINGS
We now give a construction of local QF-rings.
In this section, let D be a division ring and let pVp be a (D, D)-bispace. We put
T=DxVx(VpV).
Then, T is a (D, D)-bispace. In T, we define a multiplication as follows:

ity = (dyde, divg + 1 d2, dyzg + 21d2 + V) ® V3)



for ty = (d),v1, 7)) and t2 = (d2,v2,72) € T. It is easy to see that T is a local semiprimary
ring with radical cubed zero and that

JT)=0xVxV@pV and JT) =0x0xVQpV.

We identify Dx0x0,0xV x0and 0x0x V®pV with D, V and V ®p V, respectively.
We note the following:

Proposition 4. (1) Assume that there ezists e (D, D)-bisubspace I of V ®p V with
dim((V®pV)/Ip) =dim((V@pV)/pI) =1 andvD®pV ¢ I andV@pDv € I
for any0# v € V. Then, I is an ideal of T, J(T/I)? = Soc"(T/I) = Soc (T/I),
and J(T/I)? is simple as a left T/I-module and as a right T/I-module.
(2) Assume that dim (Vp) is finite and such a (D, D)-bisubspace I in (1) exists. Then,
T/I is a local QF-ring with radical cubed zero.

Proof. (1) is easily seen and (2) follows from Fact 1. o

Let pD be a one-dimensional right vector space and let p € Aut(D). Then, pD becomes
a one-dimensional left vector space by defining dp = pp{(d) for d € D. We denote such a
(D, D)-bispace by pD?. We also put
V* = HomD(VD,pD”D).
Then, V" is canonically a (D, D)-bispace. Here we assume the following;
Assumption A: There exists a (D, D)-bispace isomorphism 8 : V — V.

Since the map (V, V) — pD? given by (v, w) — 8(v)(w) is 2 bilinear (D, D) onto map,
the map

A:V®pV —pD? by Zv,-@w.- — ZO(vg)(w;)

is a (D, D)-bispace onto homomorphism. As is easily seen, Ker X is an ideal of the ring
T=DxV x(V®pV). We put

D{V,0,p,pD?) = T/ Ker A

Let w € A™!(p) be fixed and put s = w+ Ker A € (V ®p V)/Ker A. Then we can show
the following result.

Theorem 5. Let R be the ring D(V, 8, p, pD?) above. Then the following hold.
(1) J:=JR)=(VxVepV)/KerA, 2=(VQpV)/KerA=Rs=3sR, J*=0
and Soc’(R) = Soc*(R) = J>.
(2) rJ? and J} are simple.
(3) R is a right self-injective ring.
(4) R is QF if and only if dim (Vp) is finite.

Proof. (1), (2) and (4) follow from Proposition 4. To show (3), let / be a maximal

submodule of Jz. By Fact 1, it suffices to show that there exists a € J \ J? satisfying
al = 0. Let X be a subspace of Vp with X/Ker A = I. Then, as X is a proper subspace



of V, we can take 0 # v* € V* such that v*(X) = 0. Put @ = 0~'(v*) + Ker \. Then,
a € J\ J? and af =0, as desired. o

By Theorem 5, we can translate Problem 1 into the following:

Problem 2. Does there exist a division ring D and a (D, D)-bispace V such that
dim (Vp) = 00 and pVp = pVj ((D, D)-isomorphism)?

If such a space pV)p exists, Theorem 5 asserts the Faith conjecture is true, that is, we can
construct a semiprimary right self-injective ring which is not QF. However, this problem
is very difficult. In fact, if we try to solve this, we immediately encounter pathologies.

However, as a biproduct of the study on Problem 2, we can obtain an important way
of constructing local QF-rings. We shall state this construction.

Lemma 6. Let V be a bispace over a division ring D withn = dim (pV') = dim (Vp) < co.
Then we can take 1y,...,z, € V satisfyingV =Dz, ®---® Dz, =2,D® --- B z,,D.

Proof. Let z),...,74,y,2 € V such that z,,...,z,y and z,,..., 1y, 2 are left and
right independent over D, respectively. If DzNY"F | Dz; = 0 or yDNY ¥ ;D =0, then
zy,...,Zg, 2 OF Iy, ..., T, y are left and right independent, respectively. If otherwise, i.e.,
Dz cC 2:;, Dz;and yD C Ef___l z;D, then z,,. .., zx, y+z are left and right independent.
By continuing this procedure, the statement is shown. o

Now, henceforth, let
VD =I1D®"'®InD

be a finite dimensional right vector space over a division ring D and let
Ull(d) e Uln(d)
on1(d) -+ Onn(d)

be a ring homomorphism, where (D),, is the ring of all n x n matrices over D. By using
o, we define a left D-operation on V as follows: For d € D, dz; = Z_;f:, z;0;i(d), namely,

O'n(d) e O']n(d)
d(zy,...,Ty) = (T1,. .., Tn) .
Ony (d) ot ann(d)

Then, Vp becomes a { D, D)-bispace. We denote this bispace by V(z\,...,Zs; o) or simply
V?. We note that pD? mentioned above is pD(p; p).

o=(0y): D— (D) by d—ald) = (

Proposition 7. The following are equivalent:
(1) VO =Dz, ®--- & Drz,.



(2) There is a ring homomorphism & = (€;;) : D — (D)n such that for 1 < i,k < n,
the following formulas hold:

z d k=i
jglﬂkj(ﬁij(d)) = {0 k£
and

. d k=i
Eﬁjk(aji(d))={0 k4.

J=1

Proof. (1) = (2). Since zid = 3, &;(d)z; = 3 ;(3°, zk0ox;(£i5(d))), we see that

S onles(d) = {ﬁ zr

Similarly, the second formula is obtained.
(2) = (1). Since 3_;&;(d)x; = 3,(30, 2a0w;(§(d))) = 2: 1; 03(&i;(d)) = zud, we see

that for any d € D,
Iy I,
w(1)-(7):
T, T

from which V° = Dz, + --- + Dz,,.
Next, to show that {Dz),..., Dz,} is an independent set, assume d\z) +- - - +dnT, = 0
for dly ey dﬂ € D. Since Z'(ZJ ljaj;(di)) = 0' we see that Zi aji(dt') = 0 for ] = 1’ s
and hence
on(d) +o1a(d2) + -+ +01a(dy) = 0 -+ (1)
onl(d)) + oa(da) + -+ ao(dy) = 0 --- (2)

aﬂ](dl) + an2(d2) +---+ aﬂﬂ(dﬂ) =0 e (")

Thus, 0 = &5 x (1) + &; x (2) + -+ + & x (n) = Y, &ij(0ij(d;)) = d;; hence d; = 0, as
desired. u]

By Proposition 7, we see that, if there is a ring homomorphism £ = (§;) : D — (D),
satisfying the formulas of the proposition, then V¢ = Dz, @ --- @ Dz,. For this situ-
ation, we use V{z,,...,z,;0,§) instead of V{z,,...,z,;0). Moreover, we construct the
ring R above for this bispace under Assumption A and denote it by D{V,¢,§,8, p, pD?).
Combining the proposition with Lemma 6, we have the following:

Theorem 8. Assume that dim (pV) = n < co. Then, R = D(V,0,§,0,p,pD?) is a local
QF-ring with radical cubed zero.

Now, we return to our Assumption A and construct such a (D, D)-bispace isomorphism
6 : V — V* under some condition. Let £ = (§;) : D — (D), be a ring homomorphism



satisfying the formulas of Proposition 7(2) such that p€; = oy; for all i, 3. For each ¢, let
o; € V* = Homp(Vp, pD}) be defined by

Qi:I|d|+"'+Indandis
where dy, ..., d, € D. Then, pV* = Da, & - -- ® Day, and the map
0.ZDVD—DDV5 by dizi+ - -+ daza = dioy + -+ + dparg

is a (D, D)-bispace isomorphism. Therefore, in this case, we can make a local QF-ring
D(V,0,£,6°, p,pD?). In particular, setting p = idp, we can take o as £ above . Hence, we
obtain the following, which is useful for making local @QF-rings with radical cubed zero.

Theorem 9. Let Vp = 2,D®---®x,D be an n-dimensional vector space over a division
ring D and let 0 = (0;) : D — (D), be a homomorphism satisfying the formulas: For

1<,k<n,
= d k=i
J;lakj(aij(d))= {0 kot
and
= d k=i
gajk(a,-.-(d)h{o A

Then we can make a local QF-ring D{V,0,0,0",idp,1D'»)

3. EXAMPLES OF LOCAL QF-RINGS

Example 1. Let V =12,D® --- ® z,D be an n-dimensional vector space over a division
ring D and let 7 be a ring automorphism of D. Consider a ring homomorphism

7(d) 0
0:D— (D), by d — ( )
0 7(d)

Then, by o, V becomes a (D, D)-bispace and

(el O-0)

The map £ = (£;;) : D — (D), is given by

7~1(d) 0
0 = 1(d)

It then follows from the argument above Theorem 9 that we can construct a local @F-ring
D{V,0,€,0°,7% pD™"}.



Example 2. Let C be the field of complex numbers, let V = z,C&®z,C be a 2-dimensional
vector space over € and consider a ring homomorphism

. bi
0:C— (C), by a+bi — (;z a‘)

Then the map o satisfies the formulas in Theorem 9. Hence we can make a local @QF-ring
C{V,0,0,6", idc, 1Ci<).

This example can be slightly generalized as the following:

Example 3. Let k be a commutative field and let f(z) = z" — e € k[z] be irreducible
with @ a root, D =k(a) and V = Y[, ®z;D. Let a map

ao aa  aa’ e ap_1a™}
- an10™! gy aya el ap-20™"2
o:D— (D), by Ea,-a‘ — :
=0 asa? . a o
a aa® - gu_a™! ag

Then, ¢ is a ring homomorphism satisfying the formulas in Theorem 9. Hence, for a given
n-dimensional vector space V over D, we can make a local QF-ring D{V, 5,0, 0*,idp, 1D">).

Example 4. Let H be the quaternion algebra, let V = z\H @ 2.H @ z;H @ z,H be a
4-dimensional vector space over H and consider a ring homomorphism

a b ¢ dk

o b a dk cj

oiH— (H) by atbitci+dk v | o 5 bg
dk ¢j b a

Then, o satisfies the formulas in Theorem 9. Hence we can make a local QF-ring
M(V, 0,0,0',idﬂ,1Hw").

Further, using Theorem 9, we shall show two constructing ways of local QF-algebras
R with radical cubed zero, one of which gives an example of a local QF-algebra which is
not a finite dimensional algebra.

Example 5. Let E be a field and let 7 be an automorphism of £ satisfying

(1) =2 = idg.

(2) an(a)+ Ar(B)=0=>a=0and B=0fora,f € E.
Define a 2-dimensional vector space over £ : Let D = E® Ei = {a + (i | o, € E}
with the product ia = 7(a)i for any a € E (the addition, as well as the multiplication
between elements of E being the natural ones). Then, D is a division ring, as it can be
checked; see the product:

(a + Bi)(n(a) — Bi) = ar(a) + B=(B)



and if a + Bi # 0, then we have an(a) + 87(8) # 0 by (3). Also, the center of D is
K:={a€ E|n(a)=a}.

Let V = ;D & 7D be a 2-dimensional vector space over D and consider a ring
homomorphism

0:D— (D), by o+ i — (;; ’?:)
Then we see that o satisfies the formulas in Theorem 9. Hence we can make a local
QF-ring R = D(V,0,0,0%,idp, 1 D'"p),

We shall give some examples of fields E satisfying (1) and (2) above.

(i) Let E = C or an arbitrary imaginary quadratic field (e.g. Q (v=3)) and the map
7 : E — E defined by m(a) = @, where & denotes the conjugate of a.

(ii) Let K be a field and 7 an automorphism of K satisfying the conditions (1) and
(2). Moreover, let E = K(z) be the field of rational functions in z over K. For
f =a. 2"+ -+ a1z + ap € KJ[z], we put f = w(a,)z" + -+ + 7(a1)x + 7(ag).
Then the map 7 : E — E given by 7(f/g) = f/3 is an automorphism of E. We
see that the fixed field of 7 in E is F(z), where F is the fixed field of 7 in K, and
E and 7 satisfies (1) and (2) again.

Example 6. Let £ be a division ring such that E is infinite dimensional over its center
K and 12 # —1 holds for any element z € E.

Define a 2-dimensional vector space over E : Let D = E® Ei = {a + 8i| o, € E}.
Define the products i2 = —1 and i = af for any a € E. Then, D becomes a ring
(the addition, as well as the multiplication between elements of E being the natural
ones). Furthermore, D is a division ring. Actually, let d = o + 8% be a non-zero element
in D. If 8 = 0, then clearly d~! = a~. In case B # 0, it is easily checked that
(a+Bi)- (B 'a-1)8~ ((aB871)?+1)" = 1l and ((B'a)?*+1)"} (8 la-1)87'-(a+0i) = 1.
This means that d is invertible. )

Next, let V = z,D & x,D be a 2-dimensional vector space over D and consider a ring
homomorphism

o0:D— (D), by a+0i — (gz T)
Then we see that o satisfies the formulas in Theorem 9. Hence we can make a local
QF-ring R = D(V,0,0,0,idp,1D"P) and we can see that R is an infinite dimensional
algebra with K (its center).

We shall give an example of a division ring E in Example 6. Consider the functional
field L = R(z) over the field R of real numbers and let ¢ be an into monomorphism of
L given by f(z)/g(z) — f(z?)/g(z?). Let Lly; o] be a skew-polynomial ring associated
with ¢. Although L[y; o] is a non-commutative domain, it has the quotient ring which
is a division ring. We denote it by E. As is easily seen, the center of E is R and E is
infinite dimensional over R and it holds that a® # —1 for any non-zero element e € E.

Acknowledgment. We are indebted to Dr. Cosmin Roman for making Example 5.
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DUAL OJECTIVITY OF QUASI-DISCRETE MODULES
AND LIFTING MODULES

YOSUKE KURATOMTI

ABSTRACT. In [3], K.Oshiro and his students introduced “ojectivity (generalized injec-
tivity)”, a new concept of relative injectivity, and using this injectivity we obtained some
results for direct sums of extending modules. Afterward, S.H.Mohamed and B.J.Miiller
[9] defined a dual concept of ojectivity as follows:

Definition. M is said to be N-dual ojective (or generalized N -projective) if, for any
epimorphism g : N — X and any homomorphism f : M — X, there exist decompositions
N = Ny & N3, M = M, & M, a homomorphism h, : M, — N; and an epimorphism
ha : Np — M, such that gh) = f|ar, and fhs = g|n,.

The concept of relative dual ojectivity is a generalization of relative projectivity and
this projectivity has an important meaning for the study of direct sums of lifting modules

(ct. (6], [9]).
In this paper we introduce some results on “dual ojectivity” and apply it to direct
sums of quasi-discrete modules.

1. INTRODUCTION

A module M is said to be lifting if, it satisfies the following property: For any submodule
X of M, there exists a decomposition M = X* @ X** such that X* C X and the kernel
X/X" of the canonical epimorphism M/X* — M/X is a small submodule of M/X",
equivalently, X N X" is a small submodule of X**. In [9], S.H.Mohamed and B.J.Miiller
defined dual ojective module. This projectivity plays an important role in the study
of direct sums of lifting modules (cf. [6], [9]). Since the structure of dual ojectivity is
complicated, it is difficult to see whether dual ojectivity pass to a (finite) direct sum. This
problem is not easy even in the case each module is quasi-discrete.

In this paper we consider this problem and apply it to direct sums of quasi-discrete
modules.

Throughout this paper R is a ring with identity and all modules considered are unitary
right R-modules. A submodule S of a module M is said to be a small submodule, if
M # K + S for any proper submodule K of M and we write S < M in this case. Let
M be a modiile and let N and K be submodules of M with K € N. K is said to be
a co-essential submodule of ¥ in M if N/K <« M/K and we write K C, N in M in
this case. Let X be a submodule of M. X is called co-closed submodule in M if X has
not a proper co-essential submodule in M. X’ is called a co-closure of X in M if X’ is a
co-closed submodule of M with X’ C. X in M.

The detailed version of this paper will be submitted for publication elsewhere.



A module M has the finite internal ezchange property if, for any finite direct sum
decomposition M = M, & --- ® M, and any direct sHmand X of M, there exists
M,CM;(i=1,- ,n)suchthat M =X O M &--- & M,.

A module M is said to be a lifting module if, for any submodule X, there exists a direct
summand X* of M such that X* C. X in M.

Let {M; | i € I} be a family of modules and let M = ®;M;. M is said to be a lifting
module for the decomposition M = &;M; if, for any submodule X of M, there exist
X* C M and M; C M; (i € I) such that X" C. X in M and M = X* & (& M,), that
is, M is a lifting module and satisfies the internal exchange property in the direct sum
M= @]A‘!ﬁ.

Let X be a submodule of a module M. A submodule Y of M is called a supplement of
XinMifM=X+Yand XNY «Y, if and only if Y is minimal with M = X +Y.
Note that supplement Y of X in M is co-closed in M. A module M is (®—)supplemented
if, for any submodule X of M, there exists a submodule (direct summand) Y of M such
that Y is supplement of X in M. A module M is called amply supplementedif, X contains
a supplement of Y in M whenever M = X +Y. We note that

lifting => amply supplemented = supplemented.
Now we consider the following condition:
(f) Any submodule of M has a co-closure in M.

Note that a module M is amply supplemented if and only if M is supplemented with
a condition (f) (cf. [2], [5]).

The reader can refer to [1], [4], [8], [11] and [12] for research on lifting modules, quasi-
discrete modules and exchange properties.

2. GENERALIZED PROJECTIVITY

A module A is said to be B-dual ojective (generalized B-prajective) if, for any homo-
morphism f : A — X and any epimorphism g : B — X, there exist decompositions
A=A & Ay, B = B, ® By, a homomorphism h; : A4; — B; and an epimorphism
hy : B, — Az such that go hy = fi4, and f o hy = g|g, (cf. [9]). Note that every
B-projective modules is B-dual ojective.

Now we introduce some properties of the dnal ojectivity.

Proposition 2.1 (cf. [9]). Let B* be a direct summand of B. If A is B-dual ojective,
then A is B*-dual ojective.

Proposition 2.2 (cf. [6, Proposition 2.2]). Let A be a module with the finite internal
exchange property and let A* be a direct summand of A. If A is B-dual ojective, then A®
is B-dual ojective.

Proposition 2.3 (cf. [6, Proposition 2.3]). Let M = A ® B be supplemented with (4)
and let A" be a direct summand of A. If A is B-dual ojective, then A* is B-dual ojective.



A ring R is said to be right perfect if any right R-module has projective cover. By [10,
Theorem 1.3], any submodule N of a module M over a right perfect ring has co-closure
of N in M. Thus the following is immediate from Proposition 2.3.

Corollary 2.4. Let R be a right perfect ring, A, B be R-modules and A* be a direct
summand of A. If A is B-dual ojective, then A* is B-dnal ojective.

A module A is said to be im-small B-projective if, for any epimorphism g : B — X and
any homomorphism f : A — X with Imf <« X, there exists a homomorphism 2: A — B
such that goh = f (cf. [5]).

Proposition 2.5. (1) Let A be a module and let {B; | { = 1,--: ,n} be a family of
modules. Then A is im-small @7, B;-projective if and only if A is im-small B;-projective
(t=1,--+,n).

(2) Let I be any set and let {A; | i € I'} be a family of modules. Then @, A; is im-small
B-projective if and only if A is im-small B-projective for all i € [.

Proposition 2.6 (cf. [6, Proposition 2.5]). Let A be any module and let B be a lifting
module. If A is B-dual ojective, then A is im-small B-projective.

The concept of relative dual ojectivity has an important meaning for the study of direct
sums of lifting modules.

Theorem 2.7 (cf. [6, Theorem 3.7]). Let My, -, M, be lifting modules with the finite
internal exchange property and put M = M, @ --- & M,,. Then the following conditions
are equivalent.

(1) M is lifting with the finite internal exchange property.

(2) M is lifting for M =M, & --- & M,,.

(3) M; and ®;4:M; are relative dual ojective.

3. DIRECT SUMS OF QUASI-DISCRETE MODULES
A lifting module M is said to be quasi-discrefe if M satisfies the following condition
(D):
(D) If M, and M, are direct summands of M such that M = M, + M,, then M, N M,
is a direct summand of M.
Any quasi-discrete module has the internal exchange property {10, Theorem 3.10).

Lemma 3.1 (cf. {7]). Let N be a quasi-discrete module and let M = M, ®---® M, be
lifting for M = M, ®---® M,. Assume that M, is generalized N-projective (i =1,--- ,n).
Then, for any epimorphism f : M — X with ker f < M and any epimorphismg: N — X
with ker g & N, there exist decompositions M = M &M, N = N ® N and epimorphisms
¢:M —'N,y:N — M such that fl==gopand g== fo .

By the using lemma above, we can obtain the following propositions.

Proposition 3.2 (cf. [7]). Let N be a quasi-discrete module and M = M, & --- 9 M,
be lifting for M = M, & --- & M,. If M; is N-dual ojective ({ = 1,--- ,n), then M is
N-dual ojective.



Propaosition 3.3 (cf. [7]). Let M be a quasi-discrete module and N = Ny @ -+ & Ny
be lifting for N = Ny @ --- ® Nyo. If N; and M are relative dual ojective (i = 1,--- ,m),
then M is N-dual ojective.

The following is immediate from Propositions 3.2, 3.3, Theorem 2.7 and induction.

Theorem 3.4. Let M, - - , M,, be quasi-discrete modules and put M = M & -®M,.
Then the following conditions are equivalent.

(1) M is lifting with the (finite) internal exchange property.

(2) M islifting for M =M, &---© M,.

(3) M; is M;-dual ojective (i # 7).

A module H is said to be hollow if it is an indecomposabe lifting module.

Corollary 3.5. Let H,,--- , H, be hollow modules and put M = H, ®---® H,. Then
the following conditions are equivalent.

(1) M is lifting with the (finite) internal exchange property.

(2) M is lifting for M = H; &-.- ® H,.

(3) H; is Hj-dual ojective (Z # j).
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PERFECT ISOMETRIES AND THE ALPERIN-MCKAY CONJECTURE

CHARLES W. EATON

ABSTRACT. We give a brief survey of results and conjectures concerning the local deter-
mination of invariants of Brauer p-blocks of finite groups. We highlight the connections
between the various conjectures, in particular those of Alperin-McKay and of Broué,
and identify where further conjectures have to be made. We focus on the problem of
generalising Broué's conjecture, and suggest a generalisation of the idea of & perfect
isometry. Finally we present evidence that such a generalised perfect isometry should
exist in certain cases,

CONTENTS

(1) Introduction

(2) Background in block theory

(3) Numerical conjectures

(4) A structural conjecture - Broué's conjecture and how it relates to the numerical
conjectures,-and motivates perfect isometries

(5) Perfect isometries - definitions

(6) Generalizing perfect isometries

1. INTRODUCTION

The purpose of this survey, closely based on the author’s series of lectures given at the
Symposium, is to give motivation for the generalisation of a conjecture of Broué, and to
present one possibility for such a generalisation. As such, we are quite selective in the
material presented, giving only those results, examples and conjectures which illuminate
our chosen path. Hence we apologise in advance for omitting Dade’s conjectures and
those related to it, as well as some of the excellent work which has been done on Broué's
conjectures and on fusion systems.

One of the main parts of the modular representation theory of finite groups concerns
local determination, which is the determination of invariants of a block of a group by
examining so-called local subgroups, with respect to a fixed prime p. Many of the main
results in the area may be phrased in this way, for example the Green correspondence
and Brauer's first and second main theorems, as well as many conjectures, including
the Alperin-McKay conjecture of the title. The Alperin-McKay conjecture predicts a
straightforward equality between the number of height zero irreducible characters in a

The detailed version of this paper will be submitted for publication elsewhere. The author is supported
by a Royal Society University Research Fellowship.



block and the number of such irreducible characters in a uniquely determined block of
a certain subgroup. We describe how Broué’s conjecture explains the Alperin-McKay
conjecture in restricted cases, resulting in particular in a structured bijection of irreducible
characters rather than just an equality of numbers.

In the last part of the survey we will discuss the generalisation of the weaker of Broué’s
conjectures, and propose such a generalisation.

2. BACKGROUND IN BLOCK THEORY

Excellent references for this section are (5], [10], [12] and [13].

Let G be a finite group and p a prime. In order to study the characteristic zero rep-
resentations of G in relation to the prime p, we consider a p-modular system (K, O, k)
relating fields K and k of characteristic zero and p respectively via a ring @. The con-
ditions which we take on (K, O, k) are not intended to be in anyway minimal. Briefly,
we let O be a complete local discrete valuation ring containing a primitive |G|*-root of
unity, such that £k = O/J(O) is algebraically closed with char(k) = p and K is the field
of fractions of O (we take |G|3th roots of unity rather than |G|th roots because at some
stage we may need to take a central extension of G of order dividing |G|3).

Our approach will mostly be motivated by the study of characters, so our first task is
to partition the set Irr(G) of irreducible characters (with respect to K) of G into blocks.
The advantage of studying representations one block at a time is that representations
associated to the same block share some properties which we can take advantage of.

2.1. Characters in blocks. Decompose the group algebra OG into indecomposable two-
sided ideals:
OG=B,&: -0 B,.
This corresponds to a decomposition of 1 € Z(OG) into primitive idempotents of Z(OG),
say 1 = e; + --- + e, with ¢,0G = B;.
Similarly we may decompose kG. For a = dec a,9 € OG, write

a=) (ag+ J(O))g € kG.
geCG

Then 1=, + --- + &, is a decomposition into primitive idempotents of Z(kG), and
kG=€1kG® tee @E,JCG

is a decomposition into indecomposable two-sided ideals. Write B; = &kG. (Note that
each such decomposition of T lifts to a decomposition 1 into primitive idempotents of
Z(OG)). Essential in this is our choice of O complete.

We call the B; (and B;) blocks of G, and the e; (and &) block idempotents.

Now let M be an OG-module. Then

M=BM®&-- @ B,M.

Hence if M is indecomposable, then M = B;M for some unique block B;, and we say
that M belongs to B;. The same argument holds for kG-modules.

If x € Irr(G) (the set of irreducible (K-)characters of G), then x is afforded by some
irreducible KG-module V. There is an indecomposable OG-lattice M such that V =



K ®0 M. We say that x belongs to the block to which M belongs. This is independent
of the choice of M.
So we can partition Irr(G) into sets Irr(B;) of characters belonging to B;.
Alternatively, x € Irr(B;) if x(e;) = x(1) for j = i and x(e;) = 0 otherwise, giving the
same partition. In much of block theory there are several different ways of making any
definition, and they are usnally equivalent.

We can determine the block idempotents quite explicitly from the values of the char-
acters in a block.
The primitive idempotent of Z(KG) corresponding to x is

ex = Tgl > x(g™)g.

g€eG
Fixing a block B, with block idempotent eg, we have

Y e

x€Elrr(B)

2.2. Brauer characters and decomposition matrices. Our aim here is to give the
characters of the (projective) indecomposable summands of OG as a left OG-module.
To do this we use Brauer characters. These are a way of assigning class functions with
values in K to simple kG-modules, in order that we may more directly compare the simple
kG-modules to Irr(G).

Let S be a simple kG-module, and let p : G — GL,(k) be an associated representation.

Let g € G, the set of p-regular elements of G, and let m be the p’-part of the exponent
of G. Then p(g) has eigenvalues which are m-roots of unity. Let w be a primitive m-th
root of unity in K, and note that the groups of m-th roots of unity of K and of k are
isomorphic. Say w — @ under such an isomorphism.

Trace(p(g)) is a sum of m-th roots of unity, say 3, @". Define p(g) = 3, w". We call
¢ the irreducible Brauer character associated to S. This is a class function defined on
p-regular elements.

We assign ¢ to the same block as S, and write IBr(B) for the set of irreducible Brauer
characters belonging to B.

The number of distinct irreducible Brauer characters equals the number of p-regular
conjugacy classes of G. Further, the irreducible Braner characters IBr{(G) span the space
of class functions defined on p-regular conjugacy classes of G.

If x is a character of G, write x,y for the restriction of x to the p-regular conjugacy
classes. In fact x, is a non-negative integer linear combination of irreducible Braner
characters. If x € Irr(G), then write

Z dxdﬂ

@€1Br(G)

where the d,4 are non-negative integers.
The d,, are called the decomposition numbers of G, and we call the matrix D = (d,,)
the decomposition matriz of G.



If x and ¢ are in different blocks, then d,, = 0, and so we can define the decomposition
matrix Dg of a block B.

We obtain the Cartan matrix C by C = DTD, where DT denotes the transpose of
D. Recall that C is the matrix recording the occurrence of the simple kG-modules as
composition factors of the projective covers of all the simple kG-modules. Again we may
take the Cartan matrix Cp of a block B.

We may now write down the character of a projective indecomposable OG-module P.
Now P/J(O)P is a projective indecomposable kG-module, which is the projective cover
of a simple kG-module, say S. Let ¢ be the irreducible Brauer character associated to S.
Then P has character
d=0,= ) dyx.

x€lrr(G)
Two important facts concerning the characters $ are that
(i) ®(g) = 0 whenever g is p-singular (i.e., g has order divisible by p);
(ii) if x is a character of G such that x(g) = 0 for all p-singular g, then x is a Z-linear
combination of characters &, for ¢ € IBr(G).

2.3. Defect groups. We present one (of several equivalent) characterisations of the de-
fect groups of a block. As we mentioned earlier, we will usually consider local determi-
nation of invariants of blocks from invariants of normalisers of p-subgroups. The defect
groups of a block are a G-conjugacy class of p-subgroups associated to B, and local de-
termination will occur via normalisers of subgroups of the defect groups.

Let S be an indecomposable kG-module and let H < G. We say S is H-projective if
there is a kH-module T such that S| Ind$(T).

Now if P € Syl ,(G), then S is P-projective. Further, if J < H and S is J-projective,
then S is H-projective.

Hence there are subgroups @ which are minimal such that S is Q-projective, and these
must be p-groups. Call these the vertices of S.

Using the Mackey decomposition, we can see that the vertices of S form a G-conjugacy
class of p-subgroups.

Let B be a block. Definé the defect groups of B to be the p-subgroups of G maximal
amongst the vertices of the simple modules in B.

The defect groups of B form a conjugacy class of p-subgroups of G. If D is a defect group
of B and |D| = p?, then we say B has defect d. The defect is related to the degrees of the
irreducible characters in B (in fact we may also determine the defect groups themselves
from the irreducible characters, but we do not describe that here).

For x € Irr(G), define the defect of x to be the integer d(x) such that |G|, = pi®x(1),.
Then

d = maz{d(x) : x € Irr(B)}.

Examples

(a) We call the block containing the trivial character the principal block. The Sylow
p-subgroups are the defect groups.

(b) The blocks of defect zero, where the trivial gronp is the only defect group, are
of particular importance. These are simple algebras, and we do not expect to obtain



any information about them from local subgroups. A block B has defect zero if and
only if k(B) = 1. The unique irreducibie character x in a block of defect zero satisfies

x(1)p = |Gly.

2.4. Brauer correspondence. If we are to compare blocks of G with blocks of subgroups
of G, then we need a way of naturally associating them.

Let P be a p-subgroup of G and let H < G such that Cg(P) < H < Ng(P). Define
Brp : Z(kG) — Z(kH) by defining Brp(C) = 0 if C N Cg(P) = @ and Brp(C) =
2 secnco(p) 9 Otherwise, where C is any conjugacy class of G and ¢= > secc9- Then
Brp is an algebra homomorphism, called the Brauer homomorphism.

Let b be a block of H, with defect group Q, and suppose that C¢(Q) < H < Ng(Q).
Then there is a unique block B of G such that Brg(€p)é, = &. We write 5 = B, and
call B the Brauer correspondent of b in G. We also sometimes call B the induced block.

If we fix a p-subgroup D of G, then the Brauer correspondence gives a bijection between
blocks of G with defect group D and blocks of Ng(D) with defect group D (this is Brauer’s
first main theorem of block theory). Further (Brauer’s third main theorem), the principal
blocks correspond under this bijection.

Note that this is a slightly simplified definition, but one which suffices for our purposes.
The Brauer correspondence may be defined in greater generality than this. Note also that
there are several different definitions, which are not necessarily equivalent unless we put
restrictions on H similar to those above.

3. LOCAL DETERMINATION

We would like to obtain information about representations of a block B of a group G
from information about subgroups. So we have two questions: ”"what sort of subgroups?”,
and ”what sort of information?”

What sort of subgroups?

One immediate restriction on our choice of subgroup is that we would like the Brauer
correspondence to be defined, i.e., we would like there to exist blocks of subgroups with
Brauer correspondent B, and we would like the blocks of our subgroups to have a Brauer
correspondent. We saw in the previous section conditions for the existence of Brauer
correspondents.

Further, Clifford’s theorem tells us that Op(G) < ker(S) for every simple ¥G-module S.
This and other results tells us that in some respects we the presence of normal p-subgroups
allows us to obtain information from smaller groups still.

Existing results and conjectures involve the extraction of information from local sub-
groups, which may mean:

¢ normalisers Ng(Q) of p-subgroups Q

¢ stablisers (under conjugation) of chains of p-subgroups

o centralisers C(Q) of p-subgroups

e subgroups H with O,(H) # 1 (see the very nice paper by Thévenaz [16])
e slightly altered versions of the above (e.g., normalisers of subpairs)



What sort of information?
This ranges from numerical information, e.g.,
e k(B) = | Irr(B)|
¢ I(B) = | IBr({B)|
o ko(B) = |{x € Irr(B) : d(x) = d(B)}| (irreducible characters of height zero)
elementary divisors of the Cartan matrix
to categorical information, e.g.,
o the derived category D% B)
e stable module category mod(B)
There are many examples of theorems in local determination, but we concentrate here
on the conjectures.
Throughout, let B be a block of G with defect group D. One of the earliest conjectures
is

Conjecture 1 (Alperin-McKay). Let b be the unique block of Ng(D) with Brauer corre-
spondent B. Then

ko(B) = ko(b)-

Here, local determination is particularly straightforward. However, we do not always
expect to obtain our information from just one source. For example, Alperin’s weight
conjecture gives I{B) in terms of information from many Ng(Q), for p-subgroups Q. Let
Po(G) be the set of p-subgroups of G.

Conjecture 2 (Alperin’s weight conjecture).

1By=S_ 1$P(Ne(Q)/Q),

QePo(G)

where f((,B)(NG(Q)/Q) is the number of Q-projective simple kNg(Q)-modules in blocks
with Brauer correspondent B.

The Knérr-Robinson reformulation of Alperin’s weight conjecture is even more com-
plicated in terms of the number of local subgroups used, and gives k(B) in terms of an
alternating sum over stabilisers of chains of p-subgroups.

Note that in Alperin’s conjecture, using properties of the Brauer correspondence it
suffices to consider subgroups @ contained in a defect group for B.

If D is abelian, then Alperin's weight conjecture predicts that {{B) = I(}), and the
Knérr-Robinson reformulation predicts that k(B) = k(b), i.e., local determination comes
from one subgroup. To see this for Alperin’s weight conjecture, consider @ < D, and let
S be a simple kNg(@)-module in a block b with Brauer correspondent B. Let R be a
defect group of b with R < D (replacing D by a conjugate containing @ if necessary).
Then Q < R and by [9] we have R = Cr(Q) < Q < R. So b has defect group @, and so
by Brauer’s first main theorem S has defect group @. But 86 =B,s0 D = Q after all.
But every simple kNg(D)-module is D-projective, so we are done.

Alperin’s weight conjecture (and its reformulations by Knérr and Robinson are just two
of a wide array of conjectures concerning ever more detailed numerical invariants. These



would take a long time to state, so we have only presented those which are relevant to
out story.

4. BROUE'S CONJECTURE

We would like Lo understand the numerical conjectures introduced in the last section
more deeply, for example as consequences of results about the module categories. However,
we also saw that in general local determination of numerical invariants involves comparing
a number of groups at once. Since we know best how to compare two categories, we start
by looking at situations where we expect local determination (of a block B of G) to use
just one block of one subgroup. We saw that one such case is where the defect group D
is abelian.

Throughout this section, let b be the unique block of Ng(D) with Brauer correspondent
B. An excellent reference for this section is [10].

Conjecture 3 (Broué). Suppose D is abelian. Then the derived categories DY(B) and
Db(b) are equivalent (as triangulated categories).

Remark 4. Actually, more recent versions of Broué’s conjecture state that we should have
a splendid equivalence (also known as a Rickard equivalence). This places additional
restrictions on the tilting complex giving the derived equivalence, which amongst other
things ensure that we also have a family of compatible derived equivalences between
various subgroups.

Broué's conjecture is very hard to verify for a given block, but it is known in many
cases. For reasons of space we do not attempt to list these here.

We relate Broué’s conjecture to numerical conjectures such as Alperin-McKay’s

Suppose that D?(B) and DY) are equivalent as triangulated categories (with no re-
strictions on D). Then D%(B) and Db(b) are also equivalent as triangulated categories .
We have:

e mod(B) and mod(b) (and mod{B) and mod(b)) have isomorphic Grothendieck
groups (see [K-Z,6.3.3])
e B and b (and B and b) have isomorphic centres (see [K-Z,6.3.2])

In particular,
o k(B) = k(b), I(B) = I(b)
e also ky(B) = ko(b), although this takes more work to prove.

Hence, in the abelian defect group case, Broué's conjecture gives the Alperin, Knorr-
Robinson, Alperin-McKay (and Dade) conjectures.

Now suppose that D is non-abelian. Then in general we do not have k(B) = k(b).
[(B) = I(b) (although we do expect ko(B) = ko(b)). Hence there cannot be a derived
equivalence in general.

Even when we do have equality of numerical invariants, e.g., &(B) = k(b), {(B) = (D).
etc., there is sometimes no derived equivalence:

We say that D is a trivial inlersection (TI) subgroup of G if for each g € G — Ng(D),
we have DN D = 1. If B is a block with TI defect group D, then Alperin’s conjecture



states that /(B) = (), and the Knorr-Robinson reformulation states that k{(B) = k(b).
Actually

Theorem 5 (An-Eaton [2]). Suppose B is a block with TI defect groups. Then Alperin’s,
Alperin-McKay’s {and Dade’s, Isaacs-Navarro’s, Uno’s) conjectures all hold for B.

The principal 2-block of Sz(8) = 2B,(8) has TI defect groups. However, it has long
been known that B and b are not derived equivalent in this case. This was first observed
by Thompson, but see also Cliff [4], which shows that Z(B) and Z(b) are not isomorphic,
and Robinson [15], which we will discuss later.

To summarise , we have numerical conjectures which may be applied to all blocks, and
in a very restricted case (abelian defect groups) we have a deep structural explanation for
them, albeit a conjectural one!

A big problem is how to explain the numerical coincidences in general.

One approach would be to attempt to generalise Broué's conjecture directly, e.g., to
generalise the concept of a derived equivalence. Alternatively, we could use invariants
of derived categories lying somewhere between the simplest numerical ones (number of
irreducible characters, etc.) and the derived equivalence class of a category.

So we try to formulate conjectures implying those of Alperin, Alperin-McKay, Dade's,
etc., which hold in some non-abelian defect cases. This should give evidence for possible
generalisations of Broué’s conjecture.

We begin by looking at some consequences of Broué’s conjecture in more depth.

5. PERFECT ISOMETRIES

Excellent references for this section are [3], [7] and [10].
For a block (or sum of blocks) B of a group G, denote by

R(G, B)

the additive group of characters generated by Irr(B). We may identify this with the
Grothendieck group of mod{K®p B). We may consider R(G, B) as lying in CF(G, B, K) C
CF(G,K), the space of K-valued class functions spanned by Irr(G, B).

Let b be a block of another group H. Note that B ® 4° is a block of G x H®°, where §°
H® denote the opposite algebra, group respectively

Given

1 € R(G x H°, B V),
we define maps
I,:CF(H,b,K) - CF(G,B,K)
R,:CF(G,B,K)—> CF(H,b,K)

where [, and R, are adjoint linear maps with respect to the usual scalar product on
characters, as follows:
Let a € CF(H,b,K), B€ CF(G,B,K), he H, g € G. Define

L(a)(g) = ,'7, Y (g h™Y)alh),

heH



1
R,(B)(h) = =" u(g™", h)B(g)-
1]
Actually, if we have a linear map I : R(H,b) — R(G, B) then defining

p= Y I06)

ockrr(H,b)
gives I, = I. This follows from the orthogonality relations for ordinary characters.

Let p € R(G x H°, B ® b°). So far, the maps R, and I, induced by u tell us nothing
which relates the structures of B and b. They become more interesting when we require
that u is perfect. Before defining perfect characters, we motivate them.

Suppose that D?(A) and Db(B) are equivalent as triangulated categories.

Then this equivalence may be induced by a bounded complex

M. .- M, oM . ,3z— -2 M-—>---

of B-b-bimodules such that each M, is projective as a B-module and as a b-module
(see [10]).
Let p, be the character afforded by K ®o M,. Then the generalised character

p=Y (-1 n

gives an isometry I,,. In particular, if Broué’s conjecture holds, then we get an isometry
CF(N¢(D),b,K) — CF(G,B, K) related to the complex inducing the equivalence of
categories.

A complex M of B-b-bilmodules whose terms are projective as B-modules and as b-
modules is called a perfect compler, and the definition of a perfect generalised character
is related to this.

Denote by CFy(G, B, K') the subspace of class functions « € CF(G, B, K) such that
if g € G — Gy, then a(g) = 0.

Definition 6. y € R(G x H®, B® b°) is perfect if

(a) I, gives a map CF(H,b,0) — CF(G,B,0) and R, gives a map CF(G, B,0) —
CF(H,b,0)

(b) I, gives amap CFy(H,b,0) — CF,(G, B,0) and R, gives amap CFy(G, B,0) —
CFy(H,b,0).

Proposition 7 (Broué). u € R(G x H®, B ® b°) is perfect if and only if

(a’) for all (9,h) € G x H, we have p(g, h)/|Cs(9)| € O and p(g, h)/|Cu(h)| € O,

{b’) if u(g, h) # 0, then both g and h are p-singular or both g and h are p-regular.
Remark 8. Suppose that a character u of G x H° is afforded by an O(G x H°)-module
which is projective as G- and H°-modules. Then y is perfect.

Example 9. Suppose H < G, and let u be the character of the KG-K H-bimodule KG.
Then p is perfect. Here I, is induction and R, is restriction of characters. Explicitly,

ploh)= D D (Res§(x),0)x(9)8(h).

x€lr{G) 0ehr(H)



Similarly, K ® B may be considered as a K ® B-K ® b-bimodule in this way, to give
blockwise induction and restriction, which means induction and restriction, but only
taking only components in B or b.

We define a perfect isometry to be a map [, which is an isometry, such that u is perfect.
The inverse map is R,. This gives a ‘bijection with signs’ between Irr(B) and Irr(b).
Broué conjectures that:

Conjecture 10 (Broué’s isometry conjecture). Let B be a block with abelian defect group
D, and let b be the unique block of Ng(D) with b = B. Then there is a perfect isomelry

L, : CF(Ng(D),b, K) — CF(G, B, K).

Remark 11. When discussing Conjecture 3, we mentioned splendid equivalences, which
give families of derived equivalences. This is in part motivated by a stronger form of
the above conjecture, which predicts an isotypy. This is a family of compatible perfect
isometries. However, we will not discuss these in detail here, although they are very
important to the subject. Actually, in some sense they aid the search for a perfect
isometry between B and b. We should further remark however, that perfect isometries
arising from stable equivalences in the TI defect group situation (in a similar way to
property (P+) later) automatically give isotypys.

5.1. Invariants preserved by perfect isometries. Suppose that I, is a perfect isom-
etry. Define

IY: Z(KHey) — Z(KGesg)
by

( S5 (e h)ah) .

9€G heH

where a = 3, ., aph.
Since 4 is perfect, this also defines an invertible O-linear map

Z(OHey) — Z(OGep).

Write R° for the analogous map Z(KGeg) — Z(KHe,). Then a — I°(aR° (eg)) defines
an algebra isomorphism

Z(OHE(,) d Z(OGCB)

The calculations used to show the algebra isomorphism can also be used to show that
for each @ € Irr(d),
C1/1.(6)(1)
|H|/6(1)
and is invertible in O. Hence I,, preserves the defects of the ordinary irreducible characters.
Since d(B) = maz{d(x) : x € Irr(B)}, this means that the defect of a block is preserved.
(It is not known - to the authors knowledge - that a perfect isometry, or even Morita

equivalence preserves the isomorphism class of a defect group, although neither is the
author aware of a counterexample).

€0



[t is also the case that, modulo p,
|G|/ 1.(8)(1)
|H[/6(1)
is independent (up to sign) of the choice of & € Irr(b).

Now suppose further that H = Ng(D), that B (and so b) is the principal block, and
that I,(1x) = 1g. Then D is a Sylow p-subgroup, and
[G : No(D)| = 1 mod p.
Then
1,(0)(1) = £6(1) mod p.
This is a motivation for the following strengthening of the Alperin-McKay conjecture
(although we do not claim that it was the original motivation).

Let B be a block of a group G with defect group D. Let b be the unique block of Ng(D)
with ¢ = B. Let r be an integer. Write

Irr(B,[r]) = {x € Irr(B) : xl(Gll = %7 mod p}

and k(B, [r]) = | Irr(B,[r])].
Conjecture 12 (Isaacs-Navarro). For each integer r, we have ko(B, [r]) = ko(b, [r]).

So in the above situation, for the principal block, the Isaacs-Navarro conjecture is a
consequence of a perfect isometry.

Remark 13. (a) Uno has announced a generalisation of the Isaacs-Navarro conjecture to
arbitary character defects, which is also a strengthening of Dade’s conjecture.

(b) Just as with the other numerical conjectures, when the defect group is TI, a straight-
forward equality is predicted, with all information coming from just one local subgroup,
N¢(D). 1 regard this as evidence that there should be a generalisation of a perfect isom-
etry which at least holds in the TI defect group case.

Other invariants which are preserved by perfect isometries are {(B) and the elementary
divisors of the Cartan matrix.

Further evidence that the TI defect group case should be similar to the abelian defect
group case is the following consequence of Theorem 5 (see [6]):

Proposition 14. Suppose that B has TI defect group D, and let b be the unique block
of Ng(D) with Brauer correspondent B. Then the Cartan matrices of B and b have the
seme elementary divisors.

5.2. Existence and non-existence of perfect isometries. As mentioned earlier, Cliff
in [4] has proved that if G is Sz(8) and B is the principal 2-block, then Z(B) is not
isomorphic to Z(b), where b is the Brauer correspondent of B in Ng(D). Hence there can
be no perfect isometry in this case.

Robinson in [15] gives general conditions for the non-existence of a perfect isometry,
based on the block having many irreducible characters constant on p-singular conjugacy
classes when Ng(D)/Op(Ng(D)) is a Frobenius group. Such a condition can be checked
easily for, e.g., the Suzuki groups.



As before, we do not attempt to list the cases for which Broué isometry conjecture is
known. However, we draw the reader’s attention to what may be considered the high
point of work on the conjecture, which is [7], where it is proved that the conjecture holds
for the principal block for p = 2.

6. GENERALISING PERFECT ISOMETRIES

If we believe the numerical conjectures, then in general we expect local determination
to be complicated, because we expect information to come from a number of subgroups
simultaneously, as in Alperin’s weight conjecture. However, in some cases, the numerical
conjectures suggest that we may find information from just one subgroup. An example is
when Ng(D) controls fusion in D, which includes the case D is abelian. This also includes
the case that D is TI.

We present here an observation of some very compelling behaviour in the TI defect
group case, which leads to a generalisation of Conjecture 10. Most of the results in this
section are taken from [6].

Throughout, let B be a block of G with defect gronp D, and let b be the unigue block
of Ng(D) with Brauer correspondent B.

Definition 15. We say that B satisfies property (P) if there is perfect € R(G x
Ng(D)°, B @ b°) such that for each 8 € Irrg(Ng(D), b), the map

I, : CF(Ng(D),b,K) - CF(G,B,K)
induced by u satisfies
L) =ex+A
for some x € Irrg(G, B), where ¢ € {-1,1} and no constituent of A has height zero, and
for each x € Irrg(G, B), the map
R, :CF(G,B,K) — CF(N¢g(D),b,K)
satisfies
R.x)=€¢0+0©
for some @ € Irrg(Ng(D), b) where ¢ € {—1, 1} and no constituent of © has height zero,
Remark 16. (a) Property (P) gives rise to a bijection ‘with signs’ between Irrg(B) and
Irrg(b), just as a perfect isometry does.
(b) If 1, is a perfect isometry, then u gives (P).
(c) If D is abelian, then Braner’s abelian defect group conjecture predicts that Irro(B) =

Irr(B), and we already know that Irrg(b) = Irr(b). Hence if Brauers conjecture is true
and D is abelian, then I, is a perfect isometry if and only if i gives (P).

(P) holds for every example of a block with TI defect groups so far checked. Unfortu-
nately, (P) does not hold for all blocks, for example:

Proposition 17. Suppose that B is the principal block of G = PSL3(2). Then no choice
of j1 can give (P).

Proof. D = Dg and Ng(D) = D. By checking the short list of possibilities, we cannot
have y:(1, k) = 0 for each nontrivial £ € D. ]



Note that G = PSL3(2) has non-TI Sylow 2-subgroups. Further, D = Ng(D) does not
control fusion in D.

However, we will see in the first example that often something stronger than (P) actually
holds.

Now suppose that H = Ng(D) and that ¢ = B. Consider ‘blockwise induction and
restriction’, which is given by ¢ = 2xel"( B) Z,el"(b)(stf,c( p)(x).0)x6. The map Iy is
then ‘induction, taking terms in B,' and Ry is ‘restriction, taking terms in b.’ Just as
with induction/restriction, this is a perfect character.

Definition 18. We say that B satisfies (P+) if there is u € R(G x Ng(D)°, B&b°) giving
(P) of the form u =& + Z,_, e, I, ®;, where each a,, is an integer and ', resp. ®; is the
character of a projective indecomposable module of B resp. b.

A generalised character u of this form is necessarily perfect.

Remark 19. If B satisfies property (P+), then it is immediate that Conjecture 12 holds
for that block.

We give the following example in full as an illustration. Note that the block we use
does not have TI defect groups, but (P+) holds anyway.

Example 20. Let G = S5 and p = 2. Let B be the principal block of G, so B has
defect group D = Dg, a Sylow 2-subgroup of G. We have Ng(D) = D. Now the
irreducible characters of G are x; ..., x7, with degrees 1,1,4,4,5,5,6 respectively. We
have Irr(B) = {Xx1, X2, Xs: X¢» X7}- The irreducible characters of Ng(P) are 6y,...,65,
with degrees 1,1, 1, 1,2 respectively. We will need the following characters of projective
indecomposable modules: T' = x5 + x¢ + x7 and &, =8, + - - + 04 + 265.

The restrictions of the irreducible characters of B to Ng(D) are as follows:

Resg,a(p)(x,) = 6 = 4
Resy p)(x2) = 03 = 0;
RES?I{;(D)(X&) = 0,+60,+0;+6; = P, —-6,-6;
Res§ooy(Xs) = 01+03+0,+6; = & —6,—6
Resga(n)(X'r) = 0+ 84+ 265 = &, —6,—06;

Hence u = & — I'®; gives the bijection with signs

X1 6,
X2 )
Xs < -8,
Xo —~6;

(P) is partially motivated by the following, from [14]:

Theorem 21 (Navarro). Let G be a p-solvable group such that Ng(P) = P for a Sylow
p-subgroup P. Then

(a) for each 8 € Trr(P) with 6(1) = 1, we have IndS(0) = x + A where 8 € Irr(G) with
P fx(1) and p|6(1) for each irreducible constituent § of A, and

(b) for each x € Irr(G) with p fx(1), we have Res$(x) = 8 + ©, where 6 € Irr(P) with
8(1) = 1 and p|y(1) for each irreducible constituent v of ©.



This means that for the principal block of a p-solvable group with Ng(P) = P, the
character for ® for induction/restriction gives property (P+).

6.1. Controlled blocks. The principal block is a controtled block if, for P a Sylow p-
subgroup of G, if @ < P and g € G such that Q¢ € P, then g = cn for some ¢ € Cg(G)
and h € Ng(P). There are examples of controlled blocks which do not have TI defect
groups. E.g., the principal 3-blocks of J, and J3, and also the principal 5-block of Cos.

{P+) holds for J; and J;, but not for Cos. However it is not clear whether (P) holds
for Cos.

6.2. Conjectures. We feel confident that the following holds:
Conjecture 22. Let B be a block with T1 defect groups. Then (P+) holds for B.

We speculate that, if Ng(D) controls fusion in D, then (P) holds.

6.3. Checking the conjectures. The following is an important example, since it is the
original example of a block with TI defect groups such that the conclusions of Broué’s
conjecture fail.

Example 23. Let G = 2B,(8) and p = 2. Let B be the principal block and P € Syl,(G).

The irreducible characters of Ng(P) are ..., 6y, with degrees 1,1,1,1,1,1,1,7,14, 14
respectively. These all lie in the principal block b. The irreducible characters of G are
X1, - -+, X11, With degrees 1, 14, 14, 35, 35, 35, 64, 65, 63,65, 91 respectively. All but x; lie in
B.

The characters of the projective indecomposable modules of Ng(P) are &; = 8; + 03 +
209 + 261, for 1 < £ < 7. The characters of the relevant projective indecomposable
modules of B are

[z = X2 + x3+ x4 + 2x5 + X6 + 2xs + 2x9 + 3x10 + 3x11,

I3 =x2+ x3+ x4 + x5 + 2x6 + 3xs + 2x9 + 2x10 + 3x11,

Ly = X2+ x3+ 2xa + x5 + X6 + 2xs + 3x9 + 2x10 + 3x11,

[s = x5 + xs + x10 + X1,

F's = X6 + X8 + X9 + Xx11,

F7 = xa+ x9 + x10 + X11.

We give the restrictions of the x; below, along with constituents of the images in R, in
Irro(b) (which we write as R%), where

;t=<I>—(F4—[‘5—FG—[‘7)d>2—([‘2—[‘5—I‘6—I‘7)¢3—(F3—F5—[‘G—[‘7)<D4.

and & is as before.



Xi  Res§_p(xi) RY(x:)

x1 6 6,
X2 09=d>2+‘b3+‘b4—02—03—04—303—509—6010 —0; — 05 — 04 — 365
X3 010=d’2+q)3+d>4—02—03—04—303—609—5010 —02—03—04—308

X4 Og+0g+010=—02—05—010+ &2 —0,
Xs O+ 0 +610=—0;—80g—0p+ D3 —63
Xo Os+0s+010=—0s—05—010+ P4 —04
xs 04+ 05+ 05+ 209 + 20, = 65 + D4 0
Xxe 02+ 07405+ 20 + 20,5 = 07 + $, 0,
X1o O3+ 0g + g + 209 + 201 = 0 + D3 06
X11 03 + 309 + 3010 03

We are able to verify that (P+) holds when B is the principal 2-block of any 2B,(22™+!),
and when B is any p-block of SU3(p™). We are also able to prove the following:

Theorem 24. Let p be 5 or a prime such that 3 A(p + 1). Let B be a block with TI
non-abelian defect group D such that |D| < p°. Then (P) holds for B.

Remark 25. Further, (P+) holds if G is quasisimple.

Outline of proof: We use Clifford-theoretic methods similar to those in [2] to reduce to
non-abelian simple groups, their automorphism groups and their covering groups. In [2]
certain Morita equivalences are constructed to achieve a similar reduction, and we use the
fact that Morita equivalences give perfect isometries.

It suffices to consider blocks with TI defect groups of central p'-extensions of antomor-
phism groups of non-abelian simple groups.

These have been classified in [1], and it suffices to check the following cases:

(8) D = 3?2 and G is Aut( 2G2(3)') = 2G2(3);

(b) D = 5}*? and G is 3.McL, Aut(MecL), SUs(5), GUs(5), PSUs(5).2 or PGU3(5).2,
where the extension is by the unique field automorphism of order 2;

(c) D =5 and G is Aut( 2B,(32));

(d) D = p!*? and G is PSUs(p) or PSUs(p).2, where the extension is by the unique
field automorphism of order 2 and 3 Jp + 1.

Finally, we have checked all of these cases.

6.4. Other generalisations. (I) The problem of generalising perfect isometries has also
been studied by Jean-Baptiste Gramain in [8].

He uses the definition of a perfect isometry in Kiilshammer-Olsson-Robinson's pa-
per [11] on generalised blocks of symmetric groups. The generalisation does not include
Broué’s conjecture on perfect isometries, but does give an isometry involving all irre-
ducible characters. Gramain verifies the conjecture for various classes of blocks with TI
defect groups. It is not clear whether a counterexample exists when the defect group is
not TIL.

(IT) In the main part of this section, we have been attempting to generalise the idea
of a perfect isometry by generalising from an isometry, whilst still considering perfect



characters. We may also attempt to find isometries with strong structural properties so
that we may generalise Broué's conjecture. In examples of blocks with TI defect groups
tested, the following occurs:

There exists an isometry

1,: CF(Ng(D),b,K) — CF(G, B, K)

where u satisfies

(*) Suppose u(g, k) # 0. Let g, be the (uniquely defined) part of g, and h, the p-part
of h. Then either g, and hy, are both conjugate to an element of the derived subgroup D',
or neither are.

In the case that D is abelian this is one of the conditions for a perfect isometry.

However, there is little evidence for this phenomenon, and there is no analogue for the
other condition for a perfect isometry. Also, there are counterexamples when D is not TI.
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MAXIMAL ORDERS AND VALUATION RINGS IN
NONASSOCIATIVE QUATERNION ALGEBRAS

JOHN S. KAUTA

ABSTRACT. A nonassociative quaternion algebra over a field F is a four-dimensional
F-nlgebra A whose nuclens is a separable quadratic extension field of F. We define the
notion of a valuation ring for A, and we also define a value function on A with values
from a totally ordered group. We determine the structure of the set on which a value
function assumes non-negative values. The main resnlt of this paper states that, given
a valuation ring of a quaternion algebra A, there is a value function associated to it if
and only if the valuation ring is invariant under proper F-automorphisms of A and is
integral over its center. We later restrict our attention to the case when the nuclens is a
tamely ramified and defectless extension of F. With this assumption, we determine the
precise connection between value functions, valuation rings, and maximal orders in A -
the latter in the event F is discretely valued. We give varions examples that illnstrates
the difference between the associative valuation theory and the nonassociative one.

Key Words: Value functions, valuation rings, maximal orders, nonassociative quater-
nion algebras.

1. INTRODUCTION

A ring will have a multiplicative unit element and, unless the context demands oth-
erwise, will be assumed to be nonassociative. Let A be an algebra over a field F. The
nucleus N = N(A) of A is the set of elements of A which associate with every pair of
elements of A, that is,

(ab)e = a(be)
when one of the elements is in N. It is an associative subalgebra of A. The center Z(A)
of Ais
{z € N | za = azVa € A}.
The algebra A is said to be simple in case 0 and A are the only ideals of A. It is called
central simple if A ®p L is simple for every field extension L of F. It is said to be a
division algebra if it is not the zero ring and the equations

ax=b, ya=1b

have unique solutions z,y € A for all a # 0,b € A. We shall always assume that A is a
finite dimensional division algebra over F in this paper. By (7, Theorem 2.1}, Z(A) is a
field extension of F' and A is a central simple algebra over Z(A). Since A is a division
algebra, a routine argument shows that N is an associative division algebra. If R is a
ring, let

U(R)={a€ R| ba=ac=1 for someb,c € R}.

The detailed version of this paper has been submitted for publication elsewhere.



Observe that if R is associative, then U(R) is simply the group of multiplicative units of R.
If R is an associative ring, then J(R) will denote its Jacobson radical and R = R/J(R).

This paper is organized in the following manner. In Section 1 we define the notions
of a valuation ring and value functions on arbitrary nonassociative finite dimensional
division algebras, and we also state some elementary general results. The rest of the
paper, however, is entirely devoted to how the valuation rings and value functions thus
defined relate to nonassociative quaternion algebras. In Section 2, we determine the
striucture of the set on which a value function assumes non-negative values. The main
result of this paper is Theorem 14 in Section 3, which states that, given a valuation ring
of a quaternion algebra A, there is a value function associated to it il and only if the
valuation ring is invariant under proper F-automorphisms of A and is integral over its
center. In Section 4, we restrict our attention to the case when the micleus is a tamely
ramified and defectless extension over F. With this assumption, we determine the precise
connection between value lunctions, valuation rings, and maximal orders in A - the latter
in the event F is discretely valued. Finally in Section 5, we give various examples that
illustrates the difference between the associative valuation theory and the nonassociative
one. Also, the examples demonstrate the necessity of certain assumptions made earlier
on in the paper. The reader interested in learning more ahout nonassociative quaternion
algebras is referred to articles [3, 10].

If A is associative, recall that a subring B of A is called a (Dubrovin) valuation ring of
A if there is an ideal [ of B such that:

(a) B/I is simple Artinian,

(b) if z € A\ B, then there are b, by € B with bz, zby € B\ |
(see [1, 5, 9]). Note that since A is finite dimensional over its center, B/I is a Pl-ring
for any ideal I of B hence, if I is a maximal ideal of B, then B/I must be Artinian.
Therefore condition (a) can be replace by the weaker:

(a") I is a maximal ideal of B.
We therefore make the following definition in the nonassociative setting, leaving out the
Artinianness condition.

Definition 1. Let A be a division algebra finite dimensional over its center F. If B is
a subring of A and I is a maximal ideal of B such that, if x € A\ B, then there are
bi.b; € BN N with bz, zb, € B\ I, then we shall call (B, ) a valuation ring pair of A.

If (B, I) a valuation ring pair of A, we shall sometimes simply refer to B as a valuation
ring of A if there is no danger of confusion. We set B = B/[. Observe that, if A were
associative, then our definition of a valuation ring above would become that of a Dubrovin
valuation ring.

Now let " be a totally ordered group, written additively for convenience although it is
not assumed to be abelian.

Definition 2. A value function on A with value group I' is a surjection w: A — [U {c0}
such that for all a,b € A we have:

(1) w(a) = oo if and only if a = 0,
(2) w(a + b) > min{w(a), w(b)}.
(3) w(ab) > w(a) + w(b).



(4) w(a™') = —w(a) Va € U(N),
(5) im(w) = w(U(N)) U {00}

(cf [5, Definition 2.1]).

The following lemma is now self-evident, or can be proved in the same manner as the
statements in [5, Lemma 2.2].

Lemma 3. Suppose A has a value function w. Then
(1) w(ab) = w(a) + w(b), w(ba) = w(b) + w(e) V a € U(N).
(2) w|y is e valuation on N.
(3) If w(e) # w(b), then w(a £ b) = min{w(a),w(b)}.
(4) By = {a € A| w(a) 2 0} is a subring of A and J, = {a € A| w(a) >0} isa
two-sided ideal of B,,.

We will denote B,,/J, by B,.

Remark 4. Given a valuation w on an associative division algebra A, it does satisfy |5,
Definition 2.1]. In particular, condition (4) of [5, Definition 2.1] is satisfied, that is,

im(w) = w(st(w)) U {oo}, where st(w) = {s € U(A) | w(s™') = —w(s)}.

Notice that if w is a valuation then the stabilizer of w, st(w), coincides with U(N) in
the associative case. In fact, by [5, Lemma 2.2), a value function in the sense of [5] is a
valuation if and only if st(w) = U(A) (= U(N)).

If A is nonassociative, we split condition (4) of [5, Definition 2.1] into two parts, namely
(4) and (5) of Definition 2. As a result, and in view of Lemma 3(2) above, our value
functions generalize valuations on associative division algebras, rather than value functions
of {5]. Further, the nucleus plays a role synonymous to that played by the stabilizer in
the associative case. Consequently, the value group of A, which coincides with im(st(w))
in the associative case, is now equal to the value group of N.

Finally, given a value function w on A, just as in the proof of [5, Theorem 2.4, for each
z € A\ B, 34,5, € BN N such that b,z,zb, € B, \ Jy: choose t € U(N) such that
w(t) = w(z) and set b, = by = ¢t~!. Hence (B,, Jy) is a valunation ring pair if and only if
Jy is a maximal ideal of B,,.

Proposition 5. We have the following:

(1) T is abelian.

(2) aBya™! = B,Va € U(N).

(3) One-sided ideals of the form aB,, (= Bya),e € N, are actually lwo-sided, and are
totally ordered by inclusion.

2. VALUE FUNCTIONS ON NONASSOCIATIVE QUATERNION ALGEBRAS

A nonassociative quaternion algebra over F is a four-dimensional F-algebra A, with a
unit element, whose nuclens N is a separable quadratic extension field of F. If z — &
denotes the F-involution on N, then by [10]

A=NaNJ



where Jz=2JVz€ Nand J2=be N\F.

Incidentally, given a four-dimensional F-algebra of the form A’ = N @ NJ' where
J'z=2J'Vz € N and J? =V € N, then one has the following classification: if ¥ = 0,
then A’ is not simple, since NJ' is a proper ideal; otherwise if 0 # b’ € F, then one gets
the usual cyclic F-algebras of degree 2; if & € N \ F, then one obtains the nonassociative
quaternion algebras now under discussion - which are always division algebras (see [10]),
and Z(A') = F.

If A has a value function, then by Lemma 3(2) F is a valued field. On the other hand,
suppose (F,V) is a valued field and let A be a finite dimensional associative division
algebra with center F. In [8, Theorem] it was shown that the valuation on F extends to a
valuation on A if and only if V is indecomposed in each field K such that FC K C A. In
[4, Theorem 2}, it was shown that the valuation on F extends to a valuation on A if and
only if A®p Fj, is a division algebra, where (Fj, V},) is the Henselization of (F, V) (see [2]
for the definition and properties of Henselization). We now have the following analogous
results in this nonassociative setting:

Proposition 6. Suppose F is a valued field with valuation ring V. Then the following
are equivalent:

(1) A has a value function w with FNB, =V.

(2) V is indecomposed in N.

(3) A®F F}, is a division algebra, where (F},, V;) is the Henselization of (F,V).

Example 7. Let F = Q, N = Q(i), b =1 € N\ F, and let v be a valuation on N
extending the 3-adic valuation on F. If one defines w on A by
w(z + yJ) = min(v(z),v(y)) Vz,y € N,
then it is easily seen that w is a value function on A and
By = Zli)szy)) © Zli)azy)) and Ju = 3Z[i](szg © 3Zli](azyiyJ-

We will see later (Theorem 17(2)) that (B,, J,,) is actually a valuation ring pair of A. O

For the rest of this sectién, A will have a value function w defined on it. Then w|y is
a valuation on N, which for now we will also denote by w. Let S be its corresponding
valuation ring and let V = SN F. Then S is the integral closure of V in N, since V is

indecomposed in N. We have S = NN B,,. We will say that w is a normalized value

function if w(J) = 0. Given an arbitrary value function w, we know there is a ¢ € U(N)
such that w(t) = w(J). Since

A=N®NJ=N®N(%J),

upon replacing J by %J if necessary, we may and will assume that w is normalized in this

section. Since J? = b, we see that w(b) > 2w(J) = 0, hence we will always have b € S in
this section.

By [10], there are only two types of F-antomorphisms on A: for the first type, the
automorphism ¢ is given by

oz +yJ)=2x+vyJ where 94 = 1.



Such a map fixes N element-wise and is called a proper automorphism of A. We will
see in Section.3 that valuation rings that are integral and invariant under proper F-
automorphisms of A are precisely those arising from value functions on A. On the other
hand, we will make no use of automorphisms of the second type, which occur only when
b= —b and there is a 7 € N satisfying ¥4 = —1. An automorphism of this type is given
by é(z +yJ) =z +yJ.

Proposition 8. If ¢ is a proper automorphism of A, then w(¢(2)) = w(z)Vze A In
particular, ¢(B,) = By and ¢(Jy) =

Proposition 9. U(By) = {z +yJ € By | z£ —yyb € U(S)}.

Let T = Tyyr : N — F be the usual trace map, ie., T(z) = z+ . As an F-
linear mapping, it is known that right multiplication by an element z = z + yJ of A has
characteristic polynomial

e(t) = {£? = T(@)t + zi — yib}{t* — T(z)t + z& — yjb} € Ft].

If we agree to interpret c.(z + yJ) as .

{(z+yJ)* = T(2)(x +yJ) + 2t = yib}{(z + 3J)* - T(2)(z + yJ) + 22 - yjb},
which is an unambiguous expression, then we have ¢;(z + yJ) = 0. Given a subring R of
F, we will say that z =z +yJ € A is integral over R il c.(t) € R[t]. A subring B of A
will be called integral if each one of its elements is integral over BN F. A valuation ring
pair (B, ) of A will be called integral if B is integral. A subring of A will be called an
order in A if it contains an F-basis of A. It will be called an R-order if it is an integral
order containing R and the field of fractions of R is F. If an R-order is maximal among
the R-orders of A with respect to inclusion, it will be called a mazrimal R-order (or just a
maximal order if the context is clear). Clearly, every R-order is contained in a maximal
order. Note that, if an order B containing R is finitely generated over R and z € B
then, as in the associative case, by computing c.(t) using an F-basis of A contained in B,
one readlly sees that c:(t) € R[¢] and hence B is an R-order if F is the field of fractions
of R. Conversely, if R is Noetherian and B is an R-order in A, then the proof of [6
Theorem 10.3] shows that B is finitely generated over R: if {u;,ua, u3,uq} C B is an
F-basis for A and o = det(T(u;u;)) € F, then a # 0 as was pointed out in the paragraph
before [3, Proposition 1.4], and B is a submodule of the finitely generated R-module
a1 (Ruy + Ruy + Ruz + Rus).

Proposition 10. B, is a V-order in A.
We will encounter more V-orders in §4.

Proposition 11. We have the following:
(1) If w(z + yJ) = min(w(z),w(y)) V¥V z,y € N, then B, = S® SJ and J, =
J(S)® J(S)J.
(2) If B, =S&S5J, then w(a:+yJ) = min(w(z), w(y)) Vz,y € N and B, = SaS 7,
where J5=3J and J- = b.
(3) If w(b) > 0, ther w(z + yJ) = min(w(z), w(y)) V z,y € N and (By, J,,) is not a
valuation ring pair of A.



Since (B,, Jy) cannot be a valuation ring pair when w(b) > 0, we turn our attention
to the case where we may have w(b) = 0. To handle the general situation, we will make
use of the following notation: by definition of a value function, for each u € U(S) there
is a A, € S\ {0} such that w(\,) = w(l +uJ). Let

B.=S8&)'S1 +wJ),
a free S-submodule of B,,.

Theorem 12. With the notation described above, we have the following:
(1) w(dy,) € w(hy,) if and only if B, C B,,. In particular, the set {B, | u € U(S)}
is linearly ordered by inclusion.
(2) S®8J C B, Y u € U(S), By = Uyet(s)Bu, and Ju = Uueus)[J(S) B (S)(1 +
uJ
(3) For)']each u € U(S), B, is a subring of B,, and T(3- -S)c V.
(4) B, is finitely generated over S if and only if B,, = B for some u € U(S).

3. VALUATION RINGS IN NONASSOCIATIVE QUATERNION ALGEBRAS

Let (B, ) be a valuation ring pair of A. In this section, we are going to determine the
precise conditions that will guarantee the existence of a value function w on A such that
(B,1) = (Bw, Ju)-

A subring B of A will be called invariant if (B) = B for every proper F-automorphlem
@ of A. A valuation ring pair (B, ) will be called snvariant if B is invariant.

A valuation ring pair (B, I) of A will be called normalized if J € B \ I. Without loss
of generality, we may assume that (B,I) is normalized: if J ¢ B, then we know there

is a t € N such that ¢tJ € B\ I; in this case, replace J by tJ. If J € I, then %J &€ B,
otherwise we would have 1 = (%J)J € I. So there is a t € N such that f;J € B\I,in
which case we replace J by f;J .

Lemma 13. If (B, I) is normalized, integral, and invariant, then

(1) S= BN N is a valuation ring of N.
(2 Ifu € U(S), then there is a oy, € S\ {0} such that

—“*B(l + ‘U.J) €B \ I.
Further, for anyt € N,
(3) v(t) = v(ow) if and only if ﬁ%(l +uJ) € B\ I, where v is a valuation on N
corresponding to S.

If (B, I) is normalized, integral, and invariant and if I" is the value group of the valuation
v, we define a map w: A — ['U {o0} by

o0 ifz+yJ =0,
w(z +yJ) = { min(v(z),v(3)) if o(z) # v(y),
v(z) + v(1 — uth) — v(o,) otherwise, where u = g



By Lemma 13, o, exists for each u € U(S) and v(o,) depends only on u. Hence w
is well defined. This w turns out to be a value function corresponding to (B, I) in the
following theorem.

In the associative setting, given a Dubrovin valuation ring of a finite-dimensional divi-
sion algebra, then in [9, Theorem G & Corollary G] we learn that there is a valuation on
the division algebra giving rise to the Dubrovin valuation ring if and only if the Dubrovin
valuation ring is invariant under inner automorphisms of the division algebra. In [5)],
certain value functions are defined on central simple algebras. Given a Dubrovin valua-
tion ring of such an algebra, there is one such valie function giving rise to the Dubrovin
valuation ring if and only if the Dubrovin valuation ring is integral [5, Corollary 2.5]. We
have the following analogue of these two results, but here we need both the invariance
and the integralness assumptions.

Theorem 14. Given a valuation ring pair (B,I) of A, there is a value function w such
that (B,I) = (By, Ju) if and only if (B, I) is integral and invariant.

Note that the condition is clearly necessary, by Proposition 10 and Proposition 8.

Corollary 15. Let (B,I) be a valuation ring pair of A that is invariant and integral.
Then:
(1) I is the unique mazimal ideal of B such that, if z € A\ B, then there are by, b; €
BN N with by z,zb, € B\ I.
(2) ¢(I) = I for every proper F-automorphism ¢.
B)UB)={z+yJeB|zz—-yybe U(S)}.
(4) If in addition (B, I) is normalized, then B = Uueu(s)|S @ 72%ar-S(1 + uJ)] and

I = Uuer(s)[J(S) & 757 J (S)(1 +uJ)].
By Remark 4, we immediately have:

Corollary 16. Given a value function w on A, if J,, is a mazimal ideal of B, then it
is the unique mazimal ideal of B, salisfying the condition that, if z € A\ By, then there
are by, b2 € N N B,, with b12,2b; € By, \ J,.

4. THE CASE WHEN N/F 1s TAMELY RAMIFIED AND DEFECTLESS

All undefined terminology used in this section relating to valuations on fields can be
found in [2]. Let us once and for all fix some notation for this section. The quaternion
algebra A will have a normalized value function w defined on it. Let S = NN B, a
valuation ring of NV, and let V = S N F, a valuation ring of F. We also know that V is
indecomposed in N, and so § is the integral closure of V in N.

Let v be a valuation on N with valuation ring S. Let e (resp. f) be the ramification
index (resp. residue degree) of S over F. In our case, it is well known that

ef <2.

If we have equality ef = 2, then we say N/F is defectless. We call N/F tamely ramified
if the characteristic of V does not divide e and S is separable over V. When N/F is
tamely ramified and defectless then, in our situation, there are exactly two cases: N/F is



an inertial extension if f = 2; it is tamely and totally ramified when e = 2. In the latter
case, the characteristic of V is not 2, of course.

In this section, we will assume that N/F is tamely ramified and defectless. Under this
assumption, B,, has a particulary desirable form and we will determine precise condi-
tions for (B,,Jw) to be a valuation ring pair of A. This section also shows that there
are abundant examples of valuation ring pairs of A when N/F is tamely ramified and
defectless.

Theorem 17. Suppose N/F is tamely ramified and defectless. Then:

(1) B,=Se&SJ.

(2) If N/F is inertial, then (By, Jy,) is a valuation ring pair of A if and only if w(b)=0.
When this occurs, J,; is the unique mazimal ideal of B,, and B,, is a central simple
V -algebra, which is a division algebra unless b is a norm from S to V.

(3) If N/F is tamely and totally ramified, then (B, J.,) is a valuation ring pair of
A if and only if b is not a square in S. When this occurs, then J,, is the unique
mazimal ideal of B,, and B, is a separable quadratic extension field of V.

For the rest of this section, we shall assume that V is a DVR, hence N/F is defectless
by [2, Corollary 18.7]. Let J(S) = 7S, and let v be the J(S)-adic valuation on N.

The set {t € N | v(tib — 1) > 0} is clearly non-empty. Let k € {0,1} be the largest
integer such that thereis a u € N with v(uib—1) > 2k, If we assume N/F is a tamely and
totally ramified extension, then by [3, Proposition 2.5, if £ = 0, then B = S S(1 +uJ)
is the unique maximal V-order containing S, while if k¥ = 1, then there are exactly two
maximal orders containing S, namely By = S®&7~!S(1+uJ) and B, = S&r~'S(1+uJ).

Corollary 18. Suppose V is a DVR and N/F is tamely ramified. Then we have
(1) If N/F is inertial, then (B, Ju,) i5 a valuation ring pair of A if and only if B, is
a marimal order and w(b) = 0.
(2) Otherwise if N/F is tamely and totally ramified, then:
(a) If w(b) = 0, then By, is the intersection of (at most two) mazimal orders.
(b) (Bu, Ju) is a valuation ring pair of A if and only if By is @ mazimal order
and b is not a square in S.

5. EXAMPLES

Example 19. A subring By of A that is invariant but not integral, ¢ subring B, of A
that is integral but not invariant, and a valuation ring pair (B,I) that is neither integral
nor invariant.

Let F =Q,V = Zg), N = Q(i). Then J(V) splits completely in N. Let W = Z[i)(2.44y,
one of the two extensions of V to N. Let S be the integral closure of V in N, that is,
S = Zli]a4s) N Z[i2-s).

Then By = W is an invariant subring, but not integral. (If A was an associative division
algebra, then any subring that is invariant under F-automorphisms of A is integral.)



Now let b=1i € S\ F. Then B, = S @ SJ is integral, but not invariant under the
proper automorphism ¢(z + yJ) = z + y(33)J.

Therefore, in general, being integral and being invariant are mutually independent phe-
nomena.

Finally, les b=i€ W\ F and let B =W @ WJ. Note that B is not invariant under
the proper automorphism $(z +yJ) = z+y(32)J. Let I = J(W)@ J(W)J. Then (B, 1)
is a valuation ring pair of A. It is neither integral nor invariant.

Therefore, unlike in the associative setting, valuation rings over a DVR need not be
mazimal orders.

Example 20. An invariant mazimal order over @ DVR that is not a valuation ring.

Let F=Q,V =Z, and N = Q(i). Then S = Z[ii(az; is a valuation ring of N lying
over V which is inertial over F. Let b=3+9i€ S\ Fandlet B=S&SJ. Then Bisa
maximal order but, for any maximal ideal I of B, (B, ) is not a valuation ring pair of A.

Therefore, unlike in the associative case, mazimal orders over a DVR need not be
valuation rings.

The condition that w(b) = 0 is necessary in part 2(a) of Corollary 18, as the following
example shows. Keeping the notation of Section 4, we have:

Example 21. A B,, which is not an intersection of mazimal orders, but V is a DVR and
N/F is tamely and lotally ramified.

Suppose V is a DVR and N/F is tamely and totally ramified. Let J(S) = #S and
let v be the J(S)-adic valuation on N. Let b = (7m)r € S\ F. If w(z + yJ) =
min(v(z),v(y)) ¥V 2,y € N, it is easily seen that w is a value function on A and B,, =
S & SJ. But B, is not the intersection of maximal orders in A.
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COHEN-MACAULAY MODULES AND HOLONOMIC MODULES ON
FILTERED GORENSTEIN RINGS

HIROKI MIYAHARA

ABSTRACT. This paper is a joint work with K.Nishida. We will study about filtered
Gorenstein rings, then Cohen-Macaulay modules and holonomic modules are difined and
studied.

1. INTRODUCTION AND PRELIMINARIES

Definition 1. Let A be a (not necessarily commutative) ring. A family of additive
subgroups { FpA | p € N} of A, where N is the set of all non-negative integers, is called
a filtration of A, if

(1) 1e Feh

(2) FoAC FonAd

(3) (FpA)(FyA) C Fpio

(4) A =Upen Fph

A pair (A, F) is called a filtered ringif A has a filtration. Let o, : Fpd — FpA/Fp1A

(F-14 = 0) be a natural homomorphism, then grad := @ ,n FpA/Fp-14 is a graded
ring with multiplication

0p(8)0q(b) = 0piq(ab), a € FpA, be FA

Through the paper, we assume that gr A is a commutative Noetherian ring. Therefore
A is a left and right Noetherian ring.

Let A be a filtered ring and M a (left) A-module. A family of additive subgroups
{FpA | p€Z} of M is called a filtration of M, if

(1) FMC FpuM

(2) FoM =0 forp<x0

(3) (FpANFM) C FpygM

(4) M =Upez FpoM.

A pair (M, F) is called a filtered A-module if M has a filtration. Let 7, : FpM —
FpM/[Fp-1M be a natural homomorphism, then grM := @,z FpM/Fp-1M is a graded
grA-module by

0,(a)7,(2) = Tpeq(az), a € FpA,z € FM

Let A be a filtered ring and let (M, F) be a filtered A-module. A filtration F is called
good if grM is a finitely generated grA-module. The module M has a good filtration if
and only if M is finitely generated.

The detailed version of this paper will be submitted for publication elsewhere.



Definition 2. A A-module M is said to have Gorenslein dimension zero, denoted by
G-dimyM = 0, if M= = M and Ext§(M, 1) = DxtA.,,,(M" A) = 0, where M"
Hom,(M, A) for k > 0. Then, G-dim M = 0if and only if Ext5 (M, A) = ExtX., (TrM, A)
0 for k > 0.

For a positive integer k, M is said to have Gorenstein dimension less than or equal Lo
k, denoted by G-dim M < k, if there exists an exact sequence 0 = Gy — --- — Gp —
M — 0 with G-dim G; -Ofor0<z<k G-dim M < k if and only if G-dim Q*M = 0.
Also, if G-dim M < co'then G-dim M = sup{k : Ext’(M, A) # 0}.

2. HOMOLOGICAL PROPERTY ON FILTERED RINGS

In this section, we will talk about Gorenstein dimension and grade of filtered modules.
The following fact and the lemma are important to prove our main results.

Fact. Let A be a filtered ring and M a filtered A-module with a good filtation. Then
grExt} (M, A) is a subfactor of Extg,,(grM, grA) fori > 0.

Lemma 3. Let A be a filtered ring and M a filtered A-module with a good filtation.
Then there exists an epimorphism o : Trgea(grM) — gr(TraM).
Moreover, if G-dimgrM =0, then « is an isomorphism.

Combining the above fact and the lemma, we get the following theorem.

Theorem 4. Let A be a filtered ring M a filtered A-module with a good filtration, and
let k be a non-negative integer. Then G-dimgrM < k implies G-dimM < k.

Corollary 5. If G-dimgrM < o, then G-dim M = G-dimgrM.

On the other hand, we get the relation between grade of modA and grade of mod(grA)

Theorem 6. Let A be a filtered ring such that grA is a commutative Gorenstein ring
and M a filtered A-module with a good filtration. Then grade,M = grade,, ,gtM holds,
where gradeM = inf{i | Ext} (M, A) #0}.

Remark 7. The above theorem is proved under the assumption that grA is Gorenstein,
but we can have the equality under a more general condition about a module. We shall
study it in another paper.

3. INTRODUCTION TO FILTERED GORENSTEIN RINGS

A commutative graded ring R is called “local ring if R has a unique maximal graded
ideal (*maximal ideal). We assume that grA is a commutative Gorenstein *local ring (with
unique “maximal ideal M) satisfying the following condition (P):

(P) : There exists an element of positive degree in grA — p for any graded pnme ldeal
p#EM

Fact. Let (R, M) be a commutative "local Gorenstein ring with the condition (P), and
let A be a finite graded R-module. Then we have the following :

G-dim A + “depthA = “depthR (*depthA := depth(M, A))
gradeA + *dimA = *dimR (*dimA := ht M/Anng(A)).



Proposition 8. Let A be a filtered ring such that grA is a commutative "local Gorenstein
ring with the condition (P), and let M be a filtered A-module with a good filtration. Then
the following holds :

G-dimsM + “depthgrM =n  (n :=*dimgrA)
grade,M + “dimgrM = n.

Corollary 9. Let A be a filtered ring such that grA is a commutative "local Gorenstein
ring with the condition (P). Then, idsA = idj»A < n. Therefore, let idA = d, then
*dimgrM > n — d for all filtered A-module M with a good filtration.

Definition 10. We call a filtered ring A a filtered Gorenstein ring if grA is a commutative
Gorenstein *local ring with the condition (P)

We can naturally get the following .

Definition 11. Let A be a filtered Gorenstein ring. We call filtered A-module M with a
good filtration a CM A-module, if grM is a graded CM gr4-module.

The following proposition and corollary are well known for the case commutative rings.

Proposition 12. Let A be a filtered Gorenstein ring and M a filtered A-module with a
good filtration. Then M is CM if and only if gradeM = G-dimM

Corollary 13. Let A be a filtered Gorenstein ring, and put

Ce(A) = {M € modA | M is CM with G-dimM =k}.

Then, the functor Ext%(—, A) induces a duality between the categories Ci(A) and
€y (AP).

Definition 14. Let A be a filtered Gorenstein ring. We call filtered A-module M with a
good filtration a holonomic, if *dimgrM = n —d, where n = *dimgrA, d = idA.

Finally, we will show the basic properties of holonomic modules on filtered Gorenstein
rings.

Proposition 15. Let A be a filtered Gorenstein ring, and let d = idA. Then a A-module
M is holonomic if and only if gradeM = d. Therefore, any holonomic module is CM

Proposition 16. Let A be a filtered Gorenstein ring, M a holonomic A-modile, and N
a submodule of M. Then N and M/N are holonomic.

Proposition 17. A holonomic module is artinian. Therefore, it is of finite length.
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SYMMETRY IN THE VANISHING OF EXT-GROUPS

IZURU MORI

ABSTRACT. In this note, we will find a class of rings R satisfying the following property:
for every pair of finitely generated right R-modules M and N, Exth(M, N) = 0 for all
i » 0 if and only if Exth(N, M) = 0 for all i 3> 0. In particular, we will show that such
a class of rings includes a group algebra of a finite group and the exterior algebra of odd
degree.

1. MOTIVATION

Throughout, we always assume that k is a field, R is a (right and left) noetherian ring,
mod R is the category of finitely generated right R-modules, and M, N € mod R.

If R is a commutative local ring, then Serre [15] defined the intersection multiplicity of
M,N € mod R by

oo
X(M,N) := " (~1)'length Torf(M, N).
=0
If R is not commutative, then Tor*(AM, N) do not make sense, but Exts(M, N) do, so
Smith and I [14] defined a new intersection multiplicity of M, N € mod R by

00
M - N := (=1)=4mM S "(_1)! length Exti(M, N)

=0
in order to develop an intersection theory over a noncommutative ring. (Note that if R
is not commutative, then Ext'h(M, N) are no longer R-modules, so we defined the above
intersection multiplicity in [14] only over a k-algebra R, replacing length Exty,(M, N) by
dimy Ext;(M, N).) Fortunately, these two definitions of the intersection multiplicity agree
over reasonably nice commutative rings.

Theorem 1. [5, Theorem 4, Theorem 5] If R is ¢ commutative local complete intersection
ring, or a commautative local Gorenstein ring of Kdim R < 5, then

M- N = x(M,N)

Jor all M, N € mod R such that

o length(M ®z N) < oo,
¢ pd(M) < o0, pd(N) < o0, and
¢ Kdim M + Kdim N < Kdim R.

This note is basically a summary of [13] which has been accepted for publication in J. Algebra.



Three conditions on M, N € mod R in the above theorem guarantee that both inter-
section multiplicities x(M, N) and M - N are well-defined. In order to justify our new
intersection theory, the following questions are natural over more general rings.

Question. Let R be an algebra or a commutative ring, and M, N € mod R.

(1) M- N = N - M if both sides are well-defined?
(2) M - N is well-defined if and only if N - M is well-defined?

Over a commntative Gorenstein local ring, the first question above is equivalent to
Serre’s vanishing conjecture by [9]. In this note, we will focus on the second question
above. Note that M - N is well-defined if and only if

e length Extik(M, N) < oo for all 4, and
o Extyp(M,N) =0 for all £ > 0,

so we can split the second question above into the following iwo questions:

Question. Let R be an algebra or a commutative ring, and M, N € mod R.
(1) length Exti(M, N) < oo for all i if and only if length Extip(N, M) < oo for all ¢?
(2) Extz(M,N) =0 for all i > 0if and only if ExtL(N,M) =0 for all i > 0?

The first question above was answered affirmatively over a commutative ring.

Theorem 2. [9, Corollary 3.2] Let R be a commutative local ring. Then, for all M,N €
mod R,

length Ext:(M, N) < oo for all i & length Ext,(N,M) < oo for all i.
For the second question above, we will make the following definition.
Definition 3. We say that a ring R satisfies (ee) if, for all M, N € mod R,
Extiy(M, N) = 0 for all i > 0 & Exth(N, M) =0 for all i > 0.
First, we will make an easy observation.

Example 4. If R is regular, that is, gldimR < oo, then, for all M,N € modR,
Extp(M, N) = 0 for all £ > gldim R, so R satisfies (ee).

Conversely, if R is a commutative local ring satisfying (ee), then Ext%(R, &) = 0 for
all i > 1 where k is the residue field of R, so Exth(k,R) = 0 for all i > 0, hence R is
Gorenstein, that is, id(R) < oo.

It follows that the class of commutative local rings satisfying (ee) is somewhere between
regular rings and Gorenstein rings. In commutative ring theory, there is a nice class of
rings between them, namely complete intersection rings.

Theorem 5. [2] Every commutative locally complele intersection ring satisfies (ee).

It is not very difficult to find an example of non complete intersection ring which
satisfies (ee). Very recently, Jorgensen and Sega [8] found an example of a commutative
Gorenstein ring that does not satisfy (ee), so the class of commutative rings satisfying
(ee) is strictly between complete intersection rings and Gorenstein rings.



2. CONJECTURE OF AUSLANDER
We will define another technical condition on a ring.

Definition 6. We say that a ring R satisfies (ac) if, for each M € mod R, there exists
nar € N such that, for all N € mod R,

Exti(M, N) =0 for all i 3> 0 = Ext(M, N) = 0 for all i > n,y.
There was a conjecture in representation theory of finite dimensional algebras.
Conjecture. (Auslander) Every artinian algebra satisfies (ac).
The above conjecture was important since it implies the famous conjecture below.
Conjecture. (Finitistic dimension conjecture) If R is an artinian algebra, then there

exists ng € N such that, for all M € mod R,
pd(M) < 0o = pd(M) < np.

Although the above conjecture was raised in representation theory of finite dimensional
algebras, it became also interested in commutative ring theory due to the following result.

Theorem 7. |6, Theorem 4.1], [13, Theorem 3.2] Let R be a commulative local Gorenstein
ring. If R satisfies (ac), then R satisfies (ee).

Although the condition (ac) is interesting, it is not easy to find non-trivial examples of
algebras satisfying (ac). In fact, there had been very few examples of algebras satisfying
(ac) until recently.

Theorem 8. [4, Theorem 2.4] Every group algebra of a finite group satisfies (ac).

Theorem 9. [2, Theorem 4.7, Proposition 6.2] Every commutative locally complete in-
tersection ring satisfies (ac).

Due to the above theorem, the following is a natural question.

Question. If R is a noncommutative analogue of a commutative complete intersection
ring, then does R satisfy (ac) and/or (ee)?

On the positive side, we have the following resnlt.

Theorem 10. [13, Corollary 2.3] If R is a reguler ring and {z,,...,2a} is a regulor
central sequence of R, then R/(z,,...,z,) satisfies (ac).

The above theorem produces a new example of an algebra satisfying (ac).

Example 11. Every exterior algebra can be written as
A(K™) = R/(a1,...,22),



where

R=k(z1,...,Za)/(2:Zj + Zj%i)1gi<izn
is a regular ring (an anti-commutative polynomial ring), and {z},...,z2} is a regular
central sequence of R, so A(k™) satisfies (ac).

Jorgensen and Sega (7] found an example of a commutative Frobenius algebra that
does not satisfy (ac), so the Auslander conjecture is false. The following theorem also
shows that the Auslander conjecture is false. In particular, we cannot replace “central”
by “normalizing” in the above theorem.

Theorem 12. [12, Theorem 6.5 Let A = k{zy,...,Zn)/(Z:; + ai;T;Zi,27) be a skew
exterior algebra where 0 # ay; € k for 1 <i < j <n. Then A satisfies (ac) if and only if
ay; are roots of unity for all 1 <i< j<n.

3. STABLY SYMMETRIC ALGEBRAS

In this section, we will define a stably symmetric algebra, which is a generalization of
a symmetric algebra.

Definition 13. Let C be a k-linear Hom-finite category, that is,
dimy; Home(M, N) < o0
for all M, N € C. A Serre functor on C is an autoequivalence X : C — C such that
Home(M, N) = D Home(N, K(M))
for all M, N € C where D(-) is the functor taking the k-vector space dual.

A Serre functor on C is unique if it exists. Moreover, if C is a triangulated category,
then a Serre functor K : C — C is exact, so the following lemma is immediate.

Lemma 14. Let C be a k-linear Hom-finite triangulated category. Then an ezact autoe-
quivalence K : C — C is a Serre functor on C if end only if

‘Exth(M, N) = DExt;*(N,K(M))
foralli and all M,N €C.
The definition of a Serre functor was motivated by the Serre duality.

Example 15. If X is a smooth projective scheme of finite type over k, then the bounded
derived category of coherent Ox-modules D¥(X) has a Serre functor

- ®x wx|d] : D*(X) — D¥(X)
where wy is the canonical sheaf on X and d = dim X, so that
Ext,(F,G) = DExt (G, F ®x wxl|d]) = DExt%*(G, F ®x wx)
for all  and all 7,G € coh X. In particular, the classical Serre duality
H'(X,G) = Ext(Ox,G) = D Ext% (G, wx)
holds for all i and all G € coh X.



We will apply the theory of a Serre functor to the triangulated category defined as
follows. Let mod R be the stable category of mod R by projective modules. In general,
mod R is not a triangulated category, but there is a natural way of making it a triangulated
category. We define the category S(mod R), called the stabilization of mod R, whose
objects are of the form *M where M € mod R and i € Z modulo M = N in S(mod R)
if 'M = QN in mod R for all i 3» 0. It turns out that S(mod R) is a triangulated
category with the translation functor

Q™' : S(med R) — S(mod R).

We refer to [3] for more details on this construction. If R is a regular algebra, then, for
all M € modR, M = 0 for all i > gldim R, so S(mod R) is trivial. On the other
hand, if R is a Frobenius algebra, then mod R is already a triangulated category, so
S(mod R) = mod R.

Definition 16. Let R be an algebra. We say that R is stably symmetric if
K =Q¢:S(mod R) — S(mod R)
is a Serre functor for some d € Z.

In other words, R is stably symmetric if and only if S(mod R) is Calabi-Yau. However,
we will see later that the definition of stably symmetric does not coincide with that of
Calabi-Yau in the graded case. Note that if R is a regular ring, then S(mod R) is trivial,
so R is stably symmetric. The following result is well known.

Lemma 17. If R is a Frobenius algebra, then S{mod R) = mod R has a Serre functor
K=QN:modR —+ modR
where
N(-) = DHomg(—, R) : mod R = mod R
is the Nakayama functor.

If R is a symmetric algebra, then R is Frobenius such that the Nakayama functor is
the identity, so we have the following.

Corollary 18. Every symmetric algebra is stably symmetric.

Example 19. The algebras below are examples of symmetric algebras, so they are stably
symmetric by the above corollary.

e A commutative local Frobenius algebra.

e A semi-simple algebra.

e The trivial extension of an artinian algebra.
e The group algebra of a finite group.

e The exterior algebra A(k") when n is odd.



4. VOGEL COHOMOLOGY

In this section, we will interpret the two conditions (ac) and (ee) in terms of Vogel
cohomologies. For M, N € mod R, the i-th Vogel cohomology is defined by

Extp(M,N) := lim Homg(Q™M, 0"N).

Note that ER;(M, N) are defined for all integers i € Z. The below are two main results
of this note.

Theorem 20. [13, Theorem 3.2] Let R be a Gorenstein ring. Then the following cond-
tions are equivalent:

(1) R satisfies {ac).

(2) For all M,N € mod R,

(+) Exto(M,N) =0 for alli> 0= Exty(M,N) =0 for all i.
Theorem 21. [13, Theorem 4.6] Lef R be a stably symmetric Gorenstein algebra. Then
the following condilions are equivalent:
(1) R satisfies (ee).
(2) For all M,N € mod R,
(x%) Extg(M,N)=0 for alli > 0= Extp(M,N) =0 for alli < 0.

Since the condition (*) above is stronger than the condition (**) above, the following
is immediate.

Corollary 22. [13, Theorem 4.7] Let R be a stably symmetric Gorenstein algebra. If R
satisfies (ac), then R salisfies (ee).

The above corollary produces a few more examples of algebras satisfying (ee).

Example 23. Every group algebra of a finite group is a symmetric algebra satisfying
(ac), so it satisfies (ee).

Example 24. The exterior algebra A(k™) where n is odd is a symmetric algebra satisfying
(ac), so it satisfies (ee).

5. AS-GORENSTEIN KOSZUL ALGEBRAS

In this last section, we will make similar analysis for AS-Gorenstein Koszul algebras.
From now on, we will assume that A4 is a connected graded algebra over , grmod 4 is
the category of finitely generated graded right A-modules, and M, N € grmod A.

If A is a Koszul algebra, then A is a quadratic algebra, that is, A = T(V)/(W) where
T(V) is the tensor algebra on the finite dimensional vector space V over k, W C V @, V
is a subspace, and (W) is the two-sided ideal of T(V') generated by W. It is known that
its quadratic (Koszul) dual A' = T(V*)/(W*1) is also Koszul where

Wi={0eV' @V |Aw)=0forallwe W C VerV}.
Clearly, (A")' & A as graded algebras.



Example 25. An exterior algebra A(k") is a Koszul algebra whose Koszul dual is a
polynomial algebra A(k")! = S(k").

- The class of algebras defined below plays an important role in noncommutative algebraic
geometry.
Definition 26. A connected graded algebra A is called AS-Gorenstein if
e id(A) = d < 0o, and
k ifi=d,

Exti(k, A) =
¢ Extulb A)=100 iisa

The following are versions of the Koszul duality.

Theorem 27. [10, Proposition 4.5}, [11, Theorem 3.3] If A is a noetherian AS-Gorenstein
Koszul algebra such that A' is noetherian, then there is a duality

E : D(grmod A) — D*(grmod A'),
which induces a dualily
' E : S(grmod A) — D¥(Proj A')
as triangulated categories.

We refer to [1] for the definition of Proj 4' when A' is not commutative. We modify
the definition of a stably symmetric algebra in the graded case.

Definition 28. Let A be a connected graded algebra, We say that A is stably symfnetric
in the graded sense if
K =Q74(-)(¢) : S(grmod A) — S(grmod A)
is a Serre functor for some d € Z and { € Z where () : grmod A — grmod A is the functor
shifting degree by ¢.
The theorem below produces many examples of stably symmetric graded algebras.

Theorem 29. [13, Corollary 5.7] Let A be a noetherian AS-Gorenstein Koszul algebra
such that A' is commutative. Then A is stably symmelric in the graded sense if and only
if Proj A' is smooth.

Example 30. If A(k") is an exterior algebra, then A(k") is a noetherian AS-Gorenstein
Koszul algebra such that A(k")' & S(k™) is a commutative polynomial algebra. Since
ProjA(k")' = P™! is a projective space, A(k™) is stably symmetric in the graded sense
whether n is odd or even.

It follows that A(k") satisfies (ee) in the graded sense, that is, the symmetry in the
vanishing of Ext-groups holds for any pair of graded right modules over every exterior
algebra.

We can construct many stably symmetric graded algebras which are not even artinian.

Example 31. If
A =k{z,y, 2)/(zz + 22,9z + 2y, zy + yz + 2%, 2%, 17),



then A is a noetherian AS-Gorenstein Koszul algebra such that
A = k[z,y, 2]/ (zy — 2%)

is commutative. Since Proj A' & P! is smooth, A is stably symmetric in the graded sense.
It is easy to see that A is not artinian.
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ON DERIVED EQUIVALENCES FOR SELFINJECTIVE ALGEBRAS

HIROKI ABE AND MITSUO HOSHINO

ABSTRACT. We show that if A is a representation-finite selfinjective artin algebra then
every P* € Kb(P,) with Homg(nod.4) (P®, P°[i]) = 0 for i 5 0 and add(P°®) = add(vP*)
is a direct summand of a tilting complex, and that if A, B are derived equivalent
representation-finite selfinjective artin algebras then there exists a sequence of selfin-
jective artin algebras A = By, By,--- , By = B such that, for any 0 € i < m, By, is
the endomorphism algebra of a tilting complex for B; of length < 1.

1. INTRODUCTION

Let A be an artin algebra. Rickard [7, Proposition 9.3] showed that for any tilting
complex P* € K®(P4) the number of nonisomorphic indecomposabele direct summands
of P* coincides with the rank of Kg(A), the Grothendieck group of A, which generalizes
earlier results [2, Proposition 3.2] and [6, Theorem 1.19]. He raised a question whether
a complex P* € K®(P,) with Homgqgoa-4)(P*, P*[i]) = 0 for i # 0 is a tilting complex
or not if the number of nonisomorphic indecomposable direct summands of P* coincides
with the rank of Ko(A) (see also [6]). In case P* is a projective resolution of a module
T € mod-A with proj dim T4 < 1, Bongartz [1, Lemma of 2.1] has settled the question
affirmatively. More precisely, he showe d that every T € mod-A with proj dim T4 < 1
and Ext) (T, T) = 0 is a direct summand of a classical tilting module, i.e., a tilting module
of projective dimension < 1. Unfortunetely, this is not true in general (see [7, Section 8]).
Our first aim is to show that if A is a representation-finite selfinjective artin algebra then
every P* € KP(P,4) with Homknoa-4)(P*, P°[i]) = 0 for i # 0 and add(P®) = add(vP*),
where v is the Nakayama functor, is a direct summand of a tilting complex (Theorem 4).

Rickard [8, Theorem 4.2] showed that the Brauer tree algebras over a field with the
same numerical invariants are derived equivalent to each other. Subsequently, Okuyama
pointed out that for any Brauer tree algebras A, B with the same numerical invariants
there exists a sequence of Brauer tree algebras A = By, B;,-- , B = B such that, for
any 0 < i < m, B;,; is the endomorphism algebra of a tilting complex for B, of length
< 1. These facts can be formulated as follows. For any tilting complex P* € K®(P,)
associated with a certain sequence of idempotents in a ring A, there exists a sequence
of rings A = By, By, -+ ,Bn = Endk(mod-4)(P*) such that, for any 0 < i < m, By
is the endomorphism ring of a tilting complex for B; of length < 1 determined by an
idempotent (see [4, Proposition 3.2]). We refer to [3], [5] for other examples of derived
equivalences which are iterations of derived equivalences induced by tilting complexes of
length < 1. Qur second aim is to show that for any derived equivalent representation-
finite selfinjective artin algebras A, B there exists a sequence of selfinjective artin algebras

The detailed version of this paper has been submitted for publication elsewhere.



A = By, By, , By = B such that, for any 0 < i < m, By, is the endomorphism algebra
of a tilting complex for B; of length <1 (Theorem 5).

2. DERIVED EQUIVALENCES FOR SELFINJECTIVE ALGEBRAS

In the following, R is a commutative artinian ring with the Jacobson radical m and A
is an artin R-algebra, i.e., A is a ring endowed with a ring homomorphism R — A whose
image is contained in the center of A and is finitely generated as an R-module.

For any artin R-algebra A, we denote by Mod-A the category of right A-modules and
by mod-A the full subcategory of Mod-A consisting of finitely generated modules. We
denote by P4 the full subeategory of mod-A consisting of projective modules. Also, we
set D = Homg(—, E(R/m)), where E(R/m) is an injective envelope of R/m in Mod-R,
and v = D o Hom4(—, A), which is called the Nakayama functor.

Definition 1. Assume A is selfinjective and let {e,,--- ,e,} be a basic set of orthogonal
local idempotents in A. Then there exists a permutation p of the set I = {1,.--,n},
called the Nakayama permutation, such that v(e;A) ~ e,;)A for all i € 1.

Proposition 2. Assume A is selfinjective and has a cyclic Nakayama permutation. Let
B be a selfinjective artin R-algebra derived equivalent to A. Then B is Morila equivalent
to A.

For a cochain complex X* over an abelian category A, we denote by H*{X*) the n-th
cohomology of X*. For an additive category B, we denote by K(B) (resp., K+(B), K~(B),
K®(B)) the homotopy category of complexes (resp., bounded below complexes, bounded
above complexes, bounded complexes) over B. As usual, we consider objects of B as
complexes over B concentrated in degree zero,

Definition 3. For any nonzero P* € K=(P,4) we set
a(P*) =max{i € Z | H'(P*) # 0},
and for any nonzero P* € K*(P,4) we set
b(P*) = min{i € Z | Homysgoa.)(P*[i], A) # 0}.
Then for any nonzero P* € K®(P,) we set I(P*) = a(P*) — b(P*) and call it the length of
P*. For the sake of convenience, we set {(P*) = 0 for P* € K*(P,) with P* ~ 0.

For an object X in an additive category B, we denote by add(X) the full subcategory
of B whose objects are direct summands of finite direct sums of copies of X and by X
the direct sum of n copies of X.

Theorem 4. Assume A is selfinjective and representation-finite. Let P* € K®(P,) be a
complez with Homynod-4y (P, P*[i]) = 0 for i # 0 and add(P*) = add(vP*). Then there
ezists some Q* € KP(P,4) such that Q* & P* is q tilting complex. In particular, if the
number of nonisomorphic indecomposable direct summands of P* coincides with the rank
of the Grothendieck group Ko(A), then P* is a tilting complex.

Theorem 5. Assume A is selfinjective and representation-finite. Then Jor any selfinjec-
tive artin R-algebra B derived equivalent to A the following hold.



(1) There exists a sequence of selfinjective artin R-algebras A = By, By, --- ,
By, = B such that for any 0 < i < m, By, is the endomorphism algebra of a
tilting complex for B; of length < 1.

(2) The Nakayama permutation of B coincides with that of A.

The proofs of Theorems 4 and 5 follow by induction on the length of P*. But, in
Theorem 5, we set P* to be a tilting complex with Endk(moq.4)(P*) = B. The key of the
induction is the following Lemma 6.

Lemma 6. Assume A is selfinjective and representation-finite. Let P* € K®(P,) be a
complez of length > 1 with Homkod.a)(P*, P*[i]} = 0 for i # 0 and add(P*) = add(vP*).
Then there ezists a tilting complex T* € K®(P,) of length 1 such that
(1) HOH)K(Mod.A)(T., P.lll) =0 fori> l(P‘),
(2) HomK(Mod.A)(P‘[i],T‘) =0fori<0, and
(3) Endk(Mod-4)(T*) is a selfinjective artin R-algebra whose Nakayama permutation
coincides with that of A.
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AZUMAYA'S CONJECTURE AND HARADA RINGS

KAZUTOSHI KOIKE

ABSTRACT. Azumaya conjectured that every exact ring has a self-duality. Recently we
study self-duality of (quasi-)Harada rings and obtain several results abont Azumaya’s
conjecture and related problems in [10].

1. IO R
HRIE 1983 FEIC [3) IKHWT, ROFHEERPRLE.
REDFHB. TXTD exact i self-duality 2D THA 5.

exact D 7 5 A serial REZATVBM, THIZDNTIE, self-duality DHEERIC BV
TIEMICHBEHR

JEFE A (Dischinger-Miiller [5]). 3XT D serial Blid weakly symmetric self-duality %% .

MRHISNTUVA. exact RE serial D 7 7 ADOMICIZ BRI RN EFITh 2D Y S
ADHBDT,

@ B. 9 XTORMFANERIL self-duality 2 3 DH?

ML 3. HEROTFHENEENTHNE, ChLIFENTHBIRTEN, WEFHICE
BIRTH 5. |HI(10) IKBW THHBPCEFIROMERITY, ThLRIEATECL
Z&D, HEOFHEPCHEBICMT 2 XL SR 20 COREHROT BRI,
X [10] (FRCEBESM) IcK B DTH D, AT [10) 2BWET hiz.

LITTOHER TR, IXTORBGITEDL S, TXTOMBHIMMNTH 2 LT 3.
BRI ELCTNVF R GEGRT7IVFVR) CTHB. Bt MISH LT, radical & socle %
NFNI(M) & S(M) THT.

2. SELF-DUALITY

T TIRINC self-duality DEBEBVHLTHEIS. 7ILFVER, S LOmRINEE sUg
LT, FHEF Hom(—, U) BERERA RIMBESEOM L AIBARE S B ADE
EDBD duality ZED S L %, HIIBE sUR X Morita duality #E8$2 &0 5. ¥,
Morita duality 2E% 2 HHIINEE aUs DTEET S L #, BT R T self-duality ZH DL
3. QFR RICBWTEMERIMEE Ry i sell-duality ZEH2 DT, QF Bk self-duality
2 & DOROMYNLHTH 3.

This note is mainly based on Section 5 of {10} and is in & final form.



self-duality ZEH S HEINE U\ DWT, ROEFEDFHTS T ITH LT, S(elU) &
eR/J(eR) D ILDL &, rUR X weakly symmetric self-duality ZE&2 2\ 5.
e, ROEEFEDATTNVICHLUT, lply(l) = ITRDIIDE E, pUsld good self-
duality ZR®B LV 5. TI TRy I3/ annihilator 2F 3. gUz ¥ good self-duality
Z2EHNIE, weakly symmetric self-duality ZEH 3. 4 K LERRXAETAER KBV
T, (R, R)mafliindf Homg (R, K) i3 good self-duality 258 5. ¥/-, FHA & LTGERN
Fe&k 51T, serial T3 weakly symmetric self-duality (SZBHIZIZ good self-duality) % % D.

R% QFﬁ. €1,€2y...,6n % Ro)mﬁéﬁ%ﬁ:@m%t?‘% DL E S(e,(;)R) &
&R/ J(eR) (1< i < n) BT (1,2,...,n) OFioc MFETS. = OEHE R OB
iS5, PLBERIMEZENX QF B% weakly symmetric TH 3 &S5, RDEE
CRIYEB& ¢ d(e;) = o) (1 <i<n) ZWITLE, ¢ QFRROPLEACERE
BRE 5. basic L QF RICDOWV T, weakly symmetric self-duality DIEE L HiLECH
RBBROFEREETHS.

Morita duality 27 2 WRIIIELDF] g,Usg,, R,U2rys - -+ RaUmRnyy TR = R1 = Rmpa
LB LDONHET B L ¥, B RIX almost self-duality 25 DLV 5. almost self-duality
{3 self-duality D—{LTH 3.

ZDEII, TETELMBOD seli-duality BEZ 3013, ThETNROLE (RIRR,
HRERSEAMBEOHCHERAYR, %) \OBROKANELEZIHNETHS. HEICT
5 &, good self-duality HREBERELPT L, (HixB) self-duality HMEbEEZELIC V.

3. sERIAL RL BT ECEIR, ExacTi

HEROEBHIFEAEIMEED uniserial (7B, R NE2ED chain 2%57) THS
EIBTINFBRE serial MEWD. £ serial DDJ serial 7 IVF VB % serial |
Wi, EBEA L LTHEREKSIC, Dischinger & Miiller [5] {39 X T D serial B weakly
symmetric self-duality 2% DZ & 2B Lz, —F Waschbiisch [11]{&, 9 T Amdal
& Ringdal [1] {2 & o T serial RIC ) 5 self-duality DTEHEG FRE N TV B T L 26
L, HASLIEHZEITVS. LHALEDNS, FhOoDIBRIIEISNTHS. Haack [6)
I3 serial RUC L) B self-duality DIFHEO—REAVR NI LN 72 DD, VKD
POBAGERERERLE. FDS5HE0—D2D MERD (basic /x) serial QF Bl weakly
symmetric self-duality (FIlE CRAYME®) 2L D) 1, HABNERTH AT TRL, £
DREREK, MF - K 7 &> TEX 6N, FOHRIREARBICK D Anh [2] PRE
(EH 8 BM) I &> THEX SN serial BRIC Y B self-duality DIEIEDFIGEADOERE L
ERBDT, TTITHRRTHEIS.

R % basic THRE U THEHBHL serial QFRE T 3. e),e,,...,6, ® R DEZFRBTES
TEDREHE T, e1R, e2R,. .., e RN Kupisch series, $hbb, FEDi=1,2,...,niC
MU TeR — J(eps R) WHGHHELE 28D L TS, REL, [jlEnR2ELTS ;OB
INERIREERT. RIEQFTHBIMNS, eR,eR,..., e, RIBAILHBFIORE 2ED.
I ROPLEENE, HE2mIEHLTi-[i-m| THEX5N3. RPQFRE LT weakly
symmetric DIFE, HEFEFEEGENPLACRMERTHS.



BE1 (Haax:k [6]). LEDFEICHWT, RHMQFBEE LT weakly symmetric TV MG
&, RORACTAVEH ST, d(e) = ey (1 < i < n) BT & ONEET 3. FiC
o™iz ROPILE CEMNESH L 23, Lich> T, tHED (basic X) serial QF BRid weakly
symmetric self-duality (FILECEREH) 2% D.

uniserial MBO—RED 1 DL LT, BoMBLEORNFENEZ L &, METHEN
(distributive) TH 3 L\ 3. TOFRERDP LMDV, FERNMEHE, EEOR
SINBED socle HFEIR L BB D 2 HLUEOBEME S LRV, L3 FVPTVRMAIC
SORRFFENB LML h TS,

EOEEHISICNE E IXAMEN RN L E, TIVFVRIIBFRSEH (locally
distributive) T$H 3 1 5. —fI, good sell-duality 2 2 BRIMEEZ weakly sym-
metric self-duality ZE$ 35, RFASENEL TIPSR D, Lk RS REHER
IZHBV T weakly symmetric self-duality i DWTlBNRB C &ICT 5.

il 2. K 24K, Q% quiver o CIT2 L, R= KQ/(a2,ﬂa) ZNALTTROFIRS

FTERET B L&, HEHINERINIEED Loewy series i3 Rp = 1 43, 1 rR = 12 P 2
TH3. Lih->T, REOHBHIHBENEEIE RMBEXSENTHZH 5, R
R REMNETSH 5.

TVF YRR, @A 77V e LTOES (Tiabs, ZERETFImEflmeie L
THHIE L D)

R=Io>[1>12>"'>ln=0

T, BHERETF L/, & (R, R) mRIMEE L LTREN (Thbb, $XTHOEDMMBR
BBl RONICEZREBBRTEIONZ) RLOWEETR L &, exact RTHZ L\
5. BRFENRIL exact RTHZ T IS TNS. LEN-T, HEDOTEDIC
RS RERIBR D self- duallty (& B) #EZ X 2 88)H 3.

4. [FHR & BEFHR

ABUICE > THAETh, BB TV 2FARLENZBOY S 205 5. FH
RIZEFTERRHOTRE DN, TT TR, HENEMRSEKD Y S ANEBAILAT
T3 &3 &7 NFVRE UTKERBR (left Harada ring) ZEHTZ L LT 3.
EREBIIQF-3 TH 5. %7, FEOHEBHIHBNEMBSRE AN (quasi-injective)
THB L&, 7IVF U RIIEHEREBR (left quasi-Harada ring) TH 3 L\ 5. (EMER
BROBRZIEFREARO—LL LT, B - M) LK TETNVFVRIEHLTE
BENED, BRNCETNVF BT L2 EENR LR ) EMEHER R 136 QF-2
(Txbb, HEEDOHUBKSFHENE RINEED socle iZBH) THBH, RFAHERNERIC OV
TIBAD D 31D,

#iA 3. RFIENE QF-2 RIIERFERRTH 3.
L7ehs> TREZERNG QF-2 BICDWT, MFEHEROMEZISHTE I LN TES.



# 4. (1) REFI2ORFENE QF-25IL 953, #i8l3 &b RIEEERHET, 1757
A 0 L3 _ . ~ s
ZHR= [J(A) A/J(A)] 2D, Ie72EL, A=eRe; Tey B RDAM1ICHET 35
TFeLT5. AR J(A)? =073 Rserial BTH 3.
() A% (1) LRICRH serial LTS L %, [J&) ﬁﬂfﬁ;
H3.

KIS FRROBEEZESAEL, IXTORHIFEHRE QF Bh S hzc L%
EAL . BLARARCEFEARS QF YO END T LERL.

EE 5. AROLEFHRRICHLT, QFRSHAFELT, RIZSHOHMELT, 3%
FOBIRDOHRREZES L 5 RFLBAREEDET C LI K-> THRTTE 3.

Lizh-T, EREHEICEY 325 2MOMRE QF BICHETE3. HIcHMB3 &b,
R RNE QF2RICDOVWTR, RSN QF BICRETE30TH3.

# 6. fla(1) OEBEER R, QFES = [j ﬂ o)ﬁ%lﬂ[

] (& A (serial BI) T

J(A) A] DATFTIV

[0 , A)] i X BHARE AL TS 5.

RIS QF ﬁ"? serial RD—{L & B9 2 L TE S, QF B*® serial Bld self-duality
230, FHEICDOWTS self-duality OFHENHE b, MFE - XKikikkoOE"
ZIEAL .

2B 7 (hF - KR [7]). RIXEMTHS.
(A) EEOLFRHERIE self-duality 2% D.
(B) {EEDEFEHEE weakly symmetric self-duality %23 .
(C) 8D (basic ) QF Bli weakly symmetric self-duality (FILE SRIMEH) %
.

C D%, FHL[8ICBVT self-duality & e BWEFHRNFET AT LBRLE
N, COFRTOFEIFATHD, SEOMETLHRBARYERELE. &E, EFR
BRIZHT LD self-duality 2E 7BV EDD, DRI almost self-duality 2#H DT &%,
IO FE [0 AL TV 3.

5. FREFR L MET BRI

BRI, HEOTHCHEBICMT 2 AR WM AHEIC OV THRRS.

TTIEN & S i, HEIPER ZAVNE, RFTTERNE QF-2BICMT 2T EE
E BB B EN QF RICH I 3REICHIETES. FIC, RDENE serial D
weakly symmetric self-duality DRI serial QF BRI HUF 2MEICRE T h3H, EH1
& D serial QF B weakly symmetric self-duality 2% . L7h5> T, serial D weakly
symmetric self-duality (FEEEA) ZXD XS ICHBRTE 3.



F8 8. TR TDRFTEMNA serial i weakly symmetric self-duality 2% 2.

ROTES, EISEETSTOMEBDK 42 BORA A QF B weakly symmetric
self-duality 2 & DZ M HHES.

W 9. BATHRME QF-238 RICDWT, £ socle S(Rp) h' 42 BOIEEIRL Iz Bikihn
BEULHAIZEHWVEE, RIE weakly symmetric self-duality 2% D.

NS OEMIFEDOTHVMEB O HNERELEATVS. —RORBHFEN
1 QF-2 B0 self-dualty l2 DV TR EETH WA, ERTOFEZAVIILIELD,
ROESIKENAX BT LN TE.

EE 10. XIZEHTH 5.

(A) {EEORHIENE QF-2 B self-duality 25 D.

(B) {EE DR EMA QF-2 B3 weakly symmetric self-duality 2% D.

(C) D (basic &) AFTH R QF U weakly symmetric self-duality (FriliECH
ME/) 2L D.

¥, RO SICRATRERWE QF-2 BICE) 5 almost self-duality DIFEEIIRTI L
AN G AR

T8 11. FEORATHENEA QF-2 R almost self-duality 2% D.

EE 10 L FRNICER T OFBEEAVT, REOTHERHEB LRDESILFVHRASL
ns.

BB 12. KIFAHTH B.

(A) EEDRPTIACIR (resp. exact &) i sell-duality 2% D.
(B) EEDRFTIAIMIE (resp. exact IR) & weakly symmetric self-duality 2% .

EES, 9, 11 5, HEOFHEPHE B O#jlc, RA7TENE QF-2RICET S self-
duality DEERRIRETCHZLEBEDIEN, EHI0LVINIRLEUTHS.

RIfE 13. T D (basic &) FATHEMN QF Rid weakly symmetric self-duality (H1LEH
CRAYNE ) 23 Dh?

basic 7% serial QF BHA LB CRIRBERZ LD LK, ®HI TN/ X SIC, serial
QF ROBEEPILEBROENRE > TEOHEWRTUVLHIEIELEX LGNS, Thhb,
basic ZRFTFEK QF RICHE 2P LA EAMBBROEERB U S, T4 LFHE
I serial QF HDBPE L ARAHMEZR T LHAEXIONS. L LENS, RN
QF B FRid SR TH 5. EE, S 5NTROBREPLEIRELTED, B
L U THERZ R ECN QF BWEET 3 ([10, Example 5.10]). L7zht> T, & 13
RN RRIRT B 1-iciE, BRI LBICHIRR 2R C Lk TELR L.
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STABLE EQUIVALENCES INDUCED FROM
GENERALIZED TILTING MODULES III

TAKAYOSHI WAKAMATSU

ABSTRACT. For u generalized tilting module gT4 and a nilpotent symmetric algebra
{aMa, p,¥), under natural assumptions, the stable functors Ker : mod—-A(y, ) —
mod—A(T,¥T) and Coker : od—A(pT,¥T) — mod—-A(¥, ) has been constructed
and it was proved that they induce an equivalence mod—A(), ¢) ~ mod-A(¥7T,¢7T) in
[2}. In this note, it is proved that those functors Ker and Coker preserve the distingnished
triangles and, therefore, the stable categories mod~A(¥, ) and mod-A(v7, pT) are
equivalent as triangnlated categories.

1. INTRODUCTION

Let A and B be finite dimensional algebras over a field K. A bimodule gT}, is called ¢
generalized tilting module if
(1) B = End(T4) and End(gT) = A, and
(2) Extx(T,T) = 0= Exty(T,T) for any n > 0.
A system (aMa, ¥, ) consisting of a bimodule 4 M, and two homomorphisms ¢ : AM ®4
Mas— aMaand ¥: AM®4 My — 4DA, is called a nilpotent symmetric algebra if
(1) the algebra (M, ) is associative and nilpotent,
(2) the homomorphism v satisfies
(i) ¥(p(m) ® my) @ m3) = Y(m) @ p(me ® my)),
(ii) Y (m1 ® mz)(14) = P(m2 ® m1)(14)
for all elements m;, my, mz € M, and
(3) the homomorphism # is non-degenerate in the sense that the condition ¥(m®M) =0
implies 1n = 0 for an element m € M,
where D stands for the canonical duality functor Homy(?, K). Let gT4 is a general-
ized tilting module and (4 M4, ¢, ¥) a nilpotent symmetric algebra. The induced system
(aME, o7, ¥T) is defined as MT = T ®,4 Hom4(T, M) and

T ® N @@ fr) =t @ o(fi(t2) ® f2(?) € MT,

YT (t ® 1 @12 ® fr) = ¥(fi(t2) ® f2(?1))(14) € DB
for elements t;, t2 € T and f,, f2 € Hom4(T, M). Then, the system (p7,%7) is again a
nilpotent symmetric algebra if the homomorphism

97";\1 : BT @4 HomA(T, AJ)B — BHOI‘IIA(T,T®A Mg

defined by Orp(t ® f)(t') =t ® f(t') for &, ¢’ € T and f € Hom4(T, M) is bijective. In
this case, we have two symmetric algebras

Alp, ) =AM DA

The detailed version of this paper will be submitted for publication elsewhere.



and
AT, vT)=BoMT o DB.
The multiplication of the algebra A(p, ¥) is defined as
(a,m,s) - (a',m',s') = (ad’,am’ + ma’ + p(m @ m'),as’ + sa’ + Y(m @ m'))

for a,0’ € A,m,m’ € M and 5,8 € DA. In the same way, the multiplication of
the algebra A(p”, ¥T) is defined by using homomorphisms ¢7 and %7T. For such sym-
metric algebras A(p,¥) and A(pT,¥7), assuming several conditions, it is proved that
the kernel functor Ker : mod—A(p,¥) — mod—A(pT,¢¥”) and the cokernel functor
Coker ; mod—A(pT,¥T) — mod—A(p, V) are defined and that those functors induce
a category equivalence mod—A(yp, %) =~ mod—A(pT, 7).

It is known by D. Happel [1) that the stable module category mod—A of any self-
injective algebra A has a natural structure of triangulated category with Q3! as the
translation functor. In this note, we prove that our functor Ker preserves the distinguished
triangles and, therefore, the stable module categories mod—A(y, ¥) and mod—A(p”, ¥7)
are equivalent as triangulated categories.

2. THE STABLE FUNCTOR Ker

In order to check that the functor Ker : mod—A(p,¥) — mod—A(ypT,y¥T) preserves
distinguished triangles in the next section, we recall here its definition.

Let (4M4, 9, ¥) be a nilpotent symmetric algebra and gT4 a generalized tilting module.
We call an exact sequence

a dominant right T4-resolusion of a module X4 if (1) Ti € add(T,) for all £ > 0 and (2)
the sequence

------ — Homu(T, T1) — Homu(T, Ty) — Homu(T, X) — 0

is exact again. We denote by gen™(T,) the class of all modules X 4 for which there exist
dominant right T4-resolutions. The notion of dominant left DTg-resolutions of B-modules
and the class cog*(DTpg) are defined in the dual manner. To define the stable functors

Ker : mod—A(p, ¥) S mod—A(pT,¢") : Coker

and to prove that those induce an equivalence mod—A(p,%) = mod—A(p7,¥7), we

suppose that the following four conditions

(A) the map 7,5 : T @ 4 Homa(T, M) — Homu(T, T ®4 M) is bijective,

(B) the modules M4 and T ®4 M. are in the class C(Ta),

(C) the class C(T,) is contravariantly finite in the category mod—A, and

(D) the class D(DT}g) is covariantly finite in the category mod—B

are satisfied, where C(T,) = (T4)* N gen*(T4) and D(DTg) = (DT5) N cog*(DTs).
Let X(y,v) be a module over the symmetric algebra A(p, ¥) = A®M ®DA. Since A is

a subalgebra of A, %), X can be seen as a module over A, which we call the underlying

module of X,y and denote by X 4. Then, the multiplication X x A(p.¥) — X defines

two homomorphisms ax : X ®4 M4 — X, and By : X @4 DAy — X, and they satisfy

the four conditions ' ’



(M-1) Bx - (Bx ® DA) =0,
(M-2) ax - (Bx @ M) =0,
(M-3) Bx - (ax @ DA) =0, and
(M-4) ax-(ax®@ M) =ax - (X ®p) +Bx - (X ®).
Conversely, for a module X4 and two homomorphisms ax : X ®4 M4 — X4 and Bx :
X ®4 DA4 — X, satisfying the four conditions above, we can define a Ay, %)-module
structure on X by z - (a,m,s) = za + p(z @ m) + ¢¥(z @ s) for elements z € X and
(a,m,s) € A(p,¥). In this way, we may identify any module Xa(y,y) with the triple
(Xa,0x,8x). Similarly, a homomorphism of A(yp,v)-modules f : Xapu) — Yaew
is & homomorphism of underlying modules X4 — Y, which satisfies the following two
conditions
(H-1) f-ax =ay - (f ® M) and
(H-2) f-Bx = By - (f ® DA).

Let (Xa,ax,B8x), (Ya,ay, By) be A(p,9)-modules and f : Xa¢u) = Ya(pw) & homo-
morphism. By condition (C), there exist exact sequences of the form

0= Vx> Wx Z3X >0 and 0=V =Wy Y0

such that Vx, Vo € C(T4) and Wx, Wy € LC(T4). Since Ext}(Wx, V) = 0, we get two
homomorphisms Wy : Wx — Wy and V; : Vx — Vi over A such that the diagram

0 » Vx y Wy 224 X » 0
vl wl |
0 » W » Wy » Y » 0
hid

is commutative.
It is checked that there is an isomorphism A(pT,¥T)®p5T = T ®4 A(p, ¥) of K-spaces
and this defines a (A(p”,%7), A(p, ¥))-bimodule, which we denote by A(,747)Ba(pw)-

Then, the A(p”, ¥T)-modules Ker(X), Ker(Y) and a A(¢7, ¥7)-homomorphism Ker(f) :
Ker(X) — Ker(Y) are defined by the following commutative diagram

0 —— Ker(X) —— Homp(A(wT,¥T), Wx ®4 DT) —X Homp(y4)(€,X) —— 0
Eer(!)l 1Hom(A(¢r.¢T).W,®DT) 1Hom(e,n
0 —— Ker(Y) —— Homp(A(¢T,¥7), Wy ®4DT) —— Homy(yy)(8,Y) — 0
Y

where the homomorphism Ax is defined as follows: First the underlying module of
Hom () (0, X) is Hom4(T, X) since Homp(y,,)(0, X) = Homp(,vy (T ®4 A(p, %), X) =
Hom (T, X). Second, the underlying module of the A(y”,%7T)-module

Homp(A(p™,¥T), Wx ®4 DT) = Homp(B & T @4 Homu(T, M) ® DB,Wx ®,4 DT)
is isomorphic to a direct sum of three modules
Hompg(DB,Wx ®4 DT) = Homp(T ®4 DT, Wx ®4 DT) = Homp(T, Wx),
Homp(T @ s Hom (T, M), Wx ®4 DT) = D(Hom4(T, DHom4(T, M)) ® g Homs(Wx,T))
= DHoms(Wx, DHom4(T, M)) = Wx ®4 Hom4(T, M)



and
Hompg(B,Wx ®4 DT) = Wx ®4 DT.

Using those modules, the map Ay is defined by giving its three components

Ax,1 = Hom(T, vx) : Hom4 (T, Wx) — Hom4(T, X),

Axz2 = a - (vx ® Homu(T, M)) : Wx @4 Homy(T, M) — Homy(T, X)
and
Ax'3 = ﬁ:y . (‘)’x ® DT) Wx ®, DT — HomA(T,X),

where a : X ®4 Hom4(T, M) — Hom4(T, X) and 8% : X ®4 DT — Homu(T, X) are
the adjoint maps of the structure maps ax and fSyx, respectively.

This defines a K-linear functor Ker : mod—A(p,¥) — mod—A(p”,¥T) and it in-
duces a stable functor Ker : mod—A(yp,¥) — mod—A(eT,¥7). Similarly, by using the
condition (D), the functor Coker : mod—A(p?,¥T) — mod—A(yp,¥) is defined. Fi-
nally, by the condition (B), it is ckecked that those functors define the stable equivalence
mod—A(p, ¥) = mod—A(¢”, y7).

3. EQUIVALENCES OF TRIANGULATED CATEGORIES

A distinguished triangle
X L Xa — €y — 05, (X))
in the stable module category mod—A(p, ¥) is given by the push-out diagram

0 » X] » E(Xl) — Q;('M,)(Xl) — 0

4L

Cf —— Mily(Xt) — 0

0

in the module category mod—A(y, ), where X; — E(X,) is an injection into an injective

module E(X;) and X ER X, an arbitrary homomorphism of A(g, ¥)-modules. We have
to prove that the sequence

Ker(X,) "2 Ker(X,) — Ker(Cr) — Ker(Q31,4,(X1))

is again a distinguished triangle in the category mod—A(y7, ¥7).
We start with the following result:

Lemma 1. Let0 = X LY % Z — 0 be an ezact sequence of A(yp, ¥)-modules. Then
there exist right *C(T,)-approzimations Wx 3 X -0, Wy BY =2 0andWz 3 Z -0



such that all the rows and columns are eract in the diagram

0 0 0
0 vV — Wy =2V —— 0
0 Wx — Wy 22, Wy — 0
X Y Yz
0 X / Y g zZ — 0
0 0 0

Proof. We choose first any right +C(T4)-approximations Wy X X and W}, % Y and
get the commutative diagram

0 y Vy — Wy 25 X — 0
il owml ]
0 » Vi W) — Y — 0
? Ty

In the diagram, W} may not be injective, but since Wx € 1C(T4) C cog’(Ta), we can
take a left add(T4)-approximation 0 — Wy = Tp and, by setting

| %44 w/ t 0
V’=(u.’s)’ W’=( u!) and 7y = (4. 0) t'=(0 idrn)’

we have the commutative diagram

0 0 0
l L
0— Vx —— Wy T X—0

T

0 — Vel —— WhoTh 2= Y — 0
Here we put Wy = Wy, @ T, v = Vy & Tp, Wz = Coker(Wy), Vz = Coker(V;) and
denote the cokernels of the maps Wy and V; by Wy Y Wz — 0 and Vy 5 Vz — 0,

respectively. Then, by the snake lemma, we get an exact sequence

0 — Vg —s Wz 252 — 0

in which Vz € C(T4) and Wz € 1C(T,) hold as easily seen. It is now obvious that those
modules and homomorphisms make the diagram as stated in the lemma. q.e.d
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For a short exact sequence of A{ip, ¥)-modules

0 xI.y 2,290
we choose three LC(T,)-approximations vx : Wy — X, 7w : Wy = Y, 7z : Wz — 2
and two homomorphisms W, : Wy — Wy, W, : Wy — W3 as stated in the lemma. By
making use of those modules and homomorphisms, the sequence

Ker(X) 2 ker(y) 229, ker(2)

is defined in the module category mod—A(p7, ¥T) by the following commutative diagram
with exact rows

0 —— Ker(X}) —— Homg(A(p”,¥T), Wx ®4 DT) —=> Homp(p)(8,X) — 0
4?25 h:os:.,?ﬂﬁj.:q@gv T_oim.b

0 —— Ker(Y) —— Homg({A(pT,¥7T), Wy @4 DT) —— Homu,)(6,Y) — 0
«— Ker{g} _, Hom(A(pT ©7),W,0DT) .— Hom(6,9)

0 —— Ker(Z) —— Hompg(A(pT,97), Wz 4 DT) —=> Homp,)(0,2) — 0

and we get the following lemma.

Lemma 2. When we choose right +C(T4)-approzimations Wy XX, Wy XY and
Wz 2% Z as in the previous lemma, the sequence

0 — Ker(X) =L Ker(y) 229,
is exact in the module category mod—A(p7, ¥7).

LoD, Ker(Z) — 0

Proof. Applying the functor Homy, (8, 7) to the exact sequence
!

0 —s X — Y 1572 —0
we have the following commutative diagram with exact rows.

Hom(O,f) Hown(8.9)

0 —— =CE>A?3A®. vc =c=..>n£.«..1®;\v —t :c§>€.e;¢‘ Nv

«| «| q|

H ..
0 —— Homp(T,X) == Homa(T,Y) (——= Homa(T.2) Ext}(T, X)
Similarly, applying the functor
Homg(B,?)
&b
:Q:wgmﬁq. Gﬂv.d ~ Homg(T @4 Hom4(T, M), ?)
37
Homg(DB,?)
to the exact sequence
W,;eDT W,eDT

0 — Wx ®4 DT —— Wy @, DT Wz2,DT — 0
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we have two exact sequences
0 —— Homp(B,Wx ®, DT) —— Homp(B,Wy @,DT) —— Homg(B,Wz@,DT) —— 0
and
0 —— Homp(N,Wx ®4DT) —— Homp(N,Wy @4 DT) —— Homp(N,Wz @, DT) —— 0,
where N =T ® 4 Hom4(T, M), and the commutative diagram with exact rows
0 —— Homp(DB,Wx ©4 DT) Homp(DB, Wy ®4 rmDT) Homu(DB, Wz ®4 DT)
.| g .|

—_— ’, — . H " Wz) — -
Homa(T, Wx) Hom(T.W;) Hom,(T, Wy) Hom(T.W,) om4(7, Wz)

0

Then, combining those diagrams, we get the following commutative diagram with exact
rows and columns

0 D 0
| | |

0 —— Ker(X) =D, peor(y) =29, Ker(Z)
| | |

0 —— . —_— . —— Homp(A(pT,¥T),Wz @4 DT) —— Ex'uld(Tv Wx)—--
I‘Ax lXY lAz

0 —— . —_— . —_— Homy(, 4y(6, 2) — Ext\ (T, X)—--
| | |
0 0 0

On the other hand, from the exact sequence 0 — Vy — Wy X X — 0 with Vy € C(Ta),

we have an isomorphism Ext!(T',vx) : Ext}(T, Wx) S Ext!(T, X). Therefore, to prove
the surjectivity of the map Ker(g) : Ker(Y) — Ker(Z), it is enough to show that the
diagram

Homg(A(p7, ¥7), Wz @4 DT) —— ExtL (T, W3)
Azl lsxz‘(r.m
HOI'[)A(%w) (6, Z) —_— Exth (T, X)

is commutative. It is easyto see that the commutativity of the above diagram is equivalent
to the following two assertions:

(1) The composition maps
Z @4 Hom4(T, M) % Ext)(T, 2) 5 Ext}(T, X)
and
Z @4 DT 5 Homa(T, 2) & Ext\(T, X)

are the zero maps, where Hom,4(T', Z) 4 Exti,(T,X ) satands for the connecting
homomorphism corresponding to the exact sequence 0 — X Lyszoo
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(2) The diagram

Homp(T @4 DT, Wz ®4 DT) =20 Hom4(T, Wz) —2— Extl(T, Wx)
(Ia ElExl’(T,'yx)
Hom4(T, W3) ——— Homy(T,Z) —— Exty(T,X)
Hom(7',yz) A

is commutative, where the vertical map ¢ in the left hand side is the composition

Hom( T'"a’; ) can
Homa(T,Wz) Homa(T, Homs(DT, W2 @4 DT) Homg(7T ®4 DT, Wz ©4 DT)

™

and the map Hom,(T, W3) 4 Ext4(T, Wx) stands for the connecting homomor-
phism corresponding to the exact sequence 0 — Wy “—’{ Wy Y Wz —0.

Proof of the assertion (1): For any element y € Y and u € Hom4(T, M), the element
A(ay(g9(y) ® 1)) € Exty(T, X) is determined by the diagram

0— X » B - T 0
|| l 1n}_(9(y)®u)
0 » X ; » Y p Z » 0

and it is easily verified that the homomorphism a%(g(y)®u) is lifted to the homomorphism
oy (y ® u) through the surjective map g. Therefore, the upper sequence in the diagram
splits and we have A : a3 = 0. We can prove A - 3 = 0 in the same way.

Proof of the assertion (2): It is checked that the map ¢ coincides with (? @ DT) :
Hom (T, Wz) — Hompg(T ®,4 DT, Wz ®,4DT). Hence, the commutativity of the diagram
follows from the naturality of the connecting homomorphisms. q.e.d

Theorem 3. The stable equivalence functor Ker : mod—A(p, ¥) — mod—A(p7,¥7) is
an equivalence of triengulaled categories.

Proof. Applying Lemma 2 to the diagram

0 » X)) » E(X)) — Q;(‘m(x,) — 0
1 |
0 » Xy » Gy —— Q5L (X)) — 0
we have the commutative diagram with exact rows
0 —— Ker(X)) — Ker(E(Xy)) — ICer(Q;(lw,w)(Xl)) — 0
ceo] | |
0 — Ker(Xz) ——  Ker(Cy) —— Ker(Q),.,(X1)) — 0
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We know that the module Ker(Q) over the algebra A(pT,%7) is projective for any pro-
jective module @ over the algebra A(yp,4) by the construction. Therefore, we see that
the equality

Ker (Qpi.(X1)) = Qi r 4oy (Ker(X1))

holds and the sequence
Ker(Xy) =20, Ker(X;) —— Ker(Cp) —— Ker(Q31, ,,(X1)

is again a distinguished triangle in the stable category mod—A(yp”,¥T). This completes
the proof. q.e.d.
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ON A TENSOR PRODUCT OF SQUARE MATRICES
IN JORDAN CANONICAL FORMS

RYO IWAMATSU

ABSTRACT. Let K be an algebraically closed field of characteristic p > 0. We shall
consider the problem of finding out a Jordan canonieal form of J(a, s) @k J(b, t), where
J(a, 5) means the Jordan block with eigenvalue a € K and size 5.

1. INTRODUCTION

To construct graded local Frobenius algebras over an algebraically closed field K, it is
important to find out a Jordan canonical form (simply, JCF) of tensor product of square
matrices. In fact, it is known that any graded local Frobenius algebra is of the form of
Alp, v) = T(V)/R(p, 7), where V is a finite dimensional K-vector space, ¥ an element
of GL(V), and ¢ : V® — K a K-linear map satisfying several conditions. Further, if we
decompose as (V, v) = @,(V;, %), then the conditions of y can be described in terms of
each ¢, 5 : V;, ® --®V;, — K. Then, we have to find out a Jordan canonical form of
Y, @+ @7, as an element in GL(V;, @ +-- ® V;,). (For detail, refer to T. Wakamatsu
12)). |

Let K be an algebraically closed field of characteristic p 2 0, and J(a, s), J(b, t) Jordan
blocks over K. We shall consider the problem of finding out a JCF of J(a, 3) ® J(b, t),
where @ means ®x. And then we may assume s < £.

In the case of ab # 0, our problem is reduced to the problem of finding the indecompos-
able decomposition of R as a K[6]-module, where R means the polynomial ring Kz, |
with relation (z* = 0 = 3') and = z + y. In Theorem 3, we show that we can find ont
s homogeneous elements wp, wy, ..., w,-; such that

8-1

R= D KOl

i=0

as K[6]-modules, where the degree of w; is i (for each 0 < i € s—1). Applying this result,
we show an algorithm for computing a JCF of J(a, s) ® J(b, t) in Theorem 15. In the
case of ab = 0, we give the complete solution of our problem in Theorem 9.

A. Martsinkovsky and A. Vlassov [1] gave the solution of this problem in the case of
p=0.

2. MAIN RESULT

2.1. The indecomposable decomposition that gives a JCF of J(a, s)® J(b, t). To
find out a JCF of J(a, s) @ J(b, t), we have to find its eigenvalues, the number of Jordan

The detailed version of this paper will be submitted for publication elsewhere.
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blocks, and the sizes of Jordan blocks. It is clear the eigenvalue of J(a, s)® J(, t) is only
ab.
We consider the indecomposable decomposition of

K|X) K[Y)
(X —a)) ~ ((Y -b))

as a K[X ® Y]-module. By replacing variables and so on, we have the following:

(1) ab #0:

K[X] K[Y] K[X, Y]

(((X - a)’) ® (e b)'))x[xe}'] ((X Yt ))K[X+Y|
(2) 2a=0,b%#0:
K(X] . KIY] - (KX, Y]

( (X*) ® (e b)'))x[xeyl B ((X", Y'))K(x] '

(3) a0, b=0:
K[X] _ K] ~ (KX, Y]

(((X —a)?) ~ (YY) )K[X@Y] ((X"’ Y‘))K[Y] .

4)a=0=0b

K[X] _ K[V - (KIX.Y]
((X‘) D) Y?) )K[xeyl - ((X‘, Y‘))x{xn'
Weput z= X,y =Y € K[X, Y]/(X* Y?*), and R = K|z, y].

Lemma 1. Our problem is reduced to the problem of finding the indecomposable decom-
position of R as a K|[f)-module, where 8 means z + y(ifab # 0), z{a = 0, b # 0),
y(@e#0,b=0), endzy(a=0=10).

We discuss on the assumption ab # 0, i.e. 8 = z + y, unless otherwise stated.

It is clear R is a finite dimensional graded K-algebra. In fact, we denote by R; the subset
of R consisting of all homogeneous elements with degree i, then we have R = @"‘"' R;.
And we immediately know dimy R; are as follows (1,2, ..., 5,8, ..., 8, s— ., 1) for
0igs+t-2

The subalgebra K[6] of R is uniserial, and hence is a quasx-Frobemus We denote by n
the nilpotency of 8 (i.e. 8" # 0, but g+ = 0), and then we can choose {1, 8, --- , ") as
a K-basis of K[0)]. By easy calculation, we have the following inequality on n:

Lemma 2. Wehavet—1<n<s+t—2. Inparticular, n=s+1t—-2ifp=0.

Since the algebra K([6] is uniserial, any indecomposable summand M of R can be
of written as K|[f]w for some element w in R. Hence we can write the indecomposable
decomposition of Rje) such as:

(2.1) R= @ K[flw; (wi € R).

=1
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We shall call each element w; a generator (for an indecomposable summand of Rqg)),
and the set {w,, ..., w,}, which consists of the generators in (2.1), a generating set (for
the mdecomposable decomposition of Rgjg)). Although a generating set is not unique, we
can choose some generating set that helps us to consider our problem:

Theorem 3. There ezists a generating set {wy, w, ..., ws—1} whose generator w; is an
t-th degree homogeneous element. Hence,
-1
R=@ K0l (wi€ Ry).
1=0

We prepare some lemmas and notation for the proof of Theorem 3.

For a uniserial K[f]-submodule M of R generated by some homogeneous elements
of R, we denote by o(M) the socle degree of M as a K|[6]-module; i.e. o(M) = d if
sockig(M) € Ry. For example, o(K[6]) = n, and o(K[f]z) = n + 1 if 8z # 0. The
following lemmas are easily checked:

Lemma 4. Let a, B be homogeneous elements of R. If o(K[fla) # o(K[0]8), then
K[8lan K[0)3 = {0} kolds. Hence K[f]a + K[0)8 = K[fla ® K|[0]3.
Lemma 5. Let «k be a homogeneous element of R. If d := o(K[0]) < s+t — 2, then
Kzttt=2-d oL holds. Hence,

s4t=2—d s4t=2-d

Y Kiflkz'= €D K[fjxa’.
i=0 =0

The multiplication map x67 : R; — Riy; is a K-linear map. We denote by K(i, i + j)
the kernel of this map.
Lemma 6. For each 0 € i < s — 1, we have the following:
(1) The map x6''~%: R; — R,., is injective.
(2) The map x8*t*-1-% : R; — R,yt-1- is not injective.
Hence, for an elemant ; in K(i, s+t —1—1) C R;, we have
Gt =0, but 6717k #£0.
We now prove Theorem 3:

The proof of Theorem 3. We put ng = n and my = s+t — 2 — ng. If mg > 0, then we
have

i K[6)z* = é K[fz®" C R
io=0 ia=0

by Lemma 5. If this direct sum coincides with R, then we finish the proof. Suppose
not. By Lemma 6, we can take an element x(;; € K{(mg + 1, no) and then we have
t—1< o(K[0]xu)) < ng—1. We put n; = o(K{[flxqy) and m;, = (no— )—n. Ifm; >0,
then we have

(@ K[8)z*) + (Z K[8]kqyz™) = QB K[f]z* & QB K[f]xaye € R

91=0 i0=0 i1=0
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from Lemma 5. Thus, we can construct the direct sum of K'[6]-submodules of R. However,
since R is finite dimensional, this construction will be over in finite steps. And it is clear
that this construction finishes just when s-th direct summand is constructed. By Krull-
Schmidt theorem, this decomposition is the indecomposable decomposition of Rxjg. (And
this argument does work when some m; is zero.) a

Remark 7. (1) This proof gives concretely the indecomposable summands of Rjg such
as:

K[6), K[0)z, ..., K[f]z™,
K[O]K(]), K[ﬂ]n(l)z, . K[G]K(l)z"“,

......

K[G]K(,--l), »K[O]rc(,._l):c, . K[ﬂ]n(,_l)z”‘"‘,

where n(,-') means some elnement in K(m;_y + 1, ;) and m; = (my_y — 1) —ny, n; =
o(K[f]kg)). Thus, these k), my, n; are determined by the following order:

N=Ng =My — Ky =N =M = K@) = - Ny = My =K — - .

(Then we define n_y =s+t~1,m_, =0, and k(o) = 1p for convenience).

(2) We have to discuss on whether the value of n; = o(K[0]x;)) varies by the choice
of an element () € K(m;-) + 1, n;_;). However, we immediately find that the sequence
(no, My, ..., myy) is unique by the uniqueness of the indecomposable decomposition of
Rig). Therefore we can choose «; free.

(3) Theorem 3 declares the number of Jordan blocks of J(a, s) ® J(b, t) is s if ab # 0.

Definition 8. Thus, the particular indecomposable summands

(K10] =) K80y, K[O]mqr), ..., K[B]se-1)
of Rgjg characterize the indecomposable decomposition of Ryjo. So, we shall call each
K[8]x) a leading module (of Ryp)). And we call the number of the indecomposable

summands of Rgjs whose lengths are equal to that of K [6)%¢iy the leading degree of
K[OJK.(,-). .

By this result, if there are r leading modules K[0)x(), K[f]xq), ..., K [81%(r-1y, then
we have .
J(a, s) ® J(b, t) = €D J(ab, €)%,
i=0

where £; and d; mean the length and leading degree of K (6]« respectively.
In the case of ab = 0, the algebra K[f] is also uniserial. Hence we can apply a similar
argument of the proof of Theorem 3.

Theorem 9. If ab = 0. Then, for any characteristic p, we have the Jollowing:
(1) a=0,b#0: By taking {1, y, ..., ¥*"'} as a generating set;
J(0, s) @ J(b, t) = J(0, 5)®.
(2) @#0,b=0: By taking {1, z, ..., z°°'};
J(a, )@ J(0, t) = J(0, £)°".
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(8)a=0=0b: By taking {1,z, ...,z y, ¢, ..., ¥"'};

s—1
J(0, ) ® J(0, t) = J(0, 5)2- @ B J(0, s - i)
i=1
2.2. An algorithm for computing a JCF of J(a, s) ® J(b, t). Next, we show there
exists a good way to compute a JCF of J(a, s) ® J(b, ). To compute it, we find the
lengths and the leading degrees of the leading modules.
For each 0 < i € s — 1, we define a function such as

Dy(i) = 0 (if the map x0***=2-2: R, — R,,,_2_; is bijective)
PRI 1 1 (if the map x8%**-2-2% ;: R, — R,,¢2-; is not bijective)

And we put
Ay = (Dy(0), Dy(1), ..., Dys = 1)).

Remark 10. By Lemma 6 (1), we have known the map x8'~* : R,_; — R,., is always
injective (hence, bijective) independently of the value of characteristic p. So D,(s—1) =0
holds.

By Theorem 3, we may assume that R is of the form of @f;(; K|B)w;, i.e. any base of
R is of the form of 67w;. This procedures the following lemmas:

Lemma 11. If an indecomposable summand K|6|w; is a leading module and D,(i) = 0.
Then we have the following: A
(1) o(K[B)ws) = s+t — 2 —i. Hence the length and the leading degree of K|[fw; are
s+t — 1 — 2i and one respectively.
(2) The next indecomposable summand K[6)w;4, is a leading module if i + 1 < s.

Lemma 12. If en indecomposable summand K |[0|w; is e leading module, Dy(i) = D,(i +
)=---=Dy(i+ f—1)=1, and Dy(i+ f) =0(f > 0). Then we have the following:
(1) o(K[0)wi) = s+t —2—i— f. Hence the length and the leading degree of K|f)w;
eres+t—1—2i— [ end f + 1 respectively.
(2) The indecomposable summand K [0]w;y 41 is a leading module ifi + f +1 < s.
Since the indecomposable summand K|[f]uy is a leading module, we can apply Lemma

11 and 12 to the components of an arbitrary 4, inductively. Thus, via the sequence 4,,
we can compute the lengths and the leading degrees of the leading modules concretely:

Theorem 13. We can compute a JCF of J(a, s) ® J(b, t) by using the sequence A,.

We can compute the determinant D(i) of the linear map x8+-2-% : R, — R\, 2_;
by using elementary techniques of linear algebra:

Theorem 14. For each0 < i € s — 1, we have
i (s+l—2—2i+k)

D(z) = H t—1-4

t=1-i
By Theorem 13 and 14, we get an algorithm for compnting a JCF of J(a, s) ® J(b, t):
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Theorem 15. We can compute a JCF of J(a, 3) @ J(b, t) by taking the following steps:
Step 1: Computing D(i) for each0 <i<s— 1.
Step 2: Computing the sequence Ap. Dp(i) = 0 iff D(i) # 0(mod p).
Step 8: Applying Theorem 13.
Example 16. Let us compute a JCF of J(a, 4) ® J(b, 5) (ab # 0). The determinants
D(i) are

D(0)=Q=5-7, D(l)=m=2-52, D(2)=m=2-5, D(3) = 1.

@ AN @) E)
So the sequence 4, is
A,=(0,0,0,0) (p#2,5,7),
A =(0,1,1,0),
As=(1,1,1,0),
A7;=(1,0,0,0).
Therefore
J(ab, 8) ® J(ad, 6)9;'; J(ab, 4)® J(ab,2) (p#2,5,7)
J(a,4)®J(b, 5) = jgz: 23&‘2 Jiab 4) g Z §§
J(ab, T)®2 & J(ab, 4) @ J(ab, 2) r=7)

I[f p=0orp>s+t—2 then the determinants D() are clearly all non-zero. Hence:

Corollary 17. If p=0orp> s+t -2, then

s-1
J(e, s)@J(b, t) =D J(ab, s+t — 1 - 2i).
=0
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FINITE GROUPS HAVING EXACTLY ONE NON-LINEAR
IRREDUCIBLE CHARACTER

KAORU MOTOSE

Recently, A.S. Muktibodh [12, 11, 10] considered a 2-Con-Cos group G defined as
follows: the commutator subgroup G’ of a finite group G consist of two conjugate classes
C, and C, = {1}, and cosets G’z are conjugate classes C; of z € G\ G'. In this paper,
we replace "2-Con-Cos” by "concos”.

These groups are just groups having exactly one non-linear irreducible character be-
cause the number of irreducible characters is equal to the number of conjugate classes,
G’ # {1} contains at least two conjugate classes and a coset G’z of G' contains at least
one conjugate class C,.

In §1, we shall prove these groups are isomorphic to affine groups over finite fields
or central products of some dihedral groups D of order 8 and quaternion groups @, and
conversely.

After my talk, Professor Y. Ninomiya informed me that this characterization was
known in some papers (14, 13, 2]. Further the paper [2] stated that more general informa-
tion was considered in [8]. However I have arranged this characterization for some reasons
that our proof is slight different from others, rather self contained and necessary for §2
and §3.

In §2, we determine C-irreducible R-representations of concos groups.

In §3, we shall show concos groups appear in the proof of Hurwitz theorem concerning
quadratic forms. We also determine C-irreducible R-representations of slight different
groups in the proof of this theorem.

All representations and characters are considered over C.

1. Characterization of concos groups

First we show elementary properties of concos groups from the definition.
Lemma 1. Let G be concos. Then we have

(1) If N is a normal subgroup of G then N = {1} or N D G'.

(2) G’ is an elementary abelian p-group.

(3) Ezactly one non-linear irreducible character p of G has the nezt values and we can
see from these values that 7 is faithful.

IG/CG|

7(1)* = |G/C|(IG'| - 1), n(z)= -Sa

Jorz e G'\ {1},
andn(z) =0 forz e G\G'.

The detailed version of this paper will be submitted for publication elsewhere.
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Proof. (1) If N contains b # 1, then N contains Cy. In case b€ G', N D G = C, and so
N>G.Incasebg G', ND>DCy=G'bandso N=Nb"! DG

(2) G’ is a p-group becanse G' = {1} UC, and G’ contains an element of prime order
p. Thus G” is a normal subgroup of G properly contained in a p-group G’ and so G" = 1
from (1).
(3() {et pc and pgc are regular characters of G and G/G’, respectively. Then we
have .

pe = pejar + (1)

Using this we obtain our assertion.

The next theorem follows from Lemma 1 (1) and (2).

Theorem 2 ([14, 13, 2, 12]). Let G be concos. Then we have the next groups and
conversely.

1. G is the central product QD! or D" where D is the dihedral group of order 8
and @ is the quaternion group of order 8. 7
2. G is the next permutation group over a finite field F, of order q > 2.

G={z—az+f|aeclF,and f€F,}.
2. Real representations of concos groups

Let ¥ be a C-irreducible representation of a finite group G and let x be a character
afforded by ¥. We set

1
v(x) = 157 2_x(z®)-
| | xeC
If x is linear, then v(x) = (X, X), where (x, X) is the inner product of x and ¥ is the
complex conjugate of x. Thus it is easy to see that v(x) = 1,0 and also that (1) v(x) =1
if and only if x = X and (2) v(x) = 0 if and only if x # X.
Frobenius and Schur proved in [4] (see [3]) that v(x) =1,0,-1 and
(1) ¥(x) = 1if and only if ¥ is equivalent to an R-representation.
(2) v(x) =0 if and only if x # X
(3) v(x) = —1if and only if x = § but ¥ is not equivalent to an R-representation.

Let d be a fixed element of a finite group G and let 34 be the number of elements
x € G such that z? = d. There is the formula [3, p. 22 (3.6) ] about s as follows:

sa=Y_ v(A)M\d)

A€A
where A is the set of irreducible characters of G.

The next lemma is useful on C-irreducible R-representations of concos groups.

Lemma 3. Let G be a concos group, G’ = {1}UC, and let 7 be exactly one non-linear
irreducible character. Then we have



In the next proposition we can see C-irreducible R-representations of concos 2-groups.
We also can see the numbers of elements of orders 4, 2 in these groups. Our counting
method is different from [5, pp. 205-207]. Therefore this gives a different proof about
that D" and Q D™! are not isomorphic (see Remark. (2) ).

Proposition 4. Let G be an extra special 2-group D" or QD! of order 2", where
n = 2r + 1. Then elements in G are of order 1 or 2 or 4. Let R be the C-irreducible
representation of degree 2" and 7 is a character afforded by R. Let s be the number of
elements of order 2 or 1 and let ¢ be the number of elements of order 4. Then we have
(1) In case G = D", R is equivalent to an R-representation, s = 2"~ + 2" and
t=2r"1 -2,
(2) In case G = QD™!, R is not equivalent to an R-representation but =14, s=
n=l _ 9" and t = 27~ 4 2.
Remark,
(1) The groups D and @ have the same character table. Hence group algebras CD
and CQ over C are isomorphic. But two group algebras over R are not isomorphic.
In fact,
RD = R® g (R), and RQ ¥ RY g H

where H is the quaternion algebra over R.

(2) D is not isomorphic to @ D™! because C-irreducible R-representations of degree
2" are different (see [5, pp. 205-206]).

Here we state about R-representations of affine groups over finite fields.

Proposition 5. Let G be a permutation group on finite field ¥,, where g is a power
of a prime p, defined by

G={x—~a:c+b|aeIF;, beT.}.

Let s be the number of elements z with 2 = 1 and let { be the number of elements z € G
such that z2 = u; whereu; :z = 2+ 1. Thenincase p# 2, s=|G'|+ 1 and { = 1 and
in case p = 2, s = |G'| and t = 0. The C-irreducible representation of degree |G’| — 1 is
equivalent to an R-representation.

3. Theorem of Hurwitz

The converse of the next theorem is well known. In case n = 1, it is trivial. In case
n = 2,4, we have
L (2} +23) (v} + 13) = (Z1n1 + Za2)? + (T192 — Zatn)2.
2. (zi+zi+ai+ )i+ i+ +u)) =
(2191 — Tay2 — Tays — Zava)® + (T192 + Totn + Tays — Tays)® +
(2193 = Taya + T3y + Zay2)? + (T19a + Tays — Tay2 + Ty )%
In case n = 8, it is also known. The next theorem is very interested to suggest that
algebras over the real number field can be constructed.

Theorem 6 (Hurwitz (7,1,6]). In polynomial ring C[z), z3....,Zn, ¥1,¥2,- - - Yn)s
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if the next equation is satisfied for z, = Y _,, cy,‘)a:ky,, thenn =1,2,4,8
(@l +ai+ )+ + ) = A G
A key point in the above theorem is to prove n = 1,2,4, 8 if the next group H, has a
faithful representation of degree n, namely, there is such a group H, in GL(n,C).
H,={(-I)*B}B3*-.-B;"} | s, = 0,1}

where B = —1, BBy = —BB, for k # L.
However we can show that 2-groups H,, are realized in GL(m,C) for some m. Therefore
we shall state about C-irreducible R-representations of 2-groups H,,.

Lemma 7. The group H, has two irreducible characters 7, and 7. for an even integer
n. Let 5 be the number of elements £ € H, with 2 = 1 and let { be the number of
elements = € H, of order 4. Then we obtain.

(1) s+t=2"

(2) v(m) = v(m) = 27F (s~ t).

(3)
1 fors> 2"},
vim)=4¢ -1 fors< 2~
0 fors=2""},

(4) s=2"1423p(n) and t = 2" = 2% ().
n—1 n—1
s n—1 t n—1
03= 5 (V)= 5 (7))
2 k=0,3 mod 4 k 2 k=1,2 mod 4 k
Proof. (1) is clear since every element of H,, is of order 1, 2, 4.
=2

(2) follows from 1,(1) = 1(1) = 2%, my(=1) = m(~1) = —2°F and the next
equations
n(1)

v(m) = IH"I(‘")IU)'*“’II( n)= A TH, 8 =vm).

(3) and (4) follow easily. from (1) and (2).
(5) follows from the equations

py_J I fork=0,3mod4,
(BuBe; - Bu) _{—1 for k= 1,2 mod 4.

We proved our assertion

Using (3) in the above lemma, we can find value of v(7,). For this purpose, we consider
the next equation

1+)m = {\/§(cos§ +isin g)}"‘ = 27 (cos %E + isin %)

where i = /—1. Comparing imaginary parts between left and right sides in the above
equation, we have the next formula

[EJ( l)r(z +1) =2%“an7r
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where [ | is the Gauss symbol. In particular, we have for m = 4k + 2.

251
(™) = (—1)%Fek ,
; (-1) (2r+ 1) =(—1)"%27 (see [9,p.11]). (9

The next proposition state about C-irreducible R-representations of groups H,.

Proposition 8. Let 1 be a non-linear irreducible character of H,. Then in case n
is odd, H, is concos and so we already know about C-irreducible R-representations of
groups H,,. In case n is even, we have

0 forn=2mod4,
vin)=4¢ -1 forn=4modS8,
1 forn=0mod8.

Proof. In case n = 2 mod 4, noting that £ = 0,3 mod 4 is equivalent ton —1 -k =
1,2mod 4 for 0 < k < n— 1, we obtain easily

- F -8 (i)

k=0,3 mod 4 k=0,3 mod 4
-1
nz (ﬂ. -1 t
= e -— E.
=1,2 mod 4

In the another cases, using the above formula (), we have the our assertions.

] = n-1 =2 n_2) n—2
“ - ("0}
2 kEO.szmodd ( k ) kEO,:!Zmodd { (k -1 k

n=3

Z _ n—2 n—-2 =
on-2 _ Z(_l)t(" 2) _ { 2724+ 277  for n =0 mod 8,

e 20+ 1 272 - 2°7  forn=4mod8.
where 0 <k <n-1and ("?) = (}73) =0.
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INTEGRALITY OF EIGENVALUES OF
CARTAN MATRICES IN FINITE GROUPS

TOMOYUKI WADA

ABSTRACT. Let Cp be the Cartan matrix of a p-block B of a finite gronp G. We show
that there is a nnimodular eigenvector matrix Up of Cp over a discrete valuation ring
R, if ull eigenvnlues of Cp are integers when B is a cyclic block, a tame block, a p-block
of a p-solvable group, the principal 2-block with abelian defect group or the principal
3-block with elementary sabelian defect group of order 9.

Keywords: Cartan matrix; Eigenvalue; Eigenvector matrix; Block; Finite gronp

1. Introduction

Let G be a finite group, let F' be an algebraically closed field of characteristic p > 0,
and let B be a block of the group algebra F'G with defect group D. Let Cg be the Cartan
matrix of B and p(B) the Frobenius-Perron eigenvalue (i.e. the largest eigenvalue) of Cp.
Let (K, R, F) be a p-modular system, where R is a complete discrete valuation ring of
rank one with R/(w) = F for a unique maximal ideal () and K is the quotient field of
R with characteristic 0. Let us denote the number {(B) of irreducible Brauer characters
in B simply by {.

We studied on integrality of eigenvalues of the Cartan matrix of a finite group in [3],
[9],(10]. Recently C.C.Xi and D.Xiang showed that integrality of all eigenvalues of the
Cartan matrix of a cellular algebra is closely related to its semisimplicity in Theorem 1.1 of
[11]. Let Rg and Ep be the set of all eigenvalues (i.e. the spectrum) and of Z-elementary
divisors of Cp, respectively.

First we show some known properties of the Cartan matrix Cp of a finite group (e.g.
see [6]).

(C1) Cg = (Dg)TDg, where Dp is the decomposition matriz of B.
(C2) Cp is nonnegative integral, indecomposable and symmetric.
(C3) Cp is positive definite (this comes from (1)).

(C4) detCpg =p™ 2 |DI.

Secondly we show some known properties of Eg = {e;,..., e} (e.g. see [6]).

(E1) Every ¢; is a power of p, there is a unique largest ¢; = {D| € Ep and others
e; < |D|forall i > 1.

The detailed version of this paper will be submitted for publication clsewhere.
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(E2) Every e; = |Cg(z:)|, for some p-regular element z; € G.
!

(E3) He.' = det Cp.
i=1

(E4) If two blocks B and B’ are derived equivalent, then there is a perfect isometry
between the set of Z-linear combination of ordinary irreducible characters of B and that
of B'. Therefore Cg = VTCgV for some V € GL(I,Z) and so we have Eg = Ep: (see [2,
4.2 Proposition)).

Comparing with elementary divisors, properties of eigenvalues are not well known
and they seem complicated and sensitive. We show some known properties of Rp =

{plv"-vpl}'

(R1) pis need not be integers. But there is a unique largest eigenvalue p; = p(B) € Rp
such that p; < p(B) for all £ > 1. It can occur both cases p(B) < |D| and p(B) > |D|
(see Examples 1 and 2 below).

(R1) For any p € Rp there is an algebraic integer A such that pA = |D|. In particular,
if p € Rp is a rational integer, then p = p* | |D|.

1

(R3) Hp; = detCp.

i=1
(R4) For two blocks B and B’, Rg and Rp are not necessarily equal even if B and
B’ are derived equivalent (see Examples 1 and 2 below. It is known that the principal
2-blocks of Sy and Ss are derived equivalent). But of course, if B and B’ are Morita
equivalent, then Cg = Cpr and so Rg = Rp.

We show some examples of the Cartan matrices C for symmetric groups of small degree.

4 2

ExamplelS.,,p=2.C=(2 3

). There is only one block B; and {(B,) = 2. Then

Rp, ={p = 'mzﬂ < |D| =8, pa}, Eg, = {8,1}.

8 4
Example 2 S5, p=2,C = ( 4 3 ) There are two blocks B,, B3, and
2
(B)) = 2,l(By) = 1. Then Rp, = {py = 158 > |D| = 8,p,}, Rp, = {2}, and
Ep, = {Sa l}a EBQ = {2}
21
Example 3 S, p=3,C=| ! 2 . There are three blocks By, By, Bs and

1
l(Bl) = 2, I(Bz) = 1(33) = 1. Then RBI = {3,1},123,2 = {]},]ZB.1 = {]} and EB; =
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{3,1},Ep, = {1}, Ep, = {1}. In this case, all eigenvalues are rational integers (see
Conjecture below).

2. Questions and Conjecture

It is fundamental to ask the following about integrality of eigenvalues of the Cartan
matrix of a finite group G.

- When are eigenvalues of Cp of G rational integers?
- What relations are there between eigenvalues and elementary divisors?
- What do eigenvalues and eigenvectors represent?

We had the following very strong conjecture studying many examples and some typical
blocks.

Conjecture. Let Cg be the Cartan matrix of a block B of FG with defect group D for
a finite group G. Let p(B) be the Frobenius-Perron eigenvalue. Then the following are
equivalent.

() p(B) € 2.

(b) p(B) = |D|.

(C) RB = EB.

(d) All eigenvalues are rational integers.

Considering the condition (d) ({d) itself does not have so deep meanings), we had
the notion Up an eigenvector matriz of Cp whose rows consist of linearly independent !
eigenvectors of Cpg over the field of real numbers R. We have the following question for
Us.

Question. When all eigenvalues are rational integers, can we take a unimodular eigen-
vector matrix Ug over a complete discrete valuation ring R?

If Question is answered affirmatively, then for example, we find that the matrix ( :1; ; )

cannot be the Cartan matrix of a finite group, because this matrix never has a unimod-
ular eigenvector matrix when p = 2. In fact, this is the Cartan matrix of a Brauer tree
algebra whose tree consists of three vertices such that both end points are exceptional
with multiplicity 2. So Question is not true for the Cartan matrix of a general algebra.

3. Some results

We show some evidences for Conjecture and Question. The following proposition is the
most fundamental result and a starting point for this research.
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Proposition 1 ([3, Proposition 2]). Assume that a defect gronp D of B is a normal
subgronp of G. Then Rg = Ep. In fact, the following condition (*) holds.

(*) Cpdp = & diag{|Cp(z1)l,.-.,|Colzi)(}

where ®5 = (p;(z;)) is the Brauer character table of B, and {z,...,7:} is a complete
set of representatives of p-regular classes associated with B.

Remark of Proof. We consider a block decomposition of the formula in [1, p.419, 1 7).
At this time, we associate a complete set of p-regular classes to B, furthemore we should
arrange the first [, classes to B, ..., the last I, classes to B,, where B = By + -+ + B,
is a block decomposition of B which is the homomorphic image of B by the canonical
algebra epimorphism 7 : FG — FG, for a normal p-subgroup @ and G := G/Q. In our
case, Q = D. This means each B; is of defect 0 and soly =--- =1, =1. Thus Cg =1, is
the identity matrix. So we have the formula (*) above. As a consequence we may admit
any choice of block association of p-regular classes with B.

It is known that det®p # 0 (mod(w)) and then ®g is a unimodular matrix over R
(see [6, Theorem V 11.6]). (+) implies each |Cp(x;)| is an eigenvalue of Cp and ¢! =
(e1(z:), ..., @(z:))7 is its eigenvector, when D <1 G. Furthermore, we can take ®p as a
unimodular eigenvector matrix Ug of Cg.

Then we have the following lemma as a direct corollary of Proposition.

Lemma. Assume that a block B of FG is Morita equivalent to the Braner correspondent
b of B which is a block of FNg(D). Then we can take ®, as a unimodular eigenvector
matrix Ug of Cp.

In the following we state some theorems about integrality of p(B) most of which satisfy
the condition mentioned in above Lemma.

Theorem 1 ([3],[10]). If D is cyclic (i.e. B is a finite type), then the following are
equivalent,
(1) p(B) €Z
(2) p(B) = |D|
(3) Rp=Ep
(4) B ~ b (Morita equivalent), where b is the Brauer correspondent block in FNg(D)
(5) The Braner tree of B is the star with the exceptional vertex at the center if it exists.
In this case, we can take &, as a unimodular eigenvector matrix Ug of Cj.

Theorem 2 ([3],[10]). If B is a tame block (not finite type, i.e. p = 2 and D = a dihedral,
a generalized quaternion or a semidihedral 2-group), then the following are equivalent.
(1) p(B) € Z
(2) p(B) = D]
(3) Re=Ep
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(4) B ~ b (Morita equivalent), where b is the Brauer correspondent block in FNg(D)
(5) One of the following holds.

1

1

2

()1 =1,C5 = (D)

In this case, we can take &, as a unimodular eigenvector matrix Ug of Cp.

(i)l =3,D~E,, Cp =

— e R
—t N

NN S
N SN
SN N

(iii) I =3,D ~ Qg, Cp = (

Theorem 3 ([3],(10]). If B is a p-block of a p-solvable group G, then the following are
equivalent.

(1) o(B) = |D|

(2) Rg = Ep

In this case, B and its Brauer correspondent b are not necessarily Morita equivalent.
For example, let G = SL(2,3): E27, p = 3 and let B be a unique non-principal block. Then
{(B) = 1, and the number of ordinary irreducible characters k(B) = 13, but k(b) = 17,
respectively. So B.and b are not Morita equivalent. However, we can take &z as a
unimodular eigenvector matrix Ug of Cg, where 3 is a block of a subgroup of G or of a
factor group of a central extension of a subgroup of G.

We cannot prove yet that if p(B) € Z, then p(B) = |D| for a block B of a p-solvable
group. In the following two results we are inspired by many author’s results proving
Broué’s abelian defect group conjecture for p = 2 and 3 to be true (see e.g. [2, 4, 7, 8]).
In abelian defect group case, our question yields a special case of Broué’s abelian defect
group conjecture.

Theorem 4 ([5], [10)). If p = 2, B and b are the principal blocks of G and N&(D)
respectively, with abelian defect group D, then the following are equivalent.

(1) p(B) € Z

(2) o(B) = | D

() Rp = Ep

(4) B ~ b Morita equivalent (even stronger Puig equivalent)

(5) For a finite group G with an abelian Sylow 2-subgroup D and O(G) = 1, the
following holds. Let G := O'(G). Then

G=G x...xG,.x S,
where G; > PSL(2,4), 3 < ¢; =3 (mod 8) for 1 £: < r and S is an abelian 2-group.

In this case, we can take ®, as a unimodular eigenvector matrix Ug of Cp.
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Theorem 5 ([10]). If p = 3, B and b are the principal blocks of G and Ng(D) respectively,
with elementary abelian defect group D of order 9, then the following are equivalent.
(1) p(B) € Z
(2) p(B) = |D|
() Rg=Ep
(4) B ~ b Morita equivalent (even stronger Puig equivalent)
(5) Let G be a finite group with an elementary abelian Sylow 3-subgronp D of order 9
and Oy(G) = 1. Let G := 0¥(G). Then G satisfies the following (i) or (ii).
(i) G = X x Y for simple groups X,Y with a cyclic Sylow 3-subgroup of order 3,
respectively.
(ii) G is one of the following simple groups.
(a) PSU(3,4%), 2<g=2o0r 5 (mod 9)
(b) PSp(4,¢), g=4or 7 (mod 9)
(c) PSL(5,9), g=2or 5 (mod 9)
(d) PSU(4,¢%), g=4 or 7 (mod 9)
(e) PSU(5,¢%), g=4 or 7 (mod 9)
In this case, we can take ®; as a unimodular eigenvector matrix Ug of Cp.

We use Koshitani-Kunugi’s method in [4] to prove (5) — (4) in Theorems 4 and 5. Also
we use the following fundamental Proposition to prove (1) — (5) in Theorems 4 and 5.
The last statements of Theorems 4 and 5 are clear from Lemma.

Proposition 2 ([10]). Assume H <1 G and |G : H| = q (a prime # p). Let b be a p-block
of H. Let B be any p-block of G covering b. Then p(B) = p(b).
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MACKEY FUNCTOR AND COHOMOLOGY OF FINITE GROUPS

AKIHIKO HIDA

ABSTRACT. Let G be a finite group and H a subgroup. We consider an algebraic proof of
Mislin’s theorem which states that the restriction map from G to H on mod-p cohomology
is an isomorphism if and only if H controls p-fusion in G. We follow the approach of
P. Symonds (Bull. London Math. Soc. 36 (2004) 623-632) using cohomological Mackey
functor for G. We will consider the structure of cohomology as n Mackey functor.

1. INTRODUCTION

G ZHRE, £ ZBE p > 0 O (VBN KL T3, —XioBEE kG-IfE% &k T
T L, k 8D cohomology X REUMICIE,

H™(G,k) = Ext};(k,k)
LEBEND. HEGORIW, 1€ G LTBLERDIDOGEERNHS.
res§ : H™(G,k) — H(H, k)
¢z : H"(H, k) — H™(H® k)
tr$ : H*(H, k) — H™(G, k)
CNGIDNT, RD2DOHWDILD. HLK<G LT53.

(1.1) tr§res§ = (G : H|
(1.2) resGtr§ = Z trf e nxrestenKts
zeK\G/H

2 REDL DIE Mackey formula EFEENTVS. HH G O Sylow p-Bi3 Bt 2L LT
3&,(11) &b

res§; : H*(G,k) — H"(H,k)
BEHTHZTENDIS. ZTTINNODORBICEZ D, LS T e MEE 3.
Theorem 1 ([5]). RIZEHETH S.
(1) EBD n>0 LT, HIMEH

resg : H"(G,k) — H™(H, k)

BEIME#RTHS.
(2)HDpHRBWQ L zeGIKDVWTQ CH L3456, e Co(Q)H TH3.

The detailed version of this paper will be subinitted for publication elsewhere.
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$hbHDB cohomology NAIMTHEZ L L p- P BEEROMENRCTHB t?ﬁ‘[ﬁjﬁﬁ
kixd. (2) M5 (1), Thbb p- I EROMED cohomology ZR¥B LS5 T ki,
(1.2) & [2] D stable element ICBI T 2R\ NS DMNET ETHHHIMLAMEN TN S.
—%, 8D (1) 6 (2), /B cohomology ' G D p-FFBERORRERET S LW
3 T i, RVWEHOH 1990 i Mislin 2 & » TARAS hic.

(ARBRAZRR BN G RB L, G D cohomology H™(G, k) iX, G D3EZER BG ©
cohomology T$H 5. (5] iZHW BHAIZ T DA LD DTH O RE FE—RICHIT B
FEEZAVTWS.

UM U Theorem 1 iILHEWT H*G, k) ERBNICLER/ETNBDTH D, (2) DER
REOHBBECHTAEDTHZ2DT, KENE, HE3VREF 2 T7—RREMWIEE
HNTEZTVHLEWVIDON, T ‘T@ﬂ:ﬂ%fzﬁ% (1)).

2. MACKEY FUNCTOR AND COHOMOLOGY OF TRIVIAL SOURCE MODULES

Mislin DFEE Theorem 1 DB IEBAIZE U T, Symonds {3 Mackey functor &[5
BAT32LZEITVS. M H G LD cohomological Mackey functor TdH 3 & ik, &
H < G T LT k-vector spaces M(H) B5X6N, H< K <G,z €G, icxLT k&
EEH

RE . M(K) — M(H)
1,, M(H) — M(K)
M(H) — M(H?)
MERE N ((1.1)(1 2) ua{uu:) u\< OHDRHERI-TEDTHS. FIRIESHIH H
{C cohomology H™(H, k) ZRIEER3XHG
Hn(—v k)
{3 cohomological Mackey functor Cd%%. G £ cohomological Mackey functor DL
BH2EMRRTLETTREOMBLAEILT & TH Y, BEH (HUE) /X functor PHKRE TR E
ZEIXDILHTES (8, [9], [10]).

G L OBH#% cohomological Mackey functor i, FIBYEERS L8 (P,V) (P G D p-
B, V I3 BRI k(N (P))-Ing¥, #{Qtrjﬂ%&?() E——ICIEL TV 3. (PV)
IZHIET BB cohomological Mackey functor % S5, £ &I T LICT3.

cohomology H"(—, k) OfREFIZE S BoTWBTHAIh. piolE PIHLT,
H™(P, k) S3HEGDIERIC X D No(P)-InBt & 305, uiMLEt Co(P) XBHHIC{ERT 3.
DT b SE, A H(—, k) DEBETFIESE Co(P) i3 V ICHIR/ER L TV
h¥xohne 2:7’.)‘1’)7’.)‘% WS, ROFERIE HM (-, k) Dl A 72 ETROT
EERLTWS.

Theorem 2 ([7]). P % G ® p-Bi7E, V 2B k(Ne(P))-IBEL T 3. Co(P) BV
ICEBICERALTW3 a5, 3 n > 0 KK LT S§, & H™ (-, k) ORBETTH3.

Mislin DFEE Theorem 1 {3 T O Theorem 2 WHEMNBZ T &b hB. 27EL [7] i
4% Theorem 2 DAL GHHRAZOENERER VTV S (4] BR).

—7, Mackey functor {ZB89 % & DEBE trivial source 2R DHIEED cohomology I
MY 2MECTVIRAS T EATES. HEH LG-BE M DY, B ROBBRLMEN S F
HIN-MBEOUMNEFETH B L E, M # trivial source ZFEOMBEL WS, T hiZER
2R E, BEx cohomological Mackey functor £LB]U K SIC# (P, V) (P & G D p-58%
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B, V i3 BER9X k(Ng(P))-hnB¥, 3% ARERRC) L——icHibL TV, # (P V)
ICHEST B trivial source Z#FOMBERE ME, TRI T LILd 3. 5§, # H* (-, k) D
BEFTHEENS T ERZEWRX S L, Theorem 2 IZRLFEHETH BT L b %B.
Theorem 3. P % G O p-ER7 8, V ZBIKI k(Ne(P))-IBEL 9%, Co(P) BV IE
BICEALTVWSRLE, $% n> 0N LT H*(G,MSy) #0 L& 3.

#R, Mislin DEH Theorem 1 DIADT=HICIZT D (EF 2 7—HROMBEL LR
%) Theorem 3 ZHHTHIERI N LI >7RTH%. TD Theorem 3 ICDWTI, (6]
¢ 8] KB THILc, RENZEANMEIO N TVS.

3. INDECOMPOSABLE DIRECT SUMMANDS OF COHOMOLOGY
T T Tk G LD cohomological Mackey functor & LTD H*(—, k) DliER E HICE
X THI\W. Theorem 2 & X WHAREFICONWTIE (YD n KBRNBZ D, WS T LidH]
LLT) AIERLTOLONRNE LADI DT, RCEHBHIETFEZEX TRV
HILETDOn>02EZX,

H*(—k) = E H" (-, k)
n=0
DOHEZFANI . ETHZEHT, CIIBRERTH 3.
Proposition 4. G IKHLTH3 n HHY,

M, = D Hi(-,k)
i=0
EELE, EED m >0 KNLT H, DERBDOIC—DEFIN S D Mackey functor &
LTOLH
M, &M, - ® M, — H™(~,k)
H35.

—RIC H7(—, k) DEMATF L LT, XS ONENL SVWRNS ), BREZR
TERMNESI DB LERFBRIZNDTHBH, G HHED cohomology 7T T L LTOES
B L ZOMOBIRYP transfer B2 RIFHCE X TODEIT TR S Bz hhiz b 81k
g%g& 5. —BEIEHE D XKD > TVEWD, ROFEHE DD RTVIRR
i 2 T3,

Example 5. p=2 £ U G Z(¥H 8 D_H{kBEL 3 5.

H*(G, k) = kla, 8,¢]/(aB)

dega=degf=1, deg(=2
THB. H* = H*(—, k) & HBL. a ZMFBZ LICEDFEE TS Mackey functor
DHEFRIRIE G
Hl _ H2

DG aH', ¢ DERMRT S H? DEYF Mackey functor & < ¢ > BEDXSIcHT T LIC
FTHL, n>1IKHLT,

H* > aH'@ (n-1)aCH'® < ¢ > &(n — 1)5¢H! & SH!
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H™" >2oH'@(n—1)aCH @ CH @ (n— 1)3CH' @ BH}
LEoTW3. (n—1)alH & n-1 BOEMNTHS.)
i H®» DEAIEFL L TR BB functor @I XTn=0»5n=4 ETK
BT, A 0ZBR LERBTHAT LADMS,
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INVARIANTS OF COMPLEX REDUCTIVE ALGEBRAIC GROUPS
WITH SIMPLE COMMUTATOR SUBGROUPS

HARUHISA NAKAJIMA

ABSTRACT. Let G be a complex connected reductive algebraic group with simple com-
mutator subgroup G’. Consider a finite dimensional representation p : G — GL(V)
and denote by C[V]€ the C-algebra consisting of polynomial functions on V' which are
invariant under the action of G. The purpose of this paper is to discuss on our partial
classification of p's such that C[V]€ are polynominl rings over C. Our methad is based
on the property of PLH defined and studied in [9] and our study on relative equidimen-
sionality of representations under the assumption that G’ is simple.

Key Words: coregular representations; relative invariants; reductive algebraic groups:
algebraic tori; simple commntator subgroups; equidimensional actions

2000 Mathematics Subject Classification: Primary 20G05, 14L30; Secondary 13A50,
13B15.

1. INTRODUCTION

This is a worked out version of the author’s talk in the 39-th Symposium on Ring
Theory and Representation Theory held at Hiroshima University in 2006.

Let C be the complex number field (or an algebraically closed field of characteristic
zero) and suppose that algebraic groups are defined over C. We denote by G a reductive
algbraic group with its identity connnected component G° whose commutator subgoup
is denoted to G’. and, without specifying, we may assume that G = G°. We use the
following notations:

X(G) : X2(G) denote the group of rational characters of G whose composition is represented
as an addition. .

(V,G) : for a finite-dimensional representation p: G — GL(V), we denote p by (V,G).
Ry: Ry={feR|a(f)=x(o)f (Vo € G)} for a rational G-module R, which is called
x-invariants of G in R.

C[Y] : the affine C-algebra of polynomial functions on an affine variety Y over C.

Y//G : the affine variety defined by C[Y|® for a regular action (Y,G) of Gon Y.

In this paper, we will study on the following classical problem:

Problem 1. For a (not necessarily connected) G, determine all finite dimensional repre-
sentations (V,G) such that C[V]¢ are polynomial rings.

This paper is based on the author’s talk and the detailed proof of some results in this paper will be
published elsewhere.
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The {ollowing case for this problem are studied:
(1) (G. C. Shephard-J. A. Todd [14, 3]). Suppose that G is finite. Then

C[V]€ is a polynomial ring <= Gy is generated by pseudo-reflections.

(2) (G.W. Schwarz-O.M. Adamovich-E.O. Golovina [2, 12]). Suppose that G = G® = G’
is simple. Then

C[V]€ is a polynomial ring <=
(V,G) is listed in the Tables given by [2, 12].

(3) (P. Littelmann [5]). For G = G® = G, the problem has been solved for irreducible
representations.
(4) (D. A. Shmel’kin [11]). Suppose that G® = G’ is simple. Then

C|V]€ is a polynomial ring <=
(V,G) is listed in the Tables given by [11].
(5) (well known?). Suppose that G = G° and G’ = {1}. Then
C[V]C is a polynomial ring <= C[V|C is factorial.
We will study on Problem 1 in the restricted case as follows:

Problem 2 (The Small Problem). Suppose that G’ is simple. Determine all representations
(V,G) of a connectéd non-semisimple G such that C{V]€ are polynomial rings. Precisely,
we raise the following problem:

C[V]C is a polynomial ring (+some unknown conditions)
= C|V]¢ is a polynomial ring ?

By Theorem 5 & 12, we obtain this implication for some groups without conditions.
Then, in this case, the Small Problem can be reduced to Schwarz-Adamovich-Golovina
classification (cf. (2)) and coregular toric representation (cf. (5)),

2. BLOWING-UP REPRESENTATIONS OF CODIMENSION ONE

Recall that
(X, Q) is a stable action of G on an affine variety X

<= 301 € X : a non-empty open subset consisiting of closed G-orbits
+= (X,G°) : stable
<= both (X, (G°"), (X//(G®),G°/(G®)) are stable (cf. [10]).
Definition 1. We define a generalization of stability as follows:
(X, G) is relatively stable <= (X//(G®),G°%/(G®)') is stable.

Hereafter we suppose that G is connected reductive, and then we have an epimorphism
Z x G' — G with a finite kernel, where Z is a connected torus. So, we may assume that
G=ZxG
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Remark 2. For a representation (V,G),
it is relatively stable <= C[V], # {0} implies C[V]-, # {0} for x € X(Z).

Especially in the case where C[Vi]¢ # C for arbitrary irreducible component V; of V, we

see that
3 a relatively stable subrepresentation (V,G) of (V,G)

such that C[V]¢ = C[U|°.
2.1. Definition and properties of PLH. Let Y be an affine variety such that C[Y] is
a positively graded factorial domain defined over C with a grade preseving rational action
of Z as C-automorphisms. For an element o € Autc_q,(C[Y]) is said to be a generalized
reflection, if ht((o — Iy )(C[Y]) - ClY]) = 1. Let U be a minimal finite-dimensional ratinal

module of Z admitting an homogeneons Z-equivariant epimorphism C[U] — C[Y]. In
this circumstance, we consider;

(W, w) a pair of a Z-submodule W of U and a nonzero vector w € U
such that UN < Z - w >¢= {0}

and the morphism

(e+w): W3z —-2z+wel.
Definition 3. Suppose that (Y, Z) is stable. We say that (W,w) is a PLH of (Y, Z) or
(U, 2), if (o + w) induces the C-isomorphism C[U}? = C[W|%, i.e.,

(o+w)”

ClU)? — CU)% "= C[wW]?~.
Lemma 4. Suppose that (Y, Z) is stable ane let (W,w) be ¢ PLH of (Y, 2Z) (or (U, 2)).
Then:
(1) If (W', ') is a PLH of (W, w), then (W', w') is also a PLH of (U, Z).
(2) CUCIY]?) = CI(CY|2).

For a ring monomorphism § — R of Krull domains such that § = Q(S) N R and
q € Hty(S), let Xo(R) = {P € Ht;(R) | PN S = q}, where Ht,(o) stands for the set
consisting of all prime ideals of o of height one. In the case where § = R’ for a subgroup
L of Aut(R), the sets X;(R) (Vq € (S)) are not empty (cf. [7]).

2.2. Notations for representations. Suppose that (V,G) is relatively stable. Let Vg
denote the G-submodule of V satisfying

V=VeaVC.
We express
ClV]® = C[V®] ®c Clfi, gj, b,

where a homogeneous generating system

{f.....,f;,gl,...,gm,hl,...,h,,}
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of C[Vs]€ as a C-algebra can be choosed in such a way that the following conditions are
satisfied:

ht(fC[V] N CV]€) = ht(¢C[V]|NC[V]®) =1,
ht(hC[V]) N C[V]®) > 2,

| X rewinewvie (CIVI) =1,

1 Xgevinevis(CVIE)] 2 2.

We apply the concept of PHL for the pair of Y and U to the affine variety Y defined
by C[V]¢ and

U= VG‘@ < jhgja hk >¥
with the natural C-epimorphism
c] - cly] =cv|®
having grade preserving Z-actions.
2.3. The Main Therem for blowing-up representations. The main result of this
Section is
Theorem 5. Suppose that G’ is simple and (V,G) is relatively stable. Suppose that
{a € Hu(C[Ve]®) | |X4(CIV])| 2 2}

is nonempty and the action of Z on the C-subalgebra C[Ve|® is non-trivial. Then the
Jollowing conditions are equivalent:

(1) C[V]C is factorial.

(2) The stabilizer Zu|c)e is @ finite group generated by generalized reflections in
Autc_y,(CIV]%), where w is a point in U such that (W,w) is a minimal PLH of
(Y, Z) for some W C U.

(3) C[V] is a free C[V|C -module and the condition (2) holds.

(4) C[V]C is a polynomial ring.

The assumption of this theorem is characterized by
Proposition 6. m > 0 if and only if the following condition is satisfied:
{a € Hu(C[Ve']¥) | 1X4(CIV]F)| 2 2} is nonempty.

Remark 7. Since the condition (2) in Theorem 5 implies that C[V]¢ is a polynomial ring.
Hence, under the condition that m > 0, we see that

C[V|€ is a polynomial ring => C[V]% is a polynomial ring,

i.e., the Small Problem is affirmative in this case.
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2.4. A Sketch of the Proof of Theorem 5. By Lemma 4, we see that
C|VIC is factorial = C[Y]?* is factorial
= (Y, Zy) : cofree

4
(Y, Z.) : equidimensional
= (Y,(Z,)°) : equidimensional

4

Theorem 5 is reduced to the next theorem (cf. Theorem 8). O

Theorem 8. Suppose that G' is simple and (V,G) is relatively stable. Suppose that the
action of Z on C[Ve]® is non-trivial and on Y is equidimensional. Then
(1) C[V] is a free C[V]®-modute.
(2) C[V] is a free C[V]C -module.
The proof of this theorem, which is regarded as a generalization of a part of [1] and

[13], is not ring theoretical but is a consequence of case-by-case arguments on invariants
of representatons of simple algebraic groups.

3. NO-BLOWING-UP REPRESENTATIONS OF CODIMENSION ONE

We will, now, treat the case where m = 0 and n > 0 (we suppose that (V, G) is relatively
stable).

Lemma 9. If C|V]® a polynomial ring, then the localization ((C[Ve|')%)p,.n, is a
regular ring. Here w is a nonzero point of U such that (W,w) is a minimal PLH of
v, 2).

Express Vor = @, V;, where each V is irreducible component of Vi as a representation
of G. For any polynomial k2 € C[V], put

supp(h) = {i | (C[V] =5 C[V/Vi))(k) # 0).
Consider the following condition:
(3.1) C[Vi]® # C (Vi such thatV; C V).

Lemma 10. Suppose that the condition (3.1) holds. For any 1 < k < n, we see thal
supp(hs) is a set of singleton.

Lemma 11. Suppose that the condition (3.1) holds. Put J := Ug_,supp(lk). Then

ClP v = @i

ieJ i€J
and this is a |J|-dimensional polynomial ring.
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3.1. The Main Theorem for no-blowing-up representaitons. We use the following
notation: Let ®,,...,®, be the fundamental irreducible representations of a simple group
of rank r whose numbering are standard (e.g, [15]) and ¢¢' denote the highest weight
irreducible representation in ¢ ® ¥ of irreducible ¢ and v.

We say that, for example, “(V, G’) contains the irreducible representation quasi-equivalent
to (P4,Ds)" if (V, (:") contains (&u,é’) for a universal covering group G of G Precisely,
consider an isomorphism » : G' 5 Dg and regard

G 4 Ds 2 GL(®y)
as ($4,5).

Theorem 12. Suppose that G’ is simple and that (V,G’) contains none of the irreducible
representations quasi-equivalent to the following list:

(@1, Ar), (D2, Ar), (91, Cr), (94, Ds).
Then if C[VC is a polynomial ring, so is C[V|%'.
3.2. Some auxiliary results. The following criterion on stability of semisimple group
actions on factorial varieties is well known:

Proposition 13 (V.L. Popov [10]). Let (V,G’) be any representation of G'. The following
conditions (1) and (2) are equivalent and in the case where (V,G') is irreducible and G’
is simple, the following four conditions are equivalent:

(1) The generic stabilizer of (V,G) is reductive.

(2) (V,G') is a stable action.

(3) CIVIS #C.

(4) V contains non-trivial closed orbit.

For a torus T} of rank one and a representation R of 73, put
qr,(R) := min{dim R_,dim R, },

where R_ = @jenR-jy and Ry = @jenRjy and X(T) =< x >. The number gqr,(R) does
not depend on .

Theorem 14 (V.G. Kac-V.L. Popov-E.B. Vinberg [4]). Suppose that G’ is simple and
(R,G") is any irreducible representation which is quasi-equivalent to neighter ()%, Aj)
nor (93, As). If C[R| is not a polynomial ring, then there exists a subtorus Ty of rank
one of G' such that the following conditions hold:

(1) (RT, Ner(T\)/T1) is stable and its generic stabilizer is finite.

(2) en(R) — gn((Ad,G)) = 3.

In order to study the Small Problem, we need a refinement of Theorem 14 as follows
(some results related to this can be found in (8]) :

Lemma 15. Let N be a reductive algebraic group with its commutator subgroup N' and
@ ane ¥ be non-trivial finite dimensional representations of N. Suppose that the action
(@//N',N/N') is stable (i.e., (¢, N) is relatively stable) and the generic stabilizer is finite.
Then (¢ ®Y//N',N/N') is stable.

—133-



Proposition 16. Let N be a reductive algebraic group and ¢ and v be non-trivial finite
dimensional representations of N. Suppose that the action (p//N',N) is stable (i.e.,
(. N) is relatively stable) and the generic stabilizer is finite. Then (v @ ¥, N) is stable.

Lemma 17. Let ¢ and ¥ be non-trivial finite dimensional representations of G'. Suppose
that (@, G’) has a closed G'-orbit whose stabilizer is denoted to H,. Let H, be a reductive
closed subgroup of Hy such that (¥, Ng:(H,)) is stable and its generic stabilizer is finite.
Then, for any nonzero homogeneous h € Clp]®, there exists a nonzero z € (¢ & ¥)"?
such that

(1) Gz is closed in o ® .

(2) hz) #0,
(3) The stabilizer Ng:(Hz), is finite.

Lemma 18. Let (p,G’) be an irreducible representattion of a simple G' such that
dim(C[p]¢) = 1. For arbitrary irreducible representation ¥ of G' and arbitrary nonzero
homogeneous polynomial function h € C[y]%, if C[y]€ is not a polynomial ring, then
there ezist a subtorus T\ of rank one of G' and a nonzero vector z € @ © 1 such that

(1) h(z) # 0.

(2) an(p ®¥) - an((Ad,G)) 2 3.
(3) Ng/(T) is finite.

Lemma 19. Suppose that G' is simple, simply connected and let v¥; be irreducible rep-
resentations of G' such that dimC[y;]¥ = 1 (1 < i < u). Suppose that u > 2. Then
Cler, %)¢ = @, C(W]® if and only if v = 2 and (B2, G') is quasi-equivalent to
(@1 & @3. B3) or (@1 &7] 4)3,D4).

Lemma 20. Suppose that G' is simple, simply connected and of type B; or Ds. Let i be
an irreducible representation of G' such that C[y]|® is not a polynomial ring. Suppose that
(V,G') = (v &P, 0 %P3, B;) or (V&P & P3, D3). Moreover, let hy and hy be homogeneous
polynomial fuctions satisfying C[®]¢ = Clhy], C[®3]¢ = Clhy]. Then there erists a
subtorus Ty of rank one of G' and a nonzero vector . € VT such that

(1) hi(z) £0 (i = 1,2).
(2) qT, (‘P @ 'l') - qu((Ad! G')) =>3.
(3) The stabilizer Ng:(T) is finite.

3.3. A Sketch of the Proof of Theorem 12. By Lemma 9, 18, 19, 20 and the Slice
Etale [6], we see

C[V]€ is a polynomial ring =>
(V,G') does not contain non-coregular irreducible components.
computation || C.L.T.

C[V] is a polynomial ring. [

Consequently we conclude that the Small Problem is affirmative also in this case.
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VON NEUMANN REGULAR RINGS
WITH COMPARABILITY

MAMORU KUTAMI

ABSTRACT. In this paper, we report some known recent results for regular rings with
comparability including general comparability, 1-comparability, s-comparability and
weak comparability. In Section 1, we introduce the history and results for regular rings
with comparability, with respect to finiteness conditions. In Sections 2 and 3, we tell
some results for regular rings with weak comparability.

Key Words:  Regular Ring, Comparability.

1. ERIRICE 5 LLinT et & HFRE

R RBBATRFORE U, R-BHIE R-MBEZEKT D, BINC. TOBRXOHT
AT hZESZHHET 5,

IBS 1. RIMBEM LIBE iR LT, nBD M OBEME M TET, NORIBEMOD
BoMPTHILEN<SMTEL, FCNDPMOBNEFTHBLEN <g M TH
To RIEMNICHLT, BEHf M — NDEETZEEM SN LB, B,
JM)<g NDEEM S NTEY, X/, f(M) < NEWHITEHS f: M — NI
ETBLEM < NTET,

¥FEARKRUENRCHET 2EHR 2513,

ER2 BARN (VA=) ERIRTHZ LiE, ROBLzICHUT zyz = z =T
ROTWyNEETZ L EICE . RRM2=y FEARTH B LIX. ROBTz L
Truz =W T ROAMTTuMFETZLEIRE S, RRMFALI - T7r4F
AL THBLE, ROTz,yICHLT lzy =146 yz = 1] RiGl-T L EICES, B
5. ROEBOGXIERBEIInBTTTH S L2 EBkT 3,

IERAIBRUZ 1936 FE/ A = i & » TN A OIS RINE NI-BTH D, 19504
H 5 1960 FERITHI TORBIC &L ZHROEEEOERICE D, SHOERIENIEE
THIENMONB &SI HE -T2, ZLT, 1960 ERFBERAD, BREEMGLRIFNS
AL T b - TrAFA MERIZy FEREOREN D ONB XSk oT, /4L
Jbh-TrA4FA4 MER/ AV EBRERNITTFY FERIELAMIFNTE D, O]
BReX—42—RRUFNVFUVRBIAL LI TPAF A FRTHB LB ELHIBNT
Wa, 2= MERIEE 1968 8 G.Ehrich K& > TEHEASGNEWMRTH B, 2= v FIE
RIERXALI b« TrAF4 MMER, FRIBEWICET 2 BB EREGFLFIFATY
g%ﬁgzhsmﬂﬁﬁﬁmﬁa@whabu\mmﬁﬂsmﬁﬁéﬁobsfbaaﬁ

The detailed version of this paper has been submitted for publication elsewhere ever.
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B 3 ([5)). RHARILT 3o

(MBRBFIALI L - T7A A NRATHB LI, TAR <g RR DD AR = RpxH
£ A=Rpl ZiGlILLAiTHS. BB, RRIEHTEHSLEANEROEMRATF
ﬁf:&b‘: t’&ﬁ%?éo

(2) IERIR RA 2=y FERIBRTH B i3, HIBLERHME R-BE A, B,C 2L T
([A@C=BoChOlFA=B| 2%l LLAHTH S,

AL T, BERMICIE 1973 4 M. Henriksenic & D M= FMEABRIE &1
LIk 7744 RTHSB) WA ET Nz, TDH,. C OFROMOREDE
BLixolehs, 19774 G. Bergman ic & D 2=y MEAIRTRWEA LI - T7 4
+4 MERIROEE] MMREEE NIz, F U T, ERIBIC B 3 GRIEMEOHR UL, RO
ME A, BOBIEALERL TV,

B A EOMDIAL I b - 7747 A MERIRIZ = v FERIERD?
B&E B. 2TDHXA LI+ - 77434 PEMERRE 2=y FMEAERM? (5, Open
Problem 3))

RIC AR IC DWW TR B, IEHIBRIC 3513 B HEBSATEtEICIE, £ DL LTRD
41 DOHEATREMEDH S :

(1) —RELHEaT et

(2) 1-HeBenaTfiEtt:

(3) s-LEERRTHENE: (AL, s XERE)

(4) FHEOTHENE

4. R ()~@) DEHRESX 3,

B 4. FRR R —HEATHEER T L. ROBKT,yicH LT lezR < eyR
MDD (1-e)yR < (1 —e)zR) 2i7cT ROPLONREF T MEETHLEILE S,

EE 5. REEAIREL L, s ZHRBET 3. RY s-HEATREREZM.T LR, ROF

TCz, y iU T TzR < s(yR) XUE yR < s(zR)) M- T L EICE 5. FHC. 1- L]

;Eﬁliﬂ:ﬂﬁmﬁi\\@t LRENTED. Lid4 DOHRAIERDOH TRLBANZEDT
%,

T T T, et 2 DIERIRICEId % FECME A I 2 B2 5ET, —AREeEsn]
REPEDBEZUE. 1960 E4R Operator Algebra % Baer BOWEN S RMENT=BLZTH D,
HFECAHERR (FXE. ABORE) XCOMEZRFD. X, 1 -LEREIEEI T
MIER DA B U T 1975 £E K.Goodearl & D.Handelman iC & > TRIEE Wiz, FRT
H5EECASERBE C O ZED. TNSOEHETREE R DAL I T 79 A
F4 FERIEM L= v ERETH B LI X< HBATVS ([5). T, 1-HBATHE
HD—f{L L LT, 1976 £f£ D.Handelman % K.Goodearl {Z & O s-LEEIARENE & W5 BB
MR ENN, COMRRITICIEST S, 1990 FERICA D, FLEnTHEIEORIZEIC
RMEIN B THENED SNz, s-HBAEERZ R DOEMRICE L T, L3R A,
BIZDWTROFERMNA SN TV B,

B 6 ([9)). s-HBABIERIEOLALY b+ 77 A4 NUSEERBNE, 2= N ERI
BTH 5,

BE 7 ([3). -LBAIREERRFOXA LI+ - Ty A5 MERIRT, B TEI=Y
MERIERTHAVRMIEET 3,
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Ric, (RTOHALY L+ T7AF A FEBGEMEE =y FERMEN?) L) ki
B9 BB L Cid. 1991 4 K.C. O’Meara iC & O BHBATRERE L W 5 BEENRIBEh, T
OfEIc T 2k HER (FROEE) MHICK->THEAXLN, T T, ERIK
M3 2 FHBAIEEOERE S X, K.C. O'Meara L &K 2BREHNT 5.

28 8 ([9)). EUE RASHHBFIREEE MG/ i3, ROBITx(# 0) ML T, n(yR) <
Rr (y € R) x5 yR < zR) 2WI-TERE n DHEETHLEILES. TOBRER
3. ROz icKGET A eicEET %,

£ 9 ([9]). BHBAHEERGTZALI L T74F A PHMERBE, o= b E
HIRTH 5,

F D%, FHTTHEE R 3 EMERBROMENRIC (1), (2], 4] T 6, BSLE
RUSEASS LU HEME R R DT D DRBFI P RD LS L5 X b M,

B8 10 ([2)). R ZHMEARL T3, COLE, RIFHATH 3.

(a) R WG LLEERTHEME 2 7= T,

(b) Ri3. HBRERNE R-MBOHE DICII B [Strict Unperforation Property] %
{#=d, b, nA < nB 2T BRE n LERERHNE R-NEE A, BRFET 545
i£. A< B ®Z%kY,

IR 11, BHEAMEGE2ERZVAA LY b - 77 A4 FRBERROEER. BE
DETAAMLNTVEN,

DUi£ 82, §3 Tid. BB L 3RS AW FHEATEER ST ERRICOVWT, ided
10 DFERPREBIRIZ L ZHNIC. TOROFOEEEZRBNT 3.

2. BHEAMEEAREDOAA LI+ - T 7 A4 F 1 FaHEmEE

Eﬂ]&:\ FHEATHEE R W ¢ ERROBYNEFI2ENT 5. ORDITRBETER
25x%,

88 12. B RONEZTT s ONERERE. 1" = 0 B TERE n DB/NEED
%, B RONREREH®. ROLTORERTONEREHOLBLEDS,
8 13 ([5]). FRIR RONREFEEN nTHZ LY, R (n+1) HORANERTE
WEATF7IVOERNEZFERNWC LREBTSH 3,
R 14 ([9)). KPOBILT 3,

(1) FENEFHEREHOEARIE. SRR RET,

(2) FHBATREE R 357 T EARIE. RRXIFRAREFHERERFOHRTHS,

EFREoEM14(1) (3. BIHETHEROERS LHE 13HNSBHICEMIMB T LITER
T3, TTTC. BHEEAEEN 2T ERIBONMAARIZE X 3,

#l 15 ((9]). B TRVFHERAIEEERR Iy MERIRIEET 3,

[RERR) S%. 7NVFVRTEWHHERTREAM R M-y FERRL 75, #
A&, S =limMx(K) (BU K i36k) ZEX TRV ZUT, FZ SORLLTS, S
B7NVFURTRVOT, S OFICEWCERT 3R TRVWNREFTOMET] {e), 2, }
BZBRETENUEKD, SERBAINLT fui=a+ - -+e, LED. Ji=U2,[,Sf L
BLlo TDLE, R:=F+JIERDBEDTH S, O
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Bl16. XY b - 77454 b TROBHETREMR 27 ¢ MBHERIRIITEET 5.

[3EHA] V 2k F LOBRRITR 7 MIVERE L, TOHCHERMREQ LT3, M =
{z € Q| dimp(zV) < dimp(V)} &I &, M3 Q OM—DBAWIA F7 N THB, T
ST RQOQ:=Q/MEEXZL, QFRHBZLDTH 3., Q OBHEAMELERIET S
i3, QOHEZNTI(#0) KL T2 = QMNRITEIZLEFTFAEL V., O

EB17. R-IBEMDPIAL I N T7A4F A THB LiZ. MOECHERIR Endp(M)
MELLI L - T7A4FHA PROBZE S, TOTLiZ, MHABZEFLEREHOMK
MEFEFLEN L EEHETH S,

CTT, HEmMBCHTBLALI L - TrAF A MEDHIRERZGA S, TOHER.
LItk DFERROMBNC K E L BHIZRIZT,

FEE 18. R &HLEATHEN R/ T IEAIRE T3,
(I) P ZHRERSME R-INBEL L. TOKEIMEIRE P=0",P £T5, TOLE,
RiIFEHETH 3,

(a) PREALIF - T7A4F 4+ THB,

b)Y ‘i=1,--- nllHLT,. RLRHAMLI - T74F 4+ THSB.

(c) EAZ RMBEX(Z0)ICNLTH, XX L PTH 3,

(I1) P 2ARERTEVHE R-BEL U, TOREMEDRE P = ©iqP; LT3, T
DEE. RIAHETHS,

(a) PZHALIL - 774+ 1L FTH B,

(b) Bi(e NIKHLT PR RHSLI L T7LF L RTHY, DD, YA R-EE
X(F#0)ICHLTE, X £ Sics-rP; 12T 1 ORRETME F NEET S,

(c) PA R-IBEX(F0)ICHLTE NX L PTH 3B,

(d) Hile NIKHLTPBHAILI L - TrLF AL THD, D, LA R-INBE
X(F)IHLUTE RX Lo P THB,

AR 19. REBHEAIEER BT EARE T3, EHI18 XD, HE R-MEPMNFA
LIb - T74F 4 TCHB L MM Xpg SPAELIEX =01 W52, THB,

3E 20. MBS ZALI L - T4+ A4 P THRABDEE 19 DHERSFE. —KD
ERRTIERT LV, 5. RoXp < Ry ZMITBIEGA T 7V X(# 0) 2
DA IR -2y MERIR RIMEET 206 TH 5.

ERI18() & D, ROBRIBZICHI NS,

F 21. SEETREMER M XA LI b« 77 A F 4 M ERER EORRABGHREMEE,
ALY b - T7AF A FTHB. TOT LI, BUBAIEERRHILT AL I T7
A+ 4 FERR EDZTOIFHREAA LI - T4+ A FRTHA LZFKT 5.

A OKBR. [FLL Y- 77474 FERIREOLSTOFFIRII AL -7 7
A4 FRM 2?1 LW S5 ([5, Open Problem 1)) i LT, FILEATHENE %1579 1E
AR TREENTHZ LV L RE®RL TV, R2HIRDE S IL—LE N3,

R 22. REBUHEOHEE RN TEIMRE TS, COLE, ¥4 LI -T74FA
B R-INBEORI A EREDOHMI X ALY L - 77 A4+ 1 FTH 5,
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Kic, BHETHEERHTEMRLEOZ ALY - 77454 MO T25
T3, —MS. JFERIBERTAL T b - T7 A FA MR DT LUBIATHENE 2 1
73 HEALY b - T 474 MERIRBIFEYT %,

) FEELL. R=[L, F WELF=FT. [id #TRES) LT3, o
£ RINEFIEM1THS, foT. THUMS, RIGHMETEVBHEFTRERE
EEHALI b - 77454 FERETHSZ EDDB, TTT. Pi= Fix ([],:0)
RO P = 0P LT3 L. PEFARERLALY b - 77454 Ml R-IBFCH
BTEHERIS bbb, O

Fic. BHEATHEE R 4 AL - T7 AT 4 FHBERR®, #A4LJF-T7
A F 4 b TRV BRI 2 B T ERBRIC DV T, ROEERMPILY 5.

B8 23. REFHEEEEWNIIZALI L - 77474 NRBIERIRE T3, O
L&, XALI b - T7 44 M R-MBHAARERDAIHEKTH S,

EIR 24, REXALY L TP AFA b TRV HERIHEE RS- TERRE TS, C
DLE HALLIE + T7AFA MHE R-MBRRDOATH S, 1B, RTEWVHE R-
MBRIRTEALI L « T4 FTla,

TORB2UEZ, ALY« T7AFA b ThrOGFHETTRENS 257 T IERIRZER
THEC. RN EET B,

3. F5LLBERTHEIERIER L OFRAERGHEINRY

§3 Ti3. FHBETHEN: 2357 T IERIR L OB RERSHIE QWX D ICHT 3 [Strict
Cancellation Property | 2T [Strict Unperforation Property | 2% d %, TOAIZ, R
OFE 25 ZhHEET 3,

& 25. RZERRE L. ARERME R-BE X, B,C.Y ICHLT X6 C'0Y <o
BoCoY MDC = OHPRATHERETS, COLE, M B = B © B,
By =Bh19B,,;C=C0C},C,=Cr1®C,, EEL. X 2B ®C,, Cp &
Bh16Chy, BOCOY =X0YOfCi10®---8 fCa® B, 6C,, 2617,

COWMEBDE. C1oC,e - ®Ca <CHDCI 2 C 2 - 2 Co DRI nC, < C
b, CDT EhH, FHRAIEEOHEHADPEZ SN, ROBENMILNS,
SEX 26 (Strict Cancellation Property). R ZFHHEAIREM 2/ L I - T 74

T4 MERIRE T3, HREANE R-MEEA B CIENLTAGC <BoC BEYIID
6. A<BTH3,

’&f_;f_lgﬁ ;e 77434 b TROFHRATHENZ 3573 ERBICH L TR, ROBEDN
ll. o

EE 27. RZZALY L« T7 414 D CHROERERTEE 2N TIERRE TS, &
BE%&EH\]‘% R A, B,CICRHLTASGC SIBOC (B#0) BEOIDALIE, A<B
TH%.

Ladem 26 LEH 2T Z#HbE B L. ROEEENEEN B,

SEIE 28. R ZHILEAIEEZW-TERMRE I3, HREMRMNE R-IBE A, B, CWlextL
TASC <BOC (B+#0) MEYDEEIE, A< B THb.



i, TOEH B ZHEMANTROEEENMIONS,

JERE 29 (Strict Unperforation Property). R %@ HBFTHEE 286/ T ERRIL 5, nA <
nB 2l ARERSIY R-INBE A, B L BB N EET S 6E. A<BTH3.

AR 30. HBERRICTN T 2B HBATHENEDS, AIRERSMBEOMRE D IZF 5 [Strict
Unperforation Property) &[A{HTH S L1, B 10 TEHIRN=, LL, B#iRL
RS W —RERERIBNON T 5 9 HEATREMRE . AIRERSIRCINEEOME DicT 3
[Strict Unperforation Property] {C &> TR#{HT 3 Z LGSRV T LD 9 H 3, A
o, WR:=[I2, M. (F)({BL Fidtk) 2EZX 5L, RIEECASI=Y MERIR
72h 5 Strict Unperforation Property 235729 T L NHISN TV 3D, RIRBTCEAE
BEEVEETLRVOT. FH142) 5 RIZHHETMHEEEMI- S VIS TH S,

AX 31([6). WHEATREMEZG-THEMa =y MERIR R T, AREMHE R-MBED

X DIC[T S [Unperforation Property ] 23/ T HWVRMNEET S, 1B, TORIC

?b"ﬂi mA S nBhDAL B) 2T TBRE n LERERSHY R-MEE A, BMVFE
5o

ERIBROH AR I BRRICBIT T3 L3 X <abhTW3, Tk, EFRIERED
FHEAIHERIBABATSH A 5 h. TOMEEROES =i, RO K S ITMBHINT
ZBFHEBAIEROBZEH L BATIREND S,

BB 32. REFAIRL T3, ARERSE R-MBE M AFHEAIREEERRI T L. M

DBREMAFNICHUT, L <M (BLU LI M OEMRF) &6E L <N &k

;E%ﬁgg‘%ﬂ‘éﬁmﬁﬁo TODLE, MDOLAXENET FHEATHEN 2 th/:
bl 3,

LEEEH29 ZHWT, ROHERMBON S,

il 33. REFEARL TS, COLE, RIFHATH S,
(a) RISTFLHARTTHEM 2 TG T,
(b) TRTOFRERSHE R-MBHIST AT HEME 23572 T

125 34 REBLL, MERMBLTS, COLE, add(Mg) = {Ng| N SonM %
Wl BRBaNEETS ) LEDS,

R-B M OB CHRFERR Endp(M) %2 S L § 3. B8 add(Mg) L add(Ss) DD
Homp(sMp, —) ¢ ~QRssMplc &5 Hom MF L 57> VIVAFEOHEE#EED 5. ROFER
NEoNB,

#B 35. REZERIRE U, PRERERSHE R-MBEL T, COLE RIEHETH S,

(a) P AL ATHENE R DR

(b) P DECHEFERIE Endg(P) h'SB BRI RER 23579

EWRICHEB LG LTI ZAVT. ROEENABRICHAATES,

EE 36. REFAIRL T3, CDLE, RIEMHTH 3,
(a) R ITHRAIREME R W= T,
(b) TRTOHRERME R-IBE PICH LT, Endp(P) X BIHLEAIHEIE 21577
(c) RICHRHEEMlABUNF BRI,
(d) TXTOERE n IS U T, 1758 M, (R) (3F HEATRENE 21572 9
(e) HBZHBRM TN LT, 17HIE M.(R) I BHETAHENE 2T,
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COHRMS, ERREOFHRTERIRARBMAETHS C DTN S. BiRIC, 5
FERSRTRENE 2 7= 3T IERIRRC B 2 BIRE OME R RET 3, EH6 &b, FHBATHEYE:
BWGITHALI - T A4F 4 FREERIRIZ =y MERIRTSHS C L3RS TY
%, UL, BHRTROVHHEAREERNRITHAI LI b - 77454 MERIRE
=y FERIREEBHESIDRREFHTH S,
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