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The symposium on Ring Theory and Representation Theory has been held annually
in Japan and the Proceedings have been published by the organizing committee. The
first Symposium was organized in 1968 by H. Tominaga, H. Tachikawa, M. Harada and S.
Endo. After their retirement, a new committee was organized in 1997 for managing the
Symposium. The present members of the committee are Y. Hirano (Okayama Univ.), S.
Koshitani (Chiba Univ.), K. Nishida (Shinshu Univ.) and M. Sato (Yamanashi Univ.).

The Proceedings of each Symposium is edited by program organizer. Anyone who wants
these Proceedings should ask to the program organizer of each Symposium or one of the
committee members.

The Symposium in 2006 will be held at Hiroshima University in Hiroshima Prefecture
for Sep 16-18, and the program will be arranged by Mamoru Kutami (Ymaguchi Univ.).

Concerning several information on ring theory group in Japan containing schedules of
meetings and symposiums as well as the addresses of members in the group, you should
refer the following homepage, which is arranged by M. Sato (Yamanashi Univ.):

http://fuji.cec.yamanashi.ac.jp/ ring/ (in Japanese)
civil2.cec.yamanashi.ac.jp/ ring/japan/ (in English)

Kenji Nishida
Matsumoto, Japan
December, 2005
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PREFACE

The 38th Symposium on Ring Theory and Representation Theory was held at Aichi In-
stitute of Technology in Aichi Prefecture from September 2 to 4 in 2005. The symposium
and the proceedings are financially supported by Toshiyuki Katsura (University of Tokyo)
JSPS Grant-in-Aid for Scientific Research (A), No.15204001, Kenji Nishida (Shinsyu Uni-
versity) JSPS Grant-in-Aid for Scientific Research (C), No.17540021, and Masahisa Sato
(Yamanashi University) JSPS Grant-in Aid for Scientific Research (C), No.16540019.

This volume consists of the articles presented at the symposium. We would like to
thank all speakers and coauthors for their contributions.

We would also like to express our thanks to all the members of the organaizing com-
mittee for their helpful suggestions concerning the symposium. Finally we should like
to express our gratitude to Professor Sumiyama and his students of Aichi Institute of
Technology who contributed in the organization of the symposium.

Takayoshi Wakamatsu
Saitama, Japan
March, 2006
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ALGEBRAS ARISING FROM SCHUR-WEYL TYPE DUALITIES

SUSUMU ARIKI

ABSTRACT. The aim of this paper is to present algebras which are studied in our field.
These algebras deserve more detailed study from various points of view.

1. BAsic EXAMPLE
Z DOHITIL, Green (2L 5 Schur %0545 T Dipper-James B (281415 ¢-Schur
RF%EE A L, Beilinson-Lusztig-MacPherson (Z £ 5 ¢-Schur fRED MR EH O &
ol T7 AT T 2T 5.
e: An) =k, A:An)— A(n) ® A(n)
ZLUTOEIICERT D E (An), e, A) ITRARETH 5.
e(Xij) = 5ij> A(XU) = ZXZk ® ij.

k=1

A(n,r) % A(n) OUHr DFRSERRKET S &
A(A(n,r)) C A(n,7) ® A(n, )
ThY, dimA(n,r) = (") TH .
Definition 1. S(n,r) = Homy(A(n,r),k) % Schur fif& L 5.
e 15 S(n,r) DEMLETHSD. E7z, A(n,r)-mod = S(n,r)-mod TH%.

1.2. Schur REEBAT 2EM. & & REPK, G = GL, DBBSRE k(G = A(n) %]
¥ %L, G(k) = Hompay(k[G], k) = GLu(k) TH 5.

Definition 2. k[G]-comod % GL, (k)-mod &7><. GL,(k)-IEE V BNZEAMBEE (3,
RINBES Ay 0V 5 VREG) OBBV @ An) IZEENDH L EE2 V).

TR D GL,(k)-MEEE det®? @ — ZBROTZIEANMBETH D,
V(n,r)={v e V]|Ay(v) e V® A(n,r)}

EBE, V=a,5V(n,r) THY, V(n,r) L AMn,r)-RINEETH D02 A TRKIC GL, (k)-
IMBEDOYEE OWFTED 2% <1 S(n, r)-IEEOMTEIZIRET 5.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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1.3. Schur-Weyl ##HE##. (A®Id)oA = (Id®A)o A £V A(n,r) i (S(n,r),S(n,r))-
WP CTH 5.

D(n,r) =k[Ty,...,T, @D n,7), T(n,r)=Homyay(D(n,r),k)

r>0

EF 5. D(n,r) BHIEA AT p = (1, .., pn) € L0, |l = 7} ZHIRITH 2. BOFILIK
{&.} 12 T(n,r) DIETHS. D(n,r) %

(i) =1, AM)=T.oT
LW RRETH D0, T(n,r) iE ("7 koK Th o,

1= & &b = 0wl
I

L, ZHEEHTH D15, T(nr)CS(nr)kuO\_kkﬁ"é _ODE%, A(n,r) IZ
(T(n,r), S(n,r))-MHNEETH L2006, Bxfz &iud weight 53 fiF

=D S S0 = 500,

WEBND. E % GLy(K) OEZEMEEE T 5.

Lemma 3. r <n &£32&, 1nS(n,r)éary =~ kS, THY, (S(n,r), kS,)-F AR
S(n, T)é(lr) ~ E®" DY 3D,

Theorem 4. (1) End;gs, (E®") ~ S(n,r).
(2) 7 < n 7251 Endgp (E®") ~ kS,

Definition 5. Homg, ) (S(n,r){qr), —) : S(n,r)-mod — kS,-mod % Schur BF &\ 5.
1.4. g-analogue. k[G] % k,[G] (2§25 &, kS, 1T A Hecke REUCE E#D 5.

B T (U(ws;) > L(w))
— wEBTkTw, T.,T; {qT (- DT, (L(ws;) < L(w))

L, s =(0,i+1), T, =T), T 0(w) 1t w OB THS. T € Endy(E®?) %

Te, ®ej = ae;@ei (1<)
e e;®e+(qg—1e;®e; (i >7)

TEDDE, T,=1d* QT RIA* 112k E® 13 HA(q)-MEEZ /2 5.
Definition 6. Sy(n,r) = Endya ) (E®") % ¢-Schur k&5,
n>r 726I1E, S,(n,r) 1% S,(r,7) Ki%ﬁﬂéﬁ{[ﬁf“&é.



1.5. BRALO—EERE. G = GL,, G(q) = GL.(F,) D B(q) % Borel #57#t& L,
M =kB(q)\G(q) 4 G(q)-IEEL T 5. q#0€k LIET DL HA(g) ~ Endgg)(M)
ThHO, MIix (HA(q), kG (q))-MHIMEETH 5.

p= (B, b)) € L5, [pl =7 THDHEL, Sy & p OITREEACEIRE, 2, = e, Tw
&9 %. Dipper-James (3R &7~ L7z,

Theorem 7. Endg ) (®pr, M) = Sy(n,r) THD.
P.(q) & p \ZkIES 2 G(q) OIS aREL 75 & o,M = kP,(¢)\G(q) TH DM 5,
X(q) =UuG(@)/Pulg) ={0=Vo C V1 C--- CV,, = g}
EBITIE, Sy(n,r) 1T X(q) x X(q) EOBEIHAHLNREE LTHBTES,

B, I RIREETHD. K, L 2 AR H OMOHEL L, 1k, 1y Z BRI
& U CESINEEZ

lx @k kH = €D kIKh], 1@ kH= @ k(L]

he K\H heL\H

k 7‘7))< . T e L\H/K b:;(‘j‘b Pz c HOIl’lkH(lK ®kK ]{}H, 1L ®kL ]{}H) %_’
po([Kh)= > [LK]
Lh:h'h—leLzK
PRI A HLGT
INH/K ~ H\H x H/L x K
% LzK — (L,zK), (zL,yK)— Lz 'yK \ZXVE®, LzK 235325 H/L x H/K
O H#uEx O, <. T5&, 0, DR
1 ((zL,yK) € O,)
1,(zL,yK) =
ok vk) {0 («L,yK) & O,)
ZRAWT
0o([Kh]) = 1,(h "' L,h ' K)[LK]
Lh'!
L72%. LK, J % H O REE L, CEH(H/L x H/K) & CH(H/K x H/J) %% %
H/Lx HK EBXO H/K x H/J L0 H- AR -ERO 37 FLVERETS
&, feCHH/Lx H/K),g€ CH(H/K x H/J) \{Zxt LT, BAHALFEN

frglal,2J) =Y f(zL,yK)g(yK,=J)

yK
WLV ERIND.
Proposition 8. (1) ¢, — 1, ICL DV KROXT MVEBORIZ1G5.
Homyp (1x ®px kH, 1, @i kH) ~ C*(H/L x H/K)
(2) LOREIDE LT, 00, X1, % @3&:%;5&5,



X #LTFOLIED, FAlsiz X(q) Ln<.
X = | ] G/P,
ln

p=(l1 s pin )i | =r

Corollary 9. Sy(n,7) I3 CW(X(g) x X(g)) & k-t LTHRTHS.

O=WC---CVo=F, 0=WyC---CW,=F,) € X(q) x X(q)
(L,
V,nw,
VioanW; +VinW;_4
&}5< k A= (aij) € Matn(Zzo) T&)ZD
X(q) x X(q) O G(g)-BLEILL T O LS Ik Sns.
Lemma 10. X(q) x X(q) = {A = (ai;) € Mat,(Z0)| Y2, ;a5 =1} OF 7 7 A 73—
22 O&EDD G(q)- BB B2 5.

Corollary 9 DEAIAAFEIC L HF% b L1, Beilinson-Lusztig-MacPherson 13 Q;[q, ¢~
T HAERIZH D Sy(n,r) O/ FERZ G X7, ZZ2TqlIRELTHS.
2. AFFINE {b &1B1b

ZOHITIE, RETE _ EOREREDF B CEE 7 affine Hecke {4%% &, Drinfeld (25D
A SN T21R1E affine Hecke {fREUZ DWW CREHT 5. 26 DRETITE Y =2 7 —FKBN
HEVMIRINTWNR2NDT, TV 27 —RKREOMENPELZ ENLEENLTND

2.1. A & Hecke f£#1®D affine 1t.

Definition 11. A %! Hecke ft#% & Laurent ZHEABROT > YV LVHE Ha(q) = HA(Q) ®
kIXE, ..., XH

A _ Xsi/\
Xi
Xz+1

VD IR A AN TR ONORE A AR (JEK) affine Hecke {R0EL & FE5.

KRtk XE, . XE T, Ty, BABMER S
(T, - q)(Ti +1) =0, TTinT, =TT, T =TyT; (j#i+1).

T,X» = X5 + (g — 1)

XX, =X,;X;, X X'=X'X,=1.
TXT, = qXo, TX;=X,T, (j#i,i+1).
ELTERLTH L. affine Hecke REDIR b ZE DT, 2ix; = xvjo; ZIRE LT ET

(¢—1)°
2

T,:sl—l—(q—l)tz—l— ui—l—-“,

(g—1)°

X,=q¢"=1+(q—Vax; + 5 xi(z; —1)4---
& LT, EAREBAIIRAL (¢-1) D 27)*\’4JJJ:@IE7%@§’JFE'T5.




Remark 12. FBE, 2WROHEETHIT LI LT2L, T T2 =(¢— 1T, +q IZRA
LT

si+ (0= D@siti) + (@ = V(5 +siw) + - =14 (g = D(si + 1) + (g =1t + -
(¢—1)

T Ts = 8i8i418: + (35i8i415; + 8iSip1 + Siy15i + 1)

2
(¢ —1)
4
L5ne, TTnT, & TonTiTw, % 2ROEETBEE LI ETHE 5 = 501 &
o TREBRAN S SENTETLE .
X, %Elq:1 = atd O%Xi|q=1 =z THLING, TXT, =qX;y1 OMiA% q THIY
LTqg=1¢&B< &

+

(35i8i415; + 28iSi41 + 25418; + 28 + 541 +2) + -+

Sz—f—]_ Sz—’—l

5 S; + Six;S; + SiT =1+wi

wiiﬁb%, ST — Li+18; = —1 ffﬁg‘é ﬁ%@l EX] = XJE (] 7é Z,Z+ 1) 75)5 Sixj = XjS;
(j#£i4,i+1) 2155.

T, k[r] & 1EBSEAB L LTUTFO X 5108 affine Hecke R¥E EF%T 5.

Definition 13. 1Bfb affine Hecke &L H,, &%, AERICDS s1,. .., 801,21, ..., Tn, WA
ESLER

s =0, 58415 = Si4+15:Si11, sis; = 8;8 (j#1+£1).
T = T;T;,
SiTi — Tiv1Si = —T,  Sx; =x;8; (J # 4,0+ 1).
TERIND kr|-RETH 5.

RIFBEOREER & ZTHABROT >V Y VIEH, = kS, QFk[r][zy, ..., 2,] T 8i7 — 3518 = —T,
sixy = x5 (J#4,1+1) LW ZHBRZ 52 TIHON LRI E WV ->TH L.

2.2. Lusztig D#ER. X % G = GL,(C) OEZERIE, g = gl,.(C),
X = {(z,b) € g x X|b I% z-stable}

LY 5. X U (g,t)(x,0) = (172 Ad(g)w, Ad(g)b) 12X 0 G x C*-ZHkETHD. AT g
H G x C-BERIRIZZRY, p: X g ZH1IRG~DHE LT DL p FRELGRTHS.

K = RpC € DY (g)
B <. WIT Lusztig DEHTH 5.

Theorem 14. EndDGch(g)(K) 1Z C EdiB{k affine Hecke 3% H,, E[ETHY, Z D
FRO S &C, End)gex,,(K) 1L CS, ER—HEND.
_5—
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2.3. Tl - HARBEF. g=gl.(C) T5. O ZHRAEK g-MEETH-T, VA NfiE
% 45 Borel #8457 Lie BRICBE L CRFMARTHL L ODRTEET 5.

h=Cy®---®Cy,, h"=Cz;®0---®Cux,
&L, Xebh* ODEDLFLFEIEL
Xa: Z(g) = Clyr, -,y = C
ET 5. ZZTHHEED b ~OIERIT dot TEHwod=w(A+p) —p THS.
O:@A@m
ERLEEICAEDECE O bEMOMIND. M e O IZHL, M=a,MYN Lin<.
Q=) E;®E,cg0g
ij=1
LEDDH. E & g DERKBETS.

Lemma 15. M € O IZ%tL, M @ E® X%k OVERIC X v B{b affine Hecke 43 H, @
RENFETH 5.

Si'ﬁQi,i—&—l (1§Z<’f‘)
xj'_>n_1+20§i<j9ij (1<j<r)

ZIT, Qi ixQx i BEDE JEOOT U YNVESIHMERSELERFZTHY, M %
0 FEDDT > VIV ERA TN D.

Theorem 16. p ZXFAVIE T =4 KN, L(u) % p Zim Y oA MTHOFERKICBER g-
MBEE 2 5, L(n) @ B 1% (U(g), H,)-FIRIEECd -

(a) Endyg)(L(pe) @ E®") 1% H, OERETH 5.
(b) Endy, (L(p) ® E®7) 1% U(g) ORA{ETH 5.

ZuiE skew iR Schur-Weyl FHAEETH 525, £V 2 7 —ROBUZITEL TW WO
T, WEEPEEND.

Definition 17. F) : O — H,-mod ZIXK TED, i)l « 8RBT & M5,
Fi = Homy (g (M(A), -)
7=72L, M(A) X Verma MEETH 5.
JIEFF-31F & 4172 multisegment
i +n—10+n—2], [po+n—2X+n—3],..., [ttn, A\n — 1]

BEEZD., ZZTAEGE, ADp ThHhDH. plHTORINREVIAIZITEA TVWD &I
RO 722, ZDIEF-31F b7z multisegment (% H, DRI H—,, D 1 RITHN
EChr_, ZEDD. KIE Arakawa-Suzuki 1T K 5.

Theorem 18. M(\,u) = H, ®y, , Cyy EB< L, Fx(M(p) = M\ pu) THY,
Fy(L(p)) ZEERINFETHS. 6



VD DFERITND Fy\(L(p)) #0 0 bBxT<ND. 722D & LA p) = Fa(L(w))
EBITFIX L p) = Top(M(\, 1)) THD. Fy i skew Schur BF & LEREHEDTHY,
RV EY 2 7 —ROBIREBEEND.

Remark 19. H,-mod — Y (gl,)-mod &\ 5 BFH & YV, Drinfeld BT & FHINS.
Remark 20. Clt,t %" @ C[t]-EBMEEDH] {L;}icz To o> T

(1) L; ®cpy C[t, t71] = Cl¢, t71]®",

(2) -+ CL;CLiyy C---,

(3) tL; = Li_,.
BRI TH D% Bz T ¢-Schur IOV IZ affine ¢-Schur REEZ 5 5.

3. BC Bl ~¥iakE

3.1. Schur X#. G =GSps, £ T 5. EFEMNEEE T ey =eop,...,60 =€pp1 & LT
E = (&L kei) ® (B ker)

THY, (ee;)=0=(er,ej), (e,e5) =00 ITRVZMREANERIND. G OFEEIER

X kJ[G] = k[Xij]lgi,jSQn[ﬁ]/I “Cé?) D s k’[G]—mod %‘f G(k’)-mod kﬁ)< . f:f:‘ L/, 1 ﬂiyk

DILTHERINAEMA T T L THS.

> KXo — XawXjn), Y (XuaXuj — XeiXog), (1<i# 5 < 2n)
k=1 k=1

> (XieXow — XawXon) = > (X Xuryr — XujXgr), (1<4,5 <n)
k=1 k=1

ZHEAH T A(n) = k[ Xijhi<ij<on + I/ T ZRBERTH L0, r D% A(n,r) &92<.
6 AZ AR LELFEILATERT S & An, r) 1TRAREIT/2 5. Donkin (ZROE %
AL

Definition 21. S(n,r) = Hom(A(n,r), k) % symplectic Schur U5 & FE5.

3.2. Brauer {X#{. symplectic Schur X D54, Schur-Weyl #HAH D /N— FF—|%
Brauer f{(TH %.

Definition 22. w € k &3 %. Brauer f{& B, (w) LITAEIT s1,..., 8 1,€1,..., €1
& HARBAFR

s =1, 8i8i415; = Si115iSi+1, s;sj =8;8; (J#i+x1)
6? =We;, €416 = €, €i41€i€iy1 = €ip1, €6 = e;e; (j F i+ 1)
€iS; = €; = 5;¢;
5i€i41€; = Si11€i,  €i41€iSi41 = €415, Siej = €;8; (J Fi1+E1)
TERIND - THS.
WD EEIT Dipper-Doty-Hu (2 X 5.

Theorem 23. k #H#E[RAL T 5 &7)/(753‘}52%.



(1) S(n,r) ~ Endp, (—on) (E%").
(2) r <n 726X B.(—2n) ~ Endg(n) (E®").

3.3. g-analogue. k[G] % k,G] \ZT % &, B.(2n) I% Birman-Murakami-Wenzl A%
EXHDD.

Definition 24. ¢, A € k* &3 5. BMW {0k &34k Ty, ..., T & FEARBR
(T, (T~ )T+ ) =0
TTnT, =T,nTiTiya, T =TT, (j#i£1)
E T = THE, = \*'E;
ETE; =\ 'E;, E’Lj-;;:llE’L = A\E;
TEHZFEIND k-RETHD. 72721
T, - T,
q—qt
HZZ TS C B Schur-Weyl FHERDOEGA N\ = —¢ 201 1272 5.
3.4. affine BMW {#i. BMW X% ® affine {ki% Ram IZ XV EZXI 7=,

Definition 25. ¢, \,Q1,Qs, - € k* &3 5. affine BMW I & i3k e Ty, ..., Tr—1, X1
T, FEARBRDY BMW & O EABIRIZIMNA T

E\XTE, = Q. B, EiXiTi X, =AE,
TEHRIND -RETH 5.

3.5. iIB{t BMW #k. iRt affine BMW {{#%, affine BMW {REHE A X5 LLAETIZ
- CIZ Nazarov [Z LV EA I TU=.

Definition 26. w,wi,wy, - € k £ 3 5. affine Wenzl {03 & 1%, EpkichH
51y ey Sp1sClye ey o1y Ty e, Ty
T, HEARBRD Brauer A2 B, (w) OEARRELRIZINZ T
sixj =x;8 (JF#4,1+1), ex;=uzje (jF#i,1+1)

SiTi — Tiy18i = € — 1 = 18 — 8T
'S
€1T1€1 = Wr€y

ei(z; + Ti41) =0 = (z; + xi41)e;
TEHZRIND - THD.
Remark 27. X1 = TX/T, E5< &, Xy, X, WAMTHE, £2C, B =1- 00
£V fTlgm1=1—e THDHILITEAL, X;=¢" LBNT Xy =TX T, & g TH
DI NIE sz — x5 =6, — 1 DEBND.
Remark 28. g = spay, &35 &, L(p) @ E® 1213 affine Wenzl fREMER L, g OIEA
ERHATHDH. DFEV Z ZIZH Schur-Weyl fHEHENH 5.

8




3.6. affine Sergeev k.
Definition 29. Clifford B{X# C, & I1TREDZEGFDEMRTT ¢, ..., ¢, & FHARER
=1, cc;=—cje; (i#7)
TEZRIN k-BRETHS.
KIAREDIRNIEER T, Z/ERITDS b, ... b, CTHARBGRN
=1, titinti=tiatitiy, tit;j=—tit; (j#4,i+1)
TERIND L LTERTD.
Remark 30. H*(S,,C*)~7Z/27Z (n >5) ThHb.
Definition 31. Sergeev B\ &%, 87 VI T, ® C, (IR
tic; = —cjt;
HHEZTHONLIBERETHS.
Lemma 32. Sergeev #{U#IL kS, & C, OY-HEICFRATHS.

Definition 33. affine Sergeev #{CE & 1%, WERNKIT s1,..., 51, 21,..., 7, &AERTT
Cly. oy & CHEBRIN, EARBREDBLUTOLIICHEZONDHEDZEND.

(1) 81y, 8p_q (FRIFREED FEABRA A A 72T

(2) xq,... ,xr =S

(3) c1y. .., ¢ 1 Clifford BIFRZE A 727

(4) s; c] cjsl (J #1404+ 1), 8;¢; = Ciy1Si, SiCiy1 = CiS;-
(5) siay — 31 (j 7 1y + 1.

(6) sixi — xip18; = —Cicipq — L.

EFA A UL affine Wenzl U & OFLEIMEIZH 6 CTH A 5. Hifi E TSI LT
& 7= A affine Hecke %31, A 7UiB1L affine Hecke %%, affine Wenzl {253, X CH
PRKITEE Y = 7 —BERIEHO N A RO UV AX VTR END Z EBbh-o
TWBN, Brundan—Kleshchev DOFERIZ L E, affine Sergeev IO E T = 7 —REKFE
o IT AQ RO UV AX VTR E5.

3.7. g-analogue. Sergeev H{t D g-analogue HF1ET 5.

Definition 34. Hecke-Clifford fX# & 1%, ke Ty, ..., T,_1,Ch,...,C, THAEIR
MUTDEIIZHEADBND bDEWN .
(1) T,..., Tm&%%)mﬁﬁ%%ﬁ%&k?
(2) Cy,...,C, 1% Clifford BAtRI%E A 77
(3) T,C; = C’T(;«ézz—i—l)
(4) TiCis1 = CT; — (¢ — ¢ )(Ci — Cipa).

X512, affine Sergeev BERD q—analogue H7714E L C affine Sergeev @B #IT % Dk
BIZle > TWDDTH DN, T TIRERITERT .

Remark 35. Nazarov (Z X #UZ, affine Sergeev B DOBINEED 729225 Queer Lie #
RF D Yangian OENEED 729~ Drinfeld B FNFET 5.
0



4. FEW

LLERA L CEZ bbb ko, REERNRENZ SAFEMELTWT, M
Ji7 URANLVEBUR LD, BADIZBWALEZY LT, oD LEETL VN &R
HoZH B bhEd. affine Hecke I W TIEKIEIFE & W 5 & 2 7 THIRR T
DOHHITIRE SETWANWAREREEZSE L. &IFTIE, affine Wenzl W32 [F U FiEE
EoT, T XTOARKITCEIRBLZMERT D Z LTI LE LD THREZIZ Z OFERT
TJERE L TR & LET. 24T Mathas & Rui & od:FEHFFETT. L IT@mL s
TET .
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ORTHOGONALITY OF SUBCATEGORIES

OSAMU IYAMA

ABSTRACT. Let G be a finite small subgroup of SL4(k) and S := k[[z1, ..., x4]]. We will
discuss (i)—(iv) below.

(i) maximal (d — 2)-orthogonal subcategories of CM S¢,

(ii) non-commutative crepant resolutions of S¢,

(iii) tilting S * G-modules,

(iv) Fomin-Zelevinsky mutation.

0. EA

LT k21380 Dk L L, G % SLg(k) ORBEHHEL 3 5. S THRAREER K[z, , 4]
L, S TCEOARERBRERT. LT SY BIWIFHREATHD EWNETH. £/2 CMSC
T maximal Cohen-Macaulay SC-IEE (AT, HLIZ CMSC-INBE L MES) ORI 2K
AHIRA R SC-MEEDOE mod S¢ (712 CM SY) 128\ T, EEEK O #ICE 9 5 Krull-
Schmidt T O EHA AL T 5. ASCD HFE UL Auslander (2 X 5, 2R ITICEIT 5RO E
Tod 5 [A3][Y1].

0.1 T8 d=2¢%t75.

(1) S IZAMRKRBRE, BNH ERER CM SC-MNEEIEIRAL & B\ CHRME LAMFLE L2\,

(2) S¢ @ Auslander-Reiten quiver IZ G ® McKay quiver {Z—33 5. Z I TKAx D
quiver DERIIME TS (111 ZH) UTOEZENLRDL D TH 5.

S% @ Auslander-Reiten quiver | G ® McKay quiver
TEARL ERER) CM S WEA G-I
IR BN ZLe 25T TR D 5 (k)@ — TR S

L L—FTd >3, G# 10K, SC Xk L THRRBAUZ 252 0ERFEH S LD
[AR2]. X 0@ ZoRIT, LEVHG [CB] 12k 5 A[R-tame-wild ® 3 5HIH, &b
LV wild EFREND 7 T AR T D HEIZTND.

ARSCOERIL, RHBBLGG & 1T R 580805 CM SC 28§ 5 Hika R T 5 FIC
HbH. FODIZSC LEBITATICBIT L2 EETHIRENABIRS«G2EATH. Zh
3G AEEE T2 W S-MEEC, f%

(s9)(s'd') = (s9(s))(99') (5,5 €S, 9,9 €G)
EEDTZHLDOTHDH. McKay quiver 1L S x G DL % 5 2 % quiver (Mt 72 57200,
FIZH 5 Auslander-Reiten BiaalE, A BRKRZ LER° A #: Cohen-Macaulay B2, 804N
TN EHA LT EBRORIGHIZER T 2 AR Th 5 [ARS|[Y1]. Z OB 2K ITIZE
FAHEE01 THAIN, dIRITTOFELEEBLESTDH L LD 1 E TR T 5 L 912 Auslander-
Reiten BLER O @R ICIR & THMESREBENBIE SN D FN 00D [11,2]. —F TREGE

The detailed version of this paper will be submitted for publication elsewhere.
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23T SC DR FL SR OB OB, McKay xHis & LU CGEFIERFIZEA TH
% [KV][BKR]. Fx OB LT 2IRANEER S « G EOMEEE, McKay xHSIZBAN S k¢ (DR
SMCOFEREL) Lo G-FAZE S & Rp S d. £72 2 kot McKay 3 Z B8\ THRAR)
72 Artin-Verdier B [AV] 1%, BERER CMSCE-IIRE & SC OEEF SR O FISMES ORI D %S
w52 D0, FO—FEOERIERA Van den Bergh [V1,2] 12X 0 IERTHL Y L3 MigTH
(2.3) E LTHEASNE. 2D EEDIBLRNG, ASUTIHE CM SC X D (mod S*G) %
0.1 OFmEITE LTHRD. £ DORRITHA & 72 2HE&1Z, Kontsevich (2 X % homological
2T —RBME T REO R AT D, ZAEICxT 5 Calabi-Yau 54 TH 5.

3 T I AE T & oL EIBFZE [TY][13][Y2], 2 « 4 FiX LReiten & O IL[FEFZE [IR] T
F 72 McKay $HCB L THHRZRIT U D O 2 ICHBUR A TEW - F 2 EH L E T

LITFHRICE 720 R0 A, T4 13RIR (=CM $xiR) , BIH dkocseli EREATER R -
DL TH Y, RINFEE U CTHIRAERR N2 b DERT. SO0 S+ G ZAfF L LT
HELTWS. BEA Lo CMME & IE, ANBED 5 B RNEEE U CHRAE RS A 72
LODOFERTHD., FBEADIMIIBFERTH D &I, gldimA®zr B, =htp 8 RDOET
DIBRTHRVEA T T p I LTHMT A HETH Y, BER A DBPRITETH B L1, (A, A)-
L L THomg(A,R) @ A THLFLZEWRT L. il 2 1L 7# Gorenstein Be (3oa PREEER
Thb.

1. &5t Auslander-Reiten IE:H DA A
—WRIZINERE C OEEERI R ORIBFEO 2R % indC TET. £ X eClzxfLT

add X :={Y €C | Y IZ X" (n>0) ODEFKET}

EBL.XDNCOMEERT THH LI, C=add X L7 D5HFHTHD.
FFESC L SxGOERED LFELSBIERL THRS.

1.1 (1) glldim S« G =d =depthS« G 2N 5. AIH S« GIEIERBRAREHIER &
SIS LWHEEZ R T 5.
(2) Endga(S) = S* G WAL, EBITd =272 5%, SIECM SC DIEAERTTH 5.

HIt CM S ofMEARTE S OHERAER & LTS« G BB, 20X 5 A RFIA
ThD SC LREIRITN2 THD S« GORREBILET 5 L, ARKREICERIZK T 55
Th %, X013 Auslander (2 L 2RO EH [AL][ARS] 28> <.

1.2 BB AIREBATRKS EE A OFRMAREE L, KKt 2 LU F T dominant %
TER 2 BA DA IRR S EEE T D2 MR ORI — %t XSS FET 5. ZHUT A ISR L
T mod A DMEAERIE M % & 0 T := Endy (M) LB FIC LD 52 bRLD.

Z Z Cl¥ dominant IR T D EFRIT G 2 72V, HE ARSI L > TERINLH DT
&Y, HEE-TEH [GN]IZ XY depth D—FEDOFLL & A2 THENRAIRETHLFOAEE LT
B<.

1.3 Auslander-Reiten Blia D7 A4 7 7 % — 5 Tk 5 & 33U, NEEE mod A _EDR
FHICB T 2 EMBEFORNESREOBEE, L72A 9. 21X mod A 11T D H5ERS
DAFTEIL, (FFE DRI ZBRNT) BMB TN A O EZ AT 55K & 2 O 0% £
DEWVI)FEIIMAR SR, T2 T2 LWV HYEFNBINTZDOIEL, mod A BT —~VETH S
7= OZORATFEORIBIKR TN 2 L7256 THDH. T DEET Auslander-Reiten Bi@id 2
WL CTh D LWV 2 D. 19
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1.11 & CMA OK (n — 1)-EAZH 7 C D Auslander-Reiten quiver A(C) % E
5. RO R ORIRE E BARBEIAETH D L35, 2(C) PTHRESIXIndC LT5.
X,)Y €¢indCIiZxLC, Y Dsink f: Z =Y 2LV, ZOEBENSRIIEND X O E
dXY kﬁ_éﬂ#, dXY ﬁ@%ﬁﬂ% XY G:'__JII <.

ZORFRDPENET 5. FRZ 0113 d = 2 DG & AR THERHIKD.

1.12 BE £k 24580 OIK, G & GLg(k) DAREDHEE, S = k[[z1, - ,z4] &L, RE
KR SCWINIFFR A TH L EMET D, 75 & C:=add S 1E CM SC DK (d — 2)- 4L
o Td v, £ D Auslander-Reiten quiver 2(C) 1% G @ McKay quiver & —E§ 5.

2. {ERMEREFERIIRY L/ MR

1 # T, Auslander-Reiten BEii D @ik el & W 9 A0 DR IE A /7 BBl 28 A L 72
2, TOBETIEREm ERRLIBEENOENEBLET H. AR L 4 ETIHERE £ TELT
HEPHZYEE L, ZDOHFORNT N E LT CM BB N H 5, LW ) G ET 5.

S TREGRTAIZRB W T, RESRIKDESRE OM O =AREEZELBEDOFiELS LT,
Fourier-[a] HZE #2723 A < HW B TE Y | il Tl Kapranov-Vasserot [KV], Bridgeland-
King-Reid [BKR| 512 & % McKay ®f S ORIV bz, —J7 T ookl BT,

ERMEIR DN 2 0B OECRE O — A RME 2 M T D RO AR R FIETH 205, £iT
Fourier-[AHEHADT 7 4 R ESER D2 OD %Y L Hbivs . EHUIERIZIT Bernstein-
Gelfand-Ponomarev (Z & % Gabriel O EFEOFERIZHLAL /-8B T2 hh E 5 [BGP]. Sk
BFITEE OL— FRICEIT 2HBOEGRIEI TH V| Auslander-Platzeck-Reiten (2 &
%Al - fgfk [APR] Z#% T, Brenner-Butler X Vs NIZ L W HAVINEEOE L LT
IR A E Rk S fv7z [BB][M]. —J7, BURHINEE O ER B RO 5E 13 Happel M OF Cline-
Parshall-Scott (Z4aE Y [H][CPS], % 72 < Rickard [R] 12 &V, dr#BOZRHEGRICH T 5

S5 AE I DAL S D BRI IR C & 2 B RHEIR O EDY, 2.6 IR 8RR ERH L & b

2Bz b,

2.1 & T € D(mod A) PMEREARTH D &1%, LLTFD 3 &R T 5 5.

(i) pdT < 0.

(if) Hom(T, T[i]) = 0 (i # 0).

(iil) T 1, SR ITCAHBROR R ARG 72 2555 Db (mod A) pq ZERKT 5.

NHET & 2 AR AR R 2 (ERIINEE &IPS DUTF 072012, MoRE N =ARETH
L%, BRRIE L FES.

22 FE BRALTICHL, LTOFRHFIZFETH 2.
(1) A & TIHERFEETH S.
(2) A DEEHEIR T 23546 L C, End(T) 1 X T [FIFL.

& TZ ZTBondal-Orlov [BOJ (12X ¥ PRS2, 3IRICUARRFE R D 7 Lo MEH
DOEOER[FMEIZEE T %, Bridgeland O EH [B1] 2 W H % 5. Van den Bergh I3 [V1,2]
{23\ C Bridgeland O EEOBIGEA % 5 2 7208, £ Z THWHLIN TWAERNKRTH D

2.3 & ADIFERY L/ FMEHE (non-commutative crepant resolution) & 13, reflex-
ive A-EE M CT := Endy(M) 28 gl.dimT = d = depth T Z{fi7c T 6 ODFETH 5. 7272
L, AROEFRTIEIT BN ADIERHL T LoXv MEEOTH L), AXTIIHEEET 25
2D MDF%, % IMESFEIIT L.
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ZAVUIREERM I IT D7 Loy Mg (R L TR Loxy METH & FESFRIC
T5) LIRS R HRICH 2 553, Van den Bergh 135 3C [V1,2] 123 T, SEFERIZ Al #2
7 LRy MEHE EFERHR Y Loxy METHORIO & D FOIE 2 5 2 T\ 5. )b IER]
iz ED 71K 2 oL@ Artin-Verdier Biia [AV] O &R ITAL TH 0 | FERHED S AL %
% 5L, McKay xHitnZ 81 % G-Hilbert A %— 2 [IN][INj] X° G-constellation DE ¥ =
TAD— AL THL, T-MHEDED 2T 4 ZHNTND.

2.4 il SLy(k) OB 2HE G123t LT, Endge(S) = S« G LW gldimS*G =d =
depth S x G D3ERAL LTz (1.1) DT, S 13 8¢ OIER LY LoXy MEHTH 5.

*ﬁTLHiDaMSﬁCMSG®@kQL—)Lxé TETHH o7 _®$iﬁ%
TIE7R< 25 IR VFAEShD. s LN I\ﬁqz{lél@jﬂﬁ)@jt( 2)-[ELAZHS oy Bl
W %, Cohen-Macaulay T72 < reflexive & L CWA N7 — RO THD.

2.5 T M e CMAIZxL, MBS ADIERHL T L3 I\ﬁﬂp(ﬁ“(ﬁ)o A®Homg(A,R) €
add M T 5 HE L, add M 75 CM A DK (d — 2)-EAH4E T i 5 ELRETH 5.

2.6 Van den Bergh /% [V1,2] 123 T, Bondal-Orlov [BOJ 12 & 5 T4 % —fb L7-&k
Z 7L, 9%'3%* Bridgeland & ®F% [B1]|[BKR] ZHE3ET 5 FI2 KV, 3 Rochm KRR 5
E TIEH A L CRER 2 B 2 7.

B ADOEToO (F[# - FErH) 7 Loy MEHITERE N =AFRETH 2502 J)
HLADOETORET LS MiiHE: X, 1€ ]) &L, RTOIEAHY L3 MEWZ M,
(j € J) & LTRRZ, EKE DY(Coh X;) (i € I), D*(mod Endy (M) (j € J) IE2TH =4
[FE Tl 2

ZORBED D BIEFHA T LN MEHICET DK LT, REBIAERERE T D
[IR]. 712 M 7% Cohen-Macaulay CT&b 551, W THES! \—HEHE SNDLFENTH D [12].

2.7 FE A% 3/52755‘)1\_Lﬁ/\)5 EL, M k N %A @#FTT@? I//\/ I\ﬁﬂp{%kﬁ”é z
OD#E_H@M Loy %ﬁﬂ% i%%l%ﬂﬁ

2.8 ADBKMEBRTHLHE1E, LVBIKRBEAD

EE B A & 3WRonil iR RS e L, M %A0)9|5_I?§&7 LN MEHET S,
0353? A DI LS MEE R L EndA(M) SRTT 1 LA ORI 2 fZIK@F'Eﬁ
(XS MFAET . Z4UE N — Homp (M, N) J: NG 26N5%.

M=ALTHFLY, RRDND.

2.9 2 XMFIEEER AN gldim A = 3 23720, A DIERH T LoV Mg E A DR
Wt 1 LUF OERVINEE & 1T —207 5.

F 7o, ERVINBEDO —GmSE L 0 IR .

2.10 & G % SLy(k) OFRERGEEE L, B\{0} ICHHBEIZEAT2 &35, G OHEHE
D% g &3 5.

()SG@E%@#TﬁﬂVA/F%ﬁ@#Hm@L%ﬁLﬁ.%@@ﬁig’MLM

(2) (& D reflexive SE-NNFET rigid (ie. Extie(M, M) =0) TH D b DIX, H HIEA
7 LRy MEEOEFMKAFTHD. KM @#ﬁﬂﬁﬁﬁi%@ﬁfﬂ%@ﬁiﬂig LIF.

BEIZ, SO DIERHL Y L%y METHOFE LT, rigid reflexive SC-MMBEDER L RIETH D .
16—



3. mutation

Gorodentsev-Rudakov [GR] 12 & % P2 _EDOFISNT NV OSFETIE, SR FI2SE M
L7z mutation & FHIN 5 BERRHIFEDSH O STV 5. £iid Bondal-Kapranov [BK] (2
£ % Serre Bxt & £ = A E~ DS &% T, Seidel-Thomas [ST] IZ & ¥ 4¢3l 7 Fourier-[w]
HEWTH 5 twist BBF O~ & #3572, mutation X braid #ED A B R ORI FZEL T
H Y F -G OTZ Auslander-Reiten (2 K 5 @ #TPIBEER O —m L JE 2 D F L Al HE
To 5. —71 T < ik Fomin-Zelevinsky [FZ1,2] 12X V| root & & %< B8£% L 7= cluster
algebra 23 A S 17223, % ZIZIE mutation (3.5) & FEEN A G OHRIBRIENBINS.
Z O EFRIY B Buan-Marsh-Reineke-Reiten-Todorov [BMRRT], Geiss-Leclerc-Schroer
GLS] % ThH 2 6 TWna. AETH O mutation bED—FETH 5.

ZDOETIE AN Gorenstein (£ A-JIFEE L THompg(A, R) ~A) ThDEEL, CMA
DIRKE A 77 B 2%t L C mutation % E 8 5 F a2l 5H. A 2 Gorenstein Toh 5551
1%, 1.6 TEDTZZERE CMA 25, —ABEO#IEL FFOFENES /7025 . mutation 28 EF
SEEDTDIZ, =AM CMA 73RIZRT Calabi-Yau SF 2072 3 F 42 2557 5.

3.1 Bondal-Kapranov [BK] (2 & %, d IRICHRFFRE LA X (21T % Serre BOkS

Hom(F,G) ~ Hom(G,wx ® F[d))* (F,G € D*(Coh X))

ZBWHZ 9. X 78 Calabi-Yau ZERMA DR AZIEL Hom(G, F[d))* £ 722703, Ttk —fiX
O =4 B2 FH L T Kontsevich IR DEF (1) & 5 2 7.

& (1) =AE T 5 n-Calabi-Yau (n > 0) TH 5 &%, BFAIFEE
Homy(F,G) ~ Hom (G, F[n))* (F,G€T)

INFIET D 5.

(2) FFlZ, ZeBR T Lo R S HROMEEDERIE DP(lmodT) 73 n-Calabi-Yau T 5 I,
I' % n-Calabi-You ZBIR £ FES. ZOBfgl.dimD = n AL T 5. %72 n-Calabi-Yau %
JTCERAERT, TRFEETH TV D,

3.2 il G % SLy(k) DFREHEL T 5.

(1) ZEE CMSC 1% (d — 1)-Calabi-Yau TH 5.

(2) S * G 1T d-Calabi-Yau ZtER Th 5. LV —MRIC d ot FREEER [ C gl.dimT = d
L 72D B DI, d-Calabi-Yau £t TH 5.

3.3 & LLTZLEE CMA » n-Calabi-Yau Th 5 EIRET DH. Z DK, CMA Ok
(n— 1)-EAHIE C TR X €indC 25, BIOREK (n — 1)-EAH 7 2 LU
DEICLTHKRT . £9 1.8 Tih~72 n-MEn 2545

O%Tan#CnflfSlCn,an—if"'gclgCOJgX—)o

LD, ZZTL17 D n-Auslander-Reiten W xf & 3.1 @ Serre Wxf #4565 & 7, X = X
NG, 12X :=Im fi (i € 2/nZz) ITEVCIERIBREBERINEECH 2 HAR G120
2%, CM A O 5y1E %

ind py (€) = (ind C\{X}) U{X;} (0<i<n)
EEDD. ZDOWIE P DFEZE mutation & B%Z?P



— 0 X BWIL—=TEFRNEE, X ¢ add@ | C BT 55 ETH. 2TD X €
indC BNV—T7%Ff1=72W0E, C bV —T 2Rl EF 9. ZOREC O Auslander-Reiten
quiver (1.11) 13N —7"%FF/2 T, n =2 OFHIL LT D.

34 FE X BN —T%F20WibiX, LRI T 5.

(1) 1 (C) (i € Z/nz) 1% OM A DR (n — 1)-TEZH 4B C oo 5.

(2) ind C\{X} % & CM A DRk (n — 1)-EACHAEE, (1) O n EICRS.
(3) wx(C) = pk, oo uk, opuk(C).

(3) £ (pH)™ = p® =id BRI T 5. FFiTn = 2 OFf, p IIEEMOEPLE RS, F
7z, C @ Auslander-Reiten quiver 2(C) 725, pk(C) @ Auslander-Reiten quiver 2(uk (C))
ZRODLFNARETH D, TNERICHIT 5.

3.5 B&E (1) BELREESFMTIN A = (aij)1<ij< \ZxF LT, IROAEKIZ LT quiver & %f
BEED. EROEAE {12, 1} EF 5. ay > 072 BIEi 5B § ~ay KORAEH
<. i < 0 fi%ﬂij IND 4~ —aij(: aﬁ) K@%Eﬂ%ﬁﬁ< .

Z DR X0 BEEARBEERTHN E, V—T E R X 2D% A 7 VAT 720 quiver
—%—1Zxe T 5.

(2) BEEURE D TRFATIN A = (ai;)1cijer & k= 1,2, 11 505, B LU u(A) =
(bij)lgi,jgl EIROLHITED 5.

E aij + 3 (@il ars] + |awlax;) (else)

ZDFE, pp(A) EIIFITINT pp o pup(A) = AT THER DN D, ZOBRME uy, OF %
Fomin-Zelevinsky mutation & "5 [F71,2].

3.6 FE CMA 2’ 2-Calabi-Yau TH 2 LIRET H. CM A ORK 1-[EAER 57 C 12t
L,indC={1,2,---, 1} L X €indC & AREE B’ THETH. HLC & uk(C) B
LI —T EREX 20 A 7 AV ERTRO BIE, A4k (C)) = m(A(C)) BAFRSIT B,

3.7 il G = (o) C SL3(k) (0 =diag(w,w,w),w? = 1) £35. ZOK, S; = {z €
Slo(x) =w'X} (i€z/3z2) LEL &, 8% =8, T, SCHBEE LTS ~ SydS1 DSy & Hfi#
T 5. 1.12 1V add S 12 CM S¢ DK 1-EAH5E TH 523, %O mutation ZFHH 95
ETRAED LS5, 12720, M5B C % indClc k- THLTEBY, Q& Q1% SEmEE
& LT syzygy & cosyzygy T 5. mutation DEF LY, HIZ#indC =3 & Sy € indC
DRAL S D FTEEE X

F 72, BRK 1-EASER /7B D Auslander-Reiten quiver Z i\ 72 OB TRATH 5. Hilx

-3

(£2(add $) 1 1.12 & 9 G O McKay quiver k0 52 b, ThUFE#is1 (5 b

ST 5. DTN M (50 9 ) ERY, ThEa(add 05,656 5)
~18-




H2 7%, ZOREIZ L T2 TO Auslander-Reiten quiver 23 5HHE X1 5.

: 028,
{0725, 0728, S5} 3102
o, s s ass 07
(251,028, S} T
PFhrs, s, @S So QS
(051,055, So} v
\l/“sll—m T“él S — 75 QTE 2
{SDQ_SQ)SO} 6
i/#;rs2 T#§2 f§ 3 SO — Sl
N S s 5
1 Q851 T
{Q€1; SQ’ISO} Q8, 3 So <i QS
i/l‘SQ THQSQ iG
{Q‘?h QS;; SO} SO 1_5> QSl 93592
[Hes fazs T
{028;,Q55, Sy} 029, Sy <2 028,
\LN%zSQ T”slﬂsg i/gg 5

{925;,929,, 5o} S %028,

3.8 fRE BUBRIRWHER 295 5.

(1) CMA DETORK (n — 1)-EZE BT — 7 & Hi- 70 n 2
(2)(transitivity) CM A DR TOK (n — 1)-ELFREINE, add S 2> 5468 T mutation
DY IR LINZ L > THEDBILHN?

ZHUTEH LT, ROGE DRI > TN 5.
39 FHE GE3ITIHDHLDRHIE, CMSE OMK 1-EAEHSEIL, 3.7 TE T2 0
WAETTHD. KT, 3.8(1)(2) 1k & bITIE L.

4. d-Calabi-Yau & IR EDERER
G % SLg(k) DARERIHE & T D IF, 115 Btk

(CM SC Dk (d — 2)-FAHAE ) C (SO OIS Lo M )
L[S« G OHERIT LU FOBANEE Y C {5+ G OEAHERE }

£V, S+«G LOBEREIREZRET H2FHNL—2OHETH L0, ZOETIIBLEME THr-o
TV L HEEMRIZEND. 19



4.1 T % (U, T)- IO M AEAVER, T 2 (U, T")- B O mAERER E T 5. 2o
IF, T &n T 1 (D, I")-MEEO W AEREARTH Y, £72 T := RHomg(T, R) iX (I, I)-

RO THREAEIE T, TOp T2 ~T & TL&p T ~ T’ %3877,
SR D, T MORRIZ 2 LR O MR % & L, Hom(I', ) 12 (L', I")- Bt

O FANERMEIR D RIS, S DA Rkl ;’E® ET DB EBERHDENTED. ZOETIE “C@En“
(AW CTH Y, FRZEE End(D) 12 T OEE Picard 8 & MEXILD [Ye|. 3K Picard B3,
& Db(modF) O H AR D REZ AL L, IR A SN T 5 [LM] [MY][RZ]

I' =SxGDOEAEIZZOBEOHEEZRD LFHNR—2D IR L 2575, LT, BOARTT
DGR & 72 DAARHERDORERIZATNTIR RS . $f & 70 2 F 1T, S+ G 23 d-Calabi-Yau %
TLERTHLHETHD.

4.2 & T % d-Calabi-Yau Zuig (3.1) & L, ZRHEMEZR DIV FERZ H5FIT LY
basic, BiH T @ Jacobson AR AT - 5?5%3?4{4:@?%“(365 & ﬁﬂiﬁ"é.

J)H—*f FET-INEE P CHENHEEN TH L b O EEEISRS L) P IXEBEN O THE—
DORBRKE S INEE P 285>, '~ P® Q L EF/ \ﬁérb“f £ T- ﬂﬂﬁiup( ) &

pp(T) = Q" (P/P)&Q (0<i<d)

ETEDD. ZOEME ub %, 3.3 L [FERIC mutation & FES.
—J7, gl.dimT = d 72T P/ P 13/ Nt 5 fift

0O—-P,—Py1—--—>P P —P/P—0

ZFFOMN, T N d-Calabi-Yau ThDOH LY, Py~ Py =P ThODOIENEZH T on5D. PR
W—TEFRNEE, P ¢ add@| P PRSI AL TS, AT OEBEQ
N—T R T 7R W, r HoL—7 M#tm\kb\

4.3 fiE P 3N — 7 & F T, ph(T) (0 <i<d)IIHEKRITd—1— 1 OBERT-
IEETH 5. K7 Endr(ub(T)) b d-Calabi-Yau Z iR Th 5.

4.4 3FE ZoO mutation (X, L FTORIZLT3IETEDT-HLODO—RILE R IND.

Az dRIEHER L9 5. C 2 CMA OBKREAR (d—2)-FnEE L, M % C OINE
BRIt &5, ZORE T = Endy (M) 1% d-Calabi-Yau Z 0B ChH L FR LS. [LED
IEFEH X € indCizxt L, P := Homy (M, X) IZEBEIHNE T-MEETH Y, {TED
(0 <i<d)lcxt LT, ps(C) Do DIMEARIE N IE ps(T) = Endp(N) 2727

F7-, T (IERRIC i addT') @ Auslander-Reiten quiver % 1.11 & &< FFEIZER IND
N, d =305, T & ub() ® Auslander-Reiten quiver DZ{LIZBI L T, 3.6 & [FEDOE
DAL T 5.

4.5 i =0& L7z pb(D)IE T OMKEAA 7TV ThHY, PEEZDFICEIVAETOT
DEKTRA 77 DB D, ZH I Lo FOBBRE FERIT 58, = U
McKay %}its [KV] %41 L 72, Seidel-Thomas @ twist BT [ST] OFFO>MHE DO F WX T
H5.

BE G % SLo(k) OATREATEE L, T = S+ G OBATMA T T /L% mo, -+ ,my &
5L, 2t G OB L —5t—CkiE L, LT braid RIS 5.

(i) m; & m; 23 G D McKay quiver TRz L“Cl/\iﬁb\i;%.:. m; ®1" m] ~ mj ®1" m;.
(11) [Fezess LTU\Z)%/EI\, G # Z/QZ 75 i,Qr(I)Iz ®r m; ®rmi >~ my ®r m; ®1“ m;.



- PR IUN 3BT, A, B oD 2 Rt HifdiARr 5 53 0 s/ Mg O 38K IE o | Fourier-[]
EHAD T B CRPBEO ARCRDBIRE SN TV D, McKay i a3 56 FI2L D, A, M
D S * G DI Picard BEDAERGR E LT, mg, -+ -, my, 12 Aut(S x G) X° shift Z i L 722K
M D L BN DD, Tz BEEINEERA R I F ZBIRTZR .
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4.7 LT d=30%4%2%%¢+ %, 3-Calabi-Yau % tE [y =T IZx L, L FD L H I
4.3 R0 IRTHFICKY, TRt 1 OEE DN 2SR T 2 HNTE 5.
T, £ TR S 7=, /2 T, -t T, OEEEKIE K+ P, ZH0

T, := pb (T), Tnyp:= Endp, (T)

<. 2N EMD IR LT 3-Calabi-Yau ZJc8R Ty, 'y, Ty, - - - EHRL (T, Tyt )-MBE T, %
55, Z O,

(To ®r, T1 ®r, -+ Qr,, Tn)™

(IR 1 LR R (T, Ty )- M TH 5 FR S NS, T

L L L
To®r, 11 ®ry - - - Qr,, Tpy

(X (0, Ty )-INBED WAEHAMEHA T H 5.
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4.8 ffl G = (o) C SL3(k) (0 =diag(w,w,w),w’ =1) £T5. ZOFE, T := S * GIZxf
LT4.7 ZmH L T 545 3-Calabi-Yau % JtER @ Auslander-Reiten quiver %, 4.4 |2 &
DN OD—EHPKKTH 5. ZHuE 354K (Markov tree) TH V| 2 DD quiver & fi&
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BROUE’S ABELIAN DEFECT GROUP CONJECTURE

SHIGEO KOSHITANI

First of all, the result which will be presented here right now is actually a joint work with
Naoko Kunugi and Katsushi Waki [9], which should show up as an ordinary paper
in near future, hopefully. In representation theory of finite groups, especially in modular
representation theory of finite groups there are quite a few problems and conjectures which
are pretty much interesting and important. I believe that most of them have origins which
are (were) due to Richard Brauer (1901-77) who should have been a unique pioneer of
modular representation theory of finite groups. However, I guess most people might agree
that the following conjectures should be the ones if we have to choose three of them
from the problems and conjectures. Namely, Alperin’s weight conjecture (1986), Dade’s
conjecture (1990) and Broué’s abelian defect group conjecture (Broué’s ADGC) (1988).
In this short note we shall focus on Broué’s ADGC, particularly.

Michel Broué around late eighties announced the following conjecture, which is nowa-
days well-known and is called Broué’s ADGC (abelian defect group conjecture). That

is,

Broué’s abelian defect group conjecture (ADGC) (see [2], [3], [4], [5]). Let p be a
prime and let G be a finite group. Let a triple (O, K, k) be a p-modular system, namely,
O is a complete discrete valuation ring of rank one, K is the quotient field of O with
characteristic zero, and k is the residue field O/rad(Q) with characteristic p. We assume
moreover that the p-modular system (O, IC, k) is big enough for all subgroups of G, namely,
IC and k are both splitting fields for all subgroups of G. Now, let A be a block algebra of
the group algebra OG with defect group P, and set H = Ng(P), the normalizer of P in
G. Let B be a block algebra of OH which is the Brauer correspondent of A, and hence B
has the same defect group P. If the defect group P of A is abelian (commutative), then
the algebras A and B should be derived (Rickard) equivalent, namely,

D’(mod-A) ~ D’(mod-B) (equivalent)

as triangulated categories, where mod-A is the category of finitely generated right A-
modules, and D°(2A) is the bounded derived category of an abelian category 2.

The detailed version of this paper will be submitted for publication elsewhere.
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As well-known there is a wonderful and beautiful result due to Jeremy Rickard ([12],
[13]), which characterizes such a derived equivalence completely and that is a general-
ization of a Morita equivalence from modules to complexes of modules. In fact, in the
conjecture above, a stronger conclusion is expected. That is, derived (Rickard) equivalent
could be replaced by splendidly (Rickard) equivalent, which is due to Jeremy Rickard
[13]. As far as we know, so far there have never existed any counter-example even to
the stronger version of Broué’s ADGC (or we might want to call it Rickard’s version of
Broué’s ADGC).

There are several results, where Broué’s ADGC has been checkd in particular cases.
We do not want to mention them completely in detail, however, we want to say a few
words on a specific case. Namely, for the case where our abelian defect group P is just
C5 x (3, the elementary abelian group of order 9. The auther with Naoko Kunugi finally
have proved that Broué’s ADGC is true for the case where our block algebra A is the
principal block algebra and our defect group of A is P = C5 x C5 (and it turns out that
P is a Sylow 3-subgroup of G), see [6]. However, we should confess that we used a lot
of iniciated wonderful and important works done by L. Puig, T. Okuyama, H. Miyachi,

. and also the classification of finite simple groups (which we do not like, to be honest,
as a matter of fact, but we had no the other choice, life is tough ...). And then, we were
successful to check that Broué’s ADGC is true also for non-principal block algebras A
with the same defect group P = C3 x Cj5 for specific sporadic simple groups G, see [7]
and [8].

Anyhow, our work presented here is a sort of continuation of this project. Our main

result is the following:

Theorem (Koshitani-Kunugi-Waki, 2005 [9]). Keep the notation as in the conjecture
Broué’s ADGC above. Let p = 3, and let G be the Janko simple group Jy. Let A be a
unique non-principal block algebra of OG with defect group P = C5 x C3. Then, there
exists a splendid Rickard equivalence between A and its Brauer correspondent block algebra
B in ONg(P). This means that Broué’s ADGC holds for J, at least for the particilar
block A, and it turns out that Broué’s ADGC holds for all primes p and for all p-block
algebras of Jy.

Remark. To prove our main result, results of Okuyama in [10] and [11] play imporant
roles. In order to know that Broué’s ADGC holds for all primes p and for all p-blocks of
J, after we check it for our particular one single non-principal 3-block of J;, we need a

lemma which is stated in [1].

Acknowledgements. The author would like to thank Professors Tetsuro Okuyama and
Raphaél Rouquier for comments.
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INTEGRAL GROUP ALGEBRAS AND CYCLOTOMIC POLYNOMIALS !
Kaoru MOTOSE

Recently, using cyclotomic polynomials, Z. Marciniak and S. K. Sehgal [3] obtained
excellent results about units in integral group rings of cyclic groups. In this paper, we
shall give some improvements and alternative proofs of their results.

Let ZG be the group algebra of a finite abelian group G over the ring Z of rational
integers. It is well known that the units of finite order in ZG have the form +g for some
g € G (see [1], p. 262). We study the form of units of infinite order in ZG where G = (o).

Let ®,,(x) be cyclotomic polynomial of order m defined inductively by

X" —1=]]®alx).
dlm

Z. Marciniak and S.K. Sehgal [3] construct many units of infinite order using cyclotomic
polynomials. These units cover the alternative units, the Hoechsmann units [3] and
Yamauchi’s results [4].

In this paper, we study the Euclidean algorithm for cyclotomic polynomials in Z[z],
and we have easy applications to some their results in [3]. The following are well known
units. Units in 1, 2 are covered by cyclotomic polynomials.

1. The alternating units:
Pyp(0)=1—0c+0% — -+ (=1)kc"
where k is odd and (2k, |G|) = 1.

2. The Hoechsmann units (the constructible units) (see also K. Yamauchi [4]).
ok —1 ot—1 140402+ ---+ot!
where k, ¢ > 2, (k(,|G|) =1 and (k,¢) = 1.
3. Bass cyclic units,
(1+0+...+0k—1)m_£(1+g+...+0|0\—1)
where k > 1 and k™ = 1+ ¢|G]|.
Since the group algebra ZG are isomorphic to Z[z|/(z™ — 1)Z|x], our study on units in
ZG is equivalent to find polynomials f(z) € Z[z] satisfying
f(@)u(z) + (2™ — Dv(z) = 1, where u(z),v(z) € Z[z].

For relatively prime polynomials f(z) and g(z) over a field K, it is easy to compute
polynomials u(z),v(z) € K[z| by Euclidean algorithm such that

f(@)u(z) + g(z)v(z) = 1.

IThe detailed version of this paper will be submitted for publication elsewhere This paper was fi-
nancially supported by Fund for the Promotion of International Scientific Research B-2, 2004, Aomori,

Japan.
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However, over Z[x], situation is different from this. Of course we can compute
u(z),v(x) € Q[z] by Euclidean algorithm for relatively prime polynomials f(x),g(z) €
Z[z]. Thus we have

f(@)uo(z) + g(x)vo(z) = a
where ug(x),vo(x) € Z[z] and 0 # a € Z.
For example, we obtain for cyclotomic polynomials
O3(z) =2 +z+1,P6(z) =2 —z+1,
P3(z)(1—2)+ P(z)(x+1)=1—2>+1+2° =2
and we can easily show there is no polynomials u(x),v(z) € Z[z] such that
O3(z)u(z) + Pg(z)v(z) = 1.
In fact 1 = Pg(w)v(w) = —2wv(w) = —2wv(w) for two roots w,w of P3(z). We have a
contradiction such that 1 =4 - v(w)v(w) and v(w)v(w) is an integer.
Thus it is natural to consider the next problem.
For given polynomials f(x), g(z) € Zlx], does there exist polynomials u(x), v(x) € Z[x]
such that
f@)u(z) + g(x)v(z) =17
It is easy for f(z) = x and g(x) = 2™ — 1. But in general, it seems to be difficult for me
because the ring Z[x] is not Euclidean though it is a unique factorization ring. In this
paper, we shall answer to this problem in case f(z) and g(z) are cyclotomic polynomials
for units in ZG.

If m # n, then we have ®,,(x)u(z) + ®,(x)v(x) = 1 in Q[x] since ®,,(z), P, (x) are
distinct irreducible polynomials in Q[z]. Over Z[z], we can see the next theorem.
Theorem 1. Assumen > m > 1. Then we have
(1) If m is not a devisor of n, then there exist u(z),v(z) € Z[x] such that
D, (z)u(x) + @, (x)v(x) = 1.

(2) If m is a divisor of n, then we set n = mk and ko is the product of all distinct prime
divisors k. There exist u(z),v(z) € Z[x] such that

D, (2)u(z) + Dp(z)v(z) = Pk (1).
Proof. (1) If we set n =mq +r, 0 <r < m, then we have easily
™ —1
zm—1
Hence, we can use Euclidean algorithm in Z[z] and so
(2" — 1)s(z) + (2™ — Dt(z) = 2% — 1, for some s(x),t(x) € Z[z]
where d = (n,m). Thus we have

" —1 ™ —1
xd—ls(x)+ xd —1

v —=1=(zm-1)( )+ " — 1.

t(z) = 1.

Therefore, we obtain the next equation excluding cases m|n
D, (z)u(z) + Pp(z)v(z) = %gfor some u(zx),v(x) € Zx].



(2) Since = — 1 divides @y, (z) — @y, (1) in Z[z], we have "™ — 1 and so ®,,(x) divides
®y, (™) — @y, (1) where h = k—'z Let ng be the product of all distinct prime divisors n.
We set ng = kg and

(I)ko (1) - (I)ko (mhm)

u(x) = S and v(x H Byya(z0)
dle, d<t
Then u(z) and v(z) € Z[z]. Noting ;-£ = —m hm and (E ko) = 1, we have
B (2)u(x) + Bu(2)v(z) = Bm(@)u() + Epy(e™) [ Prpale
dle, d<t
= By (1) = By (") + Dy (270)")
= P (1).

Let m be a natural number and let ¢ be a power of a prime with (¢, m) = 1. Then we
can see from Theorem 1 (2) that there exist u(x),v(x) € Z[z| such that
D, (2)u(z) + Ppg(x)v(z) = p.

However, the next proposition shows that p is the smallest positive integer satisfying the
above equation.

Proposition 1. There exist no s(x),t(x) € Z[z] such that

O (2)5(2) + Prng(2)t(2) =1
for a natural number m and a power q of a prime p with (qg,m) = 1.

Proof. Let A be the set of roots of ®,,(z). Using [],, Pas(z) = ®4(2™) , we have the

next
[ 2a(n) = @,(n™) = ,(1) =p
dlm

where n € A. Thus

P =TT T ®a(m =TT T el

neA djm djm neA
We set ag = Hne A Paq(n). Then aq is an integer because a4 is a symmetric polynomial in
Z[n € A] and so aq € Z|coefficients of ®,,(z)]. Hence we have from the above equation.

p* =[] laal and |ag| = p*@
dlm
where a(d) is a nonnegative integer. Therefore we have
p(m) =1A] = a(d).
dm
Using Mobius inversion formula, we obtain

= pldu(~

dlm
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For a prime 7,

. . o re2(r — 1)2 for e > 2,
a(r) = o(r) — o(r 1)_{r_é ) for e = 1.

Since (i) is multiplicative, a(i) is also multiplicative. Thus if «(i) = 0, then ¢ = 25 and
7 is odd.

On the other hand, it follows from the assumption that ®,,,(n)t(n) =1 for n € A and
80 am = [[,cpn Pmq(n) = £1. Thus |a,| = 1, and so a(m) = 0. This implies m = 2¢, £ is
odd, and ¢ > 2. Hence we have a contradiction for £ > 3 by above arguments

1 = ®op(—z)s(—x) + Pogy(—x)t(—2) = Pp(x)s(—2) + Dyy()t(—2).
We have also a contradiction for £ =1 by ®3(—1) =0
1= ®y(—1)s(—1) + Doy (—1)t(—1) = pt(—1).
Remark 1. It follows from ®,,(z?") = ®p,pe (€)@, (27" ) for (p,m) = 1 that
s () = @, (z)” = or ®,,(z)”" mod p.

We can see from Theorem 1 and the above that the ideal of Z[z] generated by
®,,(z), P, (x) (m < n) can be calculated as follows:

_J (p,®wm(z)) if m|n and 2 is a power of a prime p,
(@), #o(a)) = { PO i

The first part is an alternative proof of Proposition 1.

In the remainder of this paper, we consider our problem about 2™ — 1 and ®,,(z).

Theorem 2. Let mg be the product of distinct prime divisors of m. If my is not a
divisor of n, then there exist u(x),v(x) € Z[x] such that

(2" — Du(x) + By H O (1)
[(mg,n)
Proof. We may assume that m = my from
(zm)70 ~1
-1

We assume d is a divisor of n. If d is not a divisor of m, there exist uq(x),v4(z) € Z|x]
from Theorem 1 (1) such that

Q4(z)ug(z) + @ (x)v4(z) = 1.

v4(z) € Z[x] from Theorem 1 (2) such that
P4(z)ua(r) + P (w)va(z) = Pm(1).
Thus we have from z" — 1 =[], ®a(z)

(" — Du(z) + Do H dm
gy e

®,,(7) = By (z70) and (z70)" — 1 = (2" — 1) -

If d is a divisor of m, there exist u4(x),



Theorem 3 (Marciniak and Sehgal [3]). Let mg be the product of distinct prime divisors
of m. If t = 2 > 1 is not a prime, there exist integral polynomials u(z), v(z) € Zlx]
such that

O, (z)u(x) + (2™ — v(z) = 1.
Proof. We may assume m = my from the same reason in Theorem 2.

If ¢ is not a prime, we have ®= (1) = 1 for all d|(m,n) because %7 = Ty is 10t a prime
since t = (mmn) is a divisor of (W’L” D= .

Remark 2. If ¢ is a prime p, then we have
D, (z)u(z) + (2" — L)v(z) = P4(1) = p.
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HOCHSCHILD COHOMOLOGY OF STRATIFIED ALGEBRAS

HIROSHI NAGASE

1. INTRODUCTION

When studying Hochschild cohomology it is natural to try relating cohomology of an
algebra B to that of an ’easier’ or ’smaller’ algebra A. One such situation is that of B
being a one-point extension of A, which has been studied by Happel[5]. More recently,
Happel’s long exact sequence has been generalized to triangular matrix algebras, for
example by Michelena and Platzeck [6], C.Cibils, E.Marcos, M.J.Redondo and A.Solotar
2] and E.L.Green and O.Solberg [4].

We would like to suggest to try further generalizing these results. Natural generaliza-
tions of directed or triangular algebras are stratified algebras (when just keeping good
homological connections between B and its quotient A).

2. PRELIMINARIES

Let k be a field. Throughout this paper, all algebras are finite dimensional k-algebras
and all modules are left modules unless otherwise stated. For any algebra A, we denote
by A€ the enveloping algebra A ®; A°®. We prepare the following lemma for the next
section.

Lemma 1. Let X be a A-B-bimodule, Y a B-C-bimodule and Z a A-C-bimodule. We
have the following isomorphisms:

(1) If Tor?(X,Y) = 0 and Exti (Y, Z) = 0 for all i > 1 then, for any n >0,
Ext’_o(X ®3Y,Z) = Ext”_,(X, Home (Y, 2)).
(2) If Tor?(X,Y) = 0 and Ext',(X, Z) =0 for alli > 1 then, for any n > 0,
Ext’_o(X ®p Y, Z) = Ext?_o(Y, Homa(X, Z)).
Proof. See Cartan-Eilenberg’s book [1]. O

Lemma 2. Let I be an ideal of an algebra B. If Extly.(I, B/I) = 0 for all i > 0, then
we have the following two long exact sequences:
(1) --- = BExt%.(B,I) — Ext}.(B, B) — Ext}.(B/I, B/I) — Ext% (B, I) — -- - ;
(2) -+ = Exth(B/I,1) — Exti. (B, B) — Ext.(B/1,B/I) ® Ext'y. (I, )
— ExtBHY(B/LT) — - -.

The detailed version of this paper will be submitted for publication elsewhere.
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Proof. We denote B/I by A, the inclusion I — B by f and the surjection B — A by g.
We consider the following commutative diagram with exact rows and columns:

I

Exti2(I, A) —— Extil(1,1) =5 Extil (I, B) —— Extiyl (I, A)
5t

A . . .
Extin (4, A) ——1s Exth. (A, 1) —— Extl (A4, B) —— Extl.(A, A)

i—1 %

9ga ar 9ga

. B ) B .
Extt! (B, A) —=1 Extly (B,T) —— Exth.(B,B) —%— Exty.(B, A)

I

. . I .
Ext5 (I, A) —— Bxti(I,I) —— Extl.(I,B) —— Exti.(I,A).
Since Ext"(I, A) = 0 for all n > 0, we have that f! and g% are isomorphic for all n > 0.
It is not diffecult to show that the followig two sequences are exact:

i—1 51 lgA i fB i (93)7191'3 %
Exti (A4, A) ~=4 5 Bxtl (B, 1) —I— Exti. (B, B) 2%, Exti.(A, A)

and
i—1 i—1 (=6407) i fBgz i
Extz. (A, A) @ Exty. (1,1) —> Extb. (A, 1) - Exth.(B, B)
ey )_Igf
((f?)—lf};) A 5i)

Extiy. (A, A) & Bxtly. (1, 1) ~—~"% Bxtifl(A,I).

3. STRATIFYING IDEALS

Definition 3 (Cline, Parshall and Scott [3], 2.1.1 and 2.1.2). Let B be a finite dimen-
sional algebra and e = €? an idempotent. The two-sided ideal J = BeB generated by e is
called a stratifying ideal if the following equivalent conditions (A) and (B) are satisfied:
(A) (a) The multiplication map Be ®.p. eB — BeB is an isomorphism.

(b) For all n > 0: Tor®”*(Be,eB) = 0.
(B) The epimorphism B — A := B/BeB induces isomorphisms

Ext%(X,Y) ~ Exth(X,Y)
for all A-modules X and Y.

Example 4. (1) Any ideal generated by a central idempotent is a stratifying ideal.
(2) If an algebra A has an idempotent e such that eA(1 —e) = 0, then AeA and A(1—e)A
are both stratifying ideals, namely, triangular matrix algebras have stratifying ideals.
(3) Heredity ideals (used to define quasi-hereditary algebras) are examples of stratifying
ideals.
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Proposition 5. Let B be an algebra with a stratifying ideal BeB. We denote by A the
factor algebra B/BeB. For any i > 0 and finite dimensional A®-module M, the induced
morphism g4, : Ext'y. (A, M) — Ext's.(B, M) is isomorphic.

Proof. Tt is enough to show that the induced morphisms ¢, is isomorphic for any simple
A¢-module M. For any A-modules X and Y, there exists the following commutative
diagram:

Ext’. (A, Homy(X,Y)) —— Ext4(X,Y)

lg};—Iomk(X,Y) l

Ext’. (B, Homg(X,Y)) —— Ext%(X,Y),
where these isomorphisms in rows are induced from Lemmal. Any simple A°-module
has the form of Homg(X,Y) for some simple A-modules X and Y. Hence, by using

the condition (B) of stratifying ideals, it is shown that g%, is isomorphic for any simple
A¢-module M. i

Proposition 6. Let B be an algebra with a stratifying ideal BeB. We denote by A the
factor algebra B/BeB. For any i > 0, the following hold:

(1) Extjge(BeB,A) = 0; '
(2) Extpse(BeB, BeB) = Ext,p..(eBe, eBe);
(3) Extye(A4,A) =2 Ext}y. (A, A).

Proof. By Lemmal and the condition (A) of stratifying ideals, for any B-module X, we
have that
Exth.(BeB, X) = Extly. (Be ®cp. B, X)
>~ Extl 5. (Be, Homp(eB, X))
>~ Extly _p.(Be ®cpe eBe, Xe)
>~ Ext! .. (eBe, Homp(Be, Xe))
>~ Ext’p..(eBe,eXe).

Hence (1) and (2) hold. ' ' '
By Proposition5, Ext’. (A, A) = Extz. (B, A). By (1) above, Ext. (B, A) = Extjz.(A, A).
Hence (3) holds. O

Theorem 7. Let B be an algebra with a stratifying ideal Be B. We denote by A the factor
algebra B/BeB. There exist the following two long exact sequences:

(1) --- — Ext%.(B, BeB) - HH"(B) — HH"(A) — - - - ;
(2) -+ — Ext%.(A, BeB) - HH"(B) — HH"(A) @ HH"(eBe) — - - - .

Proof. By Lemma2 and Proposition6 (1), we have the following two long exact sequence:
-+« — Exth. (B, BeB) — Ext. (B, B) — Exth. (A, A) — -+ ;
and

.-+ — Ext. (A, BeB) — Ext. (B, B) — EE)JX‘L%E(A, A) ® Ext;.(BeB,BeB) — - - - .



By Proposition6 (2) and (3), we have the following two long exact sequences:
.-+ — Exty. (B, BeB) — Extp. (B, B) — Ext. (A, A) — - - ;
and
-+« — Ext’} (A, BeB) — Ext. (B, B) — Ext".(A, A) ® Ext”z..(eBe,eBe) — - - .
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LINKAGE AND DUALITY OF MODULES

KENJI NISHIDA

ABSTRACT. Martsinkovsky and Strooker [5] recently introduced module theoretic link-
age using syzygy and transpose. This generalization brings possibility of much applica-
tion of linkage, especially, to homological theory of modules. In the present paper, we
connect linkage of modules to certain duality of modules. We deal with invariance of
Gorenstein dimension, characterization of Cohen-Macaulay modules over a Gorenstein
local ring using linkage and their generalization to non-commutative algebras.

Let A be a left and right Noetherian ring. Let modA (respectively, modA°P?) be the
category of all finitely generated left (respectively, right) A-modules. Throughout the
paper, all modules are finitely generated and left modules (if the ring is non-commutatie)
and right modules are considered as A°°’-modules. We denote the stable category by
modA, the syzygy functor by € : modA — modA, and the transpose functor by Tr :
modA — modA°P.

Let T := TrQ*! for k > 0 and X := QTr. Following [5], we define

DEFINITION. A finitely generated A-module M and a A°°-module N are said to be
horizontally linked if M = AN and N = AM, in other words, M is horizontally linked (to
AM) if and only if M = \2M.

A rather different definition of linkage of modules is proposed by Yoshino and Isogawa
[9]. However, both definitions coincide for Cohen-Macaulay modules over a commutative
Gorenstein ring (see [5], section 3).

Let us start with the following simple observation which connect duality with linkage.
PROPOSITION 1. T, M is horizontally linked if and only if Extk (M,A) = 0.

We prepare the facts about Gorenstein dimension from [1]. A A-module M is said
to have G-dimension zero, denoted by G-dimyM = 0, if M** = M and Extk (M, A) =
Extho,(M* A) = 0 for k > 0. This is equivalent to ‘Extk (M, A) = Exth., (TrM,A) = 0
for £ > 0’ ([1], Proposition 3.8). For a positive integer k, we say that M has G-dimension
less than or equal to k, denoted by G-dimyM < k, if there exists an exact sequence
0= Gy — - — Gy — M — 0 with G-dim,G; = 0 for (0 <i < k). It follows from [1],
Theorem 3.13 that G-dimyM < k if and only if G-dimyQ*M = 0. If G-dimyM < oo,
then G-dimyM = sup{k : Extk (M, A) # 0}([1], p. 95).

In the following, the proofs are seen in [6].

Invariance of G-dimension under linkage is studied in [5].

The detailed version of this paper will be submitted for publication elsewhere
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THEOREM 2. ([5], Theorem 1) Let A be a semiperfect right and left Noetherian ring
and M a A-module without projective direct summand. Then the following conditions
are equivalent.

(1) G—d1mAM = O,
(2) G-dimpop AM = 0 and M is horizontally linked.

In the rest, we consider a commutative ring case and apply the above results to Cohen-
Macaulay modules over a commutative Gorenstein local ring. See [2] for Cohen-Macaulay
rings and modules and Gorenstein rings.

Let R be a (commutative) Gorenstein local ring and M a finitely generated R-module.
Then there are the following useful equations:

(1) G-dimgM + depthM = dim R
(2) gradezM + dim M = dim R,

where gradezM := inf{k > 0 : Ext%(M,R) # 0}. The first equality is due to [1],
Theorems 4.13 and 4.20 and the second one to [7], Lemma 4.8.

The combination of linkage and duality produces the following characterization of a
maximal Cohen-Macaulay module which improves [5], Proposition 8.

THEOREM 3. Let R be a Gorenstein local ring and M a finitely generated R-module
without a projective direct summand. Then the following are equivalent

(1) M is a maximal Cohen-Macaulay module,
(2) Ty M is horizontally linked for k > 0,
(3) AM is a maximal Cohen-Macaulay module and M is horizontally linked.

G-dimension is also described using linkage.

PROPOSITION 4.
Let R be a Gorenstein local ring and M a finitely generated module. Then G-dimgM <
k if and only if T; ;M is horizontally linked for ¢ > 0.

We apply duality theory on a non-commutative Noetherian ring due to Iyama [4] to the
category of Cohen-Macaulay modules. Suppose that A is a right and left Noetherian ring.
Then the functor T} gives a duality between the categories {X € modA : grade, X > k}
and {Y € modA° : rgrade,o,Y > k and pdyeoY < k} [4], 2.1.(1), where we denote a
reduced grade of M by rgradegM := {k > 0 : Ext% (M, R) # 0} [3]. Returning to our
case, we consider a commutative local ring R and a finitely generated R-module M. Then
it holds that G-dimgM > gradep M, in general. Moreover, if G-dimpM < oo, then M is
a Cohen-Macaulay module if and only if G-dimgM = gradez M by the equations (1) and
(2). Thus we can apply the above duality to the category of Cohen-Macaulay R-modules.

A finitely generated module M over a Cohen-Macaulay local ring R is called a Cohen-
Macaulay module of codimension k, if depthM = dim M = dim R — k. Put the full
subcategory

Cr == {M € modR : M is a Cohen-Macaulay R-module of codimension k}.



In order to give a duality, we need a counterpart of the category Ci. Let M be a finitely
generated R-module. We put the full subcategory

Clk =
{N € modR : rgradezy N = pdzN = k and A\*N is a maximal Cohen-Macaulay module},
where pdz NV stands for a projective dimension of N. Then we have

THEOREM 5. Let R be a Gorenstein local ring. Let k > 0. Then the functor T}, gives
a duality between full subcategories C;, and C'y.

Using the above duality, we can characterize a Cohen-Macaulay module of codimension
kE > 0.

COROLLARY 6. Let M be a finitely generated R-module of gradegM = k > 0. Then
the following are equivalent

(1) M is a Cohen-Macaulay module of codimension k,
(2) rgradegTy M =pdrTyM = k and N*T, M is a maximal Cohen-Macaulay module.
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STABLE EQUIVALENCES RELATED WITH SYZYGY FUNCTORS

YOSUKE OHNUKI

ABSTRACT. Let ® : mod A = mod A’ be a stable equivalence between finite dimensional
self-injective algebras over a field. Then ® preserves triangles in the triangulated category
mod A if and only if ® commutes with syzygy functors. As an application, we study some
stable equivalence induced by socle equivalence.

Key Words:  Stable equivalence, Nakayama automorphism.

1. INTRODUCTION

Throughout this paper K will be a fixed field, and all algebras will be basic finite
dimensional self-injective K-algebras without simple algebra summands. By a module we
mean a finite dimensional left module unless otherwise stated, and by mod A we denote
the category of finite dimensional left modules over an algebra A. In order to distinguish
an equivalence between triangulated categories from an equivalence between the additive
categories, we say that a functor is a triangle equivalence if it is an equivalence between
triangulated categories.

Happel proved in [2] that the stable category of a self-injective algebra is a triangulated
category whose translation is the inverse of the syzygy functor. Keller-Vossieck [4] and
Rickard [8] proved that the stable category of a self-injective algebra is triangle equivalent
to the quotient category of the bounded derived category by its subcategory consisting of
perfect complexes. These results give the motivation which develops invariants (of stable
equivalence) arisen from a derived equivalence, or properties of triangulated categories.
Pogorzaty [7] and Xi [9] proved that the Hochschild cohomology and the representation
dimension are invariants under a stable equivalence of Morita type, respectively. Our aim
also develops an invariant in order to clear up the difference between a stable equivalence
of Morita type, a stable equivalence not of Morita type and a stable equivalence induced
by a derived equivalence. We shall show that for self-injective algebras A, A’ and an
equivalence ® : mod A = mod A/, ® is a triangle functor if and only if ® commutes with
the syzygy functors. As an application, we shall show that the symmetry is an invariant
for some stable equivalence [5] induced by a socle equivalence.

2. A HOMOTOPY CATEGORY
We shall prepare some notations related to homotopy categories. Basic notations and

definitions are referred to [3] For an abelian category A, we denote by X* = (X", d’%) the

The detailed version of this paper will be submitted for publication elsewhere.
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(cochain) complex

dnt d?%
_>X"_1 L}X" _X>Xn+1 — ...

with d%d% * = 0 for all integers n. The shift functor T of the category of complexes is
defined by T(X*)" = X"

We denote by K(.A) the homotopy category of A, that is, the residue category of the
category of complexes by the homotopy relation. We denote by K~ (A) or K*(A) the
full subcategory of K(A) consisting of bounded above complexes or bounded complexes,
respectively.

For x = — or b, a homotopy category K*(A) is regarded as a triangulated category
whose translation functor is the shift functor 7', and for any morphism f°®: X®* — Y* in
K*(A) it induces the triangle in K*(.A)

X0 Iy (E) CU) (0 _1T>X)

TX®.
dy Tf
0 drx
A = Py, where P, is the full subcategory of mod A consisting of projective A-modules.

is the mapping cone. We will consider the case

Here C(f*) := (Y' eTX",

3. A STABLE EQUIVALENCE WHICH COMMUTES WITH SYZYGY FUNCTORS

Let A be a self-injective algebra. For a A-module X, we denote by tx : X —
Ix the injective hull of X. The stable category mod A of A has the same objects
as modA, and a morphism from X to Y in modA is by definition a residue class
in Homy (X,Y)/proj,(X,Y), where proj,(X,Y) is the subspace of Hom,(X,Y") con-
sisting of morphisms which factor through projective A-modules. The syzygy functor
Q4 :mod A — mod A is a functor naturally defined by the correspondence of an object X
to the kernel of the projective cover of X. Note that the syzygy functor induces the stable
equivalence functor mod A = mod A which is also called the syzygy functor, denoted by
Q\ or ) again.

Happel showed that the stable category of a self-injective algebra is regarded as a
triangulated category [2]. In fact, the translation functor of mod A is given by the inverse

Q' of Qy. For each morphism f X — Y in mod A, the standard triangle X g Y —

Z — X[1] is given by the sequence X g Y4 725 01X in the following commutative
diagram with exact rows

0 X =X Iy QX —— 0
] |
0 y Y 2 Z y Q71X —— 0.
h

We denote Z by C(f) and call it the mapping cone of f in mod A.



We denote by K~*(P,) the full subcategory of K~ (P,) consisting of complexes X* with
bounded cohomology i.e., H*(X*) = 0 for n < 0. Keller-Vossieck and Rickard proved the
following result.

Proposition 1. [4][8] For a self-injective algebra A, the stable category of A is triangle
equivalent to the quotient category K—*(Pa)/ KP(Py).

Using the similar correspondence on Proposition 1, we show the our main theorem.

Theorem 2. Assume that there is an equivalence ® : mod A = mod A’ for self-injective
algebras A and A'. Then the following conditions are equivalent.

(1) ® is a triangle functor.
(2) ® commutes with the syzygy functors i.e., QP ~ OOy .

In [1, Chapter X]|, Auslander-Reiten-Smalg proved that an equivalence ® : mod A —
mod A’ commutes with syzygy functors if A and A’ are symmetric algebras. Therefore the
following corollary follows from Theorem 2.

Corollary 3. IfA and A" are symmetric algebras, then any stable equivalence ® : mod A =
mod A’ is a triangle functor.

4. NAKAYAMA AUTOMORPHISMS AND SOME APPLICATION

We recall the definitions and some basic properties of the Nakayama automorphism
and the Nakayama functor for a self-injective algebra. Refer to [10] in detail. Let M be
a A-module and f an automorphism of A. The A-module ;M is the K-space M with
the A-module structure: a-m = f(a)m for a € A, m € M. Similarly we define Ny for
a right A-module N. For a self-injective algebra A, there is an automorphism v of A
such that A and (DA), are isomorphic as A-bimodules, where D = Homg(—, K). Such
an automorphism v is uniquely determined up to inner automorphisms, and called the
Nakayama automorphism of A. The Nakayama functor is defined by A" = D Homy (—, A) :
mod A — mod A, and therefore AV is isomorphic to ,A®,—. Note that N naturally induces
the equivalence mod(A/socA) = mod(A/socA), and the stable equivalence mod A —
mod A of Morita type, which are also denoted by N.

A K-linear map X : A — K is associated to a A-bimodule isomorphism ¢ : A = (DA),
if A = ¢(14). Then X is non-degenerate and satisfies A\(v(z)y) = A\(yz) for any z,y € A.

We denote @ the residue class of @ € A in A/socA. A A-bimodule isomorphism A =
(DA), induces A/ soc A-bimodule isomorphism rad A/ soc A = (D(rad A/ soc A))y, where
7 is an algebra automorphism of A/socA given by 7(a) = v(a). Therefore we have
a K-bilinear map X : rad A/socA x rad A/socA — K, (a@,b) — A(ab) associated with
rad A/soc A = (D(rad A/soc A))y.

Lemma 4. Let A : rad A/socA x rad A/soc A — K be a K-bilinear map associated with

rad A/socA = (D(rad A/socA))y. Then A@,rad A/socA) # 0O for any non-zero @ in
rad A/ socA.

For a A-module homomorphism f : X — Y, we define a A-module homomorphism
between ,X and ,Y for an algebra automorphism p of A as follows
AR f: X = Yz f(z).
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Lemma 5. Let A be a (not necessarily self-injective) algebra, and p an algebra automor-
phism of A. Then the following conditions are equivalent.
(1) p is an inner automorphism.

(2) There is an A-module isomorphism v : A = ,A such that ¢ f = (,A® f)y for any
A-module endomorphism f of A.

Lemma 5 gives the essential condition in order to characterize symmetry for a self-
injective algebra A. Therefore we have the following lemma on a notion of module cate-

gory.

Proposition 6. The following conditions are equivalent for a self-injective algebra A over
an algebraically closed field K.
(1) A is symmetric.
(2) The Nakayama functor N : mod(A/soc A) = mod(A/socA) is isomorphic to the
identity functor idmed(a/soc A)-
(3) 7: A/socA = A/socA is an inner automorphism.

Proposition 6 is not true if K is not algebraically closed field. In [6], we can see the
counter-example.

Let ® : mod A = mod A’ be a stable equivalence for self-injective algebras. We have
that &7 ~ 7/®, where 7 and 7' are stable equivalences induced by Auslander-Reiten
translations of A and A’, respectively. By [1], it follows that 7 ~ NQ%. If ® is a triangle
functor, then we have

PN ~ N'Q3,® ~ NOOA,
therefore it follows that ®N ~ N'®.
In order to preserve the symmetry for triangle stable equivalence ® : mod A = mod A’
between symmetric algebra A and self-injective algebra A’, we consider the problem

whether ® ~ N'®, equivalent to idyoqa ~ N, implies that A’ is also symmetric. However,
this is open in general.

Theorem 7. [5] Let A and A be socle equivalent self-injective algebras, sayp : A/ soc A =
N /socN'. Assume that there are non-degenerate K -linear maps A : A — K and N : N —
K such that \(ab) = XN (a'b') for all a,b € rad A and o', b € rad A" with @’ = p(a) and
b = p(E). Then the stable categories mod A and mod A’ are equivalent.

In the case of Theorem 7, we will show that this problem is true if K is an algebraically
closed field.

Theorem 8. Let A and A be self-injective algebras over algebraically closed field, and
® : modA = mod A’ be a stable equivalence defined in Theorem 7. If A is symmetric,
then so is N'.
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QF RINGS AND QF ASSOCIATED GRADED RINGS

HIROYUKI TACHIKAWA

ABSTRACT. The associated graded ring of QF (quasi-Frobenius, generally not commu-
tative) ring R is not necessarily QF. We shall prove that the associated graded ring of
R is QF if and only if R is QF and for any primitive idempotent e the upper Loewy
series of Re and eR is coincident with the lower Loewy series of Re and eR respectively.

In connection with the above result we consider for any pair of positive integers ¢, n

1 n
aring A = Klzg, 21, -, )/ (zt — —ij|z = 0,1,--- ,n), because for ¢t # n, the
Zi -
7=0

associated graded ring of A is different from A but they are both QF (=0-dimensional
Gorenstein). So we expect that for ¢t = n, A is Gorenstein even if Krull dimension > 0.
We pointed out however that if ¢ = n = 2, A is not Gorenstein, but Cohen-Macauley.
Further if n = ¢t = 3, A is neither Cohen-Macauley nor toric, of course not Gorenstein.

1. A CHARACTERIZATION OF QQF ASSOCIATED GRADED RINGS

For an Artinian ring R having the Jacobson radical J with J"*! = 0, the series :
R>JDJ?*D---DJ"D J"! =0 is called the upper Loewy series of xR (resp. Rg).
If we put A; = J¢/J! we can naturally define the multiplication of elements a+J"! € A,
and b+ J7t! € A; to be ab+ Jt € A, ;. Then by using this multiplication we make
the (formal) direct sum Ag@ A; B -- @ A, into a ring Rg. Clearly this ring Rg is positive
Z—graded and A; generates the radical of Rg. R is called the associated graded ring of
R. Cf.[3]. R and Rg may be not isomorphic to each other. Cf. Example 2.1

By Morita equivalence [8] we can assume without loss of generality that rings are basic.
Let e be a primitive idempotent of ring R. Then e + J € Ay is a primitive idemotent of
R¢ which we shall denote by e for short. If we denote the right (resp. left) annihilator of
a subset M of R by r(M) (resp. [(M)), then Soc(Re) = r(J)e (resp. Soc(eR) = el(J)).
At first we have

Proposition 1.1. If g, Soc(Rgec) is simple for a primitive idempotent eg, then the
rSoc(Re) is simple. And if Soc(Rgeg) ~ Rafa/Rad(Re)fe for a primitive idempotent
f, then Soc(Re) ~ Rf/Jf.

Proof. Let JPe # 0 and J**'e = 0. Then A,ec # 0. Let us denote the set {a € Rg|A;a
0} by r(Ay). Since A; generates the radical of Rg, by the assumption Soc(Rgeq)
r(Rad(Rg))eg = m(A1)eg is a unique simple Rg-submodule of Rgeg. Hence r(A;)eq
Aec. On the other hand r(A)eq O Ayeq by A1Aeq = 0. Hence r(A))eq = Ayeq.

Nl

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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Now take u € r(J)e. Then there is a unique positive integer j such that u € Jie\ Jitte.
As au = 0 for any a € J we have that (a -+ J?)(u+ J'+!) = qu+ JUHIH = 0 JUTD+L ¢
Ay for a+ J* € A;. Therefore u + J't € r(Ay)eg = Ayeq and it follows that j = p.
This implies that r(J)e C JPe. On the other hand r(J)e O Jfe by J(J”e) = 0. Hence
JPe = r(J)e. Further JPe can be identified with A,ec because J*le = 0.

Now R/J can be identified with Rg/Rad(Rg). From Rad(Rg)’eq = Ayeq is simple
as a left Rg-module it follows that r(J)e is a simple R-module.

The latter statement follows from that fgA,eq # 0 if and only if fJfe # 0. This
completes the proof. O

Following Thrall [12] a ring R is said to be left QF-2 if the socle of Re is simple for
every primitive idempotent e. Then we have immediately

Corollary 1.2. R is left QF-2 if Rg is left QF-2.
Now we shall prove

Theorem 1.3. If Rg s QF, then R is QF.

Proof. By the assumption that R is basic there is a set of primitive idempotents e; such
that 1 = Zei and Re; # Re; for i # j.

=1

Since Rg is QF, for all e;, Soc(Rgei.) = r(Rad(Rg))e;, = r(A1)e;, (resp. Soc(e;,Ra) =
eicl(Rad(Rg)) = €ixl(A1)) is a simple left (resp. right) Rg -module.

Hence by Proposition 1.1 r(J)e; (resp. e;l(J)) is a simple left (resp. right) R -module.

On the other hand it holds that rl(J)e; ~ rHompg((e;R/e;J)r, rRRr) and as is quoted
above gl(J)e; is simple. Similarly e;r(J)gr ~ Homg((Re;/Je;, RRr) is simple.

Therefore by [6, Theorem 2.1] it holds the duality Homg(—, RRr) between the cate-
gories of finitely generated left R-modules and right R-modules. and hence R is QF'. Cf.
also [5]. O

In Example 2.1 we shall show that both the converses of Corollary 1.2 and Theorm 1.3
do not hold.

Now it needs to give a characterization of QF ring R for which the associated graded
ring Rg is QF.

We say that the series : Re =r(J"™)e D r(JP)e Dr(JF HeDd---Dr(J)e D r(R)e=0
is the lower Loewy series of Re.

In their book [2] Artin-Nesbitt-Thrall proved that subquotient modules J*e/J*le and
r(JPH1=F)e/r(JP~*)e have non-zero isomorphic constituents for every 0 < k < p. Then
we have the following question:

Which kind of rings do satisfy the coincidence of every non-zero isomorphic constituent
of Jke/JF1 with Jke/J*He itself ?

We can provide Proposition 1.4 as an answer to the question.



A positive Z-graded ring R = Ag® A1 D ---D A, is called to be standard if A; generates
the radical of R.

Then we have

Proposition 1.4. If R is a standard positive Z-graded QF ring , then the upper Loewy
series of Re coincides with the lower Loewy series of Re for any primitive idempotent e.

Proof. For a primitive idempotent e let Re = Apge & A1e @ Are @ ---® Aje, p=n,bea
grading of Re. Then A;Aje C A, ;e and the rad(Re)= Aje® Are® --- ® Age.

Then from the assumption that R is QF it holds that gl(J)e = r(J)e = Soc(Re) =
JPe = Age.

Assume that 7(J*)e = J**1~%¢ for an integer s > 1 (as pointed out above this assump-
tion is satisfied for s = 1), and suppose that r(J**)e # J°~%¢ for r(J*T')e D JP~%e.
Then there is 0 # y = Z y; € 7(J*)e such that 0 # y; € Aje. From 0 = J*tly =
ISj<p—s

J*(Jy) it follows Jy € r(J*)e = J*™ e = @, 1 _,<; Axe.

On the other hand Jy = Z JY; € Bi<jcpsAjrie = Bry1<heprii—s Axe.
j<p—s
Hence Jy = 0. Then Ay, = 0 since A; generates J and y; € Ajefor I < j < p—s.
This implies y; € A e and this is a contradiction because [ # p.
Therefore we conclude that r(J5™)e = JP~%¢.
Now by induction on s we complete the proof. O

Corollary 1.5. If Rg is QF then for any primitive idempotent e the upper Loewy series
of Re and eR are coincident with the lower Loewy series of Re and eR respectively.

Proof. Let Jfe # 0 but J**le = 0. Then by Proposition 1.4 it follows that

(Rad(R¢))" ™ *eq = Sock(Rgeg) = r((Rad(Rg))*)eg for k =1,2,--- | p.

Now we want to prove that J*T17%e = Sock(Re) = r(J*)e for k =1,2,--- , p.

Suppose x € 7(J¥)e \ JPH17*e since JPT1 ke C r(J¥)e. Let j be the maximal integer
such that z € J7 \ Jitte. Then j < p+1—k. For z + J7™' € Ajeq it holds that
Ap(z + J7e) = (J*/JH) (2 + JiTle = 0 + JiT ke = 0. This implies that = + J7le €
’T‘(Ak)eg = ’T‘(Alf)eg = T((Rad(Rg))k)GG = Rad(Rg)p+17k€G = (Ap—&—l—k@Ap—&-?—k@' s )6@.
Thus we have j > p+ 1 — k. But this contradicts to j < p+ 1 — k.

We can prove similarly that eJ°" =% = Sock(eR) = el(J*) for k =1,2,--- ,0 , where
eJ? # 0 but eJ°! = 0. This completes the proof. O

Proposition 1.6. If R is QF and for any primitive idempotent e the upper Loewy series
of Re and eR are coincident with the lower Loewy series of Re and eR respectively, then
the associated graded ring Rg is QF'.

Proof. Let JPe # 0 but J**le = 0. From the coincidence of series of the upper Loewy
series and the lower Loewy series of Re it follows that r(J')e = Soc'(rRe) = JF1 e, i =
1,2,---, p. And especially Soc(Re) = JPe is a simple left R-module since R is QF.



For z € J*e \ J**le and k < p — 1 suppose Jx € J*+2e = Soclrt1-(k+2)}(Re). Then
JUt2=k+2}y — 0 and 2 € 7(JP*)e = J**1e. But this is a contradiction.

Therefore if k < p — 1 and if z + J*e #£ 0 € Areg = (J*¥/J*)eg it holds that 0 #
Ay (z + J*e) € Ayyieq. Therefore Soc(Rgeg) = r(Rad(Rg))eq C JPe = Rad(Rg) eq.

As r(Rad(Rg))eq 2 Rad(Rg)Peq we have Soc(Rges) = r(Rad(Rg))eq = JPe, which
can be considered as a simple left Rg-module because J”e is a simple left R-module.

Now it is clear that Hompg,(ecRa/ecRad(Ra), rgRar,) =~ m(Rad(Rg))eq.
This implies that the dual module Hompg,(ecR¢/ecRad(Rg), r,Rar,) of a simple right
Rg-module egRg/eqRad(Rg) is a simple left Rg-module.

Similarly we have that the dual module Hompg,(Rcec/Rad(R¢)ec, rgRar,) of a sim-
ple left Rg-module Rgeg/Rad(Rg)eg is a simple right Rg-module.

Therefore by [6, Theorem 2.1] it holds the duality Homg,(—, r,Rcr.) between the
categories of finitely generated left Rg-modules and finitely generated right Rg-modules.
Hence Ry is QF. O

Now by Propositions 1.5 and 1.6 we have the following characterization of Q) F associated
graded rings:

Theorem 1.7. The following conditions (i), (ii) and (iit) are equivalent to each other:

(1) The associated graded ring Rg is QF,

(i7) R is QF and for any primitive idempotent e the upper Loewy series of Re and eR
are coincident with the lower Loewy series of Re and eR respectively,

(13i) R is QF and for any primitive idempotent e; and integer 0 < k < p; it holds that
rJ¥e;/J* ey ~ RHompg(e; JP 7% /e; JP "1 rRR) (resp.e;J* /e; JF T ~
Hompg(rJ° *e;/J° ke, RRR), where JPie; # 0 but JPitle; = 0 (resp. e;J% # 0 but e;Joi Tt =
0).

Let m be a Nakayama permutation of QF ring R on the set of all non isomorphic
primitive idempotents e;, 1 = 1,2,--- , n.
Then it holds that rRex(j)/Jex;) ~ rRHomg(e;R/e;J 5, rRRR).

Corollary 1.8. Rg is QF if and only if R is QF and for any primitive idempotent
e; it holds that rJ*e;/J* te; ~ @7 n;; X Reﬂ(j)/(]ew(j) for a direct sum decomposition :
e; JP R e, PR, ~ ©f ni; X ejR/e;J, where n;; x ejR/e;J means the direct sum of n;
copies of e;R/e;J.

As indecomposable commutative algebras are local, for them there are no difference
between QF-2, QF-3 and QF rings. Hence Theorem 1.7 and Corollary 1.8 are considered
to be results for non commutative rings, though Theorem 1.7 seems to be a generalization
of Tarrobino’s result [4; Proposition 1.7] for 0-dimensional Gorenstein algebras.
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2. EXAMPLES

Example 2.1. (i) Let R be an algebra over a field K defined by the following quiver.

z° = vu
x 0 = uv,
T 0=2av
0=ux

u || v

Then the K-bases : R = {ey,r,2% 23 u; 62,1)} J = Rad(R) = {z,2? 2%, u;v}, J* =
{z? 23},J3 = {23} and J4 {0}. By 0 7£ z® = vu and 0 = uv, R is not commutatlve As
’T‘(J) = K23 ~ Re;/Je; and 7(J)es = Kv =~ Rey/Jey, R is left QF-2.

It happens however that (v + JZ)(u + J?) =vu+ J* =0 € G(R) for the contrary vu =
3 #0 € R. Then r(rad(G(R)))e1 = K (u+ J?) + K (a® + J*) ~ G(R)ez/Rad(G(R))es
G(R)e1/Rad(G(R))e; is not simple. Hence G(R) is not left QF-2.

This shows that the converse of Proposition 1.1 does not hold.

The next example (ii) shows that the converse of Theorem 1.3 does not hold.

(i)

3

x> = vu,

x y? = uv,
“1“ 0= zv,

0 =ux,

0 =wy,

Yy 0 = yu.

Then the K-bases = {e1,z, 2% 3, u, es,y, v}, where e; and e, are primitive idempotents.

By z? = vu and y* = wv, R is not commutative. J = Rad(R) = {z, 2% 2%, u;y, y*, v},
J? = {x?, 23 y*}, T3 = {2}, JP=0. r(J) = {23,y*} = (J),r(J)ey = Kz ~ Rey/Je;
and r(J)ey; = Ky? ~ Rey/Jey. Hence R is QF.

As (v+J?)(u+J?) = 04 J?% and (y+J?)(u+J?) = 0+ J3, Soc(Rg(e1)g) = K(u+J?)+
K(z® + J?) ~ Rg(ez)q/Rad(Rg)(e2)e @ Rg(e1)/Rad(Rg)(e1)g). Hence Soc(Ra(er)q) is
not simple. Therefore Rg is not QF.

We know that the upper Loewy series of Re; and Rey are (1,142,1,1) and (2,1+2,2)
respectively. On the other hand lower Loewy series of Re; and Rej are (1,1,2+1,1) and
(2,1 + 2,2) respetively. From Theorem 1.7 it follows also that Rg is not QF.

Example 2.2. Let A be a quotlent rmg K[zg,x1, -+, 2,/ such that the ideal I are
generated by n + 1 polynomials z¢ — — Hacj, i=0,1,---,n, for the pairs (¢,n).
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In case of t # n, for min{n,t} < |t — n|s < max{n, t} there is an idempotent e =
Tz ™ mod T of Aand T = (1—e)A ~ K[zg, 21, -,z H =71 T) is an Artinian

local algebra. Cf.[12] and Kikumasa-Yoshimura [6].

Let us denote the associated graded algebra I'q = Ag ® A;--- ® A,,. Then if t > n,

= (t+1)(n—1) and dimg (Ag) = 8{(do, d1, -+ ,ds,---dj, -+ ,dp)| > fgdi =k, 0= dy S
t+1and d; =d; =0 for ¢ # j}. Hence dimgAy, = dimgA,,_j. It follows by Corollary
1.8 that I'¢ (and hence by Theorem 1.3 T") is QF.

Ift <m,m=(n+1)(t—1) and dimg(Ax) = #{(do, d1, -+ ,dp)| D gdi = k,0 = d; <
t — 1}. Hence we have similarly dimx Ay, = dimg A, and I'g (and hence T') is QF'.

Now we can extend our consideration for A to the case of n =¢. Then as — H xT; =)
x .

mod [ fori=1,2,--- ,n, A is a positive Z-graded with respect to homogeneous elements
n

T, Tq,- - , T, of degree 1. If we put u = H z;, then K|u] is a subalgebra of A, which is a
i=1

polynomial ring over K of a variable « . Further all z;’s satisfy the equation X! —u =

0 € K[u][X]. Hence by Noether’s normalization theorem the Krull dimension of A = 1.

Let t = n = 1, then the generators of I are formally {mo—%xoml = 19—, ml—x—llxoacl =
x1—2o} = {xo—x1} and A is a polynomial ring of one variable and is obviously Gorenstein.

Let t = n = 2. Then {f; = zoz1 — 22, fo = 179 — 23, f1 = T2xo — 23} defines an
intersection of quadratic cones. In [9] Stanley commented that the following Theorm 2.1
was proved first by Macauley.

Theorem 2.1. If a K-algebra A is standard positively Z-graded and Gorenstein of Krull
dimension d, then for Poincare series F(A,X) it holds that F(A, 1) = (—1)‘\° F(A, )

(as rational functions of \) for some integer p.

By the Buchberger s algorithm we obtain the reduced Grobner bases {fo, f1, f2, f3 =
S(fo, f1) = —x —x3} of I with respect to the degree- lexicographical order zy < z1 < .
As the leading terms are Lt(fo) = zdzizd, Lt(f1) = méx?m%, Lt(fg) = xd2023, Lt(f3) =

zyziry it holds oy < 3, ap < 2 for the standard bases xO T, Ty € A= Klzg, 21, 75)/1.

Therefore we know that
2 3 2 3 2 2 2.2 32

{15 ‘%07',1”07:1’,07 e xla xoxlyxoxlyxoxla : 7.’171, 37037171'0-7717-770x1a e 7'%2}
are the K-bases of A. Cf. [1:Theorem 1.7.4 and Proposition 2.1.6].
_2 _ _2
AO = K 1 Al K .7/'0 +K .7/'1 +K .7/'2, A2 KJJO —|—K T1Xg +K .7/'1,

_n-1 2 n-2
A, =K aco +K 13, +K z,x3, forn >3,
are Z* U {0}-grading of A and the set of homogeneous generators is {zg, 1, Z2} with
degree 1.
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22 +1

Thus the P F —1 3)\n:——2_ .
us the Poincare series + Z 1—\

' ‘ ‘ 20 +1
Now there is no p which satisfies (—1)*'\F(A, \) = (_1))\,)(1 ) -

A+2 2941 1
_ At 5 — = F(A, <). Therefore by Theorem 2.1 A is not Gorenstein.
(A=1) 1—5 A
By the way we notice that in this case A is Cohen-Macaulay because

A = K[zy] ® K|[zo] ©1 ®K|[z0] T3 is K|[xg]-free module. Here we notice that
2

K[io] -%1C K[io] .%2 by Tolo = .7)% mod 1.
This arises a new question whether A is Cohen-Macaulay.

In order to answer the question let us consider A for n = ¢ = 3. In this case the
binomials {f3 = zor122 — 23, fo = T12013 — 23, f1 = Taw3210 — 23, fo = T3TOT1 — T3}
generates I and by using the Buchberger’s algorithm we obtain the following Grobner
bases

Gr = {f07f17f27f37f4 = S(anfl) = l‘é _J"%’fs = S(flan) = ‘7"% —l‘g,

fo = S(fo, f3) = mori} —-x%x%,f}::‘S(jﬁ,jg)._.xomlxg-—-xfxg,

fs = S(f2, f3) = wgaies — 2323, fo = S(fo, S(fo, f1)) = 2123 — 2gws} of I
and the leading terms {Lt(fy) = w1273, Lt(f1) = Tow3wo, Lt(f2) = x3zom1, Lt(f3) = 3,
Lt(fa) = a1, Lt(fs) = x5, Lt(fs) = wgas, Lt(fr) = aiad, Lt(fs) = x323, Lt(fy) = 2323}
with respect to the degree-lexicographical order xy < 1 < x5 < x3.

Now there is no positive integer n such that xj ﬂhr 0. Therefore K [z] is a polynomial

ring in the variable xy. Further fg = mox%xg — 2372 = xo(2323 — 2222) € I and (2223 —

x0m3)2¢ I because the terms z3z3 and z3z3 are not reduced by any Grobner base. Hence

2.2 2.2 2 2
Lo (%mz - m0x3) =O, but (%% - x0m3) 3&0~

Hence A is not a K[zg)-free module. This implies A is not Cohen-Macaulay.

As all generators of I are binomials, A may be a toric variety. Cf. [10].
Toric varieties are defined to be Noetherian integral domains. However as we prove just
now A has a zero divisor we cannot expect that A is toric.

Proposition 2.2. If n =t =3, then A is neither Cohen-Macaulay nor toric. Of course
A is not Gorenstein.
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A GENERALIZATION OF n-TORSIONFREE MODULES

RYO TAKAHASHI

ABSTRACT. We consider in this paper two approximation theorems for finitely generated
modules over a commutative noetherian ring; one is due to Auslander and Bridger, and
the other is due to Auslander and Buchweitz. We shall give a result which implies both
of these two theorems.

Key Words:  Torsionfree, Semidualizing, Cohen-Macaulay approximation, Contravari-
antly finite.

2000 Mathematics Subject Classification:  13C05, 13C13, 13D02, 16D90.

1. INTRODUCTION

In the late 1960s, Auslander and Bridger [2] constructed the notion of a certain approx-
imation, which we call in this paper a spherical approximation. This notion says that each
of the modules whose nth syzygies are n-torsionfree is described by using an n-spherical
module and a module of projective dimension less than n. On the other hand, about
two decades later, the notion of a Cohen-Macaulay approximation was introduced and
developed by Auslander and Buchweitz [3]. This notion says that over a Cohen-Macaulay
local ring with a canonical module, the category of finitely generated modules is obtained
by glueing together the subcategory of maximal Cohen-Macaulay modules and the sub-
category of modules of finite injective dimension. Cohen-Macaulay approximations have
been playing an important role in commutative algebra. In this paper, we set our sight
on these two notions. More precisely, we shall consider and generalize the following two
theorems.

Theorem 1 (Auslander-Bridger). The following are equivalent for a finitely generated
module M over a commutative noetherian ring R:

(1) Q™M is n-torsionfree;
(2) There exists an ezact sequence 0 —Y — X — M — 0 of finitely generated R-
modules such that Extp(X,R) =0 for 1 <i<mn and pdY <n.

Theorem 2 (Auslander-Buchweitz). Let R be a Cohen-Macaulay local ring with a canon-
tcal module. Then for every finitely generated R-module M there exists an exact sequence
0—=Y = X = M — 0 of finitely generated R-modules such that X is mazimal Cohen-
Macaulay and idY < oo.

The detailed version of this paper has been submitted for publication elsewhere.
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2. THE EXISTENCE OF n-C-SPHERICAL APPROXIMATIONS

Throughout the present paper, R is always a commutative noetherian ring, and all
R-modules are finitely generated. Auslander and Bridger [2] introduced the notion of an
n-torsionfree module.

Definition 3. Let n be an integer. An R-module M is called n-torsionfree if Extl,(TrM, R) =
0forl<i<n.

In this paper, unless otherwise specified, we always denote by n a positive integer,
by C an R-module, by (=)' the C-dual functor Hompg(—,C) and by \j; the natural
homomorphism M — M for an R-module M. Note that Ay can be identified with
the homothety map R — Hompg(C, C'). We can generalize the notion of an n-torsionfree
module as follows.

Definition 4. Let M be an R-module. We say that M is 1-C-torsionfree if \j; is a
monomorphism. We say that M is n-C-torsionfree, where n > 2, if Ay is an isomorphism
and Exto(MT,C) =0forall 1 <i<n-—2.

We denote by mod R the category of finitely generated R-modules. Let X be a full sub-
category of mod R. An R-homomorphism f : X — M is called a right X -approximation

of M if X belongs to X and the sequence Hompg(—, X) S Hompg(—, M) — 0, where
(—, f) = Homg(—, f), is exact on X. We say that X is contravariantly finite if any
X € X has a right X-approximation. For an R-module X, we denote by add X the full
subcategory of mod R consisting of all direct summands of finite direct sums of copies of
X.

To develop the notion of an n-C-torsionfree module to the utmost extent, we establish
the following definition.

Definition 5. We say that C' is 1-semidualizing if Ag is a monomorphism and Ext}(C, C) =
0. We say that C' is n-semidualizing, where n > 2, if Ag is an isomorphism and
Ext'(C,C)=0forall 1 <i<mn.

The following proposition, which is essentially proved in [6, Proposition 2.5.1], says that
there are a lot of n-semidualizing modules.

Proposition 6. Let R be a Cohen-Macaulay local ring of dimension d > 2 with an iso-
lated singularity. Let I be an ideal of R which is a maximal Cohen-Macaulay R-module.
Then Mg is an isomorphism and Ext'y(I,1) = 0 for every 1 < i < d — 2. Hence R is
d-I-torsionfree, and I is (d — 2)-semidualizing.

For an R-module M, we define C'dimg M, the add C-resolution dimension of M, to be
the infimum of nonnegative integers n such that there exists an exact sequence 0 — C,, —
Chq1— -+ — Cy = M — 0 with each C; being in add C'. Note that add R-resolution
dimension is the same as projective dimension. We make the following definition.

Definition 7. Let M be an R-module.

(1) We say that M is n-spherical if Ext'(M,R) = 0 for all 1 < i < n. We call an exact
sequence 0 — Y — X — M — 0 of R-modules an n-spherical approzimation if X is
n-spherical and pdY < n. "



(2) We say that M is n-C-spherical if Ext’'(M,C) = 0 for all 1 <14 < n. We call an exact
sequence 0 - Y — X — M — 0 of R-modules an n-C'-spherical approximation if X is
n-C-spherical and CdimY < n.

We notice that an n-C-spherical approximation gives a right approximation:

Proposition 8. Define two full subcategories of mod R as follows:
X ={X €modR|X isn-C-spherical },
Y={Y emodR|CdimY < n}.

Let0 > Y — X 5 M — 0 be an exact sequence of R-modules with X € X andY € ).
Then the homomorphism f is a right X -approzimation of M.

We give here a lemma.

Lemma 9. Suppose that Ext'(C,C) = 0. An R-module M is 1-C-torsionfree if and
only if there is an exact sequence 0 — M — Cy — N — 0 such that Cy € addC and
Ext'(N,C) = 0.

Now, we can state and prove the main result of this section.

Theorem 10. Let C' be an n-semidualizing R-module. The following are equivalent for
an R-module M :

(1) Q"M is n-C-torsionfree;
(2) M admits an n-C-spherical approzimation.

Proof. Let P, be a projective resolution of M.

(1) = (2): We have an exact sequence 0 — Q"M — P, — Q'M — 0 for each i. Set
Xo = Q"M. Note that X is n-C-torsionfree. Lemma 9 implies that there exists an exact
sequence 0 — X, — Cy — Z; — 0 such that Cy € add C' and Ext'(Z;,C) = 0. We make
the pushout diagram:

0 0
0o — X, —— C Z > 0
|
O — P, — X3 71 > 0
" IM — O IM
0 0

Since Ext!(Z;,C) = 0 = Ext'(P,_1,C), we have Ext'(X;,C) = 0. If n = 1, then the
middle column is a desired exact sequence.



Let n > 2. We can easily check that Z; is (n — 1)-C-torsionfree, and that so is Xj.
According to Lemma 9, there is an exact sequence 0 — X; — C; — Zs — 0 with
C) € add C and Ext'(Z,,C) = 0. We make the pushout diagram:

0 0
Cy —— Cp
0 — Xi e s 7y > 0
|
0 —— Q"'M > Y5 > 2y > 0
0 0

Using the bottom row of the above diagram, we make the pushout diagram:

0 0
0 — Q"'M — Y, Zy Y
|
0 — P,o — X5 > Lo > 0
M — O 2M
0 0

From the first diagram, we immediately get Cdim Y, < 2, and Ext?(Z,,C) = 0 because
Ext'(X;,C) = 0 = Ext*(Cy, C). Hence Ext’(Z,,C) = 0 for i = 1,2, and we see from the
middle row of the second diagram that Ext’(X5,C) = 0 for i = 1,2. Thus, if n = 2, then
the middle column of the second diagram is a desired exact sequence.

Let n > 3. Then similar arguments to the above claims show that both Z; and X, are
(n — 2)-C-torsionfree, and Lemma 9 yields an exact sequence 0 — Xy — Cy — Z3 — 0



such that Ext!(Zs;,C) = 0. Similarly to the above, we make two pushout diagrams:

0 0
Y. — 1
0 — X > Oy > A3 > 0
|
0 —— Q" 2M > Y; > 23 > 0
0 0
and
0 0
0 — Q"M —— Y > Z3 » 0
|
0 — P33 — X > 23 » 0
O S3M —— Q"3 M
0 0

If n = 3, then the middle column of the second diagram is a desired exact sequence. If
n > 4, then iterating this procedure, we eventually obtain an exact sequence 0 — Y,, —
X, — M — 0 such that Ext’(X,,,C) =0 for 1 <i <n and CdimY,, < n.

(2) = (1): Let 0 = Y — X — M — 0 be an n-C-spherical approximation of M. Since

dp— dn—
CdimY < n, there exists an exact sequence 0 — C),,_; SO, 5 LN Co Ny 0.
Put Y; = Imd; for each 7. We have exact sequences 0 — Y;,; — C; — Y; — 0 and



0— QM — P, — Q"M — 0 for each i. The following pullback diagram is obtained:

0 0
QM —— QM
0 Y L Py —— 0
|
0 Y X M —— 0
0 0

The projectivity of Py shows that the middle row splits; we have an isomorphism L =
Y & Fy. Adding F, to the exact sequence 0 — Y; — Cy — Y — 0, we get an exact
sequence 0 - Y, - Co ® Py — Y & Fy — 0. Thus the following pullback diagram is
obtained:

0 0
i —— "
00— Xy — Cy® Fy > X 0
H
0 — QM —— Y& PR, > X 0
0 0

Applying a similar argument to the left column of the above diagram, we get exact
sequences 0 — X, - C; P, — X; - 0for 0 < ¢ < n—1, where X = X and
X, = Q"M. The assumption yields Ext’(Xy,C) = 0 = Ext'(Cy @ Py, C) for 1 < i < n,
hence we have an exact sequence 0 — X! — (Co ® Py)t — X! — 0 and Ext!(X;,C) =0
for 1 <17 < n — 1. Inductively, for each 0 < 7 < n — 1 an exact sequence 0 — XZ-T —
(Ci® P)T — XZ-TJr1 — 0 is obtained and Extj(Xi,C) =0forl1 <j<n-—i We have a
commutative diagram
0O — X4 — CQ D PQ

Axy l Acpe Py l

0o —— XlTT F (Co @ Py)tt



with exact rows. The assumption says that Ag is injective, and we see that A\¢ = At
is injective. Hence the map A¢,ep, is injective, and so is Ax,. Therefore X; is 1-C-
torsionfree. If n > 2, then Ay is an isomorphism, and so is A¢. There is a commutative
diagram

0 0
0 X2 Cl @Pl — X1 — 0
AX, l Ac,eP; Axy J{
0 > X1 y (CLe P)IT —— X7
0

with exact rows and columns, and A, is an isomorphism by the snake lemma. Hence X,
is 2-C-torsionfree. If n > 3, then we have a commutative diagram

0 — X5 — 0P — Xy —— 0

)\X3J/ /\C2@P2J/£ /\X2J/%

0 — XIT — (GoP)T —— X' —— Ext!(X],C) — 0

with exact rows. From this diagram it follows that Ay, is an isomorphism and Ext' (X. ;, C)=
0, which means that X3 is 3-C-torsionfree. Repeating a similar argument, we see that X;
is i-C-torsionfree for every 1 < ¢ < n. Therefore Q"M = X,, is n-C-torsionfree, and the
proof of the theorem is completed. O

Theorem 1 is a direct corollary of Theorem 10. Theorem 2 is also a corollary of Theorem
10:

Proof of Theorem 2. If d = 0, then 0 — 0 — M — M — 0 is a desired exact sequence.
Let d > 1. Then w is d-semidualizing, and Q¢M is d-w-torsionfree. Hence Theorem 10
guarantees the existence of an exact sequence 0 — Y — X — M — 0 such that X
is d-w-spherical and wdimY < d. Therefore X is maximal Cohen-Macaulay. On the
other hand, noting that w is an indecomposable R-module, we have an exact sequence
0 — wl-1 — la-2 — ... 5 o Y — (0. Decomposing this into short exact sequences
and noting that w has finite injective dimension, one sees that Y also has finite injective
dimension. U

3. MODULES WHOSE nTH SYZYGIES ARE n-C-TORSIONFREE
We begin with stating the following lemma.

Lemma 11. Let M be an R-module.
(1) If R is 1-C'-torsionfree, then so is QM.
(2) If R is 2-C-torsionfree, then for each n > 2 the map Aqnys is a split monomorphism
and the cokernel is isomorphic to Ext™(M, C)T.
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For R-modules M, N, we define grade(M, N) by the infimum of integers i such that
Ext'(M,N) # 0. One has grade(M, N) = inf{depth N, |p € SuppM }. We state a
criterion for QM to be n-C-torsionfree for 1 < i < n in terms of grade, which can be
shown by Lemma 11 and induction on n.

Proposition 12. Let C' be an R-module such that R is (n — 1)-C-torsionfree.
(1) If Q'M s i-C-torsionfree for every 1 < i < n, then grade(Ext'(M,C),C) > i — 1
for every 1 <1 <n.
(2) The converse also holds if R is n-C-torsionfree.

Now we want to consider the difference between this condition and the condition that
Q"M is n-C-torsionfree.

Lemma 13. Let C be an R-module such that Ag is an isomorphism and‘EX‘ci(C, C)
for1 <i<mn. If M is an R-module with Cdim M < oo, then grade(Ext'(M,C),C)
forany 1 <1 <n.

0
?

VAl

Using this lemma, we can show that under the assumption that C' is n-semidualizing,
Q' M is i-C-torsionfree for 1 < i < n if and only if Q"M is n-C-torsionfree.

Proposition 14. Let C be an n-semidualizing R-module. The following are equivalent
for an R-module M :

(1) Q"M is n-C-torsionfree;

(2) ¥'M s i-C-torsionfree for every 1 <i < n.

Our next aim is to prove the main result of this section. For this, we introduce the
following lemma, which will often be used later.

Lemma 15. Let R be a local ring and r a positive integer. Suppose that A\r is an iso-
morphism and Ext'(C,C) =0 for all 1 < i < r. Then the following hold.
(1) depth R > r if and only if depthC > r.
(2) Let R be a Cohen-Macaulay local ring with dim R < r. Then C' is a mazimal Cohen-
Macaulay R-module.

Now we can prove the main result of this section.

Theorem 16. Suppose that R is n-C-torsionfree. Then the following are equivalent:
(1) idg, Cp < 0o for any p € Spec R with depth R, < n — 2;
(2) Q"M is n-C-torsionfree for any R-module M.

Proof. When n = 1, the assertion (1) holds because there is no prime ideal p of R
satisfying depth R, < n—2, and the assertion (2) holds by Lemma 11(1). In the following,
we consider the case where n > 2.

(1) = (2): Fix an R-module M. Induction hypothesis shows that ¢ M is i-C-torsionfree
for 1 <i < n — 1. By Proposition 12, we have grade(Ext'(M,C),C) > i —1 for 1 <
i < n —1, and it suffices to prove that the inequality grade(Ext"(M,C),C) > n — 1
holds. Let p € Spec R. If depthC, < n — 2, then depth R, < n — 2 by Lemma 15(1).
The assumption says that idg, C, < oo, and idg, C, = depth R, < n — 2. Therefore
Exty(M,C), = Exty (My,Cp) = 0. Thus we see that grade(Ext"(M,C),C) > n —1, as
desired.
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(2) = (1): When n = 2, Lemma 11(2) implies that Ext%p(Mp,Cp) = 0 for all R-
modules M and p € Ass C, because Ass(Ext% (M, C)t) = Supp Ext%(M,C) N AssC. The
isomorphism Ag : R — Hom(C, C') shows that Ass C' coincides with Ass R. Hence, setting
M = Qi (R/p), one has Ext;?(/i(p), Cp) = Exth ((2(R/p))p, Cyp) = 0 for any p € Ass R
and any ¢ > 0. Therefore idg, C}, < oo for p € Spec R with depth R, = 0.

Let n > 3. Fix an R-module M. We have an exact sequence 0 — Q"M — P —
Q"M — 0 such that P is a projective R-module. From this we get another exact sequence
0 — (Q"M)T — Pt — ("' M)t — Ext™*}(M,C) — 0. Decompose this into short exact
sequences:

) {O—>(Q”M)T—>PT—>N—>0,

0— N — (Q"*'M)t — Ext"™(M,C) — 0.
Note from the assumption that both Q"M and Q"M = Q"(QM) are n-C-torsionfree.

Since R is n-C-torsionfree, we see from the first sequence in (1) that there is a commutative
diagram

0 —— Q"M P oM — 0
OtJ( )\Plg AQan%
0 —— Nt Pt Q"M —— Ext'(N,C) —— 0

with exact rows, and Ext'(N,C) = 0 for 2 < i < n — 2. This diagram shows that
« is an isomorphism and Ext'(N,C) = 0. The second sequence in (1) gives an exact
sequence 0 — Ext"™(M,C)" — (QF1 M) 5 Nt — Ext!(Ext™" (M, C),C) — 0 and
Ext!(Ext"™ (M, C),C) = 0 for 2 < i < n — 2. Since the diagram

/\QnMJ/% ocJ/%

@Mt —2 Nt
commutes, the map (3 is an isomorphism, and Ext"™(M,C)" = 0 = Ext!(Ext"*} (M, C), O).
Thus we have Ext’(Ext""!(M,C),C) = 0 for every i < n — 2, which means that the in-
equality grade(Ext"™' (M, C),C) > n — 1 holds. Therefore, if p is a prime ideal of R with
depthR, < n — 2, then depthC, < n — 2 by Lemma 15(1), and it follows that p does
not belong to Supp Extl;' (M, C), i.e., Ext%jl(Mp, C,) = 0. Putting M = Q%(R/p), we
obtain Ext%jlﬂ(m(p), Cy) = Extgl((Q%(R/p))p, Cy) = 0 for any ¢ > 0. This implies that
idg, C, < o0, and the proof is completed. O

The lemma below says that over a Gorenstein local ring of dimension d > 2, any
n-semidualizing module is free for n > d.

Lemma 17. Let (R, m, k) be a d-dimensional Gorenstein local ring. If Ag is an isomor-
phism and Ext*(C,C) =0 for 1 <i <d, then C = R.

Applying the above lemma, we can get a sufficient condition for R and C to satisfy
Theorem 16(1).
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Proposition 18. Suppose that R is n-C-torsionfree and that R, is Gorenstein for any
p € Spec R with depth R, < n—2. Thenidg, C, < oo for any p € Spec R with depth R, <
n — 2. (Hence Q"M is n-C-torsionfree for any R-module M.)

We have studied the case where the nth syzygies of all R-modules are n-C-torsionfree.
As the last result of this paper, we give a result concerning when the nth syzygy of a
given module is n-C-torsionfree.

Proposition 19. Let M be an R-module, and let C' be an R-module such that R is n-C'-
torsionfree. Suppose that pdg, M, < o0 for any p € Spec R with depth R, <n —2. Then
Q"M s n-C'-torsionfree.

This proposition can be proved by induction on n. Apply Proposition 12, Lemmas
11(1) and 15(1).
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CASTELNUOVO-MUMFORD REGULARITY FOR COMPLEXES
AND RELATED TOPICS

KOHJI YANAGAWA (#i)1l 7% =)

ABSTRACT. Let A be a noetherian AS regular Koszul quiver algebra (if A is commuta-
tive, it is essentially a polynomial ring), and gr A the category of finitely generated graded
left A-modules. Following Jgrgensen, we define the Castelnuovo-Mumford regularity
reg(M?®) of a complex M*® € D(gr A) in terms of the local cohomologies or the minimal
projective resolution of M*. Let A' be the quadratic dual ring of A. Then A' is selfin-
jective and Koszul (e.g., if A is the polynomial ring k[z1, ... , 4], then A' is the exterior
algebra E = A (y1,... ,yq)). For the Koszul duality functor G : D®(gr A) — D’(gr A"),
we have reg(M*®) = max{i | H/(G(M*®)) # 0}. As an application, we refine results of
Martinez-Villa and Zacharia on weakly Koszul modules over A' (especially, over E).

1. INTRODUCTION

Let A := @,., A; be a noetherian AS regular Koszul quiver algebra over a field k. Such
a quiver algebra (with relation) has been studied by Martinez-Villa and coworkers (c.f.
6, 9, 10, 11]). And a connected (i.e., Ay = k) AS regular algebra is very important in
non-commutative algebraic geometry (c.f. [18]). If A is commutative and connected, it is
a polynomial ring k[z1, ... ,z4] with degz; = 1 for each i.

Let Gr A (resp. Gr A°P) be the category of graded left (resp. right) A-modules, and
gr A (resp. grA°) its full subcategory consisting of finitely generated modules. Set
t := @,.,; A; to be the graded Jacobson radical. We have the left exact functor I’ :
GrA — Gr A defined by I'.(M) = {x € M | v"z =0 for n>> 0}, and its right derived
functor RT, : D*(Gr A) — Db(Gr A). For M* € D°(Gr A), the i*" cohomology of R, (M*)
is denoted by H(M?*). Similarly, we have the corresponding functors I'wp, RT o, and Hl,
for graded right A-modules. When A is a polynomial ring k[z, ... ,z4], H:(—) is known
as the local cohomology module with support in the graded maximal ideal .

We have a bounded cochain complex D* of graded A-A bimodules which gives duality
functors RHomyu(—,D*) : Db(gr A) — DP(gr A°?) and RHome(—,D®) : Db(gr A%®) —
D*(gr A). These functors are quasi-inverse of each other. Moreover, we have “local duality
theorem”

RHom ,(—,D*) 2 R['(—)" and RHom o(—,D*) = RTwe(—)",
where (—)" stands for the graded k-dual. This is a quiver algebra version of [18].
For M* € D’(grA) and i,j € Z, set Bi(M*) := dimy Exty"(M*, A/t)_;. Of course,
ﬁ]i-(—) measures the “size” of a minimal projective resolution. Using the above duality, we

can generalize a well-know result of Eisenbud-Goto [5] concerning graded modules over a
polynomial ring.

This note is basically a summary of [17] which has been accepted for publication in J. Pure Appl.
Algebra.
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Definition-Theorem. (c.f. Jgrgensen, [8]) For M* € D*(gr A), we have
reg(M?*) :=sup{i+j | H(M®); #0} =sup{i+j | B5(M*) #0} < cc.
We call this value the “Castelnuovo-Mumford reqularity” of M?®.

For M* € Db(grA), set H(M?*) to be the complex such that H(M*)! = H(M) for
all 4+ and the differential maps are zero. Then reg(H(M?®)) > reg(M?®). The difference
reg(H(M?®)) — reg(M?®) is a theme of the latter half of this note.

Let A' be the quadratic dual ring of A. Then A' is finite dimensional, Koszul and self-
injective by [10]. (e.g., If A is the polynomial ring k[zy, ... , 74|, then A'is the exterior
algebra A (y1,...,%4)). The Koszul duality functors F : D%(gr A') — D(gr A) and
G : D(gr A) — D*(gr A') give an equivalence D°(gr A) = Db(gr A') (c.f. [2]). We have

reg(M*®) = max{i | H'(G(M")) #0}.

For N ¢ grA' and n € Z, Ny denotes the submodule of N generated by the degree n
component N,. We say N is weakly Koszul, if N,y has an n-linear projective resolution
(i.e., Bi(Npwy) # 0 = i+ j = n) for all n. Martinez-Villa and Zacharia [11] proved that

the it syzygy Q;(IN) of N € gr A' is weakly Koszul for i > 0. Of course, the same is true
for N € gr (A")°P. Set Ipd(N) := min{i € N | Q;(N) is weakly Koszul }.

Theorem. Let N € gr A', and N’ := Hom ,.(N, A') € gr (A")°" its dual. Then
Ipd(N') = reg(#H o F(N) ).

If A'is the exterior algebra E = A (y1,...,y4), we have an upper bound of Ipd(N)
depending only on max{dimy NV; | ¢ € Z} and d. This bound gives huge numbers, and
must be very far from optimal. On the other hand, we have Ipd(E/J) < min{l,d — 2}
for a monomial ideal J of E. This slightly improves a result of Herzog and Rémer.

2. PRELIMINARIES

First, we sketch basic properties of an algebra of a quiver with relations.

Let @ be a finite quiver. That is, @ = (Qo, Q1) is a finite oriented graph, where Qg
is the set of vertices and (), is the set of arrows. The path algebra k(@) is a positively
graded algebra with grading given by the lengths of paths. Let J be the graded Jacobson
radical of kQ (i.e., the ideal generated by all arrows). If I C J? is a graded ideal, we
say A = kQ/I is a graded quiver algebra. Of course, A = @,.,A; is a graded ring.
The subalgebra Ay is a product of copies of the field k, one copy for each element of
Qo. If Ay = k (i.e., @ has only one vertex), we say A is connected. If a graded algebra
R = @M) R; with Ry = k is generated by R; as a k-algebra and dim; R; < oo, then it
can be regarded as a graded quiver algebra. Set t := @D, Ai. Unless otherwise specified,
we assume that A is left and right noetherian throughout this note.

Let Gr A (resp. Gr A°P) be the category of graded left (resp. right) A-modules, and
gr A (resp. gr A°P) its full subcategory consisting of finitely generated modules. Since A
is noetherian, gr A and gr A°? are abelian categories. In the sequel, we will define several



concepts for Gr A, but the corresponding concepts for Gr A°? can be defined in the similar
way.

The n'® shift M(n) of M =
t(M):=inf{i | M; #0}.

For v € )y, we have the idempotent e, of A associated with v. Note that 1 = Zver €y-
Set P, := Ae, and ,P := e, A. Then we have 4A = ®ver P,and Ay = @UEQO (,P). Each
P, and , P are indecomposable projectives. Conversely, any indecomposable projective in
Gr A (resp. Gr A°P) is isomorphic to P, (resp. ,P) for some v € Qg up to degree shifting.
Set k, := P,/(tP,) and ,k := ,P/(,Pt). Each k, and ,k are simple.

Let C®(Gr A) be the category of bounded cochain complexes in Gr A, and D°(Gr A) its
derived category. For a complex M* and an integer p, let M*®[p] be the p'" translation of
M?*. That is, M*[p| is a complex with M*[p] = M**?. A module M can be regarded as a
complex --- — 0 — M — 0 — --- with M at the 0" term.

For M,N € GrA, set Hom,(M,N) := €, , Homg, (M, N(i)) to be a graded k-
vector space with Hom (M, N); = Homg, a(M,N(7)). Similarly, we can also define
I’IO_H’I;‘(M., N.)> RI—IO_m,4(M.a N.)a and MZA(M: N.) for M.a N*® € Db(GI‘A)

If V is a k-vector space, V* denotes the dual space Hom(V, k). For M € Gr A (resp.
M € GrA%®), MY := @, .,(M;)* has a graded right (resp. left) A-module structure given
by (fa)(z) = f(az) (resp. (af)(z) = f(za)) and (MV); = (M_;)*. If W is a graded A-A
bimodule, then so is WV. Note that I, := (,P)" (resp. ,I := (P,)") is injective in Gr A
(resp. Gr A°P). Moreover, I, and ,I are graded injective hulls of k, and ,k respectively.
In particular, the A-A bimodule AY is injective both in Gr A and in Gr A°P.

Let W be a graded A-A-bimodule (we mainly concern the cases W = A or W = AY).
If M € GrA, we can regard Hom , (M, W) as a graded right A-module by (fa)(z) =
f(z)a. We have a natural isomorphism Hom,(M,AY) = MY. We can also define
RHom ,(M*, W) € D*(Gr A°) and Ext’ (M*, W) € Gr A°® for M* € D*(Gr A).

Let P*® be a bounded complex in gr A such that each P* is projective. We say P* is
minimal if O(P?) C tP™! for all i. Any complex M*® € C®(gr A) has a minimal projective
resolution, which is unique up to isomorphism. We denote a graded module A/t by Ay.
Set B%(M*) := dimy, Ext,'(M*, Ap)_;. Let P* be a minimal projective resolution of M®,
and P':= @" , T*' an indecomposable decomposition. Then we have

M; € GrA is defined by M(n); = M,;. Set

1€EZ

ﬁ;(M') = #{1|T""(j) = P, for some v }.

Definition 1. Let A be a graded quiver algebra. We say A is Artin-Schelter reqular
(AS-regular, for short), if

e A has finite global dimension d.

o Ext’(k,, A) = Ext’o,(,k, A) = 0 for all i # d and all v € Q.

e There are a permutation § on @)y and an integer n, for each v € Qg such that
Extf (ky, A) & 5)k(n,) (equivalently, Ext%o (o, A) 2 ks-1(,(ny) ) for all v.

Remark 2. The AS regularity is a very important concept in non-commutative algebraic
geometry (see for example [18]). But there many authors assume the connectedness of
A. We also remark that Martinez-Villa and coworkers called the rings in Definition 1
generalized Auslander reqular algebras.
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Definition 3. For an integer | € Z, we say M*® € gr A has an [-linear (projective) reso-
lution, if §}(M*) = 0 for all 4, j with ¢ + j # I. If M* has an Il-linear resolution for some
[, we say M*® has a linear resolution.

Definition 4. We say A is Koszul, if the graded left A-module A has a linear resolution.
(Note that Ay = @ ky.)

vEQQ VV”
In the above definition, we can regard Ay as a right A-module (we get the equivalent
definition). The next fact is easy to prove.

Lemma 5. If A is AS-reqular, Koszul, and has global dimension d, then Ext®(k,, A) =
swk(d) and Ext%o, (,k, A) = ks-1(0)(d) for all v € Qy. Here 6 is the permutation of Qg
given in Definition 1.

In the rest of this paper, A is always a noetherian AS-regular Koszul quiver algebra of
global dimension d.

Example 6. (1) A polynomial ring k[z1, ... , x,] is clearly a noetherian AS-regular Koszul
(quiver) algebra of global dimension d.
(2) Let k(z1, ... ,z4) be the free associative algebra, and (g; ;) a d X d matrix with entries

in k satisfying ¢; j¢;; = ¢;; = 1 for all ¢, j. Then A = k(z1,... ,z,)/(xjz; — gijriz; | 1 <
i,7 < d) is a noetherian AS-regular Koszul algebra with global dimension d. This fact
must be well-known to the specialist, but we will sketch a proof here. Since x4, ...,z4 € A;
form a regular normalizing sequence with k = A/(z1,...,z4), A is a noetherian ring with
a balanced dualizing complex by [12, Lemma 7.3]. We can construct a free resolution of
k = A/r, which is a “g-analog” of the Koszul complex of a polynomial ring k[z1, ... , x4
So A is Koszul and has global dimension d. Since A has finite global dimension and
admits a balanced dualizing complex, it is AS-regular (c.f. [12, Remark 3.6 (3)]).
(3) For examples of non-connected AS regular algebras, see [6].

For M € Gr A, set
L(M)=limHom,(A/t", M) ={xe M| A,z =0forn>0} € GrA.
—

Then I'.(—) gives a left exact functor from Gr A to itself. So we have a right derived
functor RI, : D®(GrA) — Db(GrA). For M* € Db(GrA), H/(M*®) denotes the it
cohomology of RI',(M?®). Similarly, we can define RI'w and H&, for D?(Gr A°P) in the
same way. If M is an A-A bimodule, H!(M) and H',(M) are also.

Since A is AS regular, we have RI'.(A) & AY(d)[—d] in D®(gr A). By the same argument
as [18, Proposition 4.4], we also have RI\(A) & AV(d)[—d] in D’(gr A°?). It does not
mean that HY(A) = AV(d) as A-A bimodules. But there is an A-A bimodule L such that
L®s HY(A) = AV(d) as A-A bimodules. Here the underlying graded additive group of L
is A, but the bimodule structure is give by A x L x A > (a,l,b) — ¢(a)lb € A = L for
a (fixed) graded k-algebra automorphism ¢ of A. In particular, L = A as left A-modules
and as right A-modules (separately). If A is commutative, then ¢ is the identity map.

Set L' = Hom 4 (L, A) and D* := L/(—d)[d]. Note that D* belongs both D’(gr A) and
D*(gr A°P). We have H!(D*) = Hiy(D*) = 0 for all i # 0 and H?(D®) = HG,(D®) = A as
A-A bimodules by the same argument as [18, §4]. Thus (an injective resolution of) D* is a
balanced dualizing complez of A in the sense of [18]. It is easy to check that RHom ,(—, D*)




and RHom 4o, (—, D*) give duality functors between D®(gr A) and D°(gr A°), which are
quasi-inverse of each other.

Theorem 7 (c.f. Yekutieli [18] and Martinez-Villa [9]). For M* € D’(gr A), we have
RT(M*)Y =2 RHom,(M*,D*). In particular, (H.(M®);)* = Ext,'(M*,D*)_;.

The above result was proved by Yekutieli in the connected case. (In some sense,
Martinez-Villa proved a more general result than ours, but he did not concern complexes.)
The proof of [18, Theorem 4.18] also works in our case.

Definition 8 (Jgrgensen, [8]). For M*® € Db(gr A), we say
reg(M*) :=sup{i+j | H/(M*); #0}
is the Castelnuovo-Mumford reqularity of M*.

By Theorem 7 and the fact that RHom 4 (M*, D*) € D*(gr A°), we have reg(M*) < oo
for all M* € D(gr A).

Theorem 9 (Jorgensen, [8]). If M* € C*(gr A), then
(2.1) reg(M*) = max{i+j | Bi(M*) #0}.

When A is a polynomial ring and M?* is a module, the above theorem is a funda-
mental result obtained by Eisenbud and Goto [5]. In the non-commutative case, under
the assumption that A is connected but not necessarily regular, this has been proved by
Jorgensen [8]. (If A is not regular, we have reg(A4) > 0 in many cases. So one has to
assume that reg A = 0 there.) In our case (i.e., A is AS-regular), we have a much simpler
proof. So we will give it here. This proof is also different from one given in [5].

Proof. Set Q* := Hom% (P*, L'(—d)[d] ). Here P* is a minimal projective resolution of M*,
and L’ is the A-A bimodule given in the construction of the dualizing complex D°®. Note
that Hom, (P,, L") = 5-1(,)P for all v € Q. Let s be the right hand side of (2.1), and !
the minimal integer with the property that 3 ,(M*®) # 0. Then +(Q~%"!) =1 —s+d, and
L(Q™4 ) > [ — s+ d. Since Q* is a minimal complex, we have

0# H Q%) s = Bxt " (M®, D*)isia = (HI(M®) t1s-a).
Thus reg(M*®) > s. The opposite inequality can be proved similarly and more easily. O

3. KoszuL DUALITY

In this section, we study the relation between the Castelnuovo-Mumford regularity of
complexes and the Koszul duality. For precise information of this duality, see [2, §2].

Recall that A = kQ/I is a graded quiver algebra over a finite quiver Q). Let Q°P be the
opposite quiver of Q. That is, Qy° = Qo and there is a bijection from Q1 to Q7° which
sends an arrow « : v — u in @7 to the arrow a® : u — v in Q{°. Consider the bilinear

form (—, —) : (kQ)2 X (kQ°?)2 — Ay defined by

(5P — {ev ifa=9and g =7,

0 otherwise
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for all o, 3,7,6 € Q1. Here v € Qg is the vertex with 3 € Ae,. Let I+ C kQ°P be the ideal
generated by {y € (kQ°P), | (z,y) =0 for all z € I, }. We say kQ°P/I" is the quadratic
dual ring of A, and denote it by A'. Clearly, (A')y = Ay. Since A is Koszul, so is A'.
Since A is AS regular, A' is a finite dimensional selfinjective algebra with A = @?:0 A;
by [10, Theorem 5.1]. If A is a polynomial ring, then A' is the exterior algebra A (A;)*.

Let V be a finitely generated left Aj-module. Then Homy, (A", V) is a graded left
A'-module with (af)(a’) = f(a’a) and Homy,(A',V); = Homu,((A")_;, V). Since A' is
selfinjective, we have Hom,(A', 4y) = A'(d). Hence Homy,(A', V) is a projective (and
injective) left A'-module for all V. If V has degree i (e.g., V = M; for some M € gr A),
then we set Homy,(A',V); = Homy, (A" V).

For M* € C%(gr A), let G(M*®) := Homy, (A, M*) € C®(gr A') be the total complex
of the double complex with G(M®)"/ = Homp,(A', M}) whose vertical and horizontal
differentials d’ and d” are defined by

d(f)(z) =) af(e®z), d'(f)(x) = Oure(f())

a€Q1
for f € Homyu,(A', M}) and = € A'. The grading of G(M*) is given by
GM)p:= @  Homg,((A'), M).

p=i+j,q=—1l—j

Similarly, for a complex N* € C%(gr A'), we can define a new complex F(N°®) :=
A®4,N* € C*(gr A) as the total complex of the double complex with F(N*®)"/ = A® 4, N}
whose vertical and horizontal differentials d’ and d” are defined by

da®z)= Z aa @ Pz, d'(a®x)=a® dye(x)

for a ® x € A®4, N'. The gradings of F(N°®) is given by
FINP:= @ A®aN,

Clearly, each term of F(N°®) is a projective A-module. For a module N € gr A", F(N) is
a minimal complex. Hence we have

dimy N; if i+ 35 =0,
0 otherwise.

Bi(F(N)) :{

The operations F and G define functors F : D®(gr A') — Db(gr A) and G : D’(gr A) —
D’(gr A'), and they give an equivalence D®(gr A) = Db(gr A') of triangulated categories.
This equivalence is called the Koszul duality. When A is a polynomial ring, this equiva-
lence is called Bernstein-Gel’fand-Gel’fand correspondence. See, for example, [4].

Proposition 10 (c.f. [4, Proposition 2.3]). In the above situation, we have
Bi(M*®) = dimy, H(G(M*))_;.
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Proof.

1%

Ext’:i (Ao, N*); Hom p (g, a1y (Ao, N*[i] (7))
Home(grA)( F(Ao), F(N°[i](5)))
HOD’lDb(grA)(A .7:( .)[Z+]]( j))

H'™ (F(N*))-;.

e 11

1%

The next result immediately follows from Theorem 9 and Proposition 10.
Corollary 11. reg(M*®) = max{i | H(G(M*)) #0}.

For M* € Db(gr A), set H(M?*) to be the complex such that H(M*®)! = H'(M) for all
7 and all differential maps are zero. By a spectral sequence argument, we see that

(3.1) reg(H(M*®)) > reg(M?*).

In the next section, we will see that the difference reg(M*®) —reg(H (M*®)) can be arbitrary
large. For N* € D*(gr A'), we can define H(N*) is the same way.

We can refine Proposition 10 using the notion of linear strands of projective resolutions,
which was introduced by Eisenbud et. al. ([4, §3]). Let P* be a minimal projective
resolution of M* € D’(gr A). Consider the decomposition P* := @, ., P*/ such that
any indecomposable summand of P%/ is isomorphic to a summand of A(—j). For an
integer [, we define the [-linear strand proj.lin,(M*®) of a projective resolution of M® as
follows: The term proj.lin,(M®)? of cohomological degree i is P%~* and the differential
pil=i  pitlLi=i—1 ig the corresponding component of the differential P! — P+l of P°.
So the differential of proj. lin,;(M*) is represented by a matrix whose entries are elements
in A;. Set proj.lin(M?®) := @, proj. liny(M*). Clearly, 3;(M*) = Bi(proj.lin(M?*)) for
all 7, 7.

Proposition 12 (c.f. [4, Corollary 3.6]). For N* € D*(gr A'), we have
proj. lin,(F(N*®)) = F(H' (N*))[-1], in particular, proj.lin(F(N*)) = F(H(N®)).

4. WEAKLY KoszuL. MODULES

Let B be a noetherian Koszul algebra with the graded Jacobson radical t. For M € gr B
and 7 € Z, M denotes the submodule of M generated by its degree ¢ component M;. The
next result naturally appears in the study of Koszul algebras, and might be a folk-theorem
(see [17] for further information).

Proposition 13. In the above situation, the following are equivalent.
(1) My has a linear projective resolution for all i.
(2) H'(proj.lin(M)) =0 for all i # 0.
(3) gro M := @2, ¢ *M/'M has a linear resolution as a B (= gr, B)-modules.

Definition 14 (Martinez-Villa et.al., c.f. [11]). We say M € gr B is weakly Koszul, if it
satisfies the equivalent conditions of Proposition 13.



If M € gr B has a linear resolution, then it is weakly Koszul. Moreover, if M is weakly
Koszul, then the i'" syzygy Q;(M) is also for all i > 1.

Let A be a noetherian AS-regular Koszul quiver algebra of global dimension d, and A'
its quadratic dual, as in the previous sections.

Theorem 15 (Martinez-Villa and Zacharia, [11]). If N € gr A' (or N € gr (A')°?), then
the i syzygy Q;(N) is weakly Koszul for i > 0.

Definition 16 (Herzog et. al., [7, 14]). For 0 # N € gr A' (or N € gr (A')°P), set
Ipd(N) :=inf{i € N | Q;(N) is weakly Koszul }.

Remark 17. Herzog and Iyengar ([7]) studied the invariant Ipd over noetherian commuta-
tive Koszul algebras. Among other things, they proved that lpd(M) is always finite over
some “nice” rings (e.g., graded complete intersections which are Koszul).

The next result follows from Corollary 11 and Proposition 12.

Theorem 18. Let N € gr A, and N' := Homy (N, A') € gr(A")°P its dual. Then we
have

Ipd(N') = reg(H o F(N))
= max{reg(H'(F(N)))+i|ie€Z}.

Note that reg(H o F(N)) > reg(F(N)) = max{i | H (G o F(N)) # 0} = 0 by the
inequality (3.1) and Corollary 11.

If Ipd(N) > 1 for some N € grA', then sup{lpd(L) | L € grA'} = co. In fact, if
Q_;(N) is the i*" cosyzygy of N (since A' is selfinjective, we can consider cosyzygies), then
Ipd(2_;(N)) > i. But when A is the polynomial ring S = k[zy,... ,74 and A" is the
exterior algebra £ = A (y1,...,%4), we have an upper bound of Ipd(N) for N € grE
depending only on max{dimy N; | i € Z} and d. But before stating this, we recall a
result on a upper bound of reg(M) for M € gr S.

Theorem 19 (Brodmann and Lashgari, [3]). Let S == k[z1,...,x4 be a polynomial
ring. Assume that a graded submodule M C S®" is generated by elements whose de-
grees are at most 5. Then we have reg(M) < n®(25)(@-1",

When n = 1 (i.e., when M is an ideal), the above bound is given by Bayer and
Mumford [1], and sharper than it seems. In fact, for each m € N, there is an ideal
I C klzy,... ,Z10m+1] which is generated by elements of degree at most four but satisfies
reg(l) > 22" + 1. For our study on Ipd(N), the case when § = 1 (but n is general) is
essential. When n = § = 1, we have reg(M) = 1 in the situation of Theorem 19. So I
believe that the bound can be largely improved (at least) when § = 1.

Theorem 20. Let E = A (y1,...,y4) be an exterior algebra, and N € gr E. Set n :=
max{ dimy N; | i € Z}. Then Ipd(N) < nd'20@-1",

Proof. Set L := N’ € gr E. (For graded E-modules, we do not have to distinguish left
modules form right ones.) By Theorem 18, it suffices to prove reg(H (F(L))) +1i <
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nd2@=D! for each 4. We may assume that i = 0. Note that H°(F(L)) is the cohomology
of the sequence

S® Ly 25 S @y Lo 2 S @ Ly
Since im(dp)(—1) is a submodule of S®d4im« L1 generated by elements of degree 1, we have
reg(im(9p)) < n#2(@-1' by Theorem 19. Consider the short exact sequence 0 — ker(dy) —
S ® Ly — im(dy) — 0. Since reg(S ®i Lg) = 0, we have reg(ker(0p)) < né'20@-1",
Similarly, we have reg(im(d_;)) < n®2@=Y" by Theorem 19. By the short exact sequence
0 — im(9_;) — ker(dy) — H°(F(L)) — 0, we have reg(H°(F(L))) < nd'20@-D, O

In a special case, there is much more reasonable bound for Ipd(N).

Definition 21 (Rémer, [13]). We say an integer vector a = (ay,... ,aq) € Z% is square-
free, if a; = 0,1 for all i. Let N = @,_;4 Na be a finitely generated Z4%-graded modules
over the exterior algebra £ = A (y1,...,y4). We say N is squarefree, if N, # 0 implies
that a is squarefree.

This concept naturally appears in the study of combinatorial commutative algebra (c.f.
[14, 16]). For example, all monomial ideals of E are squarefree.

Proposition 22 (Herzog and Romer, [14]). If N is a squarefree E-module, then we have
Ipd(N) < d — 1.

In [17], we describe Ipd(N) for a squarefree E-module N in terms of combinatorial
commutative algebra. We will show it below in the case when NV is a monomial ideal. We
also remark that there is a squarefree E-module N with Ipd(N) =d — 1.

Set [d] := {1,...,d}. Let A C 2/9 be an (abstract) simplicial complex (i.e., F € A
and G C F imply G € A). It is easy to see that AV := {F C [d] | [d]\ F ¢ A} is a
simplicial complex again. We also have AYY = A. Set Ja = ([[;,cpyi | F Cd], F € A)
to be a monomial ideal of F. Any monomial ideal of E is given in this way. Similarly,
set In = ([Licpzi | F C [d,FF ¢ A) to be a monomial ideal of S, and call it the
Stanley-Reisner ideal of A. Any squarefree monomial ideal of S is given in this way.

Proposition 23. For a simplicial complex A C 214, we have
(4.1) Ipd(Ja) = max{i — depthg( Ext& *(S/Iav, S)) |0 <i<d}.
Here we set the depth of the 0 module to be +o00.

If Ext& “(S/Iav, S) # 0, then we have i — depthg( Ext® “(S/Ixv, S)) > 0. One might
think the right side of the equality (4.1) is strange. But the right side of (4.1) equals
0 if and only if S/Iav is sequentially Cohen-Macaulay (see [15]). In this sense, Ipd(Ja)
measures “how is S/Iav far from sequentially Cohen-Macaulay?”.

Corollary 24 (Romer, [13]). For a simplicial complex A C 2\%, the following are equiv-
alent.

(1) Ja C E is weakly Koszul.

(2) I C S is weakly Koszul.

(3) S/Iav is sequentially Cohen-Macaulay.
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We remark that there are many examples of Stanley-Reisner ideals I C S which
are weakly Koszul (dually, Stanley-Reisner rings S/In which are sequentially Cohen-
Macaulay).

Corollary 25. Ifd > 3, then we have Ipd(E/JA) < d — 2.

In this moment, I have no idea whether the above bound is (nearly) sharp for large d.
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