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PREFACE

The 35th Symposium on Ring Theory and Representation Theory was held in Okaya-
ma on October 12th - 14th, 2002, The symposium and these proceedings are financially
suported by Grant-in Aid for Scientific Research (B){(1) from Japan Society for the
Promotion of Science through the arrangements by Professor Kenji Nishida of Shinshu
University.

This volume consists of twentyfive articles presented at the symposium. It includes a
series of lectures by Kenneth R. Goodearl on “Quantized coordinated rings and related
noetherian algebras”, We would like to thank all speakers and their coauthors for their
contributions.

We would like to thank Professors Hisaaki Fujita, Yasuo Iwanaga, Shigeo Koshitani
and Kenji Nishida for their helpful suggestions concerning the symposium. Finally we
should like to express our gratitude to Professor Ikehata and his students of Okayama
University who contributed in the organization of the symposium.

Yasuyuki Hirano
Okayama
January, 2003
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HOPF MODULE DUALITY AND ITS APPLICATION

TADASHI YANAI

ABSTRACT. Let H be a pointed Hopf algebra and A a right H-comodule algebra. We
see that if A satisfies certain conditions, then A is isomorphic to Hom 4 conr _(A, A H)
in AMf oy through an appropriate twist of A %#.module and H-comodule structures.
This duality induces some properties on generalized integrals in right H-comodule subalge-
bras of D#H including D, where D is a left H-module division algebra, and furthermore,
a Galois-type correspondence theorem for X-outer actions of finite dimensional pointed
Hopf algebras on prime algebras.

1. FX

V. Kharchenko IZ & 24 07 BRIIRO H O RARERP derivation, RUENS DR
THEHLU—REIIDOWTORLZHEKENMERZREHL TS ([K; P, Chapter 7)) .
Kharchenko OB %7y TREDERNIIRY 3 Z i3k y 7REOHFENKRDOV LD
T, [Mo, Sect. 6.4; Mil] RECEDRRERD 2 EMTES. ZOREELT, £
AR EIER SRRy TREDERICE S H O 7HNETBEOMEL WO BENEZLS
N3, BEL, FEETR RICHRRPERy 7B H X X-HBICERT 28BS, F
EFTLDRBTHIE RE 288 R O rationally complete 7228585 &, R OXMFRTILF
F-NEROPLK 2§V KH#H O H-RMBERSREN 108 1ISHETd 2 &%
8L, Kharchenko DRRESUH O TIHEOERER/D L THD. ZOERII(YL T
H % Sweedler D 4 KTy TREDBEITEL W I EASRE N, LIERL Z&EFOFTN
ey TRETHRSNTER ([Y2; Y3; Y4]) %, S. Westreich DBFFE[W], BV
FIBFFEWY) i2k > TRELATHL, —ROBFBRSERy TREICHL T, MEEEX
DEHZIIBGHIRD Z &, HREEOEEN 0 THIEEREHITDRB I EMEATE
2. TN -TERO DL ZIIRBIIRRERKL. LMALANS, BR0DRETI.,
HIR U — AR OFR BRI E W D BEFMARFNAN—TETB 5T, Kharchenko AR
L 7= derivation D729 HDEMOMR Y —KEOH O 7EH (K, Thm. 4.5.2) EMHET
EDWANTZNT EITRD. 8- T, HIRY —REOHBRERBDISUL DI, £E
B THERE S A DE/ROLFEZIENATS Z EMBEEE L THER - T,

1991 Mathematics Subject Classification. 16W30.
The detailed version of this paper has been submitted for publication elsewhere.
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ZODE, HEAKOMBERKE OFKEFFEMY]iICkD, MEOERzNEIN, 53
Ry TINBEORAHE ZEEBHT S (Theorem 3.2) Z & TREHREIN, YNOBREDOE (£FE
B THO7ENEEROTRERS ZEMTES (Theorem 2.4) . FEEAICEDLN-
FHER, HRRERY TRE HHKEZOE H* & H-oRy TmEEE L TRBIZESD &S
BEE, HEFyTMEBICHERL=HD T, BEERENS) i OEH (Proposition 3.3)
E2EURY TMRORBOHICHATES. ZITRMY) THsN/=wRD55, Ho
7 RIRORMEETOHEICBI L THSNER, BIUHEREOHRICONTHET 3.

2. iLT, EHE, MEEE

LIRE, HEEROE Kk 2 BEELTEDS. @3k 28T, Fy/REE2H T
=L, TORM KRBT, 7oFHR—REEFNTNA ¢, SE&EL. HOENEAKR
REMLTLATEMTH DL E, HIIHDH (pointed) THBDEES. FIZIE, B
2, U—REOWBOHEAE, EEMOFR) —REOFIREENREK, Sweedler D 4K
FeRy FRE (Mo, Ex. 1.5.6]) , sl(2) DRFIEERE Uy(sl(2)) ([Mo, p.217)) 2L
PEFRy TREDHFTHS.

BTRAVEH-MBEThA-(ab) =Y. (h1-a)(ho b) (he H,a,be A) &73BEE, A
3 H-MBRETHBHLEES. LR, HBETRIEATILEAE, 2TBRME H-
MBRKEABDZILEEKRTS. £, KERMIZHL, BEfipy : M > MQHT
(idp ® A) o py(m) = (pm ®idu) 0 pp(m), (idp ®€)opy(m)=m@1 (meM) %
BT HONEETDLEE, MILE H-RIMBETHBLED. pu ITED8% pyr(m) =
Yme®m (me M) &<, LR, H-RINBELEAEE H-RINBEE®RITZH0
LT3, BABRAMNps: A > AQHIZLD H-RIBT, pa(ad) = ¥ agho ® arby
(a,b€A), pa(l) =181 Z#H-TLZE A H-RINBRKEES.

RZFEBZTRBEL, Q ZTOXMHHITINF>T—IER (Mo, Def.6.4.2; P, Sect. 10]) ,
K% QOhiEdSd. IO Section TIE H BERASRF Y 7RET, RIZE H-ink
R&THBETD. RY .= {reRlh-r=¢(h)r, Vhe H} (3R DWBARCILD. RED
Jt%& H OERIC K DAL (invariant) & 5.

RO ENASNTNS.

Proposition 2.1.

(1) K 134ki273% ([P, Lemma 10.9)) .
(2) H® R~OEFEQ I THIETES (Mo, Prop.6.4.5, Thm. 6.4.6]) .

2.1(2) DEEMNS Q & H DAy affif{i Q#H (skew group ring Dy 7
DAL, [Mo, Def. 4.1.3) NEHTE, Q~Q#l, H 14H 2BLTQRHI
Q#HIZEENTVWBLEXD. Q#H 13 popy = idg ® A T H-RMBHREUZ2 3.

Q#H DB EE X, Y 1ML TCx(Y)={z € X|zy =yz,Vy € Y} LEHETSD. —
IRENIZIZ Coan(R) D K L7257/, HIA H =kG (G 13 R DHCRMNE/RDTHRE
B) T, 1D G OLH Q ONABECHEEE S (X-outer automorphism) &72 3 H4&



i Coun(R) = K ERB. TIT (—BD HISHLT) , Coun(R) = K MROIDE
&, H OERE XA THIEED ((Mi3, Defdd) . H OERNX-NEHTHS
EE, H- K CK &3 &0 Mn->THY (Mi2, Bemerkung 15.3)) , %> T Q#H
D H-ZMBERFRRTHEIATy L a R K#H 2E2 LM TES.

0,z€Qhe HITRHUT, (afth)-z=alh-2) LEHTDT &I, Q I3k Q#H-
INBEIZ/2 3. ROERIE Kharchenko @ differential identity with automorphisms D
([K, Chapter 2]) DOy TREOEANO—RLT, MEEBOEHICHEDLNS.

Lemma 2.2 [Mil, Thm. 4.1, p. 333]. H ZHZtHR R IC X-SMBRHIER LTS HR
ROEEy TR, Q% ROMBHIINF O F—IVERETSD. €€ Q#H &0 TN
ROAFTZIVIITHLT, £ 1=0725, £=0&723.

ROBHARUM, re REUDOTRRWAFFZINIIIRLTICU=rel &
729 & &, U ldrationally complete 25 5.
RO EMRDIULD.
Proposition 2.3. H #%&57R RIZ XHEIZER L TWO B HRRSEERy TKE,
Q % R OWRHHTIVF > F—IER, K2 QDHhiLET3.
(1) R¥ #SUWMAMEA U C RICHLT, Cren(U) 3 K 280 K4H O H-4Mm
B R
(2) K 28U E& A C K#HIZHLT, Cr(4)id R¥ 28T R @ rationally
complete TMLEL.

FIT, RO2DOEEEZRAERT 3.
- Upnp: R¥ ZET R O rationally complete 53 ¥ &EDHE,
- Agipn: K 80 K£H O H-RIMERMBEEOHE.
Proposition 2.3 "5, E&
®:Uw— Cran(U), ¥:Aw Cr(A)
‘i uRH/R & .AK/K#H @ﬁﬂl:i‘l‘ﬁﬁ%%‘-i’(hé Z &fﬁﬁ?)\%.

BUH = kG O8I, oU) = K#kGY (GY i3 U OXZEET3 G DD E) T,
A€ Agikup 3 K#KG' (G' 12 G OWAE) &BITY(A) = RS (G TAEENS
R OEHE) &izBh5 (Y1, Sect. 5)), &, ¥ iZkBxIMERDOAOTHIEERL B
DizizB.

FIT, TOMENEELTIHLICR>TWEMEND I EMMEIICES. Tkb
B, EBOU € Upn/p & A € Agjkpn CHUTROFEXNNRDUDNESNEEX
7o,

SoP(U)=U. (%)
Tod(A)= A (%x)
INsnEMNRENNTL, ROEEBMEHIND &Ik 3.



Theorem 2.4 (HIGEE) MY, Thm. 3.5]. H ZRZ7TR R I XA EeNTERAL T
ZHEBRFEEY TRE, Q2 ROMFMTIF L F—IVER, K % Q OBRLETS.
ZOLE, Efd TiZk, #E Urn /g & Ax/kun DRI 1 1 ORENEZ ShB.

Theorem 2.4 i%, H = kG D88&1d Kharchenko iZ& 5/ 07 HIEDEHEK, Thm.
3.10.2) EEUITAR%. £/, H=u(g) (FERRHIR") —¥K g OHBIERH) L&
{&, Kharchenko {Z& % differential ) — K- REDH 07 MMERE(K, Thm. 4.5.2] %
K#g IZUTIIDAEDBDOEFALUIZRS (MY, Remark 3.7) . [W; WY] T (+) IJEREE
BTRIL (T35 O 1I3BHLE3), (»+) X Chark = 0 D& ERILT S T & HEEER
Ehiz. FIT, EFEHT (x) MERIT S (T2hb dNeHERDB) TEEFRTT
EMBELRS. TOWAE, KD Section THy TMBEOITHEIZET 2R LR~
&, Section 4. TIEBHT 3.

3. W, B-7axR= Ak, o

ZIZTRHRLTLLEBRRSBELIZESBERy TREETS. H hoEidkk
OB EHREE Hom(H k) 2 H* TEY. H-RNBEOBTHFITV—% MH &L
MeMEDLE, R*e H* meMIZBLT, hi* =m=Y h*(m)meilL>TMIiZ
EH-Mmi&izs.

LIBE, ARRH-2MBERETHEETE. Me MENE AMBET, ac Ame MiZ
ML T pmlam) = pala)om(m) £BBEE, M e M7 EET. Me MY HSEKICHR
B3, (ZOLSITMBEEAMBOMEEHDERDLDE Ky TMEE EERI &I
95.)

A®H = [a € Alpa(e) = a® 1} {3 A D H-RINBEMHREICIES. D = A©H
T35, M e MY TR (A, D)-MBTM € MIDDOM e MEDLE Mc
AMB LEBL EBIT, M M5 D ADE D-BKE{LS(E%E Hom_p(M, D) 2#<. M€
pM¥ . Homp_(M,D) bEBKIZEHT 5.

HFERRFy 7TREPHBREy TREDT7 > FR—F S 3Bz 3 (Mo, Thm.
2.1.3, Cor. 5.2.11)) . TD&E, SOYEH%E S THT.

Proposition 3.1. [MY, Prop. 2.1) H #7 > FR— KMHL2BHTH DKy R, A%
H-#hngR%, D= A" 93,

(1) M € .MEB BEBERKEL D-IBED L&, Hom_p(M,D) € pMH L7125,
(2) M € pMY WEIRERNHH D-MBED &%, Homp-(M,D) € JME 2iz53.

SEBH (HE8). M € aME NERERS Y D-N#EE$5. » € Hom_p(M, D) I3 L
T (zpa)(m) = zp(am) (z € D,a € A,m € M) LERIMBOMEERD S, 512
(mi, i) (m; € M, p; € Hom_p(M, D)) % dual basis &L T, Hom_p{M,D) O H-
IBEEZE o o X o((mi)o)wi @ S((m;)1) IZKH>TEHEAD I &ITED, (1) ARENS.



M € pME HERERGEE D-MPOEE, FRIC dual basis (m},y;) (m; €
M,; € Homp_(M,D)) &9, ¢ € Homp_(M,D) I8 LT ¢ = L 3h;9((mf)o) ®
5((mjh) i2&>THomp_ (M, D) D H-RMBEMHEEZSA B LT (2) 28175, O

B2 A € pMH (resp. AME) THBHS, ANERELFEE D-MBOE 12
Homp_(A,D) € AME (resp. Hom_p(A,D) € pM¥H) &iz5.

MeMIDEE, HOBMTg (A(g) =9®g, 9 #0ERBT) IKHLTm
Y me®gmy, m— Yy mg®@mg ICE>T M ICH LW H-RMEENSEZ SND. £
NS EENTFNMgL), Mlgr] THEY. T, SHMRD OBERBMEHKT M ME D-M
BDEE z.m=8&m (zeDmeM) iIZ&>TMIZHLW D-MBEMEGEEZHEAL
bD%E gM TEY.

ROFERIL, H-KRMBAKOFy THRE L TOIMHEE S5 X 3.

Theorem 3.2. [MY, Thm. 2.2] H 27 RFy 7K, A% H-/RMBABEL, AN
AME MEDOHBELTHEAMTHDETS (ZDEE, A [I8UKITIZS (MY, Prop.
3.1)D) . AD D := A°F DK dimp- A,dim_p A DWThh—ENMEFBRTHN
i, 5 DDOECHENER S &, H OBMITT g MEELT

(1) DM'I{ @ﬁ%& LT 5-1A jad Hom_D(A,D)[gL],
2) AMg DR ELT Ag ~ Homp-_(A. D)[gr]

L3S,

SEBA (EER). XFREM S dim_p A < oc E L THDRW. Ap ITABERKRAIIENS
M :=Hom_p(A,D)e pMH &izB. ZZT, {me Mlpy(m)=mQg} #0 L7258
Bmg e HEED. (ZDXIRB gMNENDEIAICHMBREVDRENFEDNS.)
Ig={h" € H*|h*(g) =0} &L, I,A%h" —a (k" € Ij,a € A) TERINDAD
H*- B3 mFEL T3, ZDEEdimp. A/I,A=dim_p A/, A=1&72D, @fil (D, D)-
MBEE LT A/l ~ gD ~ Dg-1 L7235 D DHCRE 8 DIEENSMD. oLzl
THOND g, SN LOEEEH/T. O

L OREM S, Theorem 3.2 DEAMHINBE 213, BiikACT cAlR3-70
REGZAFEKIZBSTWB I ENDNS.

ZOEBERDOL IRy THBICERTS. DRPZTR TRy TRE HMNENS
ERALTWSETS. ZD&E, ATy a8 D#H B ppen =idp@®AIZLDT
H-#IMBARERSD. DD#VIZED DCD#H EEXB. é=idp®c: D#H - D
EEB. A% D%RSU DEH O H-ZIBRAHMEL, 64 =€|a &T3. BN

I
£4 € Homp_(4,D) T 3. / = {n € Alan = é(a)n, Ve € A} DLE A D (Y3E
A

[4

EN) EMSEEXR (D = k DEE, f B DRy TREDEMS (Mo, Def.
H

2.1.1)) TH3.) ROMEIIHRy TREDOHFITOVWTOHESR (Mo, Thm. 2.1.3)) *®,



[Ko, Thm. 2.2) D&y FREDBERA 77 IIEHMHUEROMMA BT HEZRO—RLT, #
EERADSRETS.

Proposition 3.3. [MY, Prop. 2.4] FBRRI# Ty TRE HIZHLT, D, A2LDX
SITHRDBEE, KWKV IUD.

[4
u)/@iAm1kiEDﬂ%§mfaa
2) H'—-\/ = ATH5.

EA (BER). (1) AR aMA ME ORGEUTHSLERS ([MY Prop. L3(1)) &
5 Theorem 3.2 2% AIZBATES. a,be AITHLT, (aé)(b) = £(ba) = é(bé(a)) =
(E(@)é)(b) THBNS, af = é(a)é. BT, 3.2(2) DRABTéLD C Homp_(A4,D) iZ

HIET 5 A DBHEMD | THEZEMGPS. (CORBRIIH BEFRATRITY,

dimp_ A dim_p A DERTHIUIRD LD.)

(2) Theorem 3.2(2) 75, A3 Homp_(A,D)[gr] &&E H*-MEt& L TRIMIZES.
H* = é,D =Homp-(A.D) (MY, Lemma 2.5(2)])) TH3ILLEDLET, RO
B%%85. D

4. MNICEEDOIEA

Section 3. THSNIHEEZLAL THILER (Theorem 2.4) %IEBAY 5. H 2FR
RABFRy 7RE, R%E HMNX-ABERIERL THWBHETR, Q % ROXNHHTI
FF—IER, KZQoHhL&T 3.

Section 2. Tz k51T, FEEARI (++) ZEEEHRTHAT S L TERTS. A€
Ax/K#H )_‘ L, A/ =®0V(A) £T5. A, A I Proposition 3.3 DR EM/-T.

¢

7, / ERBTEERT. ne/ ETE. HARBTHBTEETIL
f/T—}l/ﬁﬁ@ﬁEﬁ!b n-1CR &:721‘.6 R DA F 7N I(# 0) DETENFMNS
(Mo, p.97, Thm. 6.46)) . r € I £T5. a € AITHLT, nBNEMBPTHEMS,
a(n-7) = Yao- (n-7)#ar = X (aon) - r#ar = 3 (E(ae)n) - rday = (n-r)e £i21,
n-r€V(A)2BSD IITdeA&TaE (n-r)ad=ad(nr)=Y 05 (n-r)fa; &
735, ZOERDOEMIC idg Qe EHERIEL (ido ®€)((n-1)a’) = (n-1)é(a’) = (é(a')n) - T,
BRI (idg ® €) (D ah - (1 )kal) = X ab- (n-r)elal) = o' (1:7) = (a'm) -7 &
/BaEMS, (E@)n)-r=(a'n)-r &LIz3. :Ol): EMS (E(@)n—a'n) - I1=0&7B3DT

Lemma 2.2 X0 é(a')n=a'n &720, n€ / %85,
Al
¢ ¢ ¢
{#€-> T, Proposition 3.3(1) 75“5/ =/ Nahn, 332)M5 A=H" —-*/ =
A A A

£
HnA/ = A LN T, (sx) DBRNRIT .
AI
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ON REPRESENTATION RINGS OF NON-SEMISIMPLE HOPF ALGEBRAS OF
LOW DIMENSION

fOASHA (MICHIHISA WAKUT)

ABSTRACT. By using the classification results on all Hopf algebras of dimension < 11 due to Williams,
Masuoka and $tefan, we investigate structures of representation rings of non-semisimple Hopf algebras
of dimension < 9 over an algebraically closed field & of characteristic 0.

Let Rzp(A) dencte the Green ring of a finite dimensional Hopf algebra A over k. If A is a non-
semisimple Hopf algebra A of dimension < 9 over k, then Rep(A) is commutative, and the anti-ring
homomorphism = : Rep(A) — Rep(A) jnduced from the antipode of A is an involution. We prove this
by determining the isomorphism classes of indecomposable modules of such a Hopf algebra.

1. FRBLUERR

EE, ERE n 2EELAL R, o REOHRy TREEFEREEL LTHRTS] 05 MBI
ERMEREZOATVD, HiC, S0 OREAEETERENE 11 KRUTO® » 7REISVTIR,
Williams [17]. #E# [9, 10]. Stefan [15] i<k » TELRHEREENBOA TS, TOBRICLY, &
%0 ORUEAEETEREAL O KLU TOEMBTRY VR y 7REIU T ORICEHIT Ik » 7TRED ¥
NP1 ORERTHS - EHbIS,

WIE | FHEETRVER Y 7RE | £6R | BEX * v TR ERE

4 | Ty 9,z g#=122=0, zg=—gz 9€G, z€ Py,

o 9z |9¢'=12"=0,29=~gz 9€G, 7€ Py

& g,z ¢'=12°=¢°-1,2zg=-gz|9€G, z€ Py,

8 | AZ, 9,z 9'=1,22=0, 19 = wy9z 9€G, z€ Py,
Acixc: 9:hz @hng::;;. hre—zh 9h€G, z€ Py
(Az)* gz ¢*=1, 22 =0, 2g = wigr A(g)=g@9::s::@9’z.
Ac, 95y 9==-::?L;3%ii%=-v= 9€G, z,y€ Foa

9 | Ty, 9T =1 2=0, 29 = wigz g€G, € Py,

IiT . wa€k(n=3,4) 121 DFRS n RIRERDL, G=G(A4) 12 A DBRATOLE,. P, = P, u(A)
XA D (g,h)ERETOEEERDT :

G(A)={9€A|9#0, A(9)=9@9g}, Pn(A)={z€A|A(z)=2@g9+hez}

BRUEEE. Ty 7REE LT Lo, 2T, it ROT, FRUBETRV 9 REDOK v 7REDEREUL 2
BHd, BPOPTIT. FHEHETRWI &71:0)731 y7REOFRBOMKIT 1 L LTWELEM, ZhiX
BITT, BECBLETET,

S0/ — FTIR. ERRORICETIR o PREOEESAMBE L REHICRETI I LITLD, IRTUTO
HESTRVER s 7REORFROFHERICSVTH~S, BT, RAMEBC &, v DD Grothendieck
B (FILE, [12, 6] BR8) £28BENSFH D0 LAV, 2 Tl Green ROBEETAV TS,
Green R& £ S BEIZ, R4BFRLTIHRBIIFEMBET2L, Grothendxeck RBUETHLASHOIER
»HB,

LThe paper is in final form and no version of it will be published elsewhere.



w7 TREH T 5 Green ROBE I, HWEE G OHR K(G] 11T 5 Green ROEL [4) L BAICK
BTYAIEIEIDEBEOLND, IT, TOEBELERBRE ), BBOLD, ik LOFBRTF Y 7R A
oW TE LD, FBRATE ANBORNELEE RA) Lo TEDT, HRKXTE A-INBE V (28 L
T, TOREME [V] THERbTIEIITH, SDLE,

Vi+W]=[Vew], [V]W]=[VeW
Lo TEXRSNAIHMERIBLT, R(A) TMUTERFOLRELT, STk, VW % A OEER
a-(v@uw)= Zamv®a(,,w. veV, weWae€ A, Delta(a) = Za(,) ®aq)

ISE), EAMBEAZLTVR, BL. A:tA— AQA IR ADERITH B, 7. £] R(4) 08
frsTi k) 12X 2 THEX6NDB, CITid, k £ A DEHER

e-r=¢la)r, rck,acA

Ih, EARBEALLTS, BL, e: A— ki1 A DKM TH S,

R(A) DB L L T Grothendieck 18 % Rep(4) EHL T LT B, SDLEE, R(A) DETHEX
LEBREDN S, BT EROROMWED Rep(A) ISEZ D, £ D TlE% . Rep(4) I2. A D&
S:A— APLHH SN HRREEFE « : Rep(4) — Rep(A) 0. ZHRRBEAE + i3, HEXTE
A-InE vV oFEE (V] T LT, (V7] %mt‘\‘é-eal:?f&t LTE&ERSND, T T, V* = Homy(V, k)
* A DEER

(a-f)(v)=f(S(a)-v), feV ', a€A,veV

Lo TE A ML AR LTS,

PEDXHIZEREND « {TE8 Rep(d) ¥ A D Green MLBFAZ LIZT D, A IIHFBRATLO
T, S =idy LRDEARE n HFETS (130 £ 27T, »:Rep(A) — Rep(4) HLUHTHD, /.
Krull-Remak-Schmidt- 8RB DERIZ & | Rep(4) 12 {[V] | V ZFRRTUBAMEE } *LERHOBH
z-ﬁuf&;zw B o oREAELTERENS 9 RRUT OB TR VR v 7RO Green BIZ DO
T. RMEH D,

ER 1.1. (1) AZ, & (AL,)° D Green REARTH 3,
(2) Tu, Ag,, AC‘, AZ,. AcyxCs: Tow, @ Green Rid, BFOEN LS ZERTLBERIZL > TRE
SNATRRATH S (LL ab=ba £\ ¥4 TORERITHEEL 72)o

Green 3t | £MT | BER <Mt r oot
Rep(T}) X, ¥ X}=1L¢¥=(1+x)¢¥ |x"=x " =x¢ 4
Rep(4L,) X, ¥ =1, ¥ =01+ |x"=x"Y ¢ =x% 8
Rep(A%,) |x ¥r o | &ohYecm, X=xh v =xb =0 6
Rep(AZ) X ¥ ¥=1,¥=0+x¥ Ix=xhv=xW 8
Rep(Ac,xcs) | xi X ¥ | XKk X=Xt =12, v =xixep| 8
Rep(Toan) | X0 % 2| prcpluminisoipiaesty | X =X ¥ =%, 7" =xp 9

(3) Green R Rep(Ac,) # Z-1i#t L L COMRIZERTHD, LHELLIL, EE0BARNEn IIHLT,
n RENEEMLE Ac, - NIENFET 3,

BRULRR. LOEDPS. Rep(Tyw,) & Rep(Ty, 1) REETHD. —F, Tou, GEERZIH IS0
EHEHLL 2, 8o LENoT, ARKRE Tou,-MEOLT 72 Y VBEHRATE T, - MEO%

T5 YV IVBEIIEMH T2V [14), ML T D Abstract Tid, 9 RTEUATORBM TRV E Y TR A 2
SVTit, HEATE A-NEDRTF VB Green RICE o THRT B LERL F LA, ThidEy
Tt BEUHLET. 92 8IIMYEAD L, ELVWERIZZY T )16).

LOEBEXHROBNEHNS (16] $BIE),
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1.2, BH oM LTERSN: 9 RFTUTOEEL TRV EF Y T A @ Green 5 Rep(A) i3
TRTHY, 7D, KREFR «: Rep(A) — Rep(4) 121 > F Y 2—3 3 > Thr, 2612, Ag, EF
Biry 7REZBRVT, B0 0REASLETERE SN 9 REUTORMH TR Ry 7REUL. F
BERK (ie BERHLHRERE AMEORRAIIARE) TH2,

ZE 1. 1. HBEE G OBR k|G] O+ v 7HRE k[G]* 120V T, Rep(k[G]*) = Z|G) #REH LD, L
2% T, G AETRZ 51X, Rep(k[G]") bFTRTSH 5,

2. A MHE=Fk v TR 3] OHEEHTIE. 20 Green RITHRTH Y, 20, KRREFE »« : Rep(4) —
Rep(A) 4 ¥ K1) 2—% 3 > Thbe Ag, HESA%y TREOWELHD [5, 16) DT, £0 Green B
BITRTH D, »o, EREFH « 24> K 2-2a3>Tha,

3. ROBZOERIL, Ac, YN OFy 7TREORENT N THATHS (z TERENB) I ENL L1
5 (&, [7, Proposition 54.8 & Theorem 54.12] ¥ £:88),

2. EEDIEH
8 RTEUT D&y 7REUIDWTIL, €D Green ROELEIZ T TIZERTWS 16| DT, TS Tik, 9
KT Taft RE Ty 1220V TEOWB RS,
A 2.1. A ¥ 9 KT Teft RE A =T, PEF+Ey 7THRE k[G(A)] ORFET B, (Thbb, A %
149+ +@ DO TLRWAN 7L TE, ) EEAIIRD 3 o058
Vii=kz?’A+ kzA+ kA, Vo= kr’A+kzA, Vi =k2’A
2E21B, SOEE. ADHFBRRATHESIEIZLUT OV, 1 2IBBITH 5,
- VRTTEBERIMEE . VP (a=0,1,2).
C QRTEEBESHNHE: VIRV, (@=0,1,2).
C IRTEBESHME . VE®WK (e=0,1,2).
BL, V® =k LHET S,
PROOF. V ¥ BB HBATE AMBEL T2, w=w; £B{, g8 =1ThadnH, VIL
V=V(g1) & V(gw) & V(guw’)
& g DERICERT2EHE LM V(giw®), a =0,1,2 DEHIIFEINL,
gr =wlzg L9, z(V(g;w?)) C V(giw® ') BBV ELD, W) :1=2(V(g;1)) EBE. ThD V(guw?)
b o1y (ﬁ%) #HEME W, L I V(g;w’) =WeW. AN
Up = :E(Wl) ﬂx(Wz)
EBE, FhO V(gw) iBTD (BE)HEME U, L5 V(gw) =Ua Uy, 85I, &i=1,21
ﬂL—C\
W; = Ker(z|lw,) & W}
R HBoEM W &
Vig:1) = Z @ Ker(zlvig))
L ARAZEM Z 2B, ZDEE,
W = IV:OI-I(UQ) + W/ nz~Y (U, (= 1,2),
Z=Znz Y {Winz~Y ) + ZNz-Y W] Nz~ (Th)) + ZN "' (Ker(z|w,))
HMED AL2DT,
X = Uy + W nz~YUp) + Winz~YUp) + Z Nz~ Y (W] Nz~ Y(Uy)),
Y := Uy + W nz~Y () + Winz~ 1)) + Z nz~ (W] nz~ Y1) + Ker(zlw,) + Ker(z|w,)
+Z Nz~ Y(Ker(zlw,)) + Ker(ziv(gay)
EBLE, RIMLEBMELT V=XgY FRNIED, TOEMFRIE A-NBEE L TOENFRIZD
oTwd, Z¥ERLIE, 2=01280,
z(Up) =0, z(Uh) € ZNz™'(Ker(z|w,)) + Ker(zlv(g1))
HEDIONLTHD V IEESTH 26, V=X Tk V=Y MEHLD,

-11-



TP X 22V THER B, zlwina-1w0) * Wi Nz {Uo) — Vo, lwynz-1(wo) : Wi Nz~ (Up) — Uy,
zIZn,—:(wrnz-l(uo)) an"(wl nz_l(Uo)) — WiNz~Y(Up) T < THREREERTHE06, Up£0
6T, 9, 2D X ~OERIIRDO LI 24 kaE?:'frEJ (DERA) L LTRDYTILMTES,

100 0 0000
0w o0 0 0000
gl———v 'z._.
0 0w O 1000
0 0 0 w? 0110

SHE 3 RTE 1 KEOMBEOEHTH ), EEHTEV, &oT, V=Y THiIFUILLT, Licds
T‘U(‘)’{==00‘;Z’ Z;:ZW{) L z(W3) & V(giw) DB TEMNTH 5, €T, V(giw) =z(W]) dz(Wj) 2 U2
LRBAEMU, 2L 3, COLE, VIERD2O0DBH/ZEM Y, Y, DEMIZL S,
= ZNg Y (W]) + W{ + z(W)),
Ys := Z nz~Y(Ker(z|w,)) + Ker(z|v(g.1)) + Ker(zlw,) + Wa + z(Ws) + U
Kit. Y, Y22V OBS AMBIZZoTWwE, | 2V OBS ANBETHEILiL
Zng i (Wy) = W) = (W) =0
ERBIENLDNE, Y, UV OFEG AMETHA I LI,
(Ws) C Ker(zly(g.)):  z(Uz2) € Z Nz~ (Ker(zlw,)) + Ker(zlv(g,1))

EuBIlEhbbhd, REOALERBE, ROLILLTREND, v e IH LT z(ug) =21+ 20 +
z3 (21 € ZNz~Y(W)), 22 € ZNz~ (Ker(z|u, ), 23 € Ker(z|v(g))) £ <o 0=23uz) =3%(5y) %D
DT, z(z) € Ker(z|lw, )N W] = {0} THB. £>T. z; € ZNKer(zly)) = {0} TH %,

V IREBRHTH206,. V= T2 V=Y T2IThIEzL LW,
* V=Y1 0)%%:"%"3 t&ao
V=Y, DlE W] =0L%2DT, W, =Ker(z|w,) #BEDUD. T/

V(g:1) = Znz" (Ker(zlw,)) + Ker(zly(g)), V(giw?) = Ker(zlw,) + W2, V(giw) =z(W2) +U;
FED A2, 2y :=z(Uz) NKer(zlyg)) EHBE,
z(U3) =218 22, Ker(zlygn)) =21@23, Vigil)=21€2:82:8 2,
FBATRAIEM 25,23,Zs L Do 612 Uy = Ker(zly,) 9 U 2BLTHSEM U 2 & 5,
Ul = Uynz=Y(Z)) + Ui nz~1(Zy)

LB, 2(Z0) +2(Z2) = W, 12 W) OB TEHIIZ>TVB I Ehb,

Y, i= UsnzN(2a) + Z2 + 2(2Z2)

Y; := Ker(z|y,)

Yal = Zy +x(24)

4= W + U3 n27Y(2)) + 2(W2) + Ker(zly(g.1))
tBLE V=Y aYiaYiaY] tRBILt¥ibrb, 2P=0wWZ,
£(2,) € 2(W) = {0}, 2°(Z4) € =(W1) = {0}, z*(W2) C Ker(zlv(gu))

Ehd, LAHoT, Y/ (i=1,2,3,4) 3V 0BT AMETHL, V FERMLZOT, $3i=1,2,3.4
IIRLT V=Y Ei3,
‘V=Y; DBE U3nzH(22) == 2y T+ 2(2) THEDH. V=V1@V; THBT LitbP3,
VoY, OBE IV =VE L3,
V=Y, OBs:V= VieVs &% b

-12-



-V =Y DBHE  V(g1) =Ker(zlv)) & %2 &5
V(g;w®) = V(giw) = V(g;1) =0
KonT, BREEFLEAROERETILILLD, V2RVEIQ W, VB2 W, Vs, k, V1, V2 OVih
PHEEEII 2B ENDIS, O
RE2. #r LOFBARRE A ICH LT, RO2OEEMETHZ I 26N TV 53 (1, Theorem A &
() BRI L ERATE A-MECRBBOBHIIFTRETH S,
(i) EEOEESGLE A MBRERATTS 5.
SO et EEDEBNLE T -MBREFEATTHLZ e dtbrh, 2OHRELT, LOGHET
BT EEHNEO L Ah» 1 DIZAETH 5,
#A 2.2. 9RT Taft 0¥ Toy D Green & Rep(Ton,) i x, ¢, p 2L > TERSHBER
X*=1, ¥ =1+xp 0° =p(1+x+x%), x¥=2vx xp=0px, ¥p=pt=p(x+Xx°)
X'=xh ¥ =v 0 =x%
Lo TRESND, LId 2T, Rep(Tou,) HTRTHY, s 42K 2—2a>vThs,

PROOF.
eg:=12°A, €1 :=zA, eg:= A

EBL, T w=wy B W, Vo, V3 2EI21 OBEEHNBRLETE, VB =k, VIOV, =
VeV, iehh=V9V, THHZ LitT{Ilbdrs, S LEHTSE
Va@Vo=key®es+kea®e) + k(we, ®e1 —eg®ep)
+k(~wes ®e; +e1 ®ez) + h(—wre; @ey —ep @ ez) + k(—ep @ e1)
(VLo W) e (V2 e k)
Vo®Va=kes®ex+kea®ey +kea®eg
+h{-wea Qe +e1®@e)+k(e2®ep+e,®e1)+key Qe
=(hioW)e (Ve Vs)
Va@Va=k(-wes ®e1+e; ® ez) + (kex ® 2 + k(—we; ®e) — € @ e2) +k(—e1 ® ey))
ke (i oh) '
Vi@Vi=ke:®@ex +kez®e1 +kez®eo
+k(~we; ®@e; +e1@er)+ k(e ®eg+e®ep) + ke, Qeg
+k{-we) ®e +ea@er+e2®ep) + k(e Ren+eoQer) +keo® e
x(VisWe (P el)eV;

oMb, LoT. SELLOBERESNE WV, V., Vz; OEEREZZhFhy, p, v EB (L, B Rep(To,)
iEx, ¥, pllioTEESh, BEOBERIZL > TR LIRS,
RIZ. Rep(Ts.) ? +BEXREL L I,

5(g) =4* S(z)=-z4
THAEZEIZEETRE.
V=V
Ve =k(=wle]) +key =V,
Vs = key + k(—e}) + k(we;) = VE g V3
¥BB, 2T, V5 IiBi1TB {e},ef} i V2 DRIE {ez,e1} PRHAEETH Y, V7 128D {e3. e, €3}
it Vi OEE {eg,€1,e0} DEAEETH B, L7:d5 T, Rep(To.) LDRREEE « i1,
=Y =9, 0" =X
Lo THRESRIBEShE L EdbAD, i,
XT=0) == T =9 =,

=pxX=p
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MEYAL2DT, s R4 K)a—-varThsb, (]

PROOF OF THEOREM 1.1. (1) Ap, & A, ZEVIIIY 4 2 VERTSH S ([11, Proposition 3] # 7212 (16,
Corollary 1.7} 8#8) = ti)‘&bﬁ? (“’ﬁiﬂﬂ""o b TED),

(2) 8 RFELT Dk v 7B Green RIZOVTIE, (16, Theoreml.5 | 12 & 3, 9 Ktk v 7REK To.,
iZonTit, &l21 #2215,

(3) i1 [16, Theorem 1.5] I= & 5, m]

HE L2V RVILANOBAB LAAERD T L E > FHFBRELE IR VALET, T2 BHO
BEYSAT LEEo - EFMERELRUDETILEV Y RYSLAOEHBIBILBLETE T,
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A CHARACTERIZATION OF NOETHERIAN RINGS
AND ITS DUAL

YOSHITO YUKIMOTO

ABSTRACT. In this note we characterize right Noetherian rings by direct decomposability
of arbitrary right module to an injective module and an i-reduced module, and we also
discuss the rings defined dually with respect to the characterization.

1. INTRODUCTION

A ring R is said to be a right H-ring if every right R-module is a direct sum of an injective
module and a small module. Right H-rings have various properties, and are studied by
many authors: Harada [4], Rayer [6], and Oshiro [5] for example. To characterize rings R
by a direct decomposition of an arbitrary R-module into two specific modules is a new way
of definition. We show that this type of characterization is possible for right Noetherian
rings. The characterization of right Noetherian rings is dualized easily. However the
class of right Noetherian rings is so significant that the dual class of it is expected to be
important. Therefore we also discuss relations of the dual class and other classes of rings.

2. CHARACTERIZATION OF NOETHERIAN RINGS

A module M is said to be i-reduced if any submodule # 0 is not injective. We charac-
terize right Noetherian rings by the direct decomposability of an arbitrary right module
to an injective module and an i-reduced module.

Theorem 2.1. For a ring R the following conditions are equivalent:

(1) R is right Noetherian;

(2) Any right R-module has a mazimal injective submodule;

(3) Any right R-module is a direct sum of en injective module and an i-reduced module.
Proof. (1)=+(2) by Zorn’s lemma.

(2)=(8). Clear.

(3)=(1). It suffices to show that any direct sum &;¢;E; of injective indecomposable
right R-modules E; is injective([7] Theorem 4.1). We have a decomposition

SictEi=EEF

by (3), where E is an injective right R-module and F is an i-reduced right R-module.

The detailed version of this paper will be submitted for publication elsewhere.
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By Proposition 25.5 in [1], there is a subset J of I such that
Oie1Ei = E © (Sies Ei)-
Hence we have
F eiEJ’Eﬁ:

which is impossible if the i-reduced module F' is nonzero. Therefore F =0 and §;¢;E; = E
is injective. 4

A submodule A of a module M is said to be a small submodule of M if, for any
submodule B of M, A+ B = M implies B = M. A module is said to be small if it is
a small submodule of some module. A ring R is said to be a right H-ring if every right
R-module is a direct sum of an injective module and a small module.

Corollary 2.2. For a ring R the following conditions are equivalent:
(1) R is a right H-ring;
(2) R is right Noetherian and any i-reduced right R-module is small.

3. DUAL OF THE CHARACTERIZATION

We consider a dual notion of right Noetherian rings. In the following, a module M is
said to be p-reduced if any factor module of M except 0 (= M/M) is not projective.

Proposition 3.1. Let R be a ring. The following conditions are equivalent:

(1) Every right R-module is a direct sum of a projective module and a p-reduced module;
(2) For any right R-module M, there exists a minimal element in the set

S = {X £ M| M/X is projective}.

Proof. (1)=(2). Let M be a right R-module, and M = P& Q, where P is projective and
Q is p-reduced. Then Q € S. Suppose that X < Q and M/X is projective. Then Q/X
is projective and Q = (Q/X) ® X. Since Q is p-reduced, we have Q@/X = 0. Hence Q is
minimal in §.

(2)=(1). Let @ be a minimal element in S. Then M = (M/Q) ® Q with a projective
module A{/Q. By the minimality, Q is p-reduced. 0

The condition (1) in Proposition 3.1 is called right N* condition. In the terms, "N’ stands
for *Noetherian’ because the condition (1) in Proposition 3.1 is dual to the condition (3)
in Theorem 2.1.

A ring R is said to be a right coH-ring if every right R-module is a direct sum of a
projective module and a singular module. Every right coH-ring satisfies right N* since
any singular right R-module is p-reduced. In particular any quasi-Frobenius ring satisfies
right N* condition.

We would like to answer the question what rings with right N* condition are. The
following Theorem 3.3 is a partial answer to it.

Lemma 3.2. If R is a right hereditary ring and satisfies right N* condition, then there
exists a minimum element in

S = {X < M| M/X is projective}
for any right R-module M.
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Proof. By Proposition 3.1 there exist minimal elements in S. Let X, be a minimal element
in S, and X, any element in S. Then M/X, N Xy, = M/X, & M/ Xz, m + X, N Xy =
(m+X,, m+X,) is a monomorphism to a projective module. Hence X;NX, € S, because
R is right hereditary. We have X; N X, = X,, by the minimality of X, and X; < Xa.
Hence X, is a minimum element in S. 0

Theorem 3.3. Let R be a right hereditary ring. Then the following conditions are equiv-
alent:

(1) R satisfies right N* condition;
(2) Any direct product of projective right R-modules is projective.

Proof. (1)=(2). Let {P:}ie; be an arbitrary family of projective right R-modules, M =
[lic; P, and Q; = {(z:}ies € M|z; = 0}. Then M/Q; is projective for any j € [.
Since R is right hereditary and satisfies right N*, there exists a minimum element @ in
{X < M| M/X is projective} by Lemma 3.2. We have @ < Q; for any j € [/, and
@ £je; @; = 0. Hence M is projective.

(2)=(1). We show that the set § = {X < M| M/X is projective} has a minimal
element for any right R-module Af. Let X, > X, > X; > ... be a descending chain in
S. The direct product P = [];.y M/X; is projective by (2). The module M/ \;cx X:
is isomorphic to a submodule of P. Since R is right hereditary, M/();ex X; is right
projective and [,y Xi € S. Hence S has 2 minimal element by Zorn’s lemma. Therefore
R satisfies right N* condition by Proposition 3.1. (]

Remark 3.1. Chase ([2] Theorem 3.3) showed that (2) in Theorem 3.3 is equivalent to the
following condition (without the assumption of R being right hereditary):

(2') R is right perfect and left coherent.
So we can replace (2) in Theorem 3.3 by (2').

Example 1. There exists a ring which is right hereditary left coherent but not right
perfect. For example Z is such a ring, and it does not satisfy right N* condition by

Theorem 3.3.

Example 2. The ring

= ($ &)

is hereditary and semiprimary. Hence R satisfies right and left N* conditions by Theorem
3.3. On the other hand every right hereditary right coH-ring is Artinian ([3] Theorem
5.23). But R is not Artinian. Hence R is not a right coH-ring.
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QUANTIZED COORDINATE RINGS AND
RELATED NOETHERIAN ALGEBRAS

K. R. GOODEARL

ABsTRAcT. This paper contains a survey of some ring-theoretic aspects of quantized co-
ordinate rings, with primary focus on the prime and primitive spectra. For these algebras,
the overall structure of the prime spectrum is governed by a partition into strata deter-
mined by the action of a suitable group of automorphisms of the algebra. We discuss
this stratification in detail, as well as its use in determining the primitive spectrum -
under suitable conditions, the primitive ideals are precisely those prime ideals which are
maximal within their strata. The discussion then turns to the global structure of the
primitive spectra of quantized coordinate rings, and to the conjecture that these spec-
tra are topological quotients of the corresponding classical affine varieties. We describe
the solution to the conjecture for quantized coordirate rings of full affine spaces and
(somewhat more generally) affine toric varieties. The final part of the paper is devoted
to the quantized coordinate ring of n X n matrices. We mention parallels between this
algebra and the classical coordinate ring, such as the primeness of quantum analogs of
determinantal ideals. Finally, we describe recent work which determined, for the 3 x 3
case, al) prime ideals invariant under the group of winding automorphisms governing the
stratification mentioned above.

INTRODUCTION

First, a caveat concerning the title: This survey is not designed to be either an
introduction to or a discussion of quantum groups. Rather, we present some of the
ring theory that has arisen in studying the structure of certain algebras found among
quantum groups. Here we only give a few words of background, and later we present
some representative examples. An introduction to the general theory of quantum groups
can be found in many books; as a small sample, we mention (3, 6, 28, 29].

The term ‘quantized coordinate rings’ refers to certain algebras that, loosely speak-
ing, are deformations of the classical coordinate rings of affine algebraic varieties or
algebraic groups. These algebras are typically not commutative, but they turn out to
have many other properties analogous to the classical case — for example, they are noe-
therian, and most of the ones that have been introduced to date are integral domains,
with finite global dimension. To take the most basic case, recall that the classical coor-
dinate ring of affine n-space over a field k is just a polynomial ring in n indeterminates
over k. Thus, a ‘quantized’ coordinate ring of affine n-space should be some type of
noncommutative polynomial ring in n indeterminates, such as an n-fold iterated skew
polynomial extension of k. For the canonical examples, see Section 1.1.

This is an expository paper, based on work published elsewhere.
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These notes are arranged in three parts, which focus on prime ideals, primitive ideals,
and the quantized coordinate rings of matrices, respectively. Most of the material in
Parts I and II is excerpted from [3], where the reader can find a much more detailed
development. The aim of Part III is to illustrate how the general picture developed in
the first two parts applies to a particularly interesting quantized coordinate ring; the
discussion is taken partly from {3] and partly from the recent paper {15).

Throughout, we work over a base field &, and our parameters will be elements of
k*, that is, nonzero scalars from k. The characteristic of k¥ may be arbitrary, and for
many results, it does not matter whether or not k is algebraically closed. We will often
concentrate on the so-called generic case, meaning that our parameters are not roots of
unity, but when not specified, the parameters may be arbitrary. The key difference is
that when sufficiently many parameters are roots of unity, quantized coordinate rings
are finitely generated modules over their centers, and their study proceeds via the
theory of rings with polynomial identity. Our aim here is to concentrate on the non-PI
case, which requires very different tools (some not yet invented).

I. PRIME IDEALS

In Part I, we concentrate on prime ideals in quantized coordinate rings and related
algebras, more precisely, on ways to organize the prime spectrum — the set spec A of
prime ideals in an algebra A. We view spec A not just as a set, but as a topological
space, equipped with the standard Zariski topology.

In order to have available a few examples with which to illustrate the results and
techniques, we begin by presenting some of the standard quantized coordinate rings.
For a survey of most of the known types, see [10].

1.1. Some guantized coordinate rings. Let g € k*. The quantized coordinate ring
of the zy-plane with parameter ¢ is the k-algebra

O,(k%) ¥ k(z,y | zy = qyz).

This algebra is often called a guantum plane for short.

Quantized coordinate rings for higher-dimensional spaces are defined similarly, ex-
cept that more choices of parameters are allowed. Let q = (g;;) be a multiplicatively
antisymmetric n X n matrix over k, meaning that ¢;; = 1 and ¢;; = qsl for all ¢, 7. The
quantized coordinate ring of affine n-space with parameter matrix q is the k-algebra

Oq(k™) E k(zy,...,Tn | zix; = gijz;z; for all i, 7).

There is a single-parameter version of this algebra, defined for g € k* as follows:
Oq (k™) def k(zy,...,Zn | Zizj = qzjz; for all i < 7).

This is the special case of Oq{k") for which the matrix q has the form

1 ¢ ¢ - q ¢
q“: 1 ¢ a9
¢ 1 - ¢ ¢
-1 01 =1 w1 q
e Vg tqg g1
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The quantized coordinate ring of 2 x 2 matrices with parameter g is the k-algebra
O,(M,(k)) given by four generators X3, Xi2, Xo1, X2z and six relations

X11X12 = ¢X12Xn X12X22 = ¢X22X12
X1uXa = ¢X21: X1 X1 X2 = ¢X0 X2
X12Xn = X291 X12 X1Xz2 — Xoo X1 = (g - ¢ 1) X12Xo1-

The first five relations, which are all of the form zy = ryz for generators z and y and
scalars r, can be summarized in the following mnemonic diagram:

Xn —q—>X12

| s

X2 —> Xoo

The element Dy &' X1) X2 — ¢X12X21 in Oy(Mz(k)) is called the (2 x 2) quantum
determinant; as is easily checked, D, lies in the center of Oy(Ma2(k)). The quantized
coordinate rings of GLa(k) and SLy(k) are the algebras

Oo(GLa(K) ¥ O(My(k))ID;Y]  and  Oy(SLa(k)) & Of(Ma(k))/(Dy - 1).

Analogous algebras Og(Mp(k)), Og(SLn(k)), and Ox(GLn(k)) have been defined for
arbitrary n, but we shall not give their definitions until later (Section 3.1).

A general principle from the study of quantum phenomena in physics, which holds
equally well in mathematical studies of quantum algebras, is that guantization destroys
symmetry, meaning that a quantized version of a classical system (physical or mathe-
matical) tends to be more rigid, with less symmetry. We illustrate this principle with
coordinate rings of the plane k2. For instance, the classical coordinate ring k{z,y] has
a huge supply of prime ideals, but the quantized coordinate ring has far fewer, as the
following example shows. The same can also be said for automorphisms, as we shall
see shortly.

1.2. Example. When k is algebraically closed and g is not a root of unity, the prime
spectrum of O,(k2) can be displayed as follows:

c-=(z,y-B--- (z,v) ---(z-a,y)- -~
() )
(0)
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Another difference in symmetry between the classical and quantized coordinate rings
of the plane is found in the automorphisms of these algebras. As an algebraic variety, the
plane is completely homogeneous, in that any point can be moved to any other point by
a translation. These translations induce automorphisms of k[z, y] of the following form:
For any scalars a,b € k, there is a k-algebra automorphism of k[z, y] such that £ — z+a
and y — y+b. In the quantum case, however, O4(k?) has no such automorphisms
except the identity (corresponding to a = b = 0). Fortunately, Og(k?) is not bereft
of automorphisms — there are multiplicative analogs of the translation automorphisms,
mapping z and y to scalar multiples of themselves. In fact, all of our standard examples
have a supply of automorphisms of this type, as follows.

1.3. Some automorphisms. We define some families of k-algebra automorphisms
on the quantized coordinate rings discussed above. Each family of automorphisms is
parametrized by tuples of nonzero scalars, i.e., by elements from one of the multiplica-
tive groups (k™).

For (a,B) € (k*)?, there is an automorphism of Ogy(k?) such that z — az and
y— By.

For (aj,...,an) € (k*)", there is an automorphism of Og(k™) such that z; — a;z;
for all 1.

For (a1, 02, 61,B2) € (k*)*, there are automorphisms of O, (M,(k)) and O (GL,(k))
such that X;; — a;f;X;; for all 4, j. In other words,

Xn X12) {0 ) (Xu X12) (31 0
X1 Xy 0 a2/ \Xan X22/\0 B/’
The automorphisms above do not all carry over to Og(SLa(k)) — we must restrict

attention to those which fix the quantum determinant. For (e, 8) € (k*)?, there is an
automorphism of O,(SL2(k)) such that

X — o3-2ig3-2i -X-ij
for all 4, 4, that is,

Xn Xp)__, (o 0 Xn Xn)(8 0

X1 Xa22 0 a'J\Xan Xnn/\0O B}
1.4. Example. The homogeneity of the plane in the classical case carries over to its
coordinate ring in the following way - if M, and M, are any maximal ideals of k[z,y]
of codimension 1 (these are the maximal ideals corresponding to points in the plane
with coordinates in k), there is an automorphism ¢ of k(z,y] such that ¢(My) = M,.
Thus, if k is algebraically closed, the maximal ideals of k[z,y] form a single orbit with
respect to the automorphisms of this algebra.

While O,(k?) does not have enough automorphisms to map any maximal ideal onto
any other, there are still relatively large orbits. Assuming that & is algebraically closed
and ¢ is not a root of unity, the maximal ideals of O4(k?) can be seen in Example 1.2.
Using just the automorphisms defined in (1.3), there are three orbits of maximal ideals:

{z.y-B) | Bek*} {(z, v} {z-a,y) | a € k*}.
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Note that each of the orbits above intersects to a prime ideal which is stable under these
automorphisms. The maximal ideals together with these orbit-intersections account
for all but one prime ideal of Og(k?); for completeness, note that the remaining prime,
namely {0}, is also stable under the automorphisms.

A similar pattern can be observed in Oy(SL,(k)}, as follows.

1.5. Example. When k is algebraically closed and g is not a root of unity, the prime
spectrum of Oy(SL2(k)} can be displayed as shown below:

<~ ~{(Xn - X2, Xo1, X2 = A7) - - =

\(Aek*)

(K12, X21)

In this case, the maximal ideals form a single orbit under the automorphisms described
in (1.3), while the prime ideals of height 1 form three orbits. The two remaining primes
can be described as intersections of infinite orbits.

Patterns analogous to those discussed in Examples 1.4 and 1.5 have been found in all
the other quantized coordinate rings introduced so far, assuming that k is algebraically
closed and the parameters are generic. With some modifications, the picture can be
expanded to include arbitrary infinite base fields. There is some interesting ring theory
which explains and predicts this behavior, and our main goal in Part I is to present
this theory. Some of the concepts used to describe the picture only involve an arbitrary
group of automorphisms of a ring, but the key results hold when the group is an
algebraic torus, that is, a product of copies of the multiplicative group k*. The two
examples above exhibit orbits of prime ideals which intersect to stable prime ideals,
which hints at the importance of such orbit intersections. This hint leads to the key
idea - to group prime ideals according to the intersections of their orbits with respect
to a specific group of automorphisms.

We begin with arbitrary actions of groups on rings. Whenever we refer to a group
acting on a ring, we shall assume that it is acting by means of ring automorphisms
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(rather than just by permutations or by invertible linear transformations, for instance);
similarly, actions on algebras are assumed to be actions by algebra automorphisms.

1.6. H-prime ideals. Let A be a ring, and let H be a group acting on A (by auto-
morphisms). Thus, we are given a homomorphism ¢ : H — Aut A, and we abbreviate
¢(h)(a) to h(a) for h € H and ¢ € A. (Many authors write h.a for ¢(h)(a).) For any
ideal P < A, set
(P:H)E () a(P),
heH
the largest H-stable ideal of A contained in P.

By restricting the usual definition of a prime ideal to H-stable ideals, we obtain the
concept of an H-prime ideal of A, namely any proper H-stable ideal J of A such that
I € J for all H-stable ideals I}, I € J. In parallel with the notation spec A, we
write H -spec A to denote the set of all H-prime ideals of A. For example, if ¢ is not a
root of unity, k¥ =k, and H = (k*)? acts as in (1.3), then

H -spec Oq(kz) = {{z,y), {z), (¥}, (0) }.

1.7. Lemma. Let H be a group acting on a ring A.

(a) If P is any prime ideal of A, then (P: H) is an H-prime ideal of A.

(b) Now assume that A is noetherian. Then a proper ideal J of A is H-prime if and
only if J equals the intersection of some finite H-orbit of prime ideals.

In particular, it follows that all H-prime ideals of A are semiprime in this case.

Proof. (a) Easy.
(b) E.g., see [3, Lemma I1.1.10].

1.8. H-stratifications. Let H be a group acting on a ring A. For each H-prime ideal
Jof A, let
specJAd-—fz-f {PespecA|(P:H)=J}.

This set is called the H-stratum of spec A corresponding to J. In view of Lemma 1.7(a),
specA = |_| spec; A,
JEH -spec A
a partition that we call the H-stratification of spec A.

The H-stratifications just defined have similar properties to the stratifications used
in algebraic geometry, as follows.

1.9. Lemma. Let H be a group acting on a ring A.

(a) The closure of each H-stratum in spec A is a union of H-strata.

(b) If H -spec A is finite, then each H-stratum is locally closed in spec A.
Proof. [10, Lemma 3.4].

The stratification setup so far is extremely general, and we cannot expect to prove
much about it without specializing to cases with additional hypotheses. One key spe-
cialization is to assume that H is an affine algebraic group over k, by which we just
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mean that H is isomorphic to a Zariski-closed subgroup of GL, (k) for some n. Thus,
H is an affine algebraic variety as well as a group, and the group operations are mor-
phisms of varieties. We will not need much at all of the general theory of algebraic
groups, since we will concentrate on one of the simplest kind, namely algebraic tori. To
see that a torus (*)" is an algebraic group, note that it is isomorphic to the subgroup
of GL,4,(k) consisting of matrices (a;;) satisfying the equations a;; = 0 for ¢ # j and
611822 Gry1,r41 = 1.

1.10. Rational actions. Let A be a k-algebra, and H a group acting on A. (As noted
above, in this situation we assume that H acts on A via k-algebra automorphisms.)
Moreover, let us assume that H is an algebraic group over k.

The action of H on A is said to be rational provided A is a directed union of finite
dimensional H-stable k-subspaces V; such that the restriction maps H — GL(V;) are
morphisms (of algebraic groups), i.e., group homomorphisms which are also morphisms
of varieties. Fortunately for our purposes, the theory of algebraic groups provides a
nice criterion that allows us to see quite easily when an action of a torus is rational, as
follows.

1.11. Rational characters. Suppose that H is an algebraic torus. Recall that a
character of H (with respect to the base field k) is any group homomorphism H — k*.
Characters appear whenever H acts on a k-algebra A: If £ € A is an H-eigenvector
(i.e., a simultaneous eigenvector for the actions of all the automorphisms from H'), then
there is a character ¢ of H such that h(z) = ¢(k)z for all h € H. Of course, ¢ is then
called the H-eigenvalue of z.

A character of H is called rational if it is also a morphism of varieties. Let X(H)
denote the set of all rational characters of H; this is an abelian group under pointwise
multiplication, and it is easily described. Namely, if H = (k*)", then X(H) is a free
abelian group in which the » coordinate projections (k*)" — k* form a basis.

1.12. Theorem. Let H be a torus acting on a k-algebra A, and assume that k is
infinite. The action of H on A is rational if and only if

(a) The action is semisimple (i.e., A is spanned by H-eigenvectors); and

(b) The H-eigenvalues for the H-eigenvectors in A are rational characters.

Proof. 34, Chapter 5, Corollary to Theorem 36]. 0O

From a ring-theoretic point of view, conditions (a) and (b) of Theorem 1.12 are the
natural and useful conditions. Thus, we could take them as our definition of a rational
action of a torus, if desired.

The next lemma illustrates one useful aspect of having a rational action. (Recall
that in general, an H-prime ideal in a noetherian ring need only be semiprime.)

1.13. Lemma. Suppose that H is a torus, acting rationally on a noetherian k-algebra
A. Then every H-prime ideal of A is prime.

Proof. If J is an H-prime ideal of A, then Lemma 1.7(b) implies that A = (P : H) for
some prime ideal P whose H-orbit is finite. Hence, the stabilizer subgroup Stabg(P)
has finite index in H. Since H acts rationally, the map H — spec A given by h — h(P)
is continuous with respect to the Zariski topologies on H and spec A [3, Lemma I1.2.8].
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Consequently, the set V = {h € H | h(P) 2 P} is closed in H. (We cannot say
immediately that Staby (P) is closed in H because {P} need not be closed in spec A.)
However, because A is noetherian, any automorphism ¢ of A for which ¢(P) 2 P must
map P onto itself. Hence, V = Staby(P), and thus Staby (P) is indeed closed in H.

Now H is the disjoint union of the cosets of Stabg (P). There are only finitely many
cosets, and they are all closed. However, as a variety H is irreducible (because its
coordinate ring is a Laurent polynomial ring, hence a domain), so it cannot be 2 finite
union of proper closed subsets. Thus Staby (P) = P, that is, the H-orbit of P consists
of P alone. Therefore J = P, proving that J is prime. O

We can now present a general theorem which provides a picture of the structure of
the H-stratification in our current setting. Recall that a reguler element in a noetherian
ring is any non-zero-divisor. We write Fract R to denote the Goldie quotient ring of a
semiprime noetherian ring R, and Z(R) for the center of a ring R.

1.14. Stratification Theorem. [17, 10] Let A be a noetherian k-algebra, with k
infinite, and let H = (k*)" be a torus acting rationally on A. For J € H -spec A, let
&7 denote the set of all regular H-eigenvectors in AfJ.

(2) £; is a denominator set, and the localization A; % (A/J)[€7Y) is an H-simple
ring (with respect to the induced H-action).

(b) spec; A is homeomorphic to spec A via localization and contraction, and spec Ay
is homeomorphic to spec Z(A;) via contraction and extension.

(c) Z(Ay) is a Laurent polynomial ring of the form K j[z%!,. .., ﬂ(J)], withn(J) < r,

over the fixed field K; % Z(A;)H = Z(Fract A/J)H.
Proof. [3, Chapter I1.3]. O

Of course, the theorem above does not say much if the H-strata are very small
and there are many of them. For instance, in the extreme case the H-strata might
be singletons, in which case the theorem is trivial. To get the most information out
of this picture, we would like there to be only finitely many H-strata, so that the H-
stratification breaks up the prime spectrum into relatively large sets. Many quantized
coordinate rings are iterated skew polynomial extensions of &, and the following theorem
can be applied to those algebras.

1.15. Theorem. [17, 3] Let A be an iterated skew polynomial algebra
k[:t]][zz; T2, 62] s [xn; Tn, 611];

and let H be a group acting on A, such that z,,...,z, are H-eigenvectors. Assume
that there exist hy,...,h, € H such that:

(a) hi(z;) = T:(z;) fori > j; and

(b) The h;-eigenvalue of z; is not a root of unity for any i.
Then A has at most 2™ H-prime ideals. Moreover, if H is a torus acting rationally
on A, then for each J € H-spec A, the field K; (from part (c) of the Stratification
Theorem) equals k.

Proof. |3, Theorems I1.5.12 and I1.6.4]. O
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One of the tools involved in proving the Stratification Theorem is an equivalence
between rational (k*)"-actions and Z"-gradings, part of which we now sketch. Since
this is intended to be applied to the H-prime factor algebras 4/J, we work with an
algebra called B rather than A.

1.16. Actions versus gradings. Suppose that B is a noetherian k-algebra, with &
infinite, and that a torus H = (k*)” acts rationally on B. Because of Theorem 1.12,

B= P B,

9EX(H)

where B, denotes the H-eigenspace of B with eigenvalue g. Since H acts by automor-
phisms, ByBy C By for all g,¢' € G, that is, B is graded by the group X (H) & Z".
(Conversely, any grading of a k-algebra by Z™ corresponds to a rational action of (k*)"
on the algebra.) Problems concerning the H-action translate into problems concerning
the grading in the following way:

H-eigenvectors «——  homogeneous elements
H-stable ideals «—— homogeneous ideals
H-prime ideals +— graded-prime ideals.

To prove part (a) of the Stratification Theorem, we need to be able to localize an
H-prime ring B with respect to its regular H-eigenvectors and obtain an H-simple ring.
Translating to the graded case, we need to localize a graded-prime ring with respect to
its homogeneous regular elements and obtain a graded-simple ring. In other words, what
is required is a version of Goldie’s Theorem for the setting of graded rings. This cannot
be obtained in general - there are easy examples of commutative, noetherian, semiprime
Z-graded rings where the localization with respect to all homogeneous regular elements
is not graded-simple. For our present purposes, it suffices to consider prime graded
rings, for which the following theorem is available.

1.17. Graded Goldie Theorem. Let G be an abelian group, and let R be a G-
graded, graded-prime, right graded-Goldie ring. Let £ be the set of all homogeneous
regular elements in R. Then € is a right denominator set, and R[£~!] is a graded-simple,
graded-artinian ring.

Proof. |19, Theorem 1]. O

Theorem 1.17 moves us to the setting of graded-simple rings, and the prime ideals
in such rings can be analyzed as follows.

1.18. Proposition. Let G be an abelian group, and let R be a8 G-graded, graded-
simple ring.

(a) spec R is homeomorphic to spec Z(R) via contraction and extension.

(b) If G = Z7, then Z(R) is a Laurent polynomial ring, in at most r indeterminates,
over the field Z(R); (the identity component of Z(R)).

Proof. [3, Lemma I1.3.7 and Proposition 11.3.8]. O

Let us conclude Part I by presenting an open problem.
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1.19. Problem. Suppose that A is a noetherian k-algebra, and that a torus H = (k*)"
acts rationally on A. Find conditions which imply that A has only finitely many H-
primes. These conditions should be

e Reasonably easy to verify; and

e Satisfied by all the standard examples.
In other words, we would like to have a theorem which we can apply to quantized
coordinate rings without masses of long calculations. In seeking such a theorem, a
warning is in order: When the parameters are roots of unity, quantized coordinate
rings usually have infinitely many H-primes. Thus, whatever hypotheses might be
used in a solution to this problem will have to correspond to the generic situation when
applied to quantized coordinate rings.

II. PRIMITIVE IDEALS

We now concentrate on primitive ideals as opposed to general prime ideals, and on
ways to organize the primitive spectrum of a ring A. This set, denoted prim A, is the
set of all left primitive ideals of A. We view prim A as a topological space equipped
with the Zariski topology, so that prim A is a subspace of spec A.

The question whether the left primitive ideals and the right primitive ideals coincide
in a noetherian ring remains open. To avoid this problem, we shall use the term
primitive ideal to refer only to left primitive ideals.

In a classical coordinate ring over an algebraically closed field, the maximal ideals
correspond to points of the underlying variety. A naive geometric analogy in the non-
commutative world would be to view the maximal ideals in a ring as points of a ‘non-
commutative variety’. However, experience in ring theory teaches us that there are too
few maximal ideals in general to hold sufficient information. Further, the influence of
representation theory leads us to study the primitive ideals, as one key to irreducible
representations (i.e., simple modules). Let us consider our simplest example, O,4(k?).

2.1. Example. Assume that % is algebraically closed and ¢ is not a root of unity. The
prime ideals of Og4(k?) are displayed in Example 1.2. Observe that the only maximal
ideals are the ideals

(I -, y) and (I, y- ﬁ),

for o, 8 € k. Comparing these with the maximal ideals in the classical coordinate ring
O(k?), we see that the maximal ideals of Og(k?) correspond only to points on the z-
and y-axes of k2. From this point of view, the remainder of the zy-plane has been’
‘lost’.

As suggested above, let us widen our view to include all the primitive ideals. In
Og4(k?), there is one non-maximal primitive ideal, namely (0). Thus, comparing k2
with prim O,(k?), we can now say that the points on the z- and y-axes correspond
precisely to the maximal ideals of O,(k?), while all other points of k2 correspond (not
bijectively, of course) to the zero ideal. We could say that the off-axis part of k% has
‘collapsed’ to a single point. Later, we shall elaborate this point of view further.

Since the primitive ideals of an algebra A are (by definition) the annihilators of the
simple A-modules, it would seem that to determine these primitive ideals, we should
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find all the simple A-modules and then calculate their annihilators. However, to find
all the simple modules over an infinite dimensional algebra is usually an impossible
problem. As a substitute, Dixmier promulgated the following program for enveloping
algebras of Lie algebras: Find the primitive ideals first, and then for each primitive
ideal, find at least one simple module having that annijhilator. In order to carry out
this program, we must be able to detect the primitive ideals without knowing the simple
modules in advance, and so some criterion other then the definition is required. Since
all primitive ideals are prime, the question becomes, how can we tell which prime ideals
are primitive? Dixmier developed two criteria, one of which is purely algebraic and one
of which is phrased topologically, as follows.

2.2. Rational and locally closed primes. Let P be a prime ideal in a noetherian
k-algebra A. First, we say that P is rational if and only if Z(Fract A/P) is algebraic
over k. Secondly, we say that P is locally closed provided P is a locally closed point in
spec A, i.e., the singleton set {P} is closed in some neighborhood of P. This condition
may be rephrased as follows: P is locally closed if and only if

[{QespecA|Q2P}2P.

Thus, P is locally closed if and only if in the prime ring R/P, the intersection of all
nonzero prime ideals is nonzero. Prime rings with the latter property are sometimes
called G-rings, in which case locally closed primes are called G-ideals.

2.3. Theorem. Let g be a finite dimensional Lie algebra over a field of characteristic
zero. Then

prim U(g) = {locally closed prime ideals of U(g)}
= {rational prime ideals of U(g)}

Proof. This theorem was originally proved by Dixmier [9] and Moeglin [32] assuming
an algebraically closed base field. Their result was extended to the non-algebraically
closed case by Irving and Small [26]. O

2.4. The Dixmier-Moeglin equivalence. We say that an algebra A satisfies the
Dizmier-Moeglin equivalence if the conclusion of Theorem 2.3 holds in A, that is, the
primitive, locally closed, and rational prime ideals of A all coincide.

There are some relations among these three types of prime ideals which hold under
fairly general hypotheses. One such hypothesis is the following adaptatlon of Hilbert’s
Nullstellensatz to noncommutative noetherian algebras.

2.5. The noncommutative Nullstellensatz. A k-algebra A is said to satisfy the
Nulistellensatz over k if and only if

(a) The Jacobson radical of every factor ring of A is nil; and
(b) Enda(M) is algebraic over k for all simple A-modules M.

If A is noetherian, condition (a) is equivalent to 4 being a Jacobson ring, i.e., J(4/P) =
0 for all P € spec A.

The Nullstellensatz is essentially automatic if the field is large enough. In particular:
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2.6. Proposition. [1] If k is uncountable, then every countably generated k-algebra
satisfies the Nullstellensatz over k.

Proof. [31, Corollary 9.1.8]. O
For algebras over countable fields, the following theorem is often useful.

2.7. Theorem. Suppose that a k-algebra A has subalgebras Ap = k C A; C --- C
A; = A such that for all i > 0, either A; is a finitely generated A;_;-module on each
side, or A; is a homomorphic image of a skew polynomial ring A;_1[z;;7;,6;)- Then A
satisfies the Nullstellensatz over k.

Proof. This is a special case of [31, Theorem 9.4.21].

For prime ideals in a noetherian algebra satisfying the Nullstellensatz, the following
general implications are known:

locally closed = primitive == rational

[3, Lemma I1.7.15]. Closing the loop (i.e., proving that ‘rational = locally closed’)
is usually the most difficult part of establishing that an algebra satisfies the Dixmier-
Moeglin equivalence. In the situation of the Stratification Theorem, it is advantageous
to bring the torus action into the loop — this helps in the proofs, and supplies an addi-
tional criterion for primitivity, namely the condition that a prime ideal be a maximal
element of its H-stratum. Then, two implications need to be proved to close the loop,
namely
rational = maximal in stratum = locally closed,

but the second is quite easy. The precise theorem is as follows.

2.8. Theorem. [17] Let A be a noetherian k-algebra with k infinite, and let H = (k*)"
be a torus acting rationally on A. Assume that H -spec A is finite, and that A satisfies
the Nullstellensatz over k. Then

prim A = {locally closed prime ideals of A}
= {rational prime ideals of A}

= || {maximal elements of spec; A}.
JEH -spec A

Moreover, if k is algebraically closed, the H-orbits in prim A coincide with the H-strata
. def .

prim; A = (prim A) N (spec; A).

Proof. |3, Theorems I1.8.4 and 11.8.14]. O

Of the three criteria for primitivity given in this theorem, the third is typically easiest
to apply. Here is an illustration.
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2.9. Example. Let us return to our second basic example, O4(SL2(k)), assuming that
k is algebraically closed and g is not a root of unity. Recall from (1.3) the rational ac-
tion of H = (k*)? on this algebra. The prime spectrum of O,(SL2(k)) was displayed
in Example 1.5, and the action of H on these prime ideals is easy to determine. In par-
ticular, there are only four H-prime ideals in Og(SL2(k)), namely (X2, X21), (X12),
(X21), and (0). Thus, there are four H-strata in spec O,(SL2(k)), which we display as
follows.

= =~ (Xu- Xz, Xo1, X2 = A7) = = =
\(A € k* )/
(712, X-2].)
X))  g------ K= XXp)------> (X21)
\ € k%)
(0)

The Nullstellensatz holds for Og(SL2(k)) by Theorem 2.7. Hence, Theorem 2.8 im-
plies that prim O,(SL2(k)) consists of all prime ideals except for (X12, X21) and (0).
Moreover, there are precisely four H-orbits in prim Og(SL2(k)):

{(fll - A 712, Yn, 722 - /\_]) , AE kx}

{{(X12)} {(X12 — AX21) | A € k*} {(X2)}

Now that we have access to finding the primitive ideals in quantized coordinate rings,
let us turn to the global problem - trying to understand the primitive spectrum of such
an algebra A as a whole. We would like prim A to reflect some kind of ‘noncommutative
geometry’. Since there is as yet no indication of what might play the role of regular
functions on prim A, we focus for now on the topological structure of this space.

For the remainder of Part II, assume that k is algebraically closed.

2.10. Problem. Let V be an affine variety over k, with classical coordinate ring O(V),
and suppose that A is some quantized coordinate ring of V. Since maxO(V) = V, we
may view prim A as a ‘quantization of V’. Then the problem arises: How are prim A
and V related?
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2.11. Example. Assume that g is not a root of unity. In Example 2.1, we suggested
that prim O, (k?) could be viewed as the union of the z-axis, the y-axis, and one other
point obtained from collapsing the rest of the zy-plane. This leads to a map ¢ from &2
onto prim O, (k?), as in the following sketch:

><

To describe this map more precisely, recall that prim O,(k?) consists of the maximal
ideals (z — ¢, y) and (z, y — B}, for o, 8 € k, together with (0). Thus, ¢ is given as
follows:

(0,0) — {z~ 0, y)
0,8) — (z, y— B)
other (a,8) — (0) .

It is easy to check that ¢ is continuous. In fact, the topology on prim O, (k?) equals
the quotient topology induced by ¢. Thus, prim O4(k?) is a topological quotient of k2.

2.12. Conjecture. If an algebra A is one of the ‘standard’ quantized coordinate rings
of an affine variety V, then prim A is a topological quotient of V.

This conjecture is known to hold in several cases:
(1) A = O4(SL2(k)), when g is not a root of unity. We invite the reader to try
this as an exercise.
(2) A = Og((k*)") ¥ O™ [z7?,. .., x5, for arbitrary g. This follows from
work of De Concini-Kac-Procesi [8], Hodges [20], Vancliff [36], Brown-Goodearl [2],
Goodearl-Letzter [16], and others.
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(3) A = Oq(k™) and a more general type of algebra known as a ‘quantum toric
variety’ (which we will describe below), when the subgroup of k* generated by the
entries of q does not contain —1. This is work of Goodearl and Letazter [18].

(4) A = O4(sp k*), the single-parameter quantized coordinate ring of symplectic 4-
space, when g is not a root of unity. This algebra was first defined in [35}; for somewhat
simpler presentations see [33] and [24]. The topological quotient here was established
by Horton [23, Theorem 7.9].

2.13. Quantum tori. Given a multiplicatively antisymmetric n x n matrix q = (gi;)
over k, the corresponding quantized coordinate ring of (k*)" is the k-algebra

Oa((k*)") ¥ k(z), ..., 22! | 252; = gi;z;; for all i, j).

The torus H = (k*)" acts rationally on the algebra A = Og((k*)") in the same way
as it acts on Oq{k™). As is easily checked, {0} is the only H-prime in A, and prim A is
a single H-stratum as well as a single H-orbit. Hence, for any primitive ideal P, there
is a bijection
H/ Stabg (P) «— prim A.

This bijection is a homeomorphism, assuming that H/Stabg(P) is given the quotient
topology. Thus, the fact that prim A is a topological quotient of H is easily established
in this case.

2.14. Quantum affine spaces. Now let A = Og(k"), and recall that H = (k*)"
acts rationally on A by k-algebra automorphisms such that (a;,...,as).z; = a;z; for
(agy...,an) € Hand i =1,...,n. Let W be the collection of subsets of {1,...,n}.

There is a bijection
W — H -spec A
wn—erd.—f.f<zi|i€w).

Thus, the H-stratifications of spec A and prim A, and the localizations of A appearing
in the Stratification Theorem, are indexed by the H-primes J,,. To simplify notation,
we re-index using W. In particular, we write

primwAdéfprimeA= {PeprimA|z;€ P < i€ w}
Av® As, = (A/1)z5 |5 ¢ w]

for w € W. Note that each A, is 2 quantum torus.
The torus H acts on O(k™) exactly as it does on A; this action is induced from the
action of H on k™ by the rule
def , _ -~
(1,...,0p).(a1,--+,8n) = (a7la,...,o5'a6q).

There are 2" H-orbits in k™, which we index by W as follows:

K)o & {(@1)---1an) €K s =0 = i€ w}
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for w € W. We may note that (k"),, is isomorphic to a torus of rank n— |w|. The results
discussed in (2.13) imply that prim,, A is a topological quotient of (k®),, for each w.
Thus, the problem is to patch individual topological quotient maps (k®),, —» prim,, A
together, to obtain a topological quotient map k™ — prim A. Owr solution to this
problem requires a small technical condition, phrased in terms of {(g;;), the subgroup
of k* generated by the entries g;; of q.

2.15. Theorem. Assume that either —1 & (g;;) or chark = 2. Then there exist
compatible, H-equivariant topological quotient maps

k™ — prim Oq (k™) and spec O(k™) —» spec Oq (k™)

such that forw € W, the inverse image of prim,, Oq(k™) is (k" ). Moreover, the fibres
over points in prim,, Oq(k™) are G\,-orbits in (k™),, for certain subgroups G,, C H.
Proof. [18, Theorem 4.11; 11, Theorem 3.5]. These papers also describe how to calcu-
late the subgroups G, O

To illustrate this theorem, we use a single parameter quantum affine 3-space, this
being the simplest case in which the topological quotient map differs from what one
might naively write down.

2.16. Example. Choose a non-root of unity g € k*, and let A = O4(k®). Then the
entries ¢;; in q consist of g, g~!, and 1, and so the group (g;;} is infinite cyclic. In
particular, —1 ¢ {g;;) unless char k = 2. Now let p be one of the square roots of g in k*.
The topological quotient map k® —» prim A given by Theorem 2.15 can be described as
shown below, where all A; € &*.

(01 0, 0) — <$lv T2, 373)
(M1,0,0) — (21 — My, 22, T3) (A1, A2,0) — (z3)
(0,22,0) — (z1, T2 = Az, 23} (A1,0,)3) — (z2)
(0,0, A3) — (21, T2, T3 — A3) (0, X2, A3) — (z1)
(A1, A2, A3) — (A2z1x3 — pAiAaza) .

Note the appearance of p in the final line — without that factor, the resulting map from
k3 to prim A will still be surjective, but not Zariski-continuous.

2.17. We indicate one basic mechanism from the proof of Theorem 2.15. Given a mul-
tiplicatively antisymmetric n x n matrix q, we write parallel, coordinate-free descrip-
tions of the algebras R = O(k") and A = O4(k™) as follows. Namely, R = k(Z*+)",
a semigroup algebra, and 4 = k°(Z*)™, a twisted semigroup algebra for a suitable
cocycle ¢ : Z" x Z® — k*. There are many choices of ¢; we just need to have
c(eiy€5)c(ej, €)™ = gi; for all i, 7, where €;,...,€, is the standard basis for Z". Now
both R and A have bases identified with (Z*)", and so there is a vector space iso-
morphism ®. : A — R which is the identity on (Z*)®. Similarly, ®. extends to a
vector space isomorphism from the group algebra kZ" onto the twisted group algebra
k°Z™, and so for each w € W we obtain a vector space isomorphism ®, from A,, onto a
subalgebra R, of kZ™. The key to Theorem 2.15 is to choose ¢ so that the above maps
behave well:

-34-



2.18. Key Lemma. There is a choice of cocycle c such that &, yields k-algebra maps
Z(Aw) — Ry, for all w.

For this choice of c, the topological quotient maps max R —» prim A and spec R —»
spec A can be described by the rule

@ +— (the largest ideal of A contained in &;1(Q)).

Proof. The first statement follows from [18, (4.2), (4.6-4.8), (3.5)], while the second is
(11, Lemma 3.6]. D

For a more precise description of this map in terms of operations within the com-
mutative algebra R, see [18, 11].

Since the method just sketched is based on twisting the polynomial ring k(Z*)" by
a cocycle, it readily extends to a somewhat more general class of algebras twisted by
cocycles.

2.19. Cocycle twists. Suppose that G is a group, and that R is a G-graded k-algebra.
Let ¢: G x G — k* be a 2-cocycle, normalized so that ¢(1,1) = 1 {(or ¢(0,0) =1, in
case G is written additively). The twist of R by ¢ is a k-algebra based on the same
G-graded vector space as R, but with a new multiplication * defined on homogeneous

elements as follows: r % s & ¢(e, B)rs for r € R, and s € Rg.

Now specialize to the case that R is a commutative affine G-graded &-algebra, and A
is the twist of R by a 2-cocycle ¢. Then R is generated by finitely many homogeneous
elements, say ¥y, ..., ¥, of degrees a3, ...,a,. The algebra A is generated by the same
elements y1,...,yn, and y; *y; = qi;y; * ¥; for all 4, j, where ¢i; = ¢(ay, a;j)c(aj, a3) 7).
Consequently, A = Oq(k™)/I for q = (gi;) and some ideal I.

In particular, if G = Z® and dim R, = 1 for all @ € G, then R is the coordinate
ring of an affine toric variety V, and we regard A as a quantized coordinate ring of V.
This case was studied by Ingalls [25], who introduced the term guantum toric variety
to describe the resulting algebras A.

The constructions behind Theorem 2.15 adapt well to factor algebras Oq(k™)/1, and
that theorem extends to the cocyle twisted setting as follows.

2.20. Theorem. Let G be a torsionfree abelian group, and let R be a commutative,
affine, G-graded k-algebra. Let A be the twist of R by a 2-cocyclec¢: G x G — k*.
Assume that —1 ¢ (image(c)) C k*, or that chark = 2.

Then there exist compatible topological quotient maps

max R —» prim A and spec R — spec A,

which are equivariant with respect to the action of a suitable torus.

Proof. [18, Theorem 6.3; 11, Theorem 4.5]. O

It is not clear whether the hypothesis concerning —1 can be removed from Theorems
2.15 and 2.20. We end Part II by putting an extreme case forward as an open problem.
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2.21. Problem. Assume that chark # 2. Consider the single parameter algebras
O_1(k™) = k(z1,...,Tn | Tizj; = —z;2; for all i # 7).

The methods used to prove Theorem 2.15 still work for O_;(k?) and O_,(k3). These
methods break down for O-;(k%), but extensive ad hoc calculations lead to a Zariski-
continuous surjection k% - prim O_,(k*); in higher dimensions, the problem is com-
pletely open. Thus, we ask:

For n > 4, is the space prim O_, (k") a topological quotient of k™7

III. QUANTUM MATRICES

The focus on topological quotients in Part II was chosen to emphasize one way in
which the quantized coordinate ring of a variety can be geometrically similar to the
classical coordinate ring. We can also ask about algebraic similarities, of which there
are many - chain conditions, homological conditions, etc. In fact, there exist much
tighter similarities — many classical theorems have surprisingly close quantum analogs,
once they are properly rephrased. We illustrate this principle by discussing quantum
matrices, that is, the quantized coordinate rings of varieties of matrices. The 2 x 2 case
was presented in (1.1); we now give the general definition.

3.1. Generators and relations. Let n be a positive integer and g € k*. The quan-
tized coordinate ring of n X n matrices with parameter ¢ is the k-algebra with gen-
erators Xj; for 1,7 = 1,...,n such that for all # < { and § < m, the generators
Xijy Xim, Xij, Xim satisfy the defining relations for Og(Ma(k)). As in (1.1), five of
these relations can be summarized in the following mnemonic diagram:

q

X,‘j —_— Xim

)

X[J‘ — le

The remaining relation is X;; Xim — XimXij = (¢ — ¢~ 1) Xim X1

The n x n quantum determinant is modelled on the usual determinant, but with
powers of —1 replaced by powers of —g. More precisely, the n xn guantum determinant
is the element

def
Dg 2 Y (0 X1 ey Xow(@d) Xnnin) € Og(Ma(K)),
TESh

where S, denotes the symmetric group and 4(«), the length of a permutation , is the
minimum length for an expression of # as a product of simple transpositions (i,i+1). It
is known that D, lies in the center of Oy (Mn(k)). Hence, one defines quantized coordi-

nate rings Oy(GLn(k)) ¥ Of(Ma(k))[D; ] and Oy(SLa(k)) % Of (M, (K))/(Dg - 1)
as before.
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The algebra O4(My,(k)) is a bialgebra with comultiplication and counit maps
A : Og(Mp(k)) — Og(Mn(k)) ® Og(Mn(k)) and  &: Op(Mn(k)) — &k
such that A(X;;) = 31, Xu®Xy; and e(X;;) = 8;5 for all 1, j. In particular, A(D,) =
Dy ® Dy and e(D,) = 1.
All this structure is exactly parallel to the classical case, which we get if ¢ = 1.
Much interesting geometry has resulted from viewing sets of matrices of a given size as

algebraic varieties and focusing on constructs from linear algebra as geometric processes.
One such line leads to determinantal ideals, as follows.

3.2. Classical determinantal ideals. Let t < n be positive integers, and consider
the variety
Vi ef {n x n matrices of rank < t},

the closed subvariety of the affine space M, (k) defined by the vanishing of all ¢t x ¢
minors. From linear algebra, V; is the image of the matrix multiplication map

Mn,t—l(k) X Mt—l,n(k) - Mn(k)'

Since Mp ¢—1(k) and M,_; (k) are irreducible varieties, it follows that V; is irreducible.

Let I, a O(M,(k)) be the ideal of polynomial functions vanishing on V;, so that
O(M,(k))/I; = O(V;). On the geometric side, V; is defined by the vanishing of all ¢ x ¢
minors. However, this only tells us that I, equals the radical of the ideal generated by
the t x ¢t minors. It is a classical theorem that these minors actually generate this ideal:

3.3. Theorem. I; equals the ideal of O(M,(t)) generated by all t x t minors.
Proof. See,eg., [4,7). O
3.4. Corollary. The set of all t x t minors in O(M,(k)) generates a prime ideal. O

In the quantum world, there is no variety V;, and so we cannot ask for a direct analog
of Theorem 3.3. However, there are analogs of minors, which means that we can look
for an analog of Corollary 3.4.

3.5. Quantum minors. Let I,J € {1,...,n} be index sets with |I| = |J| =t. We
may write the elements of these sets in ascending order, say I = {#) < --- < 4}
and J = {j1 < --- < j;} for short. There is a natural k-algebra embedding ¢y s :
Of(My(k)) — Of(My(k)) such that ¢ 5(Xim) = Xij,, for all I,m. The quentum
minor with indez sets I and J is the element

1] % 61,5(D*) € Of(Mnlk)),

where D** denotes the quantum determinant in O, (M,(k)).

3.6. Theorem. The ideal I of Oy(My(k)) generated by all t x t quantum minors is
completely prime, i.e., Oy(My(k))/I; is an integral domain.

Proof. [13, Theorem 2.5). O

Although many steps in the proof of the classical result have no analogs in the
quantum case, one part of the classical pattern does carry over, as we now summarize.
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3.7. As noted above, V; is the image of the multiplication map
B Mpe1(k) X My—y,n(k) — Mn(k).
Hence, the ideal I, is the kernel of the comorphism
g O(Mn) — O(Mne1 X Mi-1,n)-

We may identify O(Mp ¢—1 X M;_1,5) with O(My ;—3) @ O(M;—, ), which allows us to
describe y* as the composition of the maps

O(M,) 2+ O(M,) ® O(M,) —22282, O(M,e1) ® O(My_y n)-

3.8. A quantum analog. Quantized coordinate rings for the rectangular matrix va-
rieties M, ¢—1(k) and M;_; »(k) may be defined as the subalgebras of O, (M, (k)) gen-
erated by those X;; with j < t (respectively, ¢ < t). There are natural k-algebra
retractions of Og(M,(k)) onto these subalgebras, and so

Og(Mn,1-1(k)) = Og(Mn (k) /(X5 15 2 t)
Og(Mi-1,n(k)) = Og(Mn(k))/(Xij | i 2 t).

Thus, the quantum analog of the comorphism x* in (3.7) is the k-algebra map

15 % 0y (Mn) 25 0,(Mn) ® Og(Mn) 22282, 0 (M 1—1) ® Og(Mi-1,0).

It is easy to check that Oy(Mn :—1(k)) ® Og( M,y n(k)) is an iterated skew polynomial
algebra over k, and therefore a domain. Thus, to prove that the ideal I, of Oy (M,(k))
is completely prime, one just has to show that I, = ker(y;). This is the heart of the
proof of Theorem 3.6.

To understand quantum analogs of other geometric aspects of matrices, and also to
understand the quantum matrix algebra better, we would like to know its prime and
primitive ideals. We approach this problem via the Stratification Theorem, as discussed
in Parts I and II.

For the remainder of Part III, assume that q is not a root of unity, and set A =
O(Ma(k)).

3.9. Problem. In parallel with the 2 x 2 case discussed in (1.3), the torus H = (k*)?"
acts on A by k-algebra automorphisms so that

(a1, yan, By .01 Bn). Xij = aiB; X5

for all ¢,j. These automorphisms are called ‘winding automorphisms’, because they
arise from the bialgebra structure on A in a manner analogous to the classical winding
automorphisms on enveloping algebras of Lie algebras. According to Theorem 1.15,
there are at most 2™ H-prime ideals in 4. The basic problem is:

Determine the H-primes of A.
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3.10. Example. The 2 x 2 case of Problem 3.9 is easily solved - there are exactly
14 H-prime ideals in O,(M»(k)), as displayed in the following diagram. Each 2 x 2
pattern here is shorthand for a set of generators of an ideal - a bullet e in position (3, 7)
corresponds to a generator X;;; a circle o in a given position is a placeholder; and the
square O denotes the 2 x 2 quantum determinant.

(::) \
><
\%

(D)

(oo)

3.11. Certain types of H-primes in A are already known. For convenient labelling, we
carry over the term ‘rank’ from ordinary matrices to the quantum case, as follows. We
define the rank of a prime ideal P in A to be the minimum r such that P contains all
(r +1) x (r + 1) quantum minors.

The H-primes of A of rank n are those which do not contain the quantum deter-
minant D,. By localization, these correspond to the H-primes of Of(GLx(k)), and
it is known that those, in turn, correspond to the H-primes of Og(SLn(k)). The lat-
ter can be determined using results of Hodges and Levasseur [21, 22]. In particular,
O4(SLq(k)) has (n!)? H-primes, parametrized by S, x Sy, and it follows from work of
Joseph [27, Théor2me 3] that each of these H-primes is generated by a set of quantum
minors. We conclude that back in A4, the H-primes of rank n are generated — up to
localization at the powers of D, - by sets of quantum minors.

At the other extreme, the H-primes of rank at most 1 are the H-primes of A which
contain all 2 x 2 quantum minors. These were determined by Goodearl and Lenagan
[12, Proposition 3.4]. There are (2® — 1)? + 1 such H-primes, all having the form

(19} ) = | =2) + (Xi; | i € RY + (X;; | j € C)

for R,C € {1,...,n}. For these H-primes, we have generating sets consisting of quan-
tum minors, since each Xj; is a 1 x 1 quantum minor.
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3.12. Conjecture. Every H-prime of A is generated by a set of quantum minors.

It is easily seen that the conjecture holds when n = 2, in view of (3.10). Cauchon
proved that there are enough quantum minors to separate the H-primes in A: For any
H-primes P C Q, there is a quantum minor in @\ P [5, Proposition 6.2.2 and Théoréme
6.3.1). The 3 x 3 case of the conjecture has been established by Goodearl and Lenagan
[15, Theorem 7.4], and the n x n case, assuming that k = C and ¢ is transcendental
over Q, has been proved by Launois [30, Théoréme 3.7.2]. We shall display the solution
to the 3 x 3 case below.

Cauchon’s and Launois’s results are existence theorems - they do not provide de-
scriptions of which sets of quantum minors generate H-primes. Such descriptions are
needed not only for completeness, but also to get full benefit from the stratification,
e.g., to determine the prime and primitive ideals in each H-stratum via Theorems 1.14
and 2.8. Thus, we accompany Conjecture 3.12 with the following problems.

3.13. Problems. If J € H-spec A, then Theorems 1.14 and 1.15 tell us that the center
of the localization Ay = (4/J)[€5"] is & Laurent polynomial ring k[zf™,..., z3]-

(a) Assuming J is generated by a set M of quantum minors, find a formula for n(J)
in terms of M.

(b) Find explicit descriptions of the indeterminates z; € A;.

We now summarize the solution to the 3 x 3 case of Conjecture 3.12 given in [15].

3.14. Asin (3.11), we may divide up the H-primes in O,(Mj3(k)) according to their
ranks. Those of ranks 0, 1, and 3 were known earlier, while the ones of rank 2 were
first determined in [15]. The numerical count is as follows:

rank 0: 1
rank 1: 49
rank 2: 144
rank 3: 36
total : 230.

The determination of these H-primes was done partly by ad hoc methods, which are
unlikely to work in the general case. In particular, Cauchon has given a formula for
the total number of H-primes in Og(Myn(k)) [5, Théoréme 3.2.2 and Proposition 3.3.2],
which shows that O,(M4(k)) has 6902 H-primes!

3.15. The H-primes in Oy(M3(k)) can be displayed as in the following diagrams, where
each 3 x 3 pattern represents a set of generators for an H-prime. As in (3.10), circles are
placeholders and bullets represent generators X;;. This time, squares and rectangles
represent 2 x 2 quantum minors whose row and column index sets correspond to the
edges. Finally, the diamond that appears in four patterns represents the 3 x 3 quantum
determinant. Below are samples showing the ideals corresponding to two patterns.

oee

M — (X2, X, [23)12], [23]13], [23]23])
©  —  {([123)123], Xa).

Vo
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The case of rank 0 is trivial ~ there is only one H-prime of this rank, corresponding
to the following pattern:

[ X X J
[ X X J
[ X X J
The 49 H-primes of rank 1 correspond to the patterns in Figure A below.

—

B B: B e2:):8 )i
m 0 o siifio 38|
th f: a3 22028 202

00O 0OO@e 060 Oe® | €00 @00 | 00O
009 ©060 000 G060 | 660 o000 |0
000 000 000 000 | 000 o000 (000

@0 000 6060 000|000 000 |00
m 02 D sifio 38|alE
00e 0660 000 000 (000 000 000

000 ©OCe 060 Oee |00 000 (@00
009 000 000 000 |00 00 oo

000 000 000 0000|000 oS00 |00
00® 0600 0060 OG00 | 000 000 |00
000 OCe 060 Oee | @00 e0OO® | @®eO

Figure A

As indicated in (3.11), the H-primes of maximal rank were known, up to localization,
from the results of [21, 22, 27]. The sets of quantum minors which generate the
corresponding H-primes in O4(SL3(k)) also, as it turns out, generate the H-primes of
rank 3 in Og(M;(k)). These 36 ideals correspond to the patterns in Figure B.

The 144 patterns for generating sets of the H-primes of rank 2 in O4(M3(k)) are given
in our final display, Figure C. The procedure used in [15] to determine these H-primes
involved three steps. First, some general theory developed in [14] provided a reduc-
tion mechanism relating the H-primes in Oy (My (k)) to pairs of H-primes from smaller
quantum matrix algebras. Consequently, we could find the H-primes in O,(Mj3(k))
from the (known) H-primes in O(M2(k)), but only as kernels of certain algebra ho-
momorphisms. This process also gave precise counts for the number of H-primes of
each rank. In the secord step, the information from Step 1 was used to determine
the quantum minors contained in each H-prime, thus yielding at least potential sets
of generators. Finally, the third step consisted of proving that each set of quantum
minors appearing in Step 2 does generate an H-prime, and that the resulting H-primes
are distinct. Since that yielded a list of the correct number of H-primes, we were done.
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000 0600 000 000 [ el e 0

Figure B

It may be useful to break the general problem down into steps of similar type, as
follows.

3.16. Problems. We return to the general n x n situation, keeping the field k arbitrary
but still requiring ¢ to be a non-root of unity.
(a) Which sets M of quantum minors in O,(M,(k)) generate prime ideals?
(b) Develop general theorems to prove that suitable ideals of the form (M) are prime.
(¢c) Find combinatorial data to parametrize the sets M in (a).

We conclude by stating a result which illustrates one pattern which solutions to the
above problems might take. Part (a) is an easy exercise involving the relations among
the Xi;, part (b) can be proved by showing that Og(M,(k))/{X) is an iterated skew
polynomial extension of k, and part (c) is another easy exercise.

3.17. Sample result. (a) If P is an H-prime ideal of Og(Mn(k)), then the set X =
Pn{Xi;|i,j=1,...,n} satisfies the following condition:
(*) If Xi; € X, then either X}, € X for alll > i and m < j, or else X;m € X for
alll<iandm> j.

(b) If X is any subset of {X;; | ,j = 1,...,n} which satisfies (*), then X generates
an H-prime ideal of Og(Mn(k)), and (X) N {X;; |i,7=1,...,n} = X.

(c) Given subsets I, J C {1,...,n} and nondecreasing functions f : {1,...,n}\J —
{2,....n+1}\Tandg:{1,...,n}\I = {2,...,n+ 1} \ J, the set

X(LJ,f,9) %€ {Xy|ienlu{Xxy|i¢L j¢J; i > f(5))
U{Xi; |jeJIu{Xy|ig D ¢ J; 5>90)}

satisfies (*). Conversely, any subset X C {X;; | i, = 1,...,n} which satisfies (*)
equals X(I,J, f,g) forsome I, J, f,g. O
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An Introduction to Hopf Algebras via Crossed Products

Akira Masuoka

Throughout we work over a fized ground field k.

It is interesting to see that parallel results hold for
various kinds of algebraic systems. Let us first recall the
following two theorems which are familiar to algebraists in
general.

THEOREM(Wedderburn-Malcev). If A is a finite-dimensional
algebra such that A/Rad A is a separable algebra, then the
quotient morphism A —— A/Rad A splits.

THEOREM(Levi). If ¢ is a finite-dimensional Lie algebra in
characteristic zero, then the quotient morphism <% — %/Rad %
splits.

We have further the following parallel result on affine
algebraic groups.

THEOREM(Chevalley-Mostow). Let G be an affine algebraic
group in characteristic zero, and let Gu denote its unipotent

radical, i.e., the largest closed normal unipotent subgroup.
Then, G/Gu is linearly reductive and the quotient morphism

G ——-)-G/Gu splits, so that G is isomorphic to a semidirect
product Gu > G/Gu.

The category of affine algebraic groups forms a full sub-
category of the category of affine group schemes. The latter
is in turn anti-isomorphic to the category of commutative Hopf
algebras. Therefore one sees that the last theorem is gener-
alized by the following.

The detailed version [M] of this article has peen submitted
for publication in the Banach Centre Publications.
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THEOREM(Takeuchi [T]). Let H be a commutative Hopf algebra
in characteristic zero. Then its coradical R (i.e., the
largest cosemisimple subcoalgebra) is a Hopf subalgebra and

the Hopf algebra inclusion R &— H splits, so that H is

isomorphic to H >¢ R, where H = H/HR'; this denotes the

tensor-product algebra H® R endowed with the coalgebra
structure of semidirect coproduct which arises from a certain
R-comodule coalgebra structure H—>R®H on H.

The original proof of the 'splitting' part of this theorem
is not so easy; Abe gave up providing it in his textbook [A],
only stating the theorem (Theorem 4.6.1).

If we remove from Takeuchi's theorem the assumption that H
is commutative, what happens? To answer this, it seems natural
to assume that the coradical R in H is a Hopf subalgebra.
All pointed Hopf algebras H, including the quantized universal
envelopes Uq(q;), satisfy this assumption, since then R is
spanned by the group of grouplikes in H. As our main result,
we answer the question as follows.

THEOREM [M, Theorem 3.1). Let H be a Hopf algebra in arbi-
trary characteristic. Suppose that the coradical R in H

is a Hopf subalgebra. Then the inclusion R €— H splits as
a right R-module coalgebra map, so that H is isomorphic to

the semidirect coproduct H/HR+ >4 R just as a right R-module
coalgebra.

This gives a simple proof of the 'splitting' part of Take-
uchi's theorem, and also of Sullivan's theorem, an analogous
result in positive characteristic; see [M, Section 3]. Other
applications are given in [MY; CDMM].

The idea which proves our theorem given above is indeed
simple; it is related to Hopf crossed coproducts. To explain
the idea, we choose, however, to work with more familiar,
group crossed products.
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Let G be a (discrete) group. A G-graded algebra A =
is called a G-crossed product, if each component Ag

& 2
gec 9
contains a unit, , i A. Then, = = , i

ug in en Ag Bug( ugB) if we set

B = Al, the neutral component. Moreover, the product in A
is described by

-1
g

the weak action g s b ugbu (€ B) together with
-1 x . .
the 2-cocycle 6’(g, h) uggus (€ B := units in B)

so that
(bug) (cup) = b(g > c) 6%g, h)uy,

where b, c € B, g, h €G. The algebra & Bu, with this
geG
product is denoted by B ><]6,G. If ¢’/ is trivial, this equals

the familiar semidirect product B X G. The associativity of
product require s and 6Y to satisfy

(g » (h> b)) &g, h) = 6(g, h)(gh » b),

(*)
6’(g, h) &(gh, 1) = (g » G6(h, 1)) 6'(g, hl),

where b€ B, g, h, 1 &€ G. Here the order of product cannot
be changed. Therefore the action 1 1is said to be 'weak’,
and 6’ should be called a 'non-abelian' 2-cocycle.

Suppvose A = B >46, G, a G-croosed product. Every G-graded
ideal in A is the left (or equally right) ideal Al (= IA)
generated by some ideal I in B such that G» I C€I. The
quotient G-graded algebra A := A/AlI equals the G-crossed
product B X G, where B = B/I, constructed from the induced
weak action G 7V B together with the 2-cocycle 6’ : G x G

_s’_) Bx —p ? .
LEMMA. Suppose that 1 is nilpotent and Ext,ch(k, M) =0

for all left kG-modules M, where k is regarded as a trivial
left kG-module. If A T B XG, then A ¥ B X G.
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Proof (Sketch). By induction we may suppose I2 = 0. By re-
choosing the basis ug, we may suppose EP is trivial. Then
we have 6 : G x G —> I such that 6(g, h) = 1 + 64(g, h).
Now, (*) reduces to
g (hs a) =gha a,
64(g. h) + 6p(gh, 1) = g » 6y(h, 1) + &y(g, hl),

where a €1, g, h, 1 € G. Thus, I is a left kG-module and
5§ is a 2-cocycle in the standard complex, possibly called

the Hochschild complex, for computing Exti{G(k, I); the sub-

script H in 6& represents 'Hochschild'. Since we suppose

Ext? = 0, there exists & : G —>1 such that QU = 64.

If we set &/ =1 +4jy : G —>B", it follows that bx g >
b JJ(g)'lug gives an isomorphism B X G Z A. 1
The idea can be referred to so as 'approximating the non-
abelian cohomology related to crossed products by the abelian,

Hochschild cohomology':; see the title of the article [M].

The lemma above is generalized to algebras of Hopf crossed
product, and then dualized to coalgebras of Hopf crossed co-
product. The result immediately proves the last theorem; see
[M, Section 4]. The theorem can be thus regarded as vanishing
of a sort of non-abelian cohomology in dimension 2. The same
idea as above also proves vanishing of such an abelian cohomo-
logy in higher dimensions that describes Hopf algebra exten-
sions, in dimension 2; see [M, Corollary 5.4].
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GROUP-LIKE ALGEBRAS

YUKIO DOI

1. SUMMARY

Using the viewpoint of bi-Frobenius algebras we introduce the notion of group-like al-
gebras!. The concept generalizes Bose-Mesner algebras of (non-commutative) association
schemes and character algebras.

We begin to recall the definition of a bi-Frobenius algebra which is a generalization of
a finite-dimensional Hopf algebra. It was recently introduced by Doi-Takeuchi [DT].

1. Definition. [DT] Let H be a finite dimensional algebra and coalgebra over a field
k,¢ € H* =Hom(H,k), t € H. Defineamap S : H = H by S(h) =Y ¢(t(1)h)¢(2). Then
the 4-tuple (H, ¢,t,S) is a bi-Frobenius algebra (or bF algebra) if
(BF1) e(hh') = e(h)e(h’), (Vh,h' € H) and ¢(1) = 1.

(BF2) A(1) =1@®1.

(BF3) ¢ «— H = H*, where (¢ < h)(}') := ¢(hh').
(BF4) t — H* = H, where t «— f := Zf(t(l))t(z).
(BF5) S(hh') = S(h')S(h).

(BF6) A(S(h)) = 3_ S(h(z) ® S(h(y)-

2. Basic properties. ([DT], [D]) Let (H,#,t,S) be a bi-Frobenius algebra. Then
(2.1) S is a bijection, in particular S(1) = 1 and £(S(h)) = £(h). Conversely the bijectivity
of § implies the conditions (BF3) and (BF4). That is,

(BF5,6) + “the bijectivity of S” = (BF3,4).
(2:2) Denote by S the composite inverse of S. Then

> S(te)stmh) =h =Y 6(hS(te)))tn), Vh € H.

(23)3 hg(t(z))®t(1) = 2§(tm)®t(1)h, Vh € H. In particular, if v(H) := 2§(t(z))t(1) (e
Z(H)) is invertible, then H is separable as an algebra.

(24) 3 o(zy1)S(y2) = L d(zy¥)2(2), Y2,y € H.

(2.5) t is a right integral in H, i.e., th = te(h), Vh € H.

(2.6) ¢ is a right integral in H*, i.e., _ ¢(hw))h) = ¢(h)1, Vh € H.

3. New results. Let (H,¢,t,S) be a bi-Frobenius algebra. Assume that v(H) is an
invertible element. Then we have
(3.1) (t) # 0 and S(t) =¢.
(3.2) Define p: H — H, p(h) = v(H) T S(tz))htn). Then u(H) = Z(H).
(3.3) If % = id, then
(i) (zy) = w(y=) (2,y € H), H = Z(H) ® [H, H).

!The detailed version of this paper has been submitted for publication elsewhere.
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(ii) (Orthogonality of Characters) Let %k = k and xo,--*, Xt be the complete set of
irreducible characters of H. Then

Y xi(w(H) S (t)x;(tay) = 8-

4. Proposition. Let A be a finite dimensional (non-commutative) algebra over a field
k and B = {by = 14,b1,... ,bs} a k-basis of A. Let ¢ : A — k be an algebra map and
S : A = A an anti-algebra automorphism such that

(i)eoS=e, (i) Foralli, e(b)#0,

(iii) S(b;) € B (then i* is defined by b;- = S(b:)).
Define ¢ € A* =Hom(A, k) and t € A by

¢(bi)=6i01 t:=b0+bl+"'+bd

and regard A as a coalgebra via A(b;) = 55 bi © bi.
Then (A, ¢,t,S) becomes a bF algebra if and only if
(iv) For all 4,4, pf; = &ij-e(bs),

here p; denotes the structure constant for B, i.e., b:b; = e, ;b-
In this case, we have that 5% = id.

This result suggests the following definition, which is a non-commutative analogue of
Kawada’s character algebras (cf. [BI]).

5. Definition. A group-like algebra (or generalized group algebra) is a 4-tuple (A, ¢, B, S),
where A is a finite dimensional algebra over a field k, ¢ : A — k an algebra map,
B ={by=1,by,... ,ba} & k-basis of A,

S:B — B,b; — b;- an involution (i** = ) satisfying the following conditions:

(G1) e(b;r) = e(b;) # 0, V4,
(G2) pf; = p¥i-, Vi, j, k, here pf; denotes the structure constant for B
(G3) p?j = 6“5-5(6,'), Vi,j.
We say that H is symmetric if S = id. In this case, it is clearly a commutative algebra.

6. Basic properties. Let (A,¢,B,S) be a group-like algebra. Then
(6.1) A is a symmetric algebra, since ¢(b;b;) = pf; = p}; = $(b;b;).
(6.2) P+t =elb),  ph+oh+-+ph=eb)
(6.3)  phe(be) = pij-e(bs)-

7. An example. Let char(k) #2and ¢#0€ k.

1 b b2 b3 by b5

11 by b2 bs by bs

b G+ Gth g+ Bl b)) by ghs+ (b +bs)  Tlh+ L3k
bo by g+%(bi+b) b+ 5l by L5ih+ Tlbs  ghy + S5h(by +bs)
by | b3 by bs 1 b b

by |ba  Tlog+ Tlbs  ghy+ Ll (ba+bs) by g+ LE(bi+b)  LHb + L5,
bs |bs gbs+ %5t(ba+bs) Lle+3les b Llhi+ Bl g+ Llb +h)

where S(b1) = by, S(b;) = b; (i = 3,4,5), €(b;) = ¢ ( =1,2,4,5) and e(b3) = 1.
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2. ®R

21. 7ARZIIARBOBKE, A2k LoRELTE L, TOXXZEM A° =Hom(4,k)
RROER =, — IC XV ER A BEL 225,

(= ) = f(yz), (f —==z)(y) = flzy)
(z,y€ A, feA). FRERTORIE A ZE ANMBREH 0: A- A* BFEETHLET
OR=GARBETHDHEV). EAMEREF G :A- A OFELFRMEIC2S (B8R
BB A~ A LBEE 6 : A ~ A OBRRZ ¢ LThITEW). ¢:=001) &¢B< L, 6
A A BEEEIHS

0a)=¢—a (Fla)=a—¢), Va€cA
LB, Elm A A BRRTLY, 7RO ARPBOEBEIT A b A* ~DFAMN
BEHEITE A MBYHH 0 OFFELFREICRS. 2E0{p—alaoc A} =A" ¥
I3IER{EA g€ A* DIFFELEWVMRAONE. 2T ¢ MBHFBILLIE Tdlaz)=0(Vz e
A) = a=0] BRYPEOIL.

EERARA 'S AQ A"~ End(4) Tidy KHIETE ARA DR Y0y 71

R AR¥ (A, ¢) PDEAMEELFS. ROBEIIEETHS :

> zpue)=a=)_ ¢laz)y (Va € A) (1)
Z azi @y = Z z; ®yia, (Vo € A) (2)

(BE: (1) ORADOERIIER,» AL, FEIEED fe A ITHL O flz)u)=f
BRYESZENLTS. 071 ()= f(z:)y: T =id Z2TEERFEL. (2) &7
THDIZIIERBD fe A" ITHL Ef(a:r,)y, Y flzya EWZIETEE. f=¢<bt
LTEL, Zo&EEMBIT (1) IV EBHiT e £725)

(2) &Y v(Ad) =Tz 1T A OBLIKEBT. BLIABTETLL Y v(d) 'z, 0y
»% separable idempotent & 725425, A IXBESIREL 25,

22. BH. VESSE (4,¢) 27a~=UARKEL, R¥HB e: 4ok 2—oEE
+5.

I.(Aye) = {t € A| ta=te(a), Va € A}
¥ (Aye) DER|PEME VW, TOF2TRWTE AD (e KHETI)ERMTEVI. bo
L—RRITEREOE AMEE V ICH L, FESSMEE

VA= {v eV |va=rve(a), Va € A}

BERTE, A4=1I(4,e) LRB. ADT7uNR=gREL (A =ke THHI LD b,
p—1t=c2B ADTtBHEE—DEEY L(A) =kt £225 (BHDO—FiL).

23. ARSI RAY. U LOBRBERRBROLTERRTS. C 2Kk Lo (ARK
T)RREEL, TORKBE A:C 3 CQC, c— Ycp) Ocp), REMHE ¢ TRT.
Wt 2= C* =Hom(C, k) 1L

(f-9)(©) = flew)slc), f. g€C"
LD RELARY (BLxEiT e), CRKROERATHEE C MBEER23.

f=e=) cuflec@) c=f=) flewea
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HBATARE C 136 C° MBRAEM x:C° - C BFETHLET7u =0 ARAH
Ly, C R7oR=YRRETHHILLERBETHD. t:= k(e) EBL L, &k(f) =
te f =3t L%
(ct)yx7z U‘(’l\f:;x%ﬂ:ﬁ& L, EBICC DT le TA(le) =1c®1c 75“’3.6(1(:) =’E
2HETLONEZENIETD. TOLEt—¢=1c ¥H=T ¢ C* BHE—DOE
0, R

Y ¢lew)ee = ¢le)le, Ve€C
£ (C° KB DEMS). JOMHEHET ¢ 21 O 0 1RABAEMERS.

2.4. Basic properties (2.1)-(2.6) OZH. Summary D EH 1(bF algebra) T, (BF3) i
(H,¢) W7 o= 2ARZETHHIL, (BFY) X (H,t) B7AX=JARMAATHHZ
LR \oTND. B8 S: H — H, S(h) = T ¢(tmh)tey SAE ¢ : H~H, hmyh= ¢
Y k:H' ~H frt—fOBRE-BTERILNDL, SOLEHAENTS. LI
BT (BFS) £ S(1) =1 2% 3 ¢ty = 1 A¥dNE. Thidt—¢=1%
ok, ko 2.3 LY basic properties @ (2.6) BN, i S DEES L (BF6)
& e(S(h)) = e(h), Yhe H 57207 b, S(h) = T d(tah)te PEAI e EE LT
B(th) =e(h) 285, DED g—t=¢ LoT 22L&V, t B HOEFEDLRY (2.5)
BT, SOEEHRE S TRTL, S(h) = EQS(t(l)h)t(z) &9

h="S(tw)é(tmh)

E2Y, T 8(te) @ty 37 0N=D RRE (H,¢) o83 2EHEEL RS, Litdio
T7aX=yARFOEENL (2.2), (23) X TS. (24) i¥ (2.3) ORATH . Kk
I (2.1) DBERIETT. SR)=t—(h—=9¢) &Y h=t— (S(h) = ¢). Thb
H=t— H Bbh, (Ht) R7aX=g KR\ LELB. KT

¢ = (O FStatw) = f

BERD fe B KHLTRITD (EEXERATIZLICL-TEIPDHLND). Th
o~ H=H #B%L, (H¢) B7ox=02R#EL23.
New results (3.1)-(3.3) DEEBRIT OV TIZHBE.

2.5. BF algebra Ofl. 1) HR¥ G I T2HR kG i
Alg)=9®y9, e(g)=1 (9€QG)
LUTHRREICED. ¢(g) = Gy t = Yyec0 Slg) = g71 LB, ZOLF S(r) =

Y gec $(92)g B8 kG DAERDFT 2 IKH L TRY 0. S IIALIICLEH THIF (BFS),(BF6)

&%, L7=# > T Basic properties (2.1) DE ¥R OERD L, (kG,¢,t,5) & bF
algebra IZ725.

2) ALRETHBROFRKTRYFRE H b bF algebra iTR25 2 EBDM%. ¢, t &%
NENH*, HDEBRDT ¢(t) =1 #H7-THDOLL, SILBED antipode &£ T3. k<A
ERTWVWA K DI S IXEHH T (BFS), (BF6) #4727, ELIIER S(R) =Y ¢(ty)h)te
BRED. L»T (H,¢,tS) IX bF algebra &7225.

3) H = k[X]/(X*) (as algebras) &1 5. RREMELRTERTS (2 =X).
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A1)=1Q1, A(r)=1Q0z+z®1, A(z®)=1Qz?+2?®1,
A(r}) =102 +z@22+ 2@+ 23®1, £(1) =1, e(z) =¢(2?) =¢(z®) =0.

2 A =192 +z®z+22®1 EEELTYH bF algebra ic25. Zhbik
Fy TRETIRW.

4) Summary D EHE 5 @ group-like algebra (4,6,B = {4 = 1,b,...,b4},5) #° bF
algebra i3 2 & % (f1,2 LR LRHET)WHT 5. TTRAEMEL Ab) = ﬁb,-@b,-
THEZD. BAIICE Lo ¢ BREMHICRS. 1 (b)) = e(b;) 75 S 3 (BFS)
EHIt (B8PS S FRBEHT BFS b&7T). € A, t€ A % ¢(b) = b t :=
bo+b1+...+bd fﬁﬁ?t%-

d d

0.
Z $(tybs)te) = Z T]b.i)¢(bibj)bi = Z %b,- = bj- = S(b;)

=0 =0

Ehb, (A ¢,t,S) i bF algebra & 725.

2.6. Basic properties (6.2), (6.3) I=DLVT. Group-like algebra i3 bF algebra 72/
&, basic properties (2.1)-(2.6) & 7=7F. (6.2) DRT¥IL t =bo+ by + -+ +bg HEHS
THHILERZL TS, —RITt NERZOL & S(t) BREMZITRDHM, TOFy—2
TIESE) =t E»b t IEMATLHD. Thd (62) DE2RTHS.

(6.3) DEE. $((bids)bx) = P(pYbx + pibrbx + - - + pibab) = ple(bye) 22
$(bi(b;de)) = d(Phdi + Plubiby + - - + phibiba) = plae(bs) KB

pije(be) =P = Phojoe(®)

2HB5. BRICE Lk 2AREANT (6.3) #%5.

2.7. Group-like algebra Offl. 7 /' T—3 3 - RF— LITITRET 2 BEA S (Bose-
Mesner algebra) i3 B #&R7% R 5 CEH R & C Lo group-like algebra L7225, ZDOHE,
BEER o}, RT_THABYEL LS. UT—ROE L LETEXS.

1) 2 KTD group-like algebra XK DOFITIRS :
A4.2) J1 b
1 1 b
b b g+{g—1)
eB) =q(#0) €k TS=id v:i=u(A4(2) =2+LLb THB. e(t) =1+¢ #0025
v KX () = Do) T g = —1 26 RHM TRV

2) 3 T S & id DBBILKOW (=7 L char(k) £ 2 £+5) :
A(3)] 1 b bo
1 1 bl b2
b o 9;—1171 + 9;—1b2 q+ 9;—1(b1 + i)
be |0, g+ g;—l(bl + b,) 9;—1b1 + g;—lbg
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where S(b)) = bs and ¢ := (b)) = £(b2) # 0. v=9(4,(3)) =3+ ’;—l(bl + ba).
HbLe(l)=2q+1F#07R2b v IiZAHET
1 28+ 14+ (1 =g)(b +bg)
T (2g+1)? '
Proof. § #id 5535 S(b)) = b, Th 3. (G1), (G3) &V
g:=e(b) =£(be) #0, p}y =03, =0, P =1 =4

7 (G2) &b
Phy = Doy Plo =Pl Phy = Doy P2e = Piy
&6z (6.3) &V
piz = P;n Ph = Piz
LMo THIITR T, TRRIIKOE :
|1 by by

11 by be

b]_ b1 ab1 +ﬂb2 q+a(b1 +b2)

bo | b2 g+alb+b) Bb+ab,

WITHD S (6.2) 16 g=1+2a=a+p. k>T char(k) #2 2ba=%t, g=2,
char(k) =2 fJ\.B qg= 1 ﬁ =l+a t fJ: U] J:@ﬁ%‘?%% (blbl)bZ = bl(blbz), (blbz)bz =
b1 (b2b2) Giﬁaﬁai'ﬁ?ﬁ#b bhd. fOr—ARABRELVALD. LM >TIOfH

BEEEPHIT. 0
3) 3KRRT S = id DHARKOWICRS :
Z @1 5 5
1 1 by b,
bh | p+(p—1- Bq)b + Fpbs Bab + (p — Bp)b,
by | b Bgb, + (p — Bp)ba g+ (g—Ba) +(g—1~p+ Bp)b,

where £(b1) = p and £(b;) = g and B € k. v(42 (3)) X
14 oh b o 2p-1-Bpte),  g-p-1+B(p+a),
p q p q
TRBEHTA D REIROEAE TRV E

(p+;q+—1)2 {8 - B)o+9)* + Blg+1)* + (1 - B)(p+ 1)}
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AN ELEMENTARY CONSTRUCTION OF TILTING COMPLEXES
MITSUO HOSHINO AND YOSHIAKI KATO

ABSTRACT. Let A be an artin algebra and e € A an idempotent with add(ed,) =
add{D{aAe)). Then a projective resolution of Ae.s. gives rise to tilting complexes
{P() }1z1 for A, where P(1)* is of term length { + 1. In particular, if A is selfinjective,
then Endy(uoq-4)(P(1)*) is selfinjective and has the same Nakayama permutation as 4.
In case A is e finite dimensional algebra over a field and eAe is a Nakayama algebra, &
projective resolution of eAe over the enveloping algebra of eAe gives rise to two-sided
tilting complexes {T'(21)* }151 for A, where T(2!)* is of term length 2I + 1. In particular,
if eAe is of Loewy length two, then we get tilting complexes {T'({)*}i>1 for A, where
T(l)" is of term length ! + 1.

This note is a summary of our paper ([HK2)).

The notions of tilting complexes and two-sided tilting complexes were introduced by
Rickard [Ril, Ri3]. After that, derived equivalences between selfinjective algebras have
been studied by many people (see e.g. [Br], [Ok] [Ri2], [Ri4], [Ro] and their references).
The notion of tilting complexes is a generalization of that of tilting modules (see e.g. [CPS],
(Ha], [HR], [Mi]). In the case of a selfinjective algebra A, a tilting module T 4 is just a
projective generator and thus Ends(T,) is Morita equivalent to A. On the other hand,
there have been known several examples of derived equivalent selfinjective algebras which
are not Morita equivalent. Especially, Rickard [Ri2] showed that the Brauer tree algebras
with the same numerical invariants are derived equivalent to each other. This general-
izes the earlier work of Gabriel and Riedtmann [GR] that the Brauer tree algebras with
the same numerical invariants are stably equivalent to each other, since derived equiv-
alent selfinjective algebras are stably equivalent ([KV], [Ri2]). Recently, Okuyama [Ok]
introduced a method of constructing tilting complexes associated with idempotents over
symmetric algebras. Also, Rouquier and Zimmermann [RZ] gave an example of two-sided
tilting complexes associated with local idempotents over symmetric algebras. In this note,
we develop these constructions and provide a systematic method of constructing tilting
complexes and two-sided tilting complexes over selfinjective algebras (cf. [HK1]).

Let A be aring and e € A an idempotent. For any finite projective resolution f : Q* —
(1 — e)Ae in Mod-eAe and for any ! > 1, we construct a complex P(l)* € K®(P,) of term
length ! + 1 and show that P({)* is a tilting complex if and only if Ext!,(A/AeA, eA) =0
for 0 £ i < ! (Theorem 2.3). In particular, if A is a selfinjective artin algebra and
if add(eA4) = add(D(4Ae)), then Endkpvoa-4)(P(I)°) is also a selfinjective artin algebra
whose Nakayama permutation coincides with that of A (Theorem 3.7). Next, we deal with
the case of A being a finite dimensional algebra over a field £. For any finite projective
resolution f : S* — eAe in Mod-(eAe)® and for any ! > 1, we construct a complex
T(1)* € K®(Mod-A®) of term length ! + 1 and show that if add(ed,) = add(D(4Ae)) and
if add(Z="(5")ee) = Peae, as a complex of right A-modules T(!)* is a tilting complex
(Proposition 4.2). Furthermore, if eA4 = D(4Ae) and if Z~*+1(S*) is faithfully balanced,

The detailed version of this paper will appear elsewhere.
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then T(1)* is a two-sided tilting complex (Theorem 5.4). Finally, as applications, we deal
with the case where eA4 = D(sAe) and eAe is a Nakayama algebra. We show that as
a complex of right A-modules T'(!)* is a tilting complex for all { > 1 and that T'(2!)°
is a two-sided tilting complex for all { > 1 (Proposition 6.2). In particular, if eAe is of
Loewy length two, then T'(l)* is a two-sided tilting complex for all { > 1 (Proposition
6.3). Furthermore, we provide decompositions of these two-sided tilting complexes in the
derived Picard group (Remark 4.5 and Propositions 6.2 and 6.3).

Throughout this note, rings are associative rings with identity and modules are unitary
modules. Unless otherwise stated, modules are right modules. For a ring A, we denote
by A°P the opposite ring of A and consider left A-modules as A°P-modules. In case A
is a finite dimensional algebra over a field &, we denote by A¢ the enveloping algebra
A% ®; A and consider A-A-bimodules as A®-modules. Sometimes, we use the notation
Xa (resp., 4X) to stress that the module X considered is a right (resp., left) A-module.
We denote by Mod-A the category of A-modules and by P4 the full additive subcategory
of Mod-A consisting of finitely generated projective modules. For an object X in an
additive category A, we denote by add(X) the full additive subcategory of A consisting
of objects isomorphic to direct summands of finite direct sums of copies of X. For an
additive category A, we denote by K(.4) the homotopy category of cochain complexes
over A and by K~(A4), K®(A) the full subcategories of K(.A) consisting of bounded above
and bounded complexes, respectively. In case A is an abelian category, we denote by
D(A) the derived category of cochain complexes over .A. Also, we denote by B(X*),
Z{(X*), 2%(X*) and H!(X") the i-th boundary, the i-th cycle, the i-th cocycle and the
i-th cohomology of a complex X*, respectively. We refer to [RD), [Ve] and [BN] for basic
results in the theory of derived categories and to [Ril, Ri3] for definitions and basic results
in the theory of tilting complexes.

1. Preliminaries
Throughout this note, A is a ring and e € A is an idempotent. We identify
Mod-(A/AeA) with the full subcategory of Mod- A consisting of X € Mod-A with Xe = 0.
In this section, we collect several basic facts which we need in later sections.
Lemma 1.1. For anyl > 1 the following statements are equivalent.
(1) Ext,(A/AeA, eA)=0 for0<i <l
(2) Ext}(—, eA) vanishes on Mod-(A/AeA) for 0 <i <.

Remark 1.2. For any X € Mod-A we have functorial isomorphisms

px: X ®aAe > Xe, s@arrza, £x:Xe> Homa(eA, X), z+— (a— za).

Remark 1.3. The functor — ® 4 Ae : Mod-A — Mod-eAe is exact and has a fully
faithful left adjoint — ®.4. €A : Mod-eAe — Mod-A. Furthermore, these functors induce
an equivalence add(eA4) = P, 4.
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Definition 1.4. For any X € Mod-A and M € Mod-eAe we have a bifunctorial iso-
morphism

s, x : Homese(M, X ®4 Ae) = Homa(M ®.4. €A, X)
such that Ou,x(f)(m ® @) = px(f(m))e for f € Homea (M, X ®4 Ae), m € M and
a € eA. Thus for any X* € K(Mod-A) and M* € K(Mod-eAe) we have a bifunctorial
isomorphism
Hom; 4. (M*, X* @} Ae) = Hom} (M ®; 4, 4, X*)
and, by applying H°(¥-), we get a bifunctorial isomorphism
Gre,x+ : Homg(Modeae (M, X* &% Ae) > Homk(mod.a) (M* ®24, €4, X°).

We set

Ex+ = Oxogy e, x+ (idxogyae) : X° @) Ae @4, eA— X,

Cue = Opge aprg, ea (idaregy, en) : M — M* 874, eA®) Ae
for X* € K(Mod-A) and M* € K(Mod-eAe), respectively.

Remark 1.5. The following statements hold.
(1) &x+ is an isomorphism for all X* € K(add(eAa)).
(2) ¢are is an isomorphism for all M* € K(Mod-eAe).

Lemma 1.6 (Auslander). For any f : P — X in Mod-A with P projective, the fol-
lowing statements are equivalent. _

(1) The induced epimorphism f: P — Im f, z — f(z) is a projective cover.

(2) f is right minimal, i.e., every b € Ends(P) with f o h = f is an automorphism.

Lemma 1.7. For any X € Mod-A the following statements hold.
(1) For any f: Q@ = X ®4 Ae in Mod-eAe with Q@ € Pea,, tf [ is right minimal then

s0 is 0g,x (f)-
(2) Foranyg: P — X in Mod-A with P € add(eA4), if g is right minimal then so is

g ®4 Ae.

Lemma 1.8. Let A be a noetherian algebra over a complete commutative noetherian
local ring. Then A is semiperfect, i.e., P4 is a Krull-Schmidt category.

Lemma 1.9. Let A be a finite dimensional algebra over a field k. Then for any V €
Mod-A® the following statements hold.
(1) If VA= Ag and AV = 4A, then V is faithfully balanced.
(2) If V4 € P4 and 4V € Pacs, and if V is faithfully balanced, then V is a two-sided
tilting complez.

2. General case

The next lemma will play a key role in our argument below.
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Lemma 2.1. Let A be an additive category and P an object of A. Let 1 > 1 and
P* € KP(A) with P* € add(P) for—1 < i< 0and with P =0 fori >0 andi < ~1l.
Then the following statements hold.

(1) If Hi(Hom%(P, P*)) =0 fori # —1, then Homg4(P*, P°[i]) = 0 for i > 0.

(2) If Hi(HomY(P*, P)) =0 for i # I, then Homg4(P*, P*[i]) =0 fori < 0.

Definition 2.2 ([RD]). For a complex X* and n € Z, we define the following trunca-
tions

TSn(x.): ..._,Xn—quﬂ—l__)Xn_,O_,“.’

Toa(X®) : e Do XN XL X2, L

Theorem 2.3. Assume (1 —e)Ae.4. admits a projective resolution f : Q° — (1—e)Ae
with Q° € K~(Pese). Denote by P* the mapping cone of 8ge, (1-¢)a(f). Let 1 > 1 and set
P(l) = eA[l]® 15_1(P*). Then the following statements hold.

(1) P(l) is a tilting complez if and only if Ext};(A/AeA, eA)=0 for0<i <.

(2) Assume Ext’,(A/AeA, eA) =0 for 0 <i < 1. Then add(P(l)*) does not depend on
the choice of f whenever A is @ noetherian algebra over a complete commutative
noetherian local ring.

3. The case of selfinjective artin algebras

In this section, A is an artin algebra over a commutative artin ring R and {e;, ... ,ea} is
a basic set of orthogonal local idempotents in A. Set I = {1,... ,n}and lo={i € I'|¢; €
AeA}. Let E be an injective envelope of the R-module R/rad R. Weset D = Homg(—, E)
and v = D o Homa(—, A).

Remark 3.1. For any ¢ € [ the following statements are equivalent.
(1) i € Iy.

(2) ei(A/AeA) =0.

(3) (A/AeA)e; = 0.

Definition 3.2. Let [ > 1. For ¢ € I, we set PB(l)° = e;A[l]. Fori € I — I, let
fi : Q7 — eiAe be a minimal projective resolution in Mod-eAe, P,* the mapping cone of
bqy.ea(fs) and Pi(l)* = 151(F"). We set Po(l)" = P,; A()".

Remark 3.3. Let i € ] — Ip. Then P? = ¢;A and PF = Q[*! ®.4. €A € add(eA ) for
all r < 0. Also, by Remark 1.3 and Lemma 1.7(1) dg, is right minimal for all r < 0.

Proposition 3.4. Assume add(eA,) = add(D(aAe)). Then Po(l)* is a tilting complex
foralll > 1.

Definition 3.5. Assume A is selfinjective. Then we have a permutation o of I, called
the Nakayama permutation, such that v(e;A) & e,(;)A for all i € I.
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Remark 3.6. Assume A is selfinjective. Then the following statements are equiva-
lent.

(1) add(eA,) = add(D(4Ae)).

(2) add(eA,) is stable under v.

(3) Iy is stable under o.

Theorem 3.7. Assume A is selfinjective and add(eA,) = add(D(4Ae)). Then for any
{ > 1 we have

DHomg(mMod-4) (P (1)°, Po(1)") = Homkmod-4)(Po(l)°, Po(n(!)°)

for alli €I, i.e., EndgMod-a)(Po(l)’) is a selfinjective artin R-algebra whose Nakayema
permutation coincides with o.

4. Complexes of bimodules

Throughout the rest of this note, A is a finite dimensional algebra over a field £ and
D= Homk(—, k).
In this section, we assume d = dimz eAe > 2.

Definition 4.1. Applying Definition 1.4 to the idempotent e 8 e € A°®, for any X* €
K(Mod-A®) and M* € K(Mod-(eAe)®) we have a bifunctorial isomorphism

Homy (Mod{ee)s)(M*, eA @ X* @} Ae) = Homy(moa.a0)(Ae ®gqe M® ®:4 €4, X°),

which we denote by fjase, x».

Proposition 4.2. Let f : §* — eAe be a projective resolution in Mod-(eAe)® with
S* € K™ (P(eaeye). Denote by T° the mapping cone of fis+, a(f) and set T(l)* = 151(T*)
forl > 1. Assume add(eA,) = add(D(4Ae))- Letl 2 1 and assume add(Z~(S%)eace) =
Peae- Then as a complez of A-modules T(1)* is a tilting complez.

Corollary 4.3. Let f : S* — eAe be the standard free resolution in Mod-(eAe)®, i.e.,
the mapping cone of f is the standard complez of eAe in the sense of [CE, Chapter IX].
Denote by T the mapping cone of fiss, a(f). Assume add(eA4) = add(D(44e)). Then
as a complez of A-modules T(l)* = 7> (T") is a tilting complex for all 1 > 1.

Remark 4.4. Assume in Corollary 4.3 that e44 = D(4Ae). For j > 0 we set s;(t) =
9+ 4+ (=1))/(t + 1), a polynomial of degree j. Then it is not difficult to see that for
any ! > 1 we have

T(l) ®% Hom}y(T()", As) & A (Ae @y eA)
= Homy(T(!)", 44) @, T(1)*

in K(Mod-A®), where s = s;—1(d)(s;(d)+ (—1)}). Thus T({)" is a two-sided tilting complex
if and only if I = 1 and d = 2. However, even if | > 2 or d > 3, it is possible for
Endk(Mos-4)(T(!)") to be Morita equivalent to A (cf. Sections 5, 6 below).
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Remark 4.5. Consider the case where e = e(t) + e{?) with the e/ idempotents in eAe
such that e Ae® = 0 = e@Ae®. Let f; : S; — el Ae be a projective resolution
in Mod-(e®Ae®)® with S € K™ (Pien getnye) for i = 1,2 and set f = diag(fy, fo) :
S ©8; — eMAe® © e@Ae@. For i = 1,2 we denote by T;* the mapping cone of

ﬁg). 4(fi), where 719) denotes the bifunctorial isomorphism obtained by replacing e with

e in Definition 4.1. Also, we denote by T* the mapping cone of figsggs, a(f). For 1 > 1,
we set Ti(l)* = > (T") for i =1, 2 and T(l)* = 75_((T*). Then for any / > 1 we have

(1) ®;4 Tz(l)' =T =2T() ;)
in K(Mod-A4¢).

5. Two-sided tilting complexes
In this section, we assume eAs = D(4Ae). We set (—)°* = Homeae(—, eAeeae).

Lemma 5.1. The following statements hold.

(1) D(Ae ®; eA) = Ae @; €A in Mod-A°.

(2) eAe = D(eAe) in Mod-eAe. In particular, eAe and hence (eAe)® are selfinjective.
(3) eA = (Ae)* in Mod-((eAe)?® @; A).

Lemma 5.2. For anyV € Peaey the following statements hold.

(1) V. € 'P(eAe)e-

(2) Ae®ene V Rese A € add(4Ae @ eAy).

(3) Hom(Ae ®cae V Rene €A, Ax) = Ae ®ese V° Bese €A in Mod-A4°.

Lemma 5.3. For any V}, V2 € Peaeye we have Vi ®eae V2" € Pleseye.

In the following, we fix a projective resolution f : S* — eAe in Mod-(eAe)® with
S* € K™ (P(eac):). We denote by T* the mapping cone of 7js+, a(f) and set T'(1)* = 7> (T*)
for{ > 1.

Theorem 5.4. Let ! > 1 and assume Z™'+1(S*) is faithfully balanced. Then T(l)* is a
two-sided tilting complez.

~

Proposition 5.5. Let m > 1 and assume S* = 7¢<_m(S*)[—m] as complezes of (eAe)-
modules. Then for any | > 1 we have isomorphisms in K(Mod-A®)

T(m)* 8% T()" = T(m +1)" = T(l)" &, T(m)".

6. Applications

In this section, we assume e = }_.., e with the notation in Section 3 and eds =
D(4Ae). We set J = rad A and assume dim;e;Ae/e;Je = dimye;Je/e;J?e = 1 and
dimpe;Ae = d > 2 for all i € Iy. Then eAe is a selfinjective Nakayama algebra and
e®e =3 icp, & ® e; with the e; ® ¢; orthogonal local idempotents in (eAe)®. Note
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that we do not exclude the case of e being a local idempotent. Also, eAe may fail to be
connected.

There exists a permutation & of Iy such that e;Je/e;J% = ey Ae/e i Je in Mod-eAe
for all ¢ € Ip. For any i € Iy we fix w; € e;Je,;) — e:J%€q(;). Then for each i € Iy we have

a k-basis {e;, wi, ++ , WiWo(i) - - - Wod-2()} for e;Ae. For I > 0 we set
S-1= @ eAe; @ e.,(;)Ae,
ielo

where y = 0™ if l = 2r and v = 0™¥*! if | = 2r + 1. We set
f:8%— ede, u®@v— wr.
Let » > 0 and p = 0™, We define homomorphisms in Mod-(eAe)®
ds—2r—1 . S—Zr-l — S-Zr d;?r—2 . S—2r—2 —_ S-2r—1
by ds—zr—l(ei ® eap(i)) =w;® Cap(i) — Ci ® Wp(i) and
ds™ (€1 ® eqeps) = € ® Wop(s) * +* Wod-1p(5)
d-2
+ Z‘w,' * ot Wai-1(4) ® Wai+d i) * * * Wed—1 p(4)
i=1
+wie- w,,d-:(,-) ® eadp(")
for all ¢ € Iy, respectively.
Lemma 6.1. We have o projective resolution f : S* — eAe in Mod-(eAe)®.

In the following, we denote by T the mapping cone of #jse, 4(f) and set T(I)* = 7> (T*)
for ! > 1.

Proposition 6.2. The following statements hold.

(1) As a complez of A-modules T(1)° is a tilting complez for alll > 1.
(2) T(21)° is a two-sided tilting complez for all 1 > 1.

(3) Let m be the exponent of o®. Then

Tem) LT =Tem+ 1> =T() ®,T(2m)
in K(Mod-A®) foralll > 1.
Proposition 6.3. Assume d = 2. Then the following statements hold.

(1) T(1)* is a two-sided tilting complez for all | > 1.
(2) Let m' be the exponent of o. Then

T(m') @y T() =T(m'+ )" = T()* &, T(m')".
in K(Mod-A®) forall 1> 1.
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NEAT IDEMPOTENTS AND TILED ORDERS HAVING LARGE
GLOBAL DIMENSION :

HISAAKI FUJITA

Let D be a discrete valuation ring with quotient field K. It is known by Jategaonkar
[7] that for a fixed integer n > 2, there are only finitely many tiled D-orders of finite
global dimension in the full n X n matrix ring M,(K). But it is not known even what
is the maximum global dimension. Neat idempotents are introduced and studied by
Agoston, Dlab and Wakamatsu [1] for finite dimensional algebras in connection with
quasi-hereditary algebras. In this paper! we report some results obtained by applying an
idea of neat idempotents to tiled D-orders having large global dimension.

Let e, be a primitive idempotent of a semiperfect Noetherian ring R with Jacobson
radical J. Then e, is said to be neat if Ext5(S,,S,) = 0 for all { > 1 where S, is the
simple right R-module e ,R/e,J. We explain some properties of neat idempotents and
relationships between R and eRe wheree =1 —e,.

In [5], Jansen and Odenthal found a tiled D-order having large global dimension.
Namely, for each even integer N > 8, they constructed tiled D-orders JOx in My(K)
whose global dimension is 2V —8. As a main application of neat idempotents, we improve
their example. Namely, starting from n = 6, we construct tiled D-orders ', in M,(K)
inductively, and we show that gl.diml's = gl.dimI'; = 5 and gl.dimI’;, = 2n - 8 for all
n > 8. For any even NV > 8, 'y is isomorphic to the example of Jansen and Odenthal.

We now recall some facts on tiled D-orders having finite global dimension. In his study
of global dimension of orders ([10], [11]), Tarsy found a tiled D-order having global di-
mension n — 1, and among other things, he conjectured that if A is a D-order in Mp(K),
then gl.dimA < n — 1. As a strategy to prove Tarsy’s conjecture, Jategaonkar [7] conjec-
tured that if A is a tiled D-orders of finite global dimension, then there exists a primitive
idempotent e, in A such that e,Ae or eAe, is eAe-projective where e = 1 ~ e,. In some
special cases, both conjectures were settled by some authors. (See [6], [7], [8], [2], and
[3].) However in (8], Kirkman and Kuzmanovich found a counterexample to Jategaonkar’s
conjecture. A counterexample to Tarsy’s conjecture was also found in [3] by providing
a tiled D-order in M,(K) of global dimension n for all » > 6. It had been expected to
find tiled D-orders in M,(K) having finite global dimension larger than n. In [9], Rump
found a tiled D-order Rg in Mg(K) having global dimension 9 from an idea of o-posets.
On the other hand, Jansen and Odenthal found the example mentioned above.

In Section 1 we state some properties of neat idempotents in semiperfect Noetherian
rings. In Section 2 we describe how to construct the tiled D-order I',,. Its global dimension
can be computed using results in Section 1. In Section 3 we give another two tiled D-orders
having relatively large global dimension. In Section 4, two questions on tiled D-orders of
finite global dimension are posed, one of which can be considered as an improved version
of Jategaonkar’s conjecture above.

1The detailed version of this paper has been submitted for publication elsewhere.
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1. NEAT IDEMPOTENTS IN SEMIPERFECT NOETHERIAN RINGS

Let R be a basic semiperfect Noetherian ring with Jacobson radical J. Let e,... ,e,
be orthogonal primitive idempotents of R with 1 = e; + -+ + eq. Put S, = e R/e,J,
e=1- e, and I = ReR. Then e, is said to be neat if Ext4(S,,S,) =0 for all i > 1.

The following proposition is a slight modification of Proposition 1 in [1].

Proposition 1. The following statements are eguivalent for a primitive idempotent e,,.
(1) ey is neat.
(2) Let
a3 P Pioe, =0
be a minimal projective resolution of e,J. Then for eachi > 1, P; € add(eR).
(8) enJe®.r.eR = e,J by the evaluation map and Tor‘™(e,Je,eR) =0 for all i > 1.
(4) Re®.r.eR = I, e,Je, =eyle, and Tor,?R‘(Re, eR) =0 foralli > 1.

By (4) of Proposition 1, the notion of a neat idempotent is left-right symmetric. As an
immediate consequence, we have the following corollary.

Corollary 2. Ife, is a neat idempotent then pdg(e,J) = pd.g.(enRe) and pdg(Je,) =
Pd,ae(eRen)-

Next, we give a converse of Corollary 2, using a projective complex considered in [4].
We need the following lemma.

Lemma 3. I = ReR is a mazimal ideal if and only if Extx(S,,S,) = 0.

Proposition 4. Suppose that Exty(S.,S,) = 0 and pdg(enJ) = s < 0. Then e, is
neat if and only if pd,z.(enRe) < s.

Remark. In some examples, we can easily compute projective dimensions of e,J and
enRe even if their minimal projective resolutions are too complicated. So, Proposition 4
gives a useful criterion for neat idempotents in such examples.

We used a projective complex in the proof of Proposition 4. Its homology group can
be characterized as follows.

Lemma 5. Let X be a finitely genercted right R-module. Put Lo = XI and let
0 = K, = FPo = Lo — 0 be a short exact sequence with Py a projective cover of Ly. For
i > 1, inductively, put L; = K;I and let 0 = K,y = P, = L; = 0 be a short exact
sequence with P; a projective cover of L;. Then Kiy\/Liv, = Tort®(Xe,eR) fori > 1
and K,/L, 2 Ker(Xe ®.r. eR = X).

The following proposition is a refinement of Proposition 2.6 in [8]. We can computate
gl.dimI,, explicitly, using this proposition.

Proposition 6. Suppose that e, Re (eRen) is isomorphic to a right (left) ideal of eRe.
Suppose that Exth(Sn, Sn) = 0, gldimeRe = r + 1 < o0 and pdg(enJ) = 5 < co. Put
t = pd.g.(eJen). Then the following statements hold.

(1) Ifs+t>r thengldmR=s+1t+2.

(2) If s+t <r thengldimR =r 4+ 1 = gl.dimeRe.

(8) Ifs+t=r thengldimR <r +2.

Therefore if e, is neat then gl.dimR < 2r + 2.
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' Re.ma.rk. Proposition 2.2 of [8] shows that gl.dimeRe < gldimR+pd, g, (e, Re). Hence
if e, is neat in R then gldimeRe < 2 gl.dimR — 1. (See Proposition 2 in (1] too.)

We need the following two facts in the induction step to compute gl.diml",,.

Corollary 7. Suppose that Ext}(S,,S,) = 0 end pdr(e.J) = s < 00. Let X be a
finitely generated right R-module with Pdeg.(Xe) = m < o00. Suppose that there ezists
£ (1 < £ < m) such that Torf(Xe,eR)=0ifi > ¢ and Tor{R¢(Xe,eR) #0 if £ > 2 and
thatm < s+£ ThenpdgX =s+{+1. ’

Lemma 8. Suppose that e, is neat in R. Then for any right R-module X,
Torffe( Xe, eR) = Torf(X,Je,) foralli> 1.

2. THE INDUCTIVE CONSTRUCTION OF [,

Let n(> 2) be an integer, and let A; (1 <,5 < n) be non-negative integers satisfying
Ak + A 2 Aij, Ay =0 foralli,j,k(1<i,j,k<n)

and
/\ij+/\ji >0 for allz,] (1 S i,] S Tl,l#])

Then A = (72 D) is a D-order in the full matrix ring M,(K). Such a D-order A is called
tiled. In what follows, we abbreviate A = (7% D) as A = ();).

Let A = ();) be a tiled D-order in M,(K). Then A is a basic, semiperfect Noetherian
ring of Krull dimension one. The matrix units e; = e)),... ,en = e,, are primitive
orthogonal idempotents of A with 1 =e; + --- +e,. Let J be the Jacobson radical of A,
which is given by replacing all diagonal entries D of A by = D.

The valued quiver Q(A) = (Q(A)o, Q(A)1,v) of A is defined as follows. (See [12].)
Q(A)o = {1,... ,n} is the set of vertices. Q(A), is the set of arrows defined by

a:z’—->j€Q(A)1 if/\jk+/\k°i>/\ji forallk(lSkSn,k#i,j).

The map v from Q(A), to non-negative integers is defined by

_J e (G#79)
w@={ (23
forany a:i— j € Q(A).
A can be recovered by Q(A). Namely, for each 4,5 (1 <4, < n,i # j),
Ai; = min{v(p) | p is a path from j to i in Q(A)}

where v(p) is the sum of values of all arrows appearing in p. Note that for any path p
from j to ¢ in Q(A) with v(p) = Ay, vertices appearing in p are distinct each other.

Construction of T'n: Let I'g be the tiled D-order in Mg(K') having the following valued
quiver:
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12T 22— 32— 4= 316
1 w 1
1
0

Let N = 2n(> 6) be an even integer. As an induction hypothesis, we assume that
Inx = () is a tiled D-order in My(K) with the following property:

@(y) hasarrows i » i+ 1, i+1 =i (1<i< N-1),
1-oN-2 35N, N=1,
(%) N-1-32 N335 N-4-51,4oN-1,;

for each a:i — j € Q(Tx),, if ¢ is even then j is odd and v(a) =0,
if i is odd then j is even and v(a) =1

Note that I's has this property.

Step of [nsy: We make a new valued quiver Q' by adding a new vertex N + 1 and

fourvalueda.tTowsN—°>N+1, N+1—')N, 23 N+1land N+1- 4 to the valued
quiver Q(I'x). Then for any i, (1 < i,j < N), put

Yin+1 = min{v(p) | pis a path from N +1 to i in Q'}
Y+ = min{v(p) | pis a path from j to N +1in Q'}
and put Tyyr = (Wj)1<ij<nv+1 where Yvsy v = 0.
Then I'y_, is a tiled D-order in My, (K) with Q(Fn+1) = Q.

Step of I'ni2: We make a new valued quiver Q” by adding a new vertex 0 and five
valued anowsO—°> 1, 1 —1>0, O-E>N—1, N=3250and N+13 0to the valued quiver
Q(T'n+1). Then for any 4,5 (1 £4,j £ N + 1), put

Yio min{v(p) | p is a path from 0 to i in Q"}
v; = min{v(p)|p isa path from j to 0 in Q"}

and put Tny2 = (%j)o<ij<n+1 where yo0 = 0.
Then FN+2 is a tiled D-order in NIN.;.z(K) with Q(PN+2) = Q".

We shift the names of vertices from 0,1,... ,N+1to1,2,... ,N + 2, respectively. Let
u be a diagonal matrix in My-2(K) with the (i,%)-entry = if ¢ is odd and 1 otherwise.
Then uln,ou~? is a tiled D-order with the property (). Thus, we have constructed I'y
by induction.

For even N > 8, one can verify that 'y = JOy by inner automorphism given by a
permutation and change of values.

We note that primitive idempotents corespponding to new vertices in the inductive

construction of 'y are neat.
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We compute gl.diml's = 5 first. Using Proposition 6 (2), we obtain that gldimly =
gldiml’; = 5. Then using results of neat idempotents and Proposition 6 (1), we show
that gl.diml', = 2n — 8 inductively.

3. ANOTHER TILED ORDERS HAVING LARGE GLOBAL DIMENSION

In [9], Rump found a tiled D-order Rg in Mg(K) of global dimension 9, which is larger
than gl.dimJOg = 8. Rj is also a modification of Example 2.5 in [3] by means of o-posets.
(See [9].) The following example may be a natural extension of Example 2.5 in [3] in this
direction.

Example 1. Let N = 2n(> 6) be an even integer. Let Q = (Qo, Q),v) be the valued
quiver such that Qp = {1,2,..., N} is the set of vertices, Q, is the set of the following
6n — 5 arrows

2k—=1—=2k2k=2k-1(1<k<n)
2k+1-2k2k~2k+1,2k+292k-1(1<k<n-1)
2%k—-122%+4(1<k<n-2)

and that fora: i = j € @1, v(a) =1 (if ¢ is odd) and O (if  is even). Let Ay be the
tiled D-order defined by Q. Then gl dimAy = 3n - 3.

Example 2. Let

/0112221 2)

00011211

11011222

A= 0100011 2
111110112
01110001

12111101

\1111010 0}

be a tiled D-order in Mg(K). Then gl.dimA = 10.

By experiments, we guess that inductive extension of Example 2 exceeds I'y in global
dimension.

4. REMARKS

As pointed out in Example 4 of [1], there is a path algebra A of finite global dimension
with no neat primitive idempotent. However, in the class of tiled D-orders, we do not
know such examples. We note that Proposition 4 is a useful criterion for neat idempotents
in tiled D-orders of finite global dimension.

Question 1. Does any tiled D-order of finite global dimension have a neat primitive
idempotent ?

Question 1 can be considered as an improved version of Jategaonkar’s conjecture. If
Question 1 is true, using Proposition 6 and its remark, we can show that 3-2"~% is a upper
bound of finite global dimensions of tiled D-orders in M,(K') for n > 6. Using computer,
we have verified the upper bound is 6 when n = 6.
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For a tiled D-order A = (A;;) in M,(K), put d(A) = leia‘sﬂ Aij. We call d(A) depth of
A. It is known that A is hereditary if and only if d(A) = in(n — 1), which is the smallest
depth among tiled D-orders in M,(K).

Question 2. If gldimA < oo, then d(A) < i(n +1)n(n—-1) ?
Let Q, be the tiled D-order in M, (X) given by the following valued quiver
0 0 0 0

1= 2= 3= cie T p-1——7n
1 1 1

Then gl.dim§2, = 2 and d(:) = §(n + L)n(n - 1).

If Question 1 is true then one can show that 2, is a unique (up to isomorphism) basic
tiled D-order in M,(K) of finite global dimension with the largest depth.

REFERENCES

[1] 1. Agoston, V. Dlab and T. Wakamatsu, Neat algebras, Comm. in Algebra 19(2) (1991), 433-442.

{2) J. A. De La Pefia and A. Raggi-Cérdenas, On the global dimension of algebras over regular local rings,
Hlinois J. Math. 82 (3) (1988), 520-533.

{3) H. Fujita, Tiled orders of finite global dimension, Trans. Amer. Math. Soc. 322 (1990}, 320-341.
Erratum: Trans. Amer. Math. Soc. 327 (1991), 919-920.

(4] H. Fujita, A construction of tilting modules associated with a simple module, J. Algebra 145 (1992),
224-230.

[5] W.S. Jansen and C. J. Odenthal, A tiled order having large global dimension, J. Algebra 192 (1997),
572-591.

[6] V. A. Jategaonkar,Global dimension of trianguler orders over ¢ discrete valuation ring, Proc. Amer.
Math. Soc. 38 (1973), 8-14.

[7] V. A. Jategaonkar, Global dimensions of tiled orders over a discrete valuation ring, Trans. Amer.
Math. Soc. 198 (1974}, 313-330.

[8] E. Kirkman and J. Kuzmanovich, Global dimensions of a class of tiled orders, J. Algebra 127 (1989),
57-72.

[9] W. Rump, Discrete posets, cell complezes, and the global dimension of tiled orders, Comm. Algebra
24(1) (1996), 55-107.

(10] R. B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335-340.

[11] R. B. Tarsy, Global dimension of trigngular orders, Proc. Amer. Math. Soc. 28(2) (1971), 423-426.

112] A. Wiedemann and K. W. Roggenkamp, Path orders of global dimension two, J. Algebra 80 (1983},
113-133.

Institute of Mathematics
University of Tsukuba

Tsukuba, Ibaraki 303-8571 JAPAN
E-mail: fujita@math.tsukuba.ac.jp

-74 -



ALGEBRA HOMOMORPHISMS AND HOCHSCHILD COHOMOLOGY

H. NAGASE
(E# #

ABSTRACT. Let A and B be finite dimensional algebras and f : B — A an algebra
homomorphism preserving the identity. We consider a relationship among the algebra
homomorphism f, the canonical functor f* : mod A = mod B, the Hochschild cohomol-
ogy induced from f and the non-commutative differential module Q4.

1. FiE

Drozd ([5)) & ¥, REMIFE LOFRERITAEIT, tame & wild LTINS 7 5 R
FIFENDIERTRENTNS. INLDI FAOERRERII2ETEALNSDN, £
% tame THD &L, HED n T LT, n-RTEFRHMEXFRBED 1-/37 A —F —
THEENDLEEE W, RN wild THD LI, n KEEBRSMEEZ BT D5 4—
S —DWRTH n OFIE MM T 5720, FEILABHTRNWEEETS.

Crawley-Boevey {3, [2] (238U T, tame RE L OB RESTERAMFESRERT T EICH
FR{E 2B\ T, r-invariant THBZEERL, FOFENRYVIHS>T L&FHEBLE. 22T,
7 1% Auslander-Reiten translation DTr ([1) &8) TH Y, M X »° r-inveriant TH
B2, X 27X THDHEERE D r-invariant MENE TN D AR-quiver DN LN
TWBZ b, ZOFEIT AR-quiver DR T Ttame R EZ /T IT2 b THB. £,
ZOFRIT tame REEFHETIT DO TH A, #1EB, Twild R¥EIT, HBRTIZER
B 7-variant MBEZFD.] 2EX B LT, wild REOHMTITEA2d. 22T, W
BEX M rovariant THDER, X E7X THDHLER2ED. BHEL HRTIZERAD
r-variant MFEEZFOREE r-wild ERBEZ LIZFT DL, ZOTFHRE, EED wild REHN
r-wild THBZLERTILTHSD. —F, wild REOEELY, 80 wild R¥& B
% LT, wild hereditary X3 A &, REOBHR f: B> ABEELT, f LvEMNB
BIE f* : modA — mod B A% embedding & 72%. embedding PERIL2WTE L LN
%. LT, delaPena ([4)) OBEROFHREFE L LT, wild hereditary 83 r-wild
THHZEBHONTNBDT, f* 43 7-wildness #RFTIHBORFIZRAKNFND.
FOEED—, Hi5HE A®p A = A D kernel QpA BBbN 5. £ (8 2BV T,
QA BHEN A-A-FRMEED & &, f* 2 r-wildness ZRET B LNRERTNS. T
Db, QA DHEEICRENB LM, ZORETIE, QpA OFEHE, HTRBOE
7 smoothness & “relative” Hochschild cohomology DBES{EAR& N 5. smoothness &
“relative” Hochschild cohomology PERITENEN 4 FELSETEZI LN S.

2. HElH

IOBEEBLT, kF #REMRAKET S REEEXAE, -REZEIRL, BT o OR2vh
Y,k EHBRKT LT D. £/, RBEOMOE®RL, BUTE2REFETDILNLETS. mod A
THBKRTH AMBEOBZRY. BF F:mod4d - modB # embedding Th 3 L3,

The detailed version of this paper will be submitted for publication elsewhere.
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AREERT. I A K wild ThB L3, kiz,y)-A-TRME M BEELT, (1) M
it k(z,y) £, BRZ 7 0B@BMEE, (2) BF — Qay M : modkiz,y) —» mod A H3
embedding, D 2 DD EHEEZFH T EEEZE . wild RELEOFRATEEEHMBED 555
IZIREANRRNEEINTVWENR, FOBAO—D L LT, £BOFRAERK k-RE R (2%
L, embedding mod R — mod k{z,y) BIFETHZ L BFEITFHND.

ZOFMETIE tame REIZOVWTEHRT I LAV, wild RELOKBOLH, &
BEEATEL. RREA D tame THBH LT, FROBRE n 116 LT, FRAD k(z]-A-
RN May,... , Mn;, T, Ek[z}-MBELLT, 707 n DEEMBEL 2D LOMNEE
LT, E£ED n-RFTEBEH A-IDBED k[z]/(2— ©) Qupe) Mny (c €k, j€{1,...,is}) OF
THOLNBEEXZES. 2%V, tame REED n-RTEEEHMEEL, i, @D 1-3F7 A —
F—clZd>THEENS. HFREATARE TIZA2V 2, tame REO MBS LHIE LT, 1
EREBERABRETONS.

MEBR M:A®A = A (m(a®b) =ab) D kernel & NpA L&, JERMASMEEL
FELS., ZOEHEIT, TRRRBICBTIWOMEBOEEL X, B LOTHHH, KIZHAT
% QpA ORI, TRBICBS T 2WOMBEORKEMT (7 28) LEHULTHWBI L
b, ZOWETIE, QpA ZHFETRBOMBLELSZ LIZT 5. QA ORHMIIKRTEL
bnd. EED A-A-TRMBE M (T3 LT, Derg(4, M) TA 56 M ~® B-derivation
éﬁgwﬁé%&) Bb—g- :a)é: é, ﬁ]ﬁ HOIIIA_A(QBA,M) x> DEI'B(A, M) (f - fd) %"fi‘af
5.7 T,d:A>QpA(a—a®l—1®a). —OEBERT M B LTHAT, Qp4
DHBFITEEL TV 3.

3. TR LIFETHRMIME

T I TH, [8] &R %E AW T, Crawley-Boevey O-F18 & JEF[R B MBEDRAGRIZ O
THATS. FETHHA LKL OIZ, Crawley-Boevey O FEZR$ Z i3, £ED wild
KRB 7-wild THBZEEZTRTIETHD. ERIZ wid R B 2L 2T 3¢ wild
REDEH LY, embedding F : mod k{z,y) = mod B HFEETS. EFORE C o3t
L T, embedding mod C — mod k{z,y) RHFEET R I LBALN TV ED T, embedding
G:modC — mod B REET DI &iZ725. ¥, C & LT wild hereditary (X% & »
T 3. [4] £Y, wild hereditary (X 7-wild THHZ LBAONTNDIDT, WOBF G #
r-wildness ZRFETHNICEENFNS. BF G 13 exact D faithful THZ I & A
&, C-B-FfigE G(C) ix, C-MiEL L T, HHZEIMND generater {2722 TV 3. £»T,C
& Endc(G(C)) iIZEARMEIZ2>TW 5. EORFE G’ : modC — mod Ende(G(C)) &
B5<. 212, G(C) ® C-B-FRME L LT OWEN S, REDER [ : B — Endc(G(C))
REETS. COLE, G L [ HbEMNBEE [ : modEnd(G(C)) —» mod B D&
B f*G’ :modC — mod B i3 G = f*G’ ##&7-9. ZHARIEIX r-wildness #RET 3
ZEML, fr 2 r-wildness ZRFTIE, G bRFETDHZLIZRDE. LT, REDER
f:B— A LVEMABKEE f* : mod A — mod B 55, V", r-wildness ZRTFET D002
BHENRBDS. T T, KEODEREBD (8] 28R) .

B 3.1. FEORAEDOER f: B> A XML T, BF f :mod A — mod B A embed-
ding THHELTD. ZDLE, ETRMBIME QpA PHEH A-A-BRINETHNE, [
iX r-wildness #R1FT 5.

FOBEIZBWT, FTRBSMBOREMS LT LLLEBETIRRZWA, JETRBESM

BAREHII 20N ONTFEL, HEEICSDVWTEEBT I I LICEENRE-ND. £
T, ROBFTIIT OREME L IETREBOERD smoothness & DREFIZOWTEET 5.
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4. FETTATESYNEE L SMOOTHNESS

[3] 233V T, Cuntz & Quillen IZFHARIZIIT S smoothness NDEHE (7] B]) %k
AARICERL, TORY quasi-free LFFA TR TV 3. —F, [6] iZ35V T, Le Bruyn
i3 D.Quillen DAHIDOIAIF % & » T, quasi-free DT & % g-smooth LFEATWA, T
TIRBEAOBNIZLRWERBDN DD T, BERZE+IZsmooth LS L2 3. LLTFIZ,
BERD smooth DEEZE5XD. REDEMR f: B - A 1 smooth THH LI, FENE
FRRTT & IIBROLRVWRENDEBRBDLH s:C > D T(Kers)2=0 R340, LT, £
BOoRENDE®R g:BoC L h:A=-DIIH LT, hf =sg BV IEDLE, RENER
t:A— CAELT, g=tf MO h=st RRVIOLEEEH. %9, B-RENER
hé 2HsIZHLT, BRENDER t BFEL T, h=st BEYVILHEEZEZ TS,

TRRRITIHBV T, BHMBEL smoothness DHEDBRFEA W< ShALATHS ([7]
BR) . FIT, IOETE, TRERTOTAT T4 LI, FTREIMBEDOHRAEL
smoothness & DRFZTFRYT. ZOBRKETTHIZ, 3-0#HBEEZAETS. RO#HMEIT,
5y INBE & FEFTRE D MBED R AT D|EEMN S, [7] @ Theorem 28.4 DIAL R LF
#HTTFIND.

AE 4.1 REOF®R f: B> A BT, k> A 5% smooth THIUL, KARFMH :

(1) f: B— A %% smooth ;
(2) EED A-A-FIRMEE A (23 LT, Derg(4, M) — Dery(B, Af) 528 ;
) a: A5 UB®p A— U4 ((a®b®ad') =aba') HHREL.

ROHEIL, EOBED (3) 123517 5548 a D kernel & cokernel #E X7 LD THS.
iERRIT [3] 2B R.
i 4.2. REDE#H f:Bo A &, A-A-FAAMBENCERa: AQsUB®g A= A
(ale®b®a’) = aba’) IZX LT, KD ezact sequence %185.
0— TorP(A4,4) 2 AR WUB®sA D WA - QA —0

ROBEDOER L [3) 28R,

A 4.3 KE A 1THBVT, KHMFEE :
(1) k = A D% smooth ;
(2) A B} hereditary ;
(3) A DHER A-A-FRIIEE.
UEDIOOHELY, BHIZ, KOMENTEND.
il 4.4. REDER f: B> A IZHBWT, A DS hereditary THNIE, KHFEIH :
(1) f: B— A # smooth ;
(2) Tor?(A4,4) =0 »2 QpA BHFET A-A-FifRIIEE.

ZOGBESEAT, ROBETILHFTRMSIIEE & relative Hochschild cohomology B
RIZHOWTEET S,

5. JEV[IRELSIEE L RELATIVE HOCOSCHILD COHOMOLOGY

SOETITAREACHLT, A=A A% Ll E, A-A-FRIMBEL A-MBEE 272
L, A % QA LBES. BRI n & AEE M 12 LT, A D n#FEE M 3 Hochschild
cohomology H*(4. M) % Ext.(A, M) TEETS. 20L& RENPE®R f: B AL
REL£%
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cor = HY(A, M) = H™(B, M) = H™(f, M) = H™'(4, M) =
2HL oBETIE, HY (M) % n FB M R relative Hochschild cohomology & 0

ST EIZTS.
LA T T, relative Hochschild cohomology & #’Hﬁiﬁﬁﬂﬂﬁ@ﬂﬂﬁ?’&ﬁ.éék, ROGEE

*RAET5.
8 5.1. RKEOEHR f:B—> A L A-MBE M (22 LT, A D hereditary THD L &,
ROZLIINEET 5.
0 — Extl.(Qp4, M) = H'(f, M) = Hom(Tor?(4, 4), M) =
Ext?. (QpA, M) = H(f, M).

§EBA Be-MBENTER h: B - A°®p: B, (b— 10b) & A-MBEDOER A°®p. B = A®z A
2k Y, BH b : Extl.(A®p 4, M) = Exth(B,M) = H'(B,M) »®Eb»h 5. h (3H
7t h2 : Ext},,(QB M) - H'(f U) PEE, wmit%‘nﬁr'ré

H o b ||

H{(A M) — HY(B, M) —  HY(f,M) —— HA,M)=0
Ext3.(A, M) = H}(A, M) = 0 (X Ext%. (4, M) = Ext). (QA, M) L% 4.3 LD E»h
5. Z0BRR LY, Cokhy = Cokhy, %1853, —F, TIRERK,

0 » OB y B B—— B — 0

l l L+

0 y K » ARA — A®pA — 0
&0, koTHRER
Homg(A® A, M) —— Homgs(K,M) —— Exth.(4®pA,M) — 0

H L [

Homg(B® B, M} —— Homp.(QB,M) ——  Exth(B,M) —— 0

%135. £~ T, Cokh, = Cokhy KV L. /-, HE 42 &b, Ex£F
0 TorP(4,4) 2 AR UB®pA—=Ima—0

BEETIH, ZoEFT2F L adjointness Z{E > T, KOTELF
0 — Cok hy = Hom 4 (Tor2(A, A), M) = Extl. (Ima, M) = Ext\ (A ®5 QB ®p A, M)
2B BEE 852250 - Ima - Q4 = QA = 0 & QA HHEE A-IgE
THBZ & (HBHE 4.3) LY, Ext(Ime, M) = Ext%.(Qp4, M) XEX, ERWUB -
AQpNB®pA (b— 10b01) NHEMN S Ext,.(A050B®pA M) — ExtL. (0B, M) &
Ext3.(B. M) = H¥(f, M) BNEHTHD Z &7)‘6#‘%@7:2?']75‘ Lsh3.

LGB LHE44 LY, ROBENVENINS.

TR 5.2. REOE®R f: B AL LT, A hereditery O & &, KRHFIE :

(1) f: B— A H smooth ;
(2) Tor(4, 4) = 0 1> QgA HHKEY 4°—7Jﬂ§$
(3) fEED Ac-hugE M 1T LT, HY(f, M) =
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3B TBIALA & 512, Crawley-Boevey O FARIZBI LTI, A 5 hereditary TH5 &
E DI TTHREOMEBE QpAd BHEEH A MBEIIRD I EICRENDH-T-DOT, M 44 %
BT, ROFEBZDHDIENTES.

%53 REDCER f: B AiZx LT, AN hereditary D& &, WHFEMH :
(1) QpA HHEH AN ;
(2) QpA BHEBFRAMBETH Y, EBOBM Ac-MBE M (23 L, dimH!(f, M) =
dim Hom 4 (Tor2(4, A), M).

SEBR FEEMD A-MBE X (XL, X SRR A-MBETHR & &, X BFESHE A-M
BEOSEBORHE A-IBE M IZHLT, X Q4 M BNEFHE AMETHSB Z LXFHE
THAIAEEES.

: u]
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Cohomology Rings of the Generalized
Quaternion Group '

Takao Hayami
Katsunori Sanada

1 Introduction

Let Q; = (z,y|z* = 1,z* = y?,yzy = ') be the generalized quaternion group of
order 4t for any positive integer ¢ > 2. We set A = Z@Q,. It is well known that there exists
a A-free resolution (Y,d) of Z of period 4. Our aim is to determine cohomology rings of
generalized quaternion groups by means of the periodic resolution (Y,4) and a diagonal
approximation (Ay) on (Y, 8) (see [Ha] and [HaSa]).

In Section 2, we will give initial parts of chain transformations in both directions lifting
the identity map on Z between (Y,4) and the standard resolution for Q, (Propositions 1
and 2). These chain transformations will be used to give a diagonal approximation on the
periodic resolution.

In Section 3, we describe some main results of this note. In Section 3.1, we consider
the cohomology ring H*(Qy-,¢I") of the generalized quaternion group Q,- of order 2"+2
with coefficients in an order ,I". If we put e = (1 — z%")/2 € QQ5-, then e is a central
idempotent of QQ,-. We set { = ze, i = 2% ‘e, j = ye and K = Q(¢ + ¢™!). Then
QQ»-€ is the quaternion algebra over K. In the following we set R = Z[(+{™!], the ring of
integers of K, then I' := Ae(= ZQr¢) is an R-order of QQ.re. Let ,I" denote I regarded
as a Q,--module using a ring homomorphism ¥ : A = I'%;z = (® ((})°, y = i@ (571)°.
We determine the ring structure of the cohomology H*(Q2-, yI') := B, 50 H*(Q2-,I") of
Q2- for r > 2 (Theorem 1). The case of r = 1 is known in [Sa]. In Section 3.2, we give an
explicit description of the cohomology ring H*(Q;, Z) := @,5o H"(Q:,Z) for arbitrary
generalized quaternion groups Q; of order 4¢ for ¢t > 2 (Theorem 2). In fact, although
H*(Q4-,Z) is well known (see [T] for example), it seems that the precise description of
H*(Qy,Z) is not given in any literature. In Section 3.3, we determine the ring structure
of the Hochschild cohomology HH*(A) := @,,,., H"(4, A) using a ring isomorphism

HH*(A) = H'(Qu, ) = D H*(Qur 1)

n20

and calculating the cup product in H*(Q, ,A4) (Theorem 3). In the above, ,4 denotes A
regarded as a Q;-module by conjugation.

2 Resolutions of @, and chain transformations

Let @, denote the generalized quaternion group of order 4¢ for any positive integer
t>2 Q= {z,y|lz** = 1,2" = y?,yzy~! = z71). We set A = ZQ,. Then the following

1The detail version of this note has appeared in Comm. Algebra and SUT J. Math.
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periodic A-free resolution of Z of period 4 is well known (see [CaE, Chapter XII, Section
7], [T, Chapter 3, Periodicity]):

(¥,8): oA a8 28 28 0 %75,
dile,a)=alz-1)+ea(y-1),
&2(c1,¢2) = (1L + co(zy + 1), —ar(y + 1) + c2(z - 1)),
d3(c) = (c(z — 1), —c(zy - 1)),
d4(c) = cN,

where L denotes z'~! + 2'~2 + ... + 1 (€ A), A? denotes the direct sum A& A and N
denotes }_, .o, w (€ A). In the following, we set du+i = &; for any integer k > 0 and
1 < i < 4 since (Y, 6) is periodic of period 4.

Let (X, d) be the standard resolution of Q. In this section, we will give initial parts
of chain transformations v and u in both directions lifting the identity map on Z between
the resolutions (Y, 4) and (X, d). These chain transformations are used to give a diagonal
approximation (Ay), . := u, ® ug - Apg - Upsq 0n (Y, 6) in Section 3.

We introduce the notation * for basis elements in X; (¢ > 0) as follows:

oolo1] ¥ 2[] : = dolaror] (€ (X)),
oolo1) * o2los] . . . |oi] : = og[o102]03] . . . |oi] (€ (Xg)i-1)

for g¢,01,... ,0:; € Q.

Proposition 1. A chain transformation v, : Y, = X, (n > 0) lifting the identity map
on Z is given inductively as follows:

w(l) =[]

vae+1(1,0) = (2] * var(1),  var41(0,1) = [y] * var(1);
vak+2(1,0) = [L = 1] * v4x41(1,0) — [y] * vax41(0,1),
Vak4+2(0, 1) = [z] * v4£41(0, 1) + [zy] * v4x+1(1,0);
Var+3(1) = (2] * var42(1,0) ~ [zy] * var42(0,1);
Varsa(1) = [N] * var43(1) for k2>0.

Proof. It suffices to show that the equation d,v, = v,—16, holds for any n > 1 and this
is easily proved by induction on %. O

Next, for any integer ¢ > 0 and 0 < A, i < 2¢, we set

=1 =2 ... >
L‘={z +22 4o +1 (021) P, = Loy - L{zy+1),

0 (¢e=0),
1 (A-p2t)
_J1 G+pzo _Jo Gzp _
a""“{o (A+p<2t), "‘_{—1 A<w), ™7 0 (tsh-p<i)
-1 (A-p<-t).
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and furthermore we set

b (for ¢ =10)
9 - = = M
dg.u aru (for g=0,1), d""‘ {c,\,,. (for g =1).

Proposition 2. We can define a chain transformation u : X — Y whose initial part
up: Xp—Y, (0<n<3) is as follows:

uy: [~ L
uy 1 [zyP] = (L, p2');
u : (2|29 - pzii(—gq, L;) + B (1 - 2'y, Lay);
u3 : [2'[a7yP|2F 0] - &iiL; (eHy+1)
[yl |e* "] > ax P
[2'ylz'y|z*]) = —2* T Ly + bji P
[z'ylz'ylz*y] = (cjx — 1) P + 2*~ Lyzy — 277 Lj(zy + 1);

where 0 < 4,5,k <2, p=0,1 andqg=0,1.

Proof. It suffices to show that the equation d,u, = up—1d; holds for n = 1,2 and 3. In
fact, for any integer n > 4, we can define u, inductively. The proof is straightforward but
it is complicated. a

3 Cohomology rings of generalized quaternion groups

In this section, we will determine some cohomology rings of generalized quaternion
groups by means of the periodic resolution (Y, ) and a diagonal approximation (Ay) on
(v, 6).

3.1 Cohomology ring with coefficient in an order

Let Q,- denote the generalized quaternion group of order 27+2 for any positive integer
r Qo = (z,yjs¥" = 1,27 = 3%, yzy~! = z~!). In this subsection, we determine
the cohomology ring H*(Qqr, ¢I") of Q- with coefficient in an order 4I". We set ¢ =
(1 -2%)/2 € QQo and denote ze by ¢, a primitive 27*-th root of e. Then e is a central
idempotent of Q@ and QQy-e is the quaternion algebra over the field K = Q(¢ + ¢
with identity e, that is, QQe = K @ Ki ® Kj ® Kij where we set i = z? 'e and
J = ye. In the following, we set R = Z[{ + {™!], the ring of integers of K, and A = ZG,
then I' = Ae (= Z[(, j] = R® R( ® Rj ® R(j) is an R-order of QQz-e¢. Let I denote I'
regarded as a Q,--module usmg a ring homomorphism ¥ : A = I't;z = (@ ((71)°, y —
7 ® (j~1)°. Note that (¢ +¢~!)? divides 2 in R (see [HaSa, Lemma 1]). Thus it follows
that 2e/(¢ 4+ ¢~!) is in R and in the following we denote this expression by 7.

Applying the functor Hom,(—, vI") to the periodic resolution (Y, d) in Section 2, we
have the following complex which gives H*{Qqr, ("), where we identify Hom, (Yo, o)
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with I', Homy(Y3, I") with ' := I'® I and so on:

(Homy(Y, yI),6%): 0> ri, 1""’ I‘2 F —> r-.
F) =z -7 -1,
Fnm) =Un-+n @y+)n+ (- 1),
Fnm) =@ -n-(@y-1y,
&=

We note that zy = (y¢~! and yy = jvyj~!. So we have 2{ =, j = (%}, y( = ¢(~'j and
yj = j. In particular, Lj = 0 holds because (¥ = —

Proposition 3. The module structure of H*(Qy-,wI") is represented by the form of the
subquotient of the complez Homy(Y, ,I") as follows:

H™(Q2r,eT)
(R for n=0
R/ (¢ +¢Y) for-r n=0 mod4, n#0

R(Cj =~ n3,0)/(C+ 1) @ R(0,e = 1¢)/ (€ +¢1)
® R(j —n¢j,j —n¢i)/((+¢™?) for m=1 mod4
= q R(2™n¢,e)/(C+ (™) @ R(e,0)/(C+¢7)
® R(¢,0)/2n® R(j,5)/(C +¢7)
® R(0,(7)/(¢+¢7Y) for n=2 mod4
Rle-nQ)/(C+¢)Y@®Ri/(C+CNe—7)
® R(Cji—n5)/(C+¢™Y) for n=3 modd4.

~

In the above, M/s denotes the guotient module M /sM for a R-module M and an element
SER.

Next, we calculate the products of the generators A = ({j — 75,0), B = (0,e — n()
and C = (j — n¢j,j — n¢j) of H'(Qq,yI') using the diagonal approximation Ay =
up ® Uy * Dp g+ Vpyq On (Y,8), which is given by direct calculations. These are obtained as
the composition of the following homomorphisms on the cochain level:

a7'@a;’

r:@r* ——— Hom,(Y),yI") ® Homy(Y;,4T)
2%, Homa (Ya oI ® oT)
natural HomA (},2 - I..)
— % .2

where a; denotes the isomorphism Hom, (Y}, 4I") —+ I'? Then the following equations
hold in H?3(Qzr, yI):

A= (2r_l77(’ e), B'= (e,0), Cc*= (2,.-117(: e) + (e,0),
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AB=BA=(0,(j), AC=CA= 2r-lﬂ2(C,0), BC =CB=(j,j).

Note that the generators of H%(Q,-,,I") except ((,0) are generated by the products of
A, B and C, and the equation A% + B% + C? = 0 holds in H*(Q2r,yI"). In the following,
we put D = ((,0), which is a generator of H2(Q2-, "), and then we have AC = 275D,
Similarly, we will compute the cup products of A, B,C and D etc. Then the following
equations hold in H3(Qz-,yT):
AC=AC*=B*=ABC=BD=DB=0,
A’B=BC%*=e—-1(, 03 B%C = AD = DA = (e - 7%)j,
A= AB?>=CD = DC = (j — nj.

If r = 2, by the above, the generators of H3(Qq, ") are generated by the products of
A,B,C and D. If r > 2, the generators of H3(Qyr,yI") except j are generated by the

products of A,B,C and D. In the following, we put E = j, which is a generator of
H3(Qo, ¢I'), and then we have C?® = (e — 72)E. Then the following equations hold in

HYQqr, yT):
A‘(— A’B*=B*C?*=C%= ACD)=CE = EC = 2"*¢,
= (c+c—1) —4¢, AE=EA=BE=EB=0.
In the following, we put F = e which is the generator of H4(Qz,yI"), and then we have
At =2"V1F and D?® = (((+(~')*—4)F. Since Z is a Q,--direct summand of ,I" using the

embedding map Z — 4I" by 1 — e, we have the following monomorphism of the complete
cohomology rings:

B (Qr,Z) == P H(Qr,Z) + H* Q2,4 T) := P H(Q, o)
reZ reZ

Since F above which is an element of R/ (2"*! (¢ + (™!)) in H*(Q2r, ") is the image of
an element of order 2'+2 in H4(Q,,Z), invertible in H*(Q:-,Z), by the above map, it
follows that F is also an invertible element in #*(Q5r, 4 I"). Moreover, the equations DE =
= (0,0) hold in H%(Qsr, ") and the equation E? = (0,0) holds in H8(Q,-, ,I). By
summarizing Proposition 3 and the above equations we have the following theorem:

Theorem 1. If r =2, the cohomology ring H*(Q4, »I") is isomorphic to
R[A,B,C, D, F|/(V2A,V?2B,V2C,4V2D,8V2F, A* + B? + C?, AC ~ 4D,
A%C,AC% B3, ABC, BD, A* ~ 8F, D* + 2F),
and if r > 2 the cohomology ring H*(Qa-,¢I") is isomorphic to
R[A,B,C,D,E,FJ/((C+¢ 1A, ((+¢ B, (¢ +¢NC,

21D, (e — °)(C + ¢TE, 2+ (¢ + CTYF,
A?+ B%24.C? AC - 279D,
A*C,AC? B3 ABC,BD, A* - 27%F,
D2 + (4 - (C + 4_1)2) 'F! DE1 E2):

where R=Z[(+ ('), degA=degB=degC =1,degD =2, deg E =3 anddeg F = 4.
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3.2 Integral cohomology ring H*(Q,Z)

In this subsection, we determine the ring structure of the cohomology H*(Q;, Z) of the
generalized quaternion group @, by the similar method in Section 3.1. In fact, although
H*(Q2r,Z) is well known (see [T] for example), it seems that the precise description of
H*(Q,Z) is not given in any literature.

Theorem 2. A precise description of the cohomology ring H*(Qy,Z) for t > 2 is given
as follows:

H(Q:,Z)
Z[A,B,C]/(2A,2B,4iC, A*, B - 2tC,AB - 2tC) (t=0 mod 4)
Z[A, B,C]/(24, 2B, 41C, A, B2, AB ~ 2C) (t=2 mod4)
Z[X,Y]/(4X,4tY, X2 - tY) (t=1 mod4)
Z[X,Y]/(4X, 4tY, X2 + tY) (t=3 mod 4),

where deg A =deg B =deg X = 2 and degC =degY =4.

Proof. (i) If t is even, we calculate the products of the generators A = (1,0), B = (0,1)
of H%(Qy, Z). In fact, we have A2 = 0, B2 = —(t12+2¢) and AB(= BA) = 2t in H(Q,, Z).
(ii) If ¢ is odd, we have X% = ¢? in H%(Q,,Z) for the generator X = ({¢t — 1)/2,1) of
H2(th)' a

3.3 Hochschild cohomology ring HH*(A)

Let R be a commutative ring. We set A = RG for a finite group G. If G is an abelian
group, Holm [Hol] and Cibils and Solotar [CiSo] prove the following ring isomorphism
exists:

HH*(RG) ~ RG ®r H'(G, R).
If G is a non abelian group, it seems more difficult to investigate the ring structure of
HH*(RG). As for the additive structure of the Hochschild cohomology, it was well known
that HH"(RG) is isomorphic to the direct sum of the ordinary group cohomology of the
centralizers of representatives of the conjugacy classes of G (see [B, Theorem 2.11.2],
[SiW, Section 4]):
HH*(RG) ~ @D H'(G;, R).
j

However, Siegel and Witherspoon [SiW] define a new product on @; H*(Gj, R), making
the above additive isomorphism multiplicative. Besides, they calculate the Hochschild
cohomology rings of F3S53,F;A4,, FaDon using this new product. In the following, we
calculate the ring structure H H*(ZQ,) for arbitrary generalized quaternion group @, using
a ring isomorphism HH*(A) = H*(Q, ,A) and calculating the ordinary cup product in
H*(Q:, ,A) above by the method different from [SiW)].

In fact, although the module structure of H™(Q:, ,A) is easily obtained by its addi-
tive decomposition, we need the particular generators to determine the ring structure of
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H*(Q:, ,A) by the method similar to Sections 3.1 and 3.2. By calculating the products of
the generators using the diagonal approximation Ay, we have the following theorem (see

[Ha}):

Theorem 3. Let Q; be the generalized quaternion group of order 4t. We set A = ZQ,.

(i) Ift is even, the Hochschild cohomology ring H*(Q, ,A)(=~ HH*(A)) is commutative,
generated by the elements

AO, B(ll (Cl')os D(h EO € Ho(thpA),
(Aa)z ) (Aﬂ)za (Ba)2 [} (Bﬁ)g [} (Ci)2 ) DZ, EZ € Hz(Qh qu)a
Ay € HY(Qu o4),

fori=12,... t—1, where Ay is the identity element. The relations are given by
[Ha, Section 3.1].

(i) Ift is odd, the Hochschild cohomology ring H* (Qy, ,A)(~ HH"(A)) is commutative,
generated by the elements

AO, BO, (Ci)(]a D(la EO € Ho(Qh vA)r
A2a BZ, (Cl')2, DZ, E2 € Hz(thA),
Ay € HY Q1 pA)

fori=12...,t—1, where Ay is the identity element. The relations are given by
[Ha, Section 3.2].
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MIXED GROUPS IN ABELIAN GROUP THEORY
TAKASHI OKUYAMA

ABSTRACT. In this note, we introduce mixed groups in Abelian
Group Theory. First we give notation and basics. Next we recall [2,
Vol.2 p.186 Example 2]. Using this example, we show an entrance
of mixed groups in Abelian Group theory.

1. INTRODUCTION

In 1917, Levi constructed non-splitting abelian groups. After Baer
partially solved the splitting problem, numerous authors have studied
many variations of the splitting problem. Furthermore, the splitting
problem has been investigated for modules by various authors. Stratton
solved the splitting problem for mixed groups of torsion-free rank 1
in [10] and studied the splitting problem for torsion—free finite rank
modules over discrete valuation rings in [11]. Using the concept of
purifiable subgroups, we also characterized the abelian groups of finite
torsion-free rank that are splitting.

Let G be an abelian group and T the maximal torsion subgroup of
G. Then there exists a subgroup A that is maximal with respect to the
property of being disjoint from T. The subgroup A is called a T -kigh
subgroup of G. Suppose that the subgroup A is purifiable in G. Then
there exists a pure hull H of 4 in G such that G = H & T’ where T’
is a subgroup of T. Then the subgroup H has a property that H, is
bounded for every prime p and H is an ADE group. If H is torsion-
free, then the group G is splitting. So we think that this way is useful
to characterize splitting mixed groups.

On the other hand, the group G has a property that G/A is torsion.
So we can consider that the group G is an extension of the torsion-
free group A by the torsion group G/A. We use this way to try to
characterize mixed groups.

All groups considered are abelian mixed groups. The terminologies
and notations not expressly introduced here follow the usage of [2].
Throughout this note, Z denotes a set of integers, P a set of prime
integers, and p € P.

1991 Mathematics Subject Classification. 20K21, 20K27.

This is the final version.
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2. NOTATION AND Basics

2.1. Splitting. Let G be a group. If everv element of G is of finite
order, then G is a torsion group, while G is torsion—free if all its ele-
ments, except for 0, are of infinite order. Mixed groups contain both
nonzero elements of finite order and elements of infinite order.

Proposition 2.1. {2, Theorem 1.1} The set T of all elements of finite
order in a group G is a subgroup of G. Then T is a torsion group
and the quotient group G/T is torsion-free. Hence T is the mazimal
torsion subgroup of G.

Proof. Since0 € T, T isnot empty. lfa.b €T, ie.. ma=0andnb=0
for some m,n € Z, then mn(a—b) =0,andsoa—b € T. Hence T
is a subgroup of G. We show that G/T is torsion—free. Suppose that
¢+ T € G/T such that l(c+ T) € T forsome l € Z. Then Ic € T and
c€T. Hence c+T =T is the zero of G/T. By the previous argument,
it is easy to see that T is the maximal torsion subgroup of G. O

Definition 2.2. Let G be a group and T the mazimal torsion subgroup
of G. G 1is said to be splitting if T is a direct summand of G; i.e.
G =T®& F for some torsion-free subgroup F of G.

2.2. Socle. Let

Glpl = {g € G| pg =0}
Glp] is called a p-socle of G. This is an elementary group in the sense
that every element has a square-free order.

2.3. Pure subgroup.

Definition 2.3. A subgroup A of a group G is said to be neat in G if,
for everyp € P,

A0 pG = pA.
Moreover, A is said to be pure in G if, for everyn € Z,
ANnG =nA.

2.4. N-high Subgroups.

Definition 2.4. Let N be a subgroup of a group G. Then a subgroup
A of G is said to be N-high in G if A is mazimal with respect to the
property of being disjoint from N.

The existence of N-high subgroups are guaranteed by Zorn’s lemma.
Combining the results in [3] and (1], we obtain the following character-
ization of V-high subgroups of groups.
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Proposition 2.5. Let N be a subgroup of a group G. Then a subgroup
A of G is N-high in G if and only if

1. ANN =0,

2. A is neat in G,

3. G[p] = Al[p] & N[p| for every p € P, and

4. G/(A® N) is torsion.
Corollary 2.6. A torsion-free subgroup A of a group G is T-high in
G if and only if

1. A is neat in G and

2. G/A is torsion.
2.5. Almost—dense.

Definition 2.7. A subgroup A of G is said to be almost-dense in G
if, for every pure subgroup K of G containing A, the mazimal torsion
subgroup of G/Kis divisible.

The following is a characterization of almost-dense subgroups.

Proposition 2.8. The following properties are equivalent:
1. 4 is almost-dense in G;
2. For all integers n 2 0 and all primes p,
A+p"'G 2 p"Glp|.
2.6. Purifiable subgroups.
Definition 2.9. A is said to be purifiable in G if, among the pure sub-

groups of G containing A, there erists a minimeal one. Such a minimal
pure subgroup is called a pure hull of A.

Not all subgroups are purifiable in a given group.

Proposition 2.10. Let G be a group and A a subgroup of G. Suppose
that A is purifiable in G. Let H be a pure subgroup of G containing
A. Then H is a pure hull of A in G if and only if the following three
conditions are satisfied:

1. A is almost-dense in H;

2. H/A is torsion;

3. For every p € P, there erists a nonnegative integer m, such thet

p™H[p] C A

2.7. ADE groups.

Definition 2.11. Let A be a torsion—free group. A group X is said to
be an almost-dense extension group (ADE group) of A if A is almost-
dense and T(X)-high in X where T(X) is the mazimal torsion sub-
group of X. Such a subgroup A is called ¢ moho subgroup of X.
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3. AN ExaMPLE
We recall [2, Vol.2 p.186 Example 2|.
Example 3.1. Let p;,p2,....p;, ... be diffrent primes, and define

T= @21«?,) with O(b,') = Di.
Then T is the mazimal torsion subgroup of IIX,{b;). Consider ay =
(brye.. by ..) €TIZ, (b;). Fori# j, the equation p;z = b; is uniquely
solvable in (b;), thus II2,(b;) contains unique elements a;(i =1,2,...)
such that a; has 0 for its ith coordinate and satisfies

(3:2) pig; = (b, ..., bi<1,0, b1, ... ) = g — by,
Let
G=(T,e;|i21).
As for this group G, we have the following properties.
Property 3.3. T is the mazimal torsion subgroup of G.
Property 3.4. G is not splitting.

Proof. Suppose that G is splitting. Then G = T & F for some torsion-
free subgroup F of G. for every i 2 0, we can write

bi =t + fi
where t; € T and f; € F and

ap=to+ fo
where 2o € T and fy € F. By (3.2). for every i 2 1, we have

piti + pifi = pibi = a9 — bi = (to — b;) + fi.

Equating the T-coordinates. we have

piti = to — b
for all i 2 1. Then there exists p; € P such that (p;,o(to)) = 1. The
prime p; satisfies p;jt = to for some t € T. Then p;(t — ¢;) = b;. This
contradicts the choice of b;. Hence G is not splitting. O
Property 3.5. Let A = {ao). Then the following hold.

1. A isT-highinG.

2.Gisapurehullof AinG.
3. G is an ADE group with A as a moho subgroup.

Proof. (1) It is immediate that G/A is torsion and TN A = 0. Let
z € G such that p;z € A\ p;4. Then p;z = aaey = a(b; + p;a;) for
some integer a with (a,p;) = 1 and so ab; = pi(z — a;) € p;G. This
contradicts the choice of b;. Hence A is neat in G. By Corollary 2.6, A
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is T-high in G.
(2) By Property 3.3 and (3.2), A is almost-dense in G. It is immediate
that G/4 is torsion and 0 = p;G[p] C A. Hence, by Proposition 2.10,
G is a pure hull of A.
(3) By (1) and (2). A is T-high and almost-dense in G. By Defini-
tion 2.11, G is an ADE group with 4 as a moho subgroup.

O

4. A PROSPECT IN THE FUTURE
First we give a useful lemma.

Lemma 4.1. Let H be a pure subgroup of a group G containing some
T -high subgroup of G. If, for each prime p, U, is a subgroup of G such
that Gy, = H, @ Uy, then G = H® U where U = @,U,.

Proof. Let ng € H®U withg € Gand n € Z. Then we have mnge H
for some integer m. Since H is pure in G, there exists h € H such that
mng = mnh. Then g—heTCH®U andso H& U is pure in G.
Since He& U isessential in G, G=H & U. O

Theorem 4.2. Let G be a group and T the mazimal torsion subgroup
of G. Let A be a T-high subgroup of G. Suppose that A is purifiable
mnG. If H is a pure hull of A in G, then

G=HeT

where H is an ADE group with A as a moho subgroup and T' is a
subgroup of T.

Proof. Let H be a pure hull of A in G. By Proposition 2.10(3), for
every p € P, there exists a nonnegative integer m, such that p™* H C A.
Since A is torsion—free, we have p™ H C ANT = 0. Hence the maximal
p-subgroup H, of H is bounded. Note that H, is pure in G. By [2,
Theorem 27.3), H}, is a direct summand of the maximal p-subgroup G,
of G. Hence G, = H,® K, for some subgroup K, of G,. By Lemma 4.1,
G = H® K where K = $,K,,.

By Proposition 2.10(1), A is almost-dense in G. Hence H is an ADE
group with A as a moho subgroup. O

In Theorem 4.2, if the subgroup H is torsion-free, then G is splitting.
So the concept of purifiable subgroups is useful to characterize splitting
mixed groups.

Definition 4.3. Let G be a group and T the mazimal torsion subgroup
of G. Let L be ¢ mazimal independent system of G/T. The cardinality
of L is called the torsion—free rank of G.
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Let G be a group of torsion-free rank 1 all of whose maximal p-
subgroups are cyclic. Then, by [6, Theorem 3.2], all subgroups of G
are purifiable in G. Using Theorem 4.2, we characterized the group G
in (8].

Now we pose the following problems.

Problem 4.4. Which subgroup of a group G is purifiable in G ?

We already characterized purifiable torsion—free finite rank subgroups
in [7] and [9]. Using these results, we characterized splitting mixed
groups of finite torsion-free rank.

Problem 4.5. Study ADE groups.

We studied ADE groups G of torsion—free rank 1 all of whose maxi-
mal p-subgroups are cyclic in [3].

As for groups of torsion—free rank 1, a characterization theorem of
countable mixed groups of torsion—free rank 1 was established in |2,
Theorem 104.3].

However, in general, [2, Theorem 104.3] is not true for arbitrary
mixed groups of torsion-free rank 1, because Megibben presented a
counterexample in [4].
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TOTAL VALUATION RINGS OF ORE EXTENSIONS !

Guangming Xie, Shigeru Kobayashi
Hidetoshi Marubayashi, Nicolae Popescu

ABSTRACT. We considered extensions of a total valuation ring V' of a skew field
K to the Ore extension K(X;a,4) for an endomorphism ¢ of K and a ¢-derivation
8. It is shown that there exists an extension R of V with X is transcendental
over V/J(V) if and only if (¢,8) is compatible, where X = [X + J(R¥)]. In the
case V is invariant, it is established that there is an invariant extension R of V in
K(X;0,8) such that X is transcendental if and only if o(a)V = aV and é(a) € aV
foralla € K.

1. INTRODUCTION

Let o be an endomorphism of a skew field K. A (left) o-derivation of
K is any additive map é : K — K such that é(ab) = o(a)d(b)+é(a)b for
all a,b € K. Then there exists a ring S, containing K as a subring, such
that S is a free left K-module with a basis of the form 1, X, X?,..-,
and Xa = o(a)X + é(a) for all a € K (cf. [GW], Proposition 1.10).
The ring S is denoted K[ X; 5, 8] and is called a skew polynomial ring of
K. It is known that the ring K'[X;0,d] is a principal left ideal domain
(cf. [GW], Theorem 1.11), so that K[X;o,4] is a left Ore domain. We
denote K(X;0,8) as the quotient division ring of K[X;0,d]. This is
the corresponding Ore extension of K. We say that the pair (K,V) is
a valued skew field if K is a skew field with the subring V such that a €
K\V impliesa~! € V, i.e., V is a total valuation ring of K. We consider
the extensions of V in K(X;0,6), i.e., the total valuation ring R of
K(X;0,0) with RNK = V. Let R be an extension of V in K(X;0,5)
and J(V) the Jacobson radical of V and J(R) be the Jacobson radical
of R. Then since J(V) = J(R) N K, V/J(V) is a subring of R/J(R).
If 7y : V = V/J(V) is the canonical map, one put my(a) = & for
alla € V, and also ng : R = R/J(R). An element f in R/J(R) is
called (left) transcendental over V/J(V) if for any natural number n,
and any elements @,a;, -+ ,8; € V/J(V), g+ @&f +---+&f =0
implies @& = 0 for all i (i = 0, ---, n). In [BT], they considered
the conditions on o, 4 that o(V) C V, §(V) C V and (i) o(r) is in
J(V) if and only if r is in J(V) for r in V, (ii) 6(J(V')) is contained in

1The detailed version of this paper has been submitted for publication elswhere
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J(V), which is called compatible with J(V). By using Lemma 3.2 of
[BS], we can know the condition (i) is equivalent to the condition that
a(J(V)) € J(V). So in this paper, we use the compatibility, as follows,
(0,6) is called compatible with V if o(V) C V, o(J(V)) € J(V), and
8(V) €V, §(J(V)) € J(V) in order to characterize the existence of an
extension of V in which X is transcendental over V/J (V). In the case,
V is (right and left) chain ring, in {BT], they have shown that if (o, §)
is compatible with V, then J(V)[X;o,] is localizable and the ring of
quotients R = V[X 19,8)5(v)x:0) is @ chain ring. Since it is easy to
see that V' is a total valuation ring is equivalent to that V is a chain
ring, if V is a total valuation ring and (o, §) is compatible with V, then
RY = V[X; g, 5]J(V)[X;a‘5] is a total valuation ring with ROUNK =V
and X is transcendental over V/J(V) (Proposition 2.1).

We shall show that there exists a total valuation ring R of K(X; o,6)
which is an extension of V and X is transcendental over V/J(V) if and
only if (o, 8) is compatible with V (Theorem 2.2). We shall show that R
above is equal to R(Y). In the case V is invariant, it is shown that there
exists an invariant valuation ring R of K(X; ¢, §) which is an extension
of V and X is transcendental over V/J(V) if and only if §(a) € aV
and o(a)V =aV foranya € K.

2. CHARACTERIZATION OF R()

Let (K,V) be a valued skew field and ¢ an endmorphism of K, and
6 a o-derivation. Recall that (o, 6) is called compatible with V if
a(V) €V, a(J(V)) C J(V), and §(V) C V, &(J(V)) C J(V). I
V is compatible with V, then Theorem 1 of [BT] shows that the ring
of quotients R\ = V[X;0,68)5v)x;0.q exists and is a total valuation
ring. To show that R is an extension of V, let a € R N K and
assume that & is not contained in V. Then o~! is contained in J(V).
Since J(V)RM = J(RM), it follows that a~! € J(V) C J(V)RY =
J(RM). Hence a ¢ RY, which is a contradiction. This implies that
RM N K C V. Since the converse inclusion is clear, so we obtain that
RYN K =V. Since (0,6) is compatible, we can consider the division
ring V/J(V)(X;7,5), where 7 € End(V/J(V)) is defined by 5(a) =

o(a) and F-derivation § is defined by (@) = 8(a) for all 7 € V/J(V),
and natural surjective homomorphism ¢ : RV — V/J(V)(X;7,0) is
naturally defined by

o™ ) =7"f

Clearly kerp = J(R"), that is, RD/J(RY)) = V/J(V)(X;7,6). In
particular, X is transcendental over V/J(V). So we get the following.
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Proposition 2.1. If (0,6) is compatible with V. Then R®) is an ez-
tension of V and X is transcendental over V/J(V).

We shall give a characterization of R(} as follows.

Theorem 2.2. Let V be a total valuation ring of K. Then the follow-
ing conditions are eguivalent.

(1) There ezists a total valuation ring R of K(X;0,6) with RNK =V
and X € R/J(R) is transcendental over V/J(V).

(2) (0,6) is compatible with V.
If R satisfies the equivalent conditions, then R = RV,

Next we consider in the case that V is invariant, that is, dVd™ =V
forall0# d € K. If V is invariant, then we can define the value group
of Vas I'v = U(K)/U(V), where U(K) and U(V) denote the set of
units of K and V respectively. I'y become a totally ordered group by
diU(V) £ doU(V) if and only if d,V D d,V for any d,,d» € U(K).
The mapping v : U{K) — I'v defined by d — dU(V), where d € K,
satisfies the following conditions;

(2.1) For any @,b € K,v(ab) = v(a) + v(b),
where we use an additive notations for I'y.
(2.2) v(a + b) > min {v(a),v(d)} fa+b#0.

v is called a valuation on K.

Theorem 2.3. Let V be a total valuation ring. Then the following
conditions are equivalent.

(1) There ezists an invariant valuation ring R of K(X;0,6) with RN
K =V and X € R/J(R) is transcendental over V/J(V).

(2) V is an invariant valuation ring, and 6{a) € aV and o(a)V = aV
forallain K.

(3) V is an invariant valuation ring with valuation v, end there is a
valuation w on K(X;0,6) such that w(f) = min{v(a;)}, where f =
ag+ a1 X +---+a, X" € K|X;0,6]

In the following examples, we shall give examples of valuation rings
V of a field K such that (o,6) is compatible with V. But V' ’s do
not satisfy the conditions (2) in Theorem 2.3 so that R is a total
valuation ring of K(X;o,4) but not invariant.
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Example 2.4. Let F be a field and K = F\(t) be the rational function
field over F with the endmorphism o defined by o(e) = aforalla € F
and o(t) = t2. We define o-derivation 8§ by 6(a) = () — « for all
a € K. Let v be the t-adic valuation of K and V be the valuation ring
of v, then for any a € V, v(o(a)) = 2v(a) and v(é(a)) > v(e), hence
(0,6) is compatible with V' and §(a) € aV for all « € V. On the other
hand, v(o(t)) = v(t?) = 2 > 1 = v(t). This implies that o(¢)V # tV.
Example 2.5. Let F be a field and G be the abelian group 3.\ ©Z;,
where Z; = Z, ordered lexicographically, and let K = F(X; | i € N) be
the field of rational functions over F in indeterminates X;. We define
a valuation on K with value group G as follows,

v(e) = 0(a€F)

‘U(X‘) = gi=(0,0,"',i,"‘)€G
v(f) = min{mg; +---+mng;,},
where f = Y @i, X7 X"
v(g™'f) = -v(g) +u(f).
We define ¢ € End(K) by o(a) = a for all a € F and o(X;) = X;y
and a o-derivation § by §(a) = o(a) ~a for all a € K. Let f =
Zaix---izxill . .X'f"“l and g = Ebjl"'jkx;ll -"X;:" and let a = g-lf €
K. Suppose that v(f) = mg;, + -+ - + meg;, and v(g) = mg;, +--- +
ng;,. Lhen
v(a) =v(f) = v(g) = (migs, + -+ + Mugi,) = (mgj, + -+~ + M)
Hence '
v(o(a)) = (migi+1 + -+ + MuGip1) — (Gjpe1 + -+ + NkGjs1)-
So it is clear that v(a) > 0 if and only if v(o(a)) 2 0 and v(a) > 0 if
and only if v(c(a)) > 0. Let V be the valuation ring of v. Then we
have that ¢(V) C V and a(J(V)) € J(V). Since é§(a) = o(a) — a, we
also have that (V) C V and §(J(V)) C J(V). On the other hand,
since v(o(X1)) = v(X2) = g2 < g1 = v(X)), it follows that X,V C
XoV = v(o(X,))V. Further since §( X)) = o(X)) - X1 = X, — X},
v(6(X1)) = v(Xz — X1) = min{v(X)), v(X2)} = g2 < g1 = v(X1).

This shows that o(X;)V # X,V and §(X;) € X,V.
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Unitary Strongly Prime Rings and Ideals

Miguel Ferrero*

Abstract

A unitary strongly prime ring is defined as a prime ring whose central closure is
simple with identity element. The class of unitary strongly prime rings is a special
class of rings and the corresponding radical is called the unitary strongly prime
radical. In this paper we give a survey including several recent results on unitary
strongly prime rings and applications to the study of R-disjoint maximal ideals of
polynomial rings over R in a finite number of indeterminates. Also, some open
questions concerning the Brown-McCoy radical are posed.

Introduction

A left module M over the ring R is called strongly prime if for any non-zero z,y € M
there exists a finite set of elements {ry,...,7s} C R such that Anng{nz,...,raz} C
Anng{y}, where n = n(z,y) and Anng(S) denotes the annihilator of S in R. This
definition was first given by J. Beachy in 1975 [1].

Taking M = R in the above definition, the notion of left strongly prime rings is
obtained. Left strongly prime rings were first studied by D. Handelman and J. Lawrence
[10]. Later on several authors studied left (right) strongly prime rings and ideals and the
left (right) strongly prime radical (see, for example [3, 9, 17, 18, 7]). In particular, in the
last two quoted papers examples of rings which are strongly prime only on one side were
given. Thus this notion of strongly prime rings is not symmetric.

Symmetric strongly prime rings are defined in ([23], Chap. 35). The multiplication
ring M(R) of R is defined as the subring of Endz R, acting from the left on R, generated
as a ring by all the left and right multiplications l, and r, where a,b € R¥, and l,z = az,
7T = zb, for z € R, where R¥ denotes the ring obtained from R by adjoining an identity.
So each A € M(R) is of the form A = 3, l,, 7y, , where a, b € R¥, and Az = T axzby,
z € R. In this way R is a left module over M(R). Then a (symmetric) strongly prime ring
is defined as a ring which is strongly prime when is considered as a module over M(R).

For rings with identity element, (symmetric) strongly prime rings and ideals were first
studied by A. Kaucikas and R. Wisbauer [15]. The notion seems to be not so useful for
rings without identity element. Then in (8] we adapted the definition to rings without
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This paper is a survey including recent results on the subject.

*Partially supported by Conselho Nacional de Desenvolvimento Cientifico ¢ Tecnolégico (CNPq.,
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identity element and define the notion of unitary strongly prime rings. A unitary strongly
prime ring is defined as a prime ring whose central closure is simple with identity. If R
has an identity our definition is equivalent to the one used in [13].

The purpose of this paper is to survey results on unitary strongly prime rings and
ideals which appear in the papers mentioned above. We also present some new results
that we learned from A. Kauéikas in a meeting that took place at Banach International
Center of Mathematics (Warsaw, June of 2002).

Throughout this paper rings are associative but do not necessarily have an identity
element. For a ring R, Z(R) denotes the center of R.

1 Prerequisites

Let R be a semiprime ring. The self-injective hull of R considered as (R, R)-bimodule,
endowed with a canonical ring structure, is called the central closure of R (see [23], Sect.
32). Equivalently, the central closure of R may be considered as the subring of the
Martindale right (left) ring of quotients @ = @,(R) (or Q:(R)) of R generated by R and
the center C(R) of @, which is called the eztended centroid of R.

Throughout this paper, for a prime ring R we denote by C(R) (or just C) the extended
centroid of R and by RC the central closure of R. As a basic property we recall that for
any ideal I of R we have C(R) = C(I) ([2], Corollary 2.1.12 and Proposition 2.2.2).

Assume that ¢ : R — S is 2 monomorphism of rings. Then S becomes a canonical
R-bimodule. In this paper we say that ¢ is a centred monomorphism if there exists a
surjective ring homomorphism & : R<X>— S such that & |p= ¢, where R<X> denotes
a free ring over R in X, a set of indeterminates. When this is the case we also say that
S is a centred eztension of R

If R has an identity element, then the definition agrees with the usual definition: we
may consider ®((X)) C S as a set of R-centralizing generators, where (X) denotes the
monoid generated by the set X (cf. [6], [15]).

For basic notions and terminology on radicals we refer the reader to [4] and [21].

Let A be a class of rings such that every non-zero ideal of a ring in A can be ho-
momorphically mapped onto some non-zero ring of .A. Then A determines a so called
upper radical property, which we denote by A again. Thus the rings in A are all semi-
simple rings with respect to this upper radical, and A is the largest radical for which this
happens.

Recall that a class of prime rings A is said to be a special class if for any non-zero
ideal I of a ring R, I belongs to A if and only if R is in A.

Any special class of rings A determines an upper radical. This radical contains the
prime radical and is hereditary, i.e., for any ring R and ideal I of R, the A-radical of J
is equal to the intersection A{R) N I, where A(R) denotes the .A-radical of R. Moreover,
A(R) is equal to the intersection of all ideals P of R such that R/P € A ([4], Ch. 7).

Assume that R is prime. We will consider the ring obtained from R by adjoining
an identity, defined as usual in the following way ([11], 2.17, Ex. 5): Consider R as an
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algebra over the ring of integers Z and put T = R & Z with the operations:
(a,n) + (b,m) = (a + b,n +m) and (a,n)(b,m) = (ab + ma + nb,nm),

for (a,n), (b,m) € T. The natural extension of R to a ring with identity R* is defined
as the ring T/Anng(R), where Anny(R) = {t € T|Rt = 0} is an ideal of T. Since R
is prime, Anny(R) N R = 0 and hence we may consider R C R¥. It follows that R¥ is
prime with unit and R is an essential ideal of R*.

As we said in the introduction, the multiplication ring M(R) of R is defined as the
subring of Endz R, acting from the left on R, generated as a ring by all the left and right
multiplications {, and r,, where a,b € R¥, and l,z = az, 7 = zb, for z € R. So each
A € M(R) is of the form A = T, l,, 7s,, where a;, by € R¥, and Az = T, arzhs, z € R.
Thus R is a left M(R)-module and, in particular, sending A € M(R) to A1 = ¥, axb; we
have a projection from M (R) to R which is a left A/ (R)-homomorphism, where 1 denotes
the identity of R*.

2 Unitary Strongly Prime Rings and Ideals

The definition of strongly prime rings given in ([23], Chap. 35) is not the same as the
one we want to use here. In fact, in this book, a module M over a ring R is said to be
strongly prime if it is subgenerated by each of its non-zero submodules. This definition
agrees with the definition given by J. Beachy in [1]. Then a ring R is said to be (symmetric)
strongly prime if R is a left strongly prime module over the multiplication ring M(R). As
a consequence, a ring R is strongly prime if it is prime and the central closure RC is a
simple ring. Thus if R has not an identity element, then R can be a strongly prime ring
even if RC has not an identity element (e. g., a simple ring without identity element has
these properties).

The definition used in [15] for rings with identity element is just the same as in [23]. An
element a € R is said to be a symmetric zero divisor if for any finite subset {a;,...,an} €
(a), Annpqry{ar, ....,an} € Annary{1}. where (a) denotes the ideal generated by a ([13],
Section 2). We denote by zd(R) the set of symmetric zero divisors of R.

The following result was proved in ([15], Theorem 2.1).

2.1 Theorem. Let R be a ring with identity element. The following conditions are
equivalent:
(i) R is o strongly prime ring;
(i) zd(R) = 0;
(#ii) R is prime and the central closure RC of R is a simple ring;
(iv) for any non-zero a,b € R, there exist Ay,..., A\, € M(R) such that
Annpmy{Ma, ..., Ana} C Annpry{b};
(v) for any non-zero a € R, there exist a,,...,a, € (a) such that

Y ziaxy: =0, foralll < k < n, implies Y ziy; = 0;
: :

(vi) there ezists a centred monomorphism ¢ : R — K, where K is a simple ring;

-103 -



(vii) there ezists a centred monomorphism ¢ : R — S, where the ring S has the
following property: for each non-zero ideal I of R, its extension SIS is equal to S.

For rings without identity we have to modify slightly the definition in order to have a
more useful notion. The following was given in ([8], Section 2).

2.2 Definition. A prime ring R is said to be unitary strongly prime (u-strongly prime,
for short) if RC is a simple ring with identity element.

The class of unitary strongly prime rings is a nice class of rings. In fact, denote by S
the class of all u-strongly prime rings and by &' the class of all strongly prime rings. In
([8]. Section 2) we proved that S is a special class of rings and the class S’ is not special.
Moreover we have the following

2.3 Proposition. The class S is the largest special class of rings A which is contained
in &' and satisfies the property: if R € A, then RC € A.

A finite subset A = {a,,...,a,} € R is said to be an insulator, if
AnnM(R){al, .o .,a,,} _(; AnnM(R){IR#},

ie.,if \ay = ... = Aa, = 0, implies that A1 = 0, for A € M{R). By Proposition 2.6 of [15],
a finite subset A = {a,,...,a,} of a prime ring R is an insulator if and only if 1 € RC,
where C = C(R#) = C(R), i.e., there exist ¢;,..., ¢, € C such that ajc; +...anc, = 1.

The connection between Theorem 2.1 of [15] and our definition of u-strongly prime
rings is given by the following

2.4 Theorem. ([8],2.4) For any ring R the following conditions are equivalent:

(f) R is u-strongly prime;

(%) R is prime and R¥ is strongly prime;

(1i2) there ezists e centred monomorphism ¢ : R — S, where S is a simple ring with
identity;

(iv) there ezists a centred monomorphism ¢ : R — S, where S is a ring with identity
with the property: for each non-zero ideal I of R, its extension SIS is equal to S;

(v) R is prime and any non-zero ideal of R contains an insulator.

An ideal P of a ring R is said to be u-strongly prime if the factor ring R/P is a u-
strongly prime ring [15]. U-strongly prime ideals have a nice behaviour concerning centred
extensions. In fact, we have the following

2.5 Lemma. For a centred monomorphism ¢ : R — S of rings we have:
(?) If P is a u-strongly prime ideal of S, then ¢~ (P) is a u-strongly prime ideal of R.
(22) If I is a u-strongly prime ideal of R and P is an idea! of S which is mazimal with
respect to the condition ¢~'(P) = I, then P is a u-strongly prime ideal of S.

-104-



As a consequence of the above, if S is a u-strongly prime ring and a centred extension
of R, then R is also u-strongly prime.

A strongly semiprime ring R can be defined as a semiprime ring R such that any
essential ideal of R contains an insulator ([15], Sect. 2). There are other interesting
results on strongly prime rings and strongly semiprime rings which are proved in ([15],
Sect. 2). For example:

(1) A ring R is strongly prime if and only if its multiplication ring M(R) is strongly
prime. In this case their extended centroids are canonically isomorphic, and the central
closure of M(R) is isomorphic to RC ®¢ (RC)°.

(2) If R is a strongly prime ring and S is Morita equivalent to R, then S is strongly
prime and the extended centroids of R and S are isomorphic.

(3) If R is strongly semiprime, then the canonical map RC ®g RC — RC is an
isomorphism and RC is flat as a left and right R-module.

(4) Let R be a strongly semiprime ring and let F be the set of all right ideals of
R containing an insulator. Then F is a symmetric Gabrie! filter and the corresponding
localization is perfect. Also, the central closure RC is canonically isomorphic to que
quotient ring of R with respect to F.

3 The Unitary Strongly Prime Radical

For the rest of the paper S denotes the class of all u-strongly prime rings as well as
the upper radical determined by the class S [4]. By Proposition 2.3, the radical S is a
special radical and for every ring R, S(R) is equal to the intersection of all ideals P of
R such that R/P € S. This radical is called the unitary strongly prime radical of R and
was introduced in [15] for rings with identity element and in [8] for any ring.

Recall that the Brown-McCoy radical U(R) of R is defined as the intersection of all
ideals M of R such that R/M is a simple ring with identity [4]. Since every simple
ring with identity is in S, the u-strongly prime radical is contained in the Brown-McCoy
radical.

Also, the Levitzki radical L(R) of R is the largest locally nilpotent ideal of R. By
([15], Theorem 3.3) the unitary strongly prime radical contains L(R).

A ring R is said to have a large center if any non-zero ideal of R has non-zero inter-
section with Z(R). Let P be the class of all non-zero prime rings with large center. The
class P is also a special class of rings [20]. Let R be a ring in P. Then R is prime and
any non-zero ideal I of R contains a central element c. Thus {c} is an insulator in I and
by Proposition 2.4 R is in S. It follows that P C S and, in particular, for any ring T,
S(T) € Z(T), where T is the upper radical determined by the class P.

In [16] Krempa proved that the Brown-McCoy radical of a polynomial ring R[z] in
one indeterminate z is equal to (U(R|z]) N R)[z]. Similar result also holds for any set
X of either commuting or non-commuting indeterminates: U(R[X]) = (U(R[X]) N R){X]
(f12], 1.6 and [20], Corollary 13).
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The ideal U(R[x]) N R can be completely described. In fact, by Corollary 4 of [20]
U(R[z]) = Z(R)[z]. But it is still not known what is exactly U(R[X]), when X is any set
of indeterminates. In Section 5 we will give some information concerning this question.

We can give a precise description of the u-strongly prime radical of a polynomial and
a free ring ([8], 3.3):

3.1 Theorem. Let R be a ring and X any set of either commuting or non-commuting
indeterminates. Then S(R[X]) = S(R)[X].

4 Maximal Ideals of Polynomial Rings

For any ring R and cardinal number a we denote by R[X,] the polynomial ring over
R in a set X, of a commuting indeterminates.

Given a ring R, the pseudo-radical ps(R) of R is defined as the intersection of all non-
zero prime ideals of R. It was proved in ([5], Corollary 2.2) that if R is a ring with identity
and there exists a maximal ideal of R[z] which is R-disjoint, then ps(R) is non-zero. More
generally, for rings with identity it was proved in Corollary 2 of [20] that R[z] contains a
maximal ideal which is R-disjoint if and only if R € P and ps(R) is non-zero, where P is
the class of prime rings with large center, as in Section 3. We extended this result in [8],
as we will see in this section.

Fist, Corollary 2.2 of [5] has been extended to polynomial rings in several commuting
indeterminates and without identity. We have the following

4.1 Proposition. (|8],4.3) Assume that n > 1 is a natural number and there ezists a
mazimal ideal M of R[X,] which is R-disjoint. Then ps(R) # 0.

Note that if there exists an ideal M of R[X,] such that R[X,]/M is a simple ring with
identity and M N R = 0, then R is u-strongly prime and ps(R) # 0 (Propositions 2.4
and 4.1). This type of u-strongly prime rings are very important in the study of maximal
ideals and the Brown-McCoy radical of polynomial rings.

The subclass of S consisting of all u-strongly prime rings R with ps(R) # 0 will be
denoted by S) and we put S; = S\ S;. If R is a prime ring and I is a non-zero ideal of
R, then it is easy to see that ps(R) # 0 if and only if ps(I) # 0. Using this fact it can be
proved that both classes S; and S, are special classes of rings. However, while the class
&) is relevant in the computation of the u-strongly prime radical and the Brown-McCoy
radical of polynomial rings, the class S, can be ignored. In fact, we have the following

4.2 Proposition. ([8],4.7) Any ring in S, is a sub-direct product of rings from 8. In
particular, the u-strongly prime radical of any ring R is equal to the intersection of all
ideals P of R with R/P € &;.

The classification of u-strongly prime rings induces a partition of P into subclasses P,
and P; in an obvious way, i.e., R€ P, if and only if R € PN S,.

The following result is an extension of Corollary 2 of [20]. By factoring out the ideal
P, it gives a complete description of ideals P of R such that there exists an ideal Af of
R|[z] with R[z]/M a simple ring with an identity and M N R = P.
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4.3 Theorem. ([8],4.8) For any ring R, the following conditions are equivalent:
() There ezists an R-disjoint ideal M of R(z] such that R[z]/M is simple with identity.
(ii) R P,.
(iii) R is prime and ps(R) N Z(R) # 0.
(iv) R € 8 and there ezists c € C such that RC = R|c].

As a consequence of the above theorem we obtain the result corresponding to Proposi-
tion 4.2 for the upper radical defined by the class P: any ring in P; is a sub-direct product
of rings from P,. In particular, for any ring R the ideal Z(R) is equal to the intersection
of all the ideals P of R with R/P € P,.

For more than one indeterminate we obtained the following extension of the above.
The result gives a characterization for rings in ;.

4.4 Theorem. ([8],4.12) For any ring R, the following conditions are eguivalent:
(i) There ezistn > 1 and an R-disjoint ideal M of R[X,] such that R[X,]/M is simple
with identity.
(1) R€ S,.
(iii) R is prime and ps(R) contains an insulator.
(iv) R € 8 and for somem > 1 there ezistcy,...,cn € C such that RC = R[ey, . .., Cml].

As a particular case of Theorem 4.4 we have that if R is simple without identity, then
R[X,] is a Brown-McCoy radical ring, for any n > 1. This gives an extension of a result
which was already known for one indeterminate ([20], Corollary 3).

4.5 Remark. The main problem of Theorem 4.4 is that we cannot assure that the
numbers n and m which appear in the statement are always equal and compare this with
the number of elements of an insulator contained in ps{R). From the proof of the theorem
we can see that if ps(R) contains an insulator subset with m elements, then there exists
an R-disjoint ideal M of R[X,] such that R[X,]/M is simple with identity and RC can
be obtained by adjoining n elements of C to R, for some n < m, but we do not know
whether the converse also holds. This is an interesting question which is related to some
open problems we will see in the next section.

5 Brown-McCoy radical of polynomial rings

As we said in Section 3, for any cardinal o there exists an ideal Z, = Z,(R) of R
such that the Brown-McCoy radical U(R[X,]) is equal to Z,[X,]. If we consider a single
indeterminate z, then the ideal Z; coincides with the ideal Z(R) defined in [20] and already
mentioned before.

For 8 > a we have Ty C I, since every ideal M of R[X,] such that R[X,]/M is a
simple ring with identity can easily be extended to an ideal M’ of R[Xj] such that the
factor ring R[X;3]/M' is also a simple ring with identity. Also, since the Brown-McCoy
radical of any ring contains the u-strongly prime radical, it follows from Theorem 3.1 that
S(R) C I,, for any cardinal a.
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Thus for any ring R and cardinal number o we have
h2L2.. .21 25(R),

We cannot give an answer to the following
Question 1. Is there a ring R for which the above sequence is not constant?

The following positive result was proved in ([8], 5.1 and 5.4). It gives an extension of
a result which is well-known for commutative rings.

5.1 Theorem. Assume that R is e ring and X is a set of either commuting or non-
commuting indeterminates. Then we have U(R[X]) = S(R[X])(= S(R)[X]), provided
that R is a PI ring or X is an infinite set.

From the above theorem it follows that the sequence of Question 1 is constant when
R is a PI ring and for any infinite cardinal a we have I, = S(R).

Any prime PI ring has large center and is always u-strongly prime. The question of
whether a u-strongly prime ring has always large center was raised by K. Beidar (private
communication). He conjectured that this not true at least for u-strongly prime rings
with zero pseudo radical. But the question seems to be open until now.

A positive answer to the question on whether a u-strongly prime ring with non-zero
pseudo radical has always large center would imply that the theorem above will be true
for any ring, and our Question 1 will have a negative answer. Moreover, in this case we
will have Z,,(R) = S(R), for any ring R and n > 1.

Actually, to prove that the last relation holds it would be enough to give a positive
answer to the following

Question 2. Is it true that if R € S), then ps(R) contains a non-zero central element?

A precise description of the Brown-McCoy radical of R[X,] will be obtained if we
could compare the numbers appearing in Theorem 4.4. In fact, if we could show that
there exist n > 1 and an ideal M of R|X,] which is R-disjoint and such that R[X,]/M is
simple with identity if and only if R is prime and ps(R) has an insulator with n elements,
then we would obtain that the Brown-McCoy radical of R[X,] will be equal to I,[X,],
where I, is equal to the intersection of all prime ideals P of R such that ps(R/P) contains
an insulators of cardinality n.

If R is a nil ring, then the Brown-McCoy radical of R[z] is a Brown-McCoy radical
ring ([20], Corollary 3, (ii)). It is not known whether a polynomial ring in two or more
indeterminates over a nil ring R must be Brown-McCoy radical ([20], Question 1, (a)).
On the other hand, it is also an open problem whether the upper nil radical of a ring is
contained in the strongly prime radical ([15], Problem). As it has been proved in ([8],
5.5) these two questions are related:

5.2 Proposition. The following conditions are egquivalent:
(?) For any ring R, the upper nil radical is contained in the u-strongly prime radical
of R.
(1) If R is a nil ring, then a polynomial ring over R in any finite number of commuting
indeterminates is a Brown-McCoy radical ring.
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Thus the following is also an open problem:

Question 3. Are the eguivalent conditions of Proposition 5.2 true?

6 Some additional results

In the rest of the paper we assume that R has an identity element. Note that in this
case u-strongly prime rings (ideals) are just strongly prime rings (ideals). The results that
we will present in the following were shown to the author by A. Kauéikas. Some of them
are contained in papers by him {[13], [14]) and others are not published yet.

Assume that ¢ : R — S is a centred homomophism. Following [13] we say that ¢ is an
integral homomorphism if for any {s;,...,s,} C S there exists a subring A C S which is
generated as an R-module by a finite set of R-centralizing elements and {s,,...,s,} C A.
In this case, when R is a subring of S and ¢ is the inclusion, we say that S is an integral
extension of R.

In [13], Kaugikas proved that if R C S is a centred integral extension of R, then for
any prime ideal p of R there exists a prime ideal P of S lying over p, i.e, with PN R = p.
It follows, in particular, that the same result holds for strongly prime ideals. This result
was somehow extended later on in another paper by the same author.

First, Theorem 2.2 of [14] shows that for a ring R, an ideal of R which is maximal
among ideals which do not contain an insulator is strongly prime. This result implies that
if R C S is a centred extension and p is an ideal of R which is maximal among ideals
which do not contain an insulator, then p* N R = p, where p® = Sp$S is the extension of p
to S.

Using this it is possible to show the following

6.1 Theorem. Assume that ¢; : R = S; are centred homomorphism. Then the tensor
product of S| ®g ... ®r Sp is non-zero if and only if there exist ideals ] <R and I; < S,
i=1,...,n, with ;7(I;) = I, for all j.

As a corollary it follows that the tensor product of centred monomorphisms is non-zero.

Finally, we include some results that Kauéikas explained to me in a recent meeting
and which are not published yet.

6.2 Definition. The ring R is said to be a geometric Jacobson ring if for any n end
mazimal ideal M of R[X,], M N R is a mazimal ideal of R.

A Brown-McCoy ring is defined as a ring R such that any prime ideal of R is an
intersection of maximal ideals. It is well-known that R is a Brown-McCoy ring if and only
if for any maximal ideal M of R[z], MNR is a maximal ideal of R. If R is a Brown-McCoy
ring, then R|[z] is also a Brown-McCoy ring ([22]). It follows that if R is a Brown-McCoy
ring, then R is a geometric Jacobson ring.

The following result was proved by Kauéikas. We can give a short proof based on the
results in [8].
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6.3 Theorem. A ring R is a geometric Jacobson ring if and only if any strongly prime
ideal of R is an intersection of mazimal ideals.

In fact, assume that R is a geometric Jacobson ring and p is a strongly prime ideal of
R. Then we have two possibilities. If the pseudo radical of R/p is non-zero, then there
exists a maximal ideal M of R[X,), for some n, such that M N R = p, by Theorem 4.4.
Hence p is a maximal ideal of R. In the second case, p is equal to the intersection of all
prime ideals p; such that the pseudo radical of R/p; is non-zero, by Proposition 4.2. Thus
p is an intersection of maximal ideals.

Conversely, if any strongly prime ideal is an intersection of maximal ideals, then for a
maximal ideal M of R|X,] the ideal p= M N R of R is strongly prime and ps(R/p) # 0.
Since p must be an intersection of maximal ideals, then p itself has to be maximal.

We finish the paper with the following result proved also by Kauéikas.

6.4 Theorem. If R is a geometric Jacobson ring and S is a centred integral eztension
of R, then S is also a geometric Jacobson ring.
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GALOIS ACTION ON PLANE COMPACTS

NICOLAE POPESCU*

1. INTRODUCTION

Let @ be the field of rational numbers and let C be the field of complex numbers. Denote
by @ the field of algebraic numbers, i.e. the algebraic closure of Q@ in C and G = Gal(/Q),
the Galois group of all @-automorphisms of Q. As usual, if z € @, denote O(z) the set of all
conjugates of z over Q. Then O(z) is a finite set and the mapping G x O(z) = O(z) defined
by: (o,y) ~ oly) gives an action of G on the set O(z). If one endow G with so-called Krull
topology (see [Ar]), end O(z) with discrete topology, then for any y € O(z), the mapping
G — O(z) defined by ¢ ~+ o(y) gives a continuous and onto mapping. In this way G acts
continuous and transitive on O(z), for any z € Q.

A such action is natural and rised in time many interesting questions on the structure of
group G. Moreover one says that the group G hide almost all Mathematics, and it study is
far to be accomplished !

One can put the question if there are another subsets M of C such that G acts transitively
and continuous on M and to describe it. Precisely, let M be a subset of C, endowed with the
induced topology. On says that there exists a transitive Galois action on M if there exists a
mapping:

GxM-= M, (0,7)~ 0oz

such that

i) If e denote the neutral element of G, then ez = z for all z € M.

i) o(rz)=(or)z forallo,7 € G, z€ M.

iii) The action is transitive, i.e. for any z € M the set {o(z)}.cc (the orbit of z) is just
M.

iv) For any r € M, the mapping G = M, ¢ ~~ o(z) is continuous.

By iv) there result that the set M must be a compact subset of C.

!This is an expository paper on the recent results of the author.
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In what follows one try to indicate and describe a wide class of compact subsets M of C
such that G acts transitive and continuous on M. This is possible using some results on the

so-called “spectral completion of Q"(see [PPP], [PPZ1]- [PPZ4]).

2. THE SPECTRAL COMPLETION OF ALGEBRAIC NUMBERS

1. Notations. As usual denote Q the field of rational numbers, R the field of real numbers,
and C the field of complex numbers. Q@ will denote the field of algebraic numbers, i.e. the
algebraic closure of Q@ in C. Also G = Gal(Q/Q), denote the absolute Galois group, i.e.
the group of all automrphisms of Q@ over Q. Usually one endow G with “Krull topology™
(see [Ar]). If e is the neutral element of G, then by & denote the “conjugate automorphism”
of @, &(z) = Z, the complex conjugate. For any z € C, denote |z| the usual “module” of the

complex number z. The topology considered on C and induced on all its subsets is defined

as usual by “module”.

Endow @ with induced topology. Then the only automorphism of Q which is continuous

is €, the complex conjugation.
2.The spectral norm on Q. According to [PPP]. for any z € @ let us denote:
|lz|l = sup{le(z)|. o € G},
the “spectral norm™ of z. Then one has:
lz + Il < |l=l] + llyll, 2,5 € Q,
eyl < Il - flyll,
|Iz]| =0 if and only if x =0

In this way (@, ||-]|) become a Q—~normed algebra. It is easy to see that for any z € @ and
any o € G, one has: [|z|| = ||o(z)||. This shows that any automorphism of Q is continuous

with respect to the spectral norm.

-~

3. The completion of (Q.]||- ||). Denote by @, the completion of @ (defined as usual) with

respect to || - |I. Also denote by the same symbol “|| - || the natural extension of spectral
norm to Q.Then one define a normed ring (@. || - [|), which is in a natural way a normed
R —algebra.
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Let 2 € Q. Then z = limyy zn, where {z,}n50 is a Cauchy sequence of algebraic numbers.
By the definition of spectral norm there result that for any o € G, the sequence {o(z5)}n>0

is also Cauchy with respect to || - |[|. Then let us denote:
a(z) = llilrﬁw(:c,,).

It is not difficult to see that the mapping z ~~ &(z) defines a continuous automorphism of

R—algebra 6 Moreover one has:

Theorem 1. The mapping 0 ~ 7 defines an isomorphism between G = Gal(Q/Q) and the

group of all continuous R—automorphism ofa denoted
Galeon(@/R) = G.
Usually we shall identify G to G via described isomorphism and also for ¢ € G denote
o=0¢€ G
4. The orbit and pseudo-orbit of an element of(zj_b. Let r € ‘1:2 Then r = limy z,, where
{za}n is 2 Cauchy sequence of Q. For any ¢ € G, denote o(zx) = limy; o(z,). Denote
O(z) = {o(z),0 € G}

the orbit of z with respect to G. Since the sequence {z,}. is Cauchy with respect to the
spectral module, then result that for any T € G, the sequence {7(z,)}, is also Cauchy with

respect to usual module | - | of complex numbers. Then let us denote

ﬁn 7(z,) € C

z, =1
Then to any element z € Q, one can assign the set
C(z) = {z4|0 € G}

of complex numbers, called the pseudo-orbit of z.

Theorem 2. Let r € 67 Endow O(z) with the induced topology of@ and C(z) with the
topology induced by the complex numbers. Then the both maps:

G = O(z). 0 ~ a(z),

G—=C(2). 0~ z,
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are continuous. Then O(z) is a compact subset of Q and C(z) a compact and symmetric

(with respect Oz-azis) subset of C. Moreover one has ||z|| = sup{|z,|,o € G}.
The set {C(z)|z € 6} covers almost all compact subsets of C.

Theorem 3. (see [PPZ1], Theorem 1.10). For any compact and symmetric subset M of C,
there exists at least an element = € Q such that M = C(z).

3. TOPOLOGICAL GENERIC ELEMENTS

1. Topological generic elements. For any = € 6, denote @T[;] the closure in 6 of the ring
Q[z]. One has @[;] = 113[:] One says that a closed R—subalgebra A of @ has a topological

generic element if there exists z € Q such that A = 6[;]
Let Q C L C @ be an intermediate subfield. Denote I the completion (closure) of L
with respect to the spectral norm. If L = Q[z}, for some z € Q, the is not hard to see that

@[;] = I = Rz], i.e z is just a topological generic element of L. Moreover one has the
general result:
Theorem 4. (see [PPZ1], Theorem 2.1). For any intermediate subfield Q C L C Q, the
R—subalgebra L of @, has a topological generic element, i.e.

L = Qlz]
for a suitable element z € Q. Particularly there exists z € Q such that 6 = @[;]

(There is a forthcoming paper result that any closed subalgebra A of 6 has a topological

generic element.}

2. Condition (H). Let z € Q. For any two elements 0,7 € G, one has o(z), = z.,.

One says that z verify the condition H if for any three elements o, 7, x of G, the equality
Toy = Zry, implies z, = .
Theorem 5. ([PPZ2], Theorems 2.4, 2.6, 2.7). Let = € Q. Denote H(z) = {o € Glo(z) =
z}. Then O(x) the orbit of z can be canonically identified with G{H(z) = {cH(z)|¢ € G}.
by the map: o ~ o(x).

1) The topology of O(z), induced by 6, and the topology of G/ H(z) (the quotient topology)

are coincident.
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2) The map G/H(z) — C(z), defined by cH(2) ~ z, is @ homomorphism if and only if
z has property (H).

3) Let L be a subfield of Q, and z a topological generic element of L (see 4). Then = has
property (H).

4) Let z be an element of@ which has property (H), and L the subfield of Q fized by H(z).

Then L = 6[;], and z is a topological generic element of L.

4. TRANSITIVE GALOIS ACTION ON PLANE COMPACTS

Proposition 1. Let z € @ be an element with the property (H). Then the map:
Gx C(z) = C(z), (0.2:) ~ T+
is a transitive Galots action on the pseudo-orbit C(z) and
H(z) = {o € G|z, = z., € being the neutral element of G }.

Particularly, if L is a subfield of @, and z a topological generic element of L, then the map
0 -1, = ., gives a transitive Galois action on C(z). The next result shows that on C(x)

where z is an element of @ with property (H), the transitive Galois action above defined is

unique.

Theorem 6. Let = and y be two elements of@ such that z has property (H) end C(z) =
C(y). Then there exists o € G such that y = 07}(z).

2. Subsets of C with uniform covering.

Definition. Let M be a compact subsets of C. One savs that A has a uniform covering
(or that M is a Cantor compact subset) if there exists:

1) a sequence of positive real numbers &y > g2 > -+ > &, > -+ whose limit is zero.

2) a sequence of nonnegative integers, Vi = 1 < N} < --- < N, < -+, with ky = Niiy /Ny
an integer for any k > 1, such that for any pair (¢, Ny.), n 2 1, one can find a disjoint reduced
covering of M with compact subset of C. M,,,.... M,x, with diameter < ¢,. Moreove: these

coverings have the following property: for all 1 < i < AN, any M. contains the same number

h, of subsets Mp41;,1 £ 7 < Noga-
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If M is a symmetric (with respect the Ox-axis) one says that it has a uniform covering if
M, = {z =z +1iy € M,y > 0} has a uniform covering { My;}n, like above, and M_ = {z =
z + iy € M,y <0} has the uniform covering {€(Mni)}ni, the conjugate of the first.

The classical Cantor set, or plane compacts obtained in the same way, are compacts with
uniform covering. In fact a compact with uniform covering is a projective limit of finite sets
and the topology of projective limit is coincident with topology induced by C. Moreover
these compacts are totally disconnected.

3. Now one can give the main result:

Theorem 7. ( [PPZ2], Theorems 3.1, 3.2, 3.3) Let M be a compact subset of C. The

following assertions are equivalents:

a) There ezists a transitive Galois action on M.

b) There erists an element z € 767 with property (H) such that M is coincident with the
pseudo-orbit of z M = C(z).

¢) The set M has a symmelric uniform covering.

d) There ezists a subfield L of Q and a topological generic element = of L such that
M= C(I)
Moreover if

(0.e) ~ oa,
(g,a) ~o=*xa
are two transitive Galois action on-M, then there exists an element v € G such that
oxa=o0T-a,
forallo € G anda € AM.

Let M = {z1,--- ,za} be a finite set of complex numbers with just n elements.

Can be proved (see [PPZ3], [P1]) that there exists a transitive Galois action on M if and
only if there exists an algebraic number a, such that O(a) = {aq = a,...,a,} contains just
n elements (i.e. a has degree n over Q), and a polynomial f(X) € R[X] of degree n — 1.
such that

z; = flai), 1 £ign.

In this case, z = f(a) is a generator of R[a], i.e. Rla] = R[z]. and O(z) = M.
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The finite sets of C, endowed with a transitive Galois action, are closely related with
finite extensions of Q. Also, the infinite subsets of C endowed with transitive Galois action,
correspond somewhat to the set of “conjugates” for topological generic elements of infinite
(algebraic) extensions of Q.

4. An ezample. Denote Z, the ring of 2-adic numbers and let Z; the group of unit elements
of it. Any element of Z, can be représented uniquely as an infinite sum z = ap+2a,+2%az+- -
where ¢; is an integer and 0 £ a; £ 1. Then the element = belongs to Z; if and only if ap = 1.

Hence Z; = 1 + 2Z,. Denote K the classical Cantor set and let

h:Z;2 K

the map which assign to z = 1 + 2e; + 2%a; + -+ the number A(z) = ¥, 2 It is easy
to see that % is a bijective map, and so one can define on A a group structure such that 4
is an isomorphism of groups. Moreover, if one endow Z; with the natural topology induced
by Z,, and K by the topology induced by C, then £ is also 2 homeomorphism.

Now let k : G — Z; the so-called 2—cyclotomic character (see [W]). One know that & is a
surjective continuous homomorphism to G/Ker k (endowed with quotient topology) and Z;
{endowed to natural topology). In this way one can see that the composite map hk gives a

transitive Galois action on A".

5. ANALYTIC FUNCTION ASSOCIATED TO A TRANSITIVE GALOIS ACTION

Assume M is a compact subset of C and there exists a transitive Galois action on M.
This mean (see 7 and 3) that there exists a homeomorphism f : G/H — M where H is
a suitable closed subgroup of G (here G/H is endowed to quotient topology and M with
topology induced by C).

Since G/H is endowed with the Haar measure (induced in a canonical way by the Haar
measure on G), then also M can be equipped (via f) by a Haar measure, denoted x. We
remark that since M is totally disconnected, then the Lebesgue measure induced by C is
necessary zero. However the above Haar measure x is never zero, even M is finite. It
is happen that for the case of classical Cantor set the Haar measure it is coincident with

so-called Haussdorf measure, but generally these measure are different.
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Then one can consider the function
F(M,z) = exp ( / (z— a:)dx(:c))
M

where z is a parameter. Can be show (see [PPZ3] and [PPZ4]) that F(M, z) is an analytic
function in CU{oo}\ M. However it can be extended with zero by continuity, in all the points
of M. However F(M,z) cannot be extended by analycity in no points of M. If M = O(z),
where z € Q, and F(z) is the minimal polynomial of z, then F(O(z),z) = F(z)'/" where
n = deg F(z).
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COHEN-MACAULAY DIMENSIONS OVER
NON-COMMUTATIVE RINGS !

ToKUJI ARAYA, RYO TAKAHASHI AND YUJI YOSHINO

The Cohen-Macaulay dimension for a module over a commutative local ring has been
defined by A.A.Gerko. That is a homological invariant sharing many properties with pro-
jective dimension and Gorenstein dimension. The main purpose of this paper is to extend
the notion of Cohen-Macaulay dimension for modules to that for bounded complexes over
non-commutative noetherian rings. We try to persue it in the most general context as
possible as we can.

The key role will be played by semi-dualizing bimodules, and we shall show that a
semi-dualizing bimodule yields a duality between subcategories of the derived categories.

§1 A(C)-dimensions for modules

Throughout the present paper, we assume that R (resp. S) is a left (resp. right)
noetherian ring. Let R-mod (resp. mod-S) denote the category of finitely generated
left R-modules (resp. finitely generated right S-modules). When we say simply an R-
module (resp. an S-module), we mean a finitely generated left R-module (resp. a finitely
generated right S-module).

In this section, we shall define the notion of A(C)-dimension of a module, and study
its properties. For this purpose, we begin with defining semi-dualizing bimodules.

Definition 1.1 We call an (R, S)-bimodule C a semi-dualizing bimodule if the following
conditions hold.

(1) The right homothety morphism S — Homg(C, C) is a bijection.
(2) The left homothety morphism R — Homg(C,C) is a bijection.
(3) Exti(C,C) = Exti(C,C) = 0 for all i > 0.
In the rest of this section, C always denotes a semi-dualizing (R, S)-bimodule.

Definition 1.2 We say that an R-module M is C-reflezive if the following conditions are
satisfied.

(1) ExtL(M,C) =0 foralli > 0.
(2) Ext§(Homg(M,C),C) =0 for all i > 0.
(3) The natural morphism M — Homgs(Homg(M, C),C) is a bijection.

One can of course consider the same for right S-modules by symmetry.

1We wrote the more detailed contents of this paper in {1] and it is contributing them to Journal of
algebra.
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Definition 1.3 If the following conditions hold for N € mod-S, we say that N is C-
reflexive.

(1) Ext5(N,C) =0 for all i > 0.
(2) Exth(Homg(N,C),C)=0foralli> 0.
(3) The natural morphism N — Homg(Homg(N, C),C) is a bijection.

Example 1.4 (1) Both of the ring R and the semi-dualizing module C are C-reflexive
R-modules. Similarly, S and C are C-reflexive S-modules.

(2) Let M be an R-module. If G-dimension of M is 0, then M is R-reflexive in this
sense.

We remarks that C-reflexive modules have following properties.

Lemma 1.5 (1) Let 0 —» L, = L, — L3 — 0 be a short eract sequence either in
R-mod or in mod-S. Assume that Ls is C-reflexive. Then, L, is C-reflezive if and
only if so is Ls.

(2) If L is a C-reflezive module, then so ts any direct summand of L. In particuler, any
projective module is C-reflezive.

(3) The functors Homg(—,C) and Homg(—,C) yield a duality between the full subcat-
egory of R-mod consisting of all C-reflezive R-modules and the full subcategory of
mod-S consisting of all C-reflezive S-modules.

(4) The following conditions are eguivalent for M € R-mod (resp. M € mod-S) and
n € Z.

(i) There exists an ezact sequence 0 = X,, = X,y = --- = Xg =5 M — 0 such
that each X; is a C-reflezive module.

(it) For any projective resolution P, : - = Ppoy =9 Ppn—= - 2 B> M—20
of M and for any m > n, we have that Coker(Pny1 — Pn) is a C-reflezive
module.

(iti) For any ezact sequence -+ — Xpoy = Xpy = --- = Xog = M — 0 with each
X: being C-reflezive, and for any m > n, we have that Coker(Xn1 = Xn) is
a C-reflezive module.

Imitating the way of defining the G-dimension in [2}, we make the following definition.

Definition 1.6 For M € R-mod, we define the r.A(C)-dimension of M by

02X, =2 X2 =2 Xo—= M0,
where each X; is a C-reflexive R-module.

there exists an exact sequence of finite length
RA(C)-dim M =inf< n

Here we should note that we adopt the ordinary convention that inf® = +oc.
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Theorem 1.7 If R A(C)-dim M < co for a module M € R-mod, then
RA(C)-dim M = sup{ n | Ext}(M,C) #0 }.

First of all we should notice that in the case R = § = C, the rA(R)-dimension is the
same as the G-dimension.

Furthermore, we are able to see that the aA(C)-dimension extends the Cohen-
Macaulay dimension over a commutative ring R. More precisely, suppose that R and
S are commutative local rings. Note that if there is a semi-dualizing (R, S)-bimodule,
then R must be isomorphic to S. Thus semi-dualizing bimodules are nothing but semi-
dualizing R-modules in this case, and the definition of the Cohen-Macaulay dimension of
an R-module M is
C' is a semi-dualizing R'-module.

CM-di Mzin[{ wA(C")-dim M R’ is faithfully flat over R. }

§2 A(C)-dimensions for complexes

Again in this section, we assume that R (resp. S) is a left (resp. right) noetherian
ring. We denote by ©*(R-mod) (resp. D*(mod-S)) the derived category of R-mod (resp.
mod-S) consisting of complexes with bounded finite homologies.

For a complex M* we always write it as

n~-1 a.'\'r a.:fl +1 3_'\';"2 +2
SR ¥ S VL I Vit R VN ¥ oo N

and the shifted complex M®[m] is the complex with Af*[m]” = Af™*".
According to Foxby [5], we define the supremum, the infimum and the amplitude of a
complex M* as follows;

s(M®)=sup{ n | H*(M*)#0},
i(M*) = inf{ n | HN(M*) #0 }, (2.1)
a(M®) = s(M®) — i(M®).

Note that M* = 0 iff s(AM*) = —o0 iff i{(A*) = +o0 iff a(M°*) = —oc.

Suppose in the following that M* % 0. A complex M* is called bounded if
s(M*) < oo and i{(M*) > —oo (hence a(M*) < o). And D’(R-mod) is, by definition,
consisting of bounded complexes with finitely generated homologies. Thus, whenever
M* € D4(R-mod), we have

—o00 < i(M*) £ s(M®) < +o0.

and a(M*) is a non-negative integer.

We remark that the category R-mod can be identified with the full subcategory of
D°(R-mod) consisting of all the complexes M* € D*(R-mod) with s(M*) = {(M*) =
a(M*) = 0 or otherwise Af* 2 0. Through this identification we always think of R-mod
as the full subcategory of D%( R-mod).

Now we fix a semi-dualizing (R, S)-bimodule C. Associated to it, we can consider the
following subcategory of D*(R-mod).
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Definition 2.1 For a semi-dualizing (R, S)-bimodule C, we denote by gA(C) the full
subcategory of ©°(R-mod) consisting of all complexes M* that satisfy the following two
conditions.

(1) RHomg(M?*,C) € D*(mod-S).
(2) The hatural morphista M* — RHots(RHomg(M",C),C) is an isomotphism in
D*(R-mod).

If R is a left and right noetherian ring and if R = S = C, then we should note from
the papers of Avramov-Foxby [3, (4.1.7)] and Yassemi (7, (2.7)] that pA(R) = { M* €
D¥R-mod) | G-dim M* < co}.

First of all we should notice the following fact.

Lemma 2.2 Let C be a semi-dualizing (R, S)-bimodule. Then the subcategory pA(C)
of DY(R-mod) is a triangulated subcategory which contains R, and is closed under direct
summands. In particular, g A(C) contains all projective R-modules.

The following lemma says that R-modules in zA(C) form the subcategory of modules
of finite g.A(C)-dimension.
Lemma 2.3 Let M be an R-module. Then the following two conditions are equivalent.
(1) RA(C)-dim M < oo,
(2) M € gA(C).

Recall from Theorem 1.7 that if an R-module M has finite 5.A(C)-dimension, then
we have pA(C)-dim M = s(RHomg(M, C)). Therefore it will be reasonable to make the
following definition.

Definition 2.4 Let C be a semi-dualizing (R, S)-bimodule and let M* be a complex in
D% R-mod). We define the z.A(C)-dimension of M*® to be

RA(C)-dim M* = s(RHomg(M*,C)) if M* € pA(C),
RA(C)-dim M* = +o0 if M* & RAC).

Note that this definition is comptatible with that of 5. A(C)-dimension for R-modules in
§1.

Also in the category D’(mod-S), we can construct the notion similar to that in
D*%(R-mod).

Definition 2.5 Let C be a semi-dualizing (R, S)-bimodule. We denote by Ag(C) the
full subcategory of D(mod-S) consisting of all complexes N* that satisfy the following
two conditions.

(1) RHomg(N*,C) € D*(R-mod).

(2) The natural morphism N* — RHomg(RHoms(N*,C),C) is an isomorphism in
D°(mod-S).
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Definition 2.6 Let C be a semi-dualizing (R, S)-bimodule and let N* be a complex in
Db(mod-S). We define the As(C)-dimension of N* to be

As(C)-dim N* = s(RHomg(N*,C)) if N* € As(C),
Ag(C)-dim N°® = +o0 if N*¢gAs(C).

Note that all the properties concerning z.A(C) and g.A(C)-dimension hold true for Ag(C)
and Ag(C)-dimension by symmetry.

Theorem 2.7 Let C be a semi-dualizing (R, S)-bimodule as above. Then the func-
tors RHomg(—, C) and RHomg(—, C) yield a duality between the categories rA(C) and
As(C).
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LOOKING AT HOMOLOGICAL DIMENSIONS THROUGH
FROBENIUS MAP

RYO TAKAHASHI AND YUJI YOSHINO

1. INTRODUCTION

Throughout this note, we assume that all rings are commutative and noetherian. Pro-
jective dimension and Gorenstein dimension (abbr. G-dimension) have played important
roles in the classification of modules and rings. Recently, complete intersection dimension
(abbr. CI-dimension) and Cohen-Macaulay dimension (abbr. CM-dimension) have been
introduced by Avramov-Gasharov-Peeva [2] and Gerko [6], respectively. These dimensions
are called homological dimensions, and share many properties with each other. Among
them, the following properties are especially important.

(A) They satisfy the Auslander-Buchsbaum-type equalities.

(B) All of the finitely generated modules over a regular (resp. complete intersection,
Gorenstein, Cohen-Macaulay) local ring are of finite projective (resp. ClI-, G-, CM-) di-
mension, and a local ring is a regular (resp. complete intersection, Gorenstein, Cohen-
Macaulay) ring if the projective (resp. Cl-, G-, CM-) dimension of its residue class field
is finite.

(C) A finitely generated module of finite projective (resp. Cl-, G-) dimension has finite
CI- (resp. G-, CM-) dimension.

Let R be a local ring of prime characteristic p, and let f : R — R be the Frobenius
map on R, that is, f(a) = af for ¢ € R. For an integer e, we denote by f*: R — R the
e-th power of f, hence f¢(a) = o for a € R. The R-algebra °R is nothing but R as a
ring and its R-algebra structure is given through f¢. The ring R is said to be F-finite if
IR is a finitely generated R-module.

In the rest of this note, we assume that R is always an F-finite local ring of prime
characteristic p with unique maximal ideal m and residue class field ¥ = R/m.

Kunz [8] has proved that R is regular if and only if °R is R-flat for some e > 0. Since we
assume that R is F-finite, this result can be described in terms of projective dimension.

Kunz’® Theorem. The following conditions are equivalent.
(1) R is a regular ring.
(2) pdg°R < oo for every e > 0.
(3) pdg°R < oo for somee > 0.
We can prove similar theorems for other homological dimensions. Let »(R) denote the
minimum integer n satisfying H% (R/xR) N m*(R/xR) = 0 for some maximal R-regular
sequence . The following theorems hold.

Theorem 1.1. Suppose that k is a perfect field. Then the following conditions are equiv-
alent.

This is not in a final form. This note is a summary of the paper [10].
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(1) R is a Cohen-Macaulay ring.
(2) CM-dimg®R < oo for every e > 0.
(3) CM-dimg®R < oo for some e > 0 with p* > v(R).

Theorem 1.2. The following conditions are equivalent.
(1) R is a Gorenstein ring.
(2) G-dimg°R < oo for every e > 0.
(3) G-dimg°R < oo for some e > 0.

Theorem 1.3. The following conditions ere equivalent.
(1) R is a complete intersection.
(2) Cldima‘R < oo for every e > 0.
(3) CI-dimg°R < oo for some e > 0 with p* > v(R).

2. PROOFS OF THEOREMS

In this section, we shall give the proofs of Theorem 1.1, 1.2, and 1.3.

Herzog [7, Satz 5.2] has proved that a finitely generated R-module M has finite injective
dimension if (and only if) Exth(°R, M) = 0 for any ¢ > 0 and infinitely many e > 0. By
utilizing the method of his proof, we can state his result in a slightly more general setting
as follows.

Lemma 2.1 (Herzog). Let e be an integer with p* > v(R), and let M be a finitely gener-
ated R-module. Suppose that Extp(°R, M) =0 for any i > 0. Then M has finite injective
dimension.

Lemma 2.2. Suppose that R is complete and conteins a field K. Then for any perfect
field L that is an extension of K, there is an isomorphism

c(R@;{L) o eR@;{L
of (R®x L)-algebras.

Proof. First of all, note that R®xL = lim ,(R/m" ® L) by definition. Replacing R by
R/m", we may assume that R is artinian, and it will suffice to prove that {R ®x L) &
‘R®x L. We define amap ¢ : Rx L = ‘R®k L by ¢(z,2) = £ ® z¢"°, which is
well-defined because L is a perfect field . Since this is K-bilinear, it induces a K-linear
map ® : R@x L — “R @k L such that $(z @ z) = ¢(z,z). Now define & mapping
a:(R®xL)>‘R®x Lbya(z®z)=P(z®2) =z®2""°, and we can show that the
map is an (R ®k L)-algebra homomorphism. In a similar way, we can define the inverse
map :°R®x L = (R®k L) where 8(z® z) =z ® 2*°. O

The following proposition is a key to prove Theorem 1.1.
Proposition 2.3. Let ¢ be a faithfully flat homomorphism from R to a local ring (S,n, 1)
with artinian closed fiber. Suppose that there is a non-zero finitely generated S-module C

and an integer e with p° > v(R) such that Exts(‘(R®p S,C) =0 fori > 0. Then R is
Cohen-Macaualy.

Proof. Sice u(ﬁ) < v(R), replacing ¢ by ¢ : B — 5, we may assume that both R and S
are complete. Thus R and S admit the coefficient fields K and L, respectively. Since K is
perfect, we can choose L such that ¢(K) C L. Let us denote by L (resp. l) the algebraic
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closure of the field L (resp. !), and set R' = R®xL and §' = S® L. We easily see that
(R,mR',l) and (S’,nS’,1) are (noetherian) complete local rings, and are faithfully flat
over R and S, respectively. Note also that v(R') < v(R).

We claim that S’ is faithfully flat over R’. For this, let F, be an R-free resolution of k.
Then F, ®z R’ is an R'-free resolution of ¥ ®x R’ = I. Hence we have

Torf (I, S) = H,((F. ®& R') @r ') = H,(F, ®& §') = Tor(k, §') = 0,

as the composite & — S — S’ is a flat homomorphism. Now applying the local criterion
of flatness, we see that S’ is faithfully flat over R'.

On the other hand, Lemma 2.2 implies that *R’ 2 *R@x L 2 *‘R®g R’. Hence we obtain
‘R @ S'= ("R®r S) ®s S, and consequently,

RHoms (‘R ®p §', C®s S') 2 RHoms(*R®r S, C) ®s S'.

Thus, replace ¢ and C by ¢’ : R’ — S’ and C ®5 S’ respectively, and we may assume that
R and S have the common residue field.

Then, since S/mS is artinian, we see that S/mS is a finitely generated R-module,
and so is S as S is separated in m-adic topology (cf. [9, Theorem 8.4]). Therefore the
S-module C is also finitely generated over R. Since Ext)(°R,C) = 0 for i >> 0 by the
assumption, Lemma 2.1 yields that C has finite injective dimension over R. As a result,
R is Cohen-Macaulay (cf. [3, Remark 9.6.4]). a

Now we can prove Theorem 1.1.

Proof of Theorem 1.1.

(1) = (2): This follows from [6, Theorem 3.9)].

(2) = (3): This is trivial.

(3) = (1): By the Auslander-Buchsbaum-type formula [6, Theorem 3.8], we have
CM-dimg°R = depth R — depthz°R = 0. Hence there exists a local flat extension ¢ : R —
S together with a semi-dualizing S-module C such that *R ® S is C-reflexive. (For the
details of semi-dualizing modules, see [4].) Taking a minimal prime ideal p of mS, and
replacing S and C by S, and C, respectively, we may assume that the closed fiber of ¢ is
artinian. Since we have from the definition that Ext5(*R ®g S,C) = 0 for any i > 0, we
can apply Proposition 2.3 to get that R is Cohen-Macaulay. a

Of course there are several missing cases in Theorem 1.1 which we cannot prove at this
moment. Firstly, we do not know if the theorem is still true or not without the assumption
that the residue field is perfect. Secondly, we hope but cannot prove that the condition
that CM-dimpg'R < oo already implies that R is Cohen-Macaulay.

Next, we will prove Theorem 1.2. For this, we need the following lemma.
Lemma 2.4. If G-dimpg°R < oo for some integer e, then G-dimg*R < oo.

Proof. We have G-dimg®R = depth R — depthz*R = 0, and hence Homg(°R, R) =
RHomg(°R, R). Now denote by C the module Hompg(°R, R), and we see from [11, Theo-
rem2.7] that

RHomz(C,C) = RHom(RHomg(°R, R), RHomg(‘R, R))
RHomg(RHomg(°R, R), R)
‘R.

R
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Therefore C is a semi-dualizing “R-module.

We would like to show that C is isomorphic to °R as an *R-module. For an R-module
M, denote by pg(M) the minimum number of generators of M and by rr(M) the type
of M, ie. pr(M) = dimi(M ®g k) and rg(M) = dimExti(k, M) with t = depthp M.
To show that C = R, let % denote the residue field of °R, and put ¢ = depth R. Since
RHome(%, C) = RHomez(%, RHomz(*R, R)) = RHomg(%, R), we have

Extig(%, C) = Extk(%, R).

Note that depth.;C = depth°R = t. Hence comparing the k-dimension of the both sides of
the above isomorphism, we have rez(C) - dim;% = dimiExtig(%, C) = dimiExt:(%, R) =
ra(R) - dim;%. Therefore we obtain reg(C) = rr(R) = rer(°R). On the other hand, since
C is a semi-dualizing *R-module, it is easy to see that pe(C)-rr(C) = r(°R). It follows
from this that per(C) = 1, that is, C is a cyclic “R-module. But since every semi-dualizing
module is faithful, we have C = °R as desired.

Since we have an isomorphism RHompg(°R, R) = °R, we should note that there is an
ismorphism

RHOID:R(X s eR) =] RHOIDR(X , R)

for any bounded complex X of finitely generated “R-modules. In fact, RHomeg(X, ‘R) =
RHome (X, RHomg(°R, R)) = RHomp(X, R). Thus we have an isomorphism

RHomez (RHome(*R, °R), °R) = RHomg(RHompa(*R, R), R).

Noting that G-dimep?R = G-dimg%*R) = G-dimg°R < oo, we see that the left hand
side is isomorphic to 2R. It follows from this that G-dimg®R < oo, and the proof is
completed. O

Finally, we shall prove Theorem 1.3.

Proof of Theorem 1.3.

(1) = (2): This follows from [2, (1.3)].

(2) = (3): This is obvious.

(3) = (1): Since G-dimg°R £ Cl-dimg°R < 00, it follows from Theorem 1.2 that R is
Gorenstein, in particular, it is a Cohen-Macaulay ring. Thus, from the definition of
v(R), we see that there is an R-sequence & = z;,Zs,- - ,z4 where d = dim R such that
mP*(R/zR) = 0.

In general, if z € R is a non-zero divisor on R, then there is an exact sequence of
‘R-modules 0 — R — ‘R — 9R/zR) — 0. Regarding this as an exact sequence of
R-modules, we can show that CI-dimz%{R/zR) < co. Then it follows from [2, (1.12)] that
Cl-dimg/.zg(R/zR) < o0.

By a successive use of this, we see that Cl-dimg/zr(R/®R) < co. Therefore, replacing
R by R/xR, we may assume that R is artinian and m?’l = 0.

Note that the elements in the maximal ideal m act trivially on °R, hence the R-module
‘R is actually an R/m-module of finite Cl-dimension over R. Therefore we have that
Cl-dimgR/m < co. Then it follows from [2, (1.3)] that R is a complete intersection, and
the proof is finished. ]

Comparing this theorem with Theorem 1.2, we have an enough reason to make a con-
jecture that the condition CI-dimg'R < oo for an F-finite local ring R would imply the
complete intersection property of R.
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Modular adjacency algebras of the Hamming association schemes
1

MASAYOSHI YOSHIKAWA

Abstract

The adjacency algebra of an association scheme is defined over an
arbitrary field. This is always semisimple over a field of characteristic
0, but not semisimple over a field of prime characteristic p, in general.
The structure of the adjacency algebra over a field of prime character-
istic was not studied enough before now. Therefore, we considered the
structure of the modular adjacency algebra of the Hamming scheme
H(n,q), that is the one of the most basic and important association
schemes.

We will decide the structure of the adjacency algebra of H(r,q)
over any field for any n and g, and describe the algebra as a factor
algebra of a polynomial ring.

§1Hamming schemes For the definitions, refer to [2].
The Hamming scheme H(n,g) is P-polynomial scheme, and

* 1 fee 1 ces n
B, = 0 g-—2 i(g~-2) -« n(g-2)
n(g-1) (rn-1)(g-1) --- (n-i)g-1) -- .

and the intersection number is

Pijk = § (k _I:+ s) (k 1‘; is) (n ; k) (g — 1)°(q — 2)+—+s.

3=0

Since the intersection numbers are the structure constants of the adjacency
algebra, if we consider over a field of characteristic p, we may consider the
intersection numbers in modulo p. For any prime p such that p { g, the
adjacency algebra of H(n,g) over a field of characteristic p is semisimple (see
[2, Theorem 2.3], [1, Theorem 1.1] and [5, Theorem 4.2]). For each prime
p, the prime field [, of characteristic p is a splitting field for the adjacency
algebra of H(n, p) over F, (see [4, Theorem 3.4, Corollary 3.5]). For all prime

11 will send to Journal of Algebraic Combinatorics
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p such that p | g, F,H(n,p) & F,H(n,q) because p,(-;',;p) = p,(;,f) (mod p).

Therefore it is enough to decide the structure of F,H(n,p) for all prime p,
for deciding the structure of the modular adjacency algebra of any H(n, q)
over any field. Thus we fix a prime p and set H(n) := H(n, p).

§2H(p" — 1)

Since the size of the adjacency matrix of H(n) is p*, the adjacency algebra
of H(n) over a field of characteristic p is local and the unique irreducible
representation is A; — p; i o (see [4, Theorem 3.4, Corollary 3.3]). So the
prime field F, of characteristic p is a splitting field for the adjacency algebra
of H(n) over F,.

Since we consider the adjacency algebras only over F,, we set 2, :=
F,H(n).

By the definition,

BEP—I)
By = By~

BiP-U

therefore if we set A" = vi(AP ~l)) it follows that for 0 < a<p-1,

Ag"+;'1) =, (A(P -1))A(7"‘1)_

Then since any ¢ % 0 (mod p) , we can define v, over F, for 0 € a <

p—1. For calculating Bﬁf_,_a” we prepare the following theorem and corollary.

Theorem 2.1. (Lucas’ theorem [3, Theorem 3.4.1]) Let p be prime,

and let
m=ao+ap+ - +ap,

n=bo+bp+- - +bp,
where 0 < a;,b; <p fori=0,1,...,k—1. Then

(T:) = ;lj_! (g:) (mod p).

Corollary 2.2. We assume the same condition for theorem 2.1 and 0 <

o,8<p. Then
(219)= () ) o
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Now we want to know Bf,fw that is the coefficients of A.,,,;')Ag';').

But it is enough that we investigate Agr"” (’;r'”, i.e. p;- pj k Decause we

know v, (AP 1 )ug(AF ).
We assume that k = k' + pk” and s = s’ + ps” where 0 < k', s’ < p. Then
by Corollary 2.2, it follows that
O<s'<p—Fk= k =0 (modp)
Y 4 k—pi+s)~ mod p)s

p—l—k’<s’<p=>(p —sl_k)E[) (mod p),
and if s’ =0,
' pi—s —
k-,-0=>(k_pj+s)_0 (mod p).

Therefore it follows that if & = pk”,

#~1) Pr-Zl-k k pi—s p-1-k
Poipi k= k—pi+s/ \k—pj+s s

=0
x (p=1)°(p — 2)Pi+ei=k=2
(rr='-1)

= Dijer (mod p),
and if p1 &, p% -1, = 0 (mod p).
Thus
-1 =1 =1 =1 F—1
AZD AT = vaAT T us( A7) AT T AV
pmi-1p-1 .
r=l_1 -1) -1
= > Y e Tl Akl
k=0 <=0

By the above argument, it follows that

-]

B(p -1} B(p

m+a

-1) & BLP"U_

Repeating the same argument, we know that for all non-negative integer m
suchthat 0 < m<p —land m =mop® + myp' + - + m,_1p""!

B(p -1 — gle=1) S Ble=1 R & Br(’:)-l)'

Me_y Mr=2
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From this fact, we obtain that

U 2 U 6 @
Theorem 2.3. 2,_, = F,C,

Therefore the following theorem holds.

Theorem 2.4. For all positive integer r, U,r_, is isomorphic to the group
algebra of the elementary abelian group of order p™ over F,.

§3The structure of %,

In the previous section, we considered the structure of U,-_;. To deter-
mine the structure of 2,,, in general, we construct an algebra homomorphism
Ay = A

We obtain that A" = 7 ® A + K ® A7) by indexing with a nice
order, where I is the p x p identity matrix, K is the p x p matrix such that
the diagonal entries are 0 and the others 1, A(:'l) = Af,:_)l = O . This means
that 2, is a subalgebra of 2; ® 2,. The unique irreducible character of
2 is A = 1,40 » -1

Therefore we can define naturally the mapping f,4+) for each positive
integer n by

Jotr 1 g = 2,
AP = 1@ AP + K @ A, = AP - Al
Proposition 3.1. For each positive integer n, foy) : Unyy — A, above is an

algebra epimorphism.

By Theorem 2.4 and the algebra isomorphism from the adjacency algebra
to the intersection algebra, for all positive integer r, 2,-_, is isomorphic
to Fp(Cp x Cp x -+- x C,). Let z1,23,...,z, be the generators of each C,

starting from tl;e right. Then the element of 2l,r_, corresponding to z; by
the algebra isomorphism above, is A% 7Y,

From the representation theory ofp the finite group, there exists the algebra
isomorphism g from the quotient ring P, = F,[X,, Xa,..., X J/(X], .-+, X?)
of the polynomial ring of r variables over F, to Fy(Cp x Cp x --- x ;) by

v
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9(X:) = 1—z;. Therefore we can define an algebra isomorphism s, : B, = A-_;
by
5:(Xi) = APV - APTTY,

pl-l
We define a weight function wt on the set of the monomials of 8, by

wi(X;) = p~t, wi([] X77) = 3 k™.
J J
Proposition 3.2. For all positive integers m such that 1 <m <p -1,

(A8 - 4G ym —m'Z( ) —1)" A%,

And ifi# 3,0<a,8<p-1,

(-1 (P ~1) _ 4lp"=1)
4”. A Aap-+3p:

Let Y; = XX ... X} be the monomial of P, such that wt(Y) = i.
Then by the above two equations, the following Proposition holds.

Proposition 3.3.

w0 =S (1) corag.

=0 n=0
Then the following theorem holds that is the main theorem.

Theorem 3.4. We set P = F[X;, X, ][/{X], X5 -+ ), and for all positive
integer n, we set

W, = ( z | z is the monomial of P such that wi(z) > n).

Then it holds that P/W, = A, as algebras.

Proof. It is enough that we show thart,
B/ W, =, forn<p.

Furthermore it is enough that we show that for each positive integer n
such that n <p" - 1. Y, € Kerf, fus1:+* for-15-. O
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Remark 1 We set for all positive integer n, g,

n n
A,

G = (5, x 5, ; X 53) X Sny Hpg = (qu—l X Sget X +ov X Sgup) X S

Let K be a field. Then KH(n,q) and the Hecke algebra Endkg, (1 ,ﬁ ™)
are isomorphic as algebras (see [2, IIL.2]). Therefore we also could decide

the structure of Endgg, (1 ;f‘ ™?). In particular, Theorem 2.4 means that for

all positive integer r, if n = p" — 1, the Hecke algebra Ends,c, (1 ,f‘ MP) is

isomorphic to the group algebra Fy(Cp x Cp x - -- x Cp).

r
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Symmetric algebra and modular invariance property of
trace functions of vertex operator algebra

Masahiko Miyamoto (University of Tsukuba, Dept. of Math.)

1 Introduction

The purpose of my talk is to show an application of classical result in finite dimensional
ring theory to vertex operator algebra (conformal field theory.) See [Miyamoto] for further
details. In the theory of vertex operator algebra, the one of the most important features
is a modular invariance property. This property was first observed in many examples and
proved by Zhu if VOA satisfies Cy-cofiniteness condition and is also rational, that is, all
modules are completely reducible. In order to prove this property, he introduced Zhu
algebra. This result is called Zhu’s theory, which is a first theorem about the modular
invariance property of trace function on modules. From then, "rationality” has been
thought to be a condition for a modular invariance. However, I recently proved a modular
invariant property of vertex operator algebra without assuming the rationality, but C,-
cofiniteness. In my proof, a classical result about symmetric algebras (algebra with a
symmetric linear function) played an essential role. So I would like to show a relation
between symmetric algebra and vertex operator algebra.

In this paper, we will follow my lecture and I added the several definition at the end of

this paper.

Introduction
Vertex operator algebra (shortly VOA) is algebraic (mathematical) version
of Conformal Field Theory (shortly CFT) in physics and we have to treat
infinite dimensional non-associative algebras.

However, the most properties of good CFT are controlled by finite di-
mensional ordinary algebras. Therefore, the theory of finite dimen-

sional algebra plays an essential role in CFT.
Today’s talk is one example.
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Conformal Field Theory is the fundamental theory for (super) string theory and is a
theory on a Riemann surface and so it has a geometrical meanings, but we focus ourselves

to algebraic site.

Brief Introduction of VOA
VOA is an infinite dimensional N-graded vector space

V=ag®,V, dimV, <o

with infinitely many products X,, (Vm € Z) satisfying suitable conditions.
We define a weight |w| of v € V; is i. For any m € Z and v € V, m-th
product satisfies
Un(=vXpm) : Vi = Vo
shifts grading by m.
Moreover, V' has two special elements, 1 € Vj called Vacuum and w €

V, called Virasoro element. In particular, w defines a special complex
number ¢ € C called central charge. ‘

Namely, V = ;@ V6V, ®.... Actually, this decomposition is given by grading operator
L(0) as eigenspaces of non-negative integer eigenvalues.
Vacuum looks like an identity and Virasoro element controls grading and differential.
Virasoro element is also a generalization of Casimir element. We can see the precise defi-
nition of VOA in Appendix. (The correct definition of vy, satisfies vm : V; = Vjy)=1-m4m,
but we don’t need this fact in this talk.) The weight originally came from the energy level
in conformal field theory.

As we mentioned, o(v) is a
grade-preserving operator for any

W=W0oeWleW2)e.. veV. If W = @2 W(n) is irre-

. ducible, then L(0) acts on W(0)
Action of v € V’UYI:V : W(m) — W(m +n) as a sclar & for some k € C and

L(0) acts on W(m) as a scalar
k+m.

Similary, we define modules

L(0) := o(w) is a grading operator.

See Appendix for the definition of modules and weak modules.
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We define a trace function for a grade-preserving operator o(v) = vy and a Z-graded
module W.

Def. Trace function

W= wo) o W(l) ® W(2) @ -
gt o . 7 gt g2
o(v)iw (o) o(v)wqy o(v)jw(2)

trwo(v)e”  trwao(v)g*!  trwo(v)e
two(v)d” + trwyo(v)g™t! + trwgo(v)g™? + - --

Comment: Since each homogeneous space W(r) is of finite dimension, trjw)o(v) is well
defined. Originally, we multiply ¢* if L(0) acts on W(n) as a scalar k. However, since
we will consider general cases, L(0) may not act on W(n) as a scalar and so we need to
define trwm)(o(v)gM®) directly.

Simply, we denote it by S¥(v,7) = trwo(v)gH®0~</2% | which is called
a trace function, where c is central charge. In particular, S (1,7) =

qr—c/24 Z dim W(n)qn

n=0
is called a character of W.

In CFT, these characters play essential roles since it was not difficult to calculate
characters of modules when we construct modules.

Modular transformation There are several methods used
For 8 = (: 3) € SL(2,Z), set in CFT without proofs. For ex-
' ample, if V is rational VOA, then

Slé(v,7) = (;L_d)l"lS(v’ ér) Verlinde-formula insists S|8(v,r)

arth . is a linear combination of charac-
where 07 = cr+d and lvl denotes weight. ters of all modules. In particular,
all characters will appear in the

T
What is this ? trasformed function of character
In "Good” Conformal Field Theory, the| of V by 7 = 3. So by using
above should be a linear combinations of| modular transformation, they are

meaningful functions. able to determine all modules.
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Cs-cofinite condition(natural condition) gives differential equation. As so-

lutions, we have:
g oo

P
S|Bw,7) =)D ) Cusilv)g'q" 7’

t=0 s=0 i=0

C,-cofiniteness was originally introduced by Zhu as technical reason to get a differential
equation. However, the author recently showed in [Miyamoto] that C,-cofiniteness is an
essential condition to define trace functions on every modules. For example, V is C,-
cofinite if and only if every weak module is a direct sum of generalized eigenspaces of
L(0), which is a necessary condition to define a trace function on it.

Ordinary Algebras in VOA
V has infinitely many products = we can construct new meaningful prod-
ucts such that some factor space becomes an ordinary algebra. The most
important example is Zhu algebra A(V) = V/O(V).
For a V-module W = W(0)®W (1)@W (2)&..., a grade-preserving operator
o(v) acts on W(0) (a top module of W),

veO(V)CV &o(v)=0 on W(0)
for any modules W. A product 3 on A(V) s.t. o(v* u) = o(v)o(u) on

W(0). Then A(V) = V/O(V') becomes an algebra of these zero modes on
top modules.

The precise definitions of A(V) and O(V) are given by different ways. The important
property of Zhu algebra is:

Conversely, if T is an A(V)-module then there is a V-module T®3T(1)®
3T(2)®- -- whose top module is T'.

An important result for modular invariance property is:

Cis0(-) : V = C is a symmetric function of A(V).

By using this result, Zhu showed that if A(V') is semisimple, then C,,, is a linear combi-
nation of trace functions (by Eilenberg-Nakayama’s theorem). Hence S(v, A7) is a linear

-142-



sum of trace functions. Namely,

Theorem(Zhu) If V is Co-cofinite and A(V) is semisimple, then
< SW(v,7)|W irr. V-mod. > is SL(2,Z)-invariant.

We will treat the general case, that is, A(V) is non-semisimple {Artin
Ring) and so we need ring theoretic arguments.

As we mentioned ¢ = C; ,0( ) : V — Cis a symmetric function of A(V). Then A(V)/Rad¢
becomes a symmetric algebra. We will use a result by C.Nesbitt and W.Scott about a
symmetric algebra. The symmetric algebra in my talk is not a symmetric tensor algebra.
We will give the definition of symmetric algebra.

Def. of Symmetric algebra.

Let A be a finite dimensional algebra/C 3 1.

A is Frobenius algebra < left mod. 44 = Homg(A4,C).

Let R(a), L(a): denote right, left regular actions of a € A on A,
Frobenius algebra < 3Q € Mat(C) s.t. Q"'R(a)Q = L(a).

A is symmetric algebra

& () is a symmetric matrix. :

& A has a symmetric map ¢ € Hom(A,C) s.t. Rad¢ = 0.

& A has an associative nondegenerated bilinear form (, },

where Rad¢ = {a € A,¢(Aa) = 0} and "associativity” means {ab,c) =
{a, be).

Def. of basic algebra.
A result we will use to explain Decompose (simple components)
my method is given by AJJ(A) = AL @0 A
C.Nesbitt, W.Scott (1943)
(A short proof (Oshima 1952)) ey e e

primitive idempotents
f4 is sy.mmetric a!gebra ® Set ¢ — e 4t e
its basic algebra is symmetric. o
(we may view: idempotent e € A.)
eAe is called a basic algebra of A.
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Note: Ae is an A-module and eAe = End 4 (Ae). ede/J(ede)=Co---0C.

Their result says that

A is symmetric if and only if eAe is symmetric. |

For example,

o a,
symmetric linear map ¢(g) = trB,.

R, = {g =(A’ B’) | A, By € Mm,m(C)} is a symmetric algebra with a

Its basic algebra is P = {a: ¢ labe C} with ¢(a) = b.
A module R e = C™ @ C™ is direct sum of two same modules.

The structure of R, e as right P-module is important. Right P-module B¢ is a direct

sum of two isomorphic right P-modules C™.
My method is:

As pointed out by

A symmetric map ¢ of Zhu algebra A(V) is given | Iwanaga, Endp(W) is
= A = A(V)/Radé¢ is a symmetric algebra.
= its basic algebra P = eAe is symmetric.

Then we construct right P-, left V-modules W to consider a filtration
such that the basic algebra of Endp(W) is P. | W" = @"_,W(m), which

not a finite dimensional
algebra. We always have

is of finite dimension.

We will explain my method by using example R,,. First we have a symmetric algebra
R: (a factor ring of Zhu algebra), then P is a symmetric algebra (because it is a basic
algebra of R;. Then construct a right P-module W = C™ @ C™. Then Endp(W) = R,,
is a symmetric algebra (because its basic algebra is P).

We will consider V' C Endp(W). We will
call such a module W interlocked with

@.
Then Endp(W) has sym. map tr®.

We view tr® as a new kind of trace map
on W and define explicitly.

We will call it pseudo-trace on W
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Let’s me explain pseudo-traces again.

Note For a vector space W and a € End(W), the ordinary trace map is given
as a trace of matrix representation of a : W — W. On the other hand, if W is a
right P-module, a € Endp(W) and W/WJ(P) = Wsoc(P) as V-modules, then a is

represented by matrix 2 g
B corresponding to W/WJ(P) — Wsoc(P)

Using pseudo-trace functions, we have:

and pseudo-trace of a is given by a trace of submatrix

S¥ (v, 7) = trlo(v)qHO)-/24
of interlocked V-modules W.

S|6(v, 7) becomes a linear sum of pseudo-trace functions

Although we started from the ordinary trace functions, we can also start from pseudo-
trace functions and then we have the same conclusion. Therefore, we have:

Main Theorem (General case)

is SL(2,Z)-invariant.

If a VOA is Co-cofinite, then the space spanned by pseudo-trace functions
(SW (v, 7) | W interlocked with a symmetric linear map of A(V))

In CFT, the above space is called a conformal block for torus, since ¢ = ™7 gives a
period of 7 = 7 4+ 1 and z in Y(v, z) gives another period. The important result is:

The dimension of the above
space is finite.

Actually, its dimension is equal to the
dimension of the space of symmetric
linear maps of Zhu algebra A(V).

In particular, for any irreducible
module W and v € V,

< trw(v,r)SL(z'Z) >

is of finite dimension.
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known VOAs.




[Note]

Generalized character was introduced by
physicist M. Flohr(1995) in order to to obtain
a modular invariant property of characters for
some CFT. Namely, he choose a basis of

< Sy (r)5U22) | W irreducible modules >

for some CFT and call them generalized char-
acters.

Our result says that the
true meaning of generalized
character should be pseudo-
trace function S¥(1,7) for
an interlocked module W.

There are many unsolved cases.
If g is an automorphism of V, we have g-symmetric function of A,(V) from g-twisted

modules.
Blab) = Au~'g{ba)

if g(a) = )a, g(b) = pb (eigenvalues)
Can we extend it to a g-symmetric (pseudo-trace) function of V? This gives an extension
of modular invariance property of orbifold VOA.
Suppose A(V) has a bilinear form. Can we extend it among V-modules ?
These are essentially problems of finite dimensional algebras.

2 Appendix

In the definition of vertex operator algebra, you will see many conditions. However,
these conditions makes VOA compact so that even VOA is of infinite dimensional vector
space, it plays like a finite dimensional algebra.

Definition A vertez operator algebra (VOA) is a quadruple
(V,Y,1,w), where V is a Z,-graded vector space V = Unez+ V, and

Y(2): V — EndV][z,z7)
v — Y(v,2) =Y, v(i)z!

is a linear map from V to (EndV)[[z,27']] and Y(v,2) = 3 .5 v(n)z™"~! is called the ver-
tez operator associated to v, and 1 and w are specified elements in V; and V5, respectively,
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such that the following conditions hold:

(A1) [Vacuum element]
Y(1,z2) = idy;
(A2) Y(v,2)1 € V][z]] and lim,0Y (a,2)1 = a for any v € V;
(A3) v(m)u € Viypom-) for v € V4, u € Vj;
(A4) dimV, < oo;
(AS5) [Virasoro element]

L; = w(i + 1) satisfy the Virasoro algebra relations:
3

[Lms Ln) = (m = 7)Lmsm + Stno—5—
where ¢ is some constant, which is called central charge of V;
(A6) [L-,-derivative formula]
Y(w(0)w,2) =Y(L_yv,2) = [L_1,Y(v,2)) = £Y(v,z) for any v € V;
(A7) The following Commulativity holds:
(z = w)NY(a,2)Y(bw) = (z — w)"Y(b,w)Y(a, 2)

for any a,be V.

<,

Definition 1 A weak module for (V,Y, 1,w) is a vector space M equipped with a formal
power series
YM(v,2) = Y uMz""" € (End(M))[[z,27"]]
neZ

called the module verter operator of v for v € V satisfying:

(W1)  YM(1,2)=1u;

(W2)  YM(w,z) =3 LM(n)z~""! satisfies:

(W2.a) the Virasoro algebra relations and

(W2.b) the L(—1)-derivative property:Y ™ (L(-1)v,2) = £¥YM(v,2),

(W3)  Commutativity: (z — w)N(YM(v,2)YM(u,w) — YM(u,w)YM(u,2)) =0

(W4)  Associativity: YM(u,v,2) = YM(u,2),Y¥(v,2)

foru,ve€V and Y(u,2) = Y upz~""!

Definition 2 4 module for (V,Y,1,w) is a week module (M,Y) salisfying
(M1) M is an N-graded M = $p30M, and dim M, < 0
(M2) L™(0) acts on M, semisimply and
(M3) vpyp-14iMn C Myi.

For ring theorists, the definition of modules looks strange because the infinite direct
sum of modules is not 2 module. This is because VOA comes from CFT in physics and
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they considered only the set of irreducible modules at first.

Definition 3 For a VOA V, set Co(V) = (v_pu | v,u € V). We call V C,-cofinite if
V/Cy(V) is of finite dimension.
V/Co(V) becomes a Poison algebra with & - & = v_1% and [,9] = Tou, whered = v +

Ca(V).
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PLETHYSM OF SCHUR FUNCTIONS AND THE BASIC
REPRESENTATION OF A

HIROSHI MIZUKAWA AND HIRO-FUMI YAMADA

1. INTRODUCTION

We present a formula for Schur functions indexed by rectangular Young diagrams.
More precisely, we give an expression of the plethysm p2 0 Sgi, m), Where p, is the power
sum of degree two and Sgn.m) is the Schur function indexed by the rectangular partition
O(n,m) = (m") (Theorem 4.1). Though the formula is described in a combinatorial
way, it can be explained naturally from the viewpoint of the basic representation of the
affine Lie algebra of type Aff). As a merit of our understanding, it becomes clear that
the formula gives an explicit expression of a homogeneous polynomial 7-function of a
hierarchy of nonlinear differential equations. Proofs and details can be found in [8].

2. SYMMETRIC FUNCTIONS AND PARTITIONS

We denote by P, the set of all partitions of n, SF, the set of all strict partitions of n
and OP, the set of those partitions of n whose parts are odd numbers. Let x'; be the
irreducible character of the symmetric group S,, indexed by A € P, and evaluated at
the conjugacy class p, and () be the irreducible negative character of the double cover

S, (cf. [3]), indexed by ) € SP, and evaluated at the conjugacy class p. Here we recall
symmetric functions of variables = (), %2, - ) which are discussed in this paper. Let
pr(x) = 2, 71 be the power sum symmetric function for 7 > 1. The Schur functions
are defined as follows:

Si(@) = Y 5 xea)
pEPA
For A € SP, define Schur’s @-function and P-function by
Qi(z) = Z QNP2 =10 Ap (),
. O
Py(x) = 270Q, (=),
where
_JO0 ifn—=1I(})is even,
A = {1 if n —I(})) is odd.
For a symmetric function F(z), the plethysm p, o F(x) with the r-th power sum p, is

by definition [7, p135]
p, o F(x) = F(z").

Fix A be a strict partition and r be a positive odd integer. Put
t=(r-1)/2.
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A (t + 1)-tuple of partitions (A%, A%[0],... , A°[t]) is attached to A € SP, ; Abe(n) s the
r-bar core of A and the collection A¥) = (X[0],... , A®[¢]) is the r-bar quotient of A (cf.
10)).

3. BASIC REPRESENTATION OF Ay

We discuss the basic representation of the affine Lie algebra of type Ag"’ following
[5]. Here the Schur functions, Schur’s P and Q-functions are described in terms of the
so called Sato variables: u; = p;/j (j 2 1) for Sy, s; = 2p;/7 (j 2 1, odd) or ¢; =
,/j (j 2 1, odd) for P and Q,. We will denote them by Sy(u), Pr(s), @a(¢), etc. Put
I =C[t;; j = 1, odd), whose basis is chosen as {Px; A € SPy, n € N}. Associated with

the Cartan matrix
( i )is = 2 -4
Gijligefo} =\ 1 o2 J°

the Lie algebra g of type A(22) is generated by e;, fi,a)(i = 0,1) and d subject to the
relations
lof.a]] =0, [of.e]=aye;, o, fi] = —aisf;,
lei, f5] = b5, (ade;)! % e; = (adf;)' "% f; =0 (i #7),
and
[daf]=0, [de]=0dj0e5, |dfi] = =d;0f;

The Cartan subalgebra b of g is spanned by ay,a) and d. Choose the basis {ao, a1, Ao}
for the dual space b* of b by the pairing

< C!:/,Qi >= aij, < Q:’,Ao >= 6"_0,
<d,a,->=60a~, < d,Ag >=0.

The fundamental imaginary root is § = 2ap + a;.

The basic representation of g is by definition the irreducible highest weight g-module
with highest weight Ag. The weight system of the basic representation is well known:

1
P(Ao) ={Ao—pé+qa1; p>2¢% pg€ 32 p+q€Z}

A weight A on the parabola Ag—2¢?6+ga, is said to be maximal in the sense that A+6 is no
longer a weight. For any maximal weight A, the multiplicity of A —nd (n € N) is known to
be equal to p(n), the number of partitions of n. A construction of the basic representation
in principal grading is realized on the space I'® = C[t;; j > 1, odd, j 2 0(mod3)] ([5]).
A P-function Py(t) is not necessarily contained in I'®). However, if the strict partition
X is a 3-bar core, then Py(t) € I'® and in fact Py() is a maximal weight vector. More
generally we “kill” the variables ¢3; (j 2 1, odd) in the P-function P,(t) and consider the
reduced P-function:

PE(t) := Pa(t)|eymtym-m0 € TV
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It is shown in [9] that Pﬁs)(t) is a weight vector for any strict partition ), and that
{P,{a)(t); ) is a strict partition with no part divisible by 3}
={PP(¢); ) is a strict partition with A\¥® = (9, A*[1])}

form a weight basis for ['®, The weight of a reduced P-function with a given strict
partition A is known as follows. Draw the Young diagram ) and fill each cell with 0 or
1 in such a way that, in each row the sequence (010) repeats from the left as long as
possible. If ko (resp. k;) is the number of 0’s (resp. 1's) written in the Young diagram,
then the weight of the corresponding reduced P-function is Ag— koo —k11. A removable
i-node (i=0,1) is & node [i] of the boundary of A which can be removed. An indent i-node
(i=0,1) is a concave corner on the rim of A where a node [i] can be added. The action of
g to the reduced P-function Pf”(t) is described as follows:

eP= 3 PO,
HEEN(A)

where £]()) is the set of the strict partitions which can be obtained by removing a
removable ¢-node from A, and

3
f!PA()= Z P;(‘S)i
Pe-ﬂl('\)

where F}()) is the set of the strict partitions which can be obtained by adding an indent
i-node to A. For instance
3) _ pB) (3)
eoFas1) = Fazy + Pasy
(3 _ pl3) (3)
fiPysn = Fisan + Paay-

Another realization of the basic representation is known, one in the homogeneous grading.
The isomorphisim between principal and homogeneous realizations is given by Leidwanger
[6]. Put

B = Cluj, s35-1; 7 21}
Define the mapping & by
®: I =B®C[qq7},
Py(t) — 2PN83(A) Py (8)Spepy (w) ® g™V,

where

= X %J ,

A#0 (mod 3)

and m()) is determined by drawing the 3-bar abacus of A:

m(A) = (number of beads on the first runner of \)
— (number of beads on the second runner of ).

For example
®(P753.1)(t)) = 8P1)(5)S2,1.1y(u) @ q.

-151-



Leidwanger [6] shows that & is indeed an isomorphism and that, if we denote by V' the
subalgebra of B generated by up; and 2%-1uy;_; — sz,_l (j > 1), then

(') =v®Clg,q!

The representation of g on V ®Clg, ¢~!], which is induced by @, is the basic representation
in the homogeneous grading. In fact, if we define the degree in V ® Clg,¢~!] by

deg f(u,s) ® g™ = 2deg f(u,s) + m?,
then deg @(P}s)) is equal to the number of 0-nodes in A.

4. RECTANGULAR SCHUR FUNCTIONS AND AP

Let ¢ be a positive integer and A, = (3¢ —-2,3¢-5,---,7,4,1). Each cell of the Young
diagram of A, is supposed to be filled with 0 or 1 as in Section 3. Lt FTM(A) (0<m < ¥)
be the set of the strict partitions which are obtained by adding m ’s to A,. It is obvious
that |FT*(Ag)| = (,f‘) We are now ready to state the result in this note.

Theorem 4.1.
(1) Z 83(1) S,y = (€, m)p2 © Sge-mm),
HEFT (Ag)

where

e(f,m) = {(-—1)('5') 0<m< )

(—1)(1-?+1)+(t-m)m (% <m< f)

It is shown in [9] that, in the principal realization of the basic representation of Am the

P-functions Py, (t) = (3) , (t) (€ = 1) are the maximal weight vectors which allow non-zero
action of f;. Asis explalned in the previous section, we have

(3) Z P(s)

MEFTM(Ag)

The left-hand side of (1) is nothing but the image of 2 f] P(3) under the Leidwanger
isomorphism ® to the homogeneous realization (dropping q'"(“) = ¢¢~?™). Note that
plu) = (§) for all # € FP*(Ar). Therefore the formula (1) can be thought of as the
homogeneous realization of the weight vectors which are obtained by acting the group
SL, to a maximal weight vector in the basic representation of A?).
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Monomial Modules and Endo-monomial Modules

Ziqun Lu
School of Mathematical Sciences, Peking University, Beijing 100871, China

0. Notation

Let G be a finite group. Let (K, R, F) be a p-modular system, where R is a complete discrete
valuation ring of maximal idea 7R, K is the quotient field of R of characteristic 0, and F = R/nR
is the residual field of R of characteristic p > 0. We assume that X and F are big enough.

Here a module means a finitely generated right module. We assume that all RG-modules are
R-free. For a subgroup H of G, and for an F'G-module X and an FH-module Y, we write Xy
for the restriction of X to H and Ind§(Y) for the induction of ¥ to G. When HaG and Y is
an FH-module, we denote I¢(Y) the inertia subgroup of Y in G. If there is no confusion, we
often use ® instead of ® p and ®F. Let V be an RG-module. We denote by V* the dual module
Hompg(V, R) of V.

1. Generalized Brauer construction

For a p-subgroup P of G, R. Brauer defined a homomorphism of algebras Brp : Z(FG) =
Z(Cg(P)) between the centers of the corresponding group algebras. M. Broué generalized Brauer
homomorphism from group algebras to modules. If V is an RG-module and P is a subgroup of
G, then V” denotes the set of fixed points of P on V, trf : V! — V® denotes the trace map,
for I < P, and

V(P) = VP [(Zrcutr] (VI) + 7VF)
is called the Brauer construction. Boltije and Kiilshammer gave a more generalized construction
called generalized Brauer construction. Now we recall from the definition of generalized Brauer
construction.

Let P be a p-subgroup of C, and let ¢ : P — R* be a homomorphism. We denote by R, = R
the RP-module

1g-9:=¢(g)lr
We define
VPO = {v e V|v-g = p(g)v, ¥g € P},
and a generalized trace map
trfﬁ"f)) : yY) — yiPy)
v = Dhepyup(h~v-b,

9The detailed version of this paper will be submitted for publication elsewhere.
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where (I,4) <€ (P,¢), i.e. I £ P, ¥ = p;, and a generalized Brauer construction
— P,
V(P, ¢) = VPO (S, gy (poytis g (VD) + 2V P9)),

We denote by Br(p,) the connonical map from ViR to V(P, o).

Note that if  is the trivial homomorphism, then V(%) = VP and V (P, ¢) is just the Brauer
construction. We use V? and V(P) instead of V(F1) and V(P, 1), respectively.

Proposition 1.1 Let M be a RG-module. Let P be a p-subgroup of G, and let p: P = R*
be a homomorphism. Then
P, «\P
(a) g‘ ) = (M ® R;)" as RP-modules.
(b) M(P, p) = (M ® R},)(P) as FP-module.

Proof (a) Let m € M(P¥), Let 1 R; be the unitary element of R;,. For g € P, we have
(m®lp;)-g=m-g®lr,g=p(gIm®p(¢7)1p, =m® lp;.

Then m® 1g; € (M®R;)P. Thus f : m+ m® lg. is a map from M(P¥) to (M®R;,)P. It
is easy to see that f is a one-to-one map from M("¥) onto (M ® R;,)”. We only need to verify
that f is a RP-module homomorphism. For g € P, we have

f(m-g)=mg®1p,,

and

f(m)-g=(m®1p;)-g=mg@®1g;.
Thus f(m-g) = f(m) - g, as desired.
(b) We define a map from M (P, ¢) to (M ® Ry (P) by
f:ﬁ'n-)m®1;,

If 7 = 0, then m € Bz, yy<(p, ,,,,tr}, YV 4 7VP9). Thus m ® 13, € Tr.gy<(p, el (V7 +
7VP. Thus m® 1‘ =0.% fisa one-to-one map. It is easy to venfy that f is surjective. For

gEG, h(m-g)=mg®T; = (m ®1y) g = f(m)-g. Thus f is an FP-module isomorphism.
Thus we have the following communicative diagraph.

MP9) 5m v m@lp € (MOR,)P

_ Lol

M(P,g)>m % m@lp, € (MOR)(P)
2. Monomial Modules

Let V be a G-module. We call V a monomial module if V is a finte direct sum of RG-modules
of Ind§ (W), where W is a linear RH-module (or a RH-module of R-rank 1) for some subgroup
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H of G. We have a more general notion. A RG-module V is called a p-monomial module if Vp
is a monomial module for any p-subgroup P of G.

Any indecomposable RG-module is associated with three invariants: a defect group (vertex),
a source module, and a defect multiplicity module. We know also that these three invariants
parametrize an indecomposable module. In this section, we try to parametrize indecomposable
p-monomial modules.

Theorem 2.1(Boltje and Kiilshammer) Let V be ¢ monomiel RG-module. Let P be a p-
subgroup of G. Let ¢ € Hom(P,R*). Then V(P,y) is a monomial FNg(P,y)-module. And
dimp V(P, p) is equivalent to the multiplicity of R, occurs as a direct summand in Vp.

Definition 2.2 Let P be a p-group. Let p : P — R* be a homomorphism. We call 2
RP-monomial medule M a (P, p)-monomial if M ® R;, is a RP-permutation module.

We have the following equivalent description of (P, yp)-monomial modules.

Proposition 2.3 Let P be a p-group. Let M be a RP-module. Then the following two
statements are egquivalent
(2) M is a (P, p)-monomial module.
(b) M is a finite direct sum of induced modules Ind§(X), where Q < P and X = (R,)lq-

Proposition 2.4 Let M be a p-permutaion RG-module. Set A = Endg
(M). Then there is a natural action of A(P) on M(P) end this induces an isomorphism of
FNg(P)-algebros
A(P) = Endg(M(P)).

We have the following generalization of Proposition 2.4

Lemma 2.5 Let P be a p-subgroup of G. Let v be a homomorphism from P to R*. Let M
be a RG-module such that Mp is a (P, p)-monomial module. Let A= Endgp(M). Then
(a) M is an endo-permutation RP-module.
(b) There is a natural action of A(P) on M(P, p), and this induces an FNg(P, ¢)-algebra
isomorphism
A=Endp(M(P, p)).

Now we can state our main theorem of this section.

Theorem 2.6 Let M be en p-monomial RG-module and let A = Endp

(M). Let P be a p-subgroup of G. Let v be a local point in AP. Denote by p, : P — R the
homomorphism given by the RP-module iM, i € v. Then

(a) There is a natural action of A(P) on M(P,yp,) and this induces an FNg(P)-algebra iso-
morphism

AP)= @ Ende(M(P, ¢y))
YELP(AP)

(b) The multiplicity algebra of v is isomorphic to Endr(M(P, ¢.)), and the mulitiplicity module
of 7 is a module over the ordinary group algebra FNG(P, p,) and is isomorphic to M (P, p,).

3. Endo-monomial RP-modules
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We fix a p-group P in this section. A RP-module is called an endo-monomial RP-module
if Endg(M) is a monomial module. We have the following basic properties of endo-monomial
modules.

Proposition 3.1 Let P be a finite P-group. Then
(a) Any monomial RP-module is an endo-monomial RP-module.
(b) Any direct summand of an endo-monomie! module is an endo-monomsial module.
(c) If M is an endo-monomial RP-module and Q is a subgroup of P, then Mg is an endo-
monomial RQ-module.
(d) If M and N are endo-monomial modules, then M* and M@N are endo-monomial modules.
(e) If M is an endo-monomial module, then (M) and Q~1(M) are endo-monomial modules.

Lemma 3.2 Let M be an indecomposable endo-monomial RP-module with vertez P. Then
the trival module R is a direct summand of M @ M*. Thus we have rankgp(M) is prime to p.

We have the following crucial result for endo-monomial modules.

Proposition 3.3 Let L be a RP-monomial module. Let M and N be two indecomposable
direct summand of L with common vertez P. Then M = N @ R, for some p € Hom(P, R*).

Proof Since L is an endo-monomial RP-module, Homg(M,N) is an endo-monomial RP-
module. We have

Homp(M,N) = M* @ N = £(g ,)/p ® m(q,4) X Ind§(R,)
Hence
M @M ® N = T(g)/p ® my) X Indg(Mlo ® Ry)

Thus any indecomposable direct summand of M ® M* ® N with vertex P must isomorphic
to M @ R,. By Lemma 3.2, N is a direct summand of M @ M* ® N with vertex P. Thus
N = MQ®R,. As desired.

Corollary 3.4 Let M and N be indecomposable endo-monomial RP-modules with vertz P.
Then M @ N is an endo-monomial RP-module if and only if M = N ® R, for some p €
Hom(P, R*).

Proposition 3.5 Let P be a p-group and let Q be a subgroup of P. Let A and B be monomial
RQ-algebras. Then A ® B(Q) = T cHom(q,rx) ® A(Q,¢) ®F B(Q, v ).

Theorem 3.6 Let A be a R-simple monomial P-algebra, and let Q be a subgroup of P. Then
the F-algebra A(Q) is semisimple if it’s non-zero.

) Proposition 3.7 Let A and B be monomial P-algebras. Then A® B(Q) = L cHom(P,RY) ®
A(P,¢) ®F B(P,p™").

Proposition 3.8 Let L be an endo-monomial RP-module. Set A = Endg(L). We assume
that A(P) # 0. Then AP has unigque local point if and only if A(P,p) = 0 for any 1 # ¢ €
Hom(P, R*).

Proof By assumption, we have Endg(A4)(P) is simple. By Proposition 3.7, we have Endgr(A)
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P) = A(P) ® A*(P). Thus A(P) is simple. Thus AP has a unique local point, as desired.

Theorem 3.9(Hartmann) Let P be an abelian p-group. Then endo-monomiel RP-modules
are endo-permutation RP-modules.

Proof Let M be an endo-monomial RP-module. Set A = Endg(M). Then A(P) # 0 and
AP has a unique local point. Thus A(P, ¢) = 0 for any 1 # ¢ € Hom(P, R*) by Proposition
3.8. Let @ be a subgroup of P. Then there exists an indecomposable RQ-module W such
that M|q = nW. Thus as Q-algebra A is isomorphic to n?Endg(W). As above, for any
¢ € Hom(Q, R*), we have Endg(W)(@Q,¢) =0. Thus M is an endo-permutation module.

If A is an R-simple monomial P-algebra, we have A & Endg(M) for some R-module M. Note
that A may not have an interior structure, so that M may not be an endo-monomial module.
But A(P) # 0 implies this.

Proposition 3.10 Let A be an endo-monomial P-algebra with A(P) # 0. Then then there
ezists an interior P-algebra structure on A inducing the given P-glgebre structure.

We define a generalized Dede P-algebra to be an R-simple monomial P-algebra such that
A(P) # 0. A generalized Dade P-algebra is called neutral if A = Endg(M) for some monomial
RP-module M. By Proposition 3.5, if A and B are generalized Dade P-algebra, then A® B is
a generalized Dade P-algebra. We now define a equivalence relation on the set of all generalized
Dade P-algebras. Two generalizde Dade P-algebras A and B are called similar if there exist
two neutral generalized Dade P-algebras S and T such that A@ S=B®7T.

Analogous to the Dade group, the set of equivalent class of generalizde Dade P-algebras has
the structure of an abelian group, given by

[A1] + [42] := [A1 @ A3].

The class of neutral generalized Dade P-algebras is the identity element. The inverse element
of [4] is [A*].
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On the nilpotency index of the radical of a group algebra

Kaoru Motose

Let £(G) be the nilpotency index of the radical J(K'G) of a group algebra
KG of a finite p-solvable group G over a field K of characteristic p > 0.
Then it is well known by D. A. R. Wallace 7] that

PP 2HG) ze(p-1)+1,

where pf is the order of a Sylow p-subgroup of G.

H. Fukushima [1] characterized a group G of p-length 2 satisfying
t(G) = e(p— 1) + 1, see also [4]. Unfortunately, his characterization
holds under a condition such that the p-part V = Oy ,(G)/O0,(G) of G
is abelian.

In this note, using Dickson near fields, we shall give an explicit exam-
ple (see Example 1) such that a group G of p-length 2 has the non abelian
p-part V and satisfies ¢(G) = e(p—1) + 1. This example will be new and
have a contributions in our research. Example 2 is also very interesting
because quite different objects (see (3] and [3]) are unified on the ground
of Dickson near fields.

Let H be a sharply 2-fold transitive group on A = {0,1,a, 3,...,7}
(see [8, p.22]), let V = H; be a stabilizer of 0 and let U be the set
consisting of the identity ¢ and fixed point-free permutations in . Then
U is an elementary sbelian p-subgroup of H with the order p* (see 1).
Let o be a permutation of order p on A satisfying conditions

cHo ' C H, =1, 0(0) =0, and o(1) = 1.

Then it is easy to see cUs ! CU and oVo~ ! C V. Weset W= <0 >
and Cy(0) = {v € V | ov = vo}. Assume that there exists a normal
subgroup T of WV contained in V such that V is a semi-direct product
of T by Cv(o). Weset G=<W, T, U >.

The final version of this note will be submitted for publication elsewhere. This
note was financially supported by the Grant in-Aid for Scientific Research from Japan
Society for the Promotion of Science (Subject No. 1164003).
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Now, we can prove the following results.

1. U is o normal and elementary abelian p-subgroup of H end A is
a near field of characteristic p with respect to the proper sum end
product.

2. o is an automorphism of A.

3. WT is a Frobenius group with kernel T end complement W.
4. G=TCg(o)T.

5. (JIKW)TKG)" C J(KW)*"TKG, where T = Tycrt.

A result 1 is well known. We can see from the result 2 and the classifi-
cation of finite near fields (see [9]) that A is a Dickson near field because
A hes an automorphism of order p where p is the characteristic of A.

Theorem. Let S be a subgroup of V containing T and let p*~! be
the order of a Sylow p-subgroup WU of M = < S, W, U > . Then
t(M)=(s+1)(p-1)+1.

We shall present some examples about Theorem.

Example 1. Let (g,n) be a Dickson pair where p is a prime and
g = p” for a positive integer r. Then (¢P,n) is also a Dickson pair be-
cause ¢ = ~1 mod 4 if and only if g = —1 mod 4. Let F = Fgm be a
finite field of order ¢”* and Let D = D be a finite Dickson near field
defined by the automorphism 7 : z — 2%° of F. Then an automorphism
0:2 — 2% of Fis also of D by [9, Satz 18] or {6, Theorem 5] because
P™ =g¢" = 1mod n (see also |6, Theorem 1J).

Let w be a generator of the multiplicative group F* and we set a =
w", b=win F*. Then the multiplicative group D"* of D has the structure

D'=<a,b|la™=1, b"=a, bab~' =a¥ >,

where m = 9? and t = P Here we use the usual symbol as the
product in D for simplicity. Do not confuse with the product in F. We
consider some permutations on D.

u.:z—z+cforceD, v.:xz—cxforce D"
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Then we have some relations
UgUd = Udgy Veld = Vody VelUd¥o 1= U, au‘:a'1 = Ug(e), crvca"l = Ug(e)
on U, v¥.,0. We set

U={u.|ceD}, V={v. |ceD}, W=< o >,

and
§t=1
T={v.eV]|ce< a = >}

It is easy to see that UV is sharply 2-fold transitive on D, T is normal
in WV and the order of T is 9;,:'7'11 because products of ¢ and z in D are
the same in F. On the other hand, the set Cy(c) is equal to F. as a set
and the order of Cy(0) is g" — 1. Since £75 and ¢" — 1 are relatively
prime, we have V = Cy(0)T, Cy(o)NT = {c}. Let S be a subgroup of V
containingTand M =< §, W, U > . Thent(M) = (rpn+1)(p—1)+1
by Theorem, where p™™*! is the order of a Sylow p-subgroup WU of M.

If we put D = F for the extreme case n = 1, we have the same example
as in [3].

Example 2. If (g,n) # (3,2) and p is not a divisor of r, then Dgn
has no automorphisms of order p, and so we consider Dge~. But D3
has an automorphism ¢ of order 3 and we can consider the affine group
G =< o, V, U > over D32 where D3 is a Dickson near fields defined
by an automorphism z — 2% of Fg2 = Fy[z]/(22+ 1) = {s+ ti [ ¥ =
—1,s,t € Fa}, o is defined by o(s + ti) = s+t + ti, and the permutation
group U,V are defined as in Example 1. This group G is isomorphic to
Qd(3), namely, a group defined by semi-direct product of ng) by SL(2,3)
using the natural action where F:(,z) is 2-dimensional vector space over
F3 and SL(2,3) is the special linear group over FY. In this case 3°
is the order of a Sylow 3-subgroup of G and it is known form [5) that
t(G)=9>7=3(3-1)+1.

This observation is very interesting because quite different objects (see
[3] and [3]) are unified on the ground of Dickson near fields.
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DIRECT SUMS OF LIFTING MODULES

YOSUKE KURATOMI

A right R-module A is said to be an extending module, if it satisfies the following
property: For any submodule X of M/, there exists a direct summand of Af which contains
X as an essential submodule. Dually, M is said to be a lifting module, if it satisfies the
dual property: For any submodule X of M, there exists a direct summand of M which is a
co-essential submodule of X. For these properties, the following problems are fundamental
unsolved problems:

Problem A When is a direct sum of extending modules extending ?

Problem B When is a direct sum of lifting modules lifting ?

Problem A is studied in several papers [1]. (2], [3], [4] and [5). In particular, in [2], we
introduced a new concept of relative injectivity (that is, generalized relative injectivity)
and using this relative injectivity, we showed the following result:

Theorem I. Let M; and M, be extending modules and put M = M, & Ms. Then M
is extending for M = M, @ M, if and only if Af; is generalized Mj-injective (i # j).

This theorem seems to be a nice result on Problem A. For Problem B, it is natural to
study a dual result for Theorem I. We can naturally define generalized relative projectivity.
However, it is not so trivial to give a proof for a dual result of Theorem 1. Recently;, in [8],
Mohamed and Miiller tried to give a proof for a dual result. But, they did not succeed.
They gave a proof under a certain assumption.

Now, in my paper [7). I gave a proof for a dual result above. This note in an abstract
of this my paper.

Our main theorems are the following:

Result 1 Let R be any ring and let Af; and M be lifting modules and put M =
M@ M,. Then M is lifting for M = M, @M, if and only if Af] is generalized M;-projective
(7 % ) for any direct summand Al of M.

Result 2 Let R De any ring and let A, and M, be lifting modules with the finite
internal exchange property and put M = AM; @ M,. Then M is a lifting module with the
finite internal exchange property if and only if M; is generalized M;-projective (i # j).

1. PRELIMINARIES

A submodule S of a module 1 is said to be a small submodule, if M # K + S for
any proper submodule A of M and we write § « M in this case. Let M be a module
and let .\ and K be submodules of M with ' C N. K is said to be a co-essential
submodule of N in M if N/K « M/K and we write K’ C. \ in this case. Let X be a
submodule of M. X is called co-closed submodule in M if X" has not a proper co-essential
submodule in M. X" is called co-closure of X in M if X' is a co-closed submodule of M
with X' €. X. K <. N means that I’ is a direct summand of N. Let M = M, @ M,
and let v : My = Ms be a homoworphism. Put (M; 5 ALY = {m; — o(m)) | my € M},

The detailed version of this paper has been submitted for publication elsewhere.
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Then this is a submodule of M which is called the graph with respect to M) — M. Note
that M = M, @ M, = (M, 5 M) © M,.

A module M has the finite internal exchange property if. for any finite direct sum
decomposition M = A, @ --- @ M, and any direct summand X of M, there exists
M,CM (i=1,-- .n)suchthat M =XQM, & - @ M,.

A module A{ is said to be a lifting module if, for any submodule X, there exists a direct
summand X~ of M such that X~ C, X.

Let {Af; | i € I} Ve a family of modules and let Af = &,;M;. M is said to be a lifting
module for the decomposition M = AL if, for any submodule X of M, there exist
X" € M and M; C M; (i € I) such that X~ C. X and M = X~ @ (@ AL;), thatis, M is a
lifting module and satisfies the internal exchange property in the direct sum M = &;A4;.

2. GENERALIZED PROJECTIVE

A module A is said to he generalized B-projective (B-cojective) if, for any homo-
morphismn f : A = X and any epimorphism g : B = X, there exist decompositions
A=464. B = B, ® B, abomomorphism k; : A; = B; and an epimorphism
hy : Ba = Aj such that go h; = f|4, and f o hy = g|p, (cf. [8]). The concept of general-
ized projective is a dual one of generalized injective (cf. [2]). Note that every B-projective
modules is generalized B-projective. A module 4 is said to be small B-projective if, for
any epimorphism ¢ : B = X and any homomorphism f : A = X with Imf « X, there
exists a homomorphism / : A = B such that go h = f (cf. [6]).

Proposition 2.1. (cf. [8]) Let B~ be a direct summand of B. If A is generalized B-
projective, then A is generalized B™-projective.

Proposition 2.2. Let A be a module with the finite internal ezchange property and let
A" be a direct summand of A. If A is generalized B-projective, then A~ is generalized
B-projective.

Let .\ be a submodule of a mmodule Af. A submodule Y of M is called a supplement of
XinMifM=X+Y and X NY € Y. Note that supplement ¥ of X in M is co-closed
in M. A module M is weakly supplemented (®-supplemented) if, for any submnodule X
of M, there exists a submodule (direct sunmand) Y of A such that Y is supplement of
X in M. A module A is called supplemented if, X contains a supplement of ¥ in M
whenever M = X + Y. We note that @-supplement modules and supplemented modules
are weakly supplemented. Now we consider the following condition:

(*) Any submodule of M has a co-closure in .

By [9, Proposition 3]. we see that any module M over right perfect ring satisfies the
condition ().

Proposition 2.3. (cf. [6]) A module M is supplemented if and only if M is weakly
supplemented with (*).

By proposition above. we obtain the following:

Proposition 2.4. Let \] = A® B be weakly supplemented with (+) and let A” be a direct
summand of A. If A is generalized B-projective. then A™ is generalized B-projective.

We do not know whether the proposition above for every module are correct.
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3. MAIN RESULTS
First, we give the following results.

Proposition 3.1. (cf. [8. Theorem 2.8]) Let My and Afy be modules and put M =
M, & My, If M is lifting for M = M, & XM, then My and M, are relative generalized
projective.

The following is dual to [2. Theorem 2.13].

Proposition 3.2. Let Ml = @;Al; and let M; = M! @ M (i € I). If M is lifting for
M = @ M;, then N = @; M is lifting for N = & M]

Now we give the following without a proof.

Proposition 3.3. Let Af, be a lifting module, let M, be generalized M,-projective and put
M = M) ® M. Then. for any submodule X of M with M = M) + X, there exist a direct
summand X~ of M and a direct summand M! of M; (i = 1.2) such that M = X "®M ®M,
and X~ C. X.

These results give the following theorem that is one of main results.

Theorem 3.4. Let M, and M, be lifting modules and put M = M, & M,. Then M is
lifting for M = M, & M, if and only if M is generalized M ;-projective for any M; <g M;
(i #J).

Proof. “ Only if " part : This is clear from Proposition 3.2 and Proposition 3.1.

“If " part : Let M, and M, be lifting modules and put M = M, & M,. Assume that
M is generalized AMj-projective for any direct summand M] of Af; (i # j). Let X be
a submodule of M. Since M is lifting, there exists a decomposition My = M| & MY
such that M| C. my, (X). Put X' = (M{ & M) N X. Since M, is lifting, there exists 2
decomposition Af, = M} @ M} such that Af) C. my, (X'). Put X" = (MY @ My)N X,
then we see

T (X)) < M (i=1,2)

and
M = m(X)+ M+ Mo =X + M + My
= N+M +mn(X)V+ M =X+ M/ + X'+ M)
= X+ (M e M)).
So we see

X" - T-'_.\[I"(X”) & 71'_‘151(:\'"} L4 .‘“I;’ (22) .’\fé’.

Nowset K = M @M} and L = (X +M/)NK. Then M = A @ Mjand K = My + L.
Since Mj C 7y, (X') C X+ M. X+ M = My L Let p: K = K/L be the
canonical epimorphism aud put f = oy and g = 2lyy. As K = My + L. fpis
an epimorphism. By Lemma 2.1. Mj is generalized Mj-projective. Thus there exist

decompositions M} = M & M. My = Mj & Mj, a homomorphism ¢ : M - My
and an epimorphism 5 : -\_IZ,T - \_I{ such that f]m = gy and glzm = fye. Given
T=m) - (m)e (M3 ﬁ) then

2(1) = (M) = g1 (1) = f(m]) - g (m]) = f(m}) — f(m]) =0.
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So (\Il 41 \/!”) C Kery = L. Similarly we get (M” 3 M') C L, and so MY & an 3
MYe(MIBAM)CL PuttingT=M'e AL, B o (M 3 .M') & M), we have
M=Te® Ml & M;’
and
TCMyeL=X+M.
And we get
T (\+ MHYNT =M+ (TNnX). e (#)

Now we see (M 5 \I’) o \I’ =\ 3 Ml) + MY since (o, is an epimorphism, and so
M=Ts Ml @ .\!.:,’ =T+ M+ M =T+M = (TNX)+ (M & M)
As X" = (MY @ MZ)NX <« M @ Mj. we get
TNXC. X.

Now define a : M{ @ M} — My, 3 : My & Mg = M by a(m} + m]) = ¢(m]) and
B{my + mj) = pa(m}), respectively. Then

T=(M'eM 3 e (Mo T 530
As (+) and MY C (M @ 3 S 3I0).
T=M'+(TnX)= (M &3 33 + (T X).

By Proposition 3.3, there exist decompositions MIQAL = (M!'® M ) & (M} @ M;) and
A_ﬁ%T!g = (M} @ M) (M} & \I ") such that T = T'@{M} ® M} > Mé’)e(M’ oM 2
MadT'C. TNX. AsTNX C. X,

T'c.X.

On the other hand. we see
M =Te¢ \__f{- & ﬁ
= T'o(M'&M S5 o (M@ M}
ToM oM eMe M oM o
= T'o(M{©M, 01]) & (M; 11 & 113).
Therefore A is lifting for M = M, @ M. |

As innnediate consequences of Proposition 2.4 and Theoreimn 3.4, we obtain the follow-
ing.
Corollary 3.5. Let M| and )\, be lifting modules and put M = My @ M,. Assume that
M satisfies the condition (=). Then M is lifting for M = My & M, if and only if M; is
generalized M ;-projective (i # j).

S e oM

The following is immediate from Theorem 3.4 and the proof of [2, Theorem 2.11].

Theorem 3.6. Let A,.--. . M, be lifting modules and put Al = M, @®--- & M,. Then M
is lifting for M = M\ & -- - @ M, if and only if M and T are relative generalized projective
Jor any M{ <. M and any T <. (@;z:M]).
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As immediate consequences of Theorem 3.6, we obtain the following.

Corollary 3.7. Let M,.--- .M, be lifting modules and put Ml = M, @ --- & M,. If M;
and M; are relative projective (i # j). then M is lifting for Ml =M, & --- & M,.

From [2, Proof of theorem 2.13]. Proposition 2.2 and Theorem 3.4, we get the following
results.

Theorem 3.8. Let My and A be lifting modules with the finite internal exchange property
and put M = M) ® M,. Then the following conditions are equivalent.

(1) M is lifting with the finite internal exchange property.

(2) M is lifting for Al = A, & M.

(3) M; is generalized Al;-projective (i # j).

Theorem 3.9. Let M. - -, M, be lifting modules with the finite internal exchenge prop-
erty and put M = M, & - -- & M,. Then the following conditions are equivalent.

(1) M is lifting with the finite internal exchange property.

(2) M is lifting for M =M, @ --- ® M,.

(3) M; and &®;,;M; are relative generalized projective.

As immediate consequences of Theorem 3.9, we obtain the following.

Corollary 3.10. Let M,,--- . Al, be lifting modules with the finite internal ezchange
property and put M = A & --- @ M,. If M; and M are relative projective (i # j), then
M is lifting with the finite internal exchange property.

Finally, we can obtain the following.

Theorem 3.11. Let M,.--- . M, be hollow modules and put Ml = M, & --- @ M,. Then
M is lifting for Ml = M @ - -- & M, if and only if M; is generalized A;-projective (1 # j).
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Free Fields in Complete Skew Fields

and Their Valuations

Katsuo Chiba

Abstract. The main purpose of this paper is to prove the following [4, Theorem 1]:
let D be a countable skew field with a countable center C, X a countable set, and let
K be a subfield of D which is its own bicentralizer and whose centralizer X' is
such that the left K-space KcK' is infinite-dimensional over X, for all ¢ e D -{0}.
Then (1) if there is a discrete valuation v on D and an element ¢t of K' such that
v(t) >0, then the completion D of D with respect to the topology defined by v
contains the free field D, (X) on the set X, (2) the skew field of Laurent series
D((2)) in z over D contains D,(X). The result provides also a new method for

constructing valuations of free fields.

A. Lichtman, L. Makar-Limanov, J. Goncalves % & Y JEFT#R 2 kDR
EXEMRLOREMEBHEPBEEELRLEEZEUNLEID, H5WViEHDY
LEERRTOFENEHSTR, BHEREZELNLE I ML) HBESH
RENTWD. i THHHHIEEEBLTHEISBAKEZS LI LETT.
BHEE LT LD &IT Amitsur BERIT[11IC & Y $HED rational identity DB
DBRTHER LB HZTHE®D universal field of fractions TH 3. BHEEIX
Bergman [2], Cohn [5,6] FiZ X VB, B &=, £72 Cohn IZ & 5 semifir

This is the final version.
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Z O universal field of fractions IXRAIRBOBREBR > TRBET D I L NE
LV 23 Cohn @ matrix localization 12 & 3 & FIRBOBRBOBRLRIEE L E
5% 4% A car AN

fn#8 1 [5, Corollary 7.5.11]. R % semifir, ¥ % R E® full matrix £&95

& universal Y -inverting ring iZ R @ universal field of fractions T& 5.

Cohn iZT-> T, ZDRXTIRABKIIROBRIZL L—XOIZEETS. D
2k, K2 DoRafE, X288LT5 L, D-HEARD, <X > T semifir
T3 Y universal field of fractions # & %, & D (X) ¢ BEE HABKLE S,
D=KDHEBHEEZKX) L EL. 7D, <X >iL semifir Eh b, HE
X Y D, <X > full matrix £ 312 X 3 universal T -inverting ring i3 B B {f
D (X)Th 5.

EFBAYBRBBICKRORIZESZEDS. UTD 2 RHE, C2%FD
PLTERES, YEURES, K% D OBHHETHFD bicentralizer 5 K
BEETS.

EE 1. KD centralizer Z K& L, fEED ce D-{0} 2% L T KeK' B ER KT
EK-<RJ MERETS.

(DD \ZEERAHE v B350, vK)=0&T3L, DO vIZE3EHBILDITAH
D (X)) EET.

(2)Laurent series 3 52 3 #HE D((2)) LB B{ED, (X) .

EE | OFEAIZIIRDOID specialization lemma BLETHD. Zhi
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Amitsur, Cohn O specialization lemma # —{t L7~ bDTH 3.

#EE 1[cf 3, Lemma 6]. D Z§Hk, CEZ 0D L TERBRES, Y248, K%
D OB FHETE D bicentralizer K HEH L L, HE K OREBROKEPLE
subnormal subgroup &9 5. EBOETL2VDDFTcIZH L T[KeK :K]=w &
T3¢, EBOD, <X> LD full matrix T X IZFE R HOTXZRATHIED
LEDORIFEFTFIZ2D.

R’ 1 DIEHA
(1), QFBFRZRIEATHI2 05, QDIEACERZIE~S. D, XIIAIEEH
5D, <X>E®D fullmatrix HRAIBTHD. Thz

Ax), Ax), AE), ... A(x),--.
15 BE1Z2EYE, deD(2) (=123.)T

Ad), 4,d), Ad),... Ad),-..
HBAFITINCRDLOBFEETIZ LI5S,
W1 XY D, <X > full matrix £{K3 12X 5 universal Y-inverting ring i
BEED,WX)THEINLD() DT D &d eD((2) (=123 )TERKE
ni= D-field BB D (X) L RBIZRS. (¥)

FHEDOERESHETIRIEFEOFHEIZ SV TORFEITP 2. EB1IZLY,
BEREOMETEOERSTREIIBLRWVWBEIZOVTHSALWN L 2
DRERTERETI(ER?2, 3). TEROEB4ICIVEBEEZE0EEHN L
BEzH=25.
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B2 D OEEOMEIIBEBRED, (X)ITHETES. b EDMTEMNTHRT
HITHE S R HE S SRR EIZ 2> TV 3.

EE 3. k ZF[E, k(OZBHE, GCZzHAIRTARIBFH#ELTS. HOD
HETCEFOEBENZXxGERDILDEHD. T T ZIRBELSEOMERT,
BRRIERZED, ZxCOBEFIZEGRNIEFLT5.

EH 4. k2785, o2 kDBCRBTERMVE T HERESETS.
Z ® & % Laurent series 72 572 3 8K k((y,0)) 13k’ EOBBEL (X)) 2 ST,

WICBREITEAREE, HALRREOFHEEZRESZ EMNLNS.

EES. hZFEROOTBRELTSH. BEE K)SRREDS k £ 1 ZEEHBIK
ko k-EEBFHEZ © .

REILKOBEZEBETS.

EBAICED L QRHBEE, k=002 Q LO—EHBEKEc* kDB
CERIMCERMNELTSE. Ao =t+1E7T5. ZDL & Laurent series
NHERIP[Ek(z,0)E 0 LOBHBEEQX ) ZEL. x, y Dk((2,0))DPT
DEEBRFEZRD L.
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EQUIDIMENSIONAL ACTIONS OF ALGEBRAIC
TORI ON NORMAL GRADED DOMAINS

HARUHISA NAKAJIMA

ABSTRACT. Let T be an algebraic torus and X an affine conical normal variety over an
algebraically closed field X of arbitrary characteristic p. We consider equidimensional and
stable regular actions of T on X compatible with the conical structure. Using theory of
associated cones (cf. [BK, GM, W2]) and a generalization of R. P. Stanley’s criterion (cf.
[S, N1]) for a module of relative invariants of finite groups to be free, we show that such
actions are almost cofree, i.e., there are finite subgroups N of T such that the actions of
T/N on X//N are cofree, especially in the case where p = 0.

1. Introduction

In this paper, we suppose that all algebraic varieties are defined over an algebraically
closed field K of arbitrary characteristic p. Without specifying, G (resp. T') will always
stand for a reductive algebraic group (resp. connected algebraic torus). For an affine
variety X, O(X) denotes the K-algebra of all regular functions on X. When a regular
action of G on an affine variety X (abbr. (X,G)) (cf. [GM]) is given, we define O(X)®
to be the K-subalgebra consisting of all invariants of G in O(X). An affine variety X is
said to be conical, if O(X) is equipped with a positive graduation O(X) = @;5, O(X):
over K, and, equivalently, there is a half K*-action on X with a unique fixed point zo
satisfying lim;_,ot -z = zo for all z € X. In this case, an action (X,G) is said to be
conical, if the associated action G preserves the graduation of O(X). Since O(X)€ is
finitely generated as a K-algebra, we denote by X//G the affine variety associated with
O(X)%, i.e., the algebraic quotient of (X, G) and by 7x ¢ the quotient map X — X//G.
The action (X,G) is said to be cofree (resp. equidimensional), if O(X) is O(X)C-free
(resp. if *x,g : X =+ X//G is equidimensional). Recall that (X, G) is said to be stable,
if X contains a non-empty open subset consisting of closed G-orbits. An affine (X,G)
is said to be pointed with a base point z¢ € X, if z¢ is G-invariant. In this case, we
define the nullcone (X, G) to be the affine scheme Spec (O(X)/O(X) - ME), where
M., denotes the maximal ideal of xo.

1991 Mathematics Subject Classification. 14L30, 20G05, 13A50, 13B1S.

Key words and phrases. invariant theory, algebraic tori, normal domains, divisors.
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In [N3], we obtain the two results on affine factorial varieties with actions of algebraic
tori under the assumtion that the base fields are of characteristic zero as a generalization
of [W1] as follows.

Theorem 1 ([N3]). Suppose that K is of characteristic zero. Let X be an affine
conical factorial variety with a conical stable action of T and let V be a dual space of
a minimal homogeneous T-submodule of O(X) generating O(X) as a K-algebra. Then
the following conditions are equivalent:

(1) (X,T) is equidimensional.

(2) (X,T) is cofree.

(3) (V,T) is cofree.

(4) N(X,T) is a complete intersection and X is defined by T-ivariant polynomial
functions on V.

Let X(G) stand for the rational linear character group of G over K which is regarded
as an additive group. For any x € X(G), set

O(X)y = {z € O(X) | 0(z) = x(0) - = for any o € G},

whose elements are called semi-invariants of G relative to x in O(X). Clearly O(X),
is an O(X)%-module. For a rational G-module U or for an affine G-variety U, set

xY(G) = {x € X(G) | O(U)y # (0)},

Xy(G) = {x € X(G) | O(U)y - O(U)—x # (0)}-

For a non-pointed X, the next slight modification follows, similarly as in [H], from
Theorem 1, Luna’s slice theorem and the property of pointed varieties and graded
algebras.

Theorem 2 ([N3]). Suppose that K is of characteristic zero, G is reductive. and
X be a smooth affine variety with a regular G-action. If the action of G on X is
equidimensional, then, for any point £ of X/G, Cl{O(X/G)¢) is isomorphic to a quotient
of the abelization of G./G2, where z denotes a point in the unique closed orbit in X
over §.

The purpose of this lecture is to generalize a part of Theorem 1, which seems to
be fundamental in the study of equidimensional actions of non-semisimple reductive
algebraic groups, to the case where the variety X is non-factorial normal and the ground
field K is of arbitrary characterisitic.

Throughout this paper, let the symbol p denote the characteristic of K and let Zg
denote the set of non-negative integers.

2. Divisorial modules of semi-invariants

Let Ht; (X) denote the set of generic points £ € sp(X), the scheme associated with X,
of irreducible closed subvaristies Z of X of codimension one and let Ht,(X, G) denote
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the subset of Ht,(X) consisting of £ such that {xx c(€)}~ are so in X//G. Moreover,
when X is normal, let e(, 7x,c(€)) denote the order ve(f) of a zero of a local parameter
S of mx c(£) along Z = {£}~, which is called the reduced ramification index of £ over
7x,6(§), where v¢ stands for the discrete valuation of Y. Denote by ey(€, 7x,g(£)) the
p-part of te(§, 7x,c(£)) if p > 0 and, otherwise, denote e(£, nx,g(£)). For any £ € sp(X),
let Dg(€) denote the stabilizer of G at £ and let Jg(€) denote the kernel of the canonical
homomorphism Dg(£§) — Aut(k(£)), where k(£) denotes the residue class field of Ogpx ¢ -
Let Ht{°(X, G) denote the set consisting of £ € Ht;(X) such that £ N O(X)C # (0).

Proposition 3 ([N4]). Suppose that G° is linearly reductive. Then Ig("B)|x is finite
Jor any P € Ht¥(X, G).

For n € N, let s be the natural number such that p||n if p > 0, or, otherwise, put
s = 0. Then p*® (resp. n/p* € N) is said to be the p-part (resp. p’-part) of n and
Bpr (F) denotes the p’-part of the cardinality of a set F. Especially we denote the p’-part
e(§, mx,1(£)) by ey (&, 7x,1(£)).

The relation between the reduced remification indices and the inertia groups are
studied in {N3].

Theorem 4 ([N4]). Suppose that G® is a torus. Then the following conditions are
equivalent:

(1) G = Zg(G®), or G/Zg(GP) is a p-group in the case where p > 0.
(2) The egualities

eP’(E)“X,H(E)) = uP'(IH(E)LY) (Vf € Htl(XaH))

hold for any closed subgroup H of G containing Zg(GP®) and for any affine
normal varielty X with a regular effective stable action of H.

Let us introduce further notations under the circumstances that G° is an algebraic
torus, G = Zg(G®) and the action (X, G) is faithful. For p € Ht{°(X,G), we choose §,
from X(Jg(p) - G°) in such a way that

< 85, X0 X)P(15(p) - G°) >= X(I(p) - G)
and put
sp(x) = inf{r € Zo | Xl15(p)-60 =18 mod < XX (I5(p)-G°) >},

Dy= > sp(x) divx(p) € Div(X).
pEHL(X,G)

In [N1], we have obtained a criterion O(X), to be a free O(X)C-module of rank one
in terms of the special semi-invariant g, under the assumption that G is finite over X
of arbitrary characteristic. Then, by Theorem 4, we come up with
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Theorem 5. Suppose that G° is an algebraic torus and G = Zg(G®). Let (X,G) be
a stable action of G on an affine normal variety X such that G C Aut(X). Then the
following conditions are equivalent for x € XX (G):

(1) Dy = divr(fy) for some f,, € O(X)y.

(2) O(X)y is a free O(X)®-module of rank one.

This can be extended to in the case where X is factorial and G° is linearly reductive.

For a conical affine variety X, we define the associated cone of a subset Z of X as
follows: If f € O(X), let gr(f) be the leading homogeneous component of f in O(X)
and, if J be an ideal of O(X), let gr(J) is the ideal of O(X) generated by {gr(f) | f € 3}.
As a set, the associated cone C(S) of Z C X is defined to be the subset of consisting
of closed points £ on which all functions of gr(J(S)) vanish, where J(Z) denote the
defining ideal of Z in O(X). If Z is an affine scheme sp(Z) = Spec(O(X)/J), the
schematic structure sp(C(Z) on C(Z2) is defined by the ring O(X)/gr(J).
Theorem 6 (W. Borho-H. Kraft [BK]). Let G — GL(V) be a finite dimensional

representataion of a connected linearly reductive algebraic group G. Suppose that an
orbit GP of a point P € V is semistable. Then we have, as- sets,

K*GP\GP = C(GP) = E*"GPNN(V,G)
By this and a proof of Theorem 2.5 of [W2], we must have

Lemma 7. Let (Y,T1) be a conical action of Ty = K* on a normal affine conical
variety Y. Let Q be a finite gererating system of O(Y) as a K-algebra consisting of
homogeneous semi-invariants of T). Fizing an isomorphism v: X(T\) & Z, we define the
subsets; U, = {z € Q| 2€ OY)y,v(x) >0}, Q- ={z €|z € O),vr(x) <0}
Let f € Q. and g € Q_ be elements such that \/O(Y)f (resp. \/O(Y)g} is mazimal in

{VOX)z |z €y (resp. z€Q_) }.

If (Y, T}) is equidimensional and stable, then:
(1) O(Y) is itntegral over O(Y)T3[f, g].
(2) If x is any non-zero rational character of Ty, then there is a u € N depending x
such that (O(Y))* COY) - f or (O(Y))* CO(Y) - g

Proof (Outline). Since the quotient morphism 7y,7, : Y — Y//T) is dominant equidi-
mensional and Y//T) is normal, the morphism 7y, is open. For a semistable orbit
TiP in Y\YT:, put

Up = nyx, (Y\K* 7y 1, (7v,1, (P)))-
Then, as P € Up and Up is open, we have Up N K*P = §. Thus

N(Y,Th) € K*ny ¥, (zv,7, (P)),
and consequently, by Theorem 6, we conclude that, as sets,

Cry 1, (v, (P))) = N(Y, Th).
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Let h be an element of Q_ and suppose h & \/O(Y)g. Let be a,b,c and d natural
neumbers such that f2g* € O(Y)7t and fch? € O(Y)T:. Put z := f°g® and y := f°hd.
Suppose that \/O(Y)Tiz ¢ /O(Y)Tiy. Then let M be a maximal ideal of O(Y)T:
satisfying 9 # z, 9 3 y and let u: O(Y)Tt — K be the K-algebra map associted with
M. Since A
M- O(Y) 3 h*%(z° ~ p(z°)) - g*y°,

we see /O(Y) - M 3 h and, by the equality as above, that h € {/O(Y) - O(Y)i'.
~ Suppose \/OY iz C v/O(Y)Tiy. Choose n, m from N and z from O(Y)™? in such

a way that z" = y™ . z and \/O(Y)T1z ¢ \/O(Y)T:z. Then

fa-n . gbm = fc-m . hd-m .z

Say a-n < ¢-m. Since g®" = fem-en. pdm .z ¢ h.O(Y), we have \/O(Y)Tig =
VO(Y)T1h, which is a contradiction. Thus @ -n — ¢- m — 1 is non-negative. Express

hd-m-a 2=z fa.-(a-n—c-m—l) .ybc(a-n—l)

and let M be a maximal ideal of O(Y)T! such that 9 F z, M 3 z. Let « be the K-algebra
map O(Y)Tt = K associated with 9. Then we see

- O(Y) Sz fa-(a-n-c~m—1) . gb-(a-n—l) _ hd-m-a s (za - K(za)),

and it follows that W/O(Y) -O(Y)D > h from the equality on the associated cone of
semistable orbits as above.

We can continue this procedure, and, consequntly, conclude that both £2_ and {2
are contained in +/O(Y) - (O(Y)2:[/, 9])+, Which implies (1) easily.

Clearly the action (Spm O(Y)[f, g], T1) is cofree. Let x € XX (T') and let v € O(Y),
be a nonzero element. By (1), we see

v rw ot +uy =0

for some semi-invariants w; € O(Y)T[f,g]. Suppose »(x) > 0. For any 5 € X(T;) such
that v(n) > 0, we have

O [f,9D)n = OX)T - f¢ - ¢t

for some e € N, t € Zy. Thus v € O(Y) - f, and then, for a sufficiently large v € N, we
must have (O(Y)y)* CO(Y)-f. O
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3. Stable and equidimensional actions

The action (X, T) is said to be radially-cofree, if, for any x € X(T") with O(X), # {0},
there is a natural number m such that O(X)n.my, n € N, are free as O(X)7-modules.

Theorem 8. Suppose that (X,T) is conical, stable and equidimensional. Then the
action (X,T) is radially-cofree.

Proof (Outline). Let x be any non-zero linear character of T such that O(X), # {0}.
We apply the last assertion of Lemma 7 to the conical stable and equidimensional action
(X/Ker x, T/Ker x), and then, for any a € N, we can choose a u(a) € N depending
on ¢ and a semi-invariant f € O(X)K* X of T in such a way that (O(X)ay)*® C
O(X)¥Ker x . f. The subgroup < xmod Ker x > is of index p* w € Z, in the case of
p >0, in X(T/Ker x) = Z - ¥ mod Ker x for some ¥ € X(T). So we may suppose
X = vy, where v = 1 if p = 0, and otherwise v = p*. The element f is regarded as an
element of O(X),y for some s € N. Let b be any natural number. By Lemma 7, we
obtain m, n € N and a divisorial integral ideal 3 of O(X) such that

((O(X)p.0p - OX))~)™)™ = f"- 3
and 3 ¢ +/O(X)f. Since
((O(X)p-sy - O(X)N™)™)™ C (O(X)(p.m—n)-ap)O(X))™ - f*,
we see 3 C (O(X)(p.mon)oy - O(X))~. If b-m > n, then
(O(X)(pm—n)sp) 72 C O(X) - §,

and hence b-m < n and (O(X)p.5y)™ - O(X) C O(X) - Fb™. So we see (O(X)p.syp)™ =
o™ - O(X)T and, since O(X)p.sy 3 f° and

((O(X)b.s9 - O(X))™)™)™ = ((O(X)p.09)™ - O(X))™ = O(X) - f*™,

we have (O(X)p.spO(X))~ = O(X) - f°. Cosequently we see that O(X)p.ysyp =

Denote by Rx (G) the subgroup of G generated by Upen, (x,6)lc(p) say Rx(G) the
generalized reflection subgroup for the action (X, G).

Proposition 9 ([N4]). Suppose that G° is linearly reductive and that (X,G) is an
effective action on an affine normal X. SetY = X//Rx(G). Then:

(1) The group Rx(G) consists of finite members and closed in G.
(2) Ry(G) = Rx(G).
(3) Is(g)ly = {1} for g € H:s(Y,G).
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We now study on a conical action of T on an affine normal X. Let A denote
a generating system {fi,..., fo} of O(X) consisting of semi-invariants of T and put
suppx (f) = {p € Ht;(X,T) | vu(f) > 0}. Furtheremore, set

Qa = {divx,r(pn OX)T) | p € Uisuppx(fi)},

Cla(X//T) = (Div(X//T) = CUX//T))(< 2 >).

Then the torsion part of the subgroup Cla(X//T) of the class group is finite and, if
p = 0, the p’ -part of the order is identified with the order. We say that (X,T) is
p-cofree, if there is a subgroup A of X¥(T) of index p™ for some n € N such that

AC{xeX(T) | O(X),=OX)T}

in the case where p > 0. As a matter of convenience, we identify 0-cofreeness (p = 0)
with cofreeness.
Now, our main result is

Theorem 10. Suppose that X is an affine conical normal variety with a conical action
of an algebraic torus T such that T can be regarded as a subgroup of Aut(X). If the
action (X,T) stable and equidimensional, then we can choose a finite subgroup N of T in
such a way that N D Rx(T), exp(N/Rx(T)) < tip (tor(Cla(X//T)) and (X//N,T/N)
is p-cofree.

Skech of proof. Let x be a linear character in Rx(T)* C %(G) and f be a nonzero
homogeneous element in O(X),. Then, in general,

vp(f) €Eep(ppNOX)T) - Zo

for any p € Ht)(X,T). Since O(X)sx = O(X)T for some s € N (cf. Theorem 8) and
nx,r : X = X//T is no-blowing-up of codimension one, there is a pair of effective
divisors .D;, D, such that

D € Q- divx(Q(O(X)T)*),

D2 = .Dx and
divx(f) = Dy + D,.

The assertion in this theorem follows from these observations and the Galois descent
method of divisor class groups of rings of invariants (cf. [M, N2]). O

Especially in case of p = 0, for an effective stable action (X, T), it is equidimensional
if and only if there is a finite subgroup N of T such that (X//N,T/N) is cofree.

Finally, we would like to pointed out that Theorem 10, which is regarded as a gen-
eralization of Theorem 4.2 of [N3], seems to do not imply Theorem 1 even if K is of
characteristic zero, because |tor(Clo(X//T))| is not characterized in that theorem.
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Extensions and irreducibility of induced characters
of some 2-groups

Katsusuke SEKIGUCHI

1. Introduction

For a finite group G , we denote by Irr(G) the set of complex irreducible char-
acters of G and by FIrr(G) ( C Irr(G)) the set of faithful irreducible characters of
G.

Let Qn , Dn, SD, and C, denote the generalized quaternion group , the
dihedral group of order 2*+!(n > 2), the semidihedral group of order 2°*!(n > 3)
and the cyclic group of order 2%(n > 0) ,respectively.

As is stated in [4] , these groups have remarkable properties among all 2-groups
. Moreover, Yamada and lida [5] proved the following result:

Let Q denote the rational field. Let G be a 2-group and x a complex irreducible
character of G. Then there exist subgroups Ht>N in G and the complex irreducible
character ¢ of H such that x = ¢%, Q(x) = Q(¢), N = Ker¢ and

HINZQ, (n>2), or D, (n23), or SD, (n > 3), or C, (n > 0),

where Q(x) = Q(x(9), 9 € G).
In this note, we consider the following problem:

Problem Let ¢ be a faithful irreducible character of H, where H = Q,, or D,
or SD,. Determine the 2-group G such that H C G and the induced character
#% s also irreducible.

This prroblem was raised by Yamada and Iida ([4]).

It is well-known that the groups Q, , D, and SD, have faithful irreducible
characters. It is also known that they are algebraically conjugate to each other.
Hence the irreducibility of ¢ , where ¢ is a faithful irreducible character of
H = Q, or D, or SD,, does not depend on the particular choice of ¢, but
depends only on these groups.

The detailed version of this paper has been published ([7]).
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This problem has been solved in each of the following cases:

(1) When [G:H]=2o0r4 ([4]),

(2) When H is a normal subgroup of G ([3]),
forall H =@, or D, or SD,.

For other results concerning this problem, see [2].

The purpose of this note is to give a complete answer to this problem for all
H = Qn or D, or SD,,.. For details, see [6] and [7].

2. Statements of the results

We use the following notation throught this paper.

o The dihedral group D, = {a, b) (n 2 2) with
a¥" =1, P=1, bab~! = a1,

o The generalized quaternion group @, = (g, ) (n > 2) with
a® =1, ¥ =a"", bab~! = a1,

o The semidihedral group SD, = (a, b) (n > 3) with

¥ =1, ¥ =1, bab=! = a~1+2"7",
To state our results, we have to introduce the following groups:

(l) D(nam) = (a, b, u'rm) (DDn = {a, b) ) (1 SmsSn- 2) with
a? = =uZ =1, bab~! = a7l unau;l =o'+,
Umb = bu,,.
(2) Qrym)={e, b, up,) (P Qu=1{a, b)) 1 EmEn-2) with
e =uZ =1, ¥ =0, bab! = a7}, upaul = a2,
Umb = buy,.
(3) Do(n,1,1) = (a, b, w1, z) (> D(n,1) = {(a, b, u;)) with
o = =ul=z2=1, bab~! = a7}, wauy'! = a*2""", uyb = by,
zaz™! = au;, zbz~! = buy, w1z = zu,.
(4) Qo(n,1,1) =(a, b, uy, ) (> Q(n,1) = (a, b, 1)) with
e =ul=z2=1, =0, bab~! =a7!, yauy! = o+,

- - -1
b =buy, zaz™! = auy, bz = a?" by;, w1z = TUy.
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(5) D(n,m,1) = {(a, b, tm, z) (> D(n,m) ={a, b, up)) (2Sm S<n-23) with
@ = =uk =1, bab~! = a”!, upau;! = a7,
Umb = b, zaz™! = al* 2T 2bzl = b zumz! = U,
£ =yt , where e, isan odd integer defined by the relation ,

(1427 ™)em = (14 2°™1)2 (mod 27).

(6) Q(n,m,1) ={a, b, um, 2) (> Q(n,m) =(a, b, um)) (2Sm Sn-23) with
@ =42 =1, b =a?"’, bab™! = a7}, upauy! =+,

Umb = b, zaz™! = a2 "2 2bzt = buZ T, ZURT ) = U,

2?2 = ufr, where ey, is an odd integer defined by the relation ,
(14 27™)em = (14 2™-1)2 (mod 27).

REMARK We can show that the elements ulr defined in (5) and (6) are uniquely
determined, so the groups D(n,m,1) and Q(n,m,1) are uniquely determined for
each integers n and m.

Yamada and lida ([4]) proved the following

Theorem 0.1 ([4]) (1) Let n > 4 and ¢ € Flrr(D,). Let G be a 2-group such
that D, C G and (G : D,] = 22. Suppose that ¢€ € Irt(G), Then G = D(n,2) or
DO(na 1» 1)‘

(2) Letn > 4 and ¢ € FIrr(Q,). Let G be a 2-group such that Q, C G and
[G : Q] = 22. Suppose that ¢° € Irt(G), then G = Q(n,2) or Qo(n,1,1).

(3) Letn > 4 and ¢ € FIrr(SD,). Let G be a 2-group such that SD, C G and
[G : SD,] = 22. Suppose that ¢€ € Ir(G), Then G = Q(n,2) or Qy(n,1,1) or
D(n,2) or Do(n,1,1).

REMARK In [4] , they also determined the groups G for the case [G: H] =2
, forall H=Q, or D, or SD,,.

Further, Iida ([3]) proved the following

Theorem 0.2 ([3]) (1) Let ¢ € Flrr(D,). Let G be a 2-group such that D, S G
and D, <G. Suppose that ¢€ € Irr(G), then G = D(n,m) for some integer
m,1SmSn-2.

(2) Let ¢ € FIrr(Qn). Let G be a 2-group such that Q. G G end Q, <G.
Suppose that ¢¢ € Irr(G), then G = Q(n,m) for some integerm, 1< m Sn-2.

(3) Let ¢ € FIrr(SDy). Let G be a 2-group such that SD, G G and SD, <G.
Suppose that ¢° € Irt(G), then G = Q(n,m) or D(n,m) for some integer m, 1 <
mSn-2.
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Our main theorems are the following

Theorem 1 Let ¢ € Flrr(D,,). Suppose that G s a 2-group such that D, C G,
¢C € Irr(G) and [G: D,)=2™. Then

(1) m g n- 2:

(2) G=D(n,1) if m=1.

(3) G = D(n,2) or Dy(n,1,1) if m=2.

(4) G=D(n,m) or D(n,m-1,1) if 3SmIn-2

Theorem 2 Let ¢ € Flrr{Q,). Suppose that G is a 2-group such that Q, C G,
¢¢ € Irr(G) and [G:Qn)=2™. Then

1) mSn-2,

(2 G=Qn1) if m=L

(3) G=Q(n,2) or Qo(n,1,1) if m=2.

(4) G=Q(n,m)or Q(n,m-1,1) if 3EmSn-~-2.

Theorem 3 Let ¢ € FIrr(SD,). Suppose that G is a 2-group such that
SD,C G, ¢° €lrr(G) and [G:SD,] =2™. Then

(1) mSn-2,

(2) G=D(n,1) or Q(n,1) i m=1.

(3) G=D(n,2) or Q(n,2) or Dy(n,1,1) or Qo(n,1,1) i m=2,

(4) G = D(n,m) or Q(n,m) or D(n,m—11) or Q(r,m-1,1) fif
3Sm<n-2.

3. Sketch of the proof

To prove the theorems, we need some results concerning the criterion of the
irreducibility of induced characters.

We denote by ¢ = (on a primitive 2”th root of unity. It is known that, for
H = @, or D,, there are 2"~! — 1 irreducible characters ¢, (1 £ v < 2°~!) of H,
which are not linear:

B(@)=CF (", A =0 (1Si<).
For H = SD,, there are 2"~! — 1 irreducible characters ¢, (-2"2 £ v £
2"-2 for odd 1,1 £ v < 2"~! for even ») of H, which are not linear:

$(@) = ¢+ TN g @) =0  (1Sig2)
Each irreducible character ¢, of @, or D, or SD,, is induced from a linear character
n, of the maximal normal cyclic subgroup (a) :

m(e)=¢" (12ig2").

Therefore, for a group G D H = D,, or @, or SD, ¢¢ is irreducible if and only
if n¢=(nff)° is irreducible. For H = Q, or D, or SD,, an irreducible character
&, of H is faithful if and only if v is odd. The faithful irreducible characters ¢, of
H are algebraically conjugate to each other.
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We need the following result (cf [1, p.245])

Proposition 1 (Criterion for Irreducibility of Induced Characters) Let G be
a finite group and H be a subgroup of G. Let ¢ be en irreducible character of
H. Then the induced character ¢€ is irreducible if and only if , (¢, ¢ )greg =0
forall x ¢ H , where *¢ is the conjugate character of ¢.

Using this result, we have the following

Proposition 2 Let {a) C H C G, where H = D, or Q, or SD, and (a) is
e mazimal normal cyclic subgroup of H. Let ¢ be a faithful irreducible character
of H. Then the following conditions are eguivalent

(1) ¢€ is irreducible.

(2) For each x € G—{a), there ezists y € (a)Nx{a)z~! such that zyz~! #y.

Sketch of the proof of Theorem 1

Let G be a 2-group, satisfying the conditions of Theorem 1. As usual, we denote
by Ng(H) the normalizer of H in G for a subgroup H of G.
We define subgroups of G by

Nl = NG(Dn), and NH.] = NG(N,'), for i Z 1,

then, of course,
D, CNMCN,CNyCN,C---CG.

We can show the following claims:
Claim I N, = D(n,m), for some integerm, 1SmSn-2 ([3)).
Claim II Suppose that My = D(n,m) G G, then mEn—3.

Claim III Suppose that N, = D(n,m) G G, then
Nz/N1 = Nz/D(‘n, m) o C1.

Claim IV Suppose that Ny = D(rn,m) & G. Then,
(1) Ny = Dy(n,1,1)( 2 D(n,1)) if m=1.
(2) N;= D(n,m,1)(2 D(n,m)) if 2Sm<n-3.

ClaimV  Ng(Nz) = Na.
For the prooofs of Claims II, III, IV and V, see [7).

Proof of Theorem 1 Since G is a 2-group, Claim V means that G = N,.
Therefore we have G = N; or N,. Hence we can get Theorem 1.

Proofs of Theorems 2 and 3 are essentially the same as that of Theorem 1.
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