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PREFACE

The 34th Symposium on Ring Theory and Representation Theory was held in Mae-
bashi on October 15th - 17th, 2001. This volume consists of fourteen articles presented at
the symposium. It includes two results settling two conjectures: Solomon’s second con-
jecture concerning zeta functions of orders, and the conjecture concerning representation
dimension of artin algebras introduced by M. Auslander.

We would like to thank all speakers and their coauthors for their contributions.

A part of the financial support of the symposium was arranged by Professor Hiroaki
Komatsu, Professor Kenji Nishida and Professor Atumi Watanabe. We wish to express
our thanks for their arrangements.

I would like to thank Professor Yasuo Iwanaga for his helpful suggestions concerning
the symposium. Finally we should like to express our gratitude to Professor Koichiro
Ohtake and his students of Gunma University who contributed in the organization of the
symposium.

Hisaaki Fujita
Tsukuba
January, 2002
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DERIVATIONS ON QUANTUM SPACES

Nobuyuki Fukuda

In this paper we introduce quantum analogues of separable algebras and separable
extensions, and investigate thier properties. It is well-known that separable algebras
arc characterized as the algebras whosc all derivations arc inner. Based on this fact,
we define quantum separable algebras as the quantum spaces whosc all quantum
derivations are inner. Similarly, quantum separable extensions are defined in terms
of quantum derivations. We obtain quantum analogues of basic results in the theory
of separable algebras.

Let K be a commutative ring, A a Hopf algebra over K with the antipode S.
Throughout this paper, we abbreviate ®x to ®, and use the Sweedler notation.

In [5], a "quantum space” means a K-algebra A with a left H-module algebra
structurc and a right H°P-comodule algebra structurc p that make A into a crossed
H-bimodule (or Yetter-Drinfeld module), that is, it holds that

> haya @ ke = D _(k@a)o ® (hy@)ayh

for all h € H,a € A. In this paper, such a K-algebra is called a crossed H-bimodule
algebra.

One of the most basic example of quantum spaces is (the coordinate ring of) the
quantum affine space K;[X]. Let K be a field. Fix 0 # ¢ € K. The n-dimensional
quantum affine space K,[X] is the K -algebra generated by the n-clements z!,--- ,z"
subject to the relations ='z/ = ¢qz'z'(i < j). Put A = K,[X]. Let H be the well-
known quantum deformation GL,(q) of GL,, (see [1, p.91]). Thus, H is generated by
the n? + 1 clements {t}}1<i j<n, (dety)™! with the relations

it = qtitf, £t = qtfts,
G =68, G-t = (g - a7 )Y,
where i < j, ! < k, and det, is the quantum determinant ([1, p.91]). Further, GL,(q)
has a Hopf algebra structure with the comultiplication A and the counit € such that

The final version of this paper will be submitted for publication elsewhere.



A@#) = 3, th ®13,6(t}) = &i. Then A is a crossed H-bimodule algebra with the
action and the coaction defined by

(z') =) =" ® S(t}),
hef =3 (b S fo

for h € GLn(q),f € Ki|X], where p(f) = 3 fio) ® fu), and the bilinear form
(, ) : GLa(g) X GLa(g) — K is a cobraided structure on GL,,(q) such that (¢ () =
g(R™")}. Here R is the R-matrix defined by

Ry = §6l(1 + (g - 1)8¥) + (¢ - ¢7")6i66(4. ),

where

0, ) = {1 ifi> 3,

0 ifi<j.

When an A-bimodule M has a left H-module structure satisfying h(aub) =
E(h(l)a)(h(g)u)(h(s)b) forall h € Hya,b € A,u € M, we write M ¢ AM(H)A.
Clearly, A € 4M(H)4. For an A-bimodule M € 4 M(H)4, a K-linear map D : A —
M is a quantum K -derivation if D(ab) = D(a)b+ Y a)(aq) - D)(b) for all a,b € A,
where p(a) = 3 aq) ® agy, and Homg (B, M) is a left H-module with the action
defined by h- D(a) = 3 ha)(D(S(h(g))a)) for all k € H,D € Homg(A,M),a € A
([51)-

The g-difference operators are the most basic examples of quantum derivations.
Let K be a field, H = GL,(n) and A = K, [X]. Suppose that ¢? is not a root of
unity. The quantum n-th Weyl algebra A,(q) is the K-algebra generated by K,[X]
and the n elements 8,..., 8, with the relations

3‘-8_,- = q'laj&v (‘l < ]),
al'mj = qﬂ:"a, (i # ]):
8’ =1+ ¢°2'0; + (¢* — 1) ) _'9;.
i>i
Then, the K-vector space isomorphism A & A,(g)/ @, Ax(g)0; makes A(= K, [X])
into a left A,(g)-module, and J; acts on A as the ¢-difference operator:

8- f(z') = -f(q;f;z : ;;(x’) (f(z') € K[z']),

8 f(z¥)=0 (f(z%) € K[2%], where j # i).



Define a K-algebra automorphism ¢ : A — A by ¢(z') = ¢%2*. Note that ¢ is H-linear
and H-colinear. Let M be the A-bimodule such that M = A as a left H-modiile,
and the A-action is defined by a - b- ¢ = ¢(a)be for all a,c € A,b € M(= A). Itis
clear that M € 4M(H),. Then one can verify that each 8; : A — M is a quantum
K-derivation. Moreover, the K-space of all quantum J(-derivations equals @7, Ad;.

This paper is organized as follows. In Section 1, we define quantum separable
(crossed bimodule) algebras, in terms of quantum derivations, and obtain some re-
sults. In Section 2, we generalize the notion of quantum separability to extensions
of crossed bimodule algebras. In Section 3, we compare quantum separability with
usual separability under some conditions. Moreover, we give an exmaple which is
separable and is not quantum separable.

Refer to [4] for theory of separable algebras.

1 Quantum separable algebras

Let M € sAM(H)a. A quantum K-derivation D : A — M is inner if there exists an
element u € M such that D(a) = )" ua — a(g)(agyu) for all a € A.

Recall that separable algebras are characterized as the algebras whose all deriva-
tions are inner. This fact gives justification to the following definition. separable

DEFINITION 1.1. A crossed H-bimodule algebra A is quantum separable if, for
any M € s M(H),, every quantum K-derivation D : A — M is inner.

Let £: A® A — A be the multiplication structure map of A. In other words,
ula®b) =ab for all a,b€ A.

The following characterization of quantum separable algebras is a quantumn ana-
logue of the well-known result ([4, Prop.10.2]).

THEOREM 1.2. The following are equivalent.

(1) A crossed H-bimodule algebra is quantum separable.

(2) There ezists a linear map ¢ : A - A® A such that pop = idy and P(auc) =
Y a@y(aqy - ¥)(u)e for alla,be A, ue AR A.

(3) There erists e € A® A such that pu(e) = 1 and ea = }_ a(g)(aq) - ) for all
a € A, where A® A is regarded as an A-bimodule with the natural action.

An element e € A ® A that satisfies condition (3) of the theorem is a quantum
analogue of a separability idempotent for a separable algebra.
It is known that separable algebras over a field are finite-dimensional.

PROPOSITION 1.3. Suppose that K is a field. If H is finite-dimensional over
K, and a crossed H-bimodule algebra A is quantum separable, then A is finite-
dimensional over K.



2 Quantum separable algebras extension

Let B be another crossed H-bimodule algebra. If A is a crossed H-bimodule subal-
gebra of B, we say that B is an extension of A (as a crossed H-bimodule algebra).
For M € pM(H)p, a quantum K-derivation D : B = M is a quantum A-derivation
if D(A) = 0. A quantum A-derivation D : B — M is inner if there exists an element
u € M such that D(a) = ua — Y a()(agyu) for all a € B.

We generalize the notion of quantum separability to extensions.

DEFINITION 2.1. A crossed H-bimodule algebra extension B of A is quantum
separable if, for any M € pM(H)p, every quantum A-derivation D : B - M is
inner.

Define 1 : B®4, B — B by u(a®b) =ab for all a,b € A.
We obtain a generalization of Theorem 1.2 (see [4, Lemma 10.8]).

THEOREM 2.2. The following are equivalent.

(1) A crossed H-bimodule algebra extension B of A is quantum separable.

(2) There exists a linear map ) : B - B ®4 B such that po+ = idg and
Ylauc) = Y ay(eq) - ¥)(u)c for alla,b€ B, u € B®,4 B.

(3) There ezists ¢ € B ®4 B such that p(e) = 1 and ea = Y agy(aqy - €) for all
a € B.

PROPOSITION 2.3. Let C be an extension of B, and B an eztension of A.

(1) If C is a quantum separable extension of A, then C is a quantum separable
extension of B.

(2) If C is a quantum separable extension of B, and B is a quantum separable
extension of A, then C is a quantum separable extension of A.

3 Examples

Throughout this section, suppose that the antipode S of H is bijective. Let A be the
opposite Hopf algebra H° of H. Then, A is a crossed H-bimodule algebra with the
H-action — and the H°P-coaction p such that

~:H®A—= A, h—a=) S5hy)ehe,
p:A-HP®B, pla)=) an ®ap).

See {3, Example 10.6.13]. From now on, set A = H°P, and its crossed H-bimodule
algebra structure is as above.



EXAMPLE 3.1. If H is commutative, the concept of quantum separable algebra
coincides with that of separable algebra. In fact, in this case, the H-action is trivial.

EXAMPLE 3.2. Let G be a finite group. Suppose that H is the group algebra KG
of G. In this case, the crossed H-bimodule algebra A is quantum separable if and
only if A is separable as K-algebra.

Finally, we give an example of crossed H-bimodule algebras whicli is separable as
a K-algebra but not quantum separable.

EXAMPLE 3.3. Suppose that K is an algebraically closed field of characteristic
chK # 2. Let H be the only (up to isomorphism) noncommutative noncocommuta-
tive semisimple Hopf algebra of dimension 8 defined in [2]. Precisely, H is generated
by the clement z,y, z with the relations

1
2=y =1, z2=§(1+x+y-—:cy)

yz = 2y, 2z = yz, 2y = T2,
and its comultiplication is defined by
Alz)=z®z, Aly)=y®y,
A&):%U@l+1®z+y®l—y®xﬂz®d
e(z)=¢(y) =1, e(z) =1

Since I is algebraically closed, and H is semisimple as a /C-algebra, it follows that
A{= H°P) is scparable as a /(-algebra. However, one can show that there exists no
element e € A®A with p(c) = 1such that ez = ¥ zg)(z(1)-€) and ey = > y0) ((1y-€)-
Thercfore A is not quantum separable.
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ON SPLITTING SUPERHEREDITARY PRERADICALS

Yasuyuki Hirano and Hisaya Tsutsui

Abstract: We determine the structure of rings R with the property that, for every right
R-module M and every ideal / of R, the annihilator of / in M is a direct

summand of M.

Our recent work summarized hereinabove was briefly introduced at the symposium.

In this proceeding, we shall provide some further details’.

For a unitary right R-module M and a right ideal 7 of R, let Py(M)= Im(/).
JGlomg(R11, M)

M is then said to be split in P, if P;(M) is a direct summand of M, and we shall say that

Py is splitting if every R-module M splits in P; We then consider the structure of rings R
with the property that P, is splirting for a certain subset of the set of all right ideals of R.
Notice when P; is splitting for all (two sided) ideals of R, our consideration is reduced to as
such described in the abstract. In this case, our main result yields that R is a finite direct
sum of prime fully right idempotent rings all of whose proper Factor rings are semisimple
Artinian.

The title of this paper suggests a torsion theoretic origin of our study. A hereditary
preradical r is called superhereditary if the class of r-torsion modules is closed under
direct products. By [3, 1.2.E4 and 1.2.E5), for an ideal / of R, P, is superhereditary and

every superhereditary preradical is of this form.

' The complete version of this paper has been submilted for publication ¢lsewhere.



Throughout, every ring will be assumed to have an identity element, and R-modules
considered are unitary. For any terminology that shall not be defined in this paper, we refer

Anderson-Fuller [1], Rowen [13], [14], or Stenstrom [15].

Our first example shows that even when P, is splitting for every right ideal of R, R is not
necessarily semisimple Artinian,

Example 1. Let & be a universal differential field with derivation D and let

R = k[ y, D] denote the ring of differential polynomials in the indeterminates y with
coefficients in k. Cozzens [5, Theorem 1.4] proved that R is a simple right V-ring

and that R has, up to isomorphism, a unique simple right R-module. Hence every right
R-module of finite length is completely reducible and injective. If 7 is a non-zero right
ideal of R, then R/17 is of finite length, and so R/ is completely reducible and
injective. Now let M be a right R-module and let / be a nonzero proper right ideal of

R. Then P,(M)= Soc(M)is injective and hence is a direct summand of M.

Proposition 1. Let R and S be a pair of Morita equivalent rings. Then P, is splitting

Jor every ideal I of R if and only if P, is splitting for every ideal J of S.

For a right R-module M, let £(M,) denote the injective hull of M.
Lemma 1. Let I be an ideal of R. If P, is splitting, then R/ 1 is a flat left R-module.

Proof. Let Mhe an injective right R/ -module. Then we have

M = E(M,,) = P,(E(M,)). But then by hypothesis, M is a direct summand



of E(M,), and hence it is injective as a right R-module. Therefore by [15, Proposition

11.3.13], R/I is flat as a left R-module.

Proposition 2. If P, is splitting for every principal ideal I of R, then R is a fully right

idempotent ring.
The ring sited in Example 1 is fully right idempotent but it is not von Neumann regular.
Thus, the hypothesis of Proposition 2 does not imply that the ring is von Neumann regular.

Note also that the converse of Proposition 2 is false. (See Example 4).

Lemma 2. Ler I be an ideal of R, If R/ is a flat left R-module and R/ 1 is

semisimple Artinian, then P, is splitting.

In particular, if R is fully right idempotent, we have the following partial converse of
Proposition 2.

Lemma 3. Let R be a fully right idempotent ring. Assume that, for any nonzero

ideal 1 of R, R/ is a semisimple Artinian ring. Then P, is splitting for every ideal |

of R.

The proof of the following lemma is essentially the same as in the proof of [8, Lemma 5.2].

Lemma 4. Let R be a ring, let I be an ideal of R such that P,(R)=0, and let H be
an ideal of R containing I. Assume that P, is splitting. If A is a torsionless right R-

module, then Af AH is a projective right R/ H -module.



Theorem 1. Let R be a ring and let I be an ideal of R such that P,(R) =0 .If P, is splitting,
then R/ H is a right hereditary right perfect ring for every ideal H of R containing I.
Proof. Let H be an ideal of R containing / and let K be any right ideal of R

containing H. Since K is a torsionless right R-module, X/ H is a projective right ideal

of R/ H by Lemma 4. This implies that R/ H is a right hereditary ring.

Let J be an infinite ser with cardinality Card(R), and setR, = R,, A=[] )R, .

By Lemma 4, A/ AH is a projective right R/ H -module. Thus 4/ AH is a direct
summand of some direct sum of copies of R/ H . But then by [8, Theorem 5.1],

R/ H is aright perfect ring.

A module M is called CS provided that every submodule of M is essential in a direct
summand of M. M is called completely CS provided that every quotient of M is CS.
Theorem 2. Let R be a ring. If P, is splitting for every ideal I of R, then every factor
ring of R is a finite direct sum of prime rings.

Proof. By Proposition 2, R is in particular, a semiprime ring. Let Z denote the center
of R and consider the ring R° = R* ®, R. Then R is aright R*-module defined by
r(a®b)=arb forall a®be R’ and re R. In this case, / is an ideal of R if and only

if 7is an R‘-submodule of R. Let ] and Jbe ideals of R with / = J. Then there is an

idempotent ee Rsuch that /,(7) =eR. Since R is semiprime, ¢ is a central idempotent

of R and [ is an essential submodule of the right R°-submodule (1-e)R. This implies



that J =eJ ®(1-~¢)J and/ is an essential submodule of the right R®-submodule
(1-e)J. This means that J is a CS-module over a ring R°. Clearly, for every ideal 4
of R, Py is splitting for every ideal K of R/A. Hence cvery ideal of R is completely

CS as aright R“-module. Therefore the cyclic right R -module R satisfies the
hypotheses of [10, Theorem 1]. Hence R is a finite direct sum of uniform R-modules.
Since R is semiprime, it now follows that R is a finite direct sum of prime rings.

Obviously this is true for all factor rings of R.

There are examples of rings that are not fully right idempotent but all of whose factor
rings are prime (See Example 3 below). Therefore, the converse of Theorem 2 is
in general false by Proposition 2. However, we have the following necessary and
sufficient condition for a ring to have the property that B, is splitting for every ideal /.
Theorem 3. Let R be a ring. Then the following statements are equivalent:
1) P, is splitting for every ideal ] of R.
2) R is a finite direct sum of fully right idempotent prime rings T such that
T 11 is a semisimple Artinian ring for all proper nonzero ideal I of T.
Proof of 1) = 2). By Theorem 2, R is a finite direct sum of prime rings. Hence we
may assume that R is a prime ring that is not simple. By Proposition 2, R is fully
right idempotent. Let / be a proper nonzero ideal of R. Since R is a prime ring,

P,(R)=0. But then, by Theorem |, R// is a right perfect ring. As a fully right



idempotent right perfect ring is semisimple Artinian, R/ is a semisimple Artinian

ring.

We are now in a position to give several examples.

K 0
Example 1. Let X be a field. Consider the ring R =[K K ] In this ring,

K
I =[K g] is an ideal and R/ 7 is a flat R-module. Since R/ =K,

P, is splitting by Lemma 2.

Example 2. Let X be a field. Let n,,n,,:+-,n, be positive integers and let
n=n,+n, +---+n,. Consider the matrix ring M,(K)and its semisimple Artinian

subring M, (K)® M, (K)®---®& M, (K). Let R be the set of countable matrices over

M (K)of the form

where ae M, (K)®M, (K)®---®M, (K).and 4,,is an arbitrary mX:m matrix over

M _(K)and m is allowed to be any integer. Then R is a von Neumann regular

ring and that the set / of countable matrices of the form



is a unique minimal (nonzero) ideal of R.
SinceR/I=M, (K)®M, (K)®---®M, (K), every proper homomorphic image
of R is a semisimple Artinian. Hence, by Lemma 3, all right R-modules split in P; for

every ideal /of R.

For an arbitrary ring R, the next example shows that even when R/ is semisimple

Artinian for every nonzero ideal / of R, P, need not be splitting for every ideal / of R.

The example also shows that the hypothesis “fully right idempotent” in Lemma 3

cannot be replaced by “fully idempotent.”
Example 3. Let X be a field of characteristic zero and let 4,(X) denote the first Weyl

algebra over X, that is, the K-algebra generated by x, y with the relation xy— yx=1.
Consider the ring R = x4,(K)+ K. It is well-known that R is a right Noetherian
domain with one nonzero proper ideal / =xA4,(K). R/1is a field as it is isomorphic to
K. Since I* =1, R is fully idempotent. But since R is a non-simple right Noetherian
ring, it is not fully right idempotent. Hence, by Proposition 2, P, is not splitting.

Our next examplc is an example of a von Neumann regular ring over which P,

is not splitting for a principal ideal.



Example 4. Denote the cardinality of a denumerable set by X, and X, be the
smallest cardinal number greater than X,. Let R = Hom,(V, V) where V is a right

vector space over a division ring D with dim, (V)= X, . Since R is a von Neumann
regular ring, it is in particular, fully right idempotent. R has exactly two nonzero
proper ideals L={f¢€ R|dim f(V)<R,}and M ={fe R|dim f(V) < R,} both of
which are principal and L c M . Therefore, R is a prime fully right idempotent ring
with R/ L being not semisimple Artinian. Hence by Theorem 3, P, is not splitting for

every ideal of R.

We next investigate a necessary and sufficient condition for a ring to have the

property that P, is splitting for a single ideal /. A ring R is said to be normal if every

idempotent of R is central. A ring is completely normal if every factor ring of R is

normal. Note that a normal right hereditary ring R has no nonzero nilpotent elements.

Theorem 4. Let R be a completely normal ring and let I be an ideal of R. Then the
Sfollowing statements are equivalent:

1) P, is splitting.

2) R/I is aflat left R-module and there exists a central idempotent e of R such

that eR2 1 and eR/ 1 is semisimple Artinian.

Proof. 1) => 2) By Lemma 1, R/] is a flat left R-module. Since P, is splitting, there

exists a central idempotent f € R such that /,(/)= fR.Put e=1- f . Then it is clear

that eR o Jand thus P,(eR)=0. Hence, by Theorem 1, eR//is a right hereditary



right perfect ring. Since eR// is a normal right hereditary ring, it has no nonzero

nilpotent elements. Thus, by [1, Theorem 28.4], it is semisimple Artinian.
2) = 1) Let M be a right R-module. Then since eR 2/, P,(M)=M(1-¢e)® P,(Me).
But since R/ is a flat left R-module, so is eR// and hence, by Lemma 2, P,(Me)is a

direct summand of Me. Therefore, P,(M)is a direct summand of M.

A commutative ring is in particular completely normal and the assumption
P,(R)=0 yields that R/ is right hereditary and right perfect. Thus the corollary
below is now evident by Theorem 4.

Corollary 4. Let R be a commutative ring and let I be an ideal of R such that
P,(R)=0. Then P, is splitting if and only if R/ 1 is a flat left R-module and R/ 1 is

a finite direct sum of fields.

Theorem 5. Let R be a fully right idempotent ring and let I be an ideal of R. Then the
Jollowing statements are equivalent:
1) P, is splitting.
2) There exists a central idempotent e of R such that eR2 1 and eR/1 is
semisimple Artinian.
Proof. 1) = 2) Since F} is splitting, there exists an idempotent f'€ R such that
L,(1) = JR. Since a fully idempotent ring is semiprime, f must be central. Put
e=1- /. Now, as was the case in the proof of Theorem 4, eR 2/ and eR/Iisa

right perfect ring. But since R is fully right idempotent and every ideal of eR is an



ideal of R, eR is fully idempotent and hence, so is eR/ 7. Since any fully right
idempotent ring is semiprimitive, we now conclude that eR /I is semisimple Artinian

by [1, Theorem 28.4].
2) = 1) Since R is fully right idempotent, for any @ in an ideal / of R, there exists
c€ aR c ] suchthat a=ac. Hence R//is flat as a left R-module by [15, Proposition

11.3.13]. The result now follows by the same proof: 2) = 1) of Theorem 4.

We now turn to consider the conditions under which a ring with the property that P, is
splitting for every ideal / of R is semisimple Artinian.

Theorem 6. Suppose that R is a right fully bounded Noetherian ring and that P, is
splirling for every maximal ideal I of R. Then R is semisimple Artinian.

Proof. Since a right bounded Noetherian simple ring is Artinian, by Proposition 4, it
follows that every prime factor ring of R is simple Artinian. Since R is a Noetherian
ring, it has only finitely many minimal prime ideais £ (i=1,2,-:-,n) and their
intersection is equal to the prime radical B(R)of R. But R/ P, is simple Artinian

for each i. Hence each F, is a maximal ideal. By hypothesis F, is splitting, and so
R/ P is flat as a left R-module. Let x be an arbitrary element of B(R). By [15,
Proposition 11.3.13], there exists ¢;in P, such that x¢, =x. Set c=¢,-¢,--*--c,.
Then cis in B(R) and xc=x, thatis x(1—c)=0. Since ¢ is nilpotent, 1—-c¢ is
invertible. This implies x =0, and therefore B(R)=0. Hence R is embedded in the

direct sum of R/P’s. Since this direct sum is Artinian as a right R-module, R is also



Artinian as a right R-module.

Theorem 7. Let R be a ring all of whose right primitive factor rings are Artinian. If
P, is splitting for every ideal I of R, then R is a semisimple Artinian ring.

Proof. By Theorem 2, R is a finite direct sum of prime rings. Hence, without loss of
generality, we may assume that R is a prime ring. By Proposition 2, R is fully right
idempotent. Hence by [2, Theorem], R is also von Neumann regular. Thus by [9,
Theorem 6.6], every nonzero ideals of R contains a nonzero central idempotent. Since
R is prime, this implies that R is simple. As a simple ring is primitive, we now

conclude that R is a simple Artinian ring.

Corollary 6. Let R be a ring satisfying a polynomial identity. If P, is splitting for

every ideal I of R, then R is a semisimple Artinian ring.

A ring R is called a biregular ring if every principal ideal is generated by a central
idempotent. For a biregular ring, it is evident that F, is splitting for every principal
ideal / of R. Noting that the hypothesis “P, is splitting for every ideal I of R in
Theorem 7 cannot be replaced by “P, is splitting for every principal ideal I of R,”

we hereby insert the following conjecture.

Conjecture 1. Let R be a ring all of whose right primitive factor rings are Artinian. If

P, is splitting for every principal ideal I of R, then R is a biregular ring.



Theorem 8. Le! R be a filly right bounded ring. If P, is splitting for every right ideal I

of R, then R is a semisimple Artinian ring.

Proof. We shall assume that R is right primitive and prove that it is simple Artinian.

The result then follows by Theorem 7. Since R is right bounded, it follow that R has a
minimal right ideal J. Consider now that the direct sum I™® of countably infinite copies of
Jand let E = E(J™)denote its injective hull. Then one can show that P (E)=I™,

N);

By hypothesis, /" is then a direct summand of £ and thereby, it is injective. If R/

is not finitely generated as a right ideal, then there is an epimorphism ¢ : Rl — IV,
Since /™ is injective, ¢ extends to a homomorphism ¢ : R — /™. But then,

1™ =Im¢ c Im¢ =p(1)R. Since ¢(I)R is contained in a direct sum of finitely many
copies of J, this is a contradiction. Therefore R/ is a finitely generated right ideal.
Now, since / is an idempotent, we may write Rl =a,/ +a,/ +---+a,l for some
a,,a,,...,a, in R. Thus RI is a homomorphic image of the direct sum of m copies of /

and therefore, it is completely reducible. This will yield that R/ = eR for some central

idempotent e in R. As R is prime, it is now evident that R/ = R and therefore, R is

in fact a simple Artinian ring.

Corollary 7. Let R be a right semi-Artinian ring. If P, is splitting for every right

ideal I of R, then R is a semisimple Artinian ring.

Proposition 4. Assume that R has, up to isomorphism, finitely many simple right R-

modules. If P, is splitting for every right ideal I of R, then R is a finite direct sum of



simple right Noetherian right V-rings..

We now conclude our paper by a conjecture for the general structure of rings over which P,

is splitting for every right ideal / of R.
Conjecture 2. If P, is splitting for every right ideal / of R, then R is a finite direct

sum of simple right V-rings.
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FINITENESS OF REPRESENTATION DIMENSION !
OsAMU IyaMA

M. Auslander introduced a concept of representation dimension of artin
algebras in [A], which was a trial to give a reasonable way of measuring homo-
logically how far an artin algebra is from being of finite representation type.
His methods given there have been effectively applied not only for the repre-
sentation theory of artin algebras, but also for the theory of quasi-hereditary
algebras of Cline-Parshall-Scott [CPS] by Dlab and Ringel in [DR2]. Unfor-
tunately, much seems to be unknown about representation dimension itself,
especially whether any artin algebra has a finite representation dimension or
not. In §1.3, we will give a positive answer to this question by showing that
any module is a direct summand of some module whose endomorphism ring
is quasi-hereditary. These were conjectured by Ringel and Yamagata [X2].

Our method is to construct certain filtration of subcategories of mod A
(§2.2). We will formulate it in terms of rejective subcategories (§2.1), which
was effectively applied in [I1] to study the representation theory of orders
(see §2.1.2) and give a characterization of their finite Auslander-Reiten quiv-
ers in [I2]. Our filtration is an analogy of preprojective partition given by
Auslander and Smalo [AS], which was related to quasi-hereditary algebras
by Dlab and Ringel [DR3]. In [I3], our method will be applied to solve
Solomon’s second conjecture on zeta functions of orders.

1 In this paper, any module is assumed to be a left module. For an artin
algebra A over R, let mod A (resp. prA) be the category of finitely generated
left A-modules (resp. projective A-modules), J, the Jacobson radical of A,
dom.dim A the dominant dimension of A [T], Io(X) the injective hull of the
A-module X and ()* := Homp( ,Ir(R/Jr)) : mod A & mod A% the duality.
For X € mod A, we denote by add X the full subcategory of mod A consisting
of direct summands of a finite direct sum of X.

1.1 The representation dimension of an artin algebra A is defined by
rep.dimA := inf{gldimT | T' € A(A)}, where A(A) is the collection of
all artin algebras I' such that dom.dimI’ > 2 and Endp(Ip(T')) is Morita-
equivalent to A. We collect some known results which will not be used in
this paper.

1The dctailed version of this paper will be submitted elsewhere.



(1) rep.dim A = inf{gl.dimEnds(M) | M € mod A such that A @ A* €
add M} holds (see [A] for (1)-(4)).

(2) A is of finite representation type if and only if rep.dim A < 2.

(3) If gl.dim A < 1, then rep.dim A < 3.

(4) If A is selfinjective, then rep.dim A < (the Loewy length of A).

(5) If R is a perfect field, then rep.dim(A ®pI') < rep.dim A + rep.dim I’
[X1].

(6) rep.dim T2(A) < rep.dimA + 2 [FGR].

1.2 Let A be an artin algebra and I an 2-sided ideal of A. We call I a
heredity ideal of A if I? = I € prA and IJ,J = 0 hold.

We call A a quasi-hereditary algebra if there exists a chain 0 = I, C
I,y € --- C Iy = A such that I,,_; /I, is a heredity ideal of A/[, for any n
(0 < » < m). In this case, gl.dimA < 2m — 2 holds by [DR1], and mod A
forms a highest weight category [CPS].

1.3 Main Theorem (Proof in 2.3) Let A be an artin algebra.

(1) Any M € mod A is a direct summand of some N € mod A such that
End,(N) is a quasi-hereditary algebra.

(2) rep.dim A has a finite value which is not greater than 2l — 2, where |
is the length of a (A,Ends(A @ A*))-module A @ A*.

2 Rejective subcategories In the rest, any subcategory ¢’ of an addi-
tive category C is assumed to be full and closed under direct sums. Let 7.
be the Jacobson radical of ¢ and [C'] the ideal of € consisting of morphisms
which factor through some object in ¢’. Thus J(X, X) forms the Jacobson
radical of the ring (X, X) for any X € C.

2.1 Let C be an additive category and C’ a subcategory of C. Then (' is
called a right rejective subcategory of C if the inclusion functor ¢' = C has a
right adjoint F : C — C’ with a counit e [HS] such that ex is a monomorphism
for any X € C (cf. [I1)5.1). In other word, C( ,F(X)) == [¢']( ,X) is an
isomorphism on C for any X € C.

If T := ¢(M, M) is an artin algebra for an additive generator M of C, then
a bijection {C’ : right rejective subcategory of C such that J» = 0} = {/ :
heredity ideal of T'} is given by ¢’ — I := [C")(M, M), and its inverse is given
by I + (' for a subcategory C' of C such that I = [¢'|(M, M).



PROOF We only show the former assertion. First, I := [C'](M, M)
is isomorphic to a projective I-module ¢(M,F(M)), and 12 = I holds by
[¢')? = [C"]. Moreover, IJp] = 0 holds by J. = 0.1

2.1.1 Let ¢’ be aright rejective subcategory of ¢ and ¢” a subcategory
of C'. Then ¢’ /[C"] is a right rejective subcategory of C /[¢"] since the iso-
morphism ¢( , F(X)) =% [¢/]( , X) induces an isomorphism [¢"]( ,F(X)) =X
[€")( , X). Moreover, if C" is a right rejective subcategory of C’, then it is a
right rejective subcategory of C.

2.1.2 Remark In this subsection, we will explain the relationship with
overrings [I1], which will not be used in this paper.

(1) Define a left rejective subcategory by the dual of 2.1. We call ¢’ a
rejective subcategory of C if it is right and left rejective subcategory of C.

(2) Let R be a complete regular local ring of dimension d > 0 with the
quotient field K. An R-algebra A is called an R-orderifit is finitely generated
free as an R-module. Assume that A is an R-order. A left A-module L is
called a A-lattice if it is finitely generated free as an R-module. We denote
by lat A the category of A-lattices. Another R-order I is called an overring
of Aif (K®prA)/I DT 2 (A+1)/Iholds for an ideal I of K ®z A. Then
the natural morphism A — T induces a full faithful functor latT' — lat A.

Then the following fundamental fact in [I1] asserts that right rejective
subcategories can be regarded as a generalization of overrings.

Proposition Let R be a complete regular local ring of dimension d < 2,
A an R-order and C' a subcategory of C := lat A. Then C' is a rejective
subcategory of C if and only if C' = lat T for an overring I' of A. In this case,
the inclusion functor has the right adjoint Homy (L', ) and the left adjoint
(T'®a )** for ()* := Hompg( , R).

2.2 Let C be an additive category. Then 0 =C,, CCpn-1 C:--CCo=C
is called a right rejective chain if J¢, /ic,,,] = O holds and Cy4, is a right
rejective subcategory of C, for any n (0 < n < m). In this case, Cn' /[Cn#] is
a right rejective subcategory of C, /[Cnv] for any n"” < n’ < n by 2.1.1.

If T := ¢(M, M) is an artin algebra for an additive generator M of C,
then I is a quasi-hereditary algebra with a heredity chain 0 = [C, (M, M) C
[Crm1](M, M) C - C [Co}(M, M) =T.



2.2.1 Proof of 2.2 (-1 is also a right rejective subcategory of C. By
2.1, I := [Cm—1](M, M) is a heredity ideal of T'. Since 0 = Cn-1/[Cm-1] €
Cm=2 [[Cn-1] € - - C Co/[Cm-1] = C /[Cm-1] is again a right rejective chain,
we obtain the assertion inductively.ll

2.3 Our result 1.3 immediately follows from the following lemma (Put
M = A @ A* for (2)).

Lemma Let A be an artin algebra and M € modA. Put My := M,
Mpy1 = MpJgnaam,) & M, and take large m such that My, = 0. Then
0=0Cn C Cn-1C -+ C Co = C gives a right rejective chain for C, :=
add@™ ' M;. Thus T := Enda(N) is a quasi-hereditary algebra for N :=

I=n

@ns! M;-such that gl.dimT < 2m — 2.

l-n

PROOF (i) For any n < [, there exists a surjection f,,; € T A (® M, Mi).

(ii) Define a functor F,, : mod A = mod A by Fu(X) := Zyec., feguoaatrx) f(Y)-
Then a natural transformation € : F,, — 1 is defined by the inclusion ey :
Fa(X) = X. For X € Cn41, We obtain F,(X) = X and ex = 1x by (i).
Moreover, Fn(My) = MpJgad,(Ma) = Mas1 holds and Homp (M, Mpy1) 225
Hom, (M, M) is an isomorphism for any n < ! by (i). Thus F,, gives a right
adjoint of the inclusion Cn41 —~ C, With a counit €. Since Homy (M;, My 41) Moy
Jmoaa(Mi, My) is an isomorphism for any n < I by (i), J¢, /jc.,,) = 0 holds.

Thus our chain is right rejective. Now gl.dimT' < 2m — 2 follows by 1.2

3 Question There still remains a problem to determine the subset
{rep.dim A | A is an artin algebra} of N.

(1) I don’t know an example of A such that rep.dimA > 3.

(2) In [IT]0.8, Igusa and Todorov obtained the following interesting result.

Proposition Let I’ be an artin algebra with gl.dimT* < 3 and P € prT.
Then A := Endr(P) satisfies fin.dim A < co.

As an easy conclusion, we obtain that rep.dim A < 3 implies fin.dim A <
0o. (We may put T' := Enda(M) and P := Hom(M,A) for M € mod A
such that A & A* € add M and Enda(M) = rep.dim A < 3.) Thus, from the
viewpoint of the finitistic global dimension conjecture, it is an interesting
question whether any artin algebra A satisfies rep.dim A < 3 or not [A]. If



rep.dim A < 3 always holds, then the finitistic global dimension conjecture,
(general) Nakayama conjecture [AR] e.t.c. follow.
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A PROOF OF SOLOMON’S SECOND CONJECTURE ON
LOCAL ZETA FUNCTIONS OF ORDERS!
OsaMu IyaMa

Let R be the ring Z of integers or its p-adic completion Z,, and K its
quotient field. For an R-order A in a semisimple K-algebra A, its Solomon
zeta function is defined by (s(s) := (A : L)~* where L is a left ideal of A
such that (A : L) < oo and s is a complex variable [S1]. Then {, converges
in the half-plane {s € C | Re(s) > dimg A}, and it can be shown that (4
admits analytic continuation to a meromorphic function of s [S1]. Later,
Bushnell and Reiner developed the adelic approach for Solomon zeta func-
tions ([BR1][BR2] e.t.c.). Moreover, they applied Solomon zeta functions
to generalize the prime ideal theorem [BR3] and the asymptotic distribution
formula of ideals [BR4] and so on.

For the case R = Z, we have the Euler product formula (5 = Il .prime €A,
for A, := Z, ®z A [S1]. For a maximal overorder I of A, one can describe
(r by using Dedekind zeta function [BR2]§2. Since {p : prime | A, # I}
is a finite set, the difference between (4 and (r appear at only finitely many
primes. Thus, in the rest, we will study the case R = Z,,.

1 Local case In the rest, let R be a complete discrete valuation ring
with the residue field & and the quotient field K, and A an R-order in a
semisimple K-algebra A. We assume that % is a finite field with p elements.
Since A is not necessarily commutative, it will be more natural to define zeta
function for modules.

1.1 Definition For an A-module V of finite length, we denote by £4(V)
the set of full A-lattices in V. Then £5(V) := £o(V)/ = is a finite set by
Jordan-Zassenhaus Theorem [CR]. For L, M € £5(V), Solomon [S1] studied
a partial zeta function ~ Z)(L,M;s):= ), (L:N)™*

NCL, NxM
and the n x n-matrix ~ ZA(V;s) := (Za(L, M;5)) mez, vy (= #EA(V)).

He proved that Z,(V; s) has an inverse matrix in M,(Z[p~*]) by a combi-
natorial argument (Mdbius inversion), so Z,(L, M; s) is a rational function
of p~*. Moreover, he gave the following conjectures in [S2].

1The detailed version of this paper will be submitted clsewhere.



(1) ZA(L, M;s)/ det Zp(V;s) € Z[p~*] for a maximal order I in A.

(2) det Z4(V; s) should be the finite product I];(1 — p%~%*)~! with some
a; € Nxo and b; € Nyg.

His first conjecture (1) was proved in [BR1] by their analytic approach.
However his second conjecture (2) seems to be still open, although a special
case when A is hereditary was proved by Denert [D]. In this paper, by purely
ring theoretic method, we will give an explicit description of det Z,(V; s) for.
general A in §2.1, which implies the second conjecture. A key idea of our
proof is to consider certain filtration of the category of A-lattices (§2.3) and
use a reduction to smaller categories (§3.2). Our filtration was already used
in [I1] (see §2.3.1 below).

2 Let lat A be the category of A-lattices, mod A the category of finitely
generated A-modules, and () := ( ) ®r K : latA —» modA. Put A =
II;=1 Aj for simple algebras A;. Let e; be the identity of A4;, I'; a maximal
overorder of e;A in Aj, T' := [[};, Tj, S; a simple A;-module, and G; a
simple I';-module. Then S,,...,S; (respectively, Gy, ..., G,) give a complete
representatives of the isomorphism classes of simple A-modules (respectively,
simple I'-modules). For X € mod A, we denote by /;(X) the multiplicity of
S; as a composition factor of X. Put g; := #Endp(G;) = pdims Endr(G))
(1 £ j £ r). Notice that g; does not depend on a choice of I'; since any
maximal order in A; is conjugate to I';.

2.1 Main Theorem Let A be an R-order in a semisimple algebra A,
V €mod A and V; := V/S;-j(v) (1<j<r). Then

r 4(V)-1 _
detZ,(V;s)=T] J] (1- q;'—li(A)’)—#ﬁA(S;@‘/j).
j=1 n=0

More generally, let C be a right-closed subcategory of lat A (defined in 2.2
below) such that C 2 latT' for e mazimal overorder ' of A. Then

r Lj(V)i-1 _
det ZA,C(V; s) = H H (1 _ q}l—lj(A)s)—#ﬂc(SJ'-'QVj)'
=1 n=0

2.2 Since we will prove 2.1 inductively, we need a categorical generaliza-
tion Z ¢ of Z, defined as follows: In the rest, any subcategory C of lat A is



assumed to be full, closed under isomorphisms, direct sums and direct sum-
mands. We denote by ind C the set of isomorphism classes of indecomposable
objects in . Thus the correspondence C — ind C gives a bijection from sub-
categories of lat A to subsets of ind(lat A), and the inverse is denoted by
S — add §. We denote by Jj,. 4 the Jacobson radical of the category lat A.
Thus Jjx o (X, X) is the Jacobson radical of End,(X) for any X € lat A.

We denote by £¢(V) (respectively, £.(V)) the subset of £4(V) (respec-
tively, £4(V)) consisting of objects in C. Put Z ¢(V;s) := (Za(L, M 5)) 1 mez(v)-
As in the proof of [I1]2.3, define a functor F¢ : lat A — lat A by

F(X):= Y fY)CX

Ye&C, f€TuealY.X)

We call C right-closed if #ind C < oo and F¢/(X) € C holds for any subcate-
gory C' of ¢ and X € C'. For example, laty A := add{X € ind(lat A) | Xc
V'} is right-closed for any V € mod A.

2.3 Proposition Let I' be a mazimal overorder of A and C a right-
closed subcategory of lat A such that C D latT’. Then there exists a chain
C=20Cmn DO Cm-1D D C = latT consisting of right-closed subcategories
such that ind C, —ind C,—1 = {X,,} and F¢,(X,) € Ca-1 0 <n < m).

2.3.1 Remark In 2.3, let M be an additive generator of C. It is not
difficult to show that the above chain satisfies the conditions of right rejec-
tive chains (in [I1]2.2) except Cp = 0. In particular, Ends(M) is a quasi-
hereditary order in the sense of Kénig and Wiedemann [KW] with a heredity
chain Endp(M) = [Cw)(M, M) D [Cn—a)(M, M) D --- D [Co)(M, M).

2.3.2 Let C a subcategory of lat A such that indC < oo and ¢ 2 latT.
If Fo(X) ~ X holds for any X € indC —ind(1atT"), then ¢ =latT.

PROOF Put §:={X €indC |Fe(X) C X}. Forany L € §—ind(latT),
let f be the composition of an isomorphism L — F¢(L) and the natural in-
clusion Fo(L) = L. Since f is in the radical of Ends(L) and Homa(I', L) =
Homy (T, L) f holds, we obtain Hom, (T, L) = 0 by Nakayama’s Lemma, a
contradiction. Thus § C ind(latT') holds. Put M := @x¢ingc-s X and
N := Faaag(M), which are right Endy(M)-modules. Since M = F¢(M) =
MJ + N holds for the Jacobson radical J of Endy(M), we obtain M = N
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holds, where B and C are the matrices such that By, ;, = bf and Cxgryer =

—~—

(X :Y)™* for any L € £(V/X) and other entries are 0.

1
PROOF (1) Let£:={ZCX®L|Z~W}andpz:=(ZC XL (-22 X)
the composition for Z € £. Put £, := {Z € £ | pz is not a split epimorphism}.
Since Z CY @ L holds for any Z € £;, we obtain

Y (XSL:2)"=(X:Y)"-Zp,(Y ® L, W;5s).
zZel,

Assume £ # £;. Then we can put W ~ X @ M. For any N C L such
that N ~ M, let iy € Homy(N, L) be the natural inclusion and £y :=
{Z € £—2, | ZNL = N}. Define a map ¢y : Homp(X,L) = £y by
on(f) = ((gx'_ﬁ) : X®N C X@L) for f € Homp(X,L). It is easily
checked that ¢n(f) = ¢n(g) holds if and only if f — g factors through
iy. Thus we obtain an injection ¢y : Homa (X, L)/ Homa(X,N) — £n.
Moreover, consider the following commutative diagram for any Z € £y.

1
0 y L LY, XoL G) ,x 30
U‘N U("x i2) "
0 y N > YA Pz 4 X »0

Taking ¢ such that gpz = 1x, we can easily show that ¢x(giz) = Z holds.
Hence ¢y is a bijection. Now (1) follows from

Y. XeL:2)" = >, Y. (XeL:2)°

ZeL -5 NCL, No=M ZeSy
= >, (Homa(X,L):Homa(X,N))-(L:N)™*
NCL, NxM
Y X k)t T (L N)EA-
NCL, N=M

= 0 - (03) 7 Za(L, M; s = U(X)/1(A4)).
(2) Immediate from (1).1

3.3 Proof of 2.1 (i) We will show 2.1 for ¢ := latT' by induction on

—~—

the length of V. We can put indC = {X} and {(X) = 1. Since #Z.(V) =1



holds for any V' € mod A, we only have to show det Z, o(V;s) = Hi,(__‘fl])_l(l -

g*~"4)%)=1, We apply 3.2(2), where 1—C = 1—¢~*4* and £(V) = @ holds.

det Zae(Vis) X7 det((1— ¢ 4?)1 . B Zyo(V/X; 5 — 1/1(A)) - B7Y)

1(V/X)-1
= (1—g9=t. T (1-—gtAe-1/iAn-1
n=0
1v)-1
= H (1 — qn—I(A)s)—l
n=0

(ii) Take a filtration C = Cm O Cm-1 D -+ D Cp = latT in 2.3. We
assume that 2.1 holds for ¢’ := C;n—1. We will show 2.1 for C by induction on
the length of V. We apply 3.2(2) for X := X,,, where det(1 — C) = 1 holds
by X £ Fe(X) =Y.

det Za o(V; s) *Z? det Zp oo (V; 5) - det Zp o (V/ X s — I(X) /1(A))

= H (1 _ qn—l(A)s)—#ﬂc:(S ). ]:I;) (1 _ qn—l(A)(s—( ) (A)))_#gc( )
n=0 n=
1(V)-1 _ _ -
= H (1 _ q"_'(A)’)‘#nc'(s")-'#ﬂc(S""('\))
n=0
1(v)-1 _
= H (1- qn-l(A)a)—#sc(sn;|
n=0
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ON DERIVED EQUIVALENT COHERENT RINGS

YOSHIAKI KATO

For a selfinjective artin algebra A, the projectively stable category mod A of finitely pre-
sented left A-modules has the structure of a triangulated category ([4]) and the canonical
functor mod A — DP®(mod A)/D®(mod A)gq is an equivalence of triangulated categories
([8, 11]). In particular, for derived equivalent artin algebras A, B there exists an equiv-
alence of triangulated categories mod A = mod B. Furthermore, if A, B are derived
equivalent finite dimensional selfinjective algebras over a field, then there exist bimodules
pM,4 and 2Np such that the functors M ®4 — and N ®p — induce an equivalence of
triangulated categories mod A = mod B ([12]). Our aim of this note is to generalize these
results.

In section 1, we show that if P° € KP(projA) is a tilting complex with
B = Endp(moa 4)(P°)°?, then the difference between the left global (resp., selfinjective)
dimensions of A and B is less than the term length of P°.

In section 2, for a left and right coherent ring A we define the full triangulated subcat-
egory DP(mod A)cq of DP(mod A) consisting of complexes of finite Gorenstein dimension
and show that the functors RHom’,(—, A) define a duality between DP(mod A)peq and
Db(mod A°p)(cd.

In section 3, we deal with the projectively stable category G(mod A) of modules of
Gorenstein dimension zero over a left and right coherent ring A. Then, as announced by
Avramov [2], G(mod A) has the structure of a triangulated category and the canonical
functor F': G(mod A) — DP(mod A)/D®(mod A)yg induces an equivalence of triangulated
categories G(mod A) = D(mod A)sgy/D®(mod A)gpg. Furthermore, we show that if A,
B are derived equivalent left and right coherent rings, and if either injdim 4A < oo or
injdim A4 < o0, then G(mod A) = G(mod B) as triangulated categories.

In section 4, we show that if A, B are derived equivalent finite dimensional algebras
over a field, and if injdim 44 = injdim A4 < o0, then there exist bimodules s M4 and
alNg such that the functors M ®,4 — and N ®g — induce an equivalence of triangulated
categories G(mod A) & G(mod B).

Throughout this note, rings are associative rings with identity and modules are unitary
modules. For a ring A, we denote by Mod A the category of left A-modules and by Proj A
the full subcategory of Mod A consisting of projective modules. Also, we denote by mod A
the full subcategory of Mod A consisting of finitely presented modules and by proj A the
full subcategory of mod A consisting of projective modules. For a ring A, we denote by
A the opposite ring of A and consider right A-modules as left A°P-modules. For an
abelian category A, we denote by D(.A) the derived category of cochain complexes over A
and by D~(A), D*(A) and DY(A) the full triangulated subcategories of D(.A) consisting
of complexes with bounded above, bounded below and bounded cohomology, respectively.

The detailed version of this paper will be submitted for publication elsewhere.



For an additive category B, we denote by K(B) the homotopy category of cochain com-
plexes over B and by K~(B), K*(B) and K®(B) the full triangulated subcategories of K(B)
consisting of bounded above, bounded below and bounded complexes, respectively. Also,
for an additive full subcategory B of an abelian category, we denote by X ~"(B) the full
triangulated subcategory of K~(B) consisting of complexes with bounded cohomology.
We refer to [5, 14, 3] for basic results in the theory of derived categories and to (10, 12]
for definitions and basic results in the theory of tilting complexes.
The author would like to thank M. Hoshino for his helpful advice.

1. Selfinjective dimensions of derived equivalent rings

In the following, we denote by Zi(X*), 2"(X*) and H(X") the i-th cycle, the i-th
cocycle and the i-th cohomology of a complex X*, respectively.

Definition 1.1 ([5]). For a complex X*, we define the following truncations:

US"(XO): "'_’X"_2—'X"—l—’Zn(X.)—bD—;-.-‘
05.(X*): e 0= ZP(X) o XM o X2,
TSn(X.): ---—bxn_z—pxn'l—;xn_.o_....'

Tzn(x°)! e Do X" o XL 2, L

Definition 1.2. For a complex P* € K®(proj A), we denote by C(P*) the full subcate-
gory of D(Mod A) consisting of complexes X* with Hompqea 4)(P°, X*[4])
=0fori#0.

Remark 1.3. Let P* € K®proj A). Assume that P* generates KP(proj A) as a tri-
angulated category. Then {P°[i]}iez is a generating set for D(Mod A), i.e. [V;ez Ker (
Hompqmed 4)(P°[d], —)) = {0}.

Throughout the rest of this section, P* € Kb(proj A) is a tilting complex with B =
Endo(Mod A)(P')op and

F: D®(Mod B) S D*(Mod A)
is an equivalence of triangulated categories such that F(B) = P°.
Lemma 1.4. We have C(P*) C D®(Mod A) and the functor
Hompmey 4)(P*, =): C(P*) —» Mod B

is an equivalence of abelian categories whose quasi-inverse is given by the restriction of F
to Mod B.

Lemma 1.5. Let n > 0 and assume that P! = 0 fori > 0 and i < —n. Then the
Jollowing statements hold.



(1) Let G: D*(Mod A) = D®(Mod B) be a quasi-inverse of F. Then there exists a
tilting complez @ € K®(proj B) such that G(A) = Q* and Q° = 0 for i > n and
i<0.

(2) X* = al_,(0<0(X")) in D(Mod A) for all X* € C(P").

Lemma 1.6. Letm, n, d € Z with d > 0, and let X*, Y* € K*(Mod A). Assume that
XP =0 forp<m, that Y9 =0 for g > n and that Ext},(X?,Y?) =0 forallp, g€ Z and
i>d. Then HomD(ModA)(X', Y'[i]) =0fori>d+n—m.

Now, we generalize [9, Corollary to Proposition 2.4].

Proposition 1.7. Let n+1 be the term length of P, where n 2 0. Then the following

statements hold.
(1) Lgl.dmA—-n<lgl.dmB <lgl.dimA+n.
(2) injdim 4A -~ n < injdim 3B < injdim 4A + n.

Remark 1.8. It would follow from [10, Proposition 6.2] (resp., its dual) that the finite-
ness of the left global (resp., sclfinjective) dimension of a ring is invariant under derived
equivalence.

2. Complexes of finite Gorenstein dimension

Throughout this section, we work over a left and right coherent ring A. Note that
mod A is a thick abelian subcategory of Mod A in the sense of [5].

Definition 2.1. For any module X we denote by
ex: X — Homa(Homu(X, A), A), z— (f — f(z))
the usual evaluation map. Then, for any complex X* we have a functorial homomorphim
exs: X* — Homj}(Homj (X", A), A)
such that exe™ = ex» for all n € Z. Furthermore, for any X € Mod A and M € Mod A°P
we have a bifunctorial isomorphism

HM',\': HomA(M, HomA(X, A)) at HomA(X, HomA(M, A))

such that Oy, x(f) = Homu(f, A)oex for all f € Homa(M, Hom,(X, A)). Thus, for any
X* € K(Mod A) and M* € K(Mod A°?) we have a bifunctorial isomorphism

Hom,(M*, Hom,(X*, A)) S Hom{(X*, Hom}(M", A))
and hence, applying H%(-), we get a bifunctorial isomorphism
Homgod aor)(M°, Hom}(X*, A)) = Homgmoea 4)(X*, Homj(M*, A)),

which we denote by Ope xe, such that Oppe xe(f)* = Opr-n xn(f™) for all f €
Homgmod acr)(M*, Hom}(X*, A)) and n € Z. Then we have

Exe = ouom;(x'.A).x'(iduom;(r,A)),

EMe = 0M°.uom;(M'.A)—l(idllomi(M ")



for all X* € K(Mod A) and M* € K(Mod A°P),

Definition 2.2 ([13, 3]). We denote by K(Proj A).. the full triangulated subcategory
of K(Mod A) consisting of complexes X* such that Homgmod 4)(X*, —) vanishes on the
acyclic complexes. Note that K~(ProjA) C K(ProjA)L. According to the dual of
[3, Proposition 2.12|, we have an equivalence of triangulated categories K(Proj A), S
D(Mod A) and Hom}(—, A) has a right derived functor

RHom’(—, A): D(Mod A) — D(Mod A°P)

such that the canonical homomorphism Hom(P*, A) —= RHom}(P*, A) is an isomor-
phism for all P* € K(Proj A)L.

Lemma 2.3. For any X* € D(Mod A) and M* € D(Mod A°®), we have a bifunctorial
isomorphism

Hompod 4or)(M*, RHom} (X", A)) = Hompmed 4)(X°, RHomy(M*, A)),

which we denote by Gpre,xo.

Definition 2.4. We set
nx* = Ontioms, (x°*, 4), x* (1dRHoms (x*, 2))s

e = Oyge, Rttomt (M*, 4) (i ttomt (12, 4))
for X* € D(Mod A) and M* € D(Mod A°).

Lemma 2.5. For any P* € K(Proj A).,, we have a functorial homomorphism
£pe: Hom(Hom(P°, A), A) = RHom%(RHom}(P*, A), A)
such that npe = Eps 0 €pe,

Remark 2.8. For any P* € K®(proj A), since Hom},(P*, A) € K®(proj A°?), it follows
by Lemma 2.5 that np. is an isomorphism.

Definition 2.7. A complex X* € D®(mod A) is said to have finite Gorenstein dimen-
sion provided that Homgpyoq 4)(X *[#], —) vanishes on proj A for i < 0, i.e. RHom (X", A)
€ D°(mod A%), and that 7x- is an isomorphism. We denote by D®(mod A)sca the full
triangulated subcategory of D¥(mod A) consisting of complexes of finite Gorenstein di-
mension. It then follows by Definition 2.4 that the functors RHom}(—, A) induce a
duality between DP(mod A)rca and D®(mod A°P)cqy.

Definition 2.8. A complex X* € D®(mod A) is said to have Gorenstein dimension zero
provided that Homp(umog 4)(X°[i], —) vanishes on proj A for i # 0, i.e. RHom}(X*, A) is
isomorphic to a module, and that nx« is an isomorphism. We denote by G(mod A) the
full additive subcategory of mod A consisting of modules of Gorenstein dimension zero.
Note that proj A C G(mod A) and that for any X € G(mod A), projdim X < oo implies
X € proj A.

Lemma 2.9. For any X € mod A, the following statements are equivalent.



(1) X € G(mod A).

(2) Exty(X, A) = 0 = Exti,(Homa(Z'~2(P*), A), A) for all i > 0, where P* is a
projective resolution of X in mod A.

(8) X is reflexive, ie. ex is an isomorphism, and Exty(X,A) = 0 =
Exti,(Homs(X, A), A) for alli> 0.

Proposition 2.10. For any X* € D®(mod A), the following statements are equiva-
lent.
(1) X € Db(modA)rcd.
(2) For any quasi-isomorphism P* — X* with P* € K~®(proj A), there ezistsn € Z
such that the canonical cochain map P — o' _,(P*) is a quasi-isomorphism and
o4 _n(P*) € K®(G(mod A)).
(3) X* =22 Y* in D(Mod A) for some Y* € K®(G(mod A)).

3. Derived equivalent coherent rings
In this section, we continue to work over a left and right coherent ring A.

Definition 3.1 ([5]). A complex X* € D~(mod A) is said to have finite projective
dimension provided that Hompguoa 4)(X*[£], —) vanishes on mod A for i <« 0. We denote
by D*(mod A)gpqg the full triangulated subcategory of D~ (mod A) consisting of complexes
of finite projective dimension. Then we have an equivalence of triangulated categories
K=(proj A) = D~ (mod A), which induces equivalences of full triangulated subcategories

K—=b(proj A) = D*(mod A), K®(proj A) = D®(mod A)pa.
In particular, D®(mod A)gpg C DP(mod A).
Remark 3.2. The following statements hold.

(1) mxe is an isomorphism for all X* € D*(mod A)pq.
(2) D"(mod A)rpd - D"(mod A)rad.

Definition 3.3. We denote by G(mod A) the residue category of G(mod A) over the
full additive subcategory proj A, and by
D®(mod A)/D®(mod A)gpa, DP(mod A)sca/D°(mod A)pa

the quotient categories of D’(mod A) and D¥(mod A)ica over the épaisse subcategory
D"(mod A)tpd, respectively. Then we have an additive functor

F: G(mod A) — D®(mod A)/D"(mod A)gpa
which makes the following diagram commute
G(mod A) ==, D®(mod A)

G(mod A) — D(mod A)/D®(mod A)pa-



Proposition 3.4 (|2]). The following statements hold.

(1) G(mod A) has the structure of a triangulated category with the Heller suspension
Q! as the translation.

(2) F is a fully faithful 8-functor and induces an equivalence of triangulated categories
G(mod A) = DP(mod A)ce/DP(mod A)pg.

Proposition 3.5. The following statements are equivalent.
(1) D®(mod A)de/Db(mOd Apa = D¥(mod A)/D"(mod A)fpa.
(2) Db(mod A)fcd = D"(mod A).

(3) modA C D"(mod Adica-

Lemma 3.6. Letn > 0 be an integer and assume that injdim 4A < n andinjdim A, <
n. Then for any projective resolution P* — X in mod A we have Z~"(P*) € G(mod A).
In particular, D®(mod A)gq = DP(mod A).

Lemma 3.7. Assume that injdimA, < oco. Then nx+ is an isomorphism for all
X* € D(mod A). In particular, for any X* € DP(mod A) the following statements are
equivalent.

(1) X* € D’(mod A)weq-

(2) For any Y* € DP(mod A)gpd, Hompqmod 4)(X*, Y*[i]) = 0 for i >> 0.

Theorem 3.8. Assume that either injdim 4A < 0o or injdimA, < co. Then for
any left and right coherent ring B derived equivalent to A we have an equivalence of
triangulated categories G(mod A) & G(mod B).

Remark 3.9 ([10, Proposition 9.4]). In case A is a noctherian algebra over a commu-
tative noetherian ring R, every ring B derived equivalent to A is 2 noetherian R-algebra.
4. The case of finite dimensional algebras

To begin with, we recall the following facts.

Remark 4.1. Let A, B be finite dimensional algebras over a field k. Then
injdim g, pop A ®% B < injdim 4 A + injdim Bp.

Remark 4.2. Let A, B be rings, and let V be an A-B-bimodule such that 4V is
projective and Vjp is flat. Then the following statements hold.

(1) injdim gHom4(V, X) < injdim X for all X € Mod A.

(2) projdim AV ®p Y < projdimY for all Y € Mod B.

Remark 4.3 ([15]). For a left and right noctherian ring A, if injdim 44 < oo and
injdim A4 < oo then injdim 4A = injdim A 4.

Theorem 4.4. Let A, B be derived equivalent finite dimensional algebras over a field
k. Assume that injdim 4A = injdim A, < 0o. Then there exist M € mod A°® ®; B and



N € mod A ®; B such that the pair of functors
M®s—~modA—modB, N®g-:modB — modA

induces an equivalence of triangulated categories G(mod A) = G(mod B).
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Tamely Ramified Dubrovin Crossed Products®*

John S. Kauta Hidetoshi Marubayashi Haruo Miyamoto

Abstract

Let V be a commutative valuation domain of arbitrary Krull-dimension, with
quotient field F, and let K be a finite Galois extension of F with group G, and §
the integral closure of V in K. Suppose one has a 2-cocycle on G which takes values
in the group of units of §. Then one can form the crossed product of G over S,
S » G, which is a V-order in the central simple F-algebra K «G. If we assume $»G
is a Dubrovin valuation ring of X » G, then the main result of this paper is that,
given a suitable definition of tameness for central simple algebras, K = G is tamely
ramified and defectless over F if and only if K is tamely ramified and defectless
over F. We also study the residue structure of S » G, as well as its behaviour upon
passage to Henselization.

Introduction

This paper is a sequel to [5]. In the case of fields, all valuation-theoretic notions and
terminology are as defined in [1]. Let V be a commutative valuation domain with quotient
field F, and let K be a finite Galois extension of F' with group G. Let S be the integral
closure of V in . Given a two-cocycle which takes values in the group of units of S,
we can always form the crossed product S * G. This object has been studied in [3, 8],
among other places, assuming that V is a DVR. Recently it has been studied in [5], for
an arbitrary valuation ring V.

Let @ be a central simple F-algebra, and let B be a Dubrovin valuation ring of @
with centre V. Associated with the pair (B, V), we have, according to [7], the value
group of B, T'g = st(B)/U(B), where st(B) = {z € U(Q) | zBz~' = B} and U(-)
denotes the group of multiplicative units of a given ring; the ramification index of B
over V, e(B|V) = [['g : T'y], where T'y is the value group of V; and the residue degree
of Bover V, f(B|V) = [B : V]. If pis the characteristic exponent of V, that is,
7 = max {char(V), 1}, it was shown in [7, Theorem C] that [Q : F| = e(B|V)f(B|V)n*°
for some positive integer 77 and non-negative integer 2. We say that B is defectless over
F when [Q: F] = e¢(B|V)f(B|V). The number 7 is called the extension number of V
to Q, described in [2]. By (7, Theorem F|, B is integral over V if and only if p = 1. We
observe that, if S * G is a Dubrovin valuation ring, which is the assumption for a greater
part of this paper, then it is integral over V.

*The detailed version of this paper has been submitted for publication elsewhere.



In the commutative case, we have the following situation. We fix once and for all an
extension W of V to K. Let n = [K : F] =| G |; T'w the value group of W; e = [Tw : Ty],
the ramification index of W over F; f = [W : V), the residue degree of W over F; and g
be the number of extensions of V to K. It is known that n = efgp® in this case, where
d is a non-negative integer. Following [1], we say that (K,W) is defectless over (F,V)
if n = efg, and we say that (X, W) is tamely ramified over (F,V) if char(V) does not
divide e and W is separable over V.

When B is Dubrovin valuation ring of a central simple F-algebra Q, we will therefore
say that B is tamely ramified over F if Z(B) is separable over V and char(V') does not
divide e(B|V). We do not assume that 7 is co-prime to [Q : F]. However, our definition
of tameness is stronger than that of [4], which is applicable only to division algebras
with invariant valuation rings. The main result of this paper justifies our choice of the
definition of tameness. We readily see that any Azumaya algebra over a valuation ring is
tamely ramified and defectless, by [6, Proposition 3.2] and [7, Corollary 3.4].

In section 1, we have the main result of the paper, which states that, assuming S+« G
is a Dubrovin valuation ring, then / x G is tamely ramified and defectless over F' if
and only if K/F is tamely ramified and defectless. If we assume that K/F is tamely
ramified and defectless then, by [5, Theorem 2], J(S * G) = J(S) * G and therefore
5% G = M,(W » G?) by [5, Lemma 2], where GZ is the decomposition group of W over
F. Let G7 be the incrtia group of W over F. In section 2, we see that when S*G is
a Dubrovin and K/F is tamely ramified and defectless, then W * GZ is a generalized
crossed product of GZ/GT over W x GT. A necessary and sufficient condition is given for
the generalized crossed product to become a classical crossed product algebra. In section
3, we see that, if (K, W) is a Henselization of (K, W), and (F},V}) a Henselization of
(F,V), then (SxG)®y V;, & M,(W,*G?). The value function associated with an integral
Dubrovin valuation ring described in [6] easily materialize in (K * G) ®F F}, whenever
K/F is tamely ramified and defectless and S * G is a Dubrovin.

1 The Main Result

The main result of this paper follows.

Theorem 1 Suppose S * G is a Dubrovin valuation ring. Then (I xG, S * G) is tamely
ramified and defectless over (F, V) if and only if (K, W) is tamely ramified and defectless
over (F,V). When this happens, f(S*G|V) =ef%g? ande(S*G|V) =e.

We prove the theorem by showing that if SxG is a Dubrovin, then it is tamely ramified
and defectless if and only if W * G7 is a separable W-algebra, and the latter holds if and
only if (,] GT |) = 1, by a result of Harada in [3]. From this, it follows that S * G is
tamely ramified and defectless if and only if X/F is tamely ramified and defectless, by
[5, Lemma 1].

We will see later in Section 3 that, with the assumption contained in Theorem 1, we

have, in addition, the result that Fg.c = Iy. Examples of tamely ramified and defectless
Dubrovin crossed products can easily be constructed using [5, Theorem 3]. In Examples
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1 and 2 of (5], we encounter Dubrovin crossed products that are not tamely ramified,
although they are defectless.

Proposition 1 Suppose K/F is tamely ramified and defectless. Then the following are
equivalent:

1. S+ G is a Dubrovin valuation ring of K +G.

2. W + G? is a Dubrovin valuation ring of K « GZ.
3. W x GT is a Dubrovin valuation ring of K » GT.
4. W+ G? is a simple ring.

5. W+ GT is a simple ring.

Another condition equivalent to S »* G being a Dubrovin valuation ring will be given
in Theorem 3(2).

2 The Residue Structure of S * G

If S*G is a tamely ramified and defectless Dubrovin valuation ring, then S * G 2 M, (W «
G?), and hence, to study the structure of S * G, one nceds only consider W = GZ.

Let @ be a central simple F-algebra. It is not always possible to find a maximal
subfield of @ which is a Galois extension of F, that is, Q need not be a “classical” crossed
product algebra. What is often the case is that there exists a subfield L of @ which is
Galois over F but [L : F]? < [Q : FJ]. If A is the centralizer of L in Q, and H is the Galois
group of L over F, then Q is said to be a generalized crossed-product of H over A. In case L
is a maximal subfield of Q, we will say that Q is a classical crossed product algebra. Recall
that if B is a Dubrovin valuation ring of @ with center V, then each a € st(B) induces
a ring automorhism of B via conjugation. In fact, Wadsworth [7, Corollary B] showed
that this map induces a surjection w : I'p/Ty = Auty(Z(B)) (see also [2, Corollary 4.2]).
When K/F is tamely ramified and defectless and S *x G is a Dubrovin, then S *G is
tamely ramified and defectless, by Theorem 1, and hence Z(5* G) is Galois over V, by
(7, Corollary B).

Theorem 2 Suppose S * G is a tamely ramified and defectless Dubrovin valuation ring

of K+G. Let C = Z(W % G%). Then:

1. (a) We have that WC = Z(W + GT),
(b) Further, WC is Galois over both W and C,
(c) Ga(WC/C) = Gal(W/V) = G?/G™ and Ga(WC/W) = Gal(C/V),
(d) W x GZ? is a generalized crossed product of G2 /GT over W » GT.



We have the following diagram:
W G?

WaGT

WC:Z(W*GT)

N

C = Z(W = G%)

V=WncC

2. The Wadsworth map, w, is a bijection if and anly_if W xGT is commutative. When
this happens, W x GT is a mazimal subfield of W » G?, it is Galois over C, and
W x GZ is a classical crossed product algebra of GZ/GT over W x G7.

Remark. From a purely ring-theoretic point of view, the distinction between gener-
alized crossed products and classical crossed products is superfluous in this case: since
GT AG? W xG% = (W xGT) *(G?/G"), and hence W » G? is always a crossed product
of GZ/GT over W » GT.

The following corollary now follows from Theorem 1, Proposition 1, and Theorem 2.

Corollary 1 The order S*G is a tamely ramified and defectless Dubrovin valuation ring
if and only if W+GT is a simple separable W -algebra; it is a tamely ramified and defectless
Dubrovin valuation ring and the Wadsworth map is a bijection if and only if W *GT is a
separable field extension of W.

When K/F is tamely ramified and defectless, then (| G” |,p) = 1, by [5, Lemma 1).
Therefore, by (1, Corollary 20.10(b), Corollary 20.12, & 20.2], GT = I'y /Ty, and so GT
is abelian. Thus, if f is the 2-cocycle (not to be confused with the residue degree of W
over F), then W » G7 is commutative if and only if f(o,7) — f(7,0) € J(W) Yo, T € GT.
But this characterization of the commutativity of W x G7 is hardly illuminating; indeed,
an example of a tamely ramified and defectless S x G with W * GT non-commutative is
unknown to us, and may well not exist! However, when V is a DVR or, more generally,
when GT is cyclic, then W » GT is commutative. This is the essence of the following
proposition.

Proposition 2 Suppose SxG is a tamely ramified and defectless Dubrovin valuation ring
of K *G. When e(B|V) is square-free, or when S * G is finitely generated over V, then
the Wadsworth map is a bijection.

To prove this proposition, one shows that, in either case, G7 is cyclic.



Remarks. It appears that the inertia group, G7, plays a critical role in the behaviour
of S * G. To start with, when W « G is a simple ring, then S * G is a Dubrovin
valuation ring. The converse is false: in both Examples 1 and 2 of [5], G = G” and
J(S*G) D J(S)*G and hence W + GT (= S+ G = S+ G/(J(S) * G)) is not a simple
ring.

Further, when W « GT is W-separable, then S « G is semihereditary, from the proof of
[5, Theorem 2]. When W * G7 is a simple separable W-algebra, then S « G is a tamely
ramified and defectless Dubrovin valuation ring and conversely. If S x G is a tamely
ramificd and defectless Dubrovin valuation ring and G7 is cyclic or, more generally, when
W = G7 is a separable field extension of W, then the Wadsworth map is a bijection.

3 The Henselization of S+« G

Let B be an integral Dubrovin valuation ring of a central simple F-algebra Q. In [6], we
encounter a value function ® : Q — I'g U {00} associated with B, which is a surjection,
and has the following defining properties: for all z,y € Q, we have

1. &(z) = oo if and only if z =0,

2. &(z +y) = min {®(z), B(v)},

3. ®(zy) = ®(z) + 2(v),

4. B={z € Q| ®(z) 20} and J(B) = {z € Q| (z) > 0},

5. (Q) = B(st(P)) U {o0}, where st(®) = {z € U(Q) | B(z™}) = —¥(z)}.

Let (Kx, Wh) be a Henselization of (I, W) (see [1, §17] for definition). Their value
groups are the same, that is, [y, = [y. We let ¢ be a valuation on K}, corresponding to
Wh. Let (Fi, Vi) be the unique Henselization of (F, V) contained in (/,, Wy) [1, Theorem’
17.11]. By [1, 17.16 & Theorem 17.11], we see that I, = KF},. Note that W N (K N Fy)
is indecomposed in K, since V}, is indecomposed in K. Hence, by [1, Theorem 15.7], we
have FZ C K N F,. But since K/F is a finite Galois extension, [1, Them. 17.7] implies
[K : F] = |Kn : Filg, hence [K N F} : F] = g, and so we must have FZ = K N F,. The
Galois extension K,/ F} has therefore group GZ.

Any o € G can be considered as a ring automorphism on K ®g F} via the action
ok®u)=0(k)®u, for k € K,u € Fj. Also, if f is the 2-cocycle, then f(o,T) can be
identified with f(o,7)®1 € U(S ®y W), for all 0,7 € G. The restriction of o to S ®v V3
is again an automorphism. Therefore there is a canonical Fj-algebra isomorphism from
(K« G) ®f Fy, to (K ®f F,) * G mapping kz, ® u to (k ® u)z,, which restricts to an
isomorphism between (S * G) ®v V,, and (S®v W) « G.

Theorem 3 We have
1. (K *G)®F Fy = My(Ky, * G?%) and (S * G) ®y Vi & My(W), * G?),

2. the order S x G is @ Dubrovin valuation ring of K + G if and only if Wy, xGZ is a
Dubrovin veluation ring of the central simple Fy-algebra K » GZ,



3. if S * G is a tamely ramified and defectless Dubrovin valuation ring of K * G, then
the map ® from Kj,» GZ to Ty U{oo} given by ®(X_,ccz koTo) = minye cz{d(k.)}
is a value function corresponding to the Dubrovin valugtion ring W, » G2.

Using the above theorem and the ideas in [6], we easily obtain the following corollary.

Corollary 2 Suppose S * G is a tamely ramified and defectless Dubrovin valuation ring
of K * G. Then we have I's.c = T'w. If; in addition, the Wadsworth map is e bijection,
then Gal(Z(§*G)/V) = G".

Just as we have been able to define tame central simple algebras, we now define
inertial central simple algebras. In the commutative case, W is said to be inertial over
Fif [K : F] = f and W is separable over V. Therefore, given an arbitrary Dubrovin
valuation ring B of Q, we will say that B is inertial over Fif [Q : F] = f(B|V) and Z(B)
is separable over V, following the terminology used if Q were a division algebra with B
as an invariant valuation ring.

In the case when V is Henselian and @ is a division ring with B as an invariant
valuation ring, it was shown in [4, §2| that B is inertial over F if and only if it is
Azumaya over V. We now easily generalize this result. We hasten to point out that [4]
is a far-reaching account of division algebras over Henselian fields.

Proposition 3 A Dubrovin valuation ring B of Q is inertial over F if and only if it is
Azumaya over V.

The strategy is to show that the statement holds when V is Henselian, using results
in (4], and, for the general case, we pass on to B ®y Vj.

Recall that W is said to be unramified over F if e = 1 and W is separable over V. By
[5, Theorem 3], we immediately have the following.

Corollary 3 Let K/F be an arbitrery Galois extension.

1. The V-order S + G is a Dubrovin valuation ring inertial over F if and only if K/F
is unramified and defectless.

2. If V is Henselian, then S + G is a Dubrovin valuation ring inertial over F if and
only if K/F is an inertial extension.
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BLOCK VARIETIES AND INVARIANCE PROPERTIES

HIROAKI KAWAI

Abstract. In this report!, we first give the short explanation for the three notions intro-
duced by M. Linckelmann [10], [11]. Secondly, we show the two basic relations between
the block variety V¢ ,(U) introduced by Linckelmann in [11] and the well-known Carlson's
module variety Vz(U) in [4], for a bounded complex U consisting of modules over the-block
algebra kGb. That is, there is a finite surjective map Vg u(U) = Vg(U), and conversely
there is also a finite surjective map Vp(iU) = Vg p(U), where D is a defect group of b and
i is a souce idempotent of b. Finally, we give the explanation for the invariance proper-
ties of block varieties under splendid stable and derived equivalences, and [urther Green

correspondences.

-

Z DTk Linckelmann [10], [11] DR ZBE~D, TR EDHFELVABIZE L TIL(17]
2BMLTL &V, G % finite group, R % commutative ring &4°%. G @ cohomology
ring 26 RG @ Hochschild cohomology ring ~® diagonal induction functor {Z& 2T
Hhhad L < Mbiz embedding ¢ : H*(G,R) - HH*(RG) #Hd. ZOK H % G
@ subgroup, tyc ZATMRIED cohomology 12851} 5 transfer &2 &, TORN% TR
W25 & ) REEDD lincar map # EJ L=< 255 Linckelmann i3 H A2 symmetric
R-algebras OPMIIERTE DIEOERE F 172 ; A, B iT symmetric R-algebra (ie., R
Lt projective Tdh D, A 2 A* as A — A-bimodule). X = { Xp } % bounded complex of
A — B-bimodules X, T X, i% left A-module, right B-module & L T projective &35
(EA# bounded perfect complex of A — B-bimodules & FERZ &i2% D). ZONF, transfer
map associated with X & PRI 2 linear map ty : J/IH*(B) = I H*(A) HERENT,
$¥iZ RG — RH-bimodule X = (RG)y I L TTORZUL I/ E 2D,

tnc

1™ (1, R) =22+ 1I"(G, R)

N o

H M (RH) e HH"(RG)

&Lz, Z O transfer map Ly ITXOTER 1.1 THRAD554EX L. Ly D degree 0 com-
ponent & : Z(B) = HH(B) = HII%A) = Z(A) 12X 5 1, DR & (1p) = nx EE<.
£, HH*(A) ITB4F D X-stable L TREN D e kA 58D subalgebra & HHy(A) &

YThe detailed version of this paper will be submitted for publication elsewhere.



<. X @ R-dual X* Iz LT HLREMKIZL T wy., HH%.(B) 2E® 5.

BIE 1.1.([10, 3.6]) 7x % Z(A) ICBWTHB LTS, ZORF Ty =a3'ty LB T
XY, Tx: HH%.(B) = HH%(A) iX R-algebra homomorphism &725. EHIZ 7x. b
Z(B) 2BWTHA2 S Ty, Ty LK VRBARE L HND.

LA#% O block FRRGEAZIZH L TIX [16) B EIZL TT &V k % algebraically closed field
of characteristicp > 0 &3 5. b % kG @ block idempotent, D % b @ defect group (i.e.,
BrS(b) # 0 & 725 p-subgp. P @ 3 H T maximal 224D, Z 2T Br : (kG)P - kCe(P)
{% Brauer hom.). i % b O source idempotent (i.e., (*Gb)? @ primitive idempotent s.t.
Br§(i) # 0), ep % Br§(i) (Br§(:) i primitive) 2 &r kCe(D) ® block £+5. ZD
B, Brauer pair (D,ep) i% maximal b-Brauver pair & 729, D O{EFE D subgroup Q =3t
L (Q,eq) < (D,ep) &1 D111 2D eq BFET D (eq 1% Br(i)eq = Br§(i) L 225
Ce(Q) D7=151 2D block). T 1.1 DIMELRFIL LTROLOADHS.

2 1.2.([10, 5.6], [11, 5.2))
(1) kGb — kD-bimodule X = kGi {Zx LT mg; & mpeyye = g (1kG = (kGi)* as
kD — kGb-bimodules) XA & Y, Tigi: HHjg(kD) = HH}g,(kGb) as k-algebras #%
D iz,
(2) G, H # finite groups. b,c % kG,kIl @ blocks &4 5. bounded perfect complex X
of kGb — kHc-bimodules MR D Rk % #H/F &+ 5 (~ It homotopy equivalence).

X ®ye X* ~kGba U, U : bounded complex of proj. kGb — kGb-bimodules

X ®rcy X = klic® U, U, : bounded complex of proj. kIlc — kX c-bimodules
ZOWF, mx, wxe (TR ERY, Ty : HHy. (kHc) = HH%(kGb) as k-algebras ALY 32,

FE 1.3. kG — ikGi-bimodule kGi & & D dual (kGi)* it block algebra kGb & & D
source algebra ikGi OFHMGMi% 52 5. F7=, derived category DHMEBRDERETE
&, EH L2 (2) DRM#EFHI=T L 572 bounded perfect complex X 1 Uy =U. = {0
} ® & % two sided split endomorphism tilting complex ®Z & T#H Y, X A bimodule ®
L XX kGb & kHc X stable equivalence of Morita type DFIZH B LS Z L TH B

[7)-

KiZ block b @ cohomology ring {22V TR TV <. Q £ D (i.e., D ® subgroup Q) =%}
L, EBc((Q.eq),(D,ep)) = { ¢ : Q = D | ¢ IL z-conjugation s.t. *(Q,eq) < (D,ep) (z €
G)} £B<L. *(Q,eq) < (Dyep) & *Q < D, "eq = e:q (*Q 1L Q D cojugate subgp.
DE). &6iZ, D, % (D,ep) LHIET S defect pointed group £ 45 (yiXi #&Tr
point). -



B 1.4.([10, 5.1)) D, & associate E1.D block b ® cohomology ring ZKDERIZEHKT
%. H*(G,b,D,) = { [¢] € H*(D,k) | ¢ oresd([¢]) = resB:([¢]) for any Q@ < D and any
¥ € Eg((Q,eq), (D, ep)) (i-e. Brauer category Bre(p.epy P{EED morphism ¢ [16)) }. =
T ¢l itk oTHIND conjugation map H*(Q, k) = H*(*Q, k) Th 3.

b A% principal block D#E, D 1 G D p-sylow subgroup THoEM b res§ : H*(G, k) =
{ stable elements of H*(D, k) } ([5, 10.1}). =T [¢] A% stable & 1%, EH 1.4 2\ TQ
A% sylow intersection 2 'DND D & FiZ, @ AT D z 12X S conjugate ' DND = DN *D
DPA T CRIEABR I LT & 2 ERT 5. WwxIC Image(res§) 2 H*(G,b, D,). ¥
(= Image(res§) C H*(G,b, D,) XM &M TCHBME H(G, k)= H*(G,b,D,) &725.

2. Linckelmann’s varieties & Carlson’s varieties

{E¥ ® bounded complex U of kGb-modules {Z%f L TK®D k-algebra homomorphisms 7>
LD TRERNRGOND (ay DERIL (11) BH).

H*(G,k) S HH(kC) =% Extig(U,U)

o) .
res$ l J proj. "

11°(G,b,D,,) HH*(kGb) — Exticy(U,U)
JDJ %
HH} (kD)

E# 2.1(]11, 4.1]) bounded complex U of kGb-modules 12t LT, ay o Tigs © 6p D
kernel & 1&g, p (U) &3%. U @ block variety % Vga(U) = maximal ideal spectrum of
1‘!.(0, b, D‘T)/’&.b,D-,(U) t ﬁ_??i—q‘b.

ay o 8¢ D kernel % I15(U) &3 % & maximal ideal spectrum of H*(G,k)/I¢(U) 12 U
@ Carlson's variety Vg(U) D Z & ThHaH 6 LOTRRKL D KBEFZS.

R 2.2.([11, 4.4]) [5(U) = (res§)~ (g0, (U)) B0 S5, H*(G,b, Dy) it Image(resG)
LARBERTH DS, (resh)” : Vop(U) = Ve(U) 1 finite surjective afline map & 725,
EbiZ, dim Va,b(U) = dim V¢(U) LY .

Linckelmann [11, 5.1] 2 b L iICLTRD 2 OO BN ZBHENTESH. Z 2T,
Ext' (_,_) % Ext* () &BSEELE. Eh kGi®up_,ikCOrcs_ PRI [11] M. =0
¥, Ext-group (ZHT < % modules XS kD-modules V' @ category & kGb-modules
U @ category DD kGi-induction, ikG-restriction & FEATLWV LD THS.



H H36,(kGb) =3 Bxty oy (KGi @4p V) HH; g (kG) =2 Ext}g,(U)
Tic I I kCi®wp__ Tua l l kGCOsGy__
]lH'kC(kD) oy Ext;D(V) l‘lHlkc(kD) ';‘T EXL;D('BU)

EOFRRRIZ 6p : H*(G,b,Dy) = HHj (kD) 28T 5 Z &2 L ¥ RO ARG

bhd. ZIT, L IXEETR, top horizontal maps IXZEDRD GIUZ axci,pv © Tici © dp
& ay o Tigi © 6p, & H{T bottom horizontal maps It ay o dp & ayy o §p THD.

H*(G,b,D,) — Ext;,(kGi ®p V) H*(G,b, D)) — Exty (V)
fl l 1)&6‘!'@. D t J l kGCOucv__
H(D, k) Ext;p(V) H*(D, k) —— Ext} p(iU)

EZAT, RO ENKRYILD 6, 1.1)
U is a direct summand of £G? ®,p iU/ as kGb — modules

Wxiz, ZEORRXTV =il &FDLEkGipV 2 U LMEMADZ LN TES.
Linckelmann’s variety i top horizontal map @ kernel TE¥ ¥, Carlson's variety i
bottom horizontal map @ kernel TEE DD TKRD Z &HREN S (Linckelmann HFE L

BREBTH5 12)).

EH 2.3. D % block b @ defect group, i € v % b @ source idempotent &+ 5. Z DI,
Fenp, (U) = H*(G,b,D,) N Ip(iU) ALY 32, H*(D, k) i H*(G,b, Dy) LAMERT
HHMh, © ZAAFR  OHIND afline map & DL 0 : Vp(iU) = Veu(U) i
finite surjective £725. X HiIZ, dimVp(iU) = dimVg,(U) bk D 3.

3. Invariance properties of varieties

EE 3.1.([11, 5.9]) G,H %* finite group. b,¢ IX kG,kH @ blocks TIEilid> defect group
D b7, i,j % b,c @ source idempotents & L, i,j & associate Eh 5 maximal b-
Brauer pair, maximal c-Brauer pair ¥ (D, ep), (D, fp) £+ 5L &, Ec((Q,eq),(D,ep)) =
En((Q, f@), (D, fp)) for any Q < D (WX.iZ, b & ¢ @ Brauer category H[Elfi]) & RES
3. BEDOBREDDL & TROZKMER =T bounded complex X of kGb — kHc-bimodules
BIFET D LRETS.
(i) X ®xppe X* = kGbd U, Uy : bounded complex of proj. kGb — kGb-bimodules

X* @ X 2kHea U, U, : bounded complex of proj. kIlc — kHe-bimodules
(ii) Mn, % X @ component X, ? indecomposable direct summand &4 5. £

D n,t IZFBWT, M,, IX direct summand of kGi ®,q jkI! for some Q < D.



Z D& %, {EED bounded complex V of kHe-modules 122 LT, Vi (V) = Ve o (X @i V)
MY L.

EMD ZaftF iz B L T block algebra £ derived category DARMIEIZAWTR T
<. blocks b & c A3l defect group & boRfEDH & T, LEDOEMDRM: (i) (=7£L
Upy=U.={0}), (ii) £#7=7 bounded complex X ¥ splendid tilting complex & FEiIh
5. (ii) 1% Linckelmann ORMT, ZOHEEEHA L7 J. Rickard {XAFIMIZIL principal
blocks b,c DWA X BFX TV D X 3 T (ii) ODRIFIT M, | kC®rp kH & L1 ([8], [14]).
L, @ E Rickard I2 &% % D% splendid Rickard complex, Linckelmann iZ X 5L 0%
splendid Linckelmann complex &FELSZ &2 5. KIZ Brauer construction @ notation
#EHAT 5. Q #* finite group G D p-subgroup, M % kG-module &%5. ZDL X,

M(Q) = M®/(SpeqTri(M®))  (kNc(Q)-module & H725)

ST M3 M @ Q-fix points (MR LRIER), Tr3 i3 relative trace. $HZ, M
kGb - kHe-bimodule (k(G x H)-module & & 72 25) T b,c H3END defect group D % b
D&%, D ® subgroup Q iZxf LT M(AQ), AQ = { (9,9) }eeq 1T kCe(Q) — kCn(Q)-
bimodule & #72%% (Cel(Q) X Cu(Q) £ Nexn(AQ) IZ& D).

B 3.2.([8, 1.1], [14, 4.1])
(1) b,c IXTERR 3.1 DF/E* F+7=7 principal blocks &+ 5. X M kGb & kHc iZxt$ 5

splendid Rickard complex 72 & i, {EE D subgroup @ < D {Z#f LT X(AQ) X kCe(Q)
& kCy(Q) @ principal blocks {Zx4" % splendid Rickard complex &725.

(2) b, c HEHL 3.1 DR (7 L. Ea((Q,e0), (R, er)) = En((Q, Jo), (R, Ja)) for QYR <
D) &1 F{ERD blocks £ ¥ 5. X M kGb & kHc i3+ 5 splendid Linckelmann com-

plex 72 HiF, {ERD subgroup Q < D 125 LT egX(AQ)fq 1 kCo(Q)eg & kCh(Q)es

t2xt3 % splendid Rickard complex &£ 72 5.

XE 3.3.

(1) (a) b,c #% principal blocks ® & &, splendid Rickard complex iXE Bi{Z splendid
Linckelmann complex {2725 ([8, 1.2]). &P} indecomposable kGb — k Hc-bimodule M I
LT, M| kG®:pkH == M | kGi®rg jkH (3,7 1L b,c D source idempotent T AQ 1%
M @ vertex).

(b) R. Rouquier {Z X > TRD Z EMNEFR TS (15, 5.6]; principal blocks b, ¢ iZxi+ 5
T 3.1 DF/FEDD & T, X % Rickard DFBRTCOERL 3.1 DR (il) May | kG @rp kH
2RI=TETSH. ZoO0E, X B principal blocks b,c 2% L TR (1) 2HF L L,
{EE D non-trivial subgroup @ < D BT X(AQ) 28 kCe(Q) & kCy(Q) @ principal
blocks 23 LT Uy = U. = { 0} TORM: (i) 2H 7=+ &, T42bH two sided split
endomorphism tilting complex & 7425 Z LIXRMATHS.



(2) —iZ, e X(AQ)fo A spiendid Linckelmann complex Thd Z & &R T &IXTER
V. % Z T principal block O#§AMZRK 0 3L isotypy & D% (Rickard [14, 6.3]) D—&D
blocks ~DILIEIL 5 E L vidvizvs. TR, kGb & kHce 23T 5 splendid Linckelmann
complex ASTEE LT H blocks b, ¢ DD isotypy |2, 4.6] DFF{EE Rickard OFEMIZE -7
JGTHRTZEMTER.

TEHL 3.1 I2BVVT X A% bimodule (3724 degree 0 DA complex) TRt (i), (ii)
% Z7=% & %, Linckelmann [9] it kGb & kl{c X splendid stable equivalence DMERIZ
b D ETRATYVS (ZfF (ii) 1T block algebra IZMTDRMT, £t () OHOREHER
stable equivalence of Morita type LFEIEN D D TH D). UTIDZ LoV THRAZ
% ?. stable equivalence of Morita type IZ[JL TRDZ &AM TV 5. [3, 6.3), [14,
41] Tldb o & ~BMRBTRENRTV DA Z Z T principal blocks D& D47

B 3.4.([3, 6.3], [14, 4.1], [15, 5.6]) b,c ZEHR 3.1 DFXFE % 7= principal blocks &3
5. kGb— kHc-bimodule M = &M, ZZ T M, | kG ®p kH IZX LT, WIL[E.

(1) M i kGb, kHc DIflD stable equivalence of Morita type 45X 5.

(2) 1= non-trivial subgroup @ < D izxtL, M(AQ) tx kCe(Q), kCy(Q) @ principal
block algebras DM Dillik > Morita equivalence 2 4-2 2.

Linckelmann I3 EHR 3.2 (2) & [RERIC pointed group theory 2 AV TEIL 3.4 & (M »8
indecomposable, A&XFE & (1) £ D vertex AD &V 5 FRlEN S M) R OHRLTW
3.

®IR 3.5.(|8, 3.1]) b,c iX kG,kIl @ blocks TIEHD defect group D % H. 4,7 %
b,c @ source idempotents &3 %. indecomposable kGb — kM c-bimodule M such that
M | kGi ®xp jkH 123t LT, &ITFAN.

(1) M L kGb, kHc DD stable equivalence of Morita type %42 5.

(2) {3 non-trivial subgroup Q@ £ D {Zxt L, eqM(AQ)fq 1t kCe(Q)eq, kCu(Q)Jo @
Moifitiod Morita equivalence 2525, &biZ, Eg((Q,eq), (R, er)) = Ex((Q, fo), (R, fr))
for YQYR< D L7125,

block algebras DRIDFEMAY stable cquivalence D R{EMLME L LT, TR 34 * b
&1z L7 derived equivalent blocks (=13 5" ByLDGFIE" DIMB RN T D™ ENH S
(13, 3.5]). == Cit B35 & belc LTHBLARET, ROTH 3.1 ORELL 5.

# 3.6. b % kG DIEFED block, D % b @ delect group (abelian &L{XEELARV). N =

Ng(D) &#%, kN @ block bp % b O Brauer #Ms-fF-&35. M % kGb D (GxG,AD,Gx
N) 2B 3 Green IET- L 5L &, M@y, _ = bInd§y_ & M* ®ugs_ = bgRes§y_ 12



&9 kNbg & kGb 5 stable equivalence of Morita type DREIZH B LRETS. T L &,
@ lunctor 1 H#A D { indecomposable non-proj. kGb-modules } & {indecomposable
non-proj. kNbp-modules } DD 1 %} 1 %55 (Green Fi:EELe) I2BWT, FD block
varietics IXFRETH 5.

AEW). M % kGhexn @ indecomposable direct summand T kNbg | Mivuw £725HD
ETD, ZOEE, M 1L vertex AD &£72B72751 2D kGhexy D ind. direct sum-
mand TH Y, kGb X HIZkNby D Green HETTHHZ ENbnd. Fi- trivial source
EHLRZEbMDDT M | kG ®rp kN as kG — kN-modules. & 52 bMby = M
L0, M| kGb @,p bokN L72%5. M % indecomposable X ¥ primitive idempotents
i€ (kGb)P,j € (kNb)P? T M | kGi®rpjkN LB LONRENDH, L Br§(d) =0 &
5 [8,2.6] £V kGi| kGi®xpkD as kGb— kD-modules & 72 % subgroup R < D MIFEY
5. £oT M |kGi@rjkN, Tibb M| kG®nkN = mdS3N (k) &Y, Zhiz M
D vertex A3 AD 2T 5. jIZMALTHLRIERTH Y, 4,5 IX b,bp D source idempotents
THHEZENDMSD. £ T, b L M A stable equivalence of Morita type 25257225
(XER 3.5 &9 Ec((Q,eQ),(D.CD)) = E"((QI Ja), (Dsff))) forany Q< D &7z, EXR
3.1 BEMTES.

& T, M » stableeq. of Morita type # 5.2 %5 Z & X ¥, indecomposable non projective
kNbp-module V 125 L, M ®xni, V = f(V)® (proj. kGb-module), f(V) ¥ indecompos-
able non proj. kGb-module & T& 245, FHIL 3.1 LM LT Vivgo(V) = Voo (M®ra, V) =
Veo(F(V)) U Vgu(proj. kGb-module) (%51 (6, 3.3]) 215, & Z AT, block variety
Ve u(U) 13X homogeneous varicty TH A HEM 2.2 & FH 23 BLU (L, 11, 5.7.2] £/
WT U : projective kGb-module & Veu(U)={0} THDHZ &My, F 3.6 IR

Ehd.

F 3.6 Tl stable eq. of Morita type IZ X >TH % 5h5 Green 550D b & T varieties A5
FRETHD & Zl~fan, LT~k 51z ZDRAHET S blocks @ Brauer categories
TEM 3.1 O&RLELXBEMICHA LTWS. I THET D blocks D Brauer catrgories
A EEE 3.1 D&tk B TWAIZBT varieties DTEHIZONWTERELE, TITi
defect group # abelian &7 5. EMIZEI 2.3 &, blocks DD Clifford BEE%E LB
5.

&% 3.7. b % abelian defect group D % %2 kG @ block, by % % ® Braver #EF &7
%. veriex D % -2 indecomposable Gb-module M (= LT, L % (G, D, Ng(D)) =M
T2 M D Green MIETETHEE, Voo(M) = Vigipysl(l) L7225,
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Auslander-Reiten components and projective modules
for finite p-groups

Shigeto ICAWATA

ABSTRACT. Let G be a finite p-group and O a complete discrete
valuation ring of characteristic 0 with the maximal ideal () and
the residue field £ = O/(n) of characteristic p > 0. Let A be
the connected component of the Auslander-Reiten quiver I'(OG)
containing the projective OG-lattice OG. Suppose that OG is of
infinite representation type. Suppose further that (7) 2 (2) in the
case where p = 2 and G is the Klein four group. Then the tree class
of the stable part A, of A is Ag.

GREBBLTS, pl GO |G| 22 HHFEREL, (K, O, k) idp
EV2T7-RETH TiLL, OREKIOTHERMTHERT, €OEKSITT
VNOERTEr L LIt &, Hfdkk=0/(r) 3BEpDETHY, KIZODHE
TharLt5s,

SIZTIERTCOFRIEk%2FL, RG-INBELEWZITR-LFARTHRBRERZDD
2EERTALOET A, 52 OG-INBE L 12 OG-lattice 2B L, 4L/ AgtHic
DWW OG-lattice P THhF TV —TEZHZ LIZTAH.

REBELI-WEHRTHA,

EE GHMpRBRTCOGCHERFZRRBLT S, 727iLp = 2 TG »H Klein four
group D& X (1) 2 (2) BRETS. ZDL SIHEMEE OG £ &L Auslander-
Reiten component @ stable part @ tree class i& Ao, ThH 5.

HCHWpBLoIdRROG dlocal TH Y, £07:H OGC A GHMe—DEELH %2
SR OC-IBETHAILEFEELTEL. F/p=2TG H Klein four group ®
& %13, SHEMEE OG % &t Auslander-Reiten component @ tree class (& Dy Th
AIENHLNTWAS (D).

The detailed version of this paper has been submitted for publication elsewhere.




S DB T, § 1 THIRO Auslander-Reiten quiver 22V T4 EThh»T
VB LERINICTLD, §2 CLOTHROTEADOH X ELLHEELZHYLL
v, 728§ 3 CREMERTHRO LOBRORHABIZIOWTH HEEEZ LV,

IR Auslander-Reiten RG22V Tid, Benson[B], Erdinann[El], Roggenkamp
[R2] i=RE LV AN H Y 7.

§ 1 B#IR® Auslander-Reiten quiver

I(RG) T IR RG @ Auslander-Reiten quiver %, I';(RG) T RG O stable
Auslander-Reiten quiver 2% ¥ Z & 123 5. & T AT Auslander-Reiten quiver I'(RG)
i, “H" OBREL LTIIEEES RG-IMBEOREM M) 22T, EBEY RG-
it MN LT M »H NAD“BHER" BFET LI [M] - [N] D&
IR EHLIELILLoTHONZFRNT T 7O ETHAH. ( RG-EEEE
Bf: M- NHIPEHERLE, FRNLFTEITELVWEEER). BILRDOE
ke Mz L& f 1T split-mono TH split-epi TH%<{, dbL f=hg LEHE
@izamannid, g A split-mono 2 X 721& h A% split-epi Tdh 5. ) 7=, stable
Auslander-Reiten quiver & (%, Auslander-Reiten quiver 7 & §$5Z008E,/ AGHinBEic
BT AHL, TERODOHIIDLNBIREBMVBRVTHONLETFT7TH B,

[,(RG) D:E#m5 (L% AR component) # ¥ J 7 & L TORIKIIDOWTIEAD
structure theorem RFHN T3,

I (Riedmann) AR component © {23 LT, treeclass T &, %O translation
quiver ZT DB CREIH & % 5 admissible group 1 H¥EF>T, O ZT/N &2 5.

—A%iZ, BEIRD tree class {I22WT, Webb il & D RARE NI

TEIP (Webb[W]) IR RG ? AR component O tree class i, Dynkin diagram #*
¥ 7213 Euclidean diagram 7% L < i% Ao, Boo; Cooy Doy AR D ENHTH 5.

EEDBHETLREG OHE (WbWAEY 25 —HKH) Tit, Erdmann 2t »T
ROBEHGFTHENT:,

TEI2 (Erdmann(E2]) B3R kG D block B »* wild RRETHNIX, B D AR com-
ponent ? tree class (1 Ay, : e— e —o —... TH5,

= ZThlock BAwild RIRBTH A L1, EEHIIMBNSERICEFEEL, #15
EF)FLNGAYSAXLTHATAEMNFETE LWL EIIES. BRADY



£121, block B A wild RBMTH B = k1%, B OFZE 6(B) 2 cyclic, dihedral,
semidihedral, generalized quaternion D\WWHhTH &) Z & LFEMETH 3 [El).

EV 2T —KHADHED AR component DA Erdmann 2 &k o ThHh 2D T,
SRERBEBEROSHEEMY 72w,

RIZGHEBIERATALE (BIb, 2€R, geGiltLTxg=gDL’),
D RG-MBELHRALMEEE TV, Re THRY. BWHLINN Re 3FMBEORILIZS
WTERTREMBETH 527, Oc & AR component {22V TIIRD Z & AT
25,

TEIE (Inoue-Kawata[lK]) GlipHTHROGIRIERKAMTHL2 LTS, HL
p =2 TG #»*Klein four group D& X1 (7) 2 2) bRETS. Sk &, ABL
OG-I#: Og =& AR component O tree class it A, TdH 5.

O EDOFRBRIZBWTYH Erdmann OERICHLTEIENRYYDOTHAH)H?
F 7E—4% D AR component 2 2WTidbhoTHELHYF, LDL ) 28550428 Lo
LR Twnwirwn,

§2 FEHOMAMBBICHIIEE: HEMBFE Auslaner-Reiten 7))

BRI EEBOEB O, Webb DEHA S, Ay LA D tree class D
hEEE —2oFTOWN BTV S LIZX b, X REMIZEBLT, Fhibd
ST, RO XF LR B LI AD, Auslander-Reiten quiver ['(OG) D % HTht
EINEE OG DERBNE ) 2> T AP EFBL 72w, (F0FRE LTI MEE
OG =&t AR component O tree class {3 AR TlREWI LAbHh3b.)

Auslander-Reiten quiver & {3, KHEBIZWVH EvibwWw S “ Auslander-Reiten ¥ "
¥ HbEbDTHAE. T4bbH, Auslander-Reiten quiver D—2>—20D “ i
B " #* Aulsander-Reiten FlICHE LT3, 22T, RG-MENELT

£:0-2-YLxoo

ERD 3 &% A7-F & 812, Auslander-Reiten¥! (%7213 almost splitFl) &= :

(1) X & ZI3HEBE® ;

(2) ERBFBELTVERY,;

(3) & split-epi CHWVWMEMER g: W - X 12441, H2HFERY
Effh:W oY HPHEELTg=fhHWbh o,



7T 4 YER order DHRBBIZH VT, EEOHFEMNTL VEEHIMEE X (X
L, X T#&b 3 L 3 %2 Auslander-Reiten FIS—EANHFET H Z EHFHS AT 5,
—FEM S, X T# b5 Auslander-Reiten FIDEH DO E X &FL, DT %
Auslander-Reiten translation & 5. BIRDOFEES, R=00DL &I r=QTdY,
R=kDLEZr=0CTHHIENMOLNTVS, TZTQId Heller fEHFE, T4
HH X D projective cover Px M kernel TH5 (0 - QX —» Px - X — 0) ([AR],
[R1]). @ Auslander-Reiten %)l & Auslander-Reiten quiver {3 RDJFEIZ X o TH
U 8ok} JC% (-

WE M, NPLHIIHENTLRWERY RG-MBEOL &, KIT[EM
(1) M»S N~OBEHERIFETS ,;
(2) M»545%F % Auslander-Reiten FIOHMIADOEMEF & LT N PHIS
(3) N T#b 5 Auslander-Reiten FIOPEHEOEREFL LT M 2B h 5.

HRIZBWTHET 5 ZA, B0 AR component 2Hi2L o TR TH L 9.

el N /N AN ” N
2N ™ N TIN
N el NN\ ” N el
M ™ M M
el N N N\ / N
2L L L T

Z ® AR component {28V T B »*Z 1 #FN Aulsander-Reiten 512404 L TV 5,
EDORTC MIZEB TS EELYI0 - TM = LeTN —» M — 0 #* Auslander-Reiten
HTHhy, T/ LiCEBTHEELH0— 7L - TM — L — 0 #f Auslander-Reiten
PTHsH. f5i2, HEEEHMEE L AR component ? end(¥%) 2B+ 2 ki3, L
T# b % Auslander-Reiten F| D IH D projective-free part HEEEHTHH I L &
FfiTdh 5.

LIAT, G pHTHROGHERKRAE DL 2%, MK OGHHNE AR
FUEROMIZ 2 > T3 [K2)

0—- J(OG) - MaOG — I(OG) =0

CIT, J(OG) I OG D radical TOG+ 3, O(g—1) XY, GH p-BDOBPBEI
(&, J(OG) %* decomposable T 5 /- DLEF534%&M41E, |Gl = p 22 (x) = (p)
T 5 [HR]. (EE3—BOFREE G T, HEHRIEN OG-lattice P A ERER
MO block BT 5% 5, P radical SEBEHTH 5 [K1].) 37 OG/xOC = kG



i simple socle 22N T, OG(HIIEL LI % KG =K @0 OG D OG-#5
BOLrTBANLOOPFET A, Thi I(0G) Lilf. /- MIZ, J(OG) %
U L% IH{OG) DEK OG-S MED L P THEHTII R VIE—DLDTH S
(TE):

K ®0 OG

I
I{OG) : unique minimal overmodule of OG in KG

4 |
oG M : unique lattice s.t. J(OG) G M G I{OG) and M : non-proj.
N\ I
J(OG) :unique maximal submodule of OG

2T, MOEBRHMEIZOWT, KAitbhot.

SH[K2) GHpHTOGCHERKRRBOL X, 72/2L p=27T G H* Klein four
group DL & (r) 2 Q) VRETS. ZNLEMIEBHTHS.

EE (K], [K2)) MUEBRSTRVEEbHE: T, |G =p*T ()= ()
7203 |G) =p T (n?) = (p) & &1F, EWZME Oc M OWHET L LTHLS.

o T, SHEMEE OG DA D AR quiver DT, RO oTWAD |

N yd N
rIM M
N\

/
1(0G) 7 I(OG)
oG

e ~N e
™
~N e ~N
rJ(OG) J(OG)

M

/S N/
N_/ N\

SBK] GHMpRTOCHERKABOL X, /12/:L p =2 TG »*Klein four
group D& it (r) 2 (2) bIRETH. ZDL & J(OG) i AR component M end i2
i+ 5. 451, SHemEE OG % 5 { T AR component 121X end XH 5 DT, D
tree class {3 AR Tld e\,
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Non-Commutative Valuation Rings of Skew Polynomial
Quotient Rings!

Hidetoshi MARUBAYASHI and Shigeru KOBAYASHI

Let @ be a simple Artinian ring with automorphism ¢ and let Q(X, o) be the quo-
tient ring of the skew polynomial ring @[X,o]. In this note, we discuss some special
non-commutative valuation rings of Q(X, o) which are obtained by the pullback. For any
ring R, we use the following notation : J(R) is the Jacobson radical of R, U(R) is the
unit group of R, Z(R) is the center of R, N is the set of all natural numbers and Z is the
ring of integers. Let us start with the following definition of non-commutative valuation

rings.

DEFINITION. (1) A subring R of a division ring D is called a total valuation ring if,
for any non-zero d € D, either d € Rord~' € R.
(2) A total valuation ring R of D is called invariant if dRd~! = R for any non-zero d € D.

If R is an invariant valuation ring of D, then 'y = U(D)/U(R) is a totally ordered
group(not necessarily commutative) in the following definition ; aU(R)+bU(R) = ebU(R)
and aU(R) > bU(R) if aR C bR for any non-zero a,b € D. The naturalmapv: D — [y
satisfies the following
(i) v(ad) = v(a) + v(b)

(ii) v(a + b) > min{v(a), v(b)}
for any non-zero a,b € D.

Conversely, let G be a totally ordered group and let » : D — G be a map satisfying
(i) and (ii). Then R = {d € D | v(d) > 0} is an invariant valuation ring. So the invariant
valuation rings are completely determined by the totally ordered groups and also we know
that invariant valuation rings are the same as ones defined by Schilling [S], who initiated
non-commutative valuation rings. However these non-commutative valuation rings have
the following two disadvantages.

(a)These are not defined in a simple Artinian ring.

(b)Suppose that D is a finite dimension over Z(D) and let V be a valuation ring of Z(D).
Then there does not necessarily cxist a total valuation ring 2 of D lying over V, i.e.,
RN Z(D) =V (see[V]).

In 1984, Dubrovin defined a non-commutative valnation ring R of a simple Artinian

ring @ by using the concept of places which is similar to commutative case (see [ZS], [Dy])
and he showed that R is equivalent the following two conditions
(a) R is local, i.e., R/J(R) is a simple Artinian ring.
(B) R is Priifer, i.e., every finitely generated one-sided ideal is projective and a generator.
In (D] and [Dy], he obtained so many significant propertics of R which looked like genuine
non-commutative valuation rings. Nowadays we call 1t satisfying («) and (8) Dubrovin
valuation ring.

LA part of this note has been submitted to the Journal of Algebra and its Application and the other
part will be submitted for publication elsewhere



For simplicity, a little while, let V' be a valuation ring of a field F with o € Aut(F)
and 4, a left o-derivation, i.c., 8(a + b) = d(e) + (b)) and 8(ab) = o(a)d(b) + é(a)b for any
a,b € F. The sct F[X,0,§] of all polynomials over F in an indeterminate X is a ring in
the following definition ; Xa = o(a)X +d(a) for any a € F. Since F[X, 0,d] is a principal
ideal domain ([Rp)), it has the quotient field denoted by F(X,a, §).

PROBLEM. Find out all non-commutative valuation rings of F(X, g, ) lying over V.

In the casc ¢ = 1, § = 0, the problem was initiated by MacLane [M], 1936. After
MacLane so many ring theorists have been involved in this problem. However the prob-
lemn has not been solved completely, though there has been a great progress. This note is
concerned with § = 0, o, non-trivial. We firstly study the trivial case, namely, V = F.
By the definition of total valuation rings, we know that, for any total valuation ring R of
F(X,0), we have either X € R or X! € R so that either R D F[X,0] or F[X~!,0]. So
the following are very useful to find out total valuation rings of (X, 7).

PROPOSITION 1 [Rp]. Let F be a field with o € Aut(F) and let Fy = {a € F | o(a) =
a}. Then
(1) If o(c), the order of o, is infinite, then Fy = Z(F[X, ¢]) and Spec(F[X, o)) =
{ XFIX,a],(0) }
(2) If o(o) = n < o0, then Z(F[X,0]) = Fo|X"] and Spec(F[X,a]) = {XF[X,0a],(0)} U
{p(X")F[X,0] | Fo[X] 3 p(X) and p(X) is irreducible over F }.

Let P be a prime ideal of a ring R. If C(P) = {c € R| c is regular mod P } is a
regular Ore set of R, then we say that P is localizable and denote by Rp the localization
of Rat P.

Set Px = XF[X,0],Px-1 = X~'F|X~!,¢]. Moreover in the case o(o) = n < oo, sct
P = {P =p(X")F|X,0]| P € Spec(F[X,]) different from X F[X, o] and F[X,0]/Pisa
division ring }. Since F(X, o] is a principal ideal ring, any prime ideal of F[X, o] is localiz-
able. We denote by Rx = F[X,0|p,, Rx-1 = F[X"‘,a]px_, and Rp = F|X,0|p,P € P.
Under those notation, using Proposition 1, we have the following

THEOREM 2. Let I be a field with ¢ € Aut(F).
(1) If o(0) = o0, then Ry and Ry-: are only total valuation rings of F(X, o) containing
Fand L = Rx N Rx-1 is a principal and duo ring. Here by duo rings we mean any
one-sided ideal is two-sided.
(2) If o(c) = n < oo, then {Rx,Rx-1,Rp | P € P} arc only total valuation rings of
F(X,0) containing F and L = Rx N Rx-: NNRp(P € P) is a principal and duo ring.

Let us study the nontrivial case. It is very difficult to find out all no-commutative
valuation rings lying over V. In this note, we only discuss by using Morandi's and Krull's
methods.

Let S be a Dubrovin valuation ring of a simple Artinian ring @ and let ¢ : S —
S = S§/J(S) be the natural homomorphism. Suppose that R is an order in the simple
Artinian ring 5. Set Ry;) = ¢~'(R), the complete converse image of R by ¢. In [Mo), he



proved that Ry is Priifer if and ouly if R is Priifer. We will apply this to the following
case ; let o € Aut(Q) and let R be an order in Q. Since Q[X, g] is a principal ideal ring,
Py = XQ[X,0] is localizable and T = Q[X,o]p, is a Nochterian Dubrovin valuation
ring. Let p: T — T =T/J(T) = Q and set Ry = ¢~ (R) = R+ J(T) = R+ XT
which is lying over R.

THEOREM 3. (1) R is a Dubrovin valuation ring if and only if so is Ryy. In this case,
Spec(R()) = {pPny, XT | p € spec(R)}.
(2) Suppose that Q is a division ring.
(a) R is total if and only if so is Ryy.
(b) R is invariant if and only if so is Ry

In [BS;], they obtained (2)(a) in Theorem 3 by using some properties of skew formal
power scries rings. Next we shall introduce Krull's method. For simplicity, let V be a
valuation ring of a field F with ¢ € Aut(V). Then J(V)[X, 0] is localizable and RM) =
VIX,0)svyx. is a total valuation ring of F(X,0) with RN F =V (sce [BS)]). o nat-
urally induces an automorphism & of V = V/J(V) so that we can consider the skew poly-
nomial ring V[X,&] and its quotient division ring V(X, ). Let % : R — V(X, &) be
the natural homomorphism given by (f(X)c(X)™!) = f X)e(X )_l, where f(X),e(X) €
VIX,0l,c(X) ¢ J(V)[X,0] and f(X) = do + & X + ... + G, X" for f(X) = ap+ &, X +
.+, X", As in Theorem 2, let P = {P = p(X")V[X, 5] € Spec(V|X,5]) | V|X,35]/P is
a division ring }. Set § = ¢~} (V[X,]) = V[X, o] + J(V)RY, Priifer by Morandi, Px =
Y=Y XV[X,5]) = XV[X,0] + J(V)RM and P = ¢~(P) = p(X")V[X,0] + J(V)RD,
Then it is not difficult to prove that Px and P are localizable and we have the following

THEOREM 4. Let V be a valuation ring of a field F with ¢ € Aut(V). Then
M Sy = Sp,. and Sp arc total valuation rings lying over V. Morcover R(V > Sy
and RM > Sp.

Let 12 be a Dubrovin valuation ring of a simple Artinian ring Q. In [W], Wadsworth
defined the value group Ty as follows ; st(R) = {q € Q | ¢R = Rgq}, the stabilizer of R
under the action of U(Q) and I'p = st(R)/U(R). Tr is a totally ordered group in the
following definitions ; eU(R) - bU(R) = abU(R) and aU(R) > bU(R) iff eR C bR for any
a,b € st(R). Now coming back to Ry, we classify the given automorphism o of a field F
based on the valuation ring V' in order to study st(R(;) and Tg,,,.

The following lemma is clementary but useful.

LEMMA 5. Assume that @ is a division ring and R is a total valuation ring. Then
(1) st(R) = st(Ryy) N Q. In particular, R is invariant iff st(Ryy) 2 U(Q).
(2) Let f(X) = fo+ fi + ... + fuX™ € Q[X, 0] with fo # 0. Then f(X)Ruy = foRy

By using Lemma 5 and elementary calculations of polynomials, we have the following

THEOREM 6. Let F be a field with ¢ € Aut(F) and let V be a valuation ring of F.



Then

() Ifo(V) =V, ie., o € Aut(V), then si(Rq)) = U(F(X,0)) and g, = {eX"U(Ryy) |
0# g € Fyn € Z} = Ty(X) with X = o(q)X, where X = XU(R) and § = qU(Ry)-
(2) If o"(V') is not contained in V for any n € N, then st(Ry)) = {q, f(X)e(X)™ |0 #
g € F, f(X),c(X) € F[X,0] with f(0) # 0 and ¢(0) # 0} and g, =Ty.

(3) If o(V) C V, then st(Rpy) = {g, f(X)e(X)™! | 0 # g € F, f(X),c(X) € F|X,0] with
0# £(0),0 # ¢(0)} and Tag) = Tv.

(4) If ¢ (V) is not contained in V for any 5, 1 £ j < n—1 and ¢"(V) = V for some
n € N, then st(R(y)) = {q, X" f(X)c(X)™' | 0 # q € F, f(X),c(X) €_F[X,0] with
0 # f(0),0 # ¢(0) and I € Z} and Tg,, = Ty(X") with Xr§ = o"{q)X", where
Xr = X*U(Ryy) and § = qU(Ryy).

(5) If o4(V) is not contained in V for any j, 1 € j < n—1 and o"(V) C V for
some n € N, then st(Ryy) = {g, f(X)e(X)™ | 0 # q € Q, f(X),c(X) € F[X,0] with
0 # £(0),0 # c(0)} and g, =

Since Xa = o(a)X for any a € F, we see that o is extended to the automorphism of
F(X, o) which is obtained by the conjugation of X. We denote it the same symbol o.
The following is easy to prove.

LEMMA 7. The following are equivalent :
(1) (R = Ry
(2) X € st(Ry).
3)o(V)=V

From Theorem 6 and Lemnma 7, we have the following remark.

REMARK. Let V be a valuation ring of a field F with o € Aut(F), then
(1) Ry is invariant ill o € Aut(V).
(2) Ry, is not invariant iff o is one of (2) ~ (5) in Theorem 6.
(3) If o € Aut(V), then I, is Abelian iff aV = o(a)V for any a € F.

Let R be a Dubrovin valuation ring of a simple Artinian ring @ with finite dimension
over its center. It has been shown that I'p is Abelian by Dubrovin [D,]. In the case Q is
of infinite dimension over its center, Remark(3) shows that there exist invariant valuation
rings R and S such that 'y is Abelian and I's is non-Abelian.

REMARK. We can construct valued groups (F,V) with o € Aut(F) satisfying (1) ~
(5) in Theorem 6 and also 'y, is Abelian, I's is non Abelian, where R and S are valuation
rings of (X, o).
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Cohen-Macaulay isolated singularities with a dualizing module

Kenji Nishida

This is a summary of my paper [7]. Let (R, m) be a commutative Gorenstein complete
local ring of dimR = d. Let A be a module finite R-algebra and a Cohen-Macaulay
isolated singularity [5], i.e., A satisfies gl dimA, = dimA,, for all p € SuppgA — {m} and
is a Cohen-Macaulay R-module of dimg A = d.

We set latt A to be a category of all left A-lattices. By definition, M € latt A if and only
if M € modA and M is a Cohen-Macaulay R-module of dimg M = d. We denote the
duality between latt A and latt A” by D; DM = Homge(M, R) for M € latt A or latt A”.

We define a dualizing module. A A-A-bimodule w € latt A is called a dualizing module
if it satisfies the following (d0)-(d3):

(d0) A = (Endaw)®, A = Endper w naturally,

(d1) idaw = idper w = e for some integer e < 0o,

(d2) Ext} (w,w) = Ext}op(w,w) = 0 for i > 0,

(d3) Ext3(S, D(wa)) # O for each simple A-module S and Extg.,(S’, D(aw)) # O for
each simple A”-module S'.

Following Foxby [4], [3] we define the two subcategories 4 and B in mod A as follows.
A A-module M is in A if and only if

Al) Tor}(w, M) =0fori > 0,

A2) Ext} (w,w ® M) =0 for i > 0,

A3) the canonical homomorphism @y, : M — Homa (w, w®a M), defined by gy (m)(z) =
z@m(m € M, z € w), is an isomorphism.

A A-module N is in B if and only if

Bl1) Ext}(w, N) =0 fori >0,

B2) Tor}(w, Homa(w, N)) = 0 for i > 0,

B3) the canonical homomorphism ¥y : w® Homp(w, N) — N, defined by ¥n(z® f) =
[(z) (z € w, f € Homp(w, N)), is an isomorphism.

1. LEMMA. Let M be a nonzero finitely generated A-module. Then w ®, M # 0 and
Homy (w, M) # 0.

Proof. Let P — w — 0 (respectively, P — w — 0) be a projective cover of the
A(respectively, A”)-module w. Then every simple A-module S (respectively, simple A”-
module S’) is in P/JP (respectively, P’/P'J). Hence the same facts hold for w/Jw and
w/wd.

Let dim R > 0. Let £ € m be M-regular. Applying w ®, — to an exact sequence
0— M3 M— M/zM — 0, we get an exact sequence

WOAMSwRANM —weds M/zM — 0.

Thus, in order to prove w ®y M # 0, it suffices to show that w ®, M/zM # 0.
Hence we can assume that depthgM = 0. Thus depthg Homg(M, M) = 0, and then
soc pe» Homp(M, M) # 0. Therefore, Homg(w®a M, M) = Hompor (w, Homg(M, M)) # 0
by the first paragraph. Hence we have w ®, M #0.

This note is not in final version. A detailed version is submitted for publication elsewhere.



Next, we show that Homa(w, M) # 0 holds. Suppose that AssgM = {m}. Then
depthpM = 0, so Homa(w, M) # 0. We assume that there exists p € AsspM such that
p # m. Since A is an isolated singularity, w, is a projective A;-module and ApP-module.
Since A, = Endserwp, wp is a generator over A,. Hence Homy, (wp, M) # 0, so that
Hom,\(w, M) 76 0.

The proof of the following 2 and 3 are almost the same as those in [4] using the above
Lemma.

2. THEOREM. (cf. (4], Proposition 1.4) Let M € mod A. Then the following hold.
(1) M€ Aifand only ifw®s M € B.
(2) M € B if and only if Homy(w, M) € A.

3. LEMMA. (cf. |4], Lemma 1.3) Let 0 — M; — M, — M; — 0 be exact in mod
A If M; and M; (1 <i+# j <3) arein A (respectively, B), then the rest is also in A
(respectively, B).

Let M! = Homa(M,A) or Homper(M,A) for M € mod A or mod A”. Recall that a
A-module M has Gorenstein dimension zero, denoted by G-dimyM = 0, if Mt =M
and Extj(M,A) = Exty.,(M!,A) = 0 for i > 0, and has Gorenstein dimension less
than or equal to k < oo, denoted by G-dimyM < k, if there exists an exact sequence
0—-Gp— -+ = Gop— M — 0 with G-dimpG; =0for0<i<n. Weput Go:={M €
modA : G-dimyM =0} and G := {M € mod A : G-dimyM < o0}.

4. THEOREM. (cf. (4], Proposition 2.5) It follows that Go C A.

We need a lemma to prove Theorem 4.

LEMMA. Let M € modA and assume that Tor®(w,M) = 0 for i > 0. Then
Ext}(M,A) =0 for i > 0 if and only if Ext},(w ® M,w) =0 for i > 0.
Proof. Let --+ — P ELR P LM —0bea projective resolution of M. Then

= WA P, = w®, Po = w® M — 0 is exact by assumption. Thus we get a
commutative diagram

0 — Homp(w®s M,w) — Homy(w®p P,w) — Homp(w®s P,w) —
) ) )
0 — Homa(M,A) 22, Hom(Ps, A) L. Homy(Py,A) -

where f; = Hom(f;,id) (i = 1,2) and Hom, (w ® M,w) = Hom, (M, Homper(w, w)) =
Hom, (M, A) and so on. Since Ext}{w ®, Pj,w) =0 for i > 0, j > 0, we have that the
first row is exact if and only if Exty(w ®x M,w) = 0 for i > 0. Hence the assertion of
Lemma directly follows.

The proof of Theorem 4. We put L* = Homy(L,w) for L € mod A, similarly for
L € modA”. Let M € Gp. Let I be an injective A-module. Then Tor?(J, M) =
Homy (Ext}(M,A),I) = 0 for i > 0. Since w has finite injective dimension, this im-
plies that Tor{ (w, M) = 0 for i > 0. By Lemma, Ext}(w ®) M,w) = 0 for i > 0, so
w®x M € C(A). Thus w @ M = (w®4 M)*. The right hand side is isomorphic to
Homes (Homa (M, Homper (w, w)),w) = M1*, so that w @4 M = M**.

We prove A2), that is, Ext)(w,w ®x M) = 0 for i > 0. By the above argument, it
suffices to show that Ext,(w, M!*) = 0. Let 0 —» N — P — M! — 0 be a projective cover
of M' in mod A”. Since G-dimyo»M' = 0, we have G-dimp»N = 0. Thus P* = w®, P!



and N* = w @, N!. Since G-dimy Nt = 0, we have Tor?(w, Nt) = 0. Therefore, an exact
sequence 0 — M — P! — Nt — 0 provides an exact sequence

(1) 0= Mt = P o N*—0.
From (1), we get a commutative diagram with exact rows
0 — Homy(w,M!') — Homp(w,P') — Homp(w,N*) — Extj(w,M'*) — 0
& x| L]

0 — M — Pt — Nt - 0

where Homy (w, M1*) = Homper(M!, Homyp(w,w)) = M" = M and so on. There-
fore, Ext)(w, M) = 0. Since G-dimpN' = 0, we have Ext}(w,N*) = 0, so that
Ext} (w, M1*) = Ext}(w,N*) = 0. The long exact sequence obtained from (1) by ap-
plying Hom, (w, —) enables us to proceed this argument. Thus we get Ext} (w, M) =0
fori> 0.

To complete the proof, we must show that o, is an isomorphism. Let .-+ — P, —
Py — M — 0 be a projective resolution of M and N; := Q'M (i = 1,2,...) an i-th
sygygy of M. Then we have an exact sequence - - = WA Py, = w®y Pp = w®r M — 0.
Since G-dimpaN; = 0 for i > 0, we see that Ext}(w,w ® N;) =0 for i > 0,5 > 0 by the
previous paragraph. Thus we get a commutative diagram with exact rows

Homy(w,w®x PA) — Homp(w,w®\FP) — Homp(w,w® M) — 0
wp T 73 om 1

Pl —_— })0 — M -_— 0-
Since pp, (i =0,1) are isomorphisms, yas.is also an isomorphism. Hence M € A.

5. COROLLARY. We have G C A.
Proof. This follows directly from Lemma 3 and Theorem 4.
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On Nakayama rings

Kazuaki NONOMURA

Let R be an artinian ring. Then we call R a right Nakayama ring (or a right serial
ring) if every indecomposable projective right R-module is uniserial and we call R a
right co-Nakayama ring (or a right co-serial ring) if every indecomposable injective
right R-module is uniserial. Moreover we call R a right QF-3 ring if the injective
hull of Rj is projective or equivalently if the projective cover of every injective right
R-module is injective.

K. R. Fuller [4] has shown that a ring R is a right Nakayama and right co-Nakayama
ring if and only if it is a two-sided Nakayama ring. K. Oshiro [9] has shown that a
ring R is a right Nakayama QF-3 ring if and only if it is a two-sided Nakayama ring.
We shall show that a right co-Nakayama QF-3 ring is a two-sided Nakayama ring.

We call an artinian ring R a right co-Harada ring if for any essential extension of
any indecomposable projective right R-module is indecomposable projective (see [7],
[8] and [9] for co-Harada rings). We shall also give a necessary and sufficient condition
for a right co-Harada ring to be a two-sided Nakayama ring.

Throughout this paper, we assume that R stands for a semiprimary ring with
identity unless otherwisc stated and all R-modules are unitary. Mp (resp. pM) is
used to denote that M is a right (resp. left) R-module. Let M be an R-module. We
use E(M), J(M) and S(M) to denote its injective hull, Jacobson radical and socle,
respectively. By J we denote the Jacobson radical of R. L < M (resp. L < M)
means L is a submodule of M (resp. L < M and L # M). We denote the set of
primitive idempotents of R by Pi(R) and the composition length of M by |M|.

We call R a right QF-3 ring if E(RR) is projective and a ring is called a QF-3 ring
if it is both left and right QF-3. It is well-known that a one-sided artinian ring which
is either left QF-3 or right QF-3 is QF-3.

The following result is used in this paper. It was proved for right artinian rings
by Fuller [4].

Theorem (Colby and Rutter [3, Theorem 1.3]). For a right perfect ring R, the
following conditions are equivalent;

(1) An injective hull of every projective right R-module is projective;

(2) A projective cover of every injective right R-module is injective.

The detailed version of this paper will be submitted for publication elsewhere.



Moreover in this case, R is a QF-3 and semiprimary ring.

We call a module M local if J(M) is a small maximal submodule of M, and M
colocal if S(M) is an essential simple submodule of M.

In this paper, we consider the following condition;

(*) Let M) and M, be right R-modules. For any simple sub-factor modules N; / K;
of M; with Ny/K, = N,/K,, where M; > N; > K; (i = 1,2), any isomorphism
8 : N\/Ky — N3/ K, can be lifted to either a morphism ¢ : M; — M, or a morphism
(p' s Mg b Ml.

Lemma 1. Let M be a finite direct sum M = My ® M & --- ® M, of right R-
modules My, M, -+, M,,. Assume that M; and M; satisfy the condition () for any
i# 37 €{1,---,n}. Then for any local submodule L of M, there exists a decomposition
M=MoM,®---®M, of M such that M! = M; for eachi(1 <i < n), and L < M;,
for some k (1 <k <n).

An R-module M is called uniserial if any two submodules of M are comparable.
Since R is a semiprimary ring, every uniserial R-module has finite length. A ring R
is a right Nakayama ring (resp. a right co-Nakayama ring) if every indecomposable
projective (resp. injective) right R-module is uniserial and R is called a Nakayama ring
(resp. a co-Nakayama ring) if it is both left and right Nakayama (resp. co-Nakayama).

Lemma 2. Let R be e right QF-3 and right co-Nakayama ring. Then any uniserial
injective right R-modules M, and M, satisfy the condition ().

Theorem 3. Let R be a right QF-3 and right co-Nakayama ving. Then R is a
Nakayama ring.

Proof. Let eR be a local projective module with e € Pi(R). Then since E(eR) is
projective by assumption, E(eR) is finitely generated by (see e.g. [10, Lemma, 6.1])
and so eR is a submodule of a direct sum E(eR) = E, @ E,®- - -® E,; of some injective

uniserial modules E; ( = 1,2,---,n), so by Lemmas 1 and 2, eR is a uniserial module.
Hence R is a right Nakayama ring. Therefore R is a Nakayama ring by [4, Theorem
5.4]. O

Remark. Let v € fR and v € gR for f,g € Pi(R). If uR — vR (uc = vc;c € R)
can be extended to either a left multiplication map fR — gR (u+— au = v; a € R)
orgR— fR (v bv=1u; b€ R), then Ru < Rv or Ru > Rv.

A submodule N of M is called a waist in M if either N < X or N > X is satisfied
for any submodule X of M. As is easily seen, if R is right Nakayama QF-3, then gR is
a waist in E(gR) for any g € Pi(R). For an element z of R and a right ideal I of R,
rk(z) denotes the annihilator right ideal: ry(z) = {e € I{ | za = 0}. Note that for
cach e € Pi(R) and I < Rg, we have r.p(€r(el)) = rr(€r(el)) since Lp(el)+ R(1—e)
= ZR(e] )



Lemma 4. Let R be a ring with e, f and g in Pi(R) and u = fue € fRe, v = gve-€
gRe and assume that fRp is a colocal module and gRp is a waist in E(gRgp). If
rern(u) < Ten(v) holds, then either Ru < Rv or Ru > Rv holds.

In order tha we characterize Nakayama rings anew, we consider the following
condition; '

(#) For any elements u and v of R with u = fue and v = gve, where ¢, f and
g € Pi(R), either r.p(u) < rep(v) or 7eg(u) > rep(v) holds.

Let e € Pi(R). Since R is semiprimary, in case gpRe is not uniserial, we have some
elements u = fue € Je - J?%¢ and v = gve € Je - J%e for f,g € Pi(R) such that
Je/J?e > Rii® Rv, where @ = u + J% and & = v + J%. Then by Lemma 4 and
Remark, we have the following theorem.

Theorem 5. If R satisfies () and gRp is e waist in E(gRg) for each g € Pi(R),
then R ts Nakayama.

The ring Z of integers satisfies (f) but is not Nakayama. In the following, we give
another example.

Example. Let M3(K) be the matrix algebra over a field K and R be the following
subalgebra of Mj3(K);

a 00
R= z b 0]|]aeb z,v9 2€K
v z b

Then R is a left Nakayama ring but is not a right Nakayama ring. On the other hand,
R satisfies (). We denote (i, j)-matrix units of M3(K) by e;; and put e = e;, and
f = e + eaa. Then el is a simple module. Put fI = Key + Kess. Then as is easily
checked, fR > fI > 0 are the annihilator submodules of fR.

Let R be a right Nakayama ring and assume that R is either a right co-Nakayama
or a right QF-3 ring. Then for cach e € Pi(R), E(eR) is uniserial since eR is colocal.
Hence by Theorem 5, we have the following corollary, which was obtained by Fuller
[4, Theorem 5.4] and Oshiro [9, Theorem 6.1]).

Corollary 6. Let R be a right Nekayama ring. If R is either a right co-Nakayama
or right QF-3 ring, then R is a Nakayama ring.

Summarizing results on characterizations of Nakayama rings, we have;

Theorem 7. The following conditions are equivalent;
(1) R is Nakayama.
(2) R is right Nakayama and right co-Nakayama.
(3) R is QF-3 and right Nakeyama.
(4) R is QF-3 and right co-Nakayama.



Proof. (1) ¢ (2) and (1) = (3) and (4). By Fuller [4, Theorem 5.4], [1, Theorem
32.2] and Harada [6, Theorem 6] (or Corollary 6).

(3) = (1). By Oshiro [6, Theorem 6.1] (or Corollary 6).

(4) = (2). By Theorem 3. O

We call R a right QF-2 ring if eR is colocal for any e € Pi(R). A ring is called
QF-2 if it is left and right QF-2. Dually, we call R a right QF-2* ring if E(eR/eJ)
is local for any e € Pi(R). A ring is called QF-2* if it is left and right QF-2*. Any
right Nakayama (resp. right co-Nakayama) ring is clearly right QF-2 (resp. right
QF-2°*). In Theorem 7, we can replace conditions “QF-3, right co-Nakayama or right
Nakayama” by conditions “left QF-2, QF-2* or right QF-2" as follows;

Proposition 8. The following hold.
(1) If R is a right Nakeyama left QF-2 ring, then R is a Nakayama ring.
(2) If R is either a right Nakayama right QF-2" ring or a right co-Nakayama right
QF-2 ring, then R is a Nakayama ring.

Proof. (1) Since R is a two-sided QF-2 ring, R is QF-3 (e.g. sce [1, Theorem 31.7])
and by Theorem 7, R is a Nakayama ring.

(2) If R is a right Nakayama and right QF-2* ring, then any indecomposable
injective right R-module E is local, so F is uniserial. Hence R is right co-Nakayama
and by Theorem 7, R is a Nakayama ring. The other assertion is shown by the dual
argument. O

We call an artinian ring R a right co-Harada ring if for any essential extension of
any indecomposable projective right -module is indecomposable projective. As is
easily seen, if R is a right co-Harada ring, eR is a waist in E(eR) for each e € Pi(R).
Hence by Theorem 5, we have;

Theorem 9. R is a right co-Herada ring satisfying the condition (f) if and only if R
is a Nakayama ring.

We denote the right global dimension of R by r.gl.dim R. In the following, we give
another proof to the result [2, Theorem 7] obtained by Baba.

Corollary 10 ([2, Theorem 7]). Let R be a right co-Herada ring with r.gl.dimR <
2. Then R is a Nakayama ring.

Proof. Let u = fue be an clement of R, where e, f € Pi(R). Then for a left multi-
plication % : eR — fR (ec — uc;c € R) by u, rep(u) = Kerd is projective. Since
R is right co-Harada, r.p(u) is a waist in E(r.r(x)r) (= E(eRp)), which shows the
assertion by Theorem 9. O
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On the construction of stable equivalence functor
not of Morita type

YosukE OHNUKI

Throughout this paper, let i be a field and an algebra means a finite dimensional
selfinjective K-algebra with an identity. Moreover, we assume that an algebra has no
semisimple algebra summand.

We shall study the condition to be a triangle functor for a stable equivalence functor.
Let € and D be triangulated categories. We say that a functor F : C = D is equivalent
if F is an equivalence functor as additive categories, and a functor F : C — D is triangle
equivalent if F is an equivalence functor as triangulated categories, that is, FTy =~ TpF
and FX 3 FY B FZ B T,FX is a triangle in D whenever X 5 Y 5 Z % T X is
a triangle in C. Happel [3] showed that a stable category is regarded as a triangulated
category. In Section 1, we shall show that for a stable cquivalence functor @ : mnod A —
mod B, ¢ is a triangle functor if and only if & commutes with the syzygy functors of A
and B, namely ¢ commutes with the translation functors of A and B.

In Section 2, we study the stable equivalence functor ¢, : nod A — mod B introduced
in [6]. By the definition of ®,, &,(S) is isomorphic to S’ @ P for each simple A-module S,
where S’ is a simple B-module and P is a projective B-module. So, if &, is not induced
by a Morita equivalence mod A — mod B, then @, is not of Morita type [5].

1 A stable category

Let A be an abelian category. We denote by C(.A) the category of (cochain) complexes
X* = (X"d%)in A;

rn=1 d;’d rn "'{‘ rn+l
cee — X S5 X" = X" — ...

with d'd% = 0 for all integer n. The residue category of C(A) by the homotopy relation
is called the homotopy category of A, denoted by K(A). We denote by K~ (A) or K(A) the
full subcategory of K(.A) consisting of bounded above complexes or bounded complexes,
respectively. For * = nothing, — or b, K**#(A) is the full subcategory of K*(.A) consisting
of acyclic complexes X*, that is, Imd}! = Kerd% for all integer n. A homotopy category
I*(A) is considered as triangulated category. The shift functor T : K*(A) — K*(A) with

The detailed version of this paper will be submitted for publication elsewhere.



T(X",dy) = (X', d%) is the translation functor. For any morphism f*: X* = Y* in
K*(A), its mapping cone is defined by

C(f*) = (Y' eTX", [;’,; dfx]) ,

LR I (U

then it induces the triangle X* Ly -—)0 C(f*) = TX®in K*(A).

Next, let A be a K-algebra. We denote by ex : X — Iy and wy : Py — X the
the injective hull and projective cover of X, respectively. The stable category mod A
of A is defined as follows; the objects of mod A are the same objects of mod A. For
A-modules X,Y, a morphism from X to Y in mod A is given by its residue class in
Hom4(X,Y)/Proj4(X,Y), where Proj4(X,Y) is the subset of Hom4(.X, Y) consisting of
morphisms which factor through projective A-modules.

Happel showed that the stable category mod A is considered as a triangulated category
[3]. In fact, the translation functor of mod A is given by the inverse of the syzygy functor
2. For each morphism f : X — Y in mod A, the mapping cone C(f) of f is given by the
following commutative diagram with exact rows -7

0 —m X — Iy — X — 0

1 "

0 — Y 5 C(f) 5 90X — 0,

then it induces the triangle X —!-) y5z80'xin mod A.

We denote by I{~*(P,) the full subcategory of K=(P,) consisting of a complexes X*
with bounded cohomology i.e., Indy ™' = Kerd? for n « 0. Keller-Vossieck and Rickard
proved that a stable category ol A is triangulated equivalent to the quotient category
K™*(Pa)/ K*(P.) [4][8]. We can obtain the similar statement.

Proposition 1.1. [7] For an algebra A, a stable category of A is triangle equivalent to
K®(Pa).

In fact, for any object P* in K®(P,), there exists an A-module X without projective
direct summand such that P* is isomorphic to Py in K#(P,), which is defined by the

1 -1
injective resolution 0 = X 3 P} 2t P} — ---, the projective resolution --- — Pg' X
Py 3 X 5 0and d% = nyex. Then, a complex P* in K™*(Pa)/ K*(P,) corresponds to
the complex T7" Pip gy, in K®(P,) for n « 0. The detail of proof is referred in [7].

We need the next lemma in order to prove the later theorem.

Lemma 1.2. Let X be an A-module without projective direct summand, Py = ®;Ae; and
Pa-1x = ®;Ae; be decompositions of indecomposable projective. Then the composition
map wxtx is of the form (ry;)i; : ®ide; = ®;Ae;, where ry; is the right multiplication
map of an element in rad(e;Ae;) for each i, j.

Proof. We may naturally identify a right multiplication map from Ae; to Ae; with an ele-
ment in e; Ae;. Assume that r;; is not contained in rad(e;Ae;). Then (ry;); : Ae; = @jAe;
is a monomorphism, thus the induced map (r;);mx : Ae; = X is also monomorphism,
contradiction. O



By Lemma 1.2, we may assume that the differential &} of P* in K#(P,) is of the
MAtriX (1 io, )ining: With ri .., € rad(e;, Ae;,,,) for any integer n.

Theorem 1.3. Let ® : mod A — mod B be a stable equivalence functor. If Qpd ~ ¥,
holds, then ® is a triangle functor i.e., mod A and mod B ere triangle equivalent.

Proof. By Proposition 1.1, we obtain the triangle equivalent functor F4, : mod A —
K?(P4) with F4(M) = P}, for any A-module M without projective direct summand,
Fp : mod B — K®(Py) is defined similarly. Assume that Qp® ~ ®Q,. It is sufficient
to show that @' := FpdF;' : K®(Pa) = K*#(Pp) is a triangle functor. It is clear that

. [t o 0 1]
Tpd’ ~ &'T4. Next, let X* Lye [ - ] C(f*) [ —>] TX* be a triangle in K?(P,4). We
consider the differential of the mapping cone C(®'(f*)). Then we obtain

der(y) 0 ] _ [ das(y) 0 ] _ [ d'dy 0
TpP'(f*) dryex) Y'Ta(f*) deryx) Y'Ta(f*) Pdr,xy]’

Since @' is a K -linear and commutes with finite direct sums, we have ®'C(f*) =~ C(®'(f*))

e 0 ¥ gy 10 gec o O
for any morphisin f* in K®(P,). Consequently, ®'(X*) (YY) = " CO'(f°)) " =
TP (X*) is a triangle in K®(Pp). 0O

In [1, Chapter X], it was studied the conditions to follow Q3P ~ ®Q, for a stable
equivalence functor ¢ : mod A — mod B, and it was proved that Qg® =~ ®Q, if A and B
are both symmetric algebras. In fact, since it was proved (75'Qg)® ~ &(r7'Q,) in [1),
we obtain that Qp® ~ Q4 if and only if Nyg® =~ &N, where 74, 75 are the Auslander-
Reiten transiations of A, B and N4, NV are the Nakayama functors of A, B, respectively.
Therefore we easily obtain the following corollary.

Corollary 1.4. Let @ : mod A — mod B be a stable equivalence functor. If Ng® =~ &N,
holds, then & is a triangle functor. In particular, if A and B ere symmetric, then any
equivelence functor ¢ : mod A = mod B is a trigngle functor.

2 The stable equivalence not of Morita type

In this scction, we assume that an algbera has no algebra summand of Loewy length
2. First, we recall how to construct the stable equivalence functor induced by a socle
equivalence, which is introduced in [6]. For an algebra A, & is denoted by the residue
element of @ € A in A/soc A. For an A-module M and an algebra automorphism f of
A, ;M is an A-module by changing the operation of A, that is, a - m = f(a)m for each
a € A and m € M. Similarly, N; is defined for a right A-tnodule N.

Let v,4 be the Nakayama automorphism of A4, and &4 be the automorphism of A/ soc A
defined by 74(a) = Tw) for a € A. Since an algebra is sclfinjective, there is an A-
bimodule isomorphism ¢4 : A = D(A),,. We may consider the A/soc A-bimodule
isomorphism ¢y : rad A = D(A/soc A)p, and ¢ : rad A/soc A — D(rad A/soc A)p,



defined by {¢/4(@)}(2) := {pa(@)}(c) and {¥4(@)}(5) := {#a(a)} () for any a,b € rad 4
and ¢ € A (see [6]).

Let A and B be socle equivalent algebras, that is, there is an algebra isomorphism p :
A/soc A S Bfsoc B. Let {e;}2, be a complete set of orthogonal primitive idempotents

of A. For each element a € A, we choose a representative 7(a) of the residue class p(a),

and define a map p : A =+ B. We may assume that {p(e;)}%, is a complete set of

orthogonal primitive idempotents of B without loss of generality, and set e,y := p(e;).

Now, we set p, = 73~ 'poz™*! which is an isomorphism from A/soc 4 to B/soc B, and

we set A/ soc A-bimodule isomorphism ¥, := ¢, D(p™")¢s ™" : rad A = ,,(rad B),. Note
that ¥,(arb) = po(a)p(r)p(b) for any a,b € A and r € rad A.

Lemma 2.1. Let p and g be algebra isomorphisms from Af/soc A to B/soc B. Then
Yo=Y, fand only if p=gq.
Proof. It is easy to prove because ¢/, and ¢ are bijections. a

Proposition 2.2. The following conditions ere equivalent for an algebra isomorphism
p: A/socA = B/socB.

1. There are regular meps wa(la) of A and pg(lg) of B, respectively, such that
{va(14)}Hab) = {95(15)}(B()p(b) for all a,b € rad A.

2. Yy(a) = p(a) for all a € rad A.
3. The following diagram commutes;
radA/socA —2—  radB/socB
""""J, lsﬂa
D(rad A/ soc A) LD6™h, D(rad B/soc B).
Proof. 1t is clear that 2 <=> 3 by the definition of ,, and 1 = 2 was proved in [6].

Assume that the condition 3 is satisfied. Let a,b € rad A. Then we obtain the following
equation

{va(1a)} (ab) = = {¥s(D)} (8) = {D(P)¥p(D) } (a)
= {wp(p®)} (p(a)) = {vs(16)} (B(a)i(D)).
o

Now, the functor G, : K?(Pa) = K®(Pp) is defined as follows. For each object
P* = (@i, Atin, (Tivings Jininsr)» WE BiVe

Gy(P*) = (@i. Bep, (i), (1.0,,. (rl'--"n+l)).'..i..+,) .

For a morphism f* from (®Ae;,, (Ti.in..)) to (®Aej,, (. jurn))s ST is of the form (fi, 5. )insn
for some f; ;. € e;,Aej,. A morphism G,(f*) is defined by

Gp(f*)" = Balfiniu )i

for each integer n. We denote by F, the functor from mod A to mod B which is induced
by Gp : K#*(Pa) = K*(Pa).



Proposition 2.3. If an algebra isomorphismp: A/socA 5 B/ soc B salisfies the equiv-
alent conditions of Proposition 2.2, then F, is an equivalence functor, namely mod A and
mod B are equivalent.

Proof. See [6)]. 0

Proposition 2.4. Let A and B be selfinjective algebras with an algebra tsomorphism
p: A/soc A — B/soc B. Assume that there is a stable equivalence functor such that it is
given as Proposition 2.3. Then the following are equivalent;

1. F,,Q,\ = Qqu.
2. vap = pig.
3. F,: mod A — mod B is a triangulated functor.

Proof. Tt follows that 2 = 3 <= 1 by Proposition 2.3 and Theorem 1.3. Assume that
the condition 1 is satisfied. Then GTy = T5G i.c., ¢y, = Ypupr» We have p, = ppyy by
Lemma 2.1. O

In [2], Broué introduced the stable equivalence of Morita type in order to study the
stable equivalence which is induced by a derived equivalence. Let M be a B-A-bimodule
and N an A-B-bimodule such that M, N induce a stable equivalence of Morita type [2],
that is, M, N are projective both as left and right modules, and f N@p M ~ AP X as
A-A-bimodules and M ®4 N ~ B@ Y as B-B-bimodules, where X is a projective A-A-
bimodule and Y is a projective B-B-bimodule. Note that M, N induce Morita equivalent
if and only if both X and Y are zero. In particular, if either .X or Y are zero, then so is
the rest one. Linckelmann proved the following proposition which characterizes the stable
equivalence to induced Morita equivalent.

Proposition 2.5. [5/ Let A end B be algebras. Let M be a B-A-birnodule and N an
A-B-bimodule such that M, N induce a stable equivalence functor of Morita type. Then
the functor M ® 4 — : mod A — mod B is an equivalence if and only if for any simple
A-modules, the B-module M ®4 S 1s also simple.

Proof. Note that we may consider N ~ N’ @ N”, where N' is an indecomposable non-
projective A-B-bimodule and N” is a projective A-B-bimodule, morcover N' @5 S’ is
indecomposable nonprojective A-module for every simple B-module S'.

Assume that M ®,4 S is simple B-module for any simple A-module S. Then we have
N pM@,85~(ADX)®45 ~ S (X ®,5). By above assertion, X ®,4 S =0, so
X =0 Also,wehave M ~ M@, (N®@s M)~ (BdY)@; M ~M& (Y 3 M), so
Y=0 O

Now, let F, be the functor constructed as above for an algebra isomorphism p :
A/soc A = B/soc B. Theu Fy(S) is simple B-module for any simple A-module S. In fact,
p induces the bijection A/ rad A = B/ rad B because algebras liave no semisimple algebra
summand. The restriction map of 1, to soc A is the bijection soc A — soc B. Therefore,
if mod A and mod B are not Morita equivalent, then Fj, is the stable equivalence not of
Morita type.



In [7], we gave the example constructed by the different way. Let p : B/socB —
A/ soc A be an algebra isomorphism. We obtain the equivalence functor Fj, : mod(A/ soc A)
~ mod(B/ soc B) defined by F (M) = ,M for each A/soc A-module M. Morcover, we
consider the correspondence ¥, : mod A — mod B defined by ¥,(M) = F;(M) and
Vo(f) = F,(f) for each A/soc A-module M and morphism f in mod A. Then it foliows
that ¥, is a well-defined equivalence functor if and only if for every indecomposable projec-
tive A-module P, there is a nonzero composite morphisin s factoring through P such that
F(pw) =0, p: rad P — rad P/soc P is an epimorphism and w : rad P/soc P = Pfsoc P
is a monomorphism. Note that ¥, is also stable equivalence not of Morita type.
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Lattice-finite rings and their Auslander orders

Wolfgang Rump

In this article we give a condensed presentation of some recent results on lattice-
finite noetherian rings'. For a left noetherian ring R, we define an R-lattice as a finitely
generated left R-module without simple submodules. We call R lattice-finite if there are
only finitely many isomorphism classes of indecomposable R-lattices. When R is an order
over a Dedekind domain, these concepts coincide with the usual ones. There have been
two reasons for studying that generalization. First, when “representation-finiteness” is
added in the equation

artinian algebras : classical orders = artinian rings : ,

the free space can be filled with “lattice-finite noetherian rings”. The second reason and
original motivation arose from a study of Iyama's papers on 7-categories [2, 3, 4]. For
representation-finite orders A over a complete discrete valuation domain, the structure of
the 7-category A-lat of A-lattices is described there. Roughly speaking, a T-category is
an additive category with (a generalized version of) Auslander-Reiten sequences. By a
reduction to its essential core, the connection between representation-finite A and A-lat
boils down to a relationship between lattice-finite noetherian rings and a natural class of
7-categories, adding a new aspect to the conception of non-commutative curves.

The first three sections of this article are devoted to the global theory of lattice-finite
noetherian rings. We prove that every such ring R is an order in a semisimple ring.
For R-lattices over an arbitrary noetherian ring R, all Krull dimensions occur except 0.
The restriction to Jattice-finite rings R, however, implies that Kdim R < 1 (Theorem 1).
Following Auslander, the category of R-lattices can be replaced by the endomorphism
ring A(R) of an additive generator in R-lat. Then we can prove that A(R) is again an
order in a semisimple ring (Theorem 2), thereby providing a justification for calling A(R)
the Auslander order of R.

In contrast to classical orders, lattice-finite noetherian rings R need not be fully
bounded. For example, R may be simple with pR non-artinian. It is easy to see that
every principal ideal domain R has exactly one isomorphism class of indecomposable R-
lattices. This does not hold for principal left ideal domains R with non-principal right
ideals. (They have R-lattices which cannot be embedded into a free R-lattice!)

1§84-5 contain results of [11] which has been submitted for publication, while an extension of §§1-3
will be submitted for publication elsewhere.



For a subring R of a ring R’ we call R’ a left overorder of R if pR' has no simple
submodules, and the left conductor of R’ in R has finite index in R’ as a left R-module.
When R is left noetherian, a left overorder R' is determined by a corresponding full
embedding R'-lat — R-lat into the category of R-lattices. Therefore, it follows that
every lattice-finite left noetherian ring R has a maximal left overorder R'. When R is left
and right noetherian, we show that R' is an Asano order (Theorem 3). This means that
ideals which contain a regular element are invertible. To prove this, we show that lattice-
finite noetherian rings R have an idempotent ideal J(R) which provides an obstruction to
invertibility. The obstruction vanishes when R is maximal.

For a lattice-finite noetherian ring R, a necessary condition for the existence of almost
split sequences in R-lat is that the endomorphism rings of indecomposable R-lattices are
local. In this case a maximal left overorder R’ of R is semiperfect. We prove that the
converse holds: If R has a semiperfect maximal left overorder R’, then R-lat is a strict
7-category (Theorem 5). Then R’ 2 M., () X -+ - X M, (©2,) with (non-commutative)
discrete valuation domains £;. In the commutative case, for example, almost split se-
quences exist for the local rings R of a simple plane curve singularity, but not for the
local ring of the singularity given by Newton’s curve y? = z* + z2.

Some different characterizations for the existence of almost split sequences in R-lat
are provided by Theorem 4, in particular, two criteria in terms of irreducible R-lattices.
Another criterion states that any decreasing sequence Ey 2 E) 2 E; 2 --- of indecom-
posable R-lattices is divergent, that is, for each indecomposable full sublattice E of Ey,
there exists some ¢ € N with E; C E. We do not know whether this property holds for
all (not necessarily representation-finite) classical orders.

1 Left orders

Let R be a left noetherian ring. By R-mod we denote the category of finitely generated
left R-modules. A module £ € R-mod with no simple submodules is said to be an
R-lattice [11]. The full subcategory R-lat of R-lattices in R-mod is integral and almost
abelian in the sense of [8]. For any additive category A, let ind A denote a fixed class of
objects representating the isomorphism classes of indecomposable objects in A. Monic
and epic morphisms in A are said to be regular. If an inclusion E < F of R-modules is
regular in R-lat, we call F an overlattice of E. In case ind(R-lat) is finite, the ring R is
said to be laltice-finite.

For example, if A is a D-order [6] in a finite dimensional algebra A, where D is a
Dedekind domain, the familiar concept of A-lattice coincides with our general notion. In
this classical case it is well-known that A cannot be lattice-finite unless A is semisimple.
In general, we do not even know in advance that a lattice-finite ring R is an order. Our
first result (Proposition 1) shows that R is a left order in a semisimple ring.



Lemma 1. Let R be a laitice-finite left noetherian ring. For every R-lattice E # 0 there
are only finitely many isomorphism-classes of submodules or overlattices of E. Moreover,
there exists a submodule F of E with a non-invertible regular endomorphism F — F in
R-lat.

Proof. Since R is left noetherian, the uniform dimension d of E is finite. Therefore,
the number of indecomposable direct suinmands in a decomposition of a submodule or
an overlattice of E is bounded by d. This proves the first statement. Since E # 0,
there is an infinite sequence of submodules E 2 E, 2 E; 2 --- with regular embeddings
Eiy) = E; in R-lat. Hence E; = E; for some i < j. Therefore, the submodule E; admits
a non-invertible regular morphism E; 2% E; — E;. O

Proposition 1. Every lattice-finite left noetherian ring R with p R € R-lat is a left order
in a semisimple ring.

Proof. By Goldie's theorem it suffices to prove that R is semiprime. Suppose that
there is an ideal N # 0 with N2 = 0. By Lemma 1 there is a submodule Ny of N with a
non-invertible regular endomorphism r: Ny = Np. Let Q be the injective envelope of pR.
Since r is an essential monomorphism, it can be factored into r: Ny = N, =% N with an
R-submodule N, of Q. So we get an infinite sequence Ny & Ny € N, C -+ of submodules
N; of pQ with N; 2 Ny such that N;/Nj is of finite length. We set R; := R+ N;. The
noetherian property of R; implies that the length of R;/N is unbounded. On the other
hand, N; &2 Ny C N implies NN; = 0 and thus NR; = N for all i € N. Therefore, the
R-lattices R; belong to infinitely many isomorphism-classes, a contradiction to Lemma 1.

0O

2 The Auslander order

Recall that the Krull dimension Kdim M of a noetherian module M # 0 (in the sense of
Gabriel-Rentschler, see [1]) is defined as the deviation of the poset of submodules of M.
Here the deviation dev  of a poset Q is defined recursively as follows. If Q is artinian,
then dev Q := 0. If « is an ordinal number with dev Q # «a, then dev Q := « if for each
descending sequence ap 2> a; 2 -+ in £, almost all intervals a4, a;] have a deviation
< a. For a left noetherian ring R # 0 we set Kdim R := Kdim(zR). The uniform
dimension of a module M will be denoted by udim M.

Let R be a left noetherian ring. We call an R-lattice E irreducible if E # 0, and
the composition of each pair of non-zero morphisms A = E — B in R-lat is non-zero.
Equivalently, this says that for each submodule F of E with E/F € R-lat, either F =0
or F = E. Since R is left noetherian, every R-lattice E admits a descending chain
E =Eo 2 Ey 2 E3 Q -+ of submodules such that E;/E;,, are irreducible R-lattices. If



E, = 0 for some n € N, the smallest such n does not depend on the particular choice of
the sequence (E;). Then p(E) := n will be called the rational length of E. If the sequence
(E;) is infinite, we set p(E) := oo. The following proposition is easy to verify.

Proposition 2. Let R be a left noetherian ring. An R-lattice E salisfies Kdim E < 1 if
and only if p(E) < co.

Obviously, the inequality udim E < p(E) holds for any R-lattice E. Under the as-
sumption that R is also right noetherian, we can show that equality holds in case R is
lattice-finite. The following proposition is crucial.

Proposition 3. Let R be a lattice-finite noetherian ring. Every essential submodule of
an R-lattice E has finite indez in E.

In particular, Proposition 3 shows that for a lattice-finite noetherian ring R, every
uniform R-lattice is irreducible. As an immediate consequence, we get

Theorem 1. Let R be a lattice-finite noetherign ring. Then udim E = p(E) holds for
any R-lattice E. In particular, KdimR < 1.

For a lattice-finite left noetherian ring R, the category A := R-lat is tantamount to the
ring A(R) := End4(€Dind A)°P. (Note that every R-lattice admits a decomposition into
finitely many indecomposable R-lattices.) For classical orders R, the ring A(R) coincides
with the Auslander order. In general, even if R is not lattice-finite, the category R-lat
is localizable with respect to regular morphisms. But this does not automatically imply
that A(R) is an order. Using results of [8], the following theorem can be obtained as a
consequence of Theorem 1.

Theorem 2. Let R be a lattice-finite noetherian ring. Then A(R) is an order in a
semisimple ring A(R). If Q is the~quot:'ent ring of R/I, where I denotes the sum of all
length-finite left ideals of R, then A(R) is Morita equivalent to Q.

3 Asano orders

Let R be a subring of a ring R'. We call R' a left overorder [11] of R if R’ € R-lat and
(R: R); :== {a € R| R'a C R} has finite index in pR’. By [11], Proposition 4, R is left
noetherian if and only if R’ is so, and R is a left order in a given semisimple ring @ if and
only if R is a left order in Q. For a left overorder R’ of a left noetherian ring R, it follows



from [11], Proposition 5, that R'-lat is a full subcategory of R-lat. A left noetherian ring
R will be called mazimal if R € R-lat, and R has no proper left overorder.

In contrast to classical orders, a maximal noetherian ring R need not be lattice-finite.
Moreover, there may be maximal ideals of R having infinite index as a left ideal. When R
is lattice-finite, however, it can be shown that R is an Asano order. Recall that an order
R in a semisimple ring is said to be an Asano order [7] if every ideal I of R which contains
a regular element is invertible. In view of the relationship between left overorders of R
and full subcategories of R-lat ([11], Proposition 5), the following proposition is obvious.

Proposition 4. Every lattice-finite left noetherian ring R with p R € R-lat has a mazimal
left overorder.

For two-sided noetherian rings we have
Theorem 3. Every mazimal lattice-finite noetherian ring R is an Asano order.

Outline of proof. The first step is to show that up to isomorphism, there are only
finitely many simple left R-modules Sy, ..., S, with Ext},(S;, R) = 0. In fact, let E; —
R — S; be short exact sequences. Then S; ¥ S; implies that E; ¥ Ej;. So there cannot
be infinitely many S;. Now let I be any left ideal of finite index in R such that the
composition factors of R/I are all isomorphic to some S; with i € {1,...,n}. Then
Extyp(R/I,R) = 0. With ( )* := Hompg(—, R) this implies I** = R. Since R is lattice-
finite, the length of I**/I must be bounded for all such I. Consequently, there exists a
minimal left ideal I with the mentioned property. The minimality of I then implies that
I* = I. Since I is of finite index in R, we get I™R C I for some m € N. Hence I is an
ideal.

By Lemmma 1, the length Iz := E/IE, where E runs through all left ideals of R, has a
finite maximum [. It can be shown that [z = Ir = ! implies lg.r =, and that 5 < 4 +1c
holds for every short exact sequence A — B — C of R-lattices.

Suppose that I # R. Since I contains a regular element, there exists a left ideal L C I
with l; = I. Let E be the sum of all these L. Then Iz = I, and E is essential in I.
Moreover, using Propositions 1 and 3, it can be shown that E is an ideal of R. Since
IE # E, we have E # I. For a composition series EC E' C .- C I, let S := E'/E be
the first composition factor. Then ES = 0. Hence there exists a maximal ideal M of R
with E C M and MS = 0. On the other hand, IS = 0 would imply IE' = I’E' C IE,
and thus I > I = . Therefore, S does not occur as a composition factor in R/I. In
particular, this gives I ¢ M. By the maximality of R, we have M C¢ MM* C R and
M C MM C R. We show that M is invertible. If not, we would have MM* = M or
M*M = M. In either case, we get M* = R by the maximality of R. But this would
imply Extp(R/M, R) = 0, a contradiction to Ext}(S, R) # 0. So M is invertible.

Next it can be shown that Imip < lyip holds for i € 7. Since R is lattice-finite, there
are integers i < j with M'E = MJE. Hence Iy = lg = [ for all i € Z. Furthermore,



it can be proved that M~'E C I. But ME' C E implies E ¢ M~'E, a contradiction to
the maximality of £ C I.

Thus we have shown that J = R. Let M be any maximal ideal of R such that pM
is essential in pR. By Proposition 3, this implies that M has finite index in pR. By
the same argument as above, we infer that M is invertible. Now it follows (see [10],
Proposition 5) that every ideal of R which is essential as a left ideal is invertible. Hence
R is an Asano order. O

4 The semiperfect case

Let A be a Krull-Schmidt category, i. e. an additive category such that every object of A
is a finite direct sum of objects with local endomorphism rings. Then the ideal Rad A of
A generated by the non-invertible morphisms between indecomposable objects is said to
be the radical of A. A morphism f: A = B in A is called right almost split if f € Rad A,
and every A' — B in Rad A factors through f. Left almost split morphisms are defined
in a dual way. A sequence
A A5 A

of morphisms in A is said to be right almost split (for A) if u and v are right resp.
left almost split morphisms, and v = keru. Note that we do not assume that A is
indecomposable. Up to isomorphism, a right almost split sequence for A is uniquely
determined by A. Left almost split sequences B — 9~ B —» 7~ B (for B) are defined
dually. Following Iyama [2], we call A a strict T-category if right and left almost split
sequences exist for all objects of A. By [2], 2.3, this implies that every right almost
split sequence for an indecomposable object A with 74 3 0 is left almost split (with 74
indecomposable).

Let R be a left noetherian Asano order in a semisimple ring. If R' is semiperfect, then
Rad R’ is invertible. By [9], Proposition 1.6, and [10], Proposition 2, this implies that

R =M, () x -+ x My, ()
with (non-commutative) discrete valuation domains €;. Thus |ind(R"-lat)| = s.

Now let R be a lattice-finite noetherian ring with RR € R-lat. By Proposition 4 and
Theorem 3, R has an Asano left overorder R'. If R is semiperfect, however, R’ need not
be so. For example, let R be the local ring of the plane curve C: y* = 13 + z2

c



at the singularity (0,0). Using the parameter t = £, we can regard R as a subring
{f € R /(1) = f(-1)} of R := {2 € R(t) | g(+1) # 0}. Then R'is the unique
maximal left overorder of R. Here we have ind(R'-lat) = {R'} and ind(R-lat) = {R, R'}.
Whereas R is local, R’ has two maximal ideals R'(t 4 1) corresponding to the points of
the normalization A! of C lying over the singularity (0,0). Thus R’ is not semiperfect.

The example shows, in particular, that there are semiperfect lattice-finite noetherian
rings R for which the Auslander order A(R) is not semiperfect. In this case, R-lat cannot
have Auslander-Reiten sequences. Our next result (Theorem 4) gives a criterion for R to
have a semiperfect Asano left overorder.

Lemma 2. For a lattice-finite left noetherian semilocal ring R, the Jacobson radical Rad :
R-lat — R-lat has a right adjoint Rad®: R-lat — R-lat. For each R-lattice C there exists

an integer n = n(C) € N such that for any short ezact sequence A — B = C in R-lat,
the inclusion A — (Rad®)"A factors through v.

Proof. The first statement says that every R-lattice E has a greatest overlattice F
with Rad F C E. This follows by Lemma 1. The second statement is proved by means
of a projective presentation of C. O

We call a strictly decreasing sequence (g;) in a poset 2 divergent if for each a € §2
there is an index ¢ € N with a; < a. If every strictly decreasing sequence in 2 is divergent,
2 itself is said to be lower divergent. For a left noetherian ring R, we call an R-lattice E
divergent if E has a local endomorphism ring with radical J such that JE # E. When
R is an order in a semisimple ring @, and M € @-mod, we denote the set of finitely
generated R-submodules E of M with QE = M by L(M). Then L(M) is a lattice with
respect to + and N.

Theorem 4. Let R be a lattice-finite noetherian semilocal ring with pR € R-lat, and let
Q be the quotient ring of R. The following are equivalent:

(a) R has a semiperfect mazimal left overorder R'.

(b) For any simple Q-module S, the poset L(S) is lower divergent.

(c) For every M € Q-mod, the poset of indecomposable R-lattices in L(M) is lower
divergent.

(d) Every indecomposable R-lattice is divergent.

(e) Every irreducible R-lattice is divergent.

Proof. (a) = (b): With J := Rad R’ we have J™ C R for some m € N. For a chain
Eo 2 E, 2 --- in L(S) this gives gives J™E; C E; C R'E;. Since the R'-lattices in L(S)
form a chain, (b} follows.

(a) = (c): If a sequence Ey 2 E; 2 --- in L(M) does not diverge, there is an

E € L(M) with E; ¢ E for all i. Then we find a projection p: M —» Q with p(E;) € p(E)
for all i. By virtue of (b), the sequence (p(E;)) must be stationary. If the sequence



(E; N Kerp) in L(Kerp) does not diverge, we can repeat the argument. By induction,
we find an epimorphism ¢: M —» N and an integer k¥ € N with ¢(E;) = q(E;) for
i 2 k such that (E; N Kerq) diverges. Now assume that the E; are indecomposable.
We set J := Rad R' and n := n(q(E)) according to Lemma 2. Choose m € N with
(Rad®)*(zR') C J™ and J™ C R. Then E; NKerq C J*™(E, N Kerq) for some j € N.
So we get (Rad®)"(E;NKerg) C (Rad®)"J?™(ExNKerq) C J™(E;NKerq) C E,NKerg.
By Lemma 2, this implies that the short exact sequence Ey NKer ¢ — Ej — q(Ex) splits.
Since E is indecomposable, this gives g = 0, whence (E;) diverges.

(c) = (d): If E € ind(R-lat) is not divergent, there are non-invertible e; € Enda(E)
with e(E) + - - + e,(E) = E. We may assume that e, is monic. Further we may assume
that E € L(M) for some M € Q-mod. If ¢; is not monic, consider a decomposition M =
Qei(E) ® C. As Q is semisimple, we find a Q-linear map f: M ~» C with f(E) € L(C)
and Ker f NKere; = 0. Since R is right noetherian, f(E) is compressible in the sense
of [5]. Therefore, we find a regular morphism r: f(E) — e;(E) N C in R-lat. Hence
e1(E) + e;(E) does not change if we replace e; by the monomorphism (7}): E — e;(E) ®
(ENC) — E. So we may assume that the e,,..., e, are regular, and ¢,(E) ¢ e.(E).
Since €,(E) = e1e,(E) + - - - + e1e,(E), we infer that e,e;(E) ¢ e,(E) for some i. By the
same argument, e,¢e;e;(E) ¢ e,(E) for some j. Thus we obtain a non-divergent sequence
E 2 ei(E) 2 eres(E) 2 ereie;(E) 2 -+ .

(e) = (a): For irreducible R-lattices E, F' we write E < F if there exists a surjection
E™ — F. By (e) this gives a partial ordering on the isomorphism classes of irreducibles.
For each simple S € ind(Q-mod) we choose an irreducible Eg € L(S) which is maximal
with respect to <. If E, F € L(S) are isomorphic to Eg, then the surjection EQF —» E+F
shows that E+ F & Eg. Hence E = E + F or F = E + F. Consequently, the irreducible
E € L(S) with E 22 Eg form a chain. Now it is easily seen that R has a left overorder R’
with R'-lat = add{Es | S € ind(Q-mod) simple}. Thus R’ is a semiperfect Asano order.

The implication (c) = (d) also yields (b) = (e). Since (d) = (e) is trivial, the proof
is complete. (]

5 Auslander-Reiten sequences

In this section we prove that the equivalent conditions of Theorem 4 are necessary and
sufficient for the existence of almost split sequences in R-lat. The necessity follows from
the next proposition which provides a weaker version of condition (d) in Theorem 4.

Proposition 5. Let R be a lattice-finite noetherian ring. Then R-lat is a Krull-Schmidt
category if and only if every indecomposable R-lattice is divergent.

Proof. Let I be the sum of all length-finite left ideals of R. By Proposition 4 and
Theorem 3, R/I has an Asano left overorder R', and R’ is left noetherian by [11], Propo-



sition 4. If R-lat is a Krull-Schmidt category, then R’ is semiperfect. So the equivalence
(a) & (d) of Theorem 4 completes the proof. 0

Recall that an object @ of an additive category with kernels and cokernels is said to
be projective (injective) if the functor Homa(Q,—) (resp. Homa(—,Q)) from A to the
category of abelian groups preserves short exact sequences.

Lemma 3. Let R be a lattice-finite left noetherian semilocal ring. A morphism f: E — F
in R-lat is a kernel if and only if it does not factor through a non-invertible regular
morphismr: E = E'.

Proof. Assume first that f is a kernel. If r: E — E’ is regular and f = gr, then the
cokernel ¢ of f satisfies cgr = 0. Hence cg = 0, and g = fs for some s: E' = E. Thus
f(1 — sr) =0, and therefore, st = 1. Since r is regular, this implies that 7 is invertible.
Conversely, assume that f does not factor through a non-invertible regular morphism r:
E - E'. Let g: H — E be the kernel of f, and let ¢: Rad°H — Rad°E be the unique
extension of g. Then f factors through the regular morphism £ < E+g'(Rad°H). Hence
¢'(Rad°H) C E, and thus Rad°H = H since g is a kernel. Consequently, H = 0. So f is
monic, whence a kernel. O

Lemma 4. Let R be o left noetherian ring, and let A m B> C bea non-split short
ezact sequence of R-lattices with End 4(C) local such that every non-split-monic morphism
A = X in R-lat factors through v. Then every non-split-epic morphism f: ¥ — C in
R-lat factors through u.

Proof. There is a commutative diagram

A"+ B >
Y
x»%pey ¢

with i = (}) and z = ker(u f). If e is not split monic, then ¢ = gv for some g.
Thus (i — zg)v = 0, and we get some h: C = B @Y with i — zg = hu. Hence
(1 - (u f)h)u =u — (u f)i =0, and thus (u f) is a split epimorphism. Since Ends(C)
is local, this is a contradiction. Therefore, e is split monic. As the left-hand square of
the diagram is a pushout, it follows that (i z): B® X — B @Y is a split epimorphism.
Therefore, (u f) factors through u, whence f factors through u. O

Theorem 5. For a lattice-finite noetherian ring R, the category R-lat is a strict 7-
category if and only if it is a Krull-Schmidt category.



Proof. Assume that R-lat is a Krull-Schmidt category. For any projectice indecompos-
able R-lattice P, the R-module P/Rad P is simple. Otherwise, there would be submodules
E,F G P with E + F = P. Then the natural sutjection E @ F' — P would split, a con-
tradiction to the Krull-Schmidt category property. As a consequence, 0 — Rad P — P
is a right almost split sequence. Using Lemma 3, the dual argument shows that every
injective R-lattice admits a left almost split sequence 7 — Rad°J — 0. Now let C € R-lat
be non-projective indecomposable. Then there exists a morphism C — C’ in R-lat which
does not factor through some cokernel C" — C'. Taking the pullback, we get a non-split

short exact sequence A B C. Let A be the class of morphisms f: A — F in R-lat
which do not factors through a. Note that for any such f, the pushout H of a and f gives
rise to a non-split short exact sequence F — H —+ C. We introduce four binary relations
on A, For e, f € A we write e < f if there exists a morphism ¢ which is not split monic
such that f = ge. If g can be chosen as a kernel (a cokernel, a regular morphism) we
write e <; f (e <. f, e <, f). By [8], Proposition 2, these relations are transitive. For
any binary relation < on a subset A’ of A we call f € A" mazimal if there is no g € A’
with f <1 g. Let A, be the set of maps in A which are maximal with respect to <.. Since
R is left noetherian, it follows that for each e € A \ A, there exists some f € A, with
e<.f. As1€ A, weinfer that A, # 2. If f: A - A, ® A, is in A, with A; # 0, then
both components A - A; & A, — A; factor through a. Hence f factors through e, a
contradiction. Thus for each f: A - F in A,, the R-lattice F is indecomposable. Let
A, be the set of f € A, which are maximal with respect to <, in A.. Then Theorem 4
implies that for every e € A, \ A, there exists some f € A, with e <, f. Now let A, be
the set of f € A, which are maximal with respect to <, in A,. Since R is lattice-finite,
Theorem 1 shows that A; # @. We claim that every e € A, is maximal with respect
to < in A. Suppose that e < f, say, f = ge. By the above, we can assume f € A,.
Then g = drc with a cokernel ¢, a regular morphism r, and a kernel d. Since e € A, it
follows that ¢ is invertible. If r is not invertible, then e <, rce. Hence e € A, implies
that rce ¢ A.. So we find some ¢ € A, with rce <. ¢'. Thus e <, ¢, a contradiction.
Therefore, g is a kernel. Since f € A,, this gives a contradiction. By Lemma 4, we get
a right almost split sequence A’ — B’ — C. By the dual argument, we get for each
non-injective indecomposable R-lattice A a right almost split sequence A — B — C in
R-lat. Hence R-lat is a strict T-category. O
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UNRELATED PAIRS OF MODULES

YASUTAKA SHINDOH

Throughout this paper all rings will have non-zero identities and all modules will
be unitary modules, A will always denote a ring.

INTRODUCTION

In this paper we introduce a new concept of ‘unrelated pair’, improve some results
of Stephenson and Erdogdu (see References) and show new results.

Definition 1. Two left A-modules M, and M, are said to form an unrelated pair
when the following condition holds:

If there are submodules N; < L; £ aM; (i = 1,2) such that L /N, ~

Lg/Ng, then L| = Nl and Lg = Ng.

In Section 1 we consider the basic properties of unrelated pairs and give equivalent
conditions of unrelated pairs (sec Main Theorem 1).

In Section 2 we apply results of Section 1 to obtain extensions of Erdogdu’s
results on semidistributive modules and show relations among serial modules and
distributive modules, Bezout modules.

Definition 2. Let M be a left A-module. Then we define the following.

(1) aM is said to be distributive if the lattice Lat(4M) = {N|N < M} is
distributive.

(2) aM is said to be semidistributive if there are distributive modules M; (i € I)
such that s\M = @/ M;.

(3) aM is said to be uniserial if the lattice Lat{,M) is a chain.

(4) aM is said to be serial if there are uniserial modules M; (i € I) such that
AM = @i M.

(5) aM is said to be a Bezout module if all finitely gencrated submodules of 4 M
are cyclic.

By results obtained in Section 3, other properties of unrclated pairs (see Main
Theorem 2), structures of invariant modules and distributive modules on a commu-
tative ring are shown.

1. UNRELATED PAIRS

Section 1 T, LAF® Main Theorem Z3R®HFET ., ZHIZ L - T unrelated pair
DIERRITEIACHTIL £7

The final version of this paper will be submitted for pubiication elsewhere.
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Main Theorem 1. Let 4M be a direct sum of two left A-modules M,, My. Then
the following conditions are equivalent.

(1) aM, and A M, form an unrelated pair.

(2) For any submodule N < 4M, there are N; < AM; (i = 1,2) such that 4N =
N, ® N,.

(3) If there are submodules N < X < L < sM such that XN Ms = NN M, and
X+ (Lﬁ Mg) = L, then X = (Lﬂ lwl)@ (Nﬁ A’[g)

(4) If there are modules N; < L; < sM; (i = 1,2) and X < AL; ® L, such
that Xm @ Ly = L7 @ Lom where 7 is the natural epimorphism from M to
M/(N, ® N,), then X7 = L.

(5) Ly/Ny are not isomorphic to La/N» for any simple subfactors L;/N; of M,
(:=1,2).

(6) A = L4(m) + £4(my) for any elements my € My, my € M,.

(7) A(my + m2) = Am; ® Am, for any elements m, € M,, my € M.

(8) A(ml + m-_») = (Aml N A(m; + mz)) D (Am2 N A(m; + mg)) fOT any elements
m; € M, my € M.

(9) A(my + mo)y; < A(my + my) for any elements m, € My, my € M, where y;
is a projection from M = M, ® M, to M; (i = 1,2).

ET DI, unrelated pair 12T B M B EHEPEFR & . direct summand (2189
HEERERLET.

Remark 1.1. Let M), M, be left A-modules. Then the following conditions are
equivalent.
(1) aM, and 4 M, form an unrelated pair.
(2) Homa(Ly/Ny, Ly/N;) = 0 for any submodules Ny < Ly € sMy, No < Ly <
AMs.
(3) Homa (N1, Ma/N,) = 0 for any submodules Ny < 4 M), No < s M.
Lemma 1.1. Let 4 M be a direct sum of two left A-modules My, My and N; < L; <
AM; be submodules (i = 1,2), ¢ be a homomorphism from L,/Ny to Ly/N,. Then
the following conditions hold.
(1) If ¢ is non-zero, then there is a submodule X < 5L, ® Ly such that Ny® N, <
X,XnL2=N2,X+L2=L1®L2,X¢L1@N2.
(2) If ¢ is an isomorphism, then there is a submodule X < 4L, ® La such that
XﬁL,-=N,- andX+L,-=L1®L2 (‘I.= 1,2)

ZD2DOOFEMSLUTARDENET,

Proposition 1.2. Let ;M be a direct sum of two left A-modules My, My. Then the
following conditions are equivalent.

(1) aM, and sM, form an unrelated pair.

(2) For any submodule N < zM, there are N; < AM; (i = 1,2) such that 4N =

N, ® N-.
(3) If there are submodules N £ X < L < aM such that XN My = NN M and

X +(LOM,) =L, then X = (LN M) ® (N O M,).
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(4) If there are submodules N < X < L € AM such that XN M, = NN M, and
(LNM)+ X =L, then X = (NN M,;)® (LN M).

Tz, FEROGEFAHFLIZE D, ROBROHED T EntiliskeE .

Corollary 1.3. Let oM be a direct sum of two left A-modules My, M,. Then the
following conditions are equivalent.

(1) aM, and s M, form an unrelated pair.

(2) If there are modules N; < L; < aM; (i = 1,2) end X < oL, ® Ly such
that X7 @ Lom = L7 @ Lom where 7 is the natural epimorphism from M to
M/(N, ® N,), then X7 = Ln.

(3) If there are modules N; < L; € sM; (1 = 1,2) and X < oL, & Ly such
that Lym ® X7 = Lyw @ Lym where w is the natural epimorphism from M 1o
M/(N, ® N,), then X7 = Law.

CNR—BUTORTEISNET,

Remark 1.2. Let oM be a left A-module and N be a direct summand of 4 M. Then
the following conditions are equivalent.

(1) The direct complement of N in M is uniquely determined.
(2) Hom,(M/N,N) = 0.

TMIRDHRORL TBEXT.

Remark 1.3. Let M be a left A-module and m,, m, be elements of M. If Am;N
Am, = 0, then the following conditions are cquivalent.

(1) A =1£€4(m;) + La(m2) where 4(m;) = {a € A| am; =0} < 4A.

(2) A(my +my) = Am; @ Am,.

(3) A(my +mp) = (Amy N A(my + ma)) @ (Ama N A(m, + ma)).

(4) A(m; + ma)y; < A(m, + my) where v; is a projection from Am, @ Am, to

Am,~ (‘l = 1,2)
UEDEERNS, LTG5 EMNHEET,
Proposition 1.4. Let 4M be a direct sum of two left A-modules My, M,. Then the

following conditions are equivalent.

(1) aM, and s M, form an unrelated pair.

(2) L\/N, are not isomorphic to Lo/N, for any simple subfactors L;/N; of aM;
(i=1,2).

(3) A =~L4(m,) + La(m2) for any elements my € My, mo € M.

(4) A(m; +my) = Am,y ® Am, for any elements m| € M;, my € M,.

PAEIZ& O, Main Theorem 1 23T 52 &b D XY, £, £NITKD
LFRAMhDET,

Corollary 1.5. Let 4M be a direct sum of two left A-modules My, M,. If AM is
invariant (every submodule of oM is a right End(4M)-module.), then sM) and M,
form an unrelated pair.
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2. DISTRIBUTIVE MODULES

Section 2 T, distributive module & semidistributive module ®MERIZ DWW T,
unrelated pair ZFlVTNLK DOMDERERL £

Remark 2.1. Let M be a left A-module. Then we have the following conditions.

(1) If oM is a uniserial module, then 4M is serial and distributive.
(2) If AM is serial or distributive, then 4 is a semidistributive module.
(3) If oM is uniserial, then 4M is a Bezout module.

F3HHIT. unrelated pair ICMT ZEEROMNBIRZ RD ET .

Remark 2.2. Let 4 M be a direct sum of left A-modules M; (i € F, F is a finite sct).
If M; and M; form an unrelated pair for all distinct subscripts ¢, € F, then M,
and @;em\M; form an unrelated pair for any subscript k € F.

ZhickD, UTFTHESNET,
Lemma 2.1. Let 4M be a direct sum of left A-modules M; (i € I). Then the

following conditions are equivalent.

(1) aM; and sM; form an unrelated pair for all distinct subscripts ¢,j € I.
(2) For any submodule N < oM there are N; < sM; (i € I) such that 4N =
@ic1 N

EiED Lemma 2k D, LATD 2 DORKREGD T EMMRET,

Theorem 2.2. Let \M = @i M; be a semidistributive module with distributive
modules M; (i € I). Then the following conditions are equivalent.
(1) aM is distributive.
(2) For all distinct subscripts i,j € I and for any elements m; € M;, m; € M;,
Am; ® Am; is distributive.
(3) aM; and sM; form an unrelated pair for all distinct subscripts i,j € I.

Lemma 2.3. Let \M = ®ie;M; = ®peu Ny be a sum of indecomposable modules
M;,N, (¢ € I,h € H). If \M; and sM; form an unrelated pair for all distinct
subscripts i,j € I, then there is a bijection p from H to I such that N, = M,.

T, LBOHBREMS., BIZW L OMOPEMMBITRD S FET,
Proposition 2.4. Let A\M be a serial module. If \M is distributive,then the fol-

lowing conditions hold.

(1) oM is a Bezout module.
(2) The decomposition of AM with respect to uniserial modules is uniquely deter-
mined.

Corollary 2.5. Let sAM be a module with £4(m) = 0 for any non-zero element m €
M. If AM is a distributive module or a Bezout module, then 4 M is indecomposable.

Remark 2.3. Let 4M be a serial module with £,(m) = 0 for any non-zero clement
m € M. Then the following conditions are equivalent.

(1) aM is a distributive module.
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(2) aM is a Bezout module.
(3) aM is a uniserial module.

3. FINITELY GENERATED MODULES OVER A COMMUTATIVE RING

Section 3 Tid. commutative ring 1@ finitely gencrated module {29 B4R
ZRLET,

Remark 3.1. Let A be a commutative ring and M, M, be finitely generated A-
modules. Then the following conditions are equivalent.

(1) M, and 4 M, form an unrelated pair.
(2) A= é’A(Ml) + eA(Mz) where EA(M,) = {(l € Al aM; = 0} < AA
EfE Remark 5. LLTERDB T EMMRET,

Main Theorem 2. Let A be a commutative ring, M be a finitely generated A-
module and N be a finitely generated submodule of ;M. If 4N and 4M/N form an
unrelated pair, then the following conditions hold.

(1) N is a direct summand of M.

(2) The direct complement of N in 4 M is uniquely determined.

(3) There is a cyclic ideal I < 4A such that N = IM.

F7-. Main Theorem 2 A% non-commutative ring 1= TR D 3/ W% RIZH
EER

Example 1. Let K be a field. And we put A, M, N as follows.

K K 0
K K 5 )
Do K 0
A= .. ... K , M=) | N=| g
K K K K

Then the following conditions hold.

(1) AN and 4M/N form an unrelated pair.
(2) 4N is not a direct summand of 4 M.

F/-. Main Theorem 2 205, HMICETOBREGDZ EMHEET,

Remark 3.2. Let A be a commutative ring, M be a finitely generated A-module and
N be a finitely generated submodule of 4M. If 4N and 4M/N form an unrelated
pair, then the following conditions are equivalent.

(1) aM is a distributive module.

(2) aN and AM/N are distributive modules.

Corollary 3.1. Let A be a commutative ring, M be a finitely generated A-module
and N be a finitely generated submodule of ;\M. If 4M be distributive or invariant,
then the following conditions are equivalent.
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(1) N has a direct complement in 4 M
(2) AN and sM/N form an unrelated pair.

Corollary 3.2. Let A be a commulative ring and M be a noetherian A-module. If
aM has @ non-zero small submodule, then Rad(, M) and Top(4M) don’t form an
unrelated pair.

Eie, BIUTORREHBD T EMHRET,

Theorem 3.3. Let A be a commultative ring and M be a finitely generated faithful
A-module, A be a set of idempotents of A and R be a set of idempotents of R =
End(sM). If AM is distributive or invariant, then there is a bijection

w: Ao R, e— e =m.t,
where 7, is a projection from s M to eM and ¢, is an inclusion from eM to s M.
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