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PREFACE

The 33th Symposium on Ring Theory and Representation Theory was held at
Shimane, on September 18th - 20th, 2000.

The Volume presents thirteen articles given in the symposium. These articles
contain advanced results toward the new century.

We would like to thank Professor Yasuyuki Hirano, Hidetoshi Marubayashi,
Kiyoichi Oshiro, Yukio Tsushima and Kunio Yamagata for helpful suggestions
concerning the symposium. Finally we wish to thank Professor A. Ueda and staffs
of the department of Mathematics, shimane University, for their cooporation.

Shigeru Kobayashi

Naruto, January 2001
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SYMMETRY OF ALMOST HEREDITARY RINGS *
YosHITOMO BABA AND HIROYUKI MIKI

In [6] an almost N-projective module is defined as a generalization of
a N-projective module to characterize the lifting property. This module is
further studied in the succeeding papers [4], [7], [8]. And in [10] M. Harada
called a module M to be almost projective if M is almost N-projective for
any finitely generated module N. We see that semisimple rings, serial rings,
QF-rings and H-rings are well-characterized by the property of an almost
projective module in [10], [11]. Using this remarkable module, in [9] he
defined a right almost hereditary ring R, i.e., R is an artinian ring with Jg
almost projective, where J is the Jacobson radical of R. On the other hand,
it is well known that an artinian hereditary ring R is characterized by the
following equivalent conditions:

(1) Jr is projective;

(2) grJ is projective;

(3) E/Socle(E) is injective for any injective right R-module E;

(4) E/Socle(E) is injective for any injective left R-module E.
Therefore a right almost hereditary ring is a generalization of an artinian
hereditary ring. In this paper, first we characterize a right almost hereditary
ring using left ideals in section 2 (we note that M. Harada already gave a
structure theorem of it using right ideals in [9]). Further we consider the
following generalized condition of (3):

(#)- A factor module of F by its socle is a direct sum of an injective module
and finitely generated almost injective modules for any injective right
R-module E (not necessarily finitely generated).

Symmetrically we consider the left version (#);. And we show that a ring
R is a right almost hereditary ring if and only if it satisfies (#); using a
characterization of a right almost hereditary ring given by left ideals. But
M. Harada already showed that a right almost hereditary ring is not always
a left almost hereditary ring in [9, p801]. That is, the equivalences (1) < (4)
and (2) & (3) are generalized. But the other equivalences are not generalized.

In [9] he further considered the following stronger conditions than one of
an almost hereditary ring :

* The detail version of this note will be submitted for publication elsewhere.



(*)» Every submodule of a finitely generated projective right R-module is
almost projective.

(#+), The Jacobson radical of M is almost projective for any finitely gener-
ated almost projective right R-module M,

(#*x), every submodule of a finitely generated almost projective right R-
module is also almost projective.

In this paper we call an artinian ring R a right strongly almost hereditary
ring (abbreviated right SAH ring) if R satisfics (*),. On the other hand,
an artinian hereditary ring is also charactcrized by the following equivalent
conditions:
(a) Every submodule of a projective right R-module is also projective;
(b) every submodule of a projective left R-module is also projective;
(¢) every factor module of an injective right R-module is also injective;
(d) every factor module of an injective left Z-inodule is also injective.
In section 3 we consider the following generalized condition of (c):

(**), Every factor module of an injective right R-module is a direct sum of
an injective module and finitely generated aliost injective modules.

Similarly we define (¥#); for left R-modules. The aim of Section 3 is to show
that an artinian ring R is right SAH if and only if R satisfies (*¥#),. But
we see that the equivalence between a right SAH ring and an artinian ring
which satisfies (¥#), does not hold in general.

In [9] M. Harada also showed that an artinian ring R satisfies (), iff it
satisfies (#+*),. In section 4 we consider the following generalized conditions
of (¢):

(»+#), M/Socle(M) is a direct sum of an injective module and finitely gen-
erated almost injective modules for any injective or finitely generated
almost injective right R-module M;

(#+x*), every factor module of an injective or finitely generated almost injec-
tive right R-module is a direct sum of an injective module and finitely
generated almost injective modules.

We also consider (*+#), and (**x#),; for left R-modules. The aim of Section
4 is to show that an artinian ring R satisfies (*+), if and only if R satisfies
(#+%#); if and only if R satisfies (¥**#),. But we see that the equivalence
between the two conditions (**), and (*+#),. does not hold in general.



81 Preliminaries

In this paper, we always assume that every ring is a basic artinian ring
with identity and every module is unitary. Let R be a ring and let P(R) =
{e:}?; be a complete set of pairwise orthogonal primitive idempotents in
R. We denote the Jacobson radical, an injective hull and the composition
length of a module M by J(M), E(M) and |M]|, respectively. Especially, we
put J := J(Rg). For a module M we denote the socle of M by S(M) and
the k-th socle of M by Si(M) (i.e., Si(M) is a submodule of M defined by
Se(M)/Sk_1(M) = S(M/Si_,(M)) inductively).

Let M and N be modules. M is called almost N-projective (resp. almost
N-injective) if for any homomorphism ¢ : M — L (resp. ¢' : L — M) and
any epimorphism 7 : N — L (resp. monomorphism ¢ : L — N) either there
exists a homomorphism #:M - N (resp. ¢ : N - M) such that ¢ = né
(resp. ¢ = ¢/t) or there exist a nonzero direct summand N’ of N and a
homomorphism § : N' — M (resp. 6’ : M — N’) such that ¢8 = =i (resp.
&¢' = p.), where ¢ is an inclusion of N’ in N (resp. p is a projection on N’
of N).

A ring R is called right (resp. left) hereditary if every submodule of a
projective right (resp. left) R-module is also projective. It is well known
that a perfect or neotherian ring is right hereditary iff it is left hereditary
(see, for instance, [13, Chapter 9]). So we call a right hereditary ring a
hereditary ring since rings are artinian in this paper. Further an artinian
ring R is hereditary iff Jg is projective (see, for instance, |1, 18. Exercises 10
(2)]). Furthermore an artinian ring R is hereditary iff £/S(E) is injective for
any injective right R-module E. We also see that R is hereditary iff E/A is
injective for any submodule A of an injective module E by (1, 18. Exercises
10 (1))

Further M is called almost projective (resp. almost injective) if M is
always almost N-projective (resp. almost N-injective) for any finitely gen-
erated R-module N. The following is an important characterization of an
almost projective module given by M. Harada.

Lemma 1 (10, Corollary 1¥]). Suppose that M is an indecomposable finitely
generated left R-module. Then M is almost injective but not injective if and
only if there ezist an indecomposable injective left R-module E and a positive
integer k such that M = J*E and J'E is projective for anyi=0,---,k— 1.



And we call an artinian ring R a right almost hereditary ring if J is
almost projective as a right R-module. By [10, Theorem 1] this definition
is equivalent to the condition: J(P) is almost projective for any finitely
generated projective right R-module P.

A module is called uniserial if its lattice of submodules is a finite chain,
i.e., any two submodules are comparable. An artinian ring R is called a right
serial (resp. co-serial) ring if every indecomposable projective (resp. injec-
tive) right R-module is uniserial. And we call a ring R a serial ring if R is a
right and left serial ring. Let fi, f2, -, fn be primitive idempotents in a serial
ring R. Then a sequence {f1R, foR, -, foR} (resp. {Rf1,Rf2,---,Rfa}) of
indecomposable projective right (resp. left) R-modules is called a Kupisch
series if f;J/f;J? 2 fiiR/ fin1J (vesp. Jf;/J2f; = Rf;41/J fi1) holds for
any j = 1,---,n—1. Further { iR, foR,--, faR} (resp. {Rfi,Rf2, -+, Rfa})
is called a cyclic Kupisch series if it is a Kupisch series and f,J/foJ? =
hHR/fid (vesp. Jfo/J?fn =2 Rf1/Jf1) holds. Let R be a serial ring with a
Kupisch series {fiR, faR, -+, faR}. If foJ = 0 and P(R) = {f1,- -, fu},
then R is called a serial ring in the first category. And if { /iR, foR,---, fuR}
is a cyclic Kupisch series and P(R) = {f1, -, fa}, then R is called a serial
ring in the second category.

§2 A structure theorem for an almost hereditary ring

The following is a structure theorem for a right almost hereditary rigg
given by M. Harada.

Theorem 2 ({9, Theorem 1]). A ring is right almost hereditary if and only
if it is a direct sum of the following rings:

(i) Hereditary rings;

(i) serial rings;
(i) rings R with P(R) = {h1, -, hm, f‘” 2, O, 12, £,

ng ?

, Fi0} such that, for each I =1,---,k we put S == T3, f; @ and

= | s )RR|, the following four conditions hold for anyl = 1,--- |k
ands=1,---,m,
(a) SiRS; is a serial ring in the first category with { fl(l)R.S’,, fz(l)R.S’z,
-+, fORS;} a Kupisch series of right S;RS;-modules,



(b) S,R(l -S) =0, (b + -+ h,,.)R(f“’ D) #0 and
(hi+ -+ ha) RSP + - f,(.',)) =0,
(©) (hJ/h I =0 for any j > 2,
we let oy be a positive integer such that fll)R/ fl(')Jj is injective for any
J(Za+1) but f ')R/f“)J"‘ is not injective (see Lemma ?(3) below
as for the eristence of ay) and put H := Y 7. hy + Z,_ 15 O then
(d) HRH is a hereditary ring.

1,1—

Remark 3 . By /5] we know that a hereditary ring is represented as

-

[ Dy My, Mz -+ - My,
0 l)2 M2.3 .o I M2,n
: 0

0 Dn—l Mn—l,n
i 0 0 Dn

where Dy, Dy, - -, D, are division rings and M;; is e left D;-right D;-bimodule
for any i,j. Further by [12] a serial ring in the first category is represented
as the following factor ring:

D D ... ... ... DD 0]
T el e Pl 0
0 D D D0 0
0O D D --- DD 0
0 D Pt 0
0 -. DO 0
' DO 0|,
.. 0
0O D --- DO 0
0 D D
0 D :
0o .
| 0 0 D




where D is a division ring. So a ring R in Theorem 2(iii) is represented as
the following factor ring:

A |B 0 B, 0o | --e-e B, 0
0
1‘—|_|6
Dy 0 0
LL
2L\—,ﬁ
Dy | ... 0 0
LL
0 0
k|—|_.ﬁ

where 14 = T hy, 1g, = T2, £} and lg4p, = TiL, fy) for each L.

Further HRH = AU (UE,(B;U C))) and SRS, = C,U D;.

In Theorem 2 a right almost hereditary ring is characterized by right
ideals. Here we shall characterize a ring in Theorem 2(iii) by left ideals.

First we characterize oy in Theorem 2(iii) not using the right module
structure.



Lemma 4. Let R be a ring satisfying (a), (b) in Theorem 2(iii) and a; as
in Theorem 2(iii). Define an integer aj to satisfy (hy + -+ + hm)R f}') =0
foranyj=a;+1,--- 0 but (hy +---+ hm)Rfl(,? #0. Then oy = qj.

Using Lemma 4 we have a lemma.

Lemma 5.

(1) Let R be a ring in Theorem 2(iii). We may assume that h,Rh, = 0 for
any s >t by the representation form of a hereditary ring (see Remark
3). Then the following condition (e) holds:

(€) he = (OZ,(kiR)™) ® (B (F"R/ f"Jo1)) s right -
modules for some non-negative integers oy, - -+, Um, Uy, ** *, Ug.
(2) Suppose that a ring R satisfies (a), (b), (e), then (c) and (d) hold.
Hence (a), (b), (¢), (d) in Theorem 2(iii) can be replaced by (a), (b), (e).

The following gives a characterization of a ring in Theorem 2(iii) using
left ideals.

Theorem 6. Let R be a ring with P(R) = {h1,-+, Ao, {7, 37, -+, fD,
f(z) e, £ o, , fi}. P(R) satisfies (a),(b),(c),(d) in Theorem 2(iii)
zf and only { the followmg five condition hold for anyl = 1,---,k, we put
L
(a’) S;RSI is a serial ring in the first category with {S,RfY, SR e
SR fl(l)} a Kupisch series of left S{RS;-modules,

®) SIR(1-S)=0and(h +---+ hn)RS; #0,

() J f}l) ]2 f (I) is simple as a left R-module for any j =2,---,ny,
we let o) be the same integer as in Lemma 4 and put H' := Y1, hs +

" ap o) h

Yi=14m1 fi’, then

(d) H'RH' is a hereditary ring , and

(f) E(RRfl(I)/Jfl(I)) is projective as a left R-module for anyl=1,--- k.

Then we note that of = oy, and so H' = H and (d') coincides with (d),
where H and (d) are as in Theorem 2(iit).



By using Theorem 6, we can show the following theorem, which is the
main theorem in this paper.

Theorem 7. R satisfies (#): if and only if R is a right almost hereditary
Ting.

Remark 8 . In [9, p801] M. Harada already showed that a right almost
hereditary ring is not always a left almost hereditary ring. We shall give an
example for this suggestion below. (see Example 11)

§3 Strongly almost hereditary rings

Before considering right SAH rings, we define a special (serial) ring.
A serial ring is called a strongly serial ring if it is a direct sum of inde-
composable serial rings R with a Kupisch series {f} 1R, fi2R,- -, fig R,
JoaR, -, fmp. R} such that |figR| = 2 for any ¢ = 1,---,m — 1 and
| fnpm R| = 1 or 2, where P(R) = {fi;}2, %, and f;;R is injective iff j = 1.
Then, if |fmg., R| = 1 (resp. = 2), then R is a serial ring in the first (resp.
second) category. Further we can easily check the following characterization
of a strongly serial ring.

The following is a structure theorem of a right SAH ring given by M.
Harada.

Theorem 9 ({9, Theorem 3]). A ring is right SAH if and only if it is a
direct sum of the following rings:

(i) Hereditary rings;

(ii) strongly serial rings;

() rings R with P(R) = {hy,- <~ ko, [, f0, o, S0, 9, £, 19,

) ? ng ?
e, f,(,':)} such that, for each !l = 1,--- k we put S; := Z;-":l }l) and
H:=35™ h+Y5, 7O, the following three conditions hold for any
[=1,---,k:

(z) SiRS; is a strongly serial ring in the first category with a Kupisch
series { f{"RS;, f{"RS,, ---, fORS,} of right S;RS;-modules,

(y) SiR(1—S) =0, (hy+- - +hn)RFY # 0 and (hy+- - -+hm) RSP+
o+ fi)) =0, and



(z) HRH is a hereditary ring.

We note that by Lemma 4 a ring in Theorem 9 (iii) coincides with a ring
in Theorem 2 (iii) if it satisfies that a; = 1 and S, RS, is a strongly serial ring
forany ! =1,---,k, where oy and S; are as in it.

Moreover, the condition (ii) in the above Theorem is not the same as [9,
Theorem 3|, i.e., when R is a serial ring in the second category, he wrote
that “R is a serial ring in the second category with J2 = 0”. But this original
condition is not suitable. We give an example. Let R be a serial ring in the
second category with P(R) = {f1, f2, fs, f4} such that {fiR, f2R, f3R, f1R}
is a Kupisch series and |fiR| = 4, |f2R| =3, |fsR| = 2, |f1R| = 2. Then
R is a strongly serial ring. So it is right SAH by the following proof. But
J? # 0. In an unpublished lecture note written by M. Harada the condition
is already corrected.

The purpose of this section is to show the following theorem.

Theorem 10. A ring R is right SAH if and only if R satisfies (+*),.

A right SAH ring does not always satisfy (**), and a ring satisfying (*#),
is not always a right SAH ring, Now we give an example.

Example 11. Consider a factor ring

‘DD 0 DO D
0 DODODD
|0 0DDIUTD
=10 0o 0o DD D
0 000 DD
|00 0 0 0 D]

where D is a division ring. And we consider that R is a ring by the ordinary
addition and the multiplication of matrices. Put H := e; + e; + e3 + ¢; and
S| := eq + es + eg, where e; is the (¢,i)-matrix unit for any i.
Then HRH is a hereditary ring and S5, RS, is a strongly serial ring in the
first category. And R is a ring in Theorem 9(iii), i.e., R is aright SAH ring.
But we claim that R does not satisfies (**),. e4R is an injective left
R-module with e4R/S(e,R) = eqR/eqJ. And e4R/S(esR) is not injective.



Further e4R/S(e4R) is not almost injective by [10, Corollary 1#] since e; R®
eaR is a projective cover of E(eqR/eqJ).
By Theorem 10 R satisfies (**); but is not a left SAH ring.

§4 Stronger conditions than that of a SAH ring
The following is a structure theorem of an artinian ring which satisfies
(#*), and (#+=x), which are stronger conditions than that of a right SAH ring:
Theorem 12 (f9, Theorem 4/). For a ring the following are equivalent:
(a) It satisfies (**),;
(b) it satisfies (*%%).;
(c) it is a direct sum of the following rings:
(i) Hereditary rings which are not serial;
(ii) serial rings with the radical square zero;
(i1i) rings R in Theorem 9 (4ii) such that HRH is not a serial ring

and J(SIRS))* =0 foranyl=1,-- -, k, where H and S, are as in
Theorem 9 (iii).

The purpose of this section is to show the following theorem.

Theorem 13. For a ring R the following are equivalent:
(a) R satisfies (%), (& (%%),);
(b) R satisfies (»+%),;
(c) R satisfies (xx*%),.

Acknowledgement

The condition (#), in this paper is first considered by M. Harada. He called
a ring satisfying this condition a right co-almost hereditary ring and gave
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LA LTI, WABLS EWOEBENS Y, L 2T [1] ORBAMELT
R AT v,

VT FRIKTRIINTEL2ON:, LTI/ CHRELL .

1. k[z1,20,...,2] 01 ZKDBIENTES (I§FH). Shix 79 Rl
EOTFB Y,



2. ZIN fid MEZ LN 3, Ea,'f.' =d %77 a; XLTKDH5
ENTEL. I, -2y FOHLREDIEAT, | THEHR
TAEIRAVMIAZ T HOy,

TEABAY L INE, BBRTEIHETE 5.
Ry JRLNY (AN S 7 N}

SIT R =K[zi,..., 5], ¥ &, FHRXERT L BTF, Ker(y;) =
Im(tit1).

CHRUIEIEV &V T & T, Macaulay A° 1970 £ H 25, 1980 F4E
DIEHIIHTTE TR I NI, 2Dk, CoCoA, Singular, Macaulay2 % &
MR IR/ (asir, gb, F4 FRRBABRA LR LI HOBRY LR
SN ) IDEILVATLOMRET, REGICB A2 EucE 2, e
N PR, BUMEBS RO betti Bk EAEPRIGIHTES L Gk o

V7 FOBRBROBRETHABEENLBM, 77— 78, E5, o7 LT
ALDERG EBHFE L AT LHAROBEM;ELTE L, ThonERBH 2
BAXLVKETE, 2222 EITTOLRLL LTS, 22 THE, 2Lz
X Macaulay? &, FMMTOSERETOBBUIHER L TS L, openxm.org
X, =98 BTN T XL EOBBEIHERL TV 5.

3 T4 D & Annihilating operators

Pl X 512, G5afIRERR1E Buchberger 7V T XL ZHVTWAN A
BAERABOTVN TV L2527 LaL, EHROBRLT CHEHET
Ehnikdbdot LA Qz,1//f] 13 Qz] MBEE LTIXHMRAKT
v, IhH D L EATL—20BHATHS.

T3 [4] f € Qlr1,....zna] KA LT, dimgH(C"\ V(f),C) (& (D DFH
% B T) BHEEOTiE.

FE#: kan/sm! F 7213 Macaulay?.

COTVNIYXLIE, BBEa8IZvioT, YL 7HREN—S>OICH, %
EHHBROME (1 KAEHEX LML), £ D TEI L) LILENEN
=¥ (A
Bl: f=23—P22 4P +22 DEE, HY(CW\V(f),C) DRI hi t&, hg=h; =
1, ho =0, h3 =8. (asir ¥V T ifplot Ty=: DEED FEHVTHS
EBH LAV ox_launch(0,"ox_plot”); ifplot(x~3-y~4+2+y-2); ).

ETIFEOIRORTELDEHNCLTHTTI20»HBL LS.
Step1: D2 7ANMB (L EATWHOK[3) 2888) L3HEE&, EDM
BELT,

Qlz,1/f] =~ D/I



ELDBDOATFTVERDS,

IhE L EDHHIZWE, Malgrange DLEE L £ L Oaku 7 LT X
LNDHDH. ZNOBE L RIL LS.

Am(fY={te D[s]|tef =0} EBL. DS

af . . . ,
{ = J(r), -(_)T,_(), + 3, i=1,...0)NQUd,2,0,,...., )

T, 10 % s TBADZZLOH Am(f*) &4 D, Zoddid, 6 -
(@) D Mellin ZifH 4! THHEVW) ZEDLIBMYICHEMITES.

&T,

IL(x, 87, 8) [ = b(s) S

2 H 1T BAKBEDELRG U(s) & [ D Bernstein-Sato I LV 9. b(s)
GHEAER A F7 0 (f, Aon(*)) N Q[s] DAEILTETH 5. Bz, £OBID
J Clrb(s) =Bs+)(s+ 1)(35+5) E%D. —ry & b(s) =0 DINDEKR
RETHEE, Qe 1/f] > D!% ELD. A )|smor, 5KDDB | THS.

Step 2: RIZ M =D/ OHNTREMET L. FEOAHFRETIRZDT,
weight vector (—w, w) (2B L Tv 3 (adapted) M2 &L LRV EWIT v,
CORMAMII2VWTIA B BLU(6) 2R L. COHBISHE

Loy phe ¥ phe 00

E¥5. ZORHIFREL Buchberger 7L XL THETE 5. (AHTH
DFIATAZ | KAESBRAOBOKECE RO LA TH L. MOMD
Buchberger 7NV ) XLTTE&HI X2 b; % betti & & 5.

& T Grothendicck-Deligne DEGERIZ L B &

HY(X\V(/),C) =~ 11I'="(--- 2% Dyape, b 2% D/oDep D — 0)oC

B0 4 Q X7 FAEHOBGEL LY. D OT RN ET BT
W oy OREMEARE DL TRNE, R0 HEORTENDD S, il
PHIE, BRIZT T X7 PVEMORTYEBNKETHLOT, #F2%9)
FLMBLTEI L v Ewvitiwn,

FERENIRRE, Wk, KT EF OB L e T RO I DG
NTLT) X LEHRLELES.

SOTNI) XLEPEEELTADL EbPBH, 55~ betti O/ E
W weight (—w,w) ZBE LAHHAEE DL %@f]‘?}]iﬁﬂtﬁf.ﬁﬁlﬁﬂ'eﬁ
HENRAD, FND (—w. w)- BN EHBIEOM L 1L U 7R DT
TdH o7 (—w w)-BDEHBTHRO betti BEAD GBI ERDH 2 I
THINEIPRELGRAODILLEVWEETHS.
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Computing de Rham cohomology groups

Toshinori Oaku and Nobuki Takayama

oaku@tweu.ac.jp, takayama@math.kobe-u.ac.jp,
http:/ /www.openxm.org

Goal
Theorem (1998,2000): For any f € Q[zy,...,2Za),
dimc H*(C™ \ V(f),C) is computable (by Gribner
basis computation in D and (-w,w)-minimal free
resolution).

Grédbner basis
I : an ideal of tbe ring of polynomials.
w € R : a weight.
A set of generators {91, ...,9m} of the ideal / is called
Grobner basis when

in.,(I) = (inw(gl)v ey inw(gm))

Here, in,(f) is the subsum of the highest 1w-order
terms of f.

ordy(f) = maxw-o, f= aezscaz"

Buchberger algorithm computes Grébner basis.

1980's, 1980’s: efficiency, invariants, systems.

Buchberger algorithm is a generalization of the Eu-

clidean algorithm and the Gaussisn climination.
What we can do by Buchberger algorithm?

1. Elimination

kl.'l.'l....,.'l.',.] ni

2. Solving linear indefinite equations, Syzygy. For
given f; and d, find all g; satisfying

Zai.fi =d.

Computing free resolutions and Hilbert functions.
k [z, :‘,] was difficult in computional algebra.
What is D?

D=Q(z1,...,Zn, &y..., On)

ZiZj = TjTi, 0,0y = 8,8;, Bizy = x;0; + di5.

Weyl algebra, the ring of differential operators.
For (u,v) € R™ x R", (u; + v 2 0)

ordu(f) = max w-atv-f, f= Y. capz®d
(a.0)eE (oB)EE
| Computer Demo |
de Rham cohomology group

X : n-dimensional complex manifold.

X can be regarded as 2n-dimensional smooth real
manifold.

1P : the space of smooth p forms on X.

(d od= 0)-

cee e QP Ay el 4, e 4,

i 4, i+l
HY(X,C) = Ki(ﬂ—’_d“)
Im (i1 55 Q)

Example: X = C\ {0}. w = 53—:—%9‘5 € 0! spans the
HY(X,C).

How to compute H'* by an algorithmic method?
Step 1. Find [ such that Q[z,1/f) =~ D/I. (Mal-
grange, 70's)

Ann f* = {£ € Djs]|&f* = 0}

Amnf* = (t - f(z), g—;a +85) N Q(tBe, 7,82,

s & —t8; ( Elimination).
Example: f = z(1 —z),

Ann f* = D. {z(1 - 2)8: — 8(1 — 2z)}.



The minimal degree polynomial b(s) satisfying
3L(z,8;,5) € Dls), Lf**' = b(s)f*

is called the b-function of f.
Berstein, Kashiwara, ... 60's, 70’s.)
Example: f = z(1 ~z), b(s) = s+1, L = (1-2z2)8:+
4(1 + 3).

(Sato, Gel'fand,

{b(s)) = (Ann f*, fy N Qs].
(Lf-b)f* =0

Let —rg be the minimal integral root of b(s) = 0.
Then,

[:, f] D— ~ D/I,

I=Annf*,zr,
Example: D/(z(1 — z)8: + (1 — 2z).
Put

J= ”8.»—0—:.».:«—03.--

| Computer Demo |

Step 2: computing (—w, w)-minimal free resolution
of D/J

D(h) = Q(zh“-’:nﬂah---:8nah)|

Oixy = 7,00 + h2.
M=DM/Jn ezt
D.

For m € Z", define

F(k—w.w)(Dr[m])
= {pi €D Iord(-w.w)(Pi) +m; < k} i

0. D™ will be denoted by

Let
B D mt]| 2 DO mY — M — 0 (A)

be a (-w, w)-graded free resolution of M. Here, m* €
Z" is a degree shift.
(A) is called (-w, w)-adapted (strict) when

F(k—w.w) ((A))

is exact for all k € Z as a complex of abelian groups.
(A) is said to be (—w, w)-minimal when

(D" Im], gr(—w,w) ()}

is the minimal resolution.
Example:

&) = hd) — (2.0 + 223y),

b2 = h8; - (210, + £23).

(-1, -1, 1,1)-minimal resolution

0 - D[1,2] 23 D[1,1,1] & D[0] = M[0] = 0,
hO; - 20 — yd,
th = h8, — z8: — yBy
20?2 - 28:8, + y9:0, — yo?
v = z8; —x0, +yOy+zh -ydy-zh -h+=z
-9, +h d.-h 1

Example: f = z(1 - z)
0 - D|1] 3 D|o] =+ D/D¢ = 0.

€ =28 - z9.

(-w, w)-minimal resolution is computable by mod-
ifying  LaScala-Stillman's algorithm to construct
minimal free resolutions (Journal of Symbolic Com-
putation, 26, 1998).

| Computer Demo

Step 3: Apply the comparison theorem

Theorem (Comparison theorem of Grothendieck-
Deligne)

H™i{(X,C)
~ H- (...“”_t' D/(zyD+---z,D)8p D" ¥..

Yoo

(i = 0,1,...,n) where (D™,4;) is a resolution of
D/J, which is the formal fourier transform of the
differential equations for 1/ ™.

Define a polynomial B(s) by

(B wizid)) = in_wuy(N N QYD wizidy).

Theorem: Let (D",;) be a {(~w,w)-minimal free
resolution of D/J. Especially, it is (~w, w)-adapted.



Then,
H ( ‘st /2D @p D' 1B )

~ H- ( o Fum @) g )
(=D, F20 ), (D™ [md)))
(zD = 2,D + - -- + 2, D), where k; is the maximal
integral root of B(s) = 0 and ko is the minimal inte-
gral root of B(s) =0.

The right hand side is the cohomology groups of a
complex of finite dimensional vector spaces. So, it is
computable.

Example: X = C!'\ V(z(1 - z)).

(~w,w) =(-1,1), B(s) = s(s - 1).

0 » Q@ = Q+Qd) - 0
1 — 0
HO H

(2% - 28;) = 8(6 - 1) - 28, 8 = 3.

Example: f=z(1-z). H=1,H! =2.
Example: f=23-¢2 H'=1,H'=1,H*=0.
Example: f = z? - yz3. H? = |,H! = |, H?
0,H3=0.

Example: f=zP +y8 + 2397}, (p=4,¢ = 5). H®
LE'=1,/H?=1.

Example: f =22 —y?22 + 32 + 22, H® = 1, H!
LH?=0,H% =8,

| Computer Dem

Implementations

kan/k0: Oaku and Takayama,
http:/ /www.openxm.org

Macaulay2: D.Grayson, M.Stillman, H.Tsai,

http://www.math.uiuc.edu/Macaulay2

Further developement

1. Hi(C™\ V(I),C) (Uli Walter).

2. Algorithmic computation of cup product (Uli
Walther).

3. £xti,(M, N) (Uli Walther, Harrison Tsai).

Introductory reference
Saito, M., Sturmfels, B., Takayama, N., Grabner de-
formations of hypergeometric differential eguations.
Algorithms and Computation in Mathematics, 6.
Springer-Verlag, Berlin, 2000.



Computation by kan/k0 of the cohomology groups
of X = C2\ V(zP + % + z39"1) where p = 4

and ¢ = 5.

bash$ kO
This is kan/kO Yersion 1998,12/15
VARBING: Thie is an EXPERINENTAL version

In(1)aloading startup files (startup.k) 1897, /1.
sal version ® 3.000726
Default ring ia Z[x,h).

In{2)=10ad["deac.x"];;
In(3)encnquesi(4,5);

foxey qey-fex-4

MlValt,X,y,8

(  .ue_texey*g-y°b-x"¢ , _us_v-i ,

voy 4sD_tede_yex“3eD_toDx

4o_vexey~3eD_teSe_vey~4eD_teDy )

6. T....0 B....0000 B0.0000. 10.0 1looc0

120... 130.000000 14.0.00 15000.000

16, 17.00.0 1800.0.000c 19cocoono

Conpleted (G8 with sugar).

Step 1: Annhllating idaal (IN)

((-180x"2¢Dx=20¢n0yeDa~120x0yely-180y 20Dy~64vx-800y ,

*84ox0y°20Dx-180y"JeDx-480y"3¢Dye5000xoyeDxe189x" 26Dy
=200xey+Dyed0oy"20Dy-2580y°2420000y,

S4oxey 3eDxeg0ey 4eDx~18¢y" §oDy-20000x"20yoDx
«25000n0y°20Dx~840x"30Dy-15000x0y 20Dy
«20000y°3¢Dy-80000xey-~100000y°2 ,

1048676oney“20Dx"2-7864320x0y 20Dy eDye051968¢y " JoDxeDy
=B898240y"3eDy"2-1024C0000xeyeDx~20737280Ce xoyeDa oDy
~81920000y“2eDxeDy~163040x0yeDy 2055705800y 20Dy"2

Stepd: conmputing the cobemology of the truncated cozplex.
Roota and b-function are ({0, 3) .,

[ 6291450000005 “4-259129 "3
*45003571200003 2-201962850000¢s ] )

e 51 . ( ] . 51 ) .,
ts.5,5), [5,5,51 1)) .
(s.8).08.51 )

{e0

d4is of the i-th truncated complex = 10

11

4im of the i-th truncated complex ® 1§

{2

din of the i-th truncetad cozplex = §

Agsuer e

[( 4, (13718606440 , 1968080ec_~32440320 ,

~102676840¢_"2054046573120 )),

{3, [128 , 258ee_ ]),

ft.0 311

In(4)equit;

bash$ exit

The output means that

dimH2 = 1,dimH! = 1,dimH% = 1.

~34078720g0yeD1+5242880+y"2¢Dx-62914560y" 20Dy
€217038000x4Dx-512000000yeDx+491520xeDy
*512000000y+Dy-136314880y+86835200 ) )

------------ Resolution Susmary ==---c-cow-co-
Bett! nuzbers : ( 1,3,12)

Bstt! numbers of the Schreyer frame: [ 1.56,8,1)

Step2: (-1,1)-nininal resolution (ResQ)
4

[ -18exeDx*2-20exeDxeDy-12¢yeDaeDy
~189yeDy~2420¢Dxeh"2028¢Dyeh"2 )

[ 84exeDxeDy~24184xeDy"3¢4BeyoDy"3
~489Dy“20h*2¢160yeDx*20he5000xeDxeDysh
=20eyeDzoDysh?400syeDy~2¢h~20¢Dxeh"3-700¢Dyoh°3 ]

{ 2621440x°20Dy~3-262144 exoyeDy~3-1635C08 xeDxeDyoh "2
«198608920Dy 200" 2-13762560yeDy"20h"2027525120Dyokh" 4
~1966080y"24Dx "20h-. - yeh
*573440exoyoDxeDyoh¢327680y" 2¢Dxolysh

=1838400¢xeyeDy 2600393218ey 20Dy 2¢h
~146838800xeDxeh" 304915200y oDxoh" 30286720002 4Dyen"3
-12484€080y oDy eh~3¢3244032001°5 )

(125929120y+Dy" 2-293601284Dysh"2~32768CC00xeDyoh
0106430464 0yoDyeh-235667456eh°3 ,

J3457280yeDa~1046578 024Dy +4 194304 4yeDy-6553600+0°2 ,

268eDxecqeDy ]

[-655380x0Dy"2-18384¢yeDxeh-6120000xeDysh
©245700yeDyshe4008en"2 ,

=183840x60x-16184+x0Dy+2867200%2 ,

oyl

)

$8123B1>Starting ox_asir server.



ANOTHER TRIANGULAR MATRIX RING HAVING
AUSLANDER-GORENSTEIN PROPERTY

YOSHIAKI HIRANO

1. Introduction

Let R be a left and right noetherian ring, and let k be a positive integer. For a minimal
injective resolution

0—=R—-IR)—=I"R)—--- = I'R)— .-

of R as a right R-module, if the flat dimension fd(I*(R)g) of I'(R) is at most ¢ for all
t {0 £ < k—1), then R is called k- Gorenstein. Then the definition is left-right symmetric
by (2, Theorem 3.7). Moreover, Fossum, Griffith and Reiten [2, Theorem 3.10] showed that
the lower triangular matrix ring T5(R) = ( g ?{ ) of degree 2 over R is k-Gorenstein if
and only if so is R. Recently, Iwanaga and Wakamatsu [4, Theorem 8] showed that for any
integer n(> 2), the lower triangular matrix ring 7,,(R) of degree n over R is k-Gorenstein
if and only if so is R. In this paper, we study the following triangular matrix ring.

Definition 1.1. Let n be a positive integer, and put N = 2n. The subset of the full
matrix ring Mny(R) of degree N over a ring R

{(a,-,-) € Mn(R) | Qi = 0 (1 Li<j< N), @i;—1 = 0 for odd 4 (1 <iL N)}
is a subring of My(R). This subring is denoted by Ux(R).
Then we prove the following theorem.

Theorem 1.2. Let R be a left and right noetherian ring, and let k be a positive
integer. Then R is k-Gorenstein if and only if so is Un(R).

In the proof of Theorem 1.2, we give a description of a minimal injective resolution of
Un(R), from which we can prove the following corollary.

Corollary 1.3. Let R be a ring. Assume that the injective dimension id{Rg) of Ry
is finite. Then the following equation holds.

id(UN(R)UH(R)) = id(RR) +n

Throughout this paper, all rings are not necessarily commutative rings with identity
element. Let S be a ring, and let X be a right S-module. A minimal injective resolution
of X is denoted by 0 — X — I9(X) — I}(X) —--- = I{(X) — - .- . The flat dimension
of X is denoted by fd(Xg).

The detailed version of this paper has been submitted for publication elsewhere.



2. Modules over a formal triangular matrix ring

In this section, we recall some basic facts concerning a minimal injective resolution of
& module over a formal triangular matrix ring, which we need in the proof of the theorem.
(See e.g. [1, III §2] for the beginning part.)

Let A and B be rings and M a (B, A)-bimodule, and let A be the formal triangular
matrix ring A = ( 1‘3 g ) . Then let F(—) denote the functor Hom4(M, —) from the
category of right A-modules to the category of right B-modules, and let G(~) denote the
functor —®p M from the category of right B-modules to the category of right A-modules.

Let X be a right A-module and Y a right B-module, and let ¢ : ¥ — F(X) be a
B-homomorphism. Then the triple (X, Y, ) is a right A-module, i.e.,itis X ®Y as an
additive group and its A-operation on X @Y is defined by

(2.3) ( e 0 ) = (za+ p(y)(m), yb)

m b

for (z,y) € X &Y, ( :1 2 ) € A. Similarly, for a right A-module X, a right B-module Y

and an A-homomorphism % : G(Y') — X, the triple (X, Y, %) is a right A-module, whose
A-operation on X @Y is defined by

@i (o} ) =G+ vom.w)
a 0

for (z,y) € XY, ( m b )€ A. Note that for the usual isomorphism x : Homg(Y, F(X))

= Homa(G(Y), X), (X,Y,9) = (X,Y, ) if and only if u(p) = ¢.

If X is an injective right A-module, then (X, F(X), 1) is an injective right A-module.
If Y is an injective right B-module, then (0,Y,0) is an injective right A-module.

If M is projective as a right A-module, then a minimal injective resolution of (X, Y, ¢)
is given by the following lemma. (See [4, Corollary 2(1)].)

Lemma 2.1. Assume that M is projective as a right A-module. Let (X,Y,p:Y —
F(XY)) be a right A-module. Then

(1) I°(X,Y,p) = (I%X), F(I(X)),1) & (0, I%Keryp),0)
(2) INX,Y, ) = (INX), F(I'(X)),1) ® (0, I'"}(Keryy),0) (i 2 1).
In particular, if ¢ is 8 monomorphism, then Keryp, = Cokerip.

Next, if M is flat as a left B-module, we can estimate the flat dimension of a certain
right A-module (X,Y, ).

Lemma 2.2. Assume that M is flat as a left B-module. Let (X,Y,¥:G(Y) — X)
be a right A-module such that 1 is an epimorphism. Then fori > 1, fd((X,Y,¥)a) < i if
and only if {d(Yp) < and fd(Kerpq) <i—1.

In particular, if 1 is an isomorphism, then fd((X, Y,v¥)a) < i if and only if fd(Yp) < i.



3. Modules over a 3 x 3 formal triangular matrix ring

We prove Theorem 1.2 by induction on N, decomposing Un(R) into blocks. A sticky
point here is that we have no decomposition of Uy(R) = ;& g such that M is
both left B-flat and right A-projective. In our proof, we decompose Uy(R) in two ways.
In order to clarify the relationship between two presentations of a right Uy(R)-module
depending on the two decompositions of Ux(R), in this section, we study modules over a
3 x 3 formal triangular matrix ring.

Let Al, A2 and A3 be rings, let M21, M31 and M32 be (Ag, A])-, (Aa, Al)- and (As, Ag)—
bimodules, respectively, let 1 : M3z ® 4, My — M3, be an (A3, A;)-homomorphism, and
let T be a 3 % 3 formal triangular matrix ring

A 0 O
'= le Ag 0
My M, A,
with usual matrix operations.

Definition 3.1. Let X; be a right A;-module fori = 1,2,3, and let 15 : Xo®4,M21 —
X, and 3 : X3 @4, M3y — X, be A-homomorphisms and 93, : X3 @4, M3z = X, an
As-homomorphism. Assume that 19,331, %32 and 5 satisfy equation: 13, 0 (1x, ® 7) =
91 © (¥32 ® 1y, ). Then the additive group X @ X2 @ X3 has a right I'-module structure
by defining

Ty = (7101 + ¥21(22 @ m2)) + ¥a1(Z3 @ mg)), Z2a2 + Ya2(T3 ® Maz), z3a3)

3] 0 0

for z = (21,22, 23) € X1 @ X2 ® X3, y=| may a2 0 ) € I'. We denote this right
Mma M32 Q3

[-module by (X1, X2, X3, %21, ¥s1, ¥2)-

Note that any right I'-module is isomorphic to some (X1, X2, X3, ¥21, ¥a1, ¥32).

There are two ways to decompose T as a 2 x 2 formal triangular matrix ring. In the
following Lemmas 3.2 and 3.3, we clarify the relationship between two presentations of a
right I'-module depending on the two decompositions of I'.

_ (A O _{ Ma _( A 0
Lemma 3.2. LetF—(M B))WbereM_(Mm)’B_ Ma, As).Let

(X1, (X2, X3, ¥32),%) be a right T-module, where X, is a right A-module, (X2, X3, %32 :
X3 ®A, M32 - Xz) isa n’ght B-module and ‘l,b H (Xg,Xs,‘l,bsz) ®B M — X1 is an Al-
homomorphism. Then ¢ defines A,-homomorphisms 12, : X2 ®4, Mz — X, and 93 :
X3 ®4y M3y — X, and

(Xh (X2| X3) ¢3‘2)| ¢) = (Xh X2) X3| ¢21) ¢3ll ¢32)'



Lemma 3.3. Let (Xl,Xg,Xa,l,bn,‘l,/lgl,'l,/lgg) be a right '-module. LetT = ( ]3, 23 ),

where A = ( 1:’21 22 , M' = (Mjy), My;). Then (X, X2,v¥a) is a right A-module, the
mapping (W31, Ya2) : Xa ®4, M’ — (X1, X2,v%21) defined by

T3 ® (may, Ma2) — (Ya1(3 ® ma1), ¥2(23 @ M)
for z3 € Xa, (ma;, m32) € M’ is an A-homomorphism, and

(X1, X2, X3, 21, ¥31, ¥32) = (X1, X2, ¥21), X3, (31, ¥32)).

4. Proof of Theorem 1.2

R R

A 0 A 0 0 Uz O
Uv=| p A My Un-q 0 | = M A
- My M; A
(Note that M is projective as a right A-module and that M’ is flat as a left A-module.) Put
e1=((l) g €2 = g [1))EA.LeteéeUN_z(152’5N—2),f.-EUN(15i5N)

be the matrices such that e}(f;) has 1 for the (z,¢)-entry and 0 for the other entries.
In order to prove the “only if" part of Theorem 1.2, we need the following Lemmas

4.1 and 4.2.
A minimal injective resolution of Uy is given by the following lemma.

Lemma 4.1. (1) I (fyUn) = (I’(e2A), Homs(M, Ii(e2A)),1) (5 =0)

(2) I°(f2Un) = I°(fnUn), I'(f2Un) 2 F(fnUn) © I-N(fnUn/ f2Un) (i 21)
E(fnUn/f2Un) = (0, F(€y_oUn-2),0) (j 20)

(3) I°(fsUn) = IS(fnUn), I'(fsUn) & IF(fnUn) ® I'"(fnUn/f3Un) (i 21)
B(fnUn/ fsUn) = (I(e2Af e A), Homa(M, I (eA/e1A)), 1) (7 2 0)

(4) Let4 <k < N—1. Then
I°(fiUn) = I°(fnUn), I'(fiUn) = I(fnUn) ® I (fnUn/ fiUN) (621)
B(fnUn/ feUn) = (0, P(ey_sUn-2/€_oUn-2),0) (j 20)

(5) I°(fiUn) = I°(fnUn)
I'(f\Un) = I'(fnUn) © I'" (fnUn/ fsUn) @ I} (fnUn/ f2Un)

®- - @ I(fNUN/ foisrUn) ® I(fnUn/fxUn) (1€i<n-1)

In what follows, put A = ( R0 ) , and decompose Uy = Un(R) as follows:



I'(f\Un) 2 I(fnUn) © I (fNUn/ fsUn) @ I (fnUn/ f2Un)
@ @ I fNUn/ fn-1Un) @ IV (fyUn/ fn-2Un)
8(0, I'""(e2A/e1A),0) (i > n)

Next, we give some isomorphisms, which we need in the proof of the “only if” part of
Theorem 1.2.

Lemxpa 4.2. Let i be a nonnegative integer.

(1) I'(e;A) = (I'(R), I'(R), i : I'(R) — Homg(R, I'(R)))
(2) I'(ezA) & HOmA(M;u,I'(ezA))

(3) I'(ezA) ®4 My = I‘(ezA)

(4) I'(esA) @4 M3, = Hom 4(Ma,, I‘(egA))

(5) Homa(M, I'(e24)) & I'(€}y_,Un—2)

Proof of the “only if " part of Theorem 1.2. We proceed by induction on N = 2n. In the
case that NV = 2, this follows from [2, Theorem 3.10]. Assume that Uy_; is k-Gorenstein.
Then we show that fd(I*(f;Un)u,) <iforall j (1 <j < N)andi(0<i<k-1). Here
we prove the case that j = N. (See 3, §4] for the other cases.)

It follows from Lemma 4.1(1) that

I'(fnUn) = (I'(e24), Homa(M, I'(e24)), 1).
Let € : Homa(M, I'(e24)) ®u,., M — I'(e2A) be an evaluation map. Then
(I'(e24), Homa(M, I'(e24)), 1) = (I'(ezA), Homa(M, I(e24)), €).
Since M = M, & M3, Homa(M, I'(e2A)) is expressed in the form
(Hom (M1, I'(ezA)), Homa(Ms,, I'(e2A)), ¥32)

using the decomposition of Uy_g = ( [{,"}: g ) Here, 32 : Homa( M3, I'(e24)) ®4

Msz — Homa(My1, I'(e24)) is defined by ¥32(f®z)(y) = f(zy) for f € Homa(May, I'(e24))
Z € Ma,, y € My,. Then 5 is a Uy_4-isomorphism by Lemma 4.2(2), (4). Using Lemma
3.2, we have

I'(fnUn) = (I'(e2A), Homa(Ma, I'(e2A)), Homa (M1, I'(e24)), ta1, ¥a1, ¥32)

where ¥y : Hom (M, I'(e2A)) ® My — I'(e;A) is an evaluation map for ¢ = 2,3. Then
131 is an A-isomorphism by Lemma 4.2(2), (3). Hence by Lemma 3.3, we have

I'(fnUn) = ((I'(e2A), Homa(May, I'(e2A)), ¥21), Homa(May, I* (€2A)), (¥s1, ¥32)).

Since both 151 and 3, are isomorphisms, (13,, ¥32) is also an isomorphism. Since A is k-
Gorenstein, we have fd(I*(e2A4) ) < i, so that by Lemma 4.2(2), fd(Homa(May, I*(e24))a) <
i. Then since 4 M’ is flat, it follows from Lemma 2.2 that fd(I*(fnUn)uy) < i. (]

The “if” part of Theorem 1.2 can be shown using another decomposition of Uy(R).
(See [3, Proposition 4.1).)



Remark. Let R be a ring, and let n be a positive integer. Put N = 2n. Then the
ring Un(R) is defined by the following quiver (i.e., if there is an arrow from 7 to j, then
the (5,7)-entry is R, or else the (j,¢)-entry is 0):

—>N2

IHA K >

L) _pN_

When R is a field, we can compute a projective resolution and an injective resolution of
a certain right Uy(R)-module. Hence, it is easily checked that Uy(R) is oo-Gorenstein.
When R is a discrete valuation ring, it follows from [5, Theorem 4.6] that Uy(R) is
oo-Gorenstein. There are some other quivers such that the rings given by them have
Auslander-Gorenstein property.
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Some examples of Sp(H)-blocks !

HIEDA YOSHIMASA

1 Introduction

Let G be a finite group, p a prime divisor of the order of G and (K, R, k) a
p-modular system, i.e., R is a complete discrete valuation ring with maximal
ideal (7), K is the quotient field of R of characteristic 0 and k(:= R/(~))
is the residue field of R of characteristic p. Moreover, we assume that K
contains the |G|th roots of unity.

For a subgroup H of G, H denotes the sum of all elements of H in the
group algebra oG, where o is R, K or k and e, (resp. €g) is the central
primitive idempotent of KG (resp. K H) corresponding to x € Irr(G) (resp.
Y € Irr(H)), where Irr(G) (resp. Irr(H)) is the set of all irreducible K-
characters of G (resp. H).

Using the above notation the Hecke algebra Hy (G, H,9) is Endgc(éy KG)
(= €,KGé,) and we know that {e,&y;x € ®(1))§} is the set of all cen-
tral primitive idempotents of Hy(G, H,®) (in KG), where ®(%)§ := {x €
Irt(G); (x|u, ¥)u # 0} ([1, (11.26) Corollary]).

In this note we consider the case ¥ is the trivial character 1y of H.
Then the Hecke algebra H.(G, H,1y) equals End.g(H0G) since éy := €, =
H/|H|. So we denote it Sa(H) for brevity. (We use S from the Schur algebra.)
Here we mention that Sg(H)/nSp(H) ~ Six(H) as HRG is a permutation
module.

As Sg(H) = K ®g Sr(H), for a central idempotent ¢ of Sg(H), there
exists a non-empty subset 8 of 4 := ®(14)§ such that e = ¥, ¢5 €4€x. Here
the element of this form is denoted by €5 and if €5 is a centrally primitive,
B (or €3Sr(H)) is called an Sg(H)-block. Hence the set of Sgr(H)-blocks
corresponds bijectively to the set of Sg(H)-blocks from the above.

! The final and detailed version of this note will be submitted for publication elsewhere.



On the other hand, the multiplication induces the R-algebra homomor-
phism ¢ : Z(RG) — Z(Sp(H)). Using the map ¢, G.R.Robinson [6]
has proved that Z(Sgr(H)) =~ Endpiexc)(RGHRG) as R-algebras. Then an
Sr(H)-block corresponds to a primitive idempotent of End R[GxG](RGf{\ RG).
Therefore we can define a defect group, we denote it §5(3), for an Sp(H)-
block 8in G x G.

Now we recall that for any Sgp(H)-block 3 there exists the unique p-block
B such that 8 C Irr(B) (|6, Lemma2.1(ii)]). Also if ep is a block idempotent
i.e., a central primitive idempotent, of RG with the condition ¢(eg) # 0,
then ¢(ep) = Xgem Ep, where ‘B is the suitable non-empty subset of Sp(H)-
blocks. So Irr(B) N ®§ is a (disjoint) union of Sg(H)-blocks.

The purpose of this note we show some examples of Sg(H)-blocks and
their defect groups.

The notation is almost standard. Concerning some basic facts and ter-
minologies used here, we refer to [1] and [5] for example.

2 Preliminaries

For later use, we shall exhibit some results on Sg(H)-blocks, which are
proved in [2], [3] or [6]. At first we notice the following remark.

Remark 1 ([6, Remark of Proposition 2.2]) If H = {1}, then Irr(B) is
an Sp({1})-block for any p-block B of G. Moreover, a defect group of an
Sr({1})-block Irr(B) is the diagonal subgroup 6(B)* := {(z,7) € Gx G;z €
6(B)}, where 8(B) is a (usual ) defect group of B.

Proposition 2.1 ([6, Lemma 2.1]) (i) For any SR(H) block 8 and z,y € G,

|65 (8)] . |64 (B)]
z)x(y) € R. In particular, 1) e R.
Ce@ICatw] 2 X=X W Gx 6l 25V’
(it) B is contained in a single p-block B of G in the usual sence, and if B
has a defect group D, then dy(B) is contained (up to conjugacy ) in D x D.

Corollary 2.2 ([2, Corollary 3)) If 3,5 x(1)? is prime to p for an Sp(H)-
block 3, then a defect group of (3 is a Sylow p-subgroup of G x G.



As the trivial character 1¢ is always in ®% for any subgroup H of G, there
exists the Sg(H)-block, which has 1. So we call it the principal Sgp(H)-block
and denote it G;.

Proposition 2.3 ([6, Lemma 2.3(iii)] and [2, Proposition 4]) For the princi-
pal Sp(H)-block By, By = {1} if and only if H contains a Sylow p-subgroup
of G. Moreover, in the above case a defect group of By is a Sylow p-subgroup
of G xG.

Proposition 2.4 ([6, Corollary 2.4]) If H is normal in G, then the Sgp(H)-
blocks of G are precisely the p-blocks of R[G/H].

In the rest of this section we assume that H is a p’-subgroup of G and
consider only those p-blocks such that ¢(eg) # 0.

In this case ey € RG, i.e., HRG =éyRGisa projective RG-module and
kH is a semisimple k-algebra.

Now for any ¢ € IBr(G), let S, (resp. P,) be an irreducible kG-module
(resp. an indecomposable projective RG-module) corresponding to . Also,
we let ¥§ := {p €IBr(G); kn|S,,,}. Note that ¥§ = {y €IBr(G); P,lén RG}.
So we can define 8* := {p € IBr(B); P,|es(€nRG)} correponding to an
Sr(H)-block S.

Therefore the decomposition matrix Dp of B has the following form :([3])
(Dgy 0 -+ 0 |+
(.fo Dg,--- 0 *\
SRR R
(2.1) DB = 0 0 --- Dg‘ *

q g --- 0 *
L0 00 |¥)

From the form of the decomposition matrix (2.1), we get the following

orthogonality relation for the Sp(H)-block.

Theorem 2.5 ([3, Theorem 5])) Let H be a p'-subgroup of G and 8 an
Sr(H)-block. Then we have

Y x(zén)x(y) =0

x€f
for any y € G — Gy and z € Gy such that (z, H) is a p'-subgroup.



3 Some examples of Sg(H)-blocks

In this section we show some Sp(H)-blocks and their defect groups.

Now &, (resp. 2,) denotes the symmetric group (resp. the alternat-
ing group) of degree n and we denote the irreducible characters of &, the
same notations corresponding to the Young diagrams. ([n] means the trivial
character 1s_ for example.) Also, By is the principal p-block of G.

We have already got the trivial subgroup case H = {1}(|Remark 1]). So
at first we check the other trivial subgroup case H = G.

Example 1 Let H := G and Chark = p.
(1) 2% = {1c}-
(2) ®G = By and 6c(Bo) € Syl,(G x G).
(Proof) (2) holds by Proposition 2.3. O
From the trivial subgroup cases we get the next example.
Example 2 G := C, the cyclic group of order p and Chark = p.

_ {1} =8 (H=G)
) 9= { () L hemrnte(B) (4= (1)

(2) 6u(Bo) = {G;AG (IfIH=={ﬁ:)}) '

(Proof) As G has only trivial subgroups, the statements follow from
Remark 1 and Example 1. O

We know the following two examples.
Example 3 ([2, Example 7] Let G := &3 and H := ((1,2)).

(1) oF = {Bl[2,1]}.



(2) (o) Ifp=2, then ®F = By U B, where By = {[3]}, 6 = {[2,1]} and
0u(fo) € Syla(G x G),éu(B1) = {1} x {1}

(b) Ifp =3, then ®% (= Irr(By)N®§) = By and 5 (Bo) € Syls(GxG).

Example 4 ([2, Example 8] Let G := G; and H := {(1, 2,3)).

(1) oF = {[8], [1%}.

(2) (o) If p=2, then ®§(= Irr(By)) = fo and 64 (Bo) =cxc (Bo)2.

(6) If p = 3, then 85 = [y U B, where By = {[3]}, 8, = {[1%]} and
du(B) € Syl3(G x G), where 8 is By or fy.

The next example correponds to [2, Example 12].
Example 5 Let G := %, and H :=U,_,, (n > 4).
(1) 0F = {1e,x}, where x(1) =n — 1.

(2) (@) If p does not divide n, then fy = {1¢} and 6y (Gs) € Syl,(G x G).

(b) If p divides n, then By = {1, x}(= ®5).
In particular, if p is odd prime, then é5(fo) € Syl,(G x G).

(Proof) Put G := 6,. As lg = [n]lc and x = [n — 1,1]|¢ for the
irreducible characters [n],[n — 1,1] of G and Corollary 2.2, the assertions
hold. D

For the principal Sg(H)-block of &, satisfies the following.

Example 6 ([2, Example 11] Let G := 6,,H = 6,(1 <t < p) and
Chark = p.

(1) fo=Trr(Bo) N @F = {lp -3, 1,0 < i < p—t}.

(2) bu(o) =axG 4 o o L7 ]
H 0) —GxG PXP 2_<_tsp,

where P is a Sylow p-subgroup of G.



Moreover, we show the next example if p is an odd prime.

+1
Example 7 Let p be an odd prime, G := &, and H .= 2, (pT <t<p).

(1) ®¢NIrr(By) = {[p—14,1];0 < i < p—t}U{[i+1,1777" ;0 < j < p—t}.

(2) Bo={[p—1,1;0<i<p-—t} and 64(6o) € Sylx(G x G).

(Proof) Put H:=6,

(1) As ®ff = {15,sen3}, Irr'(Bo) N &G = Irr(By) N (¥E U D(sgnj)%).
Here Irr(Bo) N @€ = {[p ~ i,1';0 < i < p — t},Irr(Bo) N B(sgnz)§ =
{[f+1,17777');0 < j < p—t} since Irr(By) = {[p—4,1;0< i <p-1} and
Branching theorem ([4, Theorem 9.2]). Then the assertion holds.

(2) As p—t+1 <t from the assumption, there exists some x € Irr(Bp)
which is not in ®¢;. Therefore Irr(By) N ®$ = Gy U B by Branching theorem
and the form of the decomposition matrix (2.1), where 8y = {[p —¢,1*};0 <
i<p—thb ={i+1,1P7'0<j<p-t}

Moreover, the later half holds from (2) and Corollary 2.2 as x(1) =
+1(mod p) for any x € Irr(B,). O

Remark 2 1f3§t§p+1

in the above ezample, then By = Irr(By).
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On t-structures and torsion theories
induced by compact objects

Yoshiaki Kato

ABSTRACT. First, we show that a compact object C in a triangulated category, which
satisfies suitable conditions, induces a t-structure. Second, in an abelian category we
show that a complex P of small projective objects of term length two, which satisfies
suitable conditions, induces a torsion theory. In the case of module categories, using a
torsion theory, we give equivalent conditions for P* to be a tilting complex. Finally, in
the case of artin algebras, we give one to one correspondence between tilting complexes
of term length two and torsion theories with certain conditions.

0. Introduction

This note is a summary of my joint work with Hoshino and Miyachi ([HKM]).

In the representation theory of finite dimensional algebras, torsion theories were studied
by several authors in connection with classical tilting modules. For these torsion theories,
there are equivalences between torsion (resp., torsionfree) classes and torsionfree (resp.,
torsion) classes, which is known as Theorem of Brenner and Butler ([HR]). One of the
authors gave one to one correspondence between classical tilting modules and torsion
theories with certain conditions ([Hol}, [Ho2]). But in the case of a self-injective algebra A,
tilting modules are essentially isomorphic to A. In [Ri], Rickard introduced the notion of
tilting complexes as a generalization of tilting modules, and showed that these complexes
induce equivalences between derived categories of module categories. Tilting complexes
of term length two are often studied in the case of self-injective algebras (e.g. [HI),
[HK]). On the other hand, for triangulated categories, Beilinson, Bernstein and Deligne
introduced the notions of ¢-structures and admissible abelian subcategories, and studied
relationships between them ([BBD]). In this paper, first, we deal with a compact object
C in a triangulated category, and study a t-structure induced by C. Second, in an abelian
category A we deal with a complex P of small projective objects of term length two and
study a torsion theory induced by P-.

In Section 1, we show that a compact object C in a triangulated category 7, which
satisfies suitable conditions, induces a t-structure (7<%(C), 72%C)), and its core 7%(C) is
equivalent to the category Mod B of left B-modules, where B = End7(C)°P (Theorem 1.3).
In Section 2, we define subcategories X(P-), Y(P') of an abelian category A satisfying
the condition Ab4, and show when (X(P'), Y(P')) is a torsion theory (Theorem 2.10).
Furthermore, we show that if P induces a torsion theory (X(P*), Y(P')) for A, then the
core D(A)°(P*) is admissible abelian, and then there is a torsion theory (Y(P*)[1], X (P*))
for D(A)°(P:) (Theorem 2.15). In Section 3, we apply results of Section 2 to module
categories. We characterize a torsion theory for the category Mod A of left A-modules,

The detailed version of this paper will be submitted for publication elsewhere.



and for its core D(Mod A)°(P*) (Theorems 3.5 and 3.8). Furthermore, using a torsion
theory, we give equivalent conditions for P* to be a tilting complex (Corollary 3.6). In
Section 4, We show that, if P is a tilting complex, then it induces equivalences between
torsion theories for Mod A and for Mod B, where B = Endp(mod 4)(£*)°® (Theorem 4.4).
In Section 5, in the case of artin algebras, if a torsion theory (X,))) satisfies certain
conditions, then there exists a tilting complex P- of term length two such that a torsion
theory (X,Y) coincides with (X(P), Y(P")) (Theorem 5.8). As a consequence, we have
one to one correspondence between tilting complexes of term length two and torsion
theories with certain conditions (Corollary 3.7, Propositions 5.5, 5.7 and Theorem 5.8).

1. t-structures induced by compact objects

In this section, we deal with a triangulated category 7 and its full subcategory C. We
will call C admissible abelian provided that Hom7(C,C[n]) = 0 for n < 0, and that all
morphisms in C are C-admissible in the sense of [BBD], 1.2.3. In this case, according to
[BBD], Proposition 1.2.4, C is an abelian category. A triangulated category 7 is said to
contain direct sums if direct sums of objects indexed by any set exist in 7. An object
C of T is called compact if Homz(C, —) commutes with direct sums. Furthermore, a
collection S of compact objects of T is called a generating set provided that X = 0
whenever Homz(S, X') = 0, and that S is stable under suspension (see [Ne] for details).
For an object C € T and an integer n, we denote by 72"(C) (resp., 7<*(C)) the full
subcategory of T consisting of X € T with Homz(C, X[i]) = 0 for i < n (resp., i > n),
and set 7°(C) = T=°(C)n T2°(C).

For an abelian category A, we denote by C(A) the category of complexes of A, and
denote by D(A) (resp., D*(A), D™(A), D*(A)) the derived category of complexes of A
(resp., complexes of A with bounded below homologies, complexes of A with bounded
above homologies, complexes of .4 with bounded homologies). For an additive category
B, we denote by K(B) (resp., K™(B), K®(B)) the homotopy category of complexes of B
(resp., bounded above complexes of B, bounded complexes of B) (see [RD) for details).

Proposition 1.1. Let T be a triangulated category which contains direct sums, C a
compact object satisfying Hom7(C,C[n]) = 0 for n > 0. Then for any r € Z and any
object X € T, there ezist an object X=" € T2"(C) and @ morphism a2" : X — X2" in T
such thot

(i) for any i > r, Homy(C,a2"[i]) is an isomorphism,
(ii) for every object Y € T27(C), Homr(a?",Y) is an isomorphism.

Definition 1.2 ([BBD]). Let T be a triangulated category. For full subcategories 7<°
and 729, (72°,729) is called a t-structure on 7 provided that

(i) Homy (720,72 =0

(ii) 75° C T<! and T2° 5 T2

(iii) for any X € T, there exists a distinguished triangle X — X — X” — with

X' € TS® and X" € T2,

where 75" = T75%—n] and 72" = 72°[—n].

A t-structure (7<° 72°) on T is called non-degenerate if [,z 7=" = N,z 72" = {0}.



Theorem 1.3. Let T be a triangulated category which contains direct sums, C a com-
pact object satisfying Homz(C, C[n]) = 0 forn > 0, and B = End7(C)°. If{Cli] : i € Z}
is a generatling set, then the following hold.

(1) (T=%(C), T2°(C)) is a non-degenerate t-structure on 7.

(2) T9(C) is admissible abelian.

(3) The functor

Homf(C, —) : TO(C) — Mod B

is an equivalence.

Remark 1.4. Under the condition of Theorem 1.3, according to [BBD], Proposition
1.3.3, there exists a functor (=)2" : T — T2"(C) (resp., (—)<" : T — T="(C)) which
is the right (resp., left) adjoint of the natural embedding functor 72"(C) — T (resp.,
TC)— T).

For an object C in a triangulated category 7 and integers s < ¢, let TH(C) =
T(C)[-s), TPI(C) = TEHC)NT2*(C), and T>(C) = (Upez7 <(C) N (U, e2T2(C)).
An object M of an abelian category A is called small provided that Hom (M, —) com-

mutes with direct sums in .A.

Corollary 1.5. Let A be an abelian category satisfying the condition Ab{ (i.e. direct
sums of ezact sequences are ezact) and T" a bounded complez of small projective objects
of A satisfying

(i) {T*[t]) : i € Z} is a generating set for D(.A),

(ii) HomD(A)(T', T [t]) =0 fOT i 75 0.

If either of the following conditions (1) or (2) is satisfied, then we have an eguivalence of
triangulated categories

D(A)*(T*) = D*(Mod B),

where B = EndD(A)(T')”.

(1) A has enough projectives.

(2) A has enough injectives and D(A)2%(T*) c D*(A).
Moreover, if D(A)*(T*) C DP(A), then we have an equivalence

D°(A) = D*(Mod B).

2. Torsion theories for abelian categories

Throughout this section, we fix the following notation. Let A be an abelian category
satisfying the condition Ab4, and let dp! : P~! — P? be a morphism in A with the P
being small projective objects of A, and denote by P the mapping cone of dp'. We set
C(P-) = D(A)°(P'), B = Endp(4)(P-)°P, and define a pair of full subcategories of A

X(P') = {X €EA: HomD(A)(P',X[I]) = 0},
YP)={XeA: HomD(A)(P’,X) =0}.



For any X € A, we define a subobject of X

(X) = Z:/enom(u"(P-).x) Im
and an exact sequence in A

(ex):O—»T(X)j—va—»w(X)—»O.

Remark 2.1. It is easy to see that P is a compact object of D(.A), and we have
X(P) = D(A)2°(P') N A and Y(P) = D(A)2}(P) N A.

Lemma 2.2. For any X € A, the following hold.
(1) Ker(Hom4(d7’, X)) = Homp(4) (P, X).
(2) Cok(HomA(d;l, X)) 3 HomD(A)(P', X[l])

Lemma 2.3. For any X € A, the following hold.
(1) Homp(4y(P, X[n]) =0 forn > 1 andn < 0.
(2) HomD(_A)(P‘, X) £ HomA(Ho(P'), X)

Lemma 2.4, The following hold.

(1) X(P') is closed under factor objects and direct sums.
(2) Y(P) is closed under subobjects.
(3) For any X € A, Hom(H%(P'), jx) is an isomorphism.

Lemma 2.5. For any X* € D(A) and n € Z, we have a functorial exact sequence
0 — Homgp4y(P+, H*}(X"){1]) — Homp(4) (P, X'[n]) — Homp4)(P', H*(X*)) — 0.

Moreover, the above short ezact sequence commutes with direct sums.

Lemma 2.6. The following are equivalent.
(1) {P'[i] : i € Z} is a generating set for D(A).
(2) X(P)nY(P)={0}.

Lemma 2.7. The following hold.
(1) HY(P') € X(P) if and only if Homp4)(P:, P'[i]) = 0 for all i > 0.
(2) H_l(P') € y(P’) if and only if HomD(A)(P', P'[i]) =0 fOT alli<0.

Definition 2.8. A pair (X,Y) of full subcategories X, in an abelian category A is
called a torsion theory for A provided that the following conditions are satisfied (see e.g.
[Di] for details):

(i) xnY = {o};

(ii) X is closed under factor objects;

(iii) Y is closed under subobjects;

(iv) for any object X of A, there exists an exact sequence 0 = X' - X — X” = 0in
A with X' € X and X" € ).

Remark 2.9. Let A be an abelian category and (X, )) a torsion theory for A. Then
for any Z € A, the following hold.



(1) Z € X if and only if Homu(Z,))
(2) Z €Y if and only if Homu(X, Z)

0.
0.

n

Theorem 2.10. The following are equivalent.
(1) {P'[i] : i € Z} is a generating set for D(A) and Hompay (P, P'[i]) = O for all
i>0

(2) X(P)NY(P) = {0} and H'(P) € X(P").
(3) X(P)NY(P) = {0} and 7(X) € X(P), n(X) € Y(P") for all X € A.
(4) (X(P),Y(P)) is a torsion theory for A.

Definition 2.11. For a complex X* = (X*,d'), we define the following truncations:

Oon(X) .. = 0= Imd® = XM o X™2
Ocn(X) .. o X2 X L Kerd® - 0> ...,
Oon(X) ... =0 = Cokd™ ! = X 5 X425 |
Cen(X):e. = X220 X! S Imd®> ! =0~ ...

Lemma 2.12. For any X' € D(A) with H*(X*) = 0 forn > 0 and n < ~1, there
ezists a distinguished triangle in D(A) of the form

HY(X)1] - X - H(X") —>.

Lemma 2.13. Assume X(P)NY(P) = {0}. Then for any X* € D(A), the following
are equivalent.

(1) X-ec(P).

(2) HY(X") =0 for n > 0 and n < -1, HY(X") € X(P") and H™}(X") € Y(P).

Remark 2.14. Let A be an abelian category and X, Y full subcategories of A. Then
the pair (X,)) is a torsion theory for A if and only if the following two conditions are
satisfied:

(i) Homa(X,Y) =0;
(ii) for any object X in A, there exists an exact sequence 0 = X’ — X — X" — 0 in
Awith X' € X and X" € ).

Theorem 2.15. Assume X(P)NY(P') = {0} and H'(P') € X(P). Then the follow-
ing hold.

(1) C(P") is admissible abelian.

(2) The functor

HomD(A)(P', -) :C(P’) — Mod B

is an equivalence.
(3) (Y(P)[1], X(P)) is a torsion theory for C(P*).

Proposition 2.16. Assume P- satisfies the conditions
(i) {P[i] : i € Z} is a generating set for D(A),
(i) Hompay(P, P[i]) =0 fori #0.



If A has either enough projectives or enough injectives, then we have an equivalence of
triangulated categories

D°(A) = D®(Mod B).

3. Torsion theories for module categories

In this section, we apply results of Section 2 to the case of module categories. In
and after this section, R is & commutative ring and / is an injective cogenerator in the
category of R-modules. We set D = Hompg(—,I). Let A be an R-algebra and denote
by Proj A (resp., proj A) the full additive subcategory of Mod A consisting of projective
(resp., finitely generated projective) modules. We denote by A°P the opposite ring of A
and consider right A-modules as left A°P-modules. Also, we denote by (—)* both the
A-dual functors Homa(—, A) and set v = Do (-)".

It is well known that, in a module category, the small projective objects are just the
finitely generated projective modules. In the following, we deal with the case where
A = Mod A and use the same notation as in Section 2.

Lemma 3.1. For any X € Mod A, we have
HomD(Mod,g)(P‘,X[I]) = Hl((P’)')®AX.

Lemma 3.2. The following hold.
(1) x(P)= Ker(H‘((P‘)‘g&q—)-
(2) P(P) = Ker(Hom 5(H(P"), -)).

Lemma 3.3. The following hold.

(1) D(H'((P))) = H™ (v(P)).

(2) X(P) = Ker(Homa(—,H™}(v(P")))) and hence H(P') € X(P") if and only if
H™Y(v(P-)) € Y(P').

(3) Ker(Torf (H!((P)*), -)) = Ker(Exth (=, K- (v(P)))).

Lemma 3.4. The following hold.
(1) X(P) € Ker(Ext}(H(P),-)).
(2) Y(P) C Ker(Tori'(H'((P)*), -)).

Theorem 3.5. The following are equivalent.

(1) X(P)NY(P-) = {0} and H'(P") € X(P").

(2) X(PYNY(P)={0} and 7(X) € X(P), 7(X) € Y(P*) for all X € Mod A.

(3) (X(P),Y(P)) is a torsion theory for Mod A.

(4) X(P) consists of the modules generated by H'(P+) and Y(P') consists of the mod-
ules cogenerated by H™}(v(P")).

Corollary 3.6. The following are egquivalent.

(1) P is a tilting complez.

(2) X(P)NY(P) = {0},H°(P) € X(P) and H™'(P") € Y(P").

(8) (X(P),Y(P)) is a torsion theory for Mod A and H™}(P) € Y(P").
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For an object X in an additive category B, we denote by add(X) the full subcategory
of B consisting of objects which are direct summands of finite direct sums of copies of X.

Corollary 3.7. For any tilting complezes P; : P' — PP, Py : Py — PP for A of
term length two, the following are equivalent.

(1) (X(P), Y(P)) = (X(B3), V(P3))-

(2) add(P;) = add(P;) in K®(Proj A).

Theorem 3.8. Assume X(P)NY(P) = {0} and H(P*) € X(P-). Then the following
hold.

(1) {P[i] : i € Z} is a generating set for D(Mod A).
(2) C(P°) is admissible abelian.
(3) (Y(P)[1), X(P)) is a torsion theory for C(P*).
(4) The functor
HomD(ModA)(P', —) : C(P) — Mod B

is an equivalence.

Remark 3.9. The following are equivalent.
(1) P is a tilting complex.
(2) 2(P)NY(P)={0} and P € C(P).

Example 3.10 (cf. [HK]). Let A be a finite dimensional algebra over a field k given
by a quiver

1 242

1 s

4 —— 3
¥

with relations fa = 48 = §y = ad = 0. For each vertex i, we denote by S(), P(i) the
corresponding simple and indecomposable projective left A-modules, respectively. Define
a complex P as the mapping cone of the homomorphism

dp! = [g S g o] : P(2) @ P(4)* - P(1) & P(3),

where f and g denote the right multiplications of a and , respectively. Then P is not a
tilting complex. However, P- satisfies the assumption of Theorem 3.8 and hence we have
an equivalence of abelian categories

Homp(mod 4) (P, =) : C(P) — Mod B,
where B = Endp(mod 4)(P*) is a finite dimensional k-algebra given by a quiver
12 3+4
There exist exact sequences in C(P-) of the form
0— S(1) = S(2)[1]) = P(1)[1]) = 0, 0— S(3) — S(4)[1] — P(3)[1] — 0,

and these objects and morphisms generate C(P*).



4. Equivalences between torsion theories
Throughout this section, P- is assumed to be a tilting complex. Then there~exists an
equivalence of triangulated categories
F :D™(Mod B) — D™ (Mod A)

such that F(B) = P.. Let G : D" (Mod A) — D™ (Mod B) be a quasi-inverse of F. For
any n € Z, we have ring homomorphisms

B — Enda(HP))® and B — Enda(H'(P)")).
In particular, H°(P") is an A-B-bimodule and H'((P")*) is a B-A-bimodule.
Lemma 4.1. The following hold.

(1) For any X' € C(P*), we have G(X*) = Homp(mod 4)(P", X*).
(2) We have an equivalence

Hompmed 4)(P, ) : C(P') — Mod B

whose quasi-inverse is given by the restriction of F to Mod B.

Lemma 4.2. There ezists a tilting complex Q- € K®(proj B) such that
(i) @ =G(4),

(ii) @ =0fori>1landi<0,

(iii) HY(Q) 2 H'((P)") for0<i<1,

(iv) H'(Homy(Q', B)) = H'(P') for -1 <i<0.

Lemma 4.3. For any M € Mod B, the following hold.
(1) BY(F(M)) =0 fori>0andi< —1.
(2) H(F(M)) = H'(P-)®sM.
(3) H™Y(F(M)) = Hompa(H'((P)"), M).
Theorem 4.4. Define a pair of full subcategories of Mod B
U(P) = Ker(HY(P)®p—-), V(P) = Ker(Homg(H'((P)*), -)).

Then the following hold.
(1) (U(P"),V(P')) is a torsion theory for Mod B.
(2) We have a pair of functors

Hom,(HY(P), =) : X(P') = V(P), HYAP)®p—:V(P)— X(F)

which define an equivalence.
(3) We have a pair of functors

HY((P)*)®@a~: Y(P) = U(P"), Homp(H'((P)'),-):U(P") = Y(P")

which define an eguivalence.

Definition 4.5. Let (U, V) be a torsion theory for an abelian category A. Then (U, V)
is called splitting if ExtL(V,Uf) = 0.



For a left A-module M, we denote by proj dim 4 M (resp., inj dim 4 M) the projective
(resp., the injective) dimension of M.

Proposition 4.6. The torsion theory (U(P), V(P')) for Mod B is splitting if and only
if Ext3(X(P), Y(P')) = 0. In particular, (U(P*), V(P*)) is splitting if either proj dim X
<lforall X € X(P) orinjdimY <1 for allY € Y(P).

5. Torsion theories for artin algebras

In this section, we deal with the case where R is a commutative artin ring, I is an
injective envelope of an R-module R/rad(R) and A is a finitely generated R-module. We
denote by mod A the full abelian subcategory of Mod A consisting of finitely generated
modules. Note that H*(P*), H*(v(P-)) € mod A for all n € Z. We set

X(P)=X(P)NmodA and Y.(P)=Y(P)NmodA.

Proposition 5.1. The following are equivalent.

(1) X(P)NY.(P) = {0} and HY(P) € X(P).

(2) X(P)NY(P) = {0} and T(X) € Xe(P*), 7(X) € Ye(P*) for all X € mod A.

(3) (X(P),Y:(P)) is a torsion theory for mod A.

(4) X.(P') consists of the modules generated by H°(P') and Y.(P') consists of the
modules cogenerated by H™! (v(P")).

Lemma 5.2. The following are equivalent.
(1) {P[i] : i € Z} is a generating set for D(mod A).
(2) Xe(P)NYe(P) = {0}.

Lemma 5.3. The following hold.
(1) If DA € X.(P'), then H}(P') =0, i.e. P = H(P) in D(mod A).
(2) H'(w(P)) € X(P") if and only if H™'(P") € V.(P).

Lemma 5.4. Assume X.(P)NY.(P') = {0} and H*(P") € X,(P"). Then the following
are equivalent.

(1) HOu(P)) € X(P).

(2) AX.(P) is stadle under DAQs—.

(3) H™'(P) € Ye(P).

(4) Y(P') is stable under Hom(DA, -).

Proposition 5.5. The following are equivalent.

(1) P is a tilting complez.

(2) X(P)NY(P) = {0}, HO(P') € X(P) and H™}(P*) € Ve(P).

(3) (X.(P),Y.(P)) is a torsion theory for mod A and H™}(P*) € Y.(P").

(4) (X(P'), Ye(P)) is a torsion theory for mod A and X.(P") is stable under DA®a—.
(5) (Xe(P), Ye(P)) is a torsion theory for mod A and Ye(P-) is stable under Homa(



Definition 5.6. Let A be an abelian category and C a full subcategory of A closed
under extensions. Then an object X € C is called Ext-projective (resp., Ext-injective) if
ExtL(X,C) = 0 (resp., Ext(C, X) = 0).

Proposition 5.7. Assume P is a tilling complex. Then the following hold.
(1) H%(P*) € X.(P) is Ext-projective and generates X.(P).
(2) H Y (u(P")) € Ye(P) is Ext-injective and cogenerates Yo(P*).

Theorem 5.8. Let (X,)) be a torsion theory for mod A such that X contains an
Ext-projective module X which generates X, Y contains an Ext-injective module Y which
cogenerates Y, and X is stable under DA®,—. Let Mj be a minimal projective presen-
tation of X and N;, a minimal injective presentation of Y. Then

P = My @ Homy (DA, Ny )1
is a tilting complex such that X = X (P*) and Y = Y(P").
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Almost self-duality and H-rings *

Kazutoshi Koike

Abstract

Recently we pointed out that left H-rings (Harada rings) do not have a self-duality
in general. In this note, we prove that every left H-ring has an almost self-duality,
which is a generalization of self-dualities.

(4 XTOEHBR N self-duality 2 201 EWHRIIE, TXTOQF BAH LA
CRME®RZDLDN] EWSHEBERETHS I &M, MF - KK 2] Ick>THHE
TV, RIEEHIL (3] B WT, Kraemer [4) DAL L 72 weakly symmetric self-
duality 272720 QF ROFIA, FILECRINE®REZ BBV QFROFATHHILZE
EEL, ThERAWT, R self-duality 2 bW E HROFAEBK L. Lizhis
T, —fRITIRAE HBid self-duality 2 bizizls, LA L, §XTOEHBRIZ self-duality
D—R{LT & S almost self-duality ZIF{EN S duality 23D & ZFHATE DT (E
HB), TOBRIZDOWTHEETS.

BTF, TXRTORIYUATED S, TRTOMBIWURITHSETS. MM iTxt
L T, O radical, socle, top %, ThEN J(M), S(M), T(M) TET.

1 Almost self-duality

TR, Morita duality ICBT AN OMDEHKEESALD. @RMEE JUs B
Morita duality Z &8 3 &13, U-dual functor D% Hom4(U,—) : A-Mod = Mod-B :
Hompg(U, =) M, ThEFh A-Mod, Mod-B DFKEHIE A, BT, KOLREEHT
HLODM®D duality ZEDHDZE%211D: (1) A€ A, Be B, (2) A, BileHRBE
THUTW3. =L, A-Mod, Mod-BiZEFNFNE A, L BmMiELEkoBEERT.
E<AENTWBEIIZ, UpH Morita duality ZEHS Z &3, U NEEMDE
T, AU, Up ENTNARKRERKETHA L LFEETHD. HICA=BTdH
B & E, \Uy T self-duality Z2E5H 3 & 1135 . Morita duality 2E& 2 EHIINEE JUp At
FET DL E, AlTE Morita duality 26D & W1, A 13 B iZk Morita dual T

*The detailed version of this note will be submitted for publication elsewhere.



505, BOWAg=A,A),... A =B T&E AR A IZE Moritadual THd KD
BROLOMNFEETDEE, A BIZE almost Morita dual THBENDH T &IZT B,
517 A HIE 2 B B4 almost Morita dual T3 5 & #, Ald almost self-duality %
HD &S (Simson [9] BE]). F4RIZ, A almost Morita dual D#EZHLEFEE N 25,
almost self-duality DELEIZEL E B S D almost Morita dual ZH N THEIC THBZ
EEEELTBL. B#LD, almost self-duality {3 self-duality D—{LTH 3.

BAICRREC I TOHKZRRT 2D, ROAMLSHDEXS.
# 1. 1] & [10] DEERK D, HWITIERRRE Ay, Ay,... , As & Morita duality Z5E
HLSWBIMEE 4, U140 402400 - - 1 asUsa, T

DV
A= !

ERDHDNEFEETSD. KL, DRIH2HETV,I3(D,D)AHMBETHS. 0E,

(Ax Uy 0 0 0 0 \
0 A U; O 0 0
mRo= |0 0 AU 0 o0
T 1o 0 0 Ay U U |
U 0 0 o0 As As
\Us 0 0 0 J(A4s) AsJ
(Az Uz 0 0 0 0\
0 A3 U; O 0 0
R = |0 0 AU 0 0
0 0 0 A; Us Us |’
U 0 0 O A Ay
\t, 0 0 0 J(A) AJ
As Us 0 O 0 0
0 A U 0 0 0
R - |0 0 AL 0 o0
s =

0 0 0 Ay Us U,

Uy 0 0 0 As Ay

Us 0 0 0 J(A) Ag

EBL. TDEE, By, Ry, ... Ry IBEWIZHERMAEHRT, £i=1,2,3,4ic%L
TR Riyy 12, Rsid Ry {2 Morita dval T$H 3. L=At5T, & Ri it self-duality
% b7z /s 1At almost self-duality & D.

EBOBEMIZ, LOFITHNTE R, 4t almost self-duality 26D &2, “hso
RIBIIBEFORK TR, TRTOEHRIZBWTRDIIDI L2HBT T
ETH5.



MIRIANEE AU 12 Morita duality 280 5&T5. chE&, ThENA, BOEZH
SMSTEDEFESE {e1,... ,en}s {fir... , fa} T S(US) = T(Aes), S(el) 2 T(f:B)
(i=1,...,n) BT LOMEET 5.

#8 2 ([5, Corollary 3.4]). LOBEDTT, [%{1,... ,n} DETRVLEIMLESE
U e=Y i [ =Y fi £BL. Z0EE, TRIMBE caeU S5, b Morita duality
EEDD.

INZEHEAE, ROGERESNKS.

il 3. RADOTIWIMETe iz LT, U Adtalmost self-duality 2 H TiE, ede
% almost self-duality %2 & D.

iERA. {e1,€2,...,6,} Z ADEZFAMSTORXESELTS. I C {1,...,n}izn
LT, g1 =36 &B<. almost self-duality OFERFREBICL > TFETH S
NS, e=g,, I C {1, ,Tl} ELTRW m= |Iol EBL. EEL, || B xDk
BELTONEKEET. Aldalmost self-duality Z2H o005, HiE2Z@VELAVR
i, 91,Ag1, 7% g1, Agy, 1% almost Morita dual &35 K57 1) C {L,... ,n} DEFET
ST ENRMB. ZZTlh|=mTH3. LTRKRIZLT, {1,...,n} DfHEED
Bilo, I, Lo, ... T, & 91,A91 3 91.,, Agy,,, 1F almost Morita dual, |[;|=m T&% 5 &
IBLONEFEETS. TOEE, FEDI<JIZHLT, g1,Ag, 12 gleg,,. {2 almost
Morita dual T 3. {1,... ,n} DEm ORI EABZERBEALABWAS, [ =1; T
BBDELORI<JMEETS. LEMN>T, g,A91, = 91;Ags; 13 almost self-duality %
HOM5, ede = g,Ag;, B almost self-duality ZHD. a

FE 4. B2 MBI XD, B AIZBITS Morita duality % almost self-duality DFFLE
13, M&ite € AIZDNTHRedeiTRIETS. LML, ROFIMTRTLSIZ, self-duality
DWTi, ZHERDILZ=rsin.

%) 5 (Kraemer [4]). B A), Az, ..., As ERRINEE 4, Ur 4y, 4.024;, - 2 4sUsa, 181
DEDETS. A=A x---x A; ZBHUK, U=UD--OUs eMBEOKMET
N, Uid Morita duality 2D 5 (A, A) @HIMEEE 5505, Aldself-duality 2%
2. LML, e=(1,0,...,0) € A&BIFIE, eB3PLEMETTHEM, ede= 4,13
self-duality & ® /=75 .

ME 3NS5, KD almost self-duality DEEDOEMHIMESHS.

EBEA . (ZIF>) R AN almost self-duality 2 b DD E+54&41, HEPF
BQFRREROMBITLe TAZeRe LRBDZLONEFETHILTHS.

. (=) A= A £BL. RELD Morita duality Z & SRHNEE 4,U14,) 4,24,
. ’AnUﬂAl ﬁ‘ﬁﬁj‘é- mj\") tﬁ”ﬁ‘:, B= AIXAZ)(" 'XAn, V= U] @Uz@"'@Un
EBL. TDEEBDVIZkS trivial extension R = Bx V &, Bom%x(L,0,...,0)



XT3 R OSSR e #8 2 d, Faith OEM (5134 (11, Theorem 10.7) £:1) &
0 RIZEMPF BT, AXeRe THS.
(<) 3 & DIASH. 0

EE 6. (FINF)RANGUMEEV IZ&>TED SN D self-duality D& & (&
LA EHRRTESTTROEE), ADUIZKS trivial extension R = A x U {3
PF8E(QFH) &40, ARROBARR/(OxU) LRBTHB I LidL<MBENTN
3. LOBHRIOFEHROMLUERD I EMNTES. I

(0 %) =)

EBFE, UxU=0c&k>THEZEDT)RIBHIMPFR (QFR) T, A= eReT
$H5.

aUp % Morita duality # €S 5 HHMEEE TS, ZD& E, £ annihilator % 2 B E
3643, A& BORflA F7NEOHOKERES X 5:

S(aAs) = S(gBg); K- rpry(K).
ZOFIBIZDONT, ROMBEMRDIUD I EMNRNS.

BET. (1) rery(Aed) = BfB. (L. e fI3##E2ERL. )
(2) raru(S(Aa)) = S(Bs).
(3) A DEBEDOFHE A F 7N K, L2 LT, rpru(KL) = (rery(K)) - (reru(L)).

COHBIOKRERS.

#h58 8. B A 13 almost self-duality #HD&L, e ADNMETETS. K H AeA,
S(A4), AeAS(As) DWTNDODHOFRAF7NDEE, FAREA/K & almost self-
duality %% D.

JEER. —M&IC AUg At Morita duality ZEH 3 &%, ADEBEOHDIF7IKIZXL T,
(A/K, B/rgry(K)) TfNEE ry (K) & Morita duality & (11, Corollary 2.5]). L
7eoT, BIZK =S(A,) DEE, §iT7(2) &0, A/S(A,) i3 B/S(Bg) 2% Morita
dual THB» S, AHtalmost self-duality H TiE A/S(A4) b almost self-duality %
HD.

K=AeADE %3, @HE71) LHEIDAHERELMBZERNT, Abalmost
self-duality 2 TIZ A/AeA b almost self-duality Z2HDZ & M3,

K =AeAS(A) D& &3, ED2DODHBAELHETB) L0 an5. O

ER 9. LA TIRARL DIz, B A D Morita duality OFEIRES&RICRET 3.
UL, self-duality icDWTH, 2 EARRRMRAEAMEFICLD2HOTHH>TH,
PUIR DAL, HE, SO AIZBWTK=(1-e)A &THhiE, 1 -eiZhi iy
MBTTHBM, A/K = A, idsell-duality Zd =70, OB, SR HEORER
BIZ DWW TId almost self-duality OFFEMNBET I ZEEZRLTWS,



COMDOBEBIC, RAELNMSTec AlLK->TREED, HIHBOREXREERL,
duality iICBT 2 M2 BRTHL. ZOHEXRREZEHROMEDOEHIZ B TEERG
MERET,

AZEFNETER, ec AZMBRETE. ZO&Z,

A Ae
Ao = (eJ(A) eAe)

ERETDE, THORICE>T A, bEAMERLBERD. Z4UI (2, pdod] ©
Wi(R) iH4 T35 DTH 5.

~f10 10
o)+
THHILEEELTHL.

aUs & Morita duality #E%5& L, A, BREEENTHBEEETS. SLU) =
S(Up) MR DIIDMS, ThoEBIZSU)TET. {en,--- e}, {fis... . fa} #FN
FHA BOHXFEMETLORESMET, SUS) = T(4e), S(eU) = T(fiB) (i =
L,...,n) E@ETHOETS. [£{),...,n) DETROLEBHEALL, e=Y,, 6,
f=Sifi&BL. o

U =(U Uf/S(U)f)
“I7\eU  eUf

EEETS.
i 10. LO®E T, U, i3 Morita duality £E®H 3 (A., By) BN TH 5.
INEFEAEKRERTIEMNTES,

6Pl 11. A ZEERYELR, e c AZMBTLET B EE, A, HtMorita duality (almost
self-duality) 2 b D7D DLE+ 4443, A A Morita duality (almost self-duality) %
DI ETHS.

ER 12, 1,5 OMET, B % trivial extension Ax U IZL>TED, f% ADh&%x
(0,0,..., 1) iIzETH BOMETETS. COEEF1OR EB; LEETHS. B
ITQF B TH 2,5 self-duality Z H DM, #H1 TEBLAKSIZ, R idself-duality %
BHlzizvy, LMo T, E 11183 (&) id self-duality iIZD W TIERK D 3L/ 780.

2 HiR

FNTE, HROMBIZASS. E7LFURAR, KO&EEHATHRED
SEOEAES (e |1<i<m, 1<) <n(i)} £bDE&, & HR (& Harada 1)
THBHEFDNS.



(1) EBEDi=1,... mIZHLTeds RARRTHS.
@) EBDi=1,...,m, j=2,...,06) KHLT, HEAMBEELT ;A ¥ J(eij-14)
TH5.

EHBRIZQF BPUARO—R/ILTHD, QF MLMARI self-duality 2HD. L
MUBRSHATHNALSIC, EHRELTL b self-duality ZH5DERB S 0.

RFEEH/LER A, LOBFRERRERDIDOMER, EHROMIEZELIET S
DI RENMOMETH S, £HUMITIE, KEEO—HORIX[6, 7, 8] THliroNT
w3,

W 13. AZRAMEHR, ec AZMETLTHLE, A BEENEHRTHS.

#5i8 14 ([7, Theorem 2| BR). AZELKNEHR,. f€ A% fALBARKITARN
EORFBMSRETEHEE, (1-HAQ - f) BEFNEHRTHS.

6988 15 ({7, Theorems 1,2] BRR). AZEALNEHR, e,f € AZ fAZ J(eA) TH
BEINFEBMSTEL, A=(1-A1-f), A=A 8L Z0LE, KDL
HEEETENBEENERG: A > ADEETS.

(1) Ker(¢) < S(A).
(2) ¢ KEAMEHR < 1Ae lZARB TR,

EEnsanwre T, @E I3 REHBRICFEMSTE [HITNAT) 3BUE
HEZ/2 0, 1432 HB»S (ANNZHEHDFHEROEMBHITHIE L2 0) Fiah
e TMVRWT) bBUEHRIZADZEEZRLTWS., ELTHEBISREHR
M5 (AN HBEHSHERAMBIHIEL 2W) FAMSTE O %, 8
WREMETE HimA) 2&, TOEHRM(IFF)MILTESLERLTY
3. IhnS5OoMPERVELAVKE, MEEOEHRI QF ROBU LK EETDH
RBICL>THMKRTEZS) (8, p.118)| BR) D THS.

L7AioT, ThoDREED E<HATIROERIL, TOEHERM S (ARKAE
HEEAREEMBICHELEW) FEMEXERLIZ TRDBRWT; #5h3QF R
ICRBELTHATZIENTE S, EHBOIAAAISKRT L SIZ, almost self-duality @
FERIOLSRERD—DBOTHS.

EEE (EBB) ZRT/DIZ, bI—DETHBERAAL THL.

B 16. AZEAMNEHR, K% S(AL)ITEENB31FTINETHEE, HL AN
almost self-duality 2% TIE, FIRE A/K b almost self-duality 2HD.

. KZADAITFTITS(AN)KEENDZBDETDE, EHRO¥ER®S, 3
METec AMGFELTK = AeAS(Ay) EBITBTEMNFMND. LMo T, #8
XD A/K % almost self-duality % D. 0



EEB . $XTOAE HBHZ almost self-duality % HD.

fEBA. AZEHBE T %. almost self-duality DFEIZBEHRMIZL > TRENZ IS,
ABEEMTHDEL TR, ADRLEBITETNIERFEBNSTOB/Knick
SEFENRAETHEAT S.

n=10&& EHRARZBABYQFRTH DM 5, self-duality L /=t> T almost
self-duality % % D.

n>1&l, E2BGREFENIHUXFHNSTOBEEM 2 L0 /NSWEERNEH
Blid almost self-duality 2 b D EEETSD. TRTOFEBMSTf € AITHLT fA,
NARBODOBE, ATQFERTHZMS, self-duality L 72At> T almost self-duality
2HD. fALRANRNTRNWISIREBMETL f € ANEETIHE, ANEHE
THhDI &N, HtMETXTe e ATSAZ J(eA) 2MAETEISRLONEETS.
A=(1-NA(-f), A=A B MBIV A BEHETHINS, BRAED
{HEL D A2 almost self-duality 23D, WAIcMEI11 S 13X& D, A D almost
self-duality 26 DEHBRTHS. LAN->THEIS HBI6LD A= A/Ker(d) b
almost self-duality & D. O

COFEBEREALD,

F17. IRTOEHRAIHLT, A2 eRe &RDEIBQFRR EMBTe e R
MEETS.
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DERIVED EQUIVALENCES FOR BLOCKS OF FINITE GROUPS

Naoko Kunuai

1. Introduction

Let G be a finite group. Let k be an algebraically closed field of characteristic p > 0.
In modular representation theory of finite groups, it is important to investigate relations
between representations of G and representations of Ng(P) where P is a p-subgroup of
G. There is a well-known conjecture due to Broué.

Conjecture(Broué [1, 4.9 Conjecture] ) Let G be a finite group with abelian Sylow
p-subgroup P. Then the principal block of kG and the principal block of kNg(P) are
derived equivalent.

The purpose of this paper is to give an example checked this conjecture. In §2 and
§3 we list known results for derived equivalences for symmetric algebras and for blocks of
finite groups. In §4 we state the main result and explain it.

2. Derived equivalences for symmetric algebras

Let k be an algebraically closed field of characteristic p > 0. We assume all algebras
considered are finite-dimensional symmetric algebras, all modules are finite-dimensional
right modules and all complexes are bounded.

For algebras A and B, an (A, B)-bimodule M is said to be ezact if M is projective as
a left A-module and a right B-module.

Theorem 2.1 (Rickard [8, Theorem 3.3]) Let A and B be algebras. Then the following
conditions are equivalent.

(i) A and B are derived equivalent.

(ii) There ezists a complez X* of ezact (A, B)-bimodules such that

(a) X*®p X*¥ & A in the homotopy category of (A, A)-bimodules

(b) X*¥ ®4 X* = B in the homotopy category of (B, B)-bimodules.

A complex X* in the above theorem is called a split-endomorphism two-sided tilting
complez.

Theorem 2.2 (Rickard [8]) Let A and B be algebras. If A and B are derived eguivalent
then there exists an ezact (A, B)-bimodule L inducing a stably equivalence of Morita type
between A and B.

The detailed version of this paper will appear in J. Algebra.



Theorem 2.3 (Linckelmann [4, Theorem 2.1)) Let A and B be indecomposable non-
simple algebras. Let M be an (A, B)-bimodule inducing a stable equivalence of Morita
type between A and B.

Then A and B are Morita eguivalent if and only if for any simple A-module S the
B-module S ®4 M is again simple.

The following method to show an existence of a derived equivalence between two
algebras A and B is given by T. Okuyama in [5)

(i) Give an (A, B)-bimodule N inducing a stable equivalence of Morita type between
A and B.

(ii) Determine the structure of U ® 4 N for each simple A-module U.

(iii) Construct an algebra C such that C is derived equivalent to B and U®,N®gp L is
simple for each simple A-module U, where L is a bimodule inducing a stable equivalence
between B and C (ses Theorem 2.2).

Then we can conclude A and B are derived equivalent since A and C are Morita
equivalent by Theorem 2.3.

3. Splendid equivalences and stable equivalences

Let G be a finite group and P a Sylow p-subgroup of G. We assume P is abelian
and set H = Ng(P). We denote by By(G) the principal block of £G. A kG-module V is
called a p-permutation module if it is a direct summand of a direct sum of permutation
modules.

Definition 1 A complex X* of (Bo(G), Bo(H))-bimodules is called a splendid tilting
complez if

(i) X* is a split endomorphism two-sided tilting complex

(ii) each term of X* is a A(P)-projective p-permutation &[G x H]-module.

If there exists a splendid tilting complex of (By(G), Bo(H))-modules we say By(G) and
By(H) are splendidly eguivalent. We also call a bounded complex satisfying the condition
(ii} of Definition 1 splendid complez.

For kG-module V, we set

V(Q) =V TR(VH,

R<Q

where V9 is the set of Q-fixed points in V and TY? : VR - V@ is the trace map.
The following theorem shows an importance of the notion of splendid equivalences.

Theorem 3.1 (Rickard [9, Theorem 4.1]) Let X* be a splendid tilting complez of
(Bo(G), Bo(H))-bimodules. Then for every subgroup Q of P, the complez X*(A(Q)) is a
splendid tilting complez of (Bo(Ce(Q)), Bo(Cr(Q)))-bimodules.

The converse does not hold. However Gollan-Okuyama obtain a stable equivalence be-

tween By(G) and By(H) from a splendid equivalence between By(Cg(Q)) and By(Cu(Q))
in certain situation . More generally the following is shown.



Theorem 3.2 (see [11, Theorem 5.6]) Let X* be a splendid complez of (By(G), Bo(H))-
bimodules. If the complez X*(A(Q)) is a splendid tilting complez for each1 # Q < P,
then By(G) and By(H) are stable equivalent.

4. Main Theorem

In this section we state our main theorem. This is a joint work with K. Waki.

Assumption
e k : an algebraically closed field of characteristic r > 3.
e G=5U(3,¢%),q+1=r%s(a>0)rts.
ePe SyL(G), P C,-a X C,-a.
o H = Ng(P), Ng(P)/Cs(P) = 5.
e B : the Borel subgroup of G.
* Q€ Syl(B), @ = Ca.

Main Theorem (3, Theorem 1.1] The principal blocks By(G) and By(H) are derived
equivalent.

Lemma 4.1 (i) For 1 # R< P and R £y Q, we have Cg(R) = Cg(P).
(ii) For 1 # @ < Q, we have Ng(Q') = Co(Q') = Ce(Q) = Ng(Q). Moreover we
have Cg(Q) = Q x G1(= U(2,¢%)) for some subgroup G,.

Let Hy = G, N H and let @, be a Sylow p-subgroup of of G, and H;. Then @, = Cps,
so By(G)) and By(H,) are Brauer tree algebras and their Brauer tree are teh following.

By(G,) :o o ° By(H,) :0— * o]
1 g—1 1 1Y

where {1,g—1} is the set of the simple By(G)-modules and {1,1'} is the set of the simple
By(H,)-modules. Therefore we have the following from Rouquier’s result.
Lemma 4.2 (Rouquier [10]) Let Z° be the Green correspondent of By(G,) with respect to
(G1 x Gy, A(@,),G) x Hy) There ezists a splendid tilting complez of k|G, x H;]-modules
of the form
Z°:0— P ®P — 2°—0.
Using Gollan-Okuyama'’s result[2, §1] we obtain the following(see also Theorem 3.2).

Proposition 4.3 There ezists an ezact (Bo(G), Bo(H))-bimodule N which induces a sta-
bly equivalence of Morita type between By(G) and By(H).



The construction of the bimodule N given in [2] is as follows.
Let X be the summand of (Pp—1 ® Pir)a(q)cixm)1¢*¥ with vertex A(Q) and let M
be the summand of By(G)lgxy with vertex A(P). Then there exists a complex

X:0—=XHM—0

such that X*(AQ) = Z°a(Q)Gixan) 166/D*€#(Q), The bimodule N is defined by the
following exact sequence

0—)X(7—'72M$proj—)N—)0.

In fact by Lemma 4.1, for 1 # R < P, if R <y Q then X*(AR) = X*(AQ) and if
R £y Q then X*(AR) = M(AR) since X(AR) = 0. Since Z°a(q)(G,x#,) e @*CH(@) js
a splendid tilting complex by a result in [2], By(G) and Bo(H) are stably equivalent(see
Theorem 3.2).

As stated in §2, we must determine U ®p,(g) N for each simple By(G)-module U. We
use the exact sequence

0 —=URs5) X )y ®By(G) M @ proj — U ®pyg) N — 0.

Therefore we first determine U ®p,(c) X and U ®p,c) M and next determine the image
of the map (yy,7y) and finally determine U ®p,(c) N = coker(yy, Tv).

Let Sp = k¢, Si and S, be the simple By(G)-modules and let To = kg, T and T; be
the simple Bo(H)-modules, where dimS) = ¢’ - ¢, dim S; = (¢—1)(¢*~¢+1), dimT; =1
and dim T, = 2. The following is a key lemma.

Lemma 4.4 (i) S, ®pycy N = Tp-
(ii) There is an ezact sequence

To

-1
0—0 (T2

) b Q(Sl ®5y(6) N) — T —0

Remark 1 (1) The structure of S ®py(c) M is discussed in [6].
(2) We have no infomation about Sa®p,(G) M. However we may consider the complex

S
Xs,':o—) (So ) —)Q-z(So)—)Sl —0
S

instead of the simple module S, (Note that Xg,* 2 S, in the derived category)

Now we can construct the following correspondences.

mod A %% mod B, ®2¥'  mod By ®2Y  med B, °22)* mod B,
o= B :rﬁ”m — Téz)(z) - ®
S, — . — Q-1 ( ;:(1) ) — Q1 ( ;‘}2) ) R
Sz — . — . — . 2 — ™



where A = By(G), By = By(H), By, Bz, B; are all derived equivalent, N; is a (B;;, B;)-
bimodule inducing a stable equivalence between B;_, and B; for i = 1,2,3 and {T‘i(j)|i =
0,1,2} is the set of the simple B;-modules. Therefore we can conclude that By(G) and
Bo(H) are derived equivalent. Moreover we can know that By(G) and By(H) are splendid
equivalent.
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HIGH ORDER KAHLER MODULES OF
NONCOMMUTATIVE RING EXTENSIONS

HIROAKI KOMATSU

ABSTRACT. We construct the high order Kahler modules of noncommutative ring ex-
tensions BfA and show their fundamental properties. Qur Kihler modules represent
not only high order left derivations for one-sided modules but also high order central
derivations for bimodules, which are usual derivations. This new viewpoint enables us to
prove new results which were not known even though B is an algebra over a commutative
ring A. These are the decomposition of Kahler modules by an idempotent element (§5),
exact sequences of Kahler modules and the Kahler modules of factor rings (§6), and the
relation to separable extensions (§8). In particular, our exact sequences of high order
Kébhler modules were not known even though B is commutative.

FEFRBOTLKIZH LT, #KR Kihler MBEEZBRL, TOERNHLZEBTERBAT 5!
R4 0 Kahler MBEIX, FEIMBEDORK left derivation 2RI B1EH 0 T2 <, HRIMEE
DBE D derivation D H HOHFNRLHDTHHHEK central derivation 2 HRB|T 5. =
OHFLWRAIL LT, BRROBAICEVTLAOA TWeh o BEERER TS L
RAfRL R2ofe. £ 6L, Kihler MBEORSITIC X B 388 (§5), Kihler MBEOTL2RT)
E KRB D Kihler B (§6), SBETLK & OB (§8) HiHRN 3. i, R DOB-BK
Kihler MEDOELFEINL, TREOHESITHLAON TV L2 bDTHS.

FETCHEOIBITRCHMT 2L, RERANERII1 218 TL0LT 5. Nkt
BERTIFMESHIERAL TV I LD LTS,

i8S 0.1. XHEELBFLTKROESLAHWS.
B/A RiEEK (AL, RUFBER A - BBEXLhEWVWI T L)
J = Ker(B®,B>zQyr—zy € B)
§:B—J, §z)=1®x~-2®1

1. ¥k KAHLER MBEV AW S

Kiahler 8L, WAWARBRTERIN TV S, TTHRRAD derivation 2RHATI LR
Kihler I, H< H"oHRINTELbOTHS. 1967 4F, Osborn [17] i, RS F
AREZREBCHRT 72012, TRRBOIK B/A XL, B derivation 2RAT S
MBETHSHHK Kahler MBEZRA LT,

Q30 =J/J™ ¢ n¥Kahler flBk
@34:B— 0%, dh4(2) =8(z) : nK Kihler derivation

1The detailed version of this paper has been submitted for publication elsewhere.



EPED Osborn DEFRITIN LY b—BATH DY, £ OFRES LOBEIZEINTH
5. Heyneman & Sweedler b [4] ICBW T ERROBEEXHA LTS, BEATRPH LD
—EORENRHY, [14] L& HLRTWVS.

1970 4, ARER [3] i% Osborn DEFE%, B RTHRE A LOFTRETROBEIZET
L. REE, TREBOBRTIIRE L 2h T Kibler ORI B MEHREIC
#ZHB L, &K derivation XFIMBEDEE D derivation & HFEIZBAFRTHIZ L ERLE.
Heyneman & Sweedler DE# b, [21] I35V T Sweedler BHIZ X o T, FETRBTRIC
FTHRENW. LT, ZROSEEE, PiFESREE S Kabler M18E L OBMIC > THE
Ritbihiz. L L, Sweedler i3 Kihler MBEOEQUMBREDHBHLZAZ L LTEY,
+aRRRIBONT VW h o,

o, | (10] i%, MK Kahler MBEDOERE, B/A BETMRBORKOFEIE T
BRUA, BREE B UL Ml BMBEMEICHBETIZLICLD, BRROBER bALN
TWihs nEREEHT I &N TEL. FRTILENLIZHOVWTRAT 3.

A TR FEFTRIL L IIRLDHFM E LT, Kihler MEORFEHITHONA TV 3. Bell
[1] #EALLERSEAR (RAMNERIZL BV B AL L) IZHIET 5 Kabler A0
BEAYEF - A - BA [5) ICBVWTHASNA TS, ¥, Verbovetsky [22] TiX, &y 7
REVERATIZEROBFLSN-HATERRBER I, Kahler MBEITTEV D=y b
MBERFRENTND.

BRI, P&y [16] X, derivation D—{L T&H D generalized derivation %% 45 i
EHBAELTVWS,

2. MRWOERRL P2y MINBE

B8 2.1. pMg ¢ T 5.
l.meM,zeBIZHL, [m, z]=mz—zm &£BL.
2. SCMIZHL, {[s,z] |s€S, € B} CHERENhD M O ZW5MEE% [S, B] T
Hob¥.
3.[S, Blo iX S TEM SN M DR ZMBEL L, [S, Blo=[[S, Bln-1, B] (n=
L2,..) Lt RBHCEDB.

72 T & 2%, B[S, B) = [S, BB $RY SIoDT, B[S, B] it M OEEEHMEE
BLTWA. BRI, me M, 1,,...,z, € BIZHL,
[... [["1"l Il]a 12], cee, z"] = Z (—l)rﬂ:i,"' Ty, MTy - Tjy o+ & - Ty
1< <l

LBMENSD. L, & 13z, #BOKRS T & EH%S.

EE 2.2. gpM, pN, BARE n T L,
Dpa(M, N) = { ¢ € Homz(M, N) | [, Blasr = [, A| =0}



EBL. ORBOERE n RBSEREL LB KL, [, |1} Homgz(M, N) DB &
7] B InBEEEIC L 5.

FRTH, Bc0HAERRLY b2EOHRSYMEL+5. oI,
Homp(M, N) = D},,(M, N) C Dh(M, N) C --- C Homa(M, N)
ERAaTWE,

EE 2.3. £&0 sM, gN XL, RDIEK D 3L,

HomB(B[lB®+’:g]n“ ® M, N) = Dy, (M, N)
f— fI®1®-)
criBhd — 2848 o kvas s
B[1®1, Blas1

e, BROBHM o I2OVT, D, (M, N) o DF,(L, M) C DRf(L, N) Heksr
THDT,

Dgja(M) = UDE/A(M, M)

n=0

HERERT - L 8bhs. ChEBHSERRORE LIZhTH3. FaiE, B SEK0D
A LEOSEXROBE, Dy, \(B) i Weyl RKTHB.

3. Bk DERIVATION & KAHLER M8

EB# 3.1. pM iZfL, LDery(B, M) = {cp € Dy,4(B, M)|p(l)=0} &8 &
DEFE% nX left A-derivation & L5,

%12, € Homy(B, M) 5311 left A-derivation THD7=BITiL, p(zy) = 2o(y)+yo(z)
(Vz,y € B) 2ile¥ - L BXULE+HTHS. TTREOHES, Zh % BIZ A-derivation &
LATNE,

B% 3.2. n>0 2EBELTS.

n J ) v
QBM—B[1®1,Bln+x : n& Kihler /Nt

dg4:B — Q3,, z+—8(z) : nR Kihler derivation

J=B[1®1,B] Tha»b, bLb B BTRERGIE, " =B(1®1, Bl &7
D, EORBRTRROBEOLRIZ > TWE I L AbNS. TRROBBTIY, Q3 ,
ERRMBEL LTHRYBoTWIOES, ThhoXBTRTYL LI, 03, RARIC
HATWSER B INBHBENERICEERZOTHS. AAMBEBE» OHEINILOOD
—<{Z LDery(B, M) OE BMBBENHS. Zhit,n=10RETHIH, X /b
8 [7] \SBWTEREO biderivation DOEEATIT 21T HBRIZ, LB THo .



B#E 3.3. pM & T 5.
1. Homu(B, M) IZFH L\ BB %> AT 5.
(b + 9)(z) = p(zb) — zp(b) + zbp(l) (v € Homa(B, M); b, z € B)
=5 LTHBLASE BMiE% Homa(B, M) THho b,
2. Hom%(B, M) = {p € Homa(B, M) | p(1) =0} &5<.
M 3.4. fE8ED gM iITH L, KABKY L.
1. gHoma(B, M) = Hom%(B, M) ® Homp(B, M)

2. D},4(B, M) 11 Homa(B, M) DEHMBETH Y, BMBEL L TOHMHHE
D3,4(B, M) = LDer}(B, M) @ Homp(B, M) % b

ZOWED L & T, ROEXBDRERERS.
B 3.5. {ED M IZH L, WAV L.
pHomp (05,4, M) =~ LDer}(B, M)
f — fdga
b, LDery(B, M) B B, QF , OF BMBEHEN L HI N bOTH
BLENDMD. THICBELEBELLT, ROLONHS.

% 3.6. B4 B IZH LV BMBHBELEATS.
br(z@y)=bz®y
(z®y)*b=z@yb—zy@b+zyb®1

THLTHOhIME BNE B,y B THLDT,
ZDLE, pB®, By ~ JOBTHY, Bitki:H5.

Rl 3.7. £8 D gM IZH LT, RERET .
1. pHomp(B®, B, M) =~ Homa(B, M), f+ f(-®1)
2. gHomp(J, M) ~ Hom%(B, M), fv+— f§

4. F{IINEED DERIVATION & Db Y
AT, Kahler MBOTAMBBENEETHIZ LEFT, BRLERHLERER
~3.

EX 4.1. gMp LT 3.

1. Dera(B, M) = {d € Homa4(B, M) | d(zy) = zd(y) + d(z)y (Vz, yeB)} &%
{. ZDOHRADER% A-derivation & L.



2. CDer(B, M) = {d € Dera(B, M) | [d(B), Bls =0} &#<. ZOMAOERY
n % central A-derivation & 42,

ROBRY, FROPTRLEXNHRLOTHS.
BE 4.2. F£HO pMp 23 L, KA Y 2.
Homp.p(QG/4, M) =~ CDery(B, M)
f — fdpa

ZOREZBRMICE X, BF CDery(B,-) : B®z B?-Mod = Z-Mod 2%, %f
(Q';,/A, d’,‘,/A) TREENDHLWHIZETHY, BARZORRANERENS. £BD
d € Ders(B, M) £{EBE®D f € Homp.g(M, N) L DERER fd 1L A-derivation TH 5
M6, Dera(B, —) X Homy4(B, -) : B®z B*-Mod — Z-Mod DR BF & A R2E5.
FI#RIZ, CDer’y (B, —) it Dera(B, —) DEBIWEFE L iz 5.

—iIC, (EE) BFE F : A-Mod — A-Mod %, %5 A-A' BN U »oBbhsMF
Homs(U,-) : A-Mod = A'-Mod ¢ BRARMETH S L &, F IRRITETHH LD, B
ARFEME n: Homa(U,-) o F 835D L &, v=nu(ly) € FU) BT, nm(f) = F(f)(v)
(VaM, ¥V f € Homa(U, M)) B3RYIODT, F it (U,v) TRAShB LWV,

BEA2L, ROZHOHELXAVWTHAZAS. #EH4ITE AOAOA TV IR
TH3.

R 4.3. BIF Dery(B, -) it (J, §) TREAENS.

$#ffi 4.4. F : A-Mod — A-Mod % (U,v) CRASNSBFLT5. Gk F osH
FT, EXR, POEMEBFETEL0OLTE. 0L, 88 {X C U | Fitx)(v) €
GU/X)} HBATEV 285, ZZ T, tx: U U/X BERREREDHODT. LT,
V CaUs ThY, G (U, Flty)(v)) CERENS.

BHE35 L BEA2ME, REbNS.
# 4.5. RO sMp I2% LT, CDer’}(B, M) C LDer’(B, M).

Ih®R23E, BR central A-derivation XK left A-derivation @ 5 OB H D
THHELEADIOES, ROBBRYPOAFERLTHEY, HKRY. TOEBOLS
IZ, K left A-derivation IZ5@% ® A-derivation ZXH: S8 54T, BEICHRED (3] iod
WTEBINTWEDOTHIH, HIEOMEEATRT 52 LR TE TV eh otz Fhdt
central A-derivation Z Rl THODOTERTED LS ILRHT=DTHS.

ER 4.6. t£BOD gM IZX L, WHBARY L.
LDer’y(B, M) =~ CDer}(B, Homz(B, M))
p — [p -]



5 BERIZLHHM

EE 5.1. B OFFT e XL,

A, = eB(1 - e)BeUeAe CEB &Nz eBe DEHR

Ay = (1—-e)BeB(1 —e)U(1—e)A(l —¢) TEBRENT (1-€)B(1 —e) DRIB
EBLE, Opa = Wpeay X Ni-op-aian THD.

EY B, eB(1—¢), (1 -¢)Be LV IHTHRRL LWL ZBHRMATLED. OE
BRENLDNS.

A 5.2. d € CDer’(B, M) & B ORS¢ ioxf L, RABKRILT 5.

1. d(e)=0
2. em=me (VYmé€ Bd(B))
3. d(Ble, B]) =0

§15.3. B=M,(R) ISR (r>1) = Q3,=0 (V4,Vn)

6. KAHLER MBEDZLET

ROBXOEHOBARIREFASROTRARH THELT5. ZOLE, d), 0 €
CDer’y(B, O p) s, BE42 £ 9, HEROMATHHTRICR S & 5 2K B BFER
Bl Qn 0y, - O BEETS.

9Ba

A—)B-—)QEM

T
A y B' > Qpejar

d;‘)l 74

UTFCiR, BERARER ASBAC Las&nzERLTERS.

HRD cMc I3t L, ROZELRFIEBS.
) 0 — CDer}(C, M) S CDer(C, M) 2B CDer’,(B, M) %£
LiL, oM I3 L, ROBRINIER & IZIRE 22V,

0 — LDer}(C, M) S LDer%(C, M) 2B LDer’(B, M)
EEL, n=108B8KE, LRFILELTHY, KOE CNEOZLRFNEIND.
Cosyyn — Uy —2 QLy — 0 52
cQuw — Q) (w)

ShiE, TRROSAIHE L IHRENE. BRI LT, B&R5 (1) P oROBEFES
5. R Qp, OTUMBRER LI, BLL) bRV L THE.



EE 6.1. XIZAAC hBOTLRFITHS.

nll
Co®sNpa®C ~— O, —50%, — 0 %2

cRuw®c — Q) (w)e

Qn
6.2, O3y ~ ——A
S C/B Cd?;/Aﬂ(B)C

EBE63. BOATTNIICLAHABME B &L, 3: BB 2ARL2EHRETS. =
DEE, RiXME BMBEORLERFITHS.
I — Bes0,esB — 03, — 0 %&£

g+ — 1@dy,n)01

64 EHCINDHZTNDLET,
Q34
oL~ Q3. ~ ———— Bd% (DB = d% (1) +IQ% 4 + %4l
BlA B/(af{A)+I) BdZ/A( I) B B/A( ) B/A( ) B/A B/A

7. itk DERIVATION DIEE

AHTH, REARNES ASBAC LARS A 2BEELTELS. B O central
FE i3 left A-derivation # C E TCHETEANEWOIRHBEL2ELS. RIZERTHS.

i 7.1. ®HG6.1D F:C®p0%,,®3C - Ny, cQwC M (W) KON,
RABRLY AL,
1. B »5fR C 18 ~D n & central A-derivation 133 <*T C £ TERTEHZ L &,
F 5 split THAMHETHAZ & LIXFEETH 5.
2. B b #{l] C INBE~D n & central A-derivation ® C ~DIERITH 2 —> L2
TLE, FRERTHIZLERRETHS.

W 7.2. f:CO5 M, = Wypy cOw N (w) KAVT, RERY L.
1. B h6E C NBEE~D n & left A-derivation 13+ T C FTIERTEDI L L, f A8
split T2HNTCHDZ & LIIFRUATH .
2. B o E CMBE~D n K left A-derivation D C ~DERITFL — DL MR L
L, HREeERTHAI L LIIRETHS.

LD F & fOrpbYELT, ROERMHD.

EE 7.3. RKiITRMETHS.

1. F 124,
2. f IXEH.
3. QE/B = 0.



TRBOREE, ROEERMONTVS.

TR 7.4. (P - B [15]) C/B BTRBONRILATHY, 5C HNTETHBR LI,
fHARNERTHS.

ChicHYTARERELZEHICL TV IONN, EERRRB LA TV,

8. SYWEILK L #isESRERLK

EE 8.1.
1. (PE-FHF[6), ET [11) B/A : SHEX < J» B, B PHET
2. (Sweedler [20])) B/A : SIFESEMK <= J  pB®a Bp ? small 5ME

B/A BEOHRRIERDHE, LOEBRITERDOER L —KTS.
SR RICHVWTIHE, KROBBEICRY A TW3.

I8 8.2. B/A BYMILR2HIE, ETOHERE n IKHLT Q}), =0 THEM

AV (8] IKBWT, n =1 KIBETAEE LV I LASRENSE. B BTHRR A L0S5%
B|O L & I, Sweedler [21] IKBWT, 0, =0 = O, =0 (Vn)) KFREATNS.
T, BEROBAIT, MBS RELV. %/, B RTRRT, A O LRABERS
i, R 8.2 DUNEIIT 5 2 & AL TS (3 [14)).

SFESBHIERITOV T, ROMBICR Y A TV,

fEifE 8.3. B4 B iTHWT [1®1, Bl, =0 25 BARH n BRdHiE, B/A iTMidEsE
i1 920

ZHIZDOWTH, ROERBHS.

il 8.4. B/A HHFEIHILKA2 BIE, RBALY LD,
1. |B, BA) i B DRBEIEEh 3.
2. £ D pMp ZH L, (BMAB, B4] i pMp ® Jacobson REILEZH 5.

LT, ROBEFAVSRTHS.
85 8.5. \MaiixtL, MA={meM|[m, A|=0} LK.

#HB8.41Z1X BA AN TWADT, BIES3 IZT—ARITIIELL WL SIcBbha. £
TKROBE, 5FEL W >THREHES.

EE 8.6. B AR A LOSTROES, MESIIIELV:.

 LOHBERTETROREIL, FIH 8.3 DHMEILTH Z e BASN TV S (Sweedler
[21]).
TROMBEICE L EREHITS.



il 8.7. BRAY n T L, KIIFMETHS.

1. QEIA = 0
2. CDer’}(B, M) =0 (VaMp)
3. LDery(B, M) =0 (VaM)

4. DE[A(Mr N)=HomB(M1 N) (VBM) BN)

il 8.8. B n> 0 IZX L, RIZFAMETS .
1. B BIZBWT [1®1, Blp41 =0
2. [M4, Blnyy =0 (V 8 M)
3. CDer’}(B, M) = Dera(B, M) (¥ 5Mp)
4. LDer}(B, M) = Hom%(B, M) (VpM)
5. D3,,(M, N) = Homa(M, N)  (VM, N)

# 89 RURNEBER o: A BILHL, KIFHTH 5.

1. a ITROBEIZI517 D epimorphism

2.J=90

3. MA=MP? (¥ 5M3)

4. Homs(M, N) = Homg(M, N) (VpM, gN)
5. Ders(B, M) =0 (Y5 Mp)

ZORIIBEMTHB N, 2 ~ 5 ORMEEIT, GB8.7 LMESS2EDEDIEITL-T
L¥EMNB.
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Crossed Product Orders over Valuation Rings*

John S. Kauta

Abstract

Let V be a commutative valuation domain of arbitrary Krull-dimension (rank),
with quotient field ', and let K be a finite Galois extension of F with group G,
and S the integral closure of V in K. If in the crossed product algebra K «G the 2-
cocycle takes values in the group of units of S, then one can form in a natural way a
“crossed product order” S*G C K *G. In light of recent results by H. Marubayashi
and Z. Yi on homological dimension of crossed products, we would like to discuss
necessary and/or sufficient valuation-theoretic conditions, on the extension K/F,
for the V-order S * G to be semihereditary, or maximal, or Azumaya over V.

In this paper all rings are associative with a unit element. If A is a ring, J(A) will
denote its Jacobson radical and the residue ring A/J(A) will be denoted by A. A ring A
is called left hereditary (resp. left semihereditary) if every left ideal (resp. every finitely
generated left ideal) of A is projective as a left A-module. An analogous definition holds
for right hereditary (resp. right semihereditary) rings. A ring is called hereditary (resp.
semihereditary) if it is both left and right hereditary (resp. semihereditary). Let V be a
commutative domain with quotient field F and let @ be a finite-dimensional F-algebra.
A subring R of Q is said to be an orderin Q if RF = Q. If V C Z(R) then R is said to
be a V-orderif in addition R is integral over V. If R is maximal with respect to inclusion
among V-orders of @ then R is called a mazimal V-order (or just maximal order if the
context is clear).

In this paper, V will denote a valuation ring of arbitrary Krull dimension, unless
stated otherwise, with quotient field F', and K/F will be a finite Galois extension with
group G. Let S be the integral closure of V in K, and U(S) its group of units. Now
consider a normalised two-cocycle f : G x G — U(S), that is, a function satisfying
o(f(r,1)f(o,7y) = f(o,7)f(o7,7) forallo, 7,7 € Gand f(1,0) = f(0,1) = 1forallo €
G. From such a cocycle we can form a crossed product order, given by S*G =Y .- Sz,
with the usual rules of multiplication (z,s = 0(s)z, for all s € S,0 € G and z,z, =
£(3,7)Z,y). Since for all s € S and ¢ € G we have that (sz,)/% = [[I°"! ¢i(s) f(c*,0) €
S, and S is integral over V, it follows from [1, Thm. 2.3] that S*G is a V-order in K'*G.
If f =1, then S* G becomes a skew group ring, denoted by So G.

All notions regarding valuation theory are as defined in [4].

A lot of the theory of crossed product orders is known when V is a DVR. For example,
in [2, Cor. A5 & Prop. A.6] it was proved that S o G is a maximal order if and only if
(K,W) is unramified over (F,V) and in [9] it was shown that if K/F is tamely ramified

*The complete version of this manuscript will appear in the Bull. London Math. Soc.




then S * G is hereditary. The converse of the last statement, namely that if S * G is
hereditary then K/F is tamely ramified, does not hold, as will be shown in_this paper,
unless the residue ring V is perfect [5, Thm. 2] or the factor set f is trivial [3, Cor. 3.6]. In
this paper, we aim to generalise these results to the case when V is not necessarily a DVR
and the factor set f is not necessarily trivial. We employ recent results by Marubayashi
and Yi [6, 10] on homological dimension of crossed products, and this greatly simplifies
our proofs.

The author wishes to thank Hidetoshi Marubayashi for bringing to his attention recent
literature on this subject, and for his careful reading of the complete manuscript.

Since S is a commutative semihereditary semilocal ring, the following theorem is es-
sentially a restatement of [6, Thm. 2.9].

Theorem 1 Let V be an arbitrary valuation ring. Then S o G is semihereditary if and
only if K/F is tamely ramified and defectless.

Given z € K, we define its trace w.r.t. the extension K/F by the usual formula:
ti/r(Z) = 3 ,ec 0(z). Note that since V is integrally closed, we have that tx/r(S) C V.
Now the proof by Rosen [8, Thm. 40.13] carries over to the case when V is not necessarily
a DVR to establish that S oG is semihereditary if and only if there exists in S an element
of trace 1. Note the terminology difference: what [8] refers to as twisted group rings are
skew group rings in our case, since the twisting is trivial, i.e., f = 1. Our terminology
usage is in line with that of (7).

Thus we obtain the following result of independent interest, which generalises [3, Thm.
3.2].

Corollary 1 If (K,W) is a finite Galois extension of (F,V), and S is the integral closure
of V in K, then K/F is tamely ramified and defectless if and only if tx/r(S) = V.

The following theorem is a generalisation of two classical results by Williamson and
Harada. The theorem is proved by modifying, whenever necessary, the proofs of {9, Prop.
1.3] and [5, Thm. 2]. Here and elsewhere the results in [6, 10] enable us to extend the
classical theory to the non-Noetherian setting.

Theorem 2 We have:

(a) If K/F is tamely ramified and defectless, then J(S*G) = J(S)* G and Sx G is
semihereditary.

(b) If SxG is semihereditary and V is a perfect field, then K/F is tamely ramified and
defectless provided that V is a DVR or J(V) is a non-principal ideal of V.

REMARK. By combining Theorems 1 and 2(a), we have generalised the main theorem
in Section 1 of [9], which states that when V is a DVR, then S x G is hereditary for every
factor set f if and only if K/F is tamely ramified. We recall that in the classical setting,
K/F is always defectless.

We will see examples at the end of the paper which suggest that Theorem 2 may not
be improved beyond the form it currently is in.



Corollary 2 Let K/F be tamely ramified and defectless, and suppose J(V) is a non-
principal ideal of V. Then

(a) S*G is a semihereditary mazimal order, and
(b) if V is rank-1, then S 0 G = Endy(S).

REMARK. We suspect that for any V, Endy(S) is a V-order in M,(F), wheren =| G |.
If this is indeed the case, then S o G = Endy(S) whenever S o G is semihereditary and
J(V) is not a principal ideal of V. When V is a principal ideal of V, one cannot always
determine if S * G is a maximal order, unless the cocycle f is explicitly known (see the
examples below).

Recall that a V-order R of a central simple F-algebra, where V is a valuation ring
of F, is Azumaya over V if it is a finitely generated V-module with R/J(V)R a central
simple V-algebra.

Theorem 3 The order S * G is Azumaya over V if and only if K/F is unramified and
defectless.

The converse of this statement, namely that when K/F is unramified and defectless
then S * G is Azumaya over V, is more or less well known.

We end by giving examples, in every characteristic, that exhibit some limitations to
this theory of crossed product orders.

ExAMPLE 1. Let F = Q(t), a function field in one variable over the field of the
rationals. Let U} be the ¢-adic valuation ring of F, and set V = {z € U, | z+J(Uh) € Z,},
where Z, is the 2-adic valuation ring of Q. Let K = F(v/%), a cyclic extension of F with
group G = {g). Let W be the unique extension of V to K. Let f € Z%(G,U(W)) be
defined by f(0,0) = -1, f(1,0) = f(o,1) = f(1,1) = 1.

It turns out that S G is an invariant valuation ring of K #G, hence is semihereditary.
However, although V is a perfect field, K/F is not tamely ramified.

Now let W) be the unique extension of U/; to K. Then W) *G is an invariant valuation
ring, being an overring of S*G in K *G. We see that while W) *G is a maximal U;-order,
in the classical sense of the term, (K, W) is not unramified over (F,U;), and W, oG is
not a maximal U;-order.

The following example, communicated to the author by P. Morandi, illustrates a sim-
ilar phenomenon in positive characteristic.

EXAMPLE 2. Let L be a field of characteristic p > 0, let FF = L((z))((y)) be the
iterated Laurent series field in two variables over L, and let K = F(t) be the cyclic
extension of F satisfying t» —t = 1/y, with group G = {0). Let V be the standard rank-2
valuation ring of F, and W the extension of V to K. Let f € Z*(G,U(W)) be defined
by f(of,09) =1for i+ j < p, and f(o!,07) = 1 — z otherwise, where 0 < ¢,5 < p.



Again, it turns out that S * G is an invariant valuation ring of K * G, hence is
semihereditary. But K/F is not tamely ramified. Note that we may choose L (= V) to
be a perfect field.

Let U; be the DVR of F containing V, and W, the extension of U; to K. Then W *G
is an invariant valuation ring, being an overring of S*G in K*G. Observe that (K, W) is
not tamely ramified over (F,U;). Thus the converse of the result by Williamson [9, Prop.
1.4] does not hold, and that we may not drop the perfectness assumption in Harada’s
result [5, Thm. 2]. Also, note that while W) * G is a classical maximal order, W; o G is
not even hereditary.

We conclude that properties of the order S * G cannot always be solely determined
by the nature of the extension K/F, but that one has to consider the 2-cocycle f as well,
and conversely.
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PRESENTATIONS OF TORUS INVARIANTS IN
PARALLELED LINEAR HULLS AND THEIR APPLICATIONS

HARUHISA NAKAJIMA

ABSTRACT. Let G be an algebraic group such that G° is an albegebraic torus defined over an algebraically
closed field K of characteristic zero and suppose that G = Zg(T). Let R be an affine factorial domain over
K with the trivial unit group on which G acts rationally as K-automorphisms. For a linear character x of
G, we study on the RG-module R, of all x-invariants and generalize the criterion in [N1] for R, to be a free
RC%-module of rank one, without the assumption on finiteness of G. Furthermore, we extend H.P. Kraft's
presentation of torus invariants (cf. [Kr, W]) to this R with the G-action. This result can be applied to
the study on coregular representations of reductive algebraic groups of certain types. In fact, we determine
coregular representations of reductive groups whose semisimple parts are simple algebraic groups of type Fq.

1. Introduction

In this paper, all algebraic varieties are defined over an algebraically closed field K of characteristic
2ero. Without specifying, G (resp. T) will always stand for a reductive algebraic group (resp. connected
algebraic torus). For an affine variety X, O(X) denotes the K-algebra of all regular functions on X.
When a regular action of G on an affine variety X (abbr. (X,G)) is given, we say X is a G-variety and
define O(X)€ to be the K-subalgebra consisting of all invariants of G in O(X). The action (X, G) is said
to be stable, if X contains a non-empty open subset consisting of closed G-orbits. Recall that X is said to
be conical, if O(X) is equipped with a positive graduation O(X) = @5, O(X)i such that O(X)o = K.
In this case, we say that an action (X, G) is conical, if the induced action G preserves the graduation of
O(X). We denote by X//G the affine variety associated with O(X)S, i.e., the algebraic quotient of X
under the action of G and by 7x ¢ the quotient map X —» X/G. In the case where O(X)C is affine, the
action (X,G) is said to be cofree (resp. equidimensional), if O(X) is O(X)C-free (resp. if X — X/G is
equidimensional). When O(X)€ is a polynomial ring over K, (X,G) is called coregular.

Let %(G) stand for the rational linear character group of (not necessarily connected) G over K which
is regarded as an additive group. For any x € X(G), we set

O(X)y = {z € O(X) | o(z) = x(0) - z for any o € G},
whose elements are called x-invariants or semi-invariants of G relative to x in O(X). Clearly O(X),, is
an O(X)%-module. We have already shown

Theorem 1.1 (cf. [N4, N6]). Suppose that G is connected and let X be an affine conical factorial
variely with a conical action of G. If the action of G on X is eguidimensional, then O(X)C is factorial
and O(X)y is O(X)C-free, for any x € X(G) such that O(X), - O(X) -y # {0}.

In [N1], we have cbtained a criterion O(X)y to be a free O(X)C-module of rank one in terms of the
special semi-invariant g, under the assumption that G is finite. Then we come up with
Problem 1.2. What is a generalization of the criterion mentioned above without finiteness of G ?

This problem seems to be closely related to the following example which is generalized in [W] for
representations of tori:
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Example 1.3 (H.P. Kraft [Kr]). Let V = K3 and suppose that T} = K acts on V via the linear
representation

tt* 0 0
Ti3t— | 0 t?7 0 |eGLyK)
0 0 v
for a, B, v € N such that ged(e, 8,7) = 1. Let W be a 7;-submodule K2 of V deleting the first coordinate
with the Tj-action

T at-—»(tp O)eGL,(K)
! 0 ¢

and put T} o = {s € T} | s = 1}. Then we have a natural isomorphism O(V*)T = O(W*)Tte,
Concerning this example, it is natural to ask

Problem 1.4. What is the reduced expression of semigroup rings ? Moreover, can we generalize Example
1.3 to in the case where affine factorial varieties with torus actions?

In Sect. 2, we summarize our partial answers to these problems. Our results can be applied to invariant
theory of certain representations of reductive groups over the complex number field C.

We denote by G' the commutator subgroup of G and use any of the notations p, (p,G) or (V,G) to
denote 2 finite dimensional linear representation p: G = GL(V) over C. For a closed subgroup H of G,
let ((V,G), H) denote the representation p|y. A representation (V,G) is defined to be relatively stable,
if the natural action of G on V//G' is stable (for properties on relative stability, see [N6]).

As a partial affirmative answer to the conjecture brought up by V. L. Popov [P1] and by V. G. Kac
[K] on equidimensional representations, we announce in [N5] the following

Theorem 1.5. Suppose that G is a connected reductive algebraic group whose commulator subgroup
is a simple algebraic group. If a finite-dimensional linear representation (V,G) is equidimensional and
relatively stable, then it is cofree.

In the case that G’ is non-orthogonal symplectic, it has already been obtained as a somewhat general re-
sult of [N3]. When G itself is simple, the result similar to this is shown by Popov [P2] and O. M. Adamovich
[A), and, moreover, cofree representations of G are determined by {P1] and G. W. Schwarz [S1, S2].

For a representation V of a reductive algebraic group G, the affine G/G'-variety V//G' is an affine
factorial variety with the torus G/G'-action. Under this circumstance, we study on the divisor class group
CI((V//G")//(G/G")) in Sect. 2. Consequently the classification of coregular representations of certain
reductive groups can be reduced to Theorem 1.5 and [Sm}. In fact, we can apply the answer to Problem
1.4 to classifying coregular representations of G such that G’ is a simple algebraic group of exceptional
types. The proof for F, is given in Sect. 3 and the author comes up with Problem 3.1 which generalizes
this result.

2. Paralleled Linear Hulls of Torus Invariants

In this section, let X be an affine G-variety with the trivial unit group, i.e., U(Q{X)) = K* and let
R denote O(X).
~ For P € Spec(R), we put DgP) = {0 € G | o(P) = P} and

Ic(P) = {0 € Dg(P) | olryp = ldpp),

which are called the decomposition (resp. inertia) group at B as in the case of finite group actions. Let
Ht, (X,G) be
{8 € Spec(O(X)) | (PN OX)®) = hy(P) = 1}.
Theorem 2.1 (cf. [N7]). Suppose that G° is a torus. The following conditions are equivalent:
(1) G =2¢(GY%. -
(2) The equalities
e, 7x,u(8) =8Iu()lx) (V€€ Hty(X,H))



for reduced ramification indices hold for any closed subgroup H of G containing Zg(G®) and for
any affine normal irreducible H-variety X whose action is effective and stable.
(3) For any H and X as in (8), there ezists a normal finite subgroup N of H such that (X//N, H/N)
is divisorially unramified, i.e., e(n, mxyn.u/n(N)) = 1 for any n € Ht,(X//N, H/N).
The proof of our main result in this section is based on this theorem, and so, from now on to the end
of Theorem 2.5, we suppose that G® =T and G = Zg(T).
Let Ht; (R) = {*B € Spec(R) | ht(p) = 1} and

Hu(R), = {Q € Hty(R) | 2N RS = p)
for p € Ht; (RT). We say that a subset I of Ht,(R) is G-removable, if I' C Ht, (R)T and
I'nHt(R), ¢ Hty(R),

for all p € Ht;(RT), where Ht;(R)7 denotes the subset consisting of all T-invariant prime ideals in
Ht,(R). It should be noted that Ht,(R), # @ (cf. [N2]). For a subset I of Ht;(R), let Gr denote the
intersection NpyerGy of stabilizers Gy's of G. Let Rx(G) denote the subgroup of G generated by all
Ig(2), 2 € Hty (R). Then Rx(G) is a normal subgroup of G and it is finite on X (cf. [N7)).

Theorem 2.2. Suppose that X is factorial and (X,G) is a stable action. Then
CI(R®) = CI(RY) = CI(RSF)

for any nonempty G-removable subset I' of Ht, (R). Especially if T is a mazimal G-removable subset,
then these class groups are canonically isomorphic to ¥(Gr/Rx(Gr)).

For x € X(G), let A be x|y (c) € E(R(G)). In [N1], we associate the element g, in R with A satisfying
Ry = RRx(G) . g, Since g is a semi-invariant of G, let ¥ be a character in X(G) such that g, € R;.
Then we generalize the main result of [N2, Theorem 2.9) as follows:

Theorem 2.3. Suppose X is factorial and (X, G) is a stable action. For any x € X(G), the following
condilions are eguivalent:

(1) R, is a free RC-module of rank one.

(2) There exists a nonzero element f in R,_3 such that the set

{2 € Hy(R) | va(f) > 0}

ts G-removable.

We choose a finite-dimensional G-submodule V with a K-basis consisting of prime semi-invariants of
T which generates R as a K-algebra. Let ¢: O(V*)(= Sym(V)) = R be the canonical epimorphism
associated with the embedding ¢*: X < V*. A pair & = (W, {w;}) is said to be a G-admissible couple
in V,if W is a G-submodule of V, {w; | { € I} are semi-invariants of T in W and the equalities

W+ Kui=Wo@Kuwi=V
i€l i€l
hold. For this A, let ga : O(V*) = O(W*) be the K-epimorphism defined by ga|w = Idw and ga(w;) = 1
(i € I). We say that A = (W, {u;}) is a paralleled linear hull (abbr. PLH) for (X,G), if there exists a
K-morphism &, : O(W*)Tt«} - RT and ga induces an epimorphism O(V*)T — O(W*)Ttv:} such that
da0ga = ¢ on O(V)T.
Using Theorem 2.3, we obtain

Propisition 2.4. Suppose that X is factorial and (X, G) is stable. Let A = (W, {w;}) be a G-admissible
couple of V. Then A is a PLH for (R,G) if and only if so i3 for (V,G).

From this, we can prove the following theorem which partially generalize Theorem 2.2.



Theorem 2.5. Suppose that X is factorial and (X,G) is stable. Let & be a PLH for (X,G). Then:
(1) ga induces the isomorphism O(V*)T = O(W*)"iTwi and O(V*)C = O(W*)"Cwi,
(2) Suppose that A is minimal such that A is a PLH for (X,G). If G is diagonal or if (X,G) is a
conical action of a conical variety and V is a homogeneous minimal submodule of R, then

CI(R®) = CHO(V*)%) = X(G/Rx(G)).

For an algebraic action (X,G) on an affine normal variety X, a prime element f in O(X) which is a
semi-invariant of G is said to be (X, G)-blowing up (abbr. BU), if ht((f) N O(X)€) > 2 and, otherwise,
f is said to be (X, G)-no blowing up (abbr. NBU).

Hereafter we suppose that G is a connected reductive algebraic group over C and (V,G) is a finite-
dimensional complex representation of G. Let V;, 1 £ i € n, be irreducible components of (V, G) satisfying
V=VeV,d. . -@V,. Weidentify O(V) with O(V;) @0 (V2)®- - - ®O(V,,) and regard this as a Zg-graded
algebra over C in a natural way, where Zg denotes the additive monoid of non-negative integers. For any
subset J of {1,...,n}, O(®;csV;) is usually regarded as a C-subalgebra of O(V) through the canonical
projection V — @;esV;. The vector space O(V)$ /(O(V)$ )? is Z§-graded and a G/G'-module. So,
there is a minimal system of Z3-homogenecus generators of O(V)€' consisting of semi-invariants of G.

In this section, let {fi,... fm,01,--.,01} denote a minimal system of multihomogeneous generators
of O(V)¥ consisting of semi-invariants of G and suppose that f;, 1 < i < m, are (V,G)-BU and g;,
1 <j <, are (V,G)-NBU.

Recall that the representation (V, G) is defined to be relatively equidimensional, if the action (V//G',G)
is equidimensional. Applying Theorem 2.2 to X = V//G' with a torus G/G’-action, we have

Theorem 2.8. Suppose that (V,G) is relatively stable.
(1) If, for a subset J of {1,...,m}, f; (j € J) are algebraically independent over

C[{f) Ij € {1)-"-m]\J}U {gh'-'lgl}l
denoted to B, then
BlNiesGry) oWw)°
and f;, j € {1,...,m}\J, are (Spec(B),N;csGy,)-BU and g;, 1 < i <1, are (Spec(B),NjesGy;)-
NBU.

(2) If V//G is factorial, then (V,NZ,Gy,) is relatively equidimensional.
The next result follows from Theorem 2.6:

Theorem 2.7. Suppose that (V,G) is relalively stable and coreqular. Then there exist a subset I, of
{1,...,1} and homogeneous semi-invariants h; € O(V)\"5165) of G indezed by the set I, satisfying the
Jollowing conditions:

(1) Cl{f1y--- Fm}U{h; | 5 € 11}] C O(V), which is denoted to A, is a polynomial ring over C of

dimenston §(I,) +m.

(2) Az, 5, = (OV) =1y .

(3) A° =O(V)S.

We say that a homogeneous element f € O(V)€' is a mixed invariant of G', if f ¢ O(V;) = O(V) for
any i and say that f is a fundamental invariant of G', unless f € (O(V)$')?
Proposition 2.8. Suppose that (V,G) is relatively stable and O(V;)® # C for anyi. Let f € O(V)S bea
fundamental homogeneous invariant of G’. If f is mized and a semi-inveriant of G, then ht((O(V)-£)€) =
1.

Proof. Suppose that the assertion is false. Then f € O(V), for some x € X¥(G). Since f is mixed, we
have a non-zero vector (ay,...,as) € Z§ such that

n
xX= Zai'Xia

i=1



where x; satisfies V, 2 Vi. Then there is a number { € N such that O(V);., 3 J{¥ for some s; € N and
all ¢. However, by Theorem 2.3 , we have
O(V)x =O(V)C - f'.

Thus [T, (f*)° is divisible by f in O(V), which is a contradiction. O
Corollary 2.9. Suppose that (V,G) is relatively stable and O(V;)S' # C for all i. Then there ezists a
subset J of {1,...,n} satisfying the following conditions;

(1) O(V) & O(8;eV;) =Clf1,-. ., fm)

(2) OV)¥ =C|f] for D€ J

(3) O(@jesV;)® Fgifor1<i<l.
Cosequently (®;e;V;,G’) is coregular.
Proof. Let J be denote the set consisting of all i's such that O(V;) N {fi,..., fm} # 8. Suppose the
assertion (1) is false. Then, for a subset J of J, we may assume that O(®;esrV;)¢ 2 @;es O(V;)S
and O(QjeJa’V,-)a = ®jesoO(V;)¢ for any proper subset Jo of J'. Exchanging indices of f;, we assume
that O(V;)® 3 f;. There is a fundamental homogeneous invariant k of G’ in O(®jes:V;)C which is not
contained in ®;¢,0(V;)¢ . Let u be the maximal index in J* and put

Q= [] Gy
F€I\{u}
Then ht € O(V)9 for some ¢ € N. By Theorem 2.6, we see that ht((f.)9) > 2 and
O(V)kxalo =O(V)®- £

for any k € N. Because h* is contained in 3, oy O(V )iy, |o+ We see that k' is divisible by f, in O(V),
which is a contradiction. .

From (1) and (2), we only note that O(®;¢;V;)¢ = ®;¢s0(V;)¢', which is a polynomial ring generated
by an algebraically independent system {f;,...fm} over C. O

3. Classification of Coregular Representations

A representation (V,G) is said to be quasi-coregular, if there is a closed subgroup L of GL(V) such
that G|v is a subgroup of L of finite index and (V, L) is coregular.

In this sction, we will consider the following problem and give an affirmative answer to this in a special
case.

Problem 3.1. Suppose that G’ is a simple algebraic group and that each irreducible component of (V, G)
has a nontrivial closed G’-orbit. Furthermore suppose that (V,G) is relatively stable and coregular. Then,
is there a closed subgroup L of G containing G’ such that [L : G'] < o and ((V,G), L) is coregular?
Espedially, is ((V, G),G') quasi-coregular?

A representation (V,G) is defined to be relatively irredundant along trivial parts, if (V//G',G) is
non-trivial and (VS = {0} or) Glv/sc- is never equal to the inner direct product

(Neeqvivyyia (Glvyser)s) x (Oseu(Glvyset):)),
for any nonzero subspace U of V',
Proposition 3.2. Suppose that
Glvye = ( n (Glvyer)s) X(n (Glvye)s)
e(V/U)/iG €U
for a subspace U of VS . If (V,G) is relatively equidimensional and relatively stable, then so are both
actions (V,Neeqvynya(Glvyser)s) and (V, Niev(Glvya)s)-

Proof, Put X = V//G' and T = G/G’. Since (X,T) is a conical equidimensional stable action on a
factorial conical variety, we can apply the structure theorem (e.g., Theorem 1.1) of cofree actions to this
case and obtain the assertion. O



Corollary 3.8. Suppose that G is connected and (Vg //G',G) is non-trivial. If (V,G} is relatively
equidimensional and relatively stable, then there ezists a closed connected subgroup N of G satisfying the
conditions as follows;

(1) N 2 G' and Nlv,,, yo' = Glvo e

(2) (V, N) is relatively equidimensional and relatively stable

(3) (V/V¥,N) is relatively irredundant along trivial parts. O

In [N5], we briefly announce the next result which is fundamental in the study on Problem 3.1 for
exceptional types. The number of basic representations is defined in [T].

Theorem 3.4. Suppose that G’ is a simple algebraic group of exceptional types. If (V,G) is relatively
equidimensional, relatively stable and relatively irredundant along trivial parts, then the representation
(V,G") is can be identified with one of the following representataions; (m - $1,G3) (m £ 2),($:,F4),
(m " ¢l QQB:EG) (m S l)l (Qla Eﬁ), and (QI|E7)'

In this paper, we give the following affirmative answer to Problem 3.1 in the special case.

Theorem 8.5. Suppose that G’ is a simple algebraic group of type Fy. If (V,G) is relatively stable and
coregular, then ((V,G),G') is coregular.

Let f; (1<i<m),g; (1 <j<n)andy (1 <k <) be 23-graded elements consisting of semi-
invariants of G in O(V)S = OV )5 @O(VS ) such that {f1,..., fm}U{g1,...,9n} is 2 minimal system
of generators of O(Vg:)¢ and {3,...,u} is a C-basis of (VS')*. Suppose that all f; are (V//G',G)-
BU of codimension one and all g; are (V//G',G)-NBU of codimension one. Moreover assume that
{y; | 1 £ j < I'} is the set consisting of all elements in y;'s which are (V//G’, G)-NBU of codimension
one. Set M = np<,~5,G,,, and

H=( [ Gun( ) Gy)-

1SiSm rejgt
By (1) of Theorem 2.6, we immediately have

Lemma 3.6. Suppose that (V,G) is relatively stable. Then (V,G) is coregular if and only if so is
(v,M). O

In order to show Theorem 3.5, by Theorem 3.4, we may suppose the following condition:

(3.7) For any closed normal connected subgroup N of G containing G’ such that ((V, G), N) is relatively
equidimensional, ((V, G), N) is not relatively irredundant along trivial parts.

Lemma 3.8. Suppose that (3.7) and (V,G) is relatively stadle and coregular. Then
(1) (Vo //G', H®) is trivial.
(2) ((V,G), M) is coregular.
(3) Both ((V,G),H) and ((V,G), M®) are relatively equidimensional.
(4) ((VS',G), H®) is a stable action.
(5) Both V//H® and V//H are factorial.

Proof. Since (Vg //G', H?) is equidimensional and is not relatively irredundant along trivial parts, by
Corollary 3.3, (Vg //G’, H®) is trivial. The triviality of (Vg //G’, H®) implies (3). The assertion (2) is
easy and by this and the main resuit in [N4], we see that (V//G', H®) is cofree. Because the quotient
morphism V//G' = V//H® is NBU of codimension one (cf. Theorem 2.4), applying §2 of [N4] to the
cofree action (V//G', H?), we see that CI(V//H®) = {0}. O

Proposition 3.9. Suppose that the condition (3.7) holds and (V,G) is relatively stable and coregular.
Then, for any closed G'-orbit G' - z in the principal open subset(Vor)4,.4y.....1.. of Vo, the slice represen-
tation ((Vor)z, Hy) of (Ve,G), H) atz is coregular and the slice representation (Vg )z, G%) of (Vor,G')
at T is quasi-coregular. )

Proof. By (1) of Lemma 3.8, we easily see that, for ¢ € Vg, G' - z is closed if and only if so is H - z.
From Theorem 2.7 and the slice etale (cf. [L, S3]), we deduce that the slice representation (V;, H.) of



((V,G), H), which is also denoted to (V, H)., is coregular. There is a finite subgroup H; of Stabz (V')
normalizing G' such that H; - G’ « H and
Hy - G'lv, e = Hlvy o'
Since
(Vsz:) = ((VG'): ] Vclqu))
the slice representation ((Ve:)z, (H1 - G')z) of (Ver, Hi - G') is coregular (cf. [S1, S3]). Thus ((V,(H: -
G'):),G.) is quasi-coregular. As (H, -G')/G' is finite, we must have
(V.H, - G')s & To(V)/Te((Hr - G') - ) & To(V) /TG - 2) 2 (V,, G-

Thus the slice representation (V,G’); of (V,G) is quasi-coregular. O

Corollary 3.10. Suppose that (3.7) holds and m = 1. Let U be the irreducible subrepresentation of
(V,G) satisfying Sym(U*)¢ = C[f,]. Then, for a non-trivial closed isotropy subgroup L of G' on U, the
gquotient representation ((Vg: /U, G), L) is quasi-coregular.

Proof. We identify (U @ Vg /U,G) with (Vg,G) and, through this decomposition, regard O(U) as a
C-subalgebra of O(V). Let G’ - z be a non-trivial closed orbit in U. Then G' - z C Uy,. By Proposition
3.9, the slice representation (Vg , H); is coregular and hence, since

(VG'l H) =] (U'H)z & ((ch/U, G), H:):
the quotient representation ((Vg/U,G), H.) coregular. Then, as in the proof of Proposition 3.9, we
similarly see that ((Ve: /U, H,),G") is quasi-coregular. O

Suppose that Vg = V@ Va & .- & V, for irreducible representations (V;,G) and regard f; and g;
are Z3-homogneous elements in O(Ver) = O(V1) ®c ®c -+ @c O(V,) in a natural way. Let Ipy denotes
the index set consisting of all i's such that O(V;)S', which are regarded as C-subalgebras in O(V)%',
contain the (V//G',G/G')-BU eclements of codimension one which are members of a minimal system of
homogeneous generators in O(V)%.

Proposition 3.11. Suppose that (3.7) holds and G’ is a simple algebraic group of type Fy. If Ipy is
non-empty, then (®igrp, Vi, G') is irveducible and its simply connected covering can be identified with
(¢1|F4)'

Proof. For i € Ipy, we have dim(V;//G') = 1, and by this equality and [KPV], see that the simply
connected covering of (V;,G') is equivalent to (®,, F;). We see that the isomorphism

o P v = Q ow)®
i€lgy i€lpy
in Corollary 2.9 implies §(/py) =1. O
Consequently, Theorem 3.5 is the consequence of Theorem 3.4, the next result and [S1].

Proposition 3.12. Under the same assumption as in Theorem 3.5, we suppose that (3.7) holds and
m>1. Thenm=1and (Vg ,Fy) C(2:9,,Fy).

Proof. By Proposition 3.11, we must have ((W,G),G’) = (#;,F) and m = 1. Let G’ - z be a principal
closed orbit of (#1,F2). Then by [P2] and [S1], we see that G’ is connected and can identify G- with
D, (cf. [EL]), which satisfies

(($1,F4),Dy) = (%) © 03 © 4 ©26,,Dy).

Suppose that (Vo /V1,G’) contains ($3 = Ad, F,). Clearly ((Ad, Fy), D;) 2 (Ad,D4) and by Cheval-
ley’s restriction theorem, we have

dim(((Ad, F1),Do)/(Ad, D¢))P* < dim(Ad, F¢)™ - dim(Ad, D)™ =0,



where T; denotes the maximal torus of Fy in Dy. Since ((Ad,F;), D) must be coregular (cf. Corollary
3.10) and (Ad @ &,,Dy) is maximal coregular (cf. [S1]), we deduce

((Ad, F‘)l D4)Dc g (Ad ® ‘pl ) D4)'

This implies dim((Ad, D¢)p,) < 36, which conflicts with dim F4 = 52 and dim((Ad,F,)F+) =0
Since ((%) - ¥, F4),Dy) contains the non-coregular representation (&, -6 @ ®3-§ & ¢4 -4,Dy) fora
nontrivial irreducible subrepresentation (4, Dy) of ((¢,F4),Dy), we see that

(Vor/V1,F4) 2 (®1-4,Fq),
for any irreducible (1, F4). Obviously (8- Ad,D,) is non-coregular for any irreducible (6, D4), and hence
(Yo', Fq) 2 (22-4,Fq).

Consequently each irreducible component of (Vg /V),Fy) is isomorphic to (®,,Fy), if it is non-trivial.
On the other hand
((2'4’1,F4) = (2‘4’] 62‘@3 @2'4’4 @60],])4)

is not coregular, and we must see that (Vg:,G’) is a subrepresentation of (2-4,,F,). O

Remark 3.138. As in the proof of Proposition 3.12, we can similarly show that Problem 3.1 is affirmative,
under the assumption that G’ is of exceptional type.
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ROKZBRRAERETEO - REPHEROBRICOLNT!

OsAMU IYAMA

Abstract

We will study relationship between representation theoretic conditions and ho-
mological conditions for rings, which is in the same direction of [A1][ARo]. We
will treat some kind of Auslander conditions and r-categories which are additive
categories closely related to translation quivers. As an application, we will obtain
characterizations of finite Auslander-Reiten quivers.

0 BA 1miEE ¢ A Krull-Schmidt TH 5 & i, {£ED ¢ @ object 23, B HFD
B local T H#k72 object DHMEMICEIBTHAHEL BT 5, C D object M A3
MEERTTHS LIX, 8D ¢ D object BH3 M OEMEFICRETHAIEER
B3, BAKHL, ARERNE A-MEOEE prA & XbTEE, RO—M—FIEHN
#oh3,

c € (IEARET M 2# > Krull-Schmidt ) /FI{f > prA

l t
C(M,M) € (semiperfect &) /#& @ A 3 A

AXOBHE—ETR~RBZ L, ZORMEICHITAUTOLRGEOWEELXR<AIBHY,
[ARo|[A1| EDBRDOEEIZH D, EEBIL §6 CHEALNS,
(1) ¢ IcB¥ 3 RBRRORE.
(2) A ICB8F 34T v S—REEEE,
(3) ¢ ich¥ B Bt RM.
(4) A(C) I2BE T A& b ERIRIF.

(1) Tix, §5 TEHET DAL order Lo lattice DE ([A2]) & L THOEKTIT 2
J0 (2) Tit. §1 CEETIHELZA DHCAHSRICHET 4K ((AR][FGR]) 2# 5.
(3) Tit. EI simple C-MBDOB/ NIRRT 2 RG2H I, W §3 CTEHET S 7-
(13)) LPRZNAEEES. (4) Ik 3 A(C) 1. B C it LTEEZARER AR
quiver (AR=Auslander-Reiten) &b L, §4 CEENHFZXLNSD, ERHEEILL §4 T
E# X3, translation quiver LRI A3FM I T 7 ORELFH, ML EDER
B2XNRTHS,

0.1 -EEZHAT IO L MBICE <D, §5.2 CRBEIC. R-order A % isolated
singularity T dim R < 2 ®Ff lat A i3 7-BTH S5, HOBHBIHIZH D, Igusa-Todorov
X, "translation quiver @, #H& L FRMBEC X A REMRB” Th B r-species ([IT2]
Tt modulated translation quiver) 28 A L7, & r-species @ {28 L TiX. @ ® mesh
LFEEN D -8 M(Q) BERE K. THIREBRRKRIZHVWT[R|BG|IT2]S TR Mb
Ri=bDTHD, §8 ICBWT, 7T-species & D mesh BEEMHHICHY I 525, §8.5 ik
B2 mesh B2 FART H1-DICARLRLETHIFLB/KRLTRY, TOYH -EHE
HATIROBBTH 5,

0.2 FEHREBFMEAR EOFRERAR order ILBL T, £ OBREBMONTHEY,
FIX T/ oD D class DWW TIX, BLLSAMBE I TV 5 (|DK2|[HN3|[RR][ZK][S]
%) LHL, 2<HBRE2MMITICHELELHTIHERICR LV Bbh b, ATt
§6.3, §6.4 2BV T AR quiver # AV 7= approach #3433, FOEKUITFTBR L 12D

1 The detailed version of this paper will be submitted for publication elsewhere.




LR25, Bin, §6.3 iCBWTROME (P,) It T 58EEXE X 32 (13]. Thikk=E
o O—RPRHG L HBARMRGFLZERTIFICL>THENS,

(Pa) d RFEFEHERRBEHTR LD order A D AR quiver A(latA) & LTHEEREEN D
AR translation quiver %48 HERIFETIT &,

(Pg) RV (P;) OfEIEENEN [IT2] RV [RV) THA LK, (P)) o33 5R5ra07%
BRL [W] TEXHNTHARE, §6.4 TRAEIC, —BO (P) TRAOHAITIRE UL
WA RBICRE N5, FNIXES, 87, §8 TEHE LN 7B (45IC mesh ) IZBT
ARBEYAVTRRENS,

—% . REAAE EOFRARKOBRIZHV T, REBOREN 64 L7 Gabriel
quiver, BNHE % "quiver with relations” (X 3 FENRES AV LIATEY, Thit
hereditary 0¥z L TG ARNICH <, BES2N o EMEERT MR ED order i1, %<
DOEERIFEIC "quiver with relations” & L TIZB X #< . Gabriel quiver DFEHEIXHFE
D ZHRMIZHEEE L 2WRIZEDbh 5728, Gabriel quiver &% (quiver &5 RIXRI LT
X530 BANGRLZS AR quiver KLV EBEBB LGNS, TLARKBBEAR
HAREIZ % L, Gabriel quiver {2 &% approach X [BGRS| ¥ TTIRIER &N TV 34
IBbh 3, [IT2] 2 LiEDT- AR quiver DFAD & approach T2 YFix Hall U8
(IRi]) % & BIGE L= R ICREIREVWT —< THHRIB b D, KX T (Py) ICBERL
ToR R % §6.1 TE~3B,

0.3 85 TRAHRIZ, order IZxf LTk overorder 22 2 EMTFET . order A @
overorder I' 12 L. latT X lat A OEABIZR2 D5, ZOZH% T Y43 order @
RBERBICBWTERNRFEO—DTH D, ORI overorder 6K S lat A DHHYE
REROICERILTIENTE, rejected MHE & FEITh D (§3.1,85.3(2)). £ bIT §7
123V T AR quiver IZBIT 2 AADHBEKRMITEESDTIVESARLGNSD, Wi,
mesh BT 3 rejected MArBix. §6.3 DEAICHEWTAENLERIERT. i
£ DBE. §63 L §7 FMBADEBEICL Y. AlatA) b A REHETZEATE
(86.5), TOERICIEEZBEMETHD L Bbh3,

§7 THX coartinian (§2) % rejected HBDOARIZR>TV B, £ 5 TRWEEI (12]
THbh. TORKERIZI translation quiver £ additive function A38h., [B][RV][RVo)
DORERLLECBELTVWAREERLTEHL,

0.4 AXOERERIBVTIR, £EE (2) 2BV T gldimA < 2 &V ) RN HRE
LTW3, Zhi L9 BWKERTEOHE TEET HINIENICRKEVIETHS LB
bh3, #xiX. Cohen-Macaulay approximation ®# RFZHEE (Krull) KT order ix
ARLIADE >DTEEX TS NIDTREVWMALELTWS,

0.5 BBF #HE QI L. Q CEMENSAM Z-MBE (resp. BH abelian monoid)
% 2Q (resp. NQ) #L. Q 2 EREXRKEEL T 2Q LORME (, ) THRT. —F.
XezQiztL suppX :={Y € Q|{X,Y)#0} L B&. X, , X_eNQ ¥ X=X,~-X_
EWsupp X, Nsupp X_ =0 TEET S, HlxiE. Krull-Schmidt B ¢ 12517 5 object
DORIMEIL NI(C) THEABN D, F/<. B A @ Jacobson radical % Jy £ &7,

1 REOD—RBORHE

A% noether B. 05 A" I o ... % A-BE A OB/IARSRET S, A
2 (Ln)-%&H (In > 0) RWATEIL, I <! BERD i (0 < i < n) CRAIFBHE
3], Tic. A 2 k-Gorenstein (k > 0) Th5 L id. (I,1)-RENERD 1 (0 <1 < k)
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T ESh3PFEEKL, A D Auslander regular (resp. Auslander-Gorenstein) T
55 Lt gldimA < oo (resp. id s/ < 00 and id Ay < 00) MOEBED k > 0 (23 LT
k-Gorenstein TH 5 W% EIk$ 3 [AR|[FRG],

11 EZ (1) A S (Ln)-RMEEHETLESSRER, £ED APNE X RV
Exth (X,A) OEROES A8 Y o5, Exti(Y,A) =08 0<i<n CRUTAYE
THhB,

(2) (I, n)-ZRHFBHEIRERHBFTIRLVN, ROBBRILT S, (i) iX. k-Gorenstein BN
EA%F [FGR] R 1% dominant KIEDEEMFRE [H) 0—Mibr 51 3,

1.1.1 53 A % noether &35,
() Ln>04TRL. A B (Ln)-REEBEL, AP 3 (L)-ZEEELEEL. AP b
(I,n)-ZM 27,
(i) B 0=0y <, < <2, Ta;<i (0<i<n) ¥FB=TboicHL. ko
Rl (x) 2 A PTTUEL AP AR YRR,
(02 AI0 o' 5. % ANEE A OB ARSBLETDE, (A <a; H
0 <i<n fﬁzﬂe

2 BLOMBICET S EEXHIH

LAF ¢ it Krull-Schmidt B C skeletally small, Bl % object OFAASENREKSE L
FLEEL. 3(C) TEBAM object DRIBBDORTHREEXRTHICTS., (X, Y) T X »
5 Y ~® morphism DR TREERKL, fgeC(X,Z) Cfec(X,)Y) L gecY,2) D
BRERT,

c-mg Lit. C » % abelian group OB Ab ~O contravariant MIERF % EkT 3,
C-MgE M & M iZxtL. Hom(M,M') T M H & M’ ~0 natural transformation ¢ 5%
THEERTICL Y, C-HBEOE ModC 2185 (Al

BAF HC:C — ModC RU' H, : C = ModC” % H :=C( . X) RV H :=C(X, )
CEHET S, C-MEMPEBERTHILIL. HB X eCilHLERFI A, > M0
DBFEETHWLEKT D, OB HC (resp. H,) X, C »LHRERNE C-IB¥ (resp.
CoP-MEt) ORTE~ORIH Y& 2 2 EHKBEOHBEIZL 223,

BLF. Jo T C @ Jacobson radical, Bl% ¢ @ ideal T, fEE®D X € C ITAL
Je( . X) (resp. Je(X, )) # HG (resp. HE) @ radical (=2 TOEXEIMEORD
D) LRBZBRLOTHD, ZOR, BF S€:C - ModC RV S, : C —» ModC” %
S% = Hz /[ Je(, X) RO §F := HY [ Te(X, ) CTEBT D, THL S (resp. S) .
3(C) 75 simple C-INBE (resp. CP-MNEE) DRIBEOKTHE~DLHKE YL, LLTMH
WMot HS (resp. HY, S%, S¥) % Hy (resp. HX, Sx, §%) T& ¥,

pd M (resp. fd M) T C-MBE M ORI (resp. FHIIT) 2HFL, n20ITHL
T, 33(C) (resp. 37(C)) Tpd Sy < n (resp. pdSX <n) 223 X €3(C) &% &7,

LT T, "#5%E" LWHEIZIX, full Tho, FE, EfREUCHEHMEATFICBELTH
CTWBLD0HREHIPFT S, Wiz c OBFE L 3(C) PWAMWENC' —» I(C)
LY ——icHREL, TOHE%E S addS TROITHZT D,

C DM ¢ iox L, I T ¢ @ object % factor through 372 X 5 %2 morphism
SENLRD C O ideal EXRDOTHIZT B, Z DB, quotient category € := C/C' %
Ob(T) := Ob(C) RUT(X.Y) := C(X,Y)/I(X,Y) (X,Y € C) CE&ET 5.

C A% left artinian (resp. right artinian) TH23 &%, £ED X eCc oL Hy OF




EHRARTHHE, ¢ M artinian THD &iX. ¢ BEL & BIT artinian THIY, ¢/
A artinian OB, C' % C @ coartinian S L PEL, 3(C) DEBSIHE S A artinian
THd LI, ¢ :=add(3(C) — S) # C D coartinian FIETH LY L EKT S,

3 MRS

3.1 ¢ DEHE ' 5 rejected THD LiL, RERYTIETH D (cf. 5.6),
inclusion ¢’ — C K right adjoint ( )~ : ¢ — ¢’ R U'left adjoint ( }* : € = €' Fb.
()" BT 5 counit e~ &TDE, FED X € C AL T ex 3 monomorphism T
HY. ()P EETD unit et ETDHE, EBD X € C it LT € L epimorphism,
ZOKE, 3(C) DIEMSIRE 3(C) — 3(C') X rejectable LRI 5,

3.2 (1) Krull-Schmidt B ¢ # -8 TH 5 Lix, {£ED X € ¢ iZx L. complex

X=X B3FXBX)RT(X)= (X3 60X 3 rX) BEELT, Houy —
Hoyry = Hx 2 Sx 2 0 R HT™X o5 HOX 5 gX - 8% - 0 3 IR ES X,
HYX 5 "X 58X S 0 R Hyey & Hoox = Sp-x = 0 RTERXLRZWTH B,
Hic, £ED X e icxLTpdSy <2 & pdS¥ <2 BAILT B8, C X regular 7-
B rEiThs, EL (X] RV [X) 2 complex DRIEE2EXRTHOE L, KDL
K (X]e RO [X)e ERTHLH D,

(2) BELVEDLIZ, §0DFHIGITHBWT, C 28 regular T-ETHEH L, gldimA <2
> Ext}(A/Ja, A) H semisimple TH 2 HIZRHETH B,

(3) r-B ¢ lZBWTiL, E£ED X € 9(C) — 37(C) (resp. X € 3(C) —37(C)) k=Xt L,
(X] = [r*X) (resp. [X) = (v~ X]) ML TIHMTREN D, HiZ v 123(C)-37(C) &
I3C)-37(C) EDMDLEREEXL. v~ REOWEE LS,

@) C % r-BcoByBLTD, 0 C=c/c’ b rBTHBZ ERARICHM
5, iz, X e€3(C)-9(C) ienL, FX #0426 (X)z= (X THY. FX=0%
LI (Xlzg=(0—20-X) TH3,

33%BE C & MEARTERO BTN =025b0¢T5,
(1) A,BeaC) RUn 2 0L, (A, B) #8ERE n ® Nakayama pair TH 5
ik, ROTMBREXBEELT, ap = 43, an = ph RV (Y] = [X) = (X 2
1
Y. ® X, “‘—‘&) Yo ) BMEED i (1<i<n) KHLTRETIHTH S,
Y, Lyt dnry, oI By,
1a0 1 1an-1 18n

A=Xo< 91 X1< 23 ._.<yn-x Xu—lf gn Xn

Z O, B = n(A) (resp. A =n*(B)) £RTUICT DL, n(A) (resp. n+(B))
REETII-BOHTHLIERS0D, HiZ, s(A) := UlysuppX; RV s+(B) =
U?=OSUPPY:' &is<o

(2) 7B ¢ A orderlike THD LiX. n~ HREHY I7(C) - I}(C) 2HE, »o
3C) = Unerr (¢ 5~ (A) MERILTBWTH B,

"Nakayama pair” XU "orderlike” D&FHDOEMBIL §5.3(2) ICBNTHLN IS,



3.4 ROEBEL r-BIZRWTEARNTHY [I3)[IT1]. FZIE c PBRANEES AC)
(§4) DA S DOEHETRICBRT 50V bh 3,

EBE C % 7B, a€ J(Xo,Y0), L:=CokH, £ L. 8D fe JAX,Y) KHLT
a+f A ail complex ¢ LTRBTHD LIRETS, ZORUTFTHENTS,
(l) a D ladder ¢FRITN D, ROTTHREK & UieCRUBh e C(U.’,Zi—l) NEEL

b, =g 13
T.ae= (bg) €EC(Zo®Un,Yo) R (Yiod]l = (Zi®U; —' Y@ Ziey (a'—-&) Yio)) BHER

DilzHLTRIT S,

Yy h Y, ¢ fa Y, < I3 Ys+ fa

oo e

ZO4LZI('LZZ('LZ3<g_" ..

(2) (1) L9EPNLIROTMRRAICK T, &FT JP L DBRNHESBEE
J& L - JP L iXB& inclusion ThH D,

L « Je L < JE L+ TS L+

T T T T

H H H H
Hy, +2— Hy, « 2~ Hy, +52— H, +5
1Heo 1 12 1Hes

Hg, Hyy sz ¢ Hgy HZ; ¢ Hoy

qu € Hz, ¢
(3) L #% semisimple 264X, & Y; R Z; iX. Zp = Xo — (6*Yo — Xo)- RUKRD
recursion fomula X V% &h 3 (§0.5),

Yi=0*Y1 -2y, Zi=7'Y, - (0"Yi-71'Yio)- (i>0)

HIZUTORBELNS,

(4) ¢ 43 left artinian THHILE+HRHFIL, F£8D X € 3(¢) IKHLT Y, =0,
Y i=X ROY;:= (0*Yi, - 7*Yip), (12 2) LB, +OKERICHLTY; =0
DALY D,

(5) Nixo J¢ = 0 DREDIT, C A regular 7-BTh 3 LE-DFRMHFIE, FED X €3(C)
EHLTY:=0,Y, =X RUY; :=0*Yi ~ 1Y, (1> 2) LB, EFRDi> 04
HLTY, 20R3RILT B,

4 HAEhEARR
(1) Q=(Q,Q", Q"7+ d,d) # translation quiver THd &it, Q° & Q' XH#E Q
OHIWET, T IIZUN Q- QP - Q-Q THY. d& d HERQxQ Ny T
dY,X) = d(r*X,Y) ERD X € Q- QP & Y € Q IoH L TR+ 3 W Bk 5,
HBE. Q RUToLIILAMmMIF7 7L LTRENSD, Q %ﬁ?}%ﬁxkyb\ 13-4
d * »
X, YeQTd(X,Y)#0 ZM-T bz L. valued arrows X( kit Y &%,

EED X eQ-QPITRLTX 2% 71X ~D dotted arrow 2Hi<, valuation (1,1) ix
HEET 3,




Wiz, translation quiver Q A3 admissible T#H 5 LiX, B c: Q o Nyp BFEL
T HEED X,Y € Q KHLT (X)d(X,Y) = d(X,Y)e(Y) BBEFET B,

(2) B ¢ I=xt L. AR quiver LFEIEN 5 translation quiver A(C) = (Q, @7, @', 7+, d, d)
% Q=1(C), @ = 31(C). @ = 97(C), d(X,Y) = (6*Y, X) BU d(X,¥) = (6-X,Y)
TEHTD (§0.5), aC) i (X] & [X) DEBEREMICHKTT S,

(3) translation quiver Q = (Q, Q%, @', 7%,d,d") IZxf L. Endgz(zQ) ®x 6*,0-, 7+ K
W EUTFCEET S, X € QM LO*X = Tyeod(V, X)Y, 07X = Tyeo (X, Y)Y,
Xe@IHL X =0 XeQ@-Q ML 77X = (77)1(X). X € Q IZxL
T_X =0 t k‘ < o

Q DA S RV f € Endz(zQ) IZxf L, fois € Endz(Z(Q - S)) % Sors(X) :=
J(X)|g-s TEHET D, BL |o-s:2Q — Z(Q — S) I natural projection % X7,

5 RBEB/OHR

UTF. R E2%EHEHBFAR. d:=dimR>0. K ¥%fkL 35, R-R3 A #* R-order
ThHHLIL, R-IBEL L THRERAB THAREENKT S, LT, A % R-order LT3,
E A-MBE L B3 A-lattice THHLiX, R-MBEE L THREKBB THIYEEKT S,
A-lattice D% lat A THFEE, ZhH Krull-Schmidt BTHAFRBR< AL TW5,
—J. ()" = Hompg( ,R) X 1atA & lat A% OO duality #5 %5, rinA := (prA%?)*
% relative injective A-lattice O & FEE, FIZ I d =0 (R A{K) ORI, R-order iX
FRK RRGLFULEKTSH Y., lat A IFRER A-HHEOR modA & —ET 3,

R-order A & RO K ITHL T, A= AQp K RARK K-R¥ETH3B, R-order A
2% isolated singularity T& 5 & i3, gldim A®g R, = ht p HEED R ® non-maximal
prime ideal p 2% U TR T 5%, HELREERL LT, R-order A 23 isolated singularity
THHLETIRIEIL, lat A 3 AR sequence ZBSWTHIEHRHMOLN TV S [A2], =
NIZROEERD (2) 2 EKT 5,

51 8% A% Rorder &L, d:=dimR ¢£B<,

(1) £ED X € 3(prA) (resp. X € I(rinA)) IZ# LT, Sy (resp. $X) X EHEMHIR
ERTHDRIIIRESRERD, d>07261% pd Sy =d (resp. pd S* = d) MR
L.d=07%261X pdSy <1 (resp. pd §X < 1) BRI T 3,

(2) A # isolated singularity T 3 LE 53R, F£ED X € 3(latA) ~ 3(prA)
(resp. X € 3(lat A) —3(rin A)) IZX LT Sy (resp. %) REBEANFRAER TH SR8/
NENREHFOWTHD, ZO8 pdS, = 2 (resp. pd §¥ = 2) BT B,

TOEBRNS, BRIZKOFZRRELNS,

5.2 & R-order A 23 isolated singularity T dim R < 2 2 &61%, lat A i% regular 7-58
THhd, O, & X €3(lat A) —3(prA) (resp. X € 3(lat A) — 3(rinA)) 23 LT, (X]
(resp. [X)) iX AR sequence &PFEiIR 3,

5.3 1 §5.2 DEEDIT. A D AR quiver A(lat A) 25 §4(2) ik W B#EE N B,

(1) Q:=A(latA) L B, d<1 b QP =3(prA) RU Q = 3(rinA) TH Y,
d=2 fx&‘i Qp = Q'.A =0 Tbéo E‘:‘ k:= R/JR, C(X) = dimk EDdA(X)/JEndA(x)
EBLWZED, Q X admissible TH B,

(2)d=1&,L, Cc:=latA &EB<, A BHMRHKXRA R-order 22 64X, C i orderlike 7-H
THY. n*:37(C) = 37(C) FPILKF Homp(,A) Ik Ex b5, EiT, A7 (C)



(resp. B €37(C)) R X €3(C) ke® L. X € s7(A) (resp. X € s¥(B)) BXRUTHLE
+5r&4FiL. X O injective hull X — I (resp. projective cover P — X) 2% A < I (resp.
B<P) &k THTHS,

_ 5.4 R-order I' 28 A @ overorder (resp. overring) T3 & i, ADT DA (resp.
ADH3 ideal TIZHLTA/IDTD2(A+1)/D BRATIW. Zhboif, BRRE
f2 A — T iXfull faithful BIE latT — latA # &, latT it lat A OWHBL AR EH
%, ROMEIZE Y, (lat A D overring) . (lat A @ rejected ) RV (3(latA) @
rejectable subset) A3 —%—(CHEETHZBWHRHN S,

5.5 @8l A % R-order T dimR < 2 L{RET S, ZOH, latA OHLE ¢’ &
rejected THAILE+SEREFIX. H3 overring T BFEEL T, ¢ = latl L RBZ3WTH
5. ZOBf, inclusion latT — lat A @ right adjoint i% ( )~ := Hom,(T, ). left adjoint
() =(I'®sr ) THEALBND,

56 d=0, A ¥HBRK RIR&L T35, modA OBLE 7, F ZHL., (T,F) A
torsion theory T % L i, inclusion 7 — mod A (resp. F — mod A) i right adjoint
()~ :modA — T (resp. left adjoint ()* : modA = F) 2FH. 00 X" 2 X 5 X+ >
0 HEED X € modA X LFEE LD (cf. 3.1), ZOBE, T (resp. F) HSEiMMEF
(resp. Moy mEE) (B L TRAL TWAWRAERITHS NS, (T,F) # hereditary torsion
theory TH 2 Lit, 7 HEHMBEICBAL THLHLTW AL EKRT S,

6 ERE R ZEWEARFARETS,
6.1 dim R =0 DEEOXTERITKRCH 3.

EBE dmR=0.T #ARKX RRE. 05T > 1> 1" ... # -8 T Of/
AHBRLEL, C:=pT LB, Z08F, &i(l <i<4) i LEKROFREF (1-4), (2-9),
(3-1) BT (4-%) RRMETH 3,

(1-2) (X BlLERHIZRIF)

(1-1): A& R-{R% A RV mod A £ torsion theory (7, F) BFEELT CX F

ICFfE L 725 (§5.6).

(1-2): (1-1) 5> (T, F) iX hereditary torsion theory,

(1-3): (1-1) D>> F iX socle HFHEHITH D872 A-MBEORLTE,

(1-4): (1-1) 222 F =mod A,
(2-i)(FE o V—RENEHE) gldimT <2 THho

(2-1) T RO TP i (2,2)-REF L2877 (§1).

(2-2) T X Auslander regular,

(2-3) T iX Auslander regular >0 I! it 0 TRWHEMBELXHNEFICKERR2V,

(2-4) T 1% (1,2)-%f %W+, (D8 T iX Auslander {E8 L FEITH 3, )
(3-3) (B RO Seft)

(3-1): C i% regular 7-H,

(3-2): (3-1) > n~ BRE®& I17(C) -35(C) = 3(C) 5% 5.

(3-3): (3-1) 2> n~ FEMR 37(C) -3 (C) = 31 (C) EHZ D,

(3-4): (3-1) > n~ XBER 37 (C)-3:(C) = 3(C) -3 (C) 5% B,
(4-)(MBEDEHRE)



(4-1) ¢ 1% BT §3.4(5) KH B REREEh B,

(4-2): (4-1) D, {EBED X €37(C) -7 (C) IKFL. Yo:=0-X,Y,:=6*0-X-X
BUY, =0*Y, . —1*Yia (i 2 2) £ BB, 55 n > 0BFELTY € N(3(C)-37(C))
(0<i<n) RU Y, =0 BRIT 3,

(4-3): (4-2) IZBWT Y, € 37(C) PR T B,

(4-4): (42) 2BV T Y, €3(C) - 37 (C) MR T B,

iz, (1-4) & (4-4) DEHEE L §3.4(4) 2HHESH T, §0.2 D (Py) DREX 1B S [IT2),

6.2 dmR=1DHOEFERIIXTHD, Z I T. R-order A % Auslander order
THH L, gldimA <220 A* O/IRESRO - PLo B = A* 202 By erinA
Wi+, AL, [ARo] £ E2 D, A 2 isolated singularity T 2 Y& {HE L 2V UF
o,

BE dimR=1.T % Rorder £ L C:=prT &<, IO, KD (2)(2')(3) IXRE
fETHY., b L T A isolated singularity 7261 (1) bREETH 5,

(1)(RBAOFRL) HMKRBE R-order A BFEL T, C X lat A iZFHiE,

(2)(FET v P—{R#6%%) T iX Auslander order,

(2)(F'r I—RERHE) gldimT < 2 72 I i& Auslander regular,

(3)(BERaI%&H) C 1 -,

Zhit, §02 @ (P) 2oV TIRMI L ER L TWY, LL (P) KREEXESXDK
DEBDIEAICIHS W THEREREZRT,

6.3 BB AMBEOAKAX YLD translation quiver Q IZxFL. &D (1)-(3) IXFE{HE,
(1) (RRBOFRIF) a(lat A) = Q & 725 FEHREBHER R BT R-order A BIFET 3,
(2)(BRRIZRIF) A(C) = Q 2= THD (£T?) B iT# L. C i orderlike (§3.3)
Th Yo C/37(C) i artinian,
(3)(#MAHEHERIRM) Q 1 admissible TH D RO RTINS (§4(3)).
) ERD X eQ ITHL, Yo:=0-X,Y,:=0"0-X - X, Y, .= 0tYi_, —7tYi,
(i 2 2) RV ¢X) :=UinosuppY; &B<, ZDMHB n >0 HBHFELTY; € NQ - QP)
(0<i<n), YLeQ BU Yo =0MBKIEL, FIZ Q =Uxeqi t(X) £723,
(i) FEED X e @ I L, ¥5:=0,Y, := X RQY, :=
(122) EB<H, +HaRKERIIIHLTY, =0 BRI,

6.4 £H §6.3 DIEADHEE Krull-Schmidt B ¢ 2% order #i&E%#- & 1%, REM
BUHHER R R R-order T BFEEL T, C=prT &425 (BIH §0 OFEICBWT ¢ 28
LR 5) |L$5H, (2)<(3) 1834 K08V, (1)=(2) 11 §5.3(2) LV HES> DT,
(2)=(1) DHTFEIZRVY Q i3 admissible 72D T, 7-species @ T | Q| =Q %¥irTb
DREND, TOREHD order A BFEL T, M(Q) A% lat A ICFfli L 23 WERET
RERRV, §6.21TL D, M(Q) 2% order B FHHS>WOLVZITRVOER, ThRER
B LELVWELTHY., dmR=1 HHOBETH B,

(0Q/QP i-1 "TQ/Qp -2)+

6.4.1 §3.2 TRIBRIC, EHBEBIHAR LD order A 23 isolated singularity 72 6F
latA i3 r-BTH D, WICKOMEEIL, 7-B C 5 order #E£F LMD (XT3 order
A%) isolated singularity 22 X, & 5 FEMBBIHHI LD order A BFEL T, C i latA



ICREIC 2 2% %77 (18], EOIMEHIX, §7 ORROIEA L LT, rejected HB~D
reduction Z W TR Eh 3,

#B C % completely graded (§8.5) orderlike 7B, k[[z]] ## k Lom&EREL T
5., Bz, CiZ k-BITHY. EBD X e3(C) ITHLTC/ J(X, X) 1% k DHFRKEK
THY, ¢/37(C) i artinian THABERET S, T DM C iX k[[z]]-order FiEE R,

6.5 XE §6.3 DI L LT, §7 KB} 5—#% Rejection LHELESIWICLY,
tree type A3 classical Dynkin diagram T 21k FIRRHE Gorenstein order DFELA
FBEEZDZIPHTES,

7 —#& Rejection

OB T §3.1 ORB/EAV S, 3(lat A) D—KR L Y 2 253 E D rejectability (2B
LTCiX. Drozd-Kirichencko IZ &L 2 RDLE+NRERMONTEY [DK1]. £hid Bass
order DEROEM L 72 3 HE2 i TH S [DKR|[HN1|[HN2],

7.1 (DK Rejection Lemma) A % R-order TdimR <1 &%5, X €3(latA) i
¥t L. {X} 22 rejectable THHLE+HRMIE, X €eprAnrinA L2233 THD,

ZOETIdmR <1 DREICZOBREMEL, §7.2128 T, 3(lat A) D artinian
subset (§2) O rejectability %, A(latA) PHASLRHNLEELAVTERDT (I3, £0
R, lattice DB TR, —HBO -BICHLUTRIL, EDBMNTT §64.1 D
EAEBHYENHKRS,

Z ZTC. rejectable set § = J(lat A) — 3(latT") #% artinian T D LE -+ RMHFI.
#S <00’ (d=126i1E T X A @ overorder) THHIEEREEL TBL, REKREN
WHE L LT, 3(C) D artinian subset S @ rejectability ¥, A(C) & S LIZHIRLTHS
5 translation quiver R XS OEHEE SN (C) & SNIT(C) PAIEFLTHRE S
L RBahB,

7.2 %% ¢ % -8, ' % C O coartinian BHBE L, CT:=C/C LB, TORL
T O&MXFME,
(RERARM) ¢ X ¢ D rejected E5HE,
(BRAOSRM) EED X €3(C) — 37(C) IZ# L ux i C 1238V T monomorphism T#
Y, 8D X e3(C) — 37 (C) \T/ L p} 1% € BT epimorphism,
(LB A hEEEME) KO (1) R (i) BRI 5,
(i) fEBD X €3(C) - 37(C) KHL, Yo :=0:X, Y, :=030:X - X RV Y, :=
01Yios - 7Yoo (12 2) EBLHF, EED i >0 IKHLTY; >0 BHALT .
(ii) FED X € 3(C) - () ML, Vo= 62X, Y, := 676X - X RO Y; =
OrYis —77Yi o (12 2) LBLFE, EED i >0 IZHLTY; >0 BBRILT D,

7.3 rejected MIEOMIZ, ROBENBISIHOWREY, ¢ OFHZE ¢’ 4 trivial
THd LI, ¢ 288 C D rejected BB c ICRA3FE KT 5,

B3 [11](I3] ¢ % -H, ¢’ % C D coartinian AL L., C:=C/C &B<, ZD
RELLT D&M LRI,
(RBLARISRE) ¢ 13 € O trivial BHE,



(BRI ME) 80 Peaf(c) RB I €7 (C) \ox LT E(PI) =0 MRRIL,
(BAEDENRE) EBD X € 37(C) KHL. Yo = X, Y, = X RO Y, :=
(63Yio1 — FYi0)s (12 2) EBLHE, EED i 2 0 ZH LT Yijgr) = 0 BERAT B,

7.4 # (1) 3(C) D rejectable subset S 4% minimal TH5 &, SIZEEHSD 3(C) D
rejectable subset i¥, S L ZEHADHZTHIHE LTS, TORE, SNI(prA) B SNI(rin A)
B—RELVesWHRE73 LV EFIZHNS,

(2) A 2 R-order, dmR=1&¢L. S #3(latA) DHWREAT #S5 <4420
+5, ZOFF S A% minimal artinian rejectable subset T 5 HE+5yREIE, S BKRD
WO E L TWAETHD, 2T, {P}:=35n3(prA) RO {I} := SN3(rinA)
LB<,

(1) ket (DK Rejection)
(2) e—e
@) %e¢—é ab<2

4 52—l ap<2

5) 8.4  p_rtlab<3
(6) I.’(ﬂb._).—)‘ absz
(1) e— oo i ap<2

s (a b)1
(8) e—e—e—e ab<2
©) 59089l portXap<s
(10) +—38 e X =rtIab<3

P 4
*— L J —e

(11) 1 P=7*I,X=1%X
Xe
o« — o
(12) 1 +  P=1'r
Pe — @

8 {18% 7-species & £ D mesh I >WTHIHICHE S 5 [IT2)(I3], §0.5 DS LA
w3,

8.1 Q=(Q,Dx,xMy) % species ThHLiL, QIIheS, HE X cQIMLT Dy X
BHETHY, £ XY € QIZH LT x My i3 (Dx, Dy )-FBIMEET T x o dimp, xMy < o0
RO Zygq dimD‘. xMy < o0 E’ﬁf:‘?‘%o)f‘bélﬁe

Ok, B3 X,Ye@QiznLT .Po(X, Y) =0, Po(X,X) = Dix,

Po(X,Y) = ®z,,.2,1e0 XMz, ®p;, -+ @D, _, 2., My (n>0) RV
Fr(A, B) := [Ixyeo Matia x), 8y (Pa(X,Y)) (A, BENQ, n 2> 0) LB,



BRARER Po(X,Y) x Pu(Y,Z) 2 Poym(X, 2), (f,9)~ fe:=f®g (X,Y,Z € Q)
M HATRIRE VT B2 B8 Pa(A, B) X Pu(B,C) = Paym(A,C) (4,B,C € NQ) %
85,

B P(Q) RU P(Q) %. 0b(F(Q)) = Ob(R(Q)) := NQ, B(Q)(A, B) := [luzg Pa(A, B)
RUP(Q)(A, B) := @nz0 Pa(A, B) (A, B € NQ) TEET 5. BRUL (fa)n20 (gn)n20 :=
(Z?:O ﬂgﬂ-i)n_)_o l‘: J: D /"&,b 60

8.2 (il species Q =¥ L. B(Q) i% Krull-Schmidt B TH Y. Q @ tensor M & FF
iiha,

83 Q=(Q,Q", Q' Dx,xMy,7%,a,b)  7-species TH 5 Lix, (Q,Dx,xMy) id
species. QF RUQ 13 Q D pHE. vHiI2HN Q-Q*P - Q-Q ThHhY,. £BD X €
Q-Q°,Y eQiLTax: Dx = Dy+x IXBRFEIRAD by y : Homp, (r+x My, Dy) =
ny Ix (Dy,Dx)-ZUﬁa)ﬁ']g}.'(;bé holP %ﬁ%?‘éo -z ,+xMy [ ax %iﬁ LT
Dx-MBEL RzEh T3S,

d(X, Y) = d.ime xMy RO d’(X, Y) = dimD,. xMy EB< :QNCJ: D. Q @ under-
lying quiver &PE{EN 3 translation quiver | Q| := (@, Q%, @', 7+,d,d') %183,

T DEF, HomD,,(HomD,.(,.+xMy, Dy),ny) = ;+x My ®p, yMx THHDT, bxy
it +xMy ®p,. yMx DRTERLEND, Y(X) 1= Tyeqbxy € Po(THX, X) LB &,
bxy it DR-MBEOWERBZDT, H£ED f € Dx KH LT (X)f = ax(f)r(X) dRL
T35, I % {y(X)|X € Q) CERENS P(Q) Dideal EFD&, [=@pspln (In C Pa)
LEDEND, B(Q) O ideal T :=[Thpoln KX L. M(Q):=B(Q)/T &B<,

8.4 @@ -species Q IKF L. M(Q) K -ETHY, Q O mesh BLHiTh 3,

8.5 Krull-Schmidt B ¢ I=%f L. associated completely graded BIG(C) % &(C) :=
Miso B/ TEH CEET 5. bL CHE(C) ICREASIE, € X completely graded T
b3 LRI S,

BRI TAE, # 7B CI2a L. AR species L PRI 5 r-species A(C) 2 ERT
DEHPTE, |A(C)| = A(C) BRI T B,

HE 13) (1) ¢ » B 261, G(¢) b rBTH5,

(2) (£ T-species Q 14 L A(W(Q)) = Q AL L . £ED - ¢ 1%t L W(A(C)) =
G(C) MRILT B, FIZ. A iX 7-species £k & completely graded -2 DM D —xf—
k5L, MITTONELEZXS,
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Morita equivalences for general linear groups
in non-defining characteristic

Hyohe Miyachi

§1 Preliminary The result of this paper is a joint work with Akihiko
Hida . Let G be a finite group, and (K, O, k) be a splitting £~-modular system
for G. Here char(K) = 0,char(k) = £ > 0. For R € {O,k}, let By(RG) be
the principal block of RG.

G, denotes the symmetric group on n letters. I, denotes a field with ¢
elements with £ { ¢. Let natural numbers e(q) and r(q) be as follows:

e(q):=Min{i€N|¢= 1(mod?)},
r(g) :=Max{re N | & | ¢°@ — 1 }: the ¢-part of g9 — 1.

Let A and B be blocks ideals. “A ~); B” means that A is Morita (Puig)
equivalent to B. “A ~4 B” means that A is derived (splendid Rickard)
equivalent to B (see [29],[30]).

We use results on representation theory of finite general linear groups in
non-defining characteristic due to Fong-Srinivasan and Dipper-James ( see

[14], [15], [9],[10],[11],[12], [13],[17]).

§2 Motivations We wish to prove the following conjectures:

Conjecture 2.1 (Broué). [2],[3],[5] Let B be an £-block ideal of G with
abelian defect group D. Then B and its Brauer correspondent in Ng(D) are
derived equivalent?

Conjecture 2.2 (James). [18] Suppose that char(k) = £ > n and e(q) = e.
Let ¢ a primitive e-th root of unity in C. Then, the decomposition matriz of
Dipper-James Schur algebra S¢(n,r)c over C is equal to that of Dipper-James
Schur algebra Sz(n,r)x overk ?

Let G be a connected reductive algebraic group over F, with a Frobenius
map F. We assume that the centre of G is connected. Let £ be a prime
number with £ 1 q.

9The detailed version of this paper will be submitted for “Doctor thesis at Chiba Univ.,
Japan”.



Lusztig series

The following is so-called Lusztig series:

E(GF, {s}) := [J {x € G"| (x, R§(8)) # 0}.

(T.9)

Here, the above pair (T,8) runs s; € {s} and 8 € TF sy € T*F, and
RS (0) is a generalized Deligne-Lusztig character.

Its modular version is given as follows:

For a semisimple ¢-element s € G*F" let

E(GF,{s}) = JE(GF, {st}), te(Co-(s)")e

Theorem 2.3 (Broué-Michel). [{] Each set £(GF, {s}) is a union of ¢-
block of GF.

Definition 1. An ¢-block B as en algebra is unipotent, if there exists x €
Eo(GF, {1}) such that x belongs to B. In particular, Bo(OGF) is unipotent.

Theorem 2.4 (Bonnafé-Rouquier). [1] £,(GF,{s}) ~u E(Ce-(s)°F, {1})
as ¢-block ideals. (i.e. If a block B, belongs to £,(GF, {s}), then there ezists
a unipotent block B} of Cg+(s)*F such that B, and B} are Morita equivalent
(not Puig equivalent in general).)

In particular, for finite general linear groups we may concentrate unipo-
tent blocks by this theorem.

We want to classify the block ideals of kG([F,), up to Morita equivalence,
and recover its structure as algebras from some small subgroups. So, we wish
to prove the following conjecture:

Conjecture 2.5. If e(q) = e(q'),r(q) = r(¢') then for any unipotent block
ideal B of G(IF,) there exists a unipotent block ideal B' of G(Fy) such that
B~ B' by an ezact {-permutation (B, B')-bimodule. This equivalence pre-
serves the natural indices of modules.

In this article we deal the special case concerning these three conjectures
for finite general linear groups.



§3 Abacus and [w:k]-pairs

Definition 2. For a k-core T and a non-negative integer w, let Ay, . be the
set of paritions of kw + |7| whose k-core is 7.
Given partition A = (A, A, ... , A,), define 8 = (B, fs,...) as follows:

Gi=r—i+N(1<i<T).
We call this 8 an r-element 3-set for .

Definition 3 (Scopes). For non-negative integers m and m-coret = (1, ..
let T be the r-element (3-set for T, and suppose that when I is displayed on an
abacus with m-runners there are k more than beads in the i-th column than
in the (i — 1)-th column. Let m-core T be displayed by an r-element (-set T
satisfying

Tj=l",- fOTj;éi,i—l
T =Ty
ri—l = Fl')

where I'; is the number of beads on the j-th runner in the abacus configulation
Jor T'. In these situation, we shall say that Ap, 4 r and Ay, 7 form a Scopes
[w: k]-pair.

izl ] i-1 1
O O - - 0O 0O
O = O
o O
O O

Scopes has proved the following;:

Theorem 3.1 (Scopes). {32 If Apw,r and Ay, form a [w : k]-pair with
k > w, then p-blocks B¥™ and BY" of symmetric groups are Puig equivalent.

By Jost we also know the following:
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Theorem 3.2 (Jost). [21] If Aew,r and Ay, form a [w : k]-pair with k >
w, then unipotent £-blocks B, , and B,,, are Puig equivalent.

Example 1. If B is a unipotent block of GL,(q) with e-weight 2, then one
of the following holds:

1. B2 By(kGLa(q)).

2. (B,B) forms [2:1]-pair for some unipotent block B of kGLn_,(q). (
Actually, these blocks are derived equivalent to its Brauer correpondent
of the £-local subgroup. (Hida-Miyachi(1999)) (The method we used is
different from J. Chuang’s for G,, )

3. B ~p B' for some unipotent block B' of kGL,,(q) with m < n.
§4 A core p and results of J. Chuang and R. Kessar

Definition 4 (Chuang-Kessar-Rouquier). (8] Let p be the e-core which

satisfies the following property : p has an abacus configulation in which each
runner other than the leftmost one (the 0-th runner) has at least w — 1 more
beads than the runners to its immediate left.

Chuang and Kessar consider the following setting up:

e=p>w.
r:=|p|-
G = 6pw+r-

B*#: the p-block of kG with p-weight w and p-core p.
D := a defect group of B*.

N:=6,16, > D.

L:=6,x---x 6, x6G,.

H:=(6,16,) x 6, D Ng(D).

OH f:=the Brauer correspondent of B¥** in H.

Let X be the Green correspondent of B in G x H with respect to
(G x G,A(D),G x H). Chuang and Kessar have proved the following:



Theorem 4.1 (Chuang-Kessar). (8] Suppose that p > w. Then, we get
an isomorphism

OHf = EndG(Xo)

by checking ranko(Endg(X)) < w!- ranko(OLf). In particular, OHf is
Morita equivalent to BY*,

Remark 1. . X is ezact.
2. OHf — Endg(X) is a split (OH f, OH f)-monomorphism.
3. w!ranko(OLf) = ranko(OHf).
4. By Marcus [23] OH f ~4 By(ON).
5. (D* ®pws X) L1 is known, but D* ®pu., X is not known.

§5 Chuang-Kessar type theorem We assume that char(k) = £ > w.
Choose a prime power g with e(g) = e. Just mimicking Chuang and Kessar’s
setting up, we consider the following:

r:=|pl.

G(q) := GLew+s(9)-
B"™#(g): the unipotent £-block of kG(g) with e-weight w and e-core p.
D(q) := a defect group of B¥*.

N(g) := GLe(q) 164 D D(q).

L(q) := GLe(q) % - -- X GLe(g) X GL(g).

Hy(q) := (GLe(q) 1 64) x GL:(g) D Na(D(q))-

OH,(q) f;=the Brauer correspondent of B, ,(q) in Hu(q).

Once we believe that an anology of Chuang-Kessar theorem holds for finite
general linear groups, we can easily prove the following:



Proposition 5.1. (An anology of Chuang-Kessar theorem ) Let X (q)
be the Green correspondent of B**(q) in G(q) x H,(g) with respect to (G(g) x
G(9),A(D(q)),G(g) x Hy(q)). Then, we get an isomorphism

OH,(g)fs = Endgg)(Xo(q))

by checking ranko(Endg(g)(Xo(q))) < w! - ranko(OL(q)f,). In particular,
OH,(q) fq is Morita equivalent to By, ,(q).

Remark 2. One must consider not only unipotent characters but also char-
acters indezed by semisimple ¢-elements. We can know these characters by
[9]. We also need some results by [15] in order to mimic Chuang and Kessar’s
argument.

§6 Indices of the simple By(GL.(g) ! G,)-modules In this section
we reformulate indices of the simple By(GL.(g) ! Gy)-modules to fit that
of B,,(q) via the equivalence in Proposition 5.1. For i = 1,2,... ,e let
v; = (¢,1°7%) I e. The principal block By(kGL.(q)) has e non-isomorphic
irreducible modules

{ Dxo(vi) 1i=1,2,... ,w}.

Fix R € {K,k}. Let n be an e-tuple non-negative integer of w. i.e. Y . n; =
w. Spe(n) = ®(Sn,q(u,-)®"-') is an R[GL.(q)**]-module. In particular,

Sk 4(n) is a simple K[GL.(g)**]-module. The parabolic subgroup G, act

on Sgq(n). So, Spe(n) is an R[L(ewy @ Gp]-module. Indizziw"sn,q(n) is

decomposed into @(Sn,q(n) ®r (dimp S}) - SX) where S% means the Specht
An
module of R[S, corresponding to p, S} = ®S‘,\{ and Sgg4(n) ®g S is the

inner tensor product of R[L(ew) X Gp]-modules Sg,4(n) and S} .
Let

™ = Sk ifi+eis even,
R Sz‘ if  + e is odd.
Here, X! is the conjugate partition of A;. Let T = ®, T
For A+ n let Ug(A) be Ind7re%S (Spq(n) ® T), and Let Ui,(A) be

the R[H,(g)]-module Ur4(A) ®r Srq(p)-
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Moreover, one can construct a module by using
{ Dg(vs) |1=1,2,... ¢}

instead of k[GL.(g)]-modules { Skq4(1s) | i =1,2,...,e}. We denote it by
Vieg(A)?.

§7 Results Now we can state our main results of this article as follows:

Theorem 7.1 (Hida-Miyachi). For any simple B,,,(q)-module Dy gq()),
the Green correspondent Dy 4()) ®xe X(q) of Dy 4()) is independent of q
in the following sense:

Assume that e(q) = e(q') and r(q) = r(¢'). Let M,y be the canonical
(kHy(q) fo, kH(q') f¢)-bimodule which induces kHy,(q) fy ~m KH(q')fy, due
to A. Marcus. Then

Dico(A) BB, ,(0) X (9) @xttuiery Mo Bkniiesy X(¢)" = Dieg (N)-

Actually, Dy g(\) ®p,(q) X(q) & Vig(X)P. Here, X is the e-quotient of A.
Moreover, we know the decomposition numbers corresponding to the e-core p

dry = di,ﬁ = [Uk,q (X) : Vk.q(l_‘)]-
( The other parts of By, ,(q) can be calculated by Dipper-James theory.)

Remark 3. First we can determine the Green correspondents of simple Bs ,(q)-
modules in Hy(q) finding two trivial source modules of B, ,(g), using the de-
composition numbers for Hecke algebras of type A by [28] and [20], chasing
the image of Mullineuz-Kleshchev map [25, p.120], using properties of Specht
modules [17] end induction on A.2,.

Nezt we can determine the Green correspondents of simple B, ,(g)-modules
in Hy,(q) using induction on w and some commutative diagrams among
By,p(9),Bo(GL.(g)) ® Bw-1,(q) and their Brauer correspondents.

In order to prove By ,(q) ~um Buw,(q') with the property in the above
theorem we use [14],[23], and [31].

Corollary 7.2. If there exist a sequence of e-cores

0 3

1
P=T,T,...,T

such that A,y i and Aey v form e [w : k]-pair with k; > w — 1, Broué’s
conjecture is true for By, ;+(g).

- 101 =



Theorem 7.3 (Hida-Miyachi). Assume that e = e(q) = e(¢’) and r(q) =
r(q'). If there ezist a sequence of e-cores

— 0 .1 s
P=T ,T,...,T

such that Ay ri and Ay zi+1 form a (w : k;|-pair with k; > w — 1, then

Bw,'r' (Q) ~p By,rs (ql)'

Here, each [w:w—1]|-pair is a derived ( spelendid ) equivalence between two
unipotent blocks. Moreover, the above Morita equivalence preserves natural
indices ( partitions ) of modules. ( i.e. The simple module Dy 4(p) (resp. the
“Specht”like module Sy 4(11), the Young module X,(n), PIM Py(u) ) indezed
by a partition p corresponds to Dy g () (resp. S g (1), X (1), Pp(n) ). )

Remark 4. Just mimicking an argument in [7], constructing a generaliza-
tion of [38] and using Theorem 7.1, we deduce the above results. (see also

(27]).

§8 Remarks Some conjectures on quantized decomposition numbers {22]
and radical series of Specht modules for A, ,, , will be described in “Topics on
Combinatrial Representation Theory” organized by T. Nakajima. (The first
announcement of this was stated in the author’s lecture “On the unipotent
blocks of finite general linear groups” at a conference ” Algébres de Hecke
affines et groups réductifs (CIRM,Luminy,16-20 octobre 2000)“ .)
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