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PREFACE

The 32nd Symposium on Ring Theory and Representation Theory was held at Yam-
aguchi, on October 5th - 7th, 1999. The symposium and these proceedings are financially
supported by Grant-in-Aid for Scientific Research (A)(1) from the Ministry of Education
through the arrangements by Professor Masanori Ishida of Tohoku University.

The volume presents thirteen articles given in the symposium. These articles contain
advanced results in ring theory and representation theory. We expect their developments
toward the third millennium.

We would like to thank Professors Yasuyuki Hirano, Hidetoshi Marubayashi, Kiyoichi
Oshiro, Yukio Tsushima and Kunio Yamagata for helpful suggestions concerning the
symposium. Finally we wish to thank Professor M. Kutami and staffs of the Department
of Mathematics, Yamaguchi University, for their cooperation.

Jun-ichi Miyachi
Tokyo, January 2000
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On direct sums of extending modules and
internal exchange property

K. Hanada, Y. Kuratomi and K.Oshiro

An R-module M is said to be a CS-module or extending module if, for
any submodule X of M, there exists a direct summand X* of M which
is an essential extension of X. The concept of this module is a notable
property of injective modules. In a glance, to control this property seems
to be simple. However, even if to study the problem when finite direct
sums of CS-module is CS is difficult. A major reason seems to comes
from that there are several kind of CS-modules. In fact, the following
CS-modules M are considered:

(A) for any submodule X of M, there is a decomposition M = X* &
M' such that X C, X*, where X C, X* means that X* is an essential
extension of X.

(B) for a given decomposition M = @;M; and any submodule X of
M, there exists a decomposition M = X* & (&,;M!) with X C, X* and
M! C M;.

(C) for any decomposition M = @;M; and any submodule X of M,
there exists a decomposition M = X* & (&;M!) such that X C. X* and

M with the condition (A) is, of course, a usual CS-module. We say
that A is a CS-module for M = @;M; if M satisfies the condition (B).
And we say that M is a normal CS-module if M satisfies the condition (C),
and say that M is a finite normal CS-module if M satisfies the condition
(C) for any finite index set /.

Any finitely generated torsion free abelian group G = Z®- - ‘®%Z, (n 2
2) is a CS-module as a Z-module, but not a CS-module for G = Z; &
.- @ Z,. We emphasize that almost known CS-modules are normal CS-

modules.
As we stated above, for CS-modules, the following is an open problem:

Let M be an R-module with a decomposition M = @&; M; with each M;
CS. Then give a characterization for M to be a CS-module.

The detailed version of this paper will be submitted

for publication elsewhere. 1



Our purpose of this paper is to give some results on this problem by
introducing generalizing relative injectivity. Main results are following:
Let M,,--- , M, be CS-modules and put P = M, @ --- & M, .Then

(1) When n = 2, P is CS for P = M, & M, if and only if M; is a
generalized Mj-injective for i # j .

(2) Whenn >3, PisCSfor P= M @---® M, ifandonly if M;is
a generalized M; @ M-injective for any distinct ¢, j, k, and, if and only if
M; ® M, is a generalized My-injective for any distinct 4, j, k.

(3) When n > 3, P is normal CS if and only if each M; is normal CS
and M, is a generalized M; @ M-injective for any distinct i, j, &, and, if
and only if M; ® M; is a generalized Mj-injective for any distinct i, j, k.

(4) When each M; is a uniform module, P is CS for P = M\ @®---® M,
if and only if M; is a generalized Mj-injective for ¢ # j.

1. Preliminaries

Throughtout this paper 12 is a ring with identity and modules are
unitary right 2-modules.

Let M be a module and N a submodule of M. N C, M (resp. N <g
M) means that N is an essential submodule (resp. direct summand) of
M. For T" <g P, mr denotes the projection : /> — I". For an element
m € M, by (0:m) we denotes the annihilator right ideal of m .

Let {M; | i € [} be a family of modules and let M = &;M; . A module
M is said to be a CS-module for M = &;M;, if for any submodule X of
M. there exists X* C M and M; <g M;(i € I) such that X C, X* and
M=X"® (&M, .

Let M = M, & M, and let ¢ : M}, — M, be a homomorphism. Put
(My 2 My) = {my + o(m;) | m; € My}. Then M = My ® My = (M, 5
M) @ M.

M and N are R-modules. M is said to be essentially N-injective, if
for any submodule X of N and any homomorphism f : X — M with
Kerf C, X, there exists a homomorphism f*: N — M with f*|x = f.

A module M is said to be a quasi-continuous if it is a CS-module with
the following condition (C3) :

(C3) If My and M, are direct summands of M such that My M, = 0,
then M| & M, is a direct summand of M.

The following is known (cf.[1, pp.16-17])

Proposition 1.1. (1) For R-modules M and N, If M is essentially N-
injective, then M is essentially K-injective for any submodule K of N.
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(2) Let M be a module and {N, | X € A} a family of modules. Then M
15 essentially @ Na-injective if and only if M is essentially Ny-injective
for all A € A.

(3) Let I' be a finite set and {M; | i € I'} a family of modules. Then
DrM, is essentially N-injective if and only if M; is essentially N -injective
forallie F.

By a slight modification of the proof of [4, Theorem 1.7, we can show
the following:

Proposition 1.2. The following conditions are equivalent:
(1) ®aAM,y is essentially N-injective
(2) ®;M; is essentially N -injective for every countable subset I C A
(3) M, 1s essentially N-injective for every A € A and following condi-
tion (A3) holds.

(Ay)  TFor every choice of n € N and mn; € M; for distinct a; € A(i €
N) such that (0 : ) 2 (0 : n) and NR, Kerp; C, nR for canonical

homomorphism ¢; : nl2 — m; I} , ascending sequence N;>,(0 : 1;)(n € N)
become stationary.

Definition 1.3. Let M and N be modules. M is said to be generalized
N -injective, if for any submodule X of N and any homomorphism ¢ :

X — M . there exist decompositions N = N@® N , M = M &M, a

homomorphzs‘m %: N — M and a monomorphism 1 : M—N satisfying
following properties (x), (x*).

(+) X C N & p(M) B
(xx) Forx € X, we eTpress ¥ n N=N®N asa =T7F+T, where
TN andT € N. Then o(x) = 3(T) + B(F), wherep =9~ .

Proposition 1.4. (1) If M is N-injective, then M is generalized N-
injeclive. o

(2) If M is generalized N-injective, then M is essentially N -injective.
Proof. (1) is clear. .

(2). Let X be a submodule of N and f: X — M be a homomorphism
with Kerf C, X. Let Y be a submodule of N with X &Y C. N.

Defineg: A= X®Y — Mbyglx+y) = f(2). Since X®Y C.
N and Kerf C, X, we see Kerg C. N. By assumption, there exist

decompositions M = M @ M and N = Ne&N. a homomorphlsm Gg: N —
M and a . monomorphism /- : M- N satlsfymg fora=a+awithae N
and @ € N, g(a) = §(a) + (@), where § = h~!. Since Kerg C. N, we see
Imh = 0 and hence M = 0.

-3 -



Now define f*: N = NoN-— M by f*(B + 7) = §(%). Then we see
I*|x = f. Thus M is essentially N-injective. 0

Remark N-injective = generalized N-injective = essentially N -injective.

Proposition 1.5. If M is generalized N-injective, then M 1is generalized
K -injective for eny direct summand K of N.

Proof. Let X be a submodule of K and f: X — M be a homomorphism.
Put N= K® L. Defineg: XL — Mbyglz+!) = f(z). By
assumption, there exists decompositions M = M & M and N = NeN,a
homomorphism 7 : N — M and a monomorphism h : M — N. Then L is
a submodule of N since g(/.) = 0 and h is a monomorphism. Thus we get
N=(NnK)eN&® L (1)

Since NN K <g K, there exists K’ C K such that X = (NNK)® K'.

Let pg+ be the projection : N — K'. Then we have

N~ K" (by pxl5)

Therefore the natural map « : ;)K:(ﬁ) — pﬁnk(_ﬁ) is a well-defined
homomorphism (where pg,x is the projection : N — N N K). Since
K' = pK:(ﬁ), we get

N=(NnK)oK'e® L
=(NNK)®o(K' =NnK)elL ---(2

Put i* = (K’ 22 NN K) and let pg. be the projection : N — K*.
Then by (1) and (2),

Nx=K*  (by pkl5)

Hence h* = py.oh : M — K* is a monomorphism. Now for z € X,
weexpresszin K = (NNK)® K* asz =7y + k*, whereif € NN K

and k* € K*. Put [ = f|gnx and 7 = h*~!. Then we see

() = T(m) + (k)
Therfore M is generalized K-injective. o

2. Direct sums of CS-modules

The one of main purpose of this paper is to show the following.

Theorem 2.1. Let M, and M, be CS-modules and let P = M, & M,.
Then P is CS for P = My ® My if and only if M; is generalized M;-
injective (i # j).

For a proof of this theorem, we need several results.

-4 -



Lemma 2.2. Let M and N be modules with M NN = 0, and let [ :

M — N be a homomorphism. If A is an essential submodule of M, then

(AL vy, MLy,

In particular, f(A) = 0 implies A C, (M L N).
Proof. Evident. 0

Lemma 2.3. Let {M, | « € A} be a family of modules and put P =
®aAMo. If P = X ® (©sAMY), where M, = M. & M" (o € A), then
X = QBﬁE/\(Mé — @AMCI:)

Proof. Since X N (@AMY2) = 0, the natural map f : mgm(X) —
Tg m»(X) is a homomorphism. Put f, = S|am:, (@ € A). Then

X = (moum,(X) L 1o,z (X))
= (@M}, L oaM2)
= @pen (M} 2L @MY 0

Lemma 2.4. Let M and N be modules with MNN =0, and let (M —
N) = X, @ X2. Then there exists a decomposition M = M, & My such

that X; = (M; 2% Ny (i = 1, 2).
Proof. Define [ : (M — N) — M by f(mn + a(m)) = m. Then f is an
isomorphism, since M NN = 0. Put M; = f(X;) . Then

Xi = (M; 5 N), 0
Lemma 2.5. Let M = M, & My and let X be a submodule of M. If
Xl ge Ml fOTX] g X, then X Qe X1®(M20X)

Proof. For 0 # € X, we express z in M = M, @& M,y as 2 = m, + 1o,
where m, € M) and my; € M. If iy € X)), then my € MaN X. So we get
0#z€ X1 @ (Myn X). If iy ¢ X\, then there exists » € R such that
0# myr € X;. Hence 0 # 21 = myr + mgr € X, & (M2 0 X).
Hence X 2. X, ® (M2 N X). O

Lemma 2.6. Let P be a module with a decomposition P = M, & M,,
where each M; is a CS-module, and let M; is essentially M;-injective (i #
7). Let X be a submodule of I’ with X D, X, X, and let M; = T;®N; with
Xi C. Ti (i = 1,2). Then there ezist X* C M and M! <¢ M; (i = 1,2)
such that X Co X* and P = X* & (M! @ M3).

Proof. Put Y] = (T'® N, ® N) 0 X. Since X D, X, & X,. the natural
map [ : np, (Y1) — wn, (Y1) is a homomorphism. Since X; C. 71 and

f(X)) = 0, we have X; C. {nr,(Y1) - mn,(Y1)) = mar, (Y1) by Lemma
2.2. Since M, is a CS-module, there exists a decomposition M, = Y"@® M,
with mp, (Y1) €. V). Thus we see

—5—



P=YeoelheMaeN,
u - ue ur
X Qe Xl @ X2
As mp, (Y1) C. Y)'; the natural map o : 77, (X) — mpn(X) is a homo-
morphism. Further we see Kera C, nr,(X) since X € Kera C nqy(X) C
Ty and Xy C, To. Thus there exists a homomorphism @ : T — M|
such that 6|,,.,.2(x) = a. Since X2 C. T3 and @(X,y) = 0, we get

Xy C, (T 2, M]) by Lemma 2.2. Thus we see

P=Yelh-oMeMeN,
U uUe U
X Qe Xl @ X‘Z
Define 3 : Ma =15 ® Na — M| by (12 + ny) = @(l,). Then
(12— M) & Ny = (Mp 2 M3)

Put Y = (My 25 M!) N X. Since (M, 25 M!) is a CS-module,
there exists a decomposition (M, £, M) =z Z) with Y, C. Z3.
By Lemma 2.4, there exists a decomposition M, = M; & MJ' such that
7y ={(Mj — M]) and 73 = (M3 — M]). Since X, C. Yz, we see

P=YozZoMe”Z
U ue U
X2 X180 X,

Since XCYyY@eM - M)=V'®Z;07,), YoC Z) and X, C,
Y. the natural map v : my;(X) — wz(X) is a homomorphism with
Kery G my (X). Inasmuch as 7; is essentially Yy'-injective, there exists
a homomorphism ¥ : Y} — 75 with J|,,..(x) = 7. By Lemma 2.2, we get

1

X, C. (Y 7, Z,). So we see

P=(Y} L Z)o 7zl oM & Z,
Ul U Ue
X Qe Xl & X‘Z

Put X* = (Yy 5 Z) @ Z), then X C, (Y —— Zp)® Z4 = X*.
Thus, we see
P=X' oMo
= X' ® M@ (M; - M)
=X'®& M &M, o

Lemma 2.7. Let P be a generalized T-injective CS-module and let N <g
P. IfAC. T and B C. N with A L B, then there ezist A' C. A,

-6 -



decompositions T =T ®T, N = N® N, a homomorphism f : T —» N
and @ monomorphism g : N — T satisfying following (), (**):

(x) A € Todg(N)

(*) Fora' € A', we expressa’ inT = ToT asa’ = a+a, whereae T,
FeT. Then ola’) = [(@) + g~ (7).
Proof. Since P is generalized T-injective and ¢ is a isomorphism. there

exist decompositions T = T@® T, P = P@® P and monomorphisms { :
TP, ¢: P-T. AsTisa CS-module, there exists a decomposition
P=P @Switha(T)C. P Put A= ANT, A= ANT, o(A) =
and (,i(ﬁ) =B, thenwesee B= BNP C, P, B=BnNP C, P and
B®BC.an(P)®nn(P)C. N. B

As N is a CS-module, there exist a decomposition N = K @ 7n(P)*
with wN(?) C. mn(P)*. Since wN(?)‘ Nany(P*)=0and B® B C, N,
the natural map « : wN(ﬁ)‘ — wf(wN(f)‘) is an isomorphism.

Now define b : T — T by h(l) = —poxopop(l) (where p is the
projection : [’ — wN(%)‘). Put f =7wgopof: (T — LA T) — K and
g=vpoa:nn(P) =T, where f: (T 5 T) — T (i + h(T) = 7). Then
we see that g is a monomorphism. Fora+a€ ADA, we express a+a a in
T2 ;1—)6})7 as@-+a=1-+n( )+I where 7 + h(f) € (I'—»T) and 7 €T,
Since ¢~ (W), ¥~1(1) € Nn P, we get )

p(@+a) =2(7) + ¢~ (WD) + 41"(7) _
= ﬂx(s?(z)) +p(B0) + ¢ (D) + 9710
= mx(B(1)) + p(B(0)) + ( p(@([)) + o~ (D)
= ncopo (T +h() + (o) (D
!

= f(L+ WD) + g~ (7) 0
Proposition 2.8. Let P=M®---® M, and let M; = M & M (i =
1,---,mn). Ifl’isCSforP M@ - &M, then P=M&---®& M,

is C'S for PP=M®® - -&M,.
Proof. Let X C P'. Since P’ <g P, P' is a CS-module. Hence there
exists a direct summand X* <g P’ with X C, X*. By assumption, for
X d(M!®---@M))C P, thereexist Z C Pand M, <g M; (i=1,---,n)
such that X* @ (M!' @ ---®M") C, Zand P =20 (M1 ®--- & M,).
Since X* ® (M| ®---® M,]) <g P, we get
P=X'®oM'® - oMo (M&  -&M,)

Since M N M; = 0, the natural map «; : mae(M;) — WM;'(WI_:') is a

homomorphism. Put M = mpy(M;). Since M; = (M] — M['), we get

-T7-



P=X'&(M~M)® &M - M) M & &M
=X'eMo---oM)o(M e - &M,)

Since X*@®(M]®--- M) C Pand PR(M!@---®&M") =0, we
see

P=X‘oMeo  -oM) D

Proof of Theorem 2.1.

” Only if ¥ : By Proposition 2.8, it is enough to show that if M =
M, ® M is CS for M = M, & M,, then M, is generalized M,-injective.

Assume that M = M, ® M, is CS for M = M, ® M,. Let A C M, and
@ : A — M, be a homomorphism. By assumption, for (A 2 M) C M,
there exist Z <g M and M} <g M; (i = 1,2) such that (A 5 M,) C, Z
and M = Z & M{ ®M). Put M{ = M;nN(Z & M) (i # j). Since
M; = M ® (M; N (Z & M])), we get

M=M &MoM &M
= Z eM'eMm

Let p be the projection : M — Z and put X = p(M]), Y = p(M;).
For any 2 € X, we can express 2 as x = mj + mj, where i} € M] and
my € My. Then ¢ : M|{ - My (m} — mj) is a homomorphism since
Z N My = 0. By the same argument, for any y € Y. we can express
¥ as ¥y = my + my, where my € M; and m{ € M. Then ¢ : M; —
M} (mf — ) is a homomorphism. Since (A 3 M,) C. Z=X@ Y. ¥
is a monomorphism. Thus, for any a € A, we see

a+@a) =2+ y=my + i+ m) +mj
= mi + ' (m)) + m{ + ¢~ (mf
Since A C M,, we get
a=m)+mnf, p(a) = @' (m)) + = ()
Therefore M, is generalized M;-injective.

"If": Let X C P and put X; = M; N X (i = 1,2). Then there exist
decompositions M; = T;® N; with X; C. T; (i = 1,2). Put Ya = (N, &
No)NX. For wy,(Y2) C N;, there exist decompositions V; = N;@ N{' with
7y, (Yz2) Ce N! (i = 1,2). Then the natural map « : mn,(Ya2) — T, (Ya) is
an isomorphism. By Proposition 1.5, N, is generalized N{-injective. Thus,
by Lemma 2.7, for a : mp, (Y2) = 7w, (Y2), there exist decompositions N; =
T‘E@ —I\T,’ (i = 1,2), a homomorphism @ : Nl — N} and a monomorphism
B : Ni — NI satisfying, for any x € wp,(Y2). & can be expressed as
z=T+% withT € N; and # € Imf}, and «(z) = @(F) + p~(F). Since
7y, (Y2) C. V| and « is an isomorphim, @ is a monomorphim. So we see

—8—.
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Proof. (1) = (2) holds by Proposition 2.8.
(2) = (1). Assume that (1) holds for n = k, and let P = M, &
o @ My ® My and M = My @ My, For any j € {1,---,k — 1},
M; ® My ® My, is CS for M; @ My @ My, by (2). So we see that M is
a CS-module. Hence M; is generalized M-injective and M is generalized
M;-injective ( = 1,--- ,k — 1) by Theorem 2.1. By assumption, for any
X C P, thereexist X* C P, M; <g M; (j=1,--- ,k—1)and M' <¢ M
such that X C, X*and P=X"® M & --- @ M;_, ® M'. Then
M=MeoX'oM® - - &M _)NM
By Theorem 2.1, M is CS for M = M, & M,_,. So, for (X* & M| &
@M )NM <g M, there exist My <g My and M|, <g¢ My such
that M = MM, & (X' &M@ - & M;_ )N M. Let pp and p3 be
the projections : M — M@ M, M - (X* &M & - - & M;,_))NM,
respectively. Since M'N[(X* ® M{ @ ---® M[_,) N M] = 0, the natural
map ¢ : p(M') — pa(M’') is a homomorphism. Then
M’ = (m(M') 5 py(M'))
=(MOM,, SX'OM & - M_)
Thus we get
P=X‘oeMa& - --dM_,dM
=X'OMS - dM_ OMOM, , > X OM & --dM;_,)
:X*®A4{®"'®ML—I®ML®ML+I
Therefore I’ is CSfor P= M, & --- & M, & Myy,. D

Remark In 2], we announced without a proof that if My,---, M, are
CS-modules and M; is generalized M;-injective for i # j then P = M\ &
o @® M, s CS for P =M - ® M, However, we must correct this
statement in the present form (2) of theorem above.

Lemma 2.11. Let I’ be an R-module with a decomposition P = M, &
My & M; where My is a CS-module and 1” = M, & M, is CS for P' =
M, @ M,, and let M; be essentially Mj-injective (i # j). For a submodule
X C P uith X 2. X, 8 Xo® X3 and decompositions M; = T; ® N; with
Ti De Xi (i = 1,2,3), there exist X* C P and M! <g M; (i = 1,2,3) such
that X C, X* and P = X* & (M| & M, M)).

Proof. Put Vo = (1 @12 &N, & N, ® N3)N X. Since X D, X1 D X2 X3,
the natural map [ : nne7,(Y2) — Tn,en,(Y2) is a homomorphism. Since
T\®T; D¢ X1 ® Xy and f(X; ® Xs) =0, we get

X0 Xy S (rrnen(Ya) -5 Them(Y2)) = Tanema(Ya)
by Lemma 2.2. Inasmuch as /' is a CS for ' = M; @ Ms. there exist
Yy C P and M <g M; (i = 1,2) such that mp,em(Y2) C. Yo' and
P =Y ® M &M, Sowesee



P= Yy &30 M oM, N;
Ul Ul Ul
X 2. X100 X0 X3

Since mpr, @, (Y2) Ce Yo', the natural map a : 7 (X) — Tmioms(X) is
a homomorphism. We see Kera C, m,(X) since X3 C Kera C np,(X) C
T3 and X3 C,. T3. By Proposition 1.1, M| & Mj is essentially T3-injective.
So there exists a homomorphism @ : T3 — M;® M, such that &, (x) = .
Since X3 C. T3 and &(X3) = 0, wesee X3 C, (T =, M| @ M,) by Lemma
2.2. Thus we see

P= Y@ MoM)eMeMeN
U ur ur
X2 X1 X2 & Xs
Define f3: M3 = T3 & N3 — M| & M, by [3(1.3 + ng) = @(t3). Then
(Tg _o_’ M’®M2)EDN'; = <M3—+ M’®M2)

Put Y3 = (M3 2, MeoeM)nX. Smce (M3 £, M & M;) is a CS-
module, there exists a decomposition (M; 2, Ml @ M}y = 24 ® Z3 with
Y; C. 7. By Lemma 2.4, there exists a decomposition M3 = M3 ® M3
such that 73 = (M3 — M{ & M;) and 7§ = (M} — M| & M;). Since
X3 C, Ys, we see

P= Y, @ Zid 70 M & M,
Ul ue o ue
X Qe Xl 53] X2 &b X3

Since X C Y, & (M3z - M{@®@ M) =Y, ®7Z;® Z5. Y3 C. Z3 and

X1® Xz C. Yy, the natural mapy : @y, (X) — 7z (X) isa homomorphlsm

with Kery C, my; (X). Since Z3 is essentially Y2 -injective, there exists a
homomorphism 7 : ¥, — Z; with J|x,..(x) = 7. By Lemma 2.2, we have
. '2

X, ® X2 Ce (Yy —— 74). So we see

P=(Y; L7y oZioMeMe 7z
Ul U U
XD X1id X2 & X3

Put X* = (Vy - Z) @ 7%, then X C, (Vs — ZH @ 78 = X"
Therefore we see
P=X"®M &M Z
=X'OM &M & (M3 - M ®& M)
=X'®M & Mo M; O

Lemma 2.12. Let T be a quasi-continuous module and let N, and Ny be
generalized T-injective modules. Let Ai®A, be an essential submodule of T



and let B; be an essential submodule of N; (i = 1,2) such that A} ® A, <
By & B and o(A;) = B; (i = 1,2). Then there exist decomposz’tions

T= TGBT and N; = NGBN (z—-l 2) suchthat (A1®A2~Bl@Bg)
(MoNoT)o(N—ToN)e (T < N oN,).

Proof. As T is a quasi-continuous module, there exist decomposition 7" =
T\ & T, such that A; C, T; (i = 1,2). By Proposition 1.5, N; is generalized
Ti-injective (i = 1,2). So, for als, : A; — B;, there exist decompositions
T.=T.®T, N; = N@E, a homomorphism @ : 7; — N; and a
monomorphism f; : N; — T; (i = 1,2) satisfying, for any z € A;, z
can be expressed as 2 = T+ T with T € T, and T € ImfJ;, and a(z) =
@ (%) + B7(F). Since A; C, T}, we get
Bi =

(45 B) S (T3 N)® (N S T)

Since A; C. 7} and « is an isomorphism, @; is a monomorphism. Define
a:T®T: - Ny® N, by a(l; + I3) = ay(l;) + az(lz). Then @ is a
monomorphism. Thus we get

ala,

(A1®A2—°»Bl@]22) = (A = D) @ (A, s B3)
Ce (7_1 NI)Q(Nl'J’Tl)@(T—Q&)m)@( 2&72)

= (TioT; > Moo & TeoTheN)o (N, & TieToN,)
a

Remark For Lemma 2.12, we do not know whether the stalement holds
if we change the assumption "Let 1" be a quasi-continuous module and
let Ny and N, be generalized T'-injective modules” by ”Let T', Ny, N be
mutually generalized injective modules”. If we can change the statement
in this form, (2) of Theorem 2.15 can be changed by the following

(2") M; is generalized Mj-injective fori # j.

Theorem 2.13. Let M, and M, be CS-modules and M3 a quasi-
continuous module. Put P = M, ® My @ My. Then P is CS for
P = M & M, & M, if and only if M; is mutually generalized injective
fori# j.
Proof. " Only if ” holds by Proposition 2.8 and Theorem 2.1.

"If part " : Let X € P and put X; = M; N X. Then there exist
decompositions M; = T;® N; with X; C, T;. Put Y, = (M@ N2)NX. By
the same argument as in the proof of Theorem 2.1, we see

P=ToT0130Y, ONON® Ny

U ue U U ue
X2X,0X20X30 Y,

Then P is essentially Yy -injective. Now we put Y3 = (N;®N@N3)NX.
Since Nj is a CS-module, for mn,(Y3) € Nj, there exists a decomposition



N3 = F;;@T;; with 7y, (Y3) C. N3. By Theorem 2.1 and Proposition 2.8,
N, ® N, is CS for Ny @& N,. Thus, for WN,Q,N,(Y;;)_Q N, ® N,, there exist

X* C N, ® N; and decompositions N; = N@ N; (i = 1,2) such that

Tmon(Y3) C. X* and Ny ® No = X* ® N, ® N;. By Lemma 2.3, we get
X' = (N~ NoN) o (N;— N o N

Since YN (N, & N;) = 0 and X3 N N3 = 0, the natural map o :

T (Y3) = 7nen,(Y3) is an isomorphim. Put B; = (N; — N, @ ﬁ) N
Tvon(Ys) and A; = o™ 1(B;) (i = 1,2). Then we get

N; (Ni-NoN) & (N = N, ® Ng)
U Ur
MDA = B, ® By

By Lemma 2.12 and Lemma 2.4, there exist decompositions N; =
N @ N;* (i = 1,2,3) such that (A, ® Ay > By @Bg) C.Ys.
where Y3 = ((Nl - N1 D N2) (N — Nl b N2) ® N3 )
&((N; = N ® Ny) — (Ni* - Ny & Ng) © Vi)
®(N; —.(Ni* = N, & N) ® (N3 — N, & Na)).
Then P is essentially Yy-injective. Put ¥J = (A, @ A2 = B, @ By).
Since Y3 = (ma,(Y3) = mwen,(Y3)) and A @ Ay C. 7w, (Y3), we have
Yi= (A ® A > Bi® B) C. Y3 by Lemma 2.2. Then

NO®N,®N; = X* $N3$N1@N2$N3
=Y, & (N - NioNy) & (N;* ~NeoN)o N

ON, ® N, & N3 — — —
Y, oN"oN o N 0N &N, o N

In the next step, we newly put N; = N;* @ V;. By Lemma 2.5, we see
P = Il®’112€9T3€BY2‘®Y3‘$N1®N2@N3
u e U oue U ue
X2:. X190 X200 X30Y,0Y5
Put =T\ T30 N, ® Na® N, M = T;® N; and X' =PnX.
Inasmuch as M, @ M, is CS for M, & M., M1 ® M) is CS for M| & M;}
by Proposition 2.8. Hence, by Lemma 2.11, there exist Z C /' and
M! <g M! (i = 1,2,3) such that P' = EBM'@M2$M3 and X' C. 7
So we see
P=zaY;oYie M{oM oM,
u ue U ue
X Qe XI@ Y2 @ Y:;’



Since X' N (M} & M & M) = 0, the natural map 3 : Ty;av; (X) —
T O MO, 77 (X) is a homomorphism. As Y, ® Yy C Kerf3 C my; @y°(X) -
Y, ® Y3 and a0V C. Yy @Yy, Kerf3 C, my; gy, (X). Since P is essen-
tially Y- -injective and essentlally Y;'-injective, P is essentially Y;' @ Y5'-
injective. Hence M]® M} @ Mj is essentially Y, @ Y, -injective. Thus there
exists a homomorphism f3 : Y; @Yy — V{@m@m with 7§|,,).2.m.'; x) =B

Since @ Y{ C. Yy @ Ys and A(Y2 @ Yy) = 0. by Lemma 2.2,

,0YC. (Y, @Y, 5 Mo Mo M)
Thus we get

XC (VyoYs b MoMeoM)eZ
Now we obtain a decomposition

Pr=YyoVv, b MoMeoM)e oM oMo M,
Therefore P is CS for P = M, ® M, & M. O

By the proof of theorem above, we can obtain the following:

Proposition 2.14. Let M), My and M3 be CS-modules and put P =
M, ® My ® M3. Then the following conditions are equivelent:

(1) Pis CSfOTP= M1®M2®M3

(2) M; is generalized M; & My-injective for {i, j, k} = {1,2,3}

(3) Mid M, is generahzed My-ingective for {i, j, k} = {1, ,3}

Theorem 2.15. Let My, -, M, be CS-modules (n > 3) and let P =
M@ --® M,. Then the following conditions are equivalent:

() PisCSforP=M&---& M,

(2) M; is generalized M; ® My-injective for distinct i,j,k €
{1,2,--,n}

(3) M; ® M, is generalized My-injective for distinct i,j,k €
{1,2,--- ,n}

Lemma 2.16. Let M,, --- , M,, be finite normal CS-modules and let > =
M@ ---eM, IfPisCSforP=MG®@: - &M, then for any
decomposition M; = M/ @& M (i = 1,2,---,n), P is CS for P =
Mo - -oMoM® &M

Proof. When n = 1, this statement holds, since M is a finite normal CS-
module. In the case n > 2. since each M; is a finite normal CS-module, M
and M/ are mutually generahzed injective. Hence, by Theorem 2.10, it is
enough to show that, for distinct A, B,C € {M{,--- , M}, M{,-- , M"Y,
M=AdB&(CisCS for.MzAéBBEBC’.

By Proposition 2.8, if A C M;, B C M;, C C M for distinct i, j, k,
then MisCSfor M = A B C.



Let A, B C M; (thatis M; = A® B), C C M; (i # j). By Theorem 2.1
and Proposition 2.8, M is CS for M = (A& B) & . So, for a submodule
X of M, there exist X* C M, A@B C A@® B and ¢! C C such that
XCeX'andM=X'®A® B® . Then

ADB=A®Ba[(X' ®C)N(AD B)]

Since M; = A® B is a finite normal CS-module, for (X*®C")N(A® B),
there exist A' <g A and B’ <g Bsuchthat A@ B=[(X'®©C)Nn(A®
B)@® A" @ B'. Let p; and p, be the projections : A® B — A'@ B,
AD B — [(X*® C')N (A @ B)] respectively. Then the natural map
@ m(A® B) = p(A@ B) is a homomorphism since (A @ B) N [(X* &
CYN (A& B)] =0. Then

ADB=(p(ASB) 2 pmAdB) = (Ao B 3 X el

Thus we get

M=X'oA®d B
=X'o(ANeB DX DD
=X'@AOB &
Therefore M isCSfor M = A B C. O

Lemma 2.17. Let M, and My be CS-modules, I’ = M, & M, and let
©: My — M, be a homomorphism. If P is CS for P = M; @ M,, then PP
is CS for P = (M, > M) & M,.

Proof. This is clear since My ~ (M; — M,). .

Theorem 2.18. Let M, aend M, be finite normal CS-modules and put
P =M, ® M,. Then the following conditions are equivelent:

(1) P is a finite normal CS module

(2) P s CSfOT P = Ml @MQ

(3) M; is generalized M;-injective (i # j).

Proof. 1t is enough to prove (2) = (1). Let P =T & - ® Trn. First
we consider the case P = 7} & 72. By (2), we have a decomposition
P = M| @& M, ® T, with some M! <g M;, put M; = M; ® M]'. For
P =M ®M;dM!® M, let p and p; be the projection : P — M{® M,,
P> = M{' @ M}, respectively. Then the natural map « : p(T2) — p1(72)
is a homomorphism since (M{ & M;) N7, = 0. So we get
Tz = (m(T2) = m(T2)) = (M & My = M & M;) .
By Lemma 2.16 and Lemma 2.17, P = M| & Mj; & (M{ & My —
MoMY)y=MeModT,isCSfor P=Me&M;®&T,. AsTiNT2=0,
the natural map /3 : ;1 (11) — w, (7)) is a homomorphism. So we get
T = (1) & mn, (1) = (M{ @ M; 5 To)
Thus, by Lemma 2.17, P is CS for P =1 & T>.



Next we consider the case m. > 3. Let T;,73,Tx € {Th,--- ,Tm}- Since
P =1 ® (@&17) is CS for P =T1;® (®147T1), T; is generalized T; @ T;-
injective by Theorem 2.1 and Proposition 1.5. Thus, by Theorem 2.15, I’
isCSforP=TN& ---®T1T,.

Therefore P is a finite normal CS-module. O

By a quite similar proof, we can show the following :

Theorem 2.19. Let M,,--- , M, be finite normal CS-modules (n > 3)
andlet P= M @---©®M,. Then the following conditions are equivalent:

(1) P s a finite normal CS-module

(2) PisCSforP=M®---& M,

(3) M; 1is generalized M; & My-injective for distinct i,j,k €
{1, 2’ . e ln].

(4) M; & M; s generalized My-injective for distinct i,j,k €
{]_' 21 cee n}
Theorem 2.20. Let M,,---, M, be quasi-conlinuous modules and put
P=M® --®&M, ThenP’is CS for P = Mi®---® M, if and
only if M; is generalized M;-injective for i # j.

Proof. This follows from Theorem 2.10 and Theorem 2.13. O

Corollary 2.21. Let M,,--- , M,, be uniform modules and let P = M, &
- @®M,. Then I’ is CS for P = M\ & --- ® M, if and only if M; is
generalized M;-injective (i # j).
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Certain Seminormal Rings and Certain Seminormal
Semigroups

Mritsuo KANEMITSU !

Let S be an additive semigroup such that torsion-free, cancellative with identity 0 and
S # {0}. A prime ideal of S is called divided if P is comparable to every principal ideal
of S. If every prime ideal of S is divided, then S is called a divided semigroup.

We study some properties of valuation semigroups, pseudo-valuation semigroups, semi-
normal semigroups and divided semigroups. And we give some examples about these
semigroups.

Moreover, we show that if S an atomic semigroup, then S is divided if and only if dim
S = 1. Also, we show that a finitely generated prime ideal of S such that dim S = 1,
then it is maximal.

ZIZTCH, HEEMIIPVS EMFTHA Z &, E-PVSHBHIFEREMTHLHVE
fodivided ¥B¥THD Z L BB, ThHDEFOHIRH B RO T Tdivided HBFEL 2
554, divided A FTABERAL FTT N L 22D+ ONTIRRS.

B S22V R D BT T RTME TR I TWTHIGITE 0 28Fh, XA Ttorsion-
free T2 0 LADTEFOTRERLTH. SEEH, G=q(S)={s—5|s, & €S}
¥ SOBWBLYTD. S&GOHMNEEE SD oversemigroup &V 5.

1% SOBETRVRSIE LTS, IRSDATFFINEL, T+Scl, b, IOERD
Toa & SOEBDTSIZH LTa+s e INDLERN). A FTNVINI £ SOLEHADA
FFLEND,

SOTuBBTTHB LY, SOHDTRTHEL Cutv =00, EEV ). SOBTE
K2 U(S) LiBT. M =S-U(S) RBRETRWVWEE, MIZSDAFTNERY, MCI
ERBEBDATTNNIMLT, M=TE3] = SHRILTE. O MMPIEHREGTR
W & MIZSOBRA TT7IVEFRENS.

SOEDAFTNPHEATFPNELIL, SDita, bTCat+be PRbac PEXiZbe P
DLEEND., BRATFTMIRATTNTHD. AT 7 NEEROES % Spec(S) &EC
T. HOAFTNVQRBRATTPNEIL, SDITa, bIZFLT, a+beQ2bacQ¥E
Fiinb € Q (ITIEEDRE) DL &EWVW). BOL & LRRICRA T T MIMERAT TN
ThHd. SODAFTAIIHLT, rad(I) = {z € S| HABRENITHLT, nzel}
BL. QNSOWRAFTADEL %, rad(Q) = PRRFEATTNEREN, TOEEQIT
P-BRATT7NEFETNS.

He— LOEA F TN EFEIRVEBESITRTH 1 THD VWY, dim S =1 LFET.

z€SIZMLT, () =z+S={z+a|ac S}RSDAFTAEZRL, SOBMRSTTI
EnWd, ¥kay, a -, 8, €SIZXLT, I=<ay, a2, **+, @8 >= (a1, G2, +++, Q) =
UL, (a;) = UL, (a; + S) &BE, TOALFT7N%a), a, -+, aa CERSNIE=ATTN
EWnS. AREDOTCERENBATFTNVRHBERA TTIEWD,

1This is an abstract and the details will be published elsewhere.




T% SDoversemigroup &3 3. TOTtHSLBLIL, HIEDEEnIZHLTnie S
DLEEWNS., TOTRTOTHNSEETHD L &, ¥BTIHSEBTHD LS. SO
HGCOTTSLEBOLOLEESOBEALV, SLitT.

TITRBZoZn A LB DBE LT3, ZIIBHEEROESTIMERFLEX
3. BELRLOLBNLBEIRIL (1] BIU 5] 2BRE L.

BE 1 ((1]). ¥BSOKA FTT N Phidivided THD &L, P D (a) 7P C (a)
PEROBIAAS FT V(@) IKHLTWAB EEZV ). SHdivided B LIZERATT
NAdidivided THD & EEV .

BH 2 (2, 3, 4, 6]). EBSORAFTNVPHERATTINEHL, Va, be SIZHLT
a+ P Cb+SERIL+S Ca+PHRITHEEEV ). ¥HSOEEA T T AHHEEA
FTNADEE, SIIERMHESRRE (HHIZPVS) &V 5. HIZSOBEG DEREDTalNt
LT, a€SERT—ac SHRUTDEE SIIFHEEEL VY. FlE LTI, SHEAER
ZIX]= {a+nX |a € Z, n € Zo} IHHANBEEA, Z+ 22X ={a+nX|a€2,n<2}
FATEERE T2V

TEF 3 ([4, 6]). EBESHBEGC = 9(S) BRoLE, a€ GT2a €S, 3a € Si2b
o € SHRYVIHLE, SITHTEREHR (HHLZ, SN LW ).

BT 1 2RO TR ROBIEHIR (HHIZSNR) &it, ROBEKDxadi2a € R
MD3a € REMiT L &ida e RRVWAD EEEW). THIZERBRI VA LGEVERT
H5.

(1REBRE _E0) REihBR OB FRIZBW TRHFRADORFTRIISNR THD Z ¢
BHLHTVS,

R 1 &L ARE 2 TFHEYEE, PVS 3 XU divided HBOBDOMBRER~STH L .
8 1. (HENEBITIPVS THS.
TDBILLT L H VAR,

#l 1 (BEA—+E). F%torsion-free 7 —~<NVEEL L, HEFDRHHFL TS, o =
0, a, Qz, - € F%, ﬁ—e’:ﬂ‘l ‘fiﬁwﬁﬁn ‘C%i' L-C,

n n+4l
H+Y ZaiCH+ Y Zo;
i=0 # =0
DEIEB. F=URyH+ Ty Zay) &B%, V=FUMEEXB L ZIMEE
KA T T IMIBFESHAEBETHD. S = HUMIZPVS IER{FHEERETIIA2 V.
65 2. PVS 725 SNERETH Y Mo divided $BETHB.
divided $BDOEHIZHOWTHRRE 5.

#EE 3. SAidivided BE LT3, TDELERDZENRVLS.
(1) Spec(S) HAREBETRMFAFIEETHS.
(2) RAFTNVPIZH LT, HEBREnBFHELT, nPRP-ERATTARERS.



Wiz divided 7523 SN EBE TRV VI & divided 7223 PVS TR WEREDFE HIT B,

#l2. =102 3,4, .-} =<2, 3>RBZLDMEBIEREELD. ZDLE
g(S) =2 L7225, By = PORER

R=K[X, Y)/(Y? = X%) = k[U?, U = k[S]

IRHEHRIISNR TR, o TSHSNEBETIIAY. L L, Stldivided 8T
HD.

#1 3 (Anderson DF). S =< (2, 0), (1, 1), (0, 1) >C Zo ® ZolIMEHBEL L T,
S={(2a+b b+c)|a, b c €20}, q(S)=2Z2@®2L712%. a=(m, n) €q(S), 2a€ S
PD3aeSLTH ZDLE bLlm=2+12bm#0»Da=(m, n)=¢2, 0)+
(1, D+ (n—-1)(0, 1) e SLi23. Elzm=2%ba=(m, n)=t2, 0)+n(0, 1) €S
ThHo.

Lo Ta=(m, n) € ST, SITFEREHTHD. REHNY = 222 ORERE RE
T5. kkkLT3L,

R=k|S| = kX, Y, Z)/(XZ% - Y?) = k|U?, UV, V]
LB, =L, X, Y, Z, U, VIIFRER LTS, ZDStXdivided BTV
Wiz divided R BEORRUA T Bk~ L 5.

i 5. RD(1) - (4) XEATHS.

(1) Stk divided HBETH S.

(2) SOHETHIEBDATTNI, JIZXH LT, ICrad(J) E721ET D rad(J).

(3) Va, be SIZHLT, (a) C rad((b)) £i2iE(a) O rad((b)).

(4) Ya, b€ SIZXH LT, a| bET=ILb | na L 2B AR n BIFEETS.

(5) Va, be SIZXH LT, b+ S Cna+ MERIEb+ S D na+ M725 BRAEN M HE
73.

ZhEFERT 3 EROFABVES.

% 4 (divided 3FE7ZH3 PVS TRV ).
BRFEES = Z(X, Y]={n+mX +tY |n€2Z, m, t € Zo}iddivided ¥8TH5
A PVS TR,

TEH 7 ZIAT 5 - HILKOHE LR~ E 5.

e AFTTNIESOUMBAFFATRNWLTE, ZOLE, Yz e I"VTH LT,
4+ I C MMBRIMYT 3.

BH 7. PRYEBSOMEASFTATIERWE S adivided BA FTALTD. ZDE
%, P-l= P: PIENTHS.

R 4. SOz Hatom &L, ziIXHT TR, ¥/-blz=a+ bl SDa, bT
HBIFBRbabDELLL—FITHTETHE L EEV . RESOTRTORETR
LORHBED SD atom DFITH 5 & & Sitatom EBE V.



&Kot 1 D¥ERZMET RO ZHOFEBERRE 5.

EE 8. SHlatom EBLTS. ZDL & SHdivided THBIT L LdimS=1THdZ
LRt THB.

B 9 ILIER ¥R L T OBAADKRTFE 51X TVW5.

EH 9 ([6]). SHKT 1 DFFLTH. T L ¥ SO oversemigroup BTSN TH
DUEIFRMIL, SHSN PO SOBRASHIMEERL 2L THD.

EE 10 RO Z>OHiEEME 5 LA TE 5.
78 10, s BB SOTLT DL, siTSEBIZIZRL TR B2

8 11, /2 EHESOFPRERTHIATFTALTAD. bLz+ICIpb, ziXSE
BTh3.

B 12. PRHERERTHIKAFTTNL TS, Phdivided BA 77 NV702 D PiIiE
KAFTNLTHDB.
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ON MAX MODULES
JOHN CLARK

ABSTRACT. This paper is a review of max modules, i.e., modules for which every nonzero
submodule has a maximal submodule, and max rings, i.e., rings over which every module
is max.

1. INTRODUCTION

In what follows R denotes an associative ring with identity and R-modules will be
unital (and, unless stated to the contrary, left R-modules.) Given R-modules N and M,
we will write N < M (or M > N) to denote that N is a submodule of M and N < M
(or M > N) if N is a proper submodule of M.

A submodule N of a nonzero module M is called mazimal if it is a proper submodule
and is not properly contained in any other proper submodule of M.

A Zorn’s Lemma argument shows that every finitely generated nonzero module has a
(not necessarily unique) maximal submodule. More generally, as noted by Rant [Ra], any
nonzero module M which has a minimal generating set contains a maximal submodule.
(A generating subset B of M is called minimal if no proper subset of B generates M.)
course, if M = R the maximal

Let M be a nonzero R-module. A finite chain of n + 1 submodules of M of the form
M=M0>M1>"'>Mn=0

is called a composition series of length n for M if each factor M;_,/M; is simple for
i=1,2,...,n. Note that M;_,/M; is simple if and only if M; is a maximal submodule of

M.
The following result is classical (see, for example, [AF, §11|).

Proposition 1.1. The following statements are equivalent for a nonzero R-module M:

(8) M has a composition series;

(b) M is both a noetherian and en artinian module;

(¢) M is a noetherian module and every nonzero factor module of M contains a simple
submodule;

This paper is in final form and will not be submitted elsewhere.
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(d) M is an artinian module and every nonzero submodule of M contains a mazimal
submodule.

Definition 1.1. A nonzero R-module M is called semi-artinian or a Loewy module if
every nonzero factor module of M contains a simple submodule.

Of course, any artinian module is semi-artinian, but not conversely. (For example, one
can show that the semi-artinian Z-modules are precisely the torsion abelian groups and
so the Z-module Q/Z is semi-artinian but not artinian.)

Definition 1.2. A nonzero module M is called semi-noetherian or a maz module if each
of its nonzero submodules contains a maximal submodule. (Faith [Fal, Fa2] also uses the
term Hamsher module.)

Of course, any noetherian module is max, but not conversely. (For example, if R is the
ring of all sequences over the field Z, which are eventually constant then the R-module
R is max but not noetherian. More easily, over any ring R any semisimple R-module
with infinitely many summands is both max and semi-artinian but neither artinian nor
noetherian.)

A rephrasing of the equivalence of (b), (c) and (d) of Proposition 1.1 says that M is
both artinian and noetherian iff M is both artinian and max iff M is both noetherian and
semi-artinian.

In view of Hopkins-Levitzki’s famous theorem that every left artinian ring is left noe-
therian, a natural question arising from Proposition 1.1 is: if M is a projective artinian
module is M max or, equivalently, noetherian? The following example due to Fisher [Fi|
answers this in the negative.

Ezample. Let K be a field and let V be a countably infinite dimensional vector space over
K with basis {v;,v,...}. For each n € N let V,, denote the subspace of V generated by
{v1,02,...,v,}. Define the linear transformation T on V by T(v1) = 0 and T(vn) = va-
for n > 1. Let S be the polynomial ring F[T]; S may be thought of as the subring of
Endg (V') generated by the scalar linear transformations and all powers of 7. Then, as a
left S-module, the submodules of V' are precisely the V;, for n € N. Thus V is an artinian
non-max S-module.
Now if we define the ring R and the left R-module M by

SV oV
R[S V] wani=[0 1

then M is a cyclic projective artinian lef. R-module which is non-max since its proper
nonzero submodules are all of the form

0V,
v=l o]



for some n € N. (Note M’s similarity to the quasi-cyclic abelian group Zy. In particular,
M is uniserial.)

Further to this example, we note the following result from [Fi|.

Proposition 1.2. Let M be a projective artinian R-module. Then M is noetherian if
either (a) R is commutative or (b} R is left hereditary or (c) M is a generator for the
category of left R-modules.

More examples of cyclic artinian uniserial modules which are not noetherian are given
by Hartley in [Har| and Cohn in [Coh].

Facchini in [Fac] has characterized the commutative rings R for which the classes of
noetherian and artinian modules coincide as those for which every artinian submodule of
the injective hull of a simple R-module is finitely generated.

2. THE SOCLE SERIES AND THE RADICAL SERIES.

Definition 2.1. We denote the socle of the module M by Soc(M). (This is defined to
be 0 if M has no simple submodules.)

The second socle of M is then defined to be the submodule Socz(M) of M containing
Soc(M) such that Soca(M)/Soc(M) = Soc(M/ Soc(M)).

Letting Soc; (M) = Soc(M) and proceeding in this fashion, we manufacture the socle
series or (lower) Loewy series of M as the ascending chain of submodules

0 < Soc, (M) < Socz(M) < -+ < Soca(M) < Soca (M) < -+,
where, for each ordinal a > 0,
Soca1(M)/ Soca(M) = Soc(M/ Soca(M)),
and if o is a limit ordinal then

Soca(M) = U Socg(M).

0<f<a

Since M is a set, at some stage the socle series of M must become stationary, i.e., there
is an ordinal p such that Soc,(M) = Soc,(M) for all ordinals a > p.

The first result in this section is an important characterisation of semi-artinian modules.
(Recall that a submodule A of a module B is called essential if ANC # 0 for each nonzero
submodule C of B.)

Proposition 2.1. The following statements are equivalent for a module M:
(a) every nonzero homomorphic image of M has an essential socle;
(b) M is semi-artinian;
(c) Soc,(M) = M for some ordinal p > 1;



(d) there exists an ascending chain of submodules
0=MCMC---CM; C Moy C---CM; =M
where each proper containment M, C M,y implies that the factor module M1 /M,
is simple.

We now consider the dual of the above.

Definition 2.2. We denote the radical of M by Rad(M). Thus Rad(M) is defined to
be the intersection of the maximal submodules of M and this is taken as M if M has no

maximal submodules.
The second radical of M is then defined to be the submodule Rady(M) of M given by

Rady(M) = Rad(Rad(M)).
Letting Rad; (M) = Rad(M) and proceeding in this fashion, we manufacture the mdical
series or (upper) Loewy series of M as the descending chain of submodules
M > Rad;(M) > Rada(M) > --- 2 Rada(M) > Radapi(M) 2 -+,
where, for each ordinal a > 0,
Rad,+1(M) = Rad(Rad,(M)),
and if o is a limit ordinal then

Rada(M) = (| Rads(M).

0<B<a

Since M is a set, at some stage the radical series of M must become stationary, i.e.,
there is an ordinal p such that Rad,(M) = Rad,(M) for all ordinals a > p.

The next result is the analogue of Proposition 2.1. (Recall that a submodule A of a
module B is called small if A+ C < B for every C < B.)

Proposition 2.2. The following statements are equivalent for a module M :
(a) every nonzero submodule of M has a small radical;
(b) M is mag;
(c) Rad,(M) =0 for some ordinal p > 1;
(d) there exists a descending chain of submodules
M=M M2 DM 2Mpy 2--- 2 M, =0

where each proper containment My, O M,y implies that M,y is ¢ mazimal sub-
module of M,.

Hirano [Hi] makes the following definition, in which J(R) denotes the Jacobson radical
of the ring R.

Definition 2.3. J(R) issaid to be T-nilpotent on the left R-module M if for every z € M
and every sequence a,as,... in J(R) we have a,a,-,---a;z = 0 for some n.



In particular, J(R) is T-nilpotent on R if and only if for every sequence a;,as,... in
J(R) we have ana,_ - --a; = 0 for some n, i.e., (see |AF, p. 314]) J(R) is left T-nilpotent
(also known as left vanishing). Using condition (c) of Proposition 2.2, Hirano has shown

Proposition 2.3, J(R) is T-nilpotent on every maz left R-module M.

While investigating injectivity conditions, Clark and Smith [CS] proved that if the ring
R satisfies the property

Socy(E(U)) is finitely generated for each simple left R-module U

then any left semi-artinian max R-module with finitely generated socle is both artinian
and noetherian. (Here E(U) is the injective hull of U.)

Shock [Sh] makes a detailed study of max and semi-artinian modules vis-a-vis the
noetherian and artinian conditions. In particular, he proves the following two results.

Theorem 2.4, If M is an infinitely generated module such that M/N is maz for all
N < M then some factor module of M has an infinitely generated socle and a zero
radical.

Theorem 2.5. The following conditions are equivalent for a module M:
(a) M is noetherian;
(b) every factor module of M is maz and has ¢ finitely generated socle;
(c) in every factor module of M, every submodule has small radical and finitely generated
socle;
(d) in every factor module of M, every submodule has finitely generated radical and
finitely generated socle.

3. MAX RINGS.

Much of the interest in max modules comes from the following classical result due to
Bass [Ba].

Theorem 3.1. The following conditions are eguivalent for a ring R:
(a) R is left perfect, i.e., R/ J(R) is semisimple artinian and J(R) is left T-nilpotent;
(b) R/J(R) is semisimple artinian and every nonzero left R-module is maz;
(c) every flat left R-module is projective;
(d) R satisfies the minimum condition for principal right ideals;
(e) R contains no infinite orthogonal set of idempotents and every nonzero right R-
module is semi-artinian;
() every left R-module has a projective cover.

Bass conjectured in [Ba] that if every nonzero left R-module is max and R contains no
infinite orthogonal set of idempotents then R is left perfect. However, both Cozzens [Coz
and Koifman [Ko| produced striking counterexamples.



On the positive side, Hamsher [Ham|, Koifman [Ko] and Renault [Re] each showed
that the Bass conjecture is true if R is commutative. Consequently, Armendariz and
Fisher |AFi] proved the conjecture true for rings satisfying a polynomial identity while
Chandran [Ch] proved it true for any ring in which every left ideal is two-sided. Yu and
Xue have generalised Chandran’s result by establishing the conjecture in [Yu] for rings
with the property that cvery maximal left ideal is two-sided and in [X] for rings R in
which, for every r € R, there is an n{r) € N such that R+"®) is a two-sided ideal. Hirano
[Hi] also shows the conjecture to be true for rings of (nilpotent) bounded index modulo
the Jacobson radical for which primitive factor rings are artinian. Tuganbaev, in [Tul]
and [Tu2], has also verified the conjecture for rings R of bounded index for which all left
primitive factor rings are left n-regular and for rings R such that any prime factor ring of
R is algebraic over its centre. (A ring R is called left w-regular if, for each r € R, there is
an n € N such that Rr® = Rr**!. Dischinger [Di] showed that this condition is right-left
symmetric and the term strongly 7-regular is also used.)

Definition 3.1. R is called a left maz ring if every left R-module is max.

Of course, every left perfect ring is left max. If R is left perfect but not right perfect
then we see from Theorem 3.1 that R is not right max. (The ring of row-finite N x N
matrices over a field K is such a ring, see [Ba).)

Further examples of left max rings are given by the following theorem which is attrib-
uted toVillamayor (see also [MV]).

Theorem 3.2. The following conditions are equivalent for a ring R:
(a) R is a left V-ring, i.c., every simple left R-module is injective;
(b) every proper left ideal of R is an intersection of mazimal left ideals;
(¢) Rad(M) = 0 for every left R-module M.

The counterexamples of Cozzens and Koifman mentioned above are in fact right V-
rings which are also simple principal right ideal domains. Camillo in [Ca] shows that
every principal right ideal domain which is also a right max ring must be simple and
conjectures that they are also right V-rings.

A well-known theorem due to Kaplansky states that a commutative ring is a V-ring if
and only if it is (von Neumann) regular. Of course, the Cozzens and Koifman examples
show that a non-commutative V-ring need not be regular. Conversely, there is an example
due to Faith of a regular right V-ring which is not a left V-ring. (See [CoF, Example 5.14]
and, for further aspects of this example, see [Ca]. Faith [Fal| also notes that this example
is left max.)

Our next theorem is a combination of results from Faith [Fa1], Hamsher [Ham], Hirano
[Hi], Koifman [Ko] and Renault [Re].

Theorem 3.3. The following conditions are equivalent for a ring R:



(8) R is a left maz ring;

(b) R/J(R) is a left maz ring and J(R) is left T-nilpotent;

(c) for every simple left R-module U, E(U) is a maz module;

(d) there is a cogenerator module C for the category of left R-modules which is maz;
(e) every nonzero quasi-injective left R-module has ¢ mazimal submodule.

For commutative rings we have the following nice characterization, due to Faith [Fa2],
Hamsher [Ham|, Koifman [Ko] and Renault [Re).

Theorem 3.4. The following conditions are equivalent for a commutative ring R:
(8) R is a maz ring;
(b) R/J(R) is a regular ring and J(R) is T-nilpotent;
(c) the localization Rp at any mazimal ideal M of R is a maz ring;
(d) the localization Rpq at any mazimal ideal M of R is a perfect ring.

The equivalence of conditions (a) and (b) of Theorem 3.4 has been investigated further
by Markov [Ma] and Tuganbaev [Tul]. Markov shows that if R is a ring satisfying a
polynomial identity then R is a left (equivalently, right) max ring if and only if J(R) is
left {equivalently, right) T-nilpotent and R/J(R) is left #-regular while Tuganbaev shows
that R is a left max ring in which all the maximal left ideals are ideals if and only if J(R)
is right T-nilpotent and R/J(R) is regular.

While left perfect rings and left V-rings are left max, there are left max rings which are
neither left perfect nor a left V-ring as the following example shows.

Ezample. Let A denote the ring of sequences over the field Z,. Then A is a commutative
regular ring and so a V-ring, but A is not perfect. Let G be the group of order 2. Then
the group ring R = A|G] is neither perfect (since its factor A is not) nor a V-ring (since
the order of G is not a unit in A). However, for any maximal ideal M of R, if ¥ = MNA
then Ry is isomorphic to Ax[G]. Then, since Ay is a field and G is finite, it follows that
R is locally artinian and so max by Theorem 3.4.

We now note that no ring of polynomials can be a max ring. To see this let A be any
ring and let R be the ring of polynomials A[z]. Following Proposition 2.8 of Sarath [Sa],
we construct a module over R which is not max. The construction resembles that used
in Fisher's example detailed earlier.

Let S be any simple A-module with generator u, let T = S™, the direct sum of
countably many copies of S, and, for each n € N, let u, be the element of T whose nth
coordinate is u and all other coordinates are 0. We define an R-module multiplication on
T by setting 2u; = 0 and zu, = u,-) for n > 1 and extending this in the obvious way.
Then the submodule structure of the R-module T is determined as for Fisher’s example
and 7 is not a max module.

Since the commutative V-rings are precisely the commutative regular rings, a natural
question, asked by Faith, is if every artinian module over every regular ring is max.

—99 —



Goodearl [Go] answered this in the negative by showing that for any ordinal a there is a
prime unit-regular ring R with a faithful module whose lattice of submodules is isomorphic
to [1,a), the well-ordered set of all ordinals 8 such that 1 < 8 < a. Moreover he showed
that there is also such a ring R with a faithful cyclic module whose lattice of submodules
is anti-isomorphic to [1,a].

In [CaF] Camillo and Fuller establish the following theorem providing more left max
rings. Here a ring R is called right semi-artinian if the right R-module R is semi-artinian
and in this case every nonzero right R-module is semi-artinian. However, they also give
an example of a left and right semi-artinian ring which is not left max.

Theorem 3.5. Let R be a ring with the ascending chain condition on (left or right)
primitive ideals. If R is right semi-artinan then R is left maz.

Consequently, any right semi-artinian ring which is either semilocal or commautative is
left maz.

We finish this section with a look at how max modules are used to characterise the
rings given in the following definition due to Camillo and Xue [CaX].

Definition 3.2. A ring R is called left quasi-perfect if every left artinian R-module has
a projective cover,

Camillo and Xue show that the class of left quasi-perfect rings lies strictly between the
classes of semiperfect rings and left perfect rings. They give the following characterization.

Theorem 3.6. The following conditions are equivalent for a semiperfect ring R:
(a) R is a left quasi-perfect ring;
(b) every nonzero left artinian R-module is maz;
(c) every artinian left R-module has a composition series;
(d) every artinian left R-module is finitely generated.

Cai and Xue [CX] give a refinement of the equivalences in Theorem 3.6 by replacing
“artinian” in (b), (c) and (d) by “strongly artinian”, where a module is said to be strongly
artinian if each of its proper submodules has a composition series.

4. TALL MODULES AND TALL RINGS.

The next definition comes from Sarath [Sa]:

Definition 4.1. A module M is called tall il there is an N < M such that both N and
M/N are non-noetherian.
The ring R is called a tall ring if every non-noetherian R-module is tall.

Sarath proves the following:

Theorem 4.1. The following statements are equivalent for a ring R:



(a) every R-module with Krull dimension is noetherian;
(b) R is tall;
(c) every non-noetherian R-module has a proper non-noetherian submodule.

The proof of Theorem 4.1 uses the following concepts.

If M is a non-noetherian module, define submodules G(M) and H(M) of M by

G(M) = n {N|N asubmodule of M with M/N noetherian}
H(M) = n {N|N a non-noetherian submodule of M}.

If M is noetherian then G(M) and H(M) are both defined to be 0.
It's not too difficult to show that H(M) C G(M) C Rad(M) and from this and
Theorem 4.1 one can see that any max ring is tall.

Question: Is every tall ring max?
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A DUALITY FOR FINITE GROUP
ACTIONS ON TENSOR CATEGORIES

D. TAMBARA

1. DuALiTY

A tensor category over a field k is a k-linear monoidal category. A module over
a tensor category C is a k-linear category M equipped with an associative action
CxM — M. If a group G acts on a tensor category C, we have the tensor category
CS of G-invariant objects in C and the semi-direct product tensor category C[G],
defined analogously to an invariant ring and a skew group ring, respectively.
Assume that G is finite and k[G] is semi-simple.

Theorem 1. There ezists a one-to-one correspondence between CC -modules having
direct summands and C[G]-modules having direct summands.

Here a k-linear category M is said to have direct summands if every idempotent
endomorphism in M splits.

The correspondence is given by assigning to a C[G]-module M the C¢-module
ME consisting of G-invariant objects in M. We could say the assignment

{C|G)-modules with direct summands} — {€C-modules with direct summands}
M- MC

is an equivalence of 2-categories. Details are given in [4].

Let V be the category of finite dimensional k-vector spaces. Let G act on V
trivially. Then V€ is the category of k[G]-modules and V[G] is the category of G-
graded vector spaces. The theorem actually follows from the special case for C =V
with trivial G-action. Note that a G-graded vector space is just a k[G]*-module,
where k[G]* is the dual of k[G]. This special case is generalized to the following.

Theorem 2. Let A be a finite dimensional semisimple co-semisimple Hopf alge-
bra. Let B = A* be the dual Hopf algebra. Let A be the tensor category of finite
dimensional A-modules and B the tensor category of finite dimensional B-modules.
Then there exists a one-to-one correspondence between A-modules having direct
summands and B-modules having direct summands.

This may be regarded as a version of the duality of cross product constructions
for Hopf algebra actions on rings ([1], [2]). Details are given in [3].

In Section 2 we give the definitions of the tensor categories C¢ and C[G]. In
Sections 3 and 4 we give two applications of Theorem 1.

The detailed version of this paper has been submitted for publication elsewhere.



2. DEFINITION OF C€ AND C[G]

Notations for monoidal structures of a tensor category are as follows: (A, B) —
A.B denotes the tensor product operation, I the unit object, aa,p,c: (A.B).C —
A.(B.C) the associativity isomorphism, A4: I.A — A the left unit isomorphism,
pa: A.I — A the right unit isomorphism.

For a tensor category C, a left C-module is a k-category X equipped with a
bilinear functor C x X — A': (4,X) — A.X and isomorphisms of associativity
aaBx: (A.B).X — A.(B.X) and unitality Ax: I.X — X for AB€C, X €
X satisfying the conditions of naturality and coherence similar to the ones for a
monoidal category.

An action of a group G on a k-category X consists of data

- functorsg.: X - X foralloe G
- isomorphisms ¢(o,7): (67)s = 0. 07, forall o, 7€ G
- an isomorphism v: 1, — Idy

which make the the following diagrams commutative for all o,7,p € G and X € X.

(oro) X HTOX (5r).p.X

¢(U,""P)x1 1¢(0'T)P- X (1)
Ou(TP)e X ——————— 0.Tep X
g (d(T.p)x)
#(1,1)x
L.X & 1..LX (2)
1.(vx)
o(1,1)
1L.X = 1LLX (3)
Viex

Here commutativity of the last two diagrams means that the opposite arrows are
inverse to each other.

Let X be a category with G-action. The category of G-invariants in X, denoted
by X€, is defined as follows. An object of X is a pair (X, f), where X is an object
of X and f is a family of isomorphisms f(c): .X — X for all ¢ € G making the
following diagram commutative for all 0,7 € G.

(o7). X —L==

¢(0-1')x1 T!g

O X — 0, X
‘at(!‘r)

An action of G on a tensor category C means an action of G on C preserving the
tensor structure. Namely it consists of data

- tensor functors g,: C =+ C for all 0 € G
- isomorphisms ¢(o,T): (67)« — 0. o 7. of tensor functors for all 0,7 € G
- an isomorphism v: 1, — Id¢ of tensor functors
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making the diagrams (1), (2), (3) commutative (with obvious change of letters).
By the definition of a tensor functor, the above o, consists of

- a functor g,: C — C
- natural isomorphisms ¥(0)4,5: 0.A.0.B — 0,(A.B) for all A,B €
- an isomorphism t(0): I — 0,1

making the following diagrams commutative for all 4, B,C € C.

(0.A.0.B).0.C Z2282=B2=C, ; A (0.B.0.C)

¢(0)A,B-6ocl onA-¢(°)B.C
o.(A.B).0.C 0.A.0.(B.C) (4)
Wolanc| |s@1nsc
o.((A.B).C) m 0.(A.(B.C))
LI 2, I
L(ﬂ)-t(a)l lc(o) (5)

o .o ] — o.(I.I) — o.1
(o)1 a.(A1)

The requirement that ¢(o,7) is a morphism of tensor functors means that the
following diagram is commutative for all A4, B € C.

(01)sA(oT). B domadlene ;o Ag.rB

|
Wor)am l 0. (T AT.B) (6)
1a.(¢(r)A.a)
(07).(A.B) — 0.7.(A.B)

¢(asT)A.B
We could say that a G-action on the tensor category C consists of the data o,,
&(o, 1), v, ¥(0), (o) making the diagrams of (1)-(6) commutative.

Suppose G acts on a tensor category C. The category C¢ becomes a tensor
category as follows. The tensor product is defined by

(Aaf)'(Bag) = (A'B7 h')r

where

h(o) = f(0).9(0) o 9¥(0)3'p-



The associativity isomorphisms are inherited from C.

The tensor category C[G] is defined as follows. We set C[G] = @,sC as a
category. So an object of C[G] is expressed as @, cq(A0,0) With A, € C, and a
morphism from € ,¢g(4s)0) to B,eq(Bo,0) is expressed as @, q(fs,0) with
fs: A = B, a morphism in C. The tensor product operation in C{G] is defined by

(A,0).(B,7) = (A.0.B,0T).
The associativity is given by
((A,0).(B,1)).(C,p)=(A.0.B,07).(C, p)=((A.0.B).(07).C,07p)
a(A.a).(B.'r).(C.p)l l(a(A,a,B,f,C).afp)
(A,0).((B,7)-(C, p))=(A,0).(B.1.C,Tp)= (A.0.(B.7.C)),07p)
where a(A, o, B, 1,C) is the composite
(A.0B).(01).C
l(A.a.B).:p(a,r)c
(A.0.B).o,1.C
laa.a.s.c.v.c
A.(0.B.0.1.C)
|A¥@nruc
A.0.(B.1.C).
3. GROUP ACTIONS ON GROUP TENSOR CATEGORIES

Let A be a group. The tensor category V[A] is just the category of A-graded
vector spaces. For a € A we write the simple object (k,a) of V[A] as a. The tensor
product in V[A] is then given by a.b = gb, and the isomorphisms of associativity
and unitality are identities.

Let t: A% — k> be a 3-cocycle. The tensor category V[A, t] is defined as follows:
It has the same underlying k-category, tensor product and unit object as V[4],
while the isomorphisms of associativity and unitality are given by

Qgpec= t(a, b, C)la_bc_
Ao =8(1,1,02)7 1,

pa = t(a,1,1)1,

for a,b,c € A.
Suppose that G acts on the tensor category V[A,t]. This amounts to specifying
an action of G on A is given, denoted by (s, a) — %a, and maps

u:Gx Ax A— k*
v:GxGxA— k*



such that

1= t(b, c, d)t(a, be,d)t(a, b,c)
t(ab, c,d)t(a,b, cd)
t(a,b,c) _ u(o;b,c)u(o;a,be)
t(°a,’b,°c) = u(o;ab,c)u(s;a,b)
u(o;"a, "b)u(r;a,b) v(o, 7;ab)
u(ot;a,b) = v(o,T;a)v(o, T;b)
v(oT, p;a)v(o, 7;%a)
v(t,p;a)v(o, Tp;a)
for all o,7,p € G, a,b,c,d € A.
We have V[4,1][G] = V[A x G,s|, where s is a 3-cocycle on the semi-direct
product A x G given by

s((a,0), (b,7), (¢, p)) = t(a, b, *"c)u(o; b, "c)v(o, T; ).

Theorem 1 for C = V[A, ] asserts that the assignment M — M yields a one-
to-one correspondence between V[A x G, s]-modules and V[4, {|®-modules. As an
application of this, we can show

Proposition 3. If |A| end |G| are coprime and t is not a coboundary, then there
ezists no tensor functor V[A,t]¢ — V.
4. GROUP ACTIONS ON MATRIX CATEGORIES

Let C be the tensor category of (k™, k™)-bimodules for a positive integer n. An
object of C may be expressed as an n by n matrix (V;;) of vector spaces V;;, and
the tensor product operation is given by

(Vi)-(Wjx) = (D; Vi; © Wik)ix-

Thus C is regarded as the category Mat, (V) of matrices of vector spaces. It is also
identified with the category End V" of k-linear functors V" — V™.

Let w: G — k* be a 3-cocycle. Let X be a V|G, w]-module with underlying
category equivalent to V*. We can show that G acts on the tensor category End X' ~
Mat, (V) and every G-action on Mat, (V) arises in this way.

Theorem 1 for C = End X gives an equivalence of 2-categories

{(End X)[G)-modules with d.s.} — {(End X)®-modules with d.s.}
M= MC,
On the other hand, we have an equivalence of 2-categories

{V[G, w]-modules} — {(End X)[G]-modules}
Y — Hom(X, ).

Also we have (End X)¢ = Endyjc,u| &, the category of V[G,w]|-linear functors
X — X. Combining these together, we obtain



Proposition 4. The assignment

{V[G,w]-modules with d.s.} — {Endyg,,,| X-modules with d.s.}
Y HOmVIG,w](xl y)

is an equivalence of 2-categories.
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Abstract. The (co)modules over a Hopf algebra form naturally
a tensor category, and it is known that tensor equivalences
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SOME EXTENSIONS OF QUASI-BAER RINGS

YASUYUKI HIRANO

Throughout R denotes an associative ring with identity. Let n be a positive integer.
Then M,(R) and Tp(R) denote the ring of n X n matrices over R and the ring of
n X n upper triangular matrices over R, respectively.

Kaplansky [9] introduced Baer rings to abstract various properties of rings of oper-
ators on a Hilbert space. Clark [7] introduced the quasi-Baer rings and characterized
a finite dimensional quasi-Baer ring over an algebraically closed field as a twisted
matrix units semigroup algebra. Further works on quasi-Baer rings appear in [2], [3],
[4], [8] and [12]. In this note we state some results on extensions of Baer rings and
quasi-Baer rings.

A Baer ring is a ring in which the left annihilator of every subset is generated by
an idempotent (see [9]). A ring R is called guasi-Baer if the left annihilator of every
right ideal of R is generated by an idempotent. Note that the definitions of Baer and
quasi-Baer rings are left-right symmetric.

First we state some examples of Baer rings and quasi-Baer rings.

Examples of Baer rings. 1) Rings with no zero-divisors are Baer rings.

2) A ring R is called a right p.p.ring if every principal right ideal of R is projective.
A right p.p.ring with no infinite set of orthogonal idempotents is a Baer ring (see
Small [13]). In particular, hereditary Noetherian rings are Baer rings.

3) Let V be a vector space over a field K. Then the endomorphism ring Endg (V)
is a Baer ring. More generally, right (or left) self-injective regular rings are Baer rings
(see Mewborn [10, Proposition 4.1]).

4) The algebra of all bounded operators on a Hilbert space is a Baer ring.

Of course Baer rings are quasi-Baer. Recall that an R-module M is called a CS-

module if every submodule is essential in a direct summand of M.

The detail version of this paper will be submitted for publication elsewhere.



Examples of quasi-Baer rings. 1) Every prime ring is a quasi-Baer ring.

2) A semiprime ring R is quasi-Baer if and only if R is a CS-module over the ring
R®zR°P.

3) For any prime ring R, the ring Tx(R) is quasi-Baer for any positive integer n.

Next, we give some examples which show that the class of Baer rings is not closed
under some extensions. To state those examples, we need the following facts.

Let R be a commutative domain and let n be an integer greater than 1. Then the
ring M, (R) is a Baer ring if and only if R is semihereditary (see Kaplansky 9, p.17]).

For a commutative ring R, the polynomial ring R[z] is semihereditary if and only
if R is von Neumann regular (see Camillo (6, Theorem]).

For an integer n greater than 1, T,(R) is Baer if and only if R is a division ring
(see [9, p-16]).

Examples of extensions of Baer rings. 1) Z[z] is a Baer ring, but A =M,(Z[z])

is not a Baer ring. In fact, the principal left ideal of A generated by A = (i g) is

not projective.
2) R =M3(Z) is a Baer ring, but R[z](=Mj(Z[z]) is not a Baer ring.
3)The ring Z of integers is a Baer ring, but T2(Z) is not a Baer ring.

P. Pollingher and A. Zaks [12] gave a necessary and sufficient condition for a matirx
ring M, (R) to be Baer. They also proved the following: Let R be a quasi-Baer ring
and let n be a positive integer. Then M, (R) and T,(R) are quasi-Baer rings.

Clark [7] proved that if R is a quasi-Baer ring and if e is an idempotent then eRe
1s also a quasi-Baer rring. Hence we have the following.

Proposition 1. The class of quasi-Baer rings is Morita stable.

The polynomial rings over a Baer ring was first considered by Armendariz. We call
a ring R reduced if it has no nonzero nilpotent elements. Armendariz [1] proved that
if R is a reduced Baer ring, then the polynomial ring R[z] is also a reduced Baer ring.

As pointed out in the examples above, R[z] is not necessarily Baer even if R is
Baer. Recently G.F. Birkenmeier, J. Y. Kim and J. K. Park [5] proved that if R is a
quasi-Baer ring, then the polynomial ring R[z] is also a quasi-Baer ring.

To state a generalization of this result, we introduce the following notion: A monoid
M is said to be ordered if the elements of M are linearly oredered with respect to
the relation < and that, for for all z,y,z € G, z < y implies zz < zy and zz < yz.
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We consider a monoid ring RG of an ordered group G over a ring R. Obviously any

submonoid of an ordered group is an ordered monoid.

Examples of ordered groups. 1) Torsion-free nilpotent groups are ordered groups.
(see [11, Lemma 13.1.6)).
2) Free groups are ordered groups (see [11, Corollary 13.2.8)).

Polynomial rings, Laurent polynomial rings and free rings are monoid rings of
ordered groups.

Theorem 1. Let G be an ordered monoid. Then the monoid ring RG is a quasi-Baer
ring if and only if R 13 a quasi-Baer ring.

In a reduced ring R, left and right annihilators of any subset S of R coincide.

Hence a reduced quasi-Baer ring is a Baer ring Thus we have the following corollary.

Corollary 1. Let R be a ring and let G be an ordered monoid. Then the monoid
ring RG is a reduced Baer ring if and only if R is a reduced Baer ring.

Let R be aring, let G be a group and assume G act on R by means of a homomor-
phism into the automorphism group of R. We denote by r¢ the image of r € R under
g € G. The skew group ring R * G is a ring which as a left R-module is free with
basis G and multiplication defined by the rule gr = r%g. Then R may be considered
as a left R * G-module as follows: for any a € R and any Eg rsg € R+ G, define
(X reg)-a= Y r,a® € R. A ring R is called a G-quasi-Baer ring if, for any R * G-
submodule I of R, the left annihilator of I is generated by an idempotent. When G
is a cyclic group generated by o, a G-quasi-Baer ring is simply called a o-quasi-Baer

ring.

Theorem 2. Let R be a ring and let G be an ordered group acting on R. Then R+G

i3 a quasi-Baer ring if and only if R is a G-quasi-Baer ring.
As a special case of this theorem, we obtain

Corollary 2. Let R be a ring and let o be an automorphim of R. Then R[z,z71;0]
i3 a quasi-Baer ring if and only if R is a o-quasi-Baer ring.
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INVERSE AND DIRECT IMAGES
FOR QUANTUM WEYL ALGEBRAS

NOBUYUKI FUKUDA

0. INTRODUCTION

In [16] Wess and Zumino gave a method for constructing noncommutative differen-
tial calculus {or de Rham complex) on the quantum affine space associated to a Hecke
symmetry R. Also, they constructed the corresponding algebra of linear differential
operators. Since the algebra of linear differential operators on the n-dimensional
affine space is the n-th Weyl algebra, this algebra is regarded as a quantum analogue
of the Weyl algebra, and called the quantum Weyl algebra (associated to R).

Let R, p be the multiparameter R-matrix of the quantum deformation of GL,, pa-
rameterized by a scalar g and an n x n matrix P = (p;;) in [3]. For the quantum
Wey! algebra A,(g, P) associated to R, p, Demidov [6] and Rigal [13] consider quan-
tum versions of classical theory of the Weyl algebras including Bernstein’s inequality.
And, some ring-theoretic properties of A,(g, P) have been studied in [1, 2, 7, 8, 9]
etc. In [9] Jordan constructed a simple localization B,(g, P) of An(g, P}, which is a
better analogue of the Weyl algebra A, from the point of view of noncommutative
ring theory.

The purpose of this note is to define an analogue of the inverse and direct images for
the quantum Weyl algebra A,(g, P), and to investigate their properties. In particular,
we prove a quantum analogue of Kashiwara’s theorem, and consider preservation of
holonomicity under inverse and direct images.

Throughout this note we fix a ground field K, which is assumed to be of charac-
teristic chk # 2, and let ¢ be a nonzero element of K such that ¢? is not a root of
unity.

In this note, we use the terminology and the results of [12] for noncommutative
ring theory, and refer to [4, 5] for the theory of the Weyl algebras, and [10] for the
facts concerning Hopf algebras and quantum groups.

The detailed version of this paper will be submitted for publication elsewhere.



1. PRELIMINARIES

Let V be an n-dimensional vector space. Assume that a non-degenerate linear
transformation R : V@V — V ® V is a Hecke symmetry, that is, satisfies the
Yang-Baxter equation

Ri2RnRy2 = Ry3Ri2Ras,

and the Hecke condition
(R-¢)(R+¢7")=0

for some g € K'\ {0}, where R), = R®idy, Ry3 = idy®R. For fixed basis {e;,- - ,e,}
of V, we write
R(e,- ® ej) = R;‘;ek ® ¢ (Rf; € K)

The quantum affine space Kg[X] associated to a Hecke symmetry R is the K-
algebra generated by z',--- ,z" with relations

Rpzts! = gz's’.

In [16] Wess and Zumino construct examples of noncommutative differential cal-
culus on the quantum affine space.

DEFINITION 1.1 ([16]). The Wess-Zumino differential calculus Q(R) on Kg[X]
is the K p[X]-ring with generators £!,-- - , €™ subject to the relations

€€ = —qREE, o'¢ = REM.
Put Q° = Kg[X], Q' = &, Kg[X]¢* and O = (Q!)'. Then Q(R) = 5o is a

differential graded algebra (for short, DG-algebra) with a differentail map d : Q(R) —
Q(R) such that d(z’) = €.

DEFINITION 1.2 ({16, 8]). The quantum Weyl algebra A,(R) associated to R is
defined as the Kg[X]-ring generated by 8, -- , 8, with the relations

R;'fakal =¢0,0;, 0z’ = 5,’: + qRﬁxkal.
In addition, commutation relations between 8; and & are given by
8¢’ = ¢ (R €D

EXAMPLE 1.3. Let P = (p;;) be an n x n matrix over K \ {0} such that p;; = 1,
pji = pij for each 4,j. Define the multiparameter R-matrix R, p by

(Ro.p)5 = 0381 (pis + (g — 1i5)07) + (g — ¢7)81870(3,),



where
.. 1 ifi>jg,
o(z,n={ L
0 ifi<y.

We write Q(q, P) and Aq(q, P) for Q(R, p) and A,(R, p), respectively. The relations
of Q(g, P) are

()P =0, ¢= —thpijfjfi (i <4),
7' = gpiifs’ + (¢ - €T (i <),
o€ = gpf’st (i > ),
xifi = qu"x".
The relations of A,(q, P) are given by
805 =q 'p0;0: (i<j), 0 =qpsz’d; (i # j),
dz' =1+ '8, + (¢ - 1)) 279;.
>
In [9] Jordan constructed a simple localization of A,(g, P). For 1 < i < n, let
=gz’ - 'O(= 1 + (q ~1)35:270;). The subset Z = {2 -+ 23"} gy . @00 IS
an Ore sets in Ap(g, P) [9, 3.1]. We denote by B,(g, P) the localization of An(g, P)
at Z. In [9, Thm 3 2] it is proved that the localization By(g, P) is simple of Krull
and global dimension n like the Weyl algebra A,, in characteristic zero.
We say that an element u of a left A,(g, P)-module M is Z-torsion if there exists

w € Z such that wu = 0. For a left A,(g, P)-module M, let T'(A) be the submodule
consisting of the Z-torsion elements.

Bernstein’s inequality [13, Thm.3(c)]. (1) For a finitely generated nonzero left
B, (g, P)-module N, its Gelfand-Kirillov dimension GKdimp,(,,p)(N) > n.

(2) For a finitely generated nonzero left A,(g, P)-module M, the Gelfand-Kirillov
dimension GKdimg,(,,»)(M/T(M)) > n

Following [13] we say that a finitely generated left B,(g, P)-module N is holonomic
if N = 0 or GKdimp,(,,p)(N) = n. We say that a finitely generated left A,(q, P)-
module M is holonomoc if M/T(M) =0 or GKdimg, (g p)(M/T(M)) =n

From the relations of A, (g, P) described in Example 1.3, one sees that

An(q, P)/ Z An(q, P)0; 2 K, p[X]  (as K-vector spaces).

i=1



Via this linear isomorphism, K, p[X] has a left A,(g, P)-module structure. Then, 9;
acts on K, p[X] as the g-difference operator:

it = LEIIEL e e ),
3 f(z') =0  (f(z%) € K|z'], where j # i).

Note that K, p[X] naturally becomes a left B,(g, P)-module. Similary, the K-
subalgebra K, p[0] of An(g, P) generated by @y, ,8, has a left B,(g, P)-module
structure via the linear isomorphism

n
An(g, P)/ Y Anlg, P)* = K, pl0).
i=1
Both the left An(g, P)-modules K, p[X] and K, p[d] are holonomic.

2. QUANTUM MATRIX GROUP ACTION AND COACTION ON QUANTUM WEYL
ALGEBRAS

DEFINITION 2.1. Let R be a Hecke symmetry. M(R) is the K-algebra with n?
generators t§ (1 < ,5 < n) subject to the relations

Rit? = REPL,
M(R) has a bialgebra structure with the comultiplication A and the counit ¢ such
that
A) =t @13,  e(t}) =46

Denote by H(R) the Hopf envelope of M. Thus there exists a bialgebra morphism
¥ : M(R) = H(R) such that, for any bialgebra morphism ¢ : M(R) - H with H
being a Hopf algebra, there exists a Hopf algebra morphism v : H(R) — H with
¥ = P o . Such a Hopf algebra H(R) always exists. See [11, Ch.7] for details.

The bialgebra M(R) has a cobraided structure { , ) : M(R) x M(R) — K such
that
(65, tr) = a(R™)}.
Thus (, ) is a bilinear, and satisfies that

(a,bc) = {apy, c){ag), b), {ab,c) = (a,cqy){b, c))
byaqylae), b)) = (aqy buyabe)

for all a,b,c € M(R), where we use the Sweedler notation A(a) = agy ® a(y) etc. See
(10, Thm. VIIL6.4).



Throughout this note we assume that the cobraided structure is extended to H(R).
This assumption holds for Ry p.

LEMMA 2.2. (1) There ezists @ right H(R)°-comodule algebra structure p on
An(R) such that

plz') =2° @ S(t;), p(B) = B @1,

Jor 1 <i < n, where S denotes the antipode of the Hopf algebra H(R).

(2) There exists a left H(R)-module algebra structure on A,(R) such that

h- D = (h, D)) D)

for h € H(R), D € A,(R), where p(D) = Digy @ Dy,.

Define the K-algebra automorphism ¢ : A,(R) — A,(R) by

p(z') =¢’z', p(@)=¢7%8, (1<i<n)

For k > 0, following [14, 15], we define the twisted bracket [, | : A5(R) X Ax(R) =

An(R) by
[D, D'] =DD' - (p(D'(o))(D’(l) . D) (D, D e An(R)).

One can verify that, [8;, f] € Kg[X] for all f € Kg[X]. Using this twisted bracket,
the left A,(R)-action on Kg[X) is described as follows:

zi'f;zifa alf=[auf] (fEKR[X])
Futher, the following twisted Leibniz rule holds:
0i(fg) = 0{f)g + o(fi))fuy - 0:)g)  (f, 9 € Kr[X]).

3. INVERSE AND DIRECT IMAGES OF MODULES OVER QUANTUM WEYL
ALGEBRAS

The main purpose of this section is to define a quantum analogue of the inverse
and direct images for quantum Weyl algebras. We refer to [4, 5] for the inverse and
direct images for the classical Weyl algebra.

Fix another nonnegative integer m. Let ¥’ be an m-dimensional vector space, and
R :V'@V' = V'@V’ a Hecke symmetry for q. For the algebras A,,(R') the variables
and derivatives are denoted by y',--- ,3™ and 8}, - - - &, respectively.

Let F : Q(R') - Q(R) be a DG-algebra morphism. Thus, in particular, the
restriction of F' to Kp[Y] is a K-algebra morphism from Kg/(Y] to Kg[X]. Then
Kg[X] has a right Kp/[Y]-module structure via F.

Let M be a left A, (R')-module (so M is also a left Kg[Y]-module).



DEFINITION 3.1. The inverse image of M under F is the left Kpz[X]-module
F*M = KR[X] ®KkplY) M.

THEOREM 3.2. For any left A,(R')-module M, the inverse image F*M of M
under F is a left A,(R)-module with the action defined by
a:i-(f®u)=a:‘f®u
8- (f®u) = &i(f) ®u+ (B - [0, S)(F') ® Fpu
for f € Kp|X], u € M, where F' = F(y).

The inverse image F*A,,(g, P') naturally becomes a A,(g, P)-Am(g, P') bimodule.
Following classical notation, we denote this bimodule by Dx_,y. Then it follows that

F*M = Dx_y @an@qry M

for any left An(g, P')-module M.

Given a DG-algebra morphism F : Q(q, P') = Q(g, P), we obtain a DG-algebra
morphism Q(¢7!, (P')!) = Q(g7!, P!) such that 37 = FJ for 1 < j < m, where P!
and (P')! are the transposed matrix of P and P’, respectively. We also denote this
morphism by F. Then by the above way we obtain the A,(¢7!, P*)-An(¢™", (P')Y)-
bimodule Dx_y(= F*An(g~!,(P')*)). Define Dy x to be the An(g, P')-An(g, P)
bimodule such that Dy x = Dx_,y as a K-vector space, and that A,,(q, P')-A.(q, P)
bimodule action is defined by

D'sv«D=71(D)-v-7(D)
for D € Au(q,P),D' € Anlg,P') and v € Dy x, where 7 is the K-algebra anti-
isomorphism 7 : A, (g, P) = An(g~}, P!) such that
7(z) =2', 7(8)=-¢ Mg (1<i<n),
and - denotes the A, (g™, P')-An(q7", (P')") bimodule action on Dy_,y.

DEFINITION 3.3. Let M be aleft A,(g, P)-module. The direct image F, M of M
under F is the left A, (g, P')-module Dy x ®4,(,p) M.

DEFINITION 3.4. Fix nonnegative integers n and m. Let P = (p;j)i<ij<n+m be
an (n +m) x (n+ m) matrix as in Example 1.3. For Q(q, P), the variables and the
differentials are denoted by

| n,l m 1 1 m
Ty T8, Y, and f,"'»fnﬂl,"'ﬂ?

instead of z',--- ,z™*™ and &',--- ™™, where 7 (resp. #) plays the role of z"*
(resp. &) for1<j<m.



(1) Denote by P’ the m x m matrix with (i, j)-entry Pn+in+j- 1he variables and
the differentials of {)(g, P') are denoted by y!,--- ,y™ and 5},--- , 7™, respectively.
Define the DG-algebra morphism 7 : Q(g, P') = Q(q, P) by

)=y, @)=0 (1<j<m)
(2) Let P" be the n x n matrix with (4, j)-entry p; ;. For (g, P"), we denote the

variables and differentials by z',--- ,z" and £!,.-- €™, respectively.
Define the DG-algebra morphism ¢ : Q(g, P) = Q(q, P") by

Yz =7, w(g)=¢ (1<i<n),
) =0, 7(7¥)=0 (1<j<m).

LEMMA 3.5. Let notation be as in Definition 3.4.
(1) If M is a finitely generated left An(q, P')-module, then n*M is a finitely gen-
erated Anym(q, P)-module, and

GKdim,,, . q.p)(7* M) = GKdimy, (o, (M) + n.

(2) If M is a finitely generated left By(q, P')-module, then n*M is a finitely gen-
erated By, ym(q, P)-module, and

GKdimBn_,_m(q,p)(ﬂ'*M) = GKdimBm(q_pl)(ﬁl) +n

In paerticular, M is holonomic if and only if n*M is holonomic.
(3) If M is a finitely generated left A,(q, P")-module, then M is a finitely gen-
erated Anym(q, P)-module, and

GKdimAn_,,m(q'p)(L*M) = GKdimAn(q_p::)(Al) + m.

(4) If M is a finitely generated left B,(q, P")-module, then ¢+, M is a finitely gen-
erated By 1m(q, P)-module, and

GKdimBMm(q,p)(L*M) = GKdimBn(q'pu)(M) +m.

In particular, M is holonomic if and only if 1, M is holonomic.

LEMMA 3.6. Let n, m and r be nonnegative integers, P = (pij)icij<n, P =
(Pish<ij<m and P" = (p;)i<ij<r matrices as in Ezample 1.3. Given two DG-algebra
morphisms F : Q(q, P') = Q(q, P) and G : Q(gq, P") = Qq, P').

(1) For a left A.(q, P")-module M,

(FoGy* (M) Z(F*oG*)(M)  (as left Ay(q, P)-modules),
(2) For a left Ay(q, P)-module M,
(FoG),(M) = (G,oF)(M) (as left A(q, P")-modules).



4. KASHIWARA’S THEOREM FOR QUANTUM WEYL ALGEBRAS

In this section we give an analogue of Kashiwara’s theorem for quantum Weyl
algebras. See [5, Cor.17.3.2; 4, Thm.V.3.1.6] for Kashiwara’s theorem for the Weyl
algebras in characteristic zero. We deal with the category of B, (g, P)-modules instead
of the category of A, (g, P)-modules.

Throughout this section, we use the notations in Definition 3.4.

Let M be a left B,,m(g, P)-module. Following classical notation, we put

T(M)={meM|(y¥ym=0(j=1,---,m) for some s € N},

which becomes a By.,(q, P)-submodule of M. In classical case, H denotes the
hyperplane {y' = --- = y™ = 0}. We say that M is supported by H if M = I'y)(M).
Put

Mo={ueM|pu=0 (=1, m),

which is a Bp(g, P")-submodule of L' (M).

Denote by M™*™ (resp. M") the category of left modules over By,n(g, P) (resp.
By(g, P"})), and the full subcategory of M™*™ (resp. M") consisting of all finitely
generated modules is denoted by M?;"‘ (resp. M},). And, H™*™ (resp. H") denotes
the full subcategory of M'};’"‘ (resp. M7,) whose objects are holonomic modules. We
denote the full subcategory of M™*™ (resp. M?;"‘, H™™) consisting of By, (g, P)-
modules supported by H by My™ (resp. M35, HE™).

Note that, if M is a left B,-module, then 1, M is naturally a left B, ,-module.

THEOREM 4.3. Let . : Q(q, P} — (g, P") be the DG-algebra morphism defined
by

de)=1', ') =0, f)=¢, f)=0 (1<i<n1<j<m)

The functor v, defines an equivalence of the category M" (resp. M7, H") with
the category M™ (resp. M}TR, HY'™). Furthermore, its inverse is the functor
M — M,.

5. PRESERVATION OF HOLONOMICITY

In this section we consider whether, for any DG-algebra morphism F, the inverse
and direct image functors F* and F, preserve holonomicity. We continue to use the
notations in Definition 3.4.

We define basic DG-algebra morphisms including generalizations of the morphisms
in Definition 3.4.



DEFINITION 5.1. Assumethat1 <r<n. Let P= (Pij)i<i ,js,. be a n X n matrix
as in Example 1.3. Given an r-tuple i = (i), - ,4,) with 4; < --- < i,, we denote by
P the r x r matrix whose (k,!)-entry is p;, ;. The generators of Q(g, P;) is denoted

by '+ vt
(1) The DG-algebra morphism 7; : Q(q, P;) — Q(q, P) is defined by

my') =2, mp') =& (1<s<r).

(2) The DG-algebra morphism ¢; : Q(q, P) = Q(g, B,) is defined by
a(=¥) =9, ul)=n" (1<s<r),
u(@) =0, u€)=0 (¢ {i,--.i})

(3) For an n-tuple ¢ = (c1,--- ,¢,) such that each ¢; € K \ {0}, we define the
DG-algebra morphism m, : Q(g, P) - Q(q, P) by

me(r') = 7', m(f) =g (1<i<n).

(4) Assume that n = 1. For 0 # ¢ € K, we define the DG-algebra morphism
E.:Qq,P) = K by

PROPOSITION 5.2. The functors (m;)*, (mi)s, (4)*, (4)sr (me)*, (me). (Ec)* and
(Ec)« preserve the holonomicity.

Finally we consider the preservation of holonomicity under the inverse and direct
images in the simplest case.

From now on, if P is the n x n matrix whose entries are all 1, we write Q, for
(g, P) and denote A;(g, P) by A%

PROPOSITION 5.3. Let F : Q,, - Q, be a DG-algebra morphism. Then F is a
composition of the DG-morphisms in Definition 5.1.

Combining Proposition 5.3 with Proposition 5.2 we obtain the following result:

THEOREM 5.4. Let F : Q,, = Q, be a DG-algebra morphism. We regard F*
(resp. F.) as a functor from the category of left A% -modules (resp. A%-modules)
to that of left A%-modules (resp. A%-modules). Then, both the functor F* and F,

preserve the holonomicity.
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WEAKLY SYMMETRIC ALGEBRAS INDUCED
FROM REPETITIVE ALGEBRAS

YOSUKE OHNUKI AND KUNIO YAMAGATA

Abstract. We shall sketch some relateions between the
following two classes of selfinjective algebras: one is of
Hochoschild extension algebras of some algebras by their
injective cogenerators, and the other is of selfinjective
algebras obtained as orbit algebras of some repetitive al-
gebras.

1. Preliminaries

Let K be a fixed field and A a finite dimensional basic and connected
associative K-algebra with an identity, unless otherwise stated. By modules
we mean finitely generated left modules, and denote by mod A the category
of finitely generated left A-modules and mod A the stable module category
of mod A. Recall that the objects of mod A are the objects of mod A, and
for any two objects M and N in mod A the space of morphisms from M to
N in mod A is the quotient Hom ,(M, N} = Hom (M, N)}/P(M, N), where
P(M, N) is the subspace of Hom 4 (M, N) consisting of all A-homomorphisms
which factorize through projective A-modules. If A is selfinjective then the
left socle and the right socle of A coincide, and we denote them by soc A.
Two selfinjective algebras A and A are said to be socle equivalent if the factor
algebras A/soc A ~ A/soc A are isomorphic.

We denote by D : mod A — mod A% the standard duality Homg (-, K),
where A% is the opposite algebra to A. Let & be an automorphism of A.
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For a left A-module M, .M denotes the left A-module obtained from M
by changing the operation of A as follows : a-m = a(a)m for each a € A
and m € M. Similarly, for a right A-module N, N, induced for the right
A-module N. A-bimodule @ is said to be a duality module if @ is isomorphic
to DA, as A-bimodules for some automorphism a of A, that is, Q defines
the duality functors Hom4(—, Q) : mod A = mod A% and Hom gor(—, Q) :
mod A% — mod A. If A is a selfinjective, then A is isomorphic to DA, as
A-bimodules for some automorphism «of A. Such an automorphism « is
called a Nakayama automorphism of an algebra A. Note that DA, and DAg
are isomorphic as A-bimodules if 8 = 8, for automorphisms & and 3 of A
and for some invertible element u, where 8,(a) = u™'au (a € A). Let {&;}%,
be a complete set of orthogonal primitive idempotents of A. Then there is a
permutation 7 on {1,...,n} such that soc(Qe;) =~ top(Aes(;) for a duality
A-module Q. Such a permutation 7 is called the Nakayama permutation
of the duality module @ (or the automorphism a). An algebra A is called
symmetric if A is selfinjective and the Nakayama automorphism of A is an
inner automorphism, that is, A ~ DA as A-bimodules. An algebra A4 is
called weakly symmetric if A is selfinjective and the Nakayama permutation
of A is the identity permutation. From the definition, a symmetric algebra
is weakly symmetric (see [25] for details).

The repetitive algebra ;fa of A by A-bimodule @ = Hom(A4, K), is de-
fined by the following infinite dimensional matrix algebra (locally bounded,
without identity) :

(- - 0\
Am-—l Qm—l
Am Qm

Am+l

\ 0 ")

)

o
1~
1

Here, Am = A and @, = Q for all m € Z and, by definition, the matrices
in A, have only finitely many nonzero elements, the addition is the usual
addition of matrices, and the multiplication is induced by the canonical maps
ARLQ = Q,Q®4A—=Qand Q®Q — 0[9]. If Q is the standard duality



module, namely « is the identity map, then A, is simply denoted by A. An
automorphism ¢ of A, is said to be posztwe if (Am) C Piom(Ai ® Qi) for

all m € Z and an isomorphism ¢ : A, = Ap is said to be of degree zero if
@0(Am) = Ap, for all m € Z, where a and 8 are automorphisms of A.

2. Automorphisms of repetitive algebras of degree zero

In the representation theory of finite dimensional associateive selfinjective
algebras over a field K, an important role is played by selfinjective algebras
of the form A/ (ov), where 4 is the repetitive algebra of an algebra 4, (i)
is an automorphism of degree zero, and v is the Nakayama automorphism
of A ([17], [20], [23], [6], and [10]). In this section we are describing the
automorphisms of A of degree zero by making use of automorphisms of A
and invertible elements of A.

For a given automorphism a: of A, we take automorphisms oy, of A,, and
invertible elements u,, of A,, which satisfy the following equations :

OmQ = Q0

Om1 = 0y, 0m

for all m € Z, where 0,_(a;) = v, amtn for all a,, € A, and m € Z. We
set 0 = (om) and u = (up).

Definition 2.1. A K-linear map @g y : A, = Ais defined by the following
two properties.

(1) Yo u(@m) = omlam) € An for ap, € A,

(2) ‘Po',u(fm) = fma;;lLa(um) € DAy, for fm € (DAa)m-
Here, Loy, : Am — Am is the left multiplication map of o(uy), that is,
Latum)(am) = a(tm)am for am € Ap,.
Obviously, ¢, 4 is an algebra isomorphism of degree zero. Conversely, it

follows from the following proposition that any automorphism ¢ of degree
zero is of the form given in Definition 2.1 [13].

Proposition 2.2. Let ¢ : A, = A be an isomorphism of degree zero such
that |4, = ap|a,, for anym € Z. Then v = @, 4 for some sets o = (om)
of automorphisms of A and u = (u,,) of invertible elements of A.

_73_



Consider the case when o, = ™ and u,; = 1. The following fact then
follows [24, Proposition 2.3).

Theorem 2.3. For any eutomorphism a of A, 2,, is isomorphic to the repet-
itive algebra A of A by the standard duality module.

3. Weakly symmetric algebras

We consider a basic connected artin K-algebra R with a complete set
{ei}ier, not necessarily finite set, of orthogonal primitive idempotents of R.
The algebra R is considered as a (locally bounded) K -category whose set of
objects is the fixed set {e;}ics, and the K-module of morphisms Homg(e;, ;) -
from e; to e; is equal e;Re; for each ¢,j € I. We first recall some definitions
from [3], [7]-

A K-category R is called locally bounded [3] if R satisfies the following
conditions :

(1) distinct objects of R are not isomorphic,
(2) the algebras R(z,z) are local,
(3) for each object z of R, 3 |R(z,y)| and ) . [R(y,z)| are finite.

Here, for a K-module V, we denote by |V| its length over K. A functor
F : R — A between two locally bounded /-categories R and A is called a
covering functor if the induced maps

D R(z.y) > A(F(z),a) and @ R(y.z) - Ala, F(z))
F(y)=a F(y)=a

are isomorphisms for all objects z € R and a € A. Let R be a locally bounded
K-category and G a group of K-linear automorphisms of R. Assume that
G acts freely on the objects of R, that is, gz # z for each object £ of R
and for g # 1 in G. Then, we have the orbit category R/G [7] whose object
is the orbit of G in the set of objects of R. We denote by zC the G-orbit
of £ € R. A morphism f : a = b between two objects in R/G is a family
f = (4f2) € 1], R(z,y), where z,y range over a,b, i.e. € = a,5% = b,
respectively, such that f satisfies the relation g(yf;) = gyfez for all g € G
and all z,y. The composition ef of f : a > bande: b — ¢ in R/G
is defined by .ef; = Zyeb z€yyfz. Note that Zyeb yyfz is a finite sum,



because R is locally bounded. Also, we have the canonical covering functor
F: R — R/G which assigns to each object x of R its G-orbit z°, and to a
morphism £ € R(z,y) the family F& = (4, F€,z)gnec such that 4, F&,, = g€
if g = h and yyF;: = 0if g # h. Moreover, F is universal with respect to
the property Fg = F for each g € G, that is, each functor £ : R — A which
satisfies Eg = E for each g € G admits a unique factorization £ = HF for
some functor H : R/G — A. A K-linear functor E : R — A, such that
Eg = E for all g € G, induces an isomorphism R/G ~ A if and only if E is
surjective on the objects and G acts transitively on the fiber E~'(a) of each
object a of A. If this is the case, the functor £ : R — A is called a Galois
covering. Clearly, the above functor F : R — R/G is a Galois covering (see
[3], [7] for details).

Let A be a finite dimensional K-algebra. For an automorphism ¢ of repet-
itive algebra A, we denote by (p) the automorphism group of A generated by
@. An automorphism ¢ of A is said to be a category automorphism if ¢ fixes
some complete set £ of orthogonal primitive idempotents of A, namely, ¢ is
a functor of A considered as a category with some object set £ consisting of
a complete set of orthogonal primitive idempotents. An automorphism ¢ of
A is said to be admissible if @ is a category automorphism of the category A
such that (y) acts freely on the object set and has finitely many (p)-orbits.
Then we can define the orbit category A/(y) which is a finite dimensional
selfinjective algebra. Let @ = DA, and v : A, — A, be the Nakayama
automorphism of A,, that is, the restrictions of v to A4,, and Q,, induce the
identity maps v|a,, : Am = Am41 and Vg, : @m = Qm41- In fact, there is
an A-bimodule isomorphism

®: Az = (DA,),, z- (¥~ ¥(yz))

for all matrices z,y € A where 9 : A = K is the K-linear map given by
Y(z) =D ez fm(la) forany z = @mez(am@fm) €A (am € Am, fmn € Om)-
Obviously the automorphism v of A is admissible for any automorphism
@ of A of degree zero. Then we have trivial extension algebras A x DA,
(see Section 2). The following facts relates the orbit algebras to those trivial
extension algebras [13].

Theorem 3.1. For an automorphism ¢ of A of degree zero, there is an iso-
morphism A/ (pv) =2 Ax (DA),,, for anym € Z, where pn, is the restriction
of p to Ay,
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For a positive automorphism ¢ of A such that wv is admissible, we have
the following equivalent conditions which characterize the weakly symmetric
algebras of the form A/(ypv) [13].

Theorem 3.2. Let ¢ be a positive automorphism of A such that v is ad-
missible. Then the following statements are equivalent.

(1) A/(¢v) is a weakly symmetric algebra.

(2) A/(gv) ~ A x (DA),, where o is an automorphism of A with the
identity Nakayama permutation.

(3) The automorphism ¢ is of degree zero, and the restriction map ¢m of
@ to A, is an automorphism of A with the identity Nakayama permu-
tation, for allm € Z.

Proof. The implication (3) = (2) is an immediate consequence of Theo-
rem 3.1. The Nakayama permutation of DA, coincides with the Nakayama
permutation of A x (DA), ([25, Proposition 2.5.1]), hence (2) implies (1).
Finally, (1) = (3) follows from [13, Theorem 2.2]. O

An important class of algebras in the above theorem is given by idnetity
automorphisms of A. The following fact is also stated in [6] for wild algebras.

Corollary 3.3. Let ¢ be a positive automorphism of A such that pv is ad-
missible. Then the following statements are equivalent.

(1) 2/((;71/) is a symmelric algebra.
(2) A/(pv) ~ Ax DA.
(3) The automorphism ¢ is of degree zero, and the restriction map ¢p, is
an inner automorphism of A for allm € Z.
4. Module categories over weakly symmetric algebras

Let A be a finite dimensional K-algebra with a complete set {e;|1 < i < s}
of orthogonal primitive idempotents of A. Let I be an ideal of A, A = A/I
and e is an idempotent of A such that e + I is an identity of A. We may
assume that e = e;+- - -+e; for some t < s, and {e;]1 < i < t} is the subset of



{ei|l < i< s} consisting of all idempotents e; which are not in I. Then such
an idempotent e is uniquely determined by I up to an inner automorphism of
A, and we call it a residual identity of A. Note that A ~ eAefele,1—e€ ]
and e/ is an A-module.

Theorem 4.1 ([23]). Let A be a basic and connected finite dimensional self-
injective K -algebra. Let I be an ideal of A, A = A/I, and e a residual identity
of A. Assume that the ordinary quiver of A has no oriented cycles, Iel =0
and el is an injective cogenerator in mod A. Then A is socle equivalent to
an algebra A/G where G is an infinite cyclic group of automorphisms of A
generated by vy, for some positive automorphism ¢ of A Moreover, if K

is an algebraically closed field, then A is isomorphic to K/G

Idea of the proof. If K is an algebraically closed field, the canonical alge-
bra epimorphism eAe — eAe/ele splits because the Hochschild cohomology
H%(eAe/ele,eAe) = 0 (21, Theorem 3.2]. Therefore eAe ~ eAefele x ele ~

;A\ea/ (vz:)- If K is an arbitrary field, however,the canonical algebra epi-
morphism eAe — eAe/ele does not split in general (cf. [23, Example 4.2]).
Hence we have to consider the selfinjective algebra A[I] which is A®I asa K-
space, and whose multiplication is given by (b, z)(¥, z') = (b, bz’ +zb' +zz')
for all b,0' € A and z,2' € I. Note that I = {(0,2)|z € I} is an ideal
of A[I], Iel = 0, el = rap(I) and the canonical algebra epimorphism
eA[Ile = eA[l]e/ele splits. Then it is shown in [21, Theorem 4.1] that
A and A[I] are socle equivalent (see Proposition 4.3 below), and by [23, The-

orem3.8] we can construct the infinite cyclic group G such that K/G ~ A[l].

For an algebra R, we denote by 'y the Auslander-Reiten quiver of R,
and by 7g and 75 the Auslander-Reiten translations DT and T'r D, respec-
tively. We identify the vertex of I'p with the isoclass of the corresponding
indecomposable R-modules. Ay a component of I'p, we mean a connected
component of I'. A subquiver C of T is called right stable (respectively, left
stable) if Ty (respectively, 7g) is defined on all modules in C. A subquiver
C is said to be non-periodic if C does not contain Tg-periodic modules, that
is, modules X with X = 78X for some m > 1. Following [18] a subquiver
C of T'g is said to be generalized standard if rad®(X,Y) = 0 for all mod-
ules X and Y in C, where rad®(X,Y) is the intersection of all finite power
rad™(X,Y), for m > 1, of the radical rad(X, Y) of Homg(X,Y). Finally, the
right ennihilator rg(C) of a subquiver C of ' in R is the intersection of the



right annihilators rg(X) of all modules X in C. Clearly, rg(C) is an ideal of
R. Similarly, (C) denotes the left annihilator of C in R.

Now, let H be a basic and connected hereditary K-algebra, A the (val-
ued) ordinary quiver of H, and n the number of vertices in A. We take a
multiplicity-free tilting H-module T, that is, Ext}(T,T) = 0 and T is a direct
sum of n pairwise nonisomorphic indecomposable H-modules (see [2], [8]).
Then A = Endy(T) is called a tilted algebra of type A

We consider the repetitive algebra A of A and an infinite cyclic group G
acting freely on the objects and with finitely many orbits. Then R = A/G
is a selfinjective K-algebra and we have a Galois covering F' : A > R with
group G. F) : mod A — mod R denotes the push-down functor induced by
F [3]. Now, assume that A is not a Dynkin quiver. Then

Fi= V(&4 VR,)
meZ

where, for each p € Z, R, is a family of components whose stable parts are
tubes if A is Euclidean or of type ZA,, if A is not Euclidean (namely, A is
wild), and X, is a component with the stable part of the form ZA. See [6],
and also [1], [17], [14]). Further, it holds that Hom 3(R,, A;) = 0, Hom 3(&, v
Rp, XVR,) =0, ¥(R;) = Rppoand v(X,) = Xpyo forp,q € Z,p > q. Sincea
group G of automorphisms of A acts freely on the indecomposable projective
A-modules, it also acts freely on the components of I';. Moreover, A is
locally-support finite [5], that is, for each object z of A the full subcategory of
A consisting of the supports of indecomposable finitely generated A-modules
having z in its support has finitely many objects. Consequently, applying
[7] and [4], we conclude that the push-down functor F) : mod A — mod R
is dense and preserves the Auslander-Reiten sequences. Therefore, 'y is
obtained from I'; by identifying (via F)) R, with R,.n, and &, with X, .,
for some m > 1 and all p € Z. Thus ' is of the form

(X VR)VE(XVR)V- -V \(Xn-1VRu-1)
The following proposition was proved in [23].

Proposition 4.2. The following are equivalent for a basic and connected
finite dimensional selfinjective K-algebra A.

(1) The Auslander-Reiten quiver Iy admits a non-periodic generalized stan-
dard right stable full translation subquiver which is closed under succes-
sors in I',.



(2) The selfinjecitve algebra A is socle equivalent to ;f/ (¢ovz), where A is
a tilted K -algebra not of Dynkin type, ¢ is a positive automorphism of
A and ov is admissible.

Moreover, if K is an algebraically closed field, we may replace in the above
equivalences “socle equivalence” to “isomorphic”.

Proof. Note that, if A; and A, are two selfinjective algebras and A, is socle
equivalent to A,, then we have the induced equivalent functor

® : mod(A;/socA;) = mod(As/ socAy),

thus for a component C of Ty,, C' and ®(C’) are the same forms, where C’ is
the stable part of a component C. Moreover, there is a component D of Ty,
such that D' = ®(C’) because A, is selfinjective.

Now, assume that (2) holds. For a Fy(X,) for p € Z, it contains a sub-
quiver which satisfies the required condition of (1) (see [23, Proposition5.1}).

Next, we shall prove that (1) implies (2). Assume that 'y admits a non-
periodic gencralized standard right stable full translation subquiver C which
is closed under successors in I'y. Since A is selfinjective, C has no projective
modules and oriented cycles. Applying [11] and [19, Lemma 2], we get that
C contains a full translation subquiver D of the form (—N)A, for some finite
valued quiver A without oriented cycles, which is closed under successors in
[s. Let I = r5(D) be the annihilator of D in A, A = A/I and e a residual
identity of A. It follows from [21, Theorem 5.1 and Proposition 5.3] that
Iel =0, Ie is an injective cogenerator in mod A, and A is a tilted algebra
having a complete slice of type A (in the sense of [16, (4.2)]) formed by
modules from D. Consequently, it follows from the proposition 4.1 that (1)
implies (2). g

Recall that the ideal I of A is deforming if the ordinary quiver of A = A/I
has no oriented cycles and ele = repe(I) = lepe(I). The following is proved
in (22, Theorem 3].

Proposition 4.3. Let A be a finite dimensional selfinjective algebra with a
deforming ideal I. Then the algebra A and A[I] are stably equivalent.

In the situation of Proposition 4.2, we set I = [5(D). This ideal I is
deforming. Therefore, applying Theorem 3.2 and Proposition 4.3, we have
the following theorem. See [22].



Theorem 4.4. The following conditions are equivalent for a weakly sym-
metric finite dimensional K-algebra A.

(1) The Auslander-Reiten quiver I'y of A admits a non-periodic generalized
standard left (respectively right) stable full translation subguiver which
is closed under predecessors (respectively successors) in T'y.

(2) There is a stably equivalence mod A ~ mod K/ (pv) for a tilted K-
algebra A not of Dynkin type, ¢ a positive automorphism of A and pv
is admissible.

(3) There is a stably eguivalence mod A ~ mod A x (DA), for a tilted
K -algebra A not of Dynkin type and o is an automorphism of A.

(4) The algebra A is socle equivalent to ;f/ (¢v) for a tilted K -algebra A not
of Dynkin type, ¢ a positive automorphism of A and pv is admissible.

(58) The algebras A is socle equivalent to Ax DA, for a tilted K -algebra A
not of Dynkin type and « is an automorphism of A.

Moreover, if K is an algebraically closed field, we may replace in the above
equivalences “socle equivalence” to “isomorphic”.

We can not replace “socle equivalence” to “isomorphic” if the base field
is arbitrary field. Indeed, we consider the following field K that is not alge-
braically closed.

Example 4.5 ([12]). Let K = Z(a, b, c) be the rational function field with
three variables a, b, ¢ over the prime field Z,. Let L = K[X,Y,Z]/(X? -
a,Y? — b, 2% - ¢) be the factor ring of the polynomial ring K[X,Y, Z], and
‘z,y and z denote the residue class of X,Y and Z in L, respectively. We can
define a 2-cocycle x : L x L — L by the following equation:

k(Y™ 2t y™ 2" ) = gy =l =l s+ mn'zy),
where any of I, m,n,l',m',n" is 0 or 1.

We consider the Hochschild extension algebra T of L by L ~ DL cor-
responding to the 2-cocycle k : L x L — L. Observe that the algebra
T is weakly symmetric and socle equivalent to the split extension algebra
L x DL. 1t follows from [24] [25, p. 864] that T is stably equivalnet to
L x DL. Moreover, T has the following properties: it is a non-symmetric



Hochshild extension algebra by the standard duality module, and it is not
isomporphic to selfinjective algebras of the form A/(pv) for an algebra A

and a positive automorphism ¢ of A ([13, Proposition 2.4]). a

We considered, in this notes, two kinds of selfinjective algebras, namely,
Hochschild extension algebras by the standard duality modules, and selfin-
jective algebras of the form A/(pv) for an algebra A and a positive auto-
morphism ¢ of A. How different are those classes of selfinjecitve algebras?
Corollary 3.3 shows that symmetric algebras in the classes coincide and, in
fact, we can know the difference of the classes by concrete algebras. See [13].
Those algebras are over an algebraically closed field, excepting for the case
in the above example. Thus we conclude this article by posing the following
problem.

Problem. Find an algebra over an algebraically closed field which satisfies
the above two properties in Example 4.5.
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The Auslander-Reiten quiver, modules over artinian
rings, pure-semisimplicity and Artin’s problems on
division ring extensions’

Daniel Simson

Abstract. Classification problems in representation theory of artinian rings R and finite dimensional
K-algebras R over an algebraically closed field K are studied by means of the Auslander-Reiten quiver
of R, the Jacabson radical of the category mod(R) of finitely generated right R-modules and the Ziegler
spectrum of R. In particular the tameness of K-algebras R and the pure semisimplicity of right artinian
rings R are studied by means of vanishing properties of the transfinite Jacobson radical chain (2.2) of the
category mod(R). The pure semisimplicity conjecture for right artinian rings R is discussed in relation
with a class of Artin’s problems on division ting extensions, and the vanishing of the square of the
infinite Jacobson radical (2.3) of mod(R). It is shown how potential counter-examples R to the pure
semisimplicity conjecture of length £(Rg) two or three can look like, and the shape of their Auslander-
Reiten quivers is described.

1. Introduction

Let R be a ring with an identity element. We denote by J(R) the Jacobson radical
of R, by Mod(R) the category of right R-modules and by mod(R) the full subcategory of
Mod(R) formed by finitely generated right R-modules. If R is a right artinian ring then
by Fitting’s lemma (see [1]) the endomorphism ring Ex = End(X) of any indecomposable
module X in mod(R) is local, that is, it has a unique two-sided maximal ideal. It follows
that the category mod(R) has the Krull-Schmidt property in the sense that every module
X of mod(R) has a direct sum decomposition X = X, @ ... ® Xn, where Xj,..., Xn
are indecomposable modules of mod(R), and every such a decomposition is unique up to
isomorphism.

We recall that R is said to be of finite representation type (or representation-
finite) if R is both left and right artinian and the number of isomorphism classes of
finitely generated indecomposable right (and left) R-modules is finite. A ring R is called
right pure semisimple [31] if every right R-module is a direct sum of finitely presented
modules, or equivalently, if R is right artinian and every right R-module is algebraically
compact (i.e. pure-injective) [30], [32]. If R is of finite representation type then R is right
pure semisimple. The converse implication called the pure semisimplicity conjecture
[34), [37] is still an open problem (see [33], [37]-[40]), but it is proved for finite dimensional

The paper is not in final form. Part of it will be published elsewhere.



algebras over a field [3] and for arbitrary Pl-rings, that is, rings satisfying a polynomial
identity (see [15] and [25]).

Let R be a finite dimensional algebra over an algebraically closed field K. We recall
that R is said to be of tame representation type (or representation-tame) il, for any
dimension d < co, there exists a finite number of K|[t]-R-bimodules M;, 1 < j < ny,
which are finitely generated and free as left modules over A[t], the polynomial algebra
in one variable, and all but finitely many isomorphism classes of indecomposable right
R-modules of dimension d are represented by modules of the form K[t]/(t— A) ®xq M; for
some scalars A € K and some j. Moreover, if there is a common bound for the numbers
ng of such K[t]-R-bimodules M; for all dimensions d, the representation-tame algebra R
is called domestic (see [35, Section 14.4] and [46, (2.1)]). Obviously any algebra of finite
representation type is representation-tame and domestic.

Given an integer d > 1 we define pg(d) to be the minimal number ng of bimodules
M; satisfying the conditions above. The representation-tame algebra R is defined to be
of polynomial growth if there exists an integer ¢ > 1 such that pg(d) < d? for all
integers d > 2 The algebra R is said to be of wild representation type if for every
finitely generated K -algebra A there exists an exact representation embedding functor
F : mod(A) — mod(R), i.e. F carries indecomposable modules to indecomposable ones
and respects the isomorphism classes, that is, X 2 Y iff F(X) = F(Y') (see [35, Chapter
14], [36]). By a result of Drozd [12], the tame-wild dichotomy holds, that is, algebras of
tame representation type are not of wild representation type and every finite dimensional
K-algebra R over an algebraically closed field K is either of tame representation type or
of wild representation type.

Let R be aright artinian ring. We recall that an R-homomorphism f : X — Y between
indecomposable modules X and Y in mod(R) is said to be irreducible homomeorphism

if f is not an isomorphism and f is not of the form Y f;g;, where g; : X — X;,
=1

fi + X; = Y are non-isomorphisms and Xj,..., X, are indecomposable modules in
mod(R) (see [4], [35, Section 11.1]).

With any right artinian ring R we associate the Auslander-Reiten quiver I'g of R
(more precisely, of the category mod(R)) defined as follows. The vertices of I'g are the
isomorphism classes [X] of the indecomposable modules X in mod(R). There exists an
arrow [X] — [Y] in I'g if and only if there exists an irreducible R-homomorphism X — Y.
The quiver I'g is obviously a disjoint union of its connected components.

In the representation theory of artinian rings R we are mainly interested in the fol-
lowing problems.

(PR1) Classify the indecomposable modules in mod(R), list them and parameterize
them geometrically by a suitable set.

(PR2) Give an explicit description of indecomposable modules X in mod(R) and their
endomorphism rings Ex = End(X) by means of generators and relations.

(PR3) Determine the Ex-Ey-bimodule structure of the hom-group Homp(Y, X) and
of the extension group Exth(Y, X) for any pair of indecomposable modules X and Y in
mod(R).

(PR4) Given a module in mod(R), find its decomposition into a direct sum of inde-
composable modules.



(PRS) Determine the structure of the category mod(R), the structure of the Auslander-
Reiten quiver I'p of mod(R), describe the shapes of connected components of the quiver g
and describe the transfinite Jacobson radical chain (2.2) of the category mod(R) defined
in Section 2.

(PR6) Construct a class of right pure semisimple rings R of infinite representation
type. [nvestigate their Auslander-Reilen quivers Tp and the nilpotency of the infinite
Jacobson radical rady (2.3) of the category mod(R).

(PRT7) Determine the representation type of mod(R) (finite, wild, tame, domestic,
polynomial growth) in the sense defined above, in case R is a finite dimensional K -algebra
over an algebraically closed field K.

(PR8) Does the structure of the category mod(R) depend on the topological properties
of the Ziegler spectrum Zsp(R) of R (see [16] and Section 2).

In this article we present criteria for artinian rings R to be of finite representation
type in terms of the Auslander-Reiten quiver ' of R (see [4], [35]) and of the Jacobson
radical radg = rad(mod(R)) (2.1) of the category mod(R) (see [4], [35]). We also present
a characterization of hereditary artinian rings R of finite representation type in terms
of the Coxeter valued diagram associated with R. The existence of such rings R of the
non-crystalographical Coxeter-Dynkin type Hj, Hy, I:(5) and Ix(m) for 7 < m < oo (see
Table 3.7 of Section 3) is discussed in relation with a class of generalized Artin’s problems
for division ring extensions (see [26], [37]-(39]).

We show in Theorem 2.8 that tame domestic strongly simply connected finite dimen-
sional algebras R over an algebraically closed field can be characterized by the vanishing
properties of the transfinite chain (2.2) of the Jacobson radical radg of the module cate-
gory mod(R) defined in Section 2. We also look at the generically tameness [10] and pure
semiesimplicity of artinian rings in a connection with their Ziegler spectrum of Zsp(R)
of R.

In Sections 4 and 5 we discuss the open problem of existence of representation-infinite
right pure semisimple hereditary rings and local rings of length three and two, respectively.
We describe in Section 5 a class of generalised Artin’s problems for division ring extensions
in connection with existence of right artinian local rings R for which the Auslander-Reiten
quiver ['g is infinite and connected. Several open problems and conjectures are also
presented.

Throughout this paper we shall use freely the ring and module terminology introduced
in [1], and the representation theory terminology introduced in the monographs [4], [14]
and {35]. In particular, an artinian ring R is called an artin algebra if the center Z(R)
of R is a commutative artinian ring and R viewed as a module over Z(R) is finitely
generated.

We recall that a ring R is said to be connected if R is not decomposable into a
product of rings; and R is said to be basic, if R/J(R) = F} x -+ x [}, where F1,..., F
are division rings. Without loss of generality we shall assume in this paper that a ring R
is connected and basic, if R is right artinian. This will not restrict the generality of our
considerations, because any right artinian ring R is Morita equivalent with a connected
and basic ring.

The present paper is based on author’s conference talk presented on "The 32nd Sym-



posium of Ring Theory and Representation Theory” in Yamaguchi University, Yamaguchi
(Japan), 6 October 1999. The author is indebted to organizers for their invitation and
hospitality.

2. A tranfinite Jacobson radical chain, tameness, pure
semisimlicity and Ziegler spectrum

Throughout this section we suppose that R is a connected basic right artinian ring.
Following Mitchell [21] we view the category mod(R) as a "ring with several objects”. In
particular, by the Jacobson radical of the category mod(R) (in the sense of Kelly [17])
we shall mean the two-sided ideal

(2.1) radp = rad(mod R)

of mod(R) consisting of all R-homomorphisms f : X — Y in mod(R) such that the
R-endomorphism idy — ¢f is invertible for every ¢ € Homg(Y, X), or equivalently, radz
is the intersection of all two-sided maximal ideals of the category mod(R). Given two
modules X and Y in mod(R) we set

radg(X,Y) = radg(| Homga(X,Y)

In particular radg(X, X) is the Jacobson radical of the endomorphism ring End(X) of X.
It follows from Mitchell [21] (see also [4] and [35]) that if R is right artinian then
radp is generated by all non-invertible homomorphisms between indecomposable modules
in mod R. This follows from the well-known fact that if End(X) is a local ring and Y
is an indecomposable module then the group radg(X,Y) consists of all non-invertible
homomorphisms (see [2], [4], [21], [31, Lemma 1.1]).
It was shown in [46] and [43] that it is useful to study the representation type properties
of mod R by the vanishing properties of the transfinite Jacobson radical chain
(2.2)

mod R 2 rad(mod R) rad*(mod R)

2 rad®(mod R)
2 (rad®(mod R))?

2 ... 2
2 2 (rad®(mod R))>®

2
2

where rad’(mod R) is the j-th power of the Jacobson radical rad(mod R) of the category
mod R, for j > 1,

(2.3) rad¥ = rad®(mod R) = () rad’(mod R)
i=1
(rad®(mod R))™ is the m-th power of the ideal rad®(mod R}, for m > 1, and

0

(2.4) (rad®)® = (rad®(mod R))* ﬂ (rad®(mod R))™

The higher powers of (rad®(mod R))* are defined in a natural way.
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In this section we show a role of the transfinite Jacobson radical chain (2.2) in the
distinction between the finite representation type, right pure semisimplicity, domestic
tame representation type and non-domestic tame representation type (see [18], [40], [43]
and [46]).

Similarly to the theory of commutative local rings an important role in the study
of the category mod(R) is played by a minimal set of generators of the Jacobson rad-
ical radg. They are represented by irreducible homomorphisms between indecompos-
able modules (see Introduction), because an R-homomorphism f : X — Y between
indecomposable modules X and Y in mod(R) is irreducible if and only if f belongs
to radp(X,Y) \ rad}(X,Y), or equivalently, the residue class of f in the factor group
radp(X,Y)/rad%(X,Y) is not zero (see [4], [35, Section 11.1]). It follows that the factor
ideal radp/ rad}; defines the Auslander-Reiten quiver I'p of R. Conversely, ['r contains a
lot of important information abaut the factor radp/rad%, and sometimes uniquely deter-
mines the ideal radg and the category mod(R).

The reader is referred to [4], [14], [23] and [35] for examples of Auslander-Reiten quivers
g of finite dimensional algebras R. A description of the Auslander-Reiten quiver of the
representation-tame hereditary K-algebras

K 0 0 0 K
0 K 0 0 K
2
A1=(10{ 11{‘) and A,=|0 0 K 0 K| C MK)
0 0 0 K K
0 0 0 0 K

can be found in [14], [23] and [35, Example 11.109, Theorem 15.51].
The following Auslander’s criterion for the finite representation type is of great im-
portance (see [4, Section VIII.2] and (35, Section 11.8] for the proof).

THEOREM 2.5 (Auslander 1978). Assume that R is a connected artin algebra. If the
Auslander-Reiten quiver I'p of R has a finite component C then I'p = C and R is of finite
representation type.

It was proved in [5] that if R is a finite dimensional algebra over an algebraically closed
field K of characteristic different from 2 and R is of finite representation type then the
Auslander-Reiten quiver T of R determines R and the category mod(R) uniquely up to
Morita equivalence (see also [14]).

For self-injective algebras R this fact was proved earlier by C. Riedtmann (see [5]
and [14]). Moreover, in [22] Riedtmann has shown that this fact does not hold for
representation-finite K-algebras R, if the characteristic of K is equal to 2.

Later A. Skowronski has constructed in (44, Example 4.7] two finite dimensional self-
injective algebras A and B over an algebraically closed field K of characteristic 3 such
that A and B are representation-tame of polynomial growth, A and B are not Morita
equivalent and their Auslander-Reiten quivers Iy and ' are isomorphic. If K is as above
and K(X,Y) is the K-algebra of polynomials in two noncommuting indeterminates X
and Y, then the family of K-algebras

(2.6) Ry = K{X,V)/(X}, Y}, XY - AYX), where A€ K\ {0}



has the following properties (see [44]):

(a) Ry is a local self-injective K -algebra of tame representation type, for any A €
K\ {0}.

(b) There exists an algebra isomorphism R,/soc(R,) = R,/soc(R,) for all \,x €
K\ {0}.

(c) All algebras R) have isomorphic Auslander-Reiten quiver.

(d) The K-agebras Ry and R, are isomorphic (or equivalently, Morita equivalent) if
andonlyif A=porA=1

Representation theory of artin algebras is well developed by applying the Auslander-
Reiten theory (see [4]). A basic role in this case is played by the fact that for any artin
algebra R every indecomposable non-projective module X in mod(R) admits a left almost
split sequence 0 — X” — X' — X — 0, and every indecomposable non-injective module
Y in mod(R) admits a right almost split sequence 0 — Y — Y’ — Y — 0. Since
arbitrary artinian rings do not have the above properties, their representation theory is
much more complicated.

In relation with the remarks stated above, the following problems seem to be of im-
portance (see [37]-[40]).

PROBLEM 2.7. Characterize basic connected right artinian rings R for which the
Auslander-Reiten quiver Tr of R has e finite projective component C, i.e. every vertez
[X] of C is represented by an indecomposable projective R-module X . o

PRrOBLEM 2.8. Characterize basic connected right artinian rings R for which the
Auslander-Reiten quiver T of R is a disjoint union of two components, where one is
finite and one is infinite. o

PROBLEM 2.9. Characterize basic connected right artinian rings R for which the
infinite radical rad% of the category mod(R) is non-zero, whereas its square (radf)? is
zero. a

If we restrict the consideration to artin algebras R the solution of the Problems 2.7-
2.9 follows from Theorem 2.6 and Theorem 2.10 stated below. Namely, it follows from
Theorem 2.6 that a basic artin algebra R satisfies the condition required in 2.7 if and only
if R is a product of division rings. Furthermore, it follows from Theorems 2.6 and 2.10
that there is no artin algebra R satisfying the conditions required in 2.8 or in 2.9.

In Section 3 we shall discuss the Problems 2.7-2.9 for hereditary right artinian rings
R which are not artin algebras.

There is no connected artin algebra R satisfying the conditions required in 2.8 or in
2.9, because of the following result proved in [2], [31] and [6].

THEOREM 2.10. Assume that R is a connected artin algebra and let radg be the
Jacobson radical of the category mod(R). The following conditions are equivalent:

(a) R is of finite representation type.

(b) There exists m > 1 such that radg = 0.

(¢) radg =0.

(d) (radgy)*=0.

Outline of proof. The implication (a)=>(b) follows from the well-known fact that



there is an equivalence of categories mod(R) = mod(Ag), where Ap is the Auslander ring
of mod R (see [4] and (35, Section 11.2]), that is

Ap=End("1®.- - 0Y,)

where Y},...,Y, is a complete set of representatives of the isomorphism classes of inde-
composable modules in mod R. Since the Jacobson radical of the ring Ag is nilpotent
then the two-sided ideal radg = rad(mod R) of mod(R) is also nilpotent and (b) follows.

The implications (b)=>(c)=(d) are obvious. In order to prove (c)=>(a) note that
given an indecomposable module X in mod R the covariant functor h* = Homp(~, X) :
mod R — Ab from mod R to the category Ab of abelian groups is of finite length, because
of the sequence

h¥ D radp(—, X) 2 rady(—, X) 2 ... 2 radp~!(-, X) D rad}(—, X) =0

for which the factors radk '(—, X)/rad’(—, X) are semisimple of finite length (apply [2]).
Then an application of the main result of [2] yields (a). The implication (d)=>(a) is the
main result of [6] and will complete the proof. a

PROBLEM 2.11. We do not know if Theorem 2.10 remains valid for arbitrary artinian
PI rings R (see [40, Problem 3.3]) and [43, Problem 4.6]). m]

Now we shall present a relation established in [43] between domesticy and some van-
ishing properties of the transfinite radical chain (2.2) for a class of finite dimensional
K-algebras of tame representation type.

Following [45] the algebra R is said to be strongly simply connected if the Gabriel
quiver of R (see [4]) has no oriented cycle and for any convex subcategory C of R, the
Hochschild cohomology group H}(C) = H'(C,C) vanishes.

The following analogue of Theorem 2.10 for finite dimensional K-algebras was proved
in [43, Theorem 3.3].

THEOREM 2.12. Assume that K is an algebraically closed field eand R is a connected
finite dimensional K -algebra and let radr be the Jacobson radical (2.1) of the category
mod(R).

(a) If the square of the infinite radical (radg )™ (2.3) is zero then R is of tame repre-
sentation fype.

(b) If R is strongly simply connected then the following conditions are equivalent.

(1) The algebra R is representation-tame and domestic.

(1) (radg)™ =0 for some m > 1.

(ii) (radg)> =0.

(iv) The ideal radyy is right T-nilpotent, that is, for every sequence

X1£’X2—’"‘_’Xml_m’xm+]—""

of modules X, X3,... in mod R connected by homomorphisms f), fa,...
from rad there ezists m > 2 such that fm fruoy -+ - f2/1 = 0 (see [30]).



(v) The square of the ideal (radg)*® (2.4) s zero. a

PROBLEM 2.13. We do not know if Theorem 2.12 remains valid for arbitrary finite
dimensional K -algebra R (see [43, Problems 4.3 and 4.4]).

A positive solution of the Problem 2.13 for the class of special biserial algebras R was
recently given by J. Schrder [29].

We finish this section by some remarks on generically tame rings R studied in [10]
in connection with Ziegler spectrum Zsp(R) of R. Assume that R is an arbitrary right
artinian ring. Following [10] a right R-module M is said to be generic if M is indecom-
posable of infinite length and M is of finite endolength, that is, M viewed as a left module
over the endomorphism ring End(M) is of finite length. The ring R is said to be right
generically tame if for each d € N there are only finitely many isomorphism classes of
generic right R-modules of enolength 4.

It was shown in [10, Theorem 4.4] that any finite dimensional K-algebra R over an
algebraically closed field K is representation-tame if and only if R is generically tame,
and according to {10, Theorem 4.5] the K-algebra R is representation-finite if and only if
there is no generic R-module.

In connection with this result Herzog [16, p. 556] has rephrased the second Brauer-
Thrall conjecture (see (5], [35]) for artin algebras as follows.

PROBLEM 2.14 (The Second Brauer-Thrall Conjecture). If R is an artin algebra of
infinite representation type, then there ezists a generic R-module. a

It is clear that there is no generic right R-module over any right pure semisimple ring
R. Therefore for arbitrary right artinian rings the following problem arises naturally.

PROBLEM 2.15. Let R be a right artinian ring such that there is no generic right
R-module. Is R right pure semisimple? o

We recall that with any ring R a quasi-compact topological space Zsp(R), called a
(right) Ziegler spectrum of R, is associated as follows (see [16]) and [19]). The points
of Zsp(R) are the isomorphism classes of indecomposable algebraically compact (pure-
injective) right R-modules. A topology basis of Zsp(R) consists of open sets

Or = {M € Zsp(R); F(M) # 0}

where F : Mod(R) — Ab runs through all covariant additive functors from the cate-
gory Mod(R) to the category Ab of abelian groups such that F’ commute with arbitrary
products and directed limits.

One can easily prove by applying [16] that a right artinian ring R is representation-
finite if and only if the topology on Zsp(R) is discrete. The following problem seems to
be interesting.

PROBLEM 2.16. Give a characterisation of right pure semisimple rings by means of
topological properties of the Ziegler spectrum Zsp(R) of R. o

In connection with generically tameness the following interesting characterisation of



tame algebras was given in [20].

THEOREM 2.17. Let R be a finite dimensional K -algebra over an algebraically closed
field K. Given n 2 1 denote by ind,(R) the subset of the Ziegler spectrum Zsp(R) of R
defined by the indecomposable right R-modules of dimension n. Then R is representation-
tame if and only if for everyn > 1 the Ziegler closure of ind,(R) in Zsp(R) consists only
finitely many elements which do not belong to ind,(R). a

3. Hereditary right pure semisimple rings and Artin's
problems on division ring extensions

Let us recall that the following pure semisimplicity conjecture
(pssr) A right pure semisimple ring R is of finite representation type

remains an open problem (see [3], [31], [33], {34], [37]-[40]). The reader is referred to
the author’s expository paper [39] for a basic background and historical comments on the
pure semisimplicity conjecture.

Let us start this section by recalling that the pure semisimplicity conjecture reduces
to hereditary right artinian rings, or to the descending chain condition of left ideals for
any right pure semisimple ring R.

THEOREM 3.1. The following statements are equivalent:

(a) The pure semisimplicity conjecture holds for every ring R.

(2") The pure semisimplicity conjecture holds for every hereditary ring R.

(2") The pure semisimplicity conjecture holds for every hereditary ring of the form
Ry = (5 F“éc), where F, G are division rings and pMg is a simple F-G-bimodule pMg.

(b) Every right pure semisimple ring R is left artinian.

(b') Every right pure semisimple hereditary ring R is left ertinian.

(b") If F, G are division rings and pMg is a simple F-G-bimodule Mg such that the
ring Ry = (5 F“éa) is right pure semisimple, then dimg M is finite.

(c) For any pair of division rings F and G, and for any simple F-G-bimodule rMg
such that dim Mg is finite and dimp M = oo one can construct an indecomposable right
module of infinite length over the hereditary ring Ry = (g F"éc).

(d) For any pair of division rings F and G, and for any simple F-G-bimodule rMg
such that dim Mg is finite and dimg M = oo one can construct a sequence

A X s X I3 Xy >
of indecomposable right Rp-modules X, Xy, ... of finite length connected by non-iso-

morphisms f1, fa,... such that fo fm-1-- fofi #0 for anym > 1.

Proof. The equivalence of (a'), (a"), (b), and (b") was established in (34, Theorem
3.3). By [37, Theorem 3.6 and Corollary 5.1], the statements (a), (2”), (c) and (d) are
equivalent. The implications (a)=(a’) and (b)=>(b") are obvious. a

Actually we hope that there exists a big class of counter-examples to the pure semisim-
plicity conjecture. If this is the case then according to Theorem 3.1 there are counter-
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examples the form Ry = (g F ‘”(’;G), where F, G are division rings and Mg is a simple

F-G-bimodule g M.

It was shown by the author in [37], [38], [41] and [41] how a construction of such
potential counter-examples R,s depends on a generalized Artin problem for division ring
extensions, which is much more difficult than the Artin problem for division ring exten-
sions solved by Cohn in [8] and by Schofield in [27). In order to explain this idea we recall
from [39] definitions and some facts on Artin’s problems and bimodule Artin’s problems.

Following P.M. Cohn [7], [8], [9] (see also [26]) by an Artin’s problem on division ring
extensions we mean the following one:

ARTIN PROBLEM. For any pair of numbers n,m € NU {00} consiruct a pair of
division rings F C G such that

dmGr=n and dimpG =m

where dim Gr and dim G mean the dimension of the F-vector space G viewed as a right
and as a left F-module, respectively. O

We know from a letter of P.M. Cohn that the problem was stated by E. Artin at a
Conference in Princeton in 1946 (or even earlier). However, S. Lang and J. Tate who
in the edition of Artin’s Collected Works list all problems raised by E. Artin {to their
knowledge) do not list the above one (see [39, p. 349)]).

In 7] and [8] P. M. Cohn has constructed a pair of division rings F C G such that
dim Gr = 2 and dimg G > 3, but he was not able to decide if the dimension dimr G is
finite or infinite. In fact he has indicated (without detailed proof) another construction
of division rings F C G such that dim Gr = 2 and dimp G = oo (see the second footnote
in [8, p. 418]). Five years later, for any integer n > 2 he constructed in [9] such a pair
F C G with dim Gr = n and m = dimg G = oo solving the Artin Problem for any n > 2
and m = .

In 1983 A. Schofield (then a student of P.M. Cohn) solved the Artin Problem for any
pair m 2 2 and n > 2 of integers. The result was published in [26] and [27]. In [28], by
applying the construction method introduced in [27], Schofield solved a more complicated
problem stated in [11] by proving the following result.

THEOREM 3.2. There exists a pair of division rings F C G such thal
dim Gr =2, dim G =3, dimg Homp(rGg, F) =1

and the F-dimension of the G-dual space of Homp(rGg, F) is equal 2. In this case there
ezists a ring isomorphism G = F. a

This is a solution of the Artin Problem for n = 2, and m = 3 completed by some
additional conditions (see Problem 3.5 below), and it solves the bimodule Artin problem
for the dimension-sequence (2,1, 3,1,2) of length 5 (see [39, Definition 2.3]). The number
1 following 2 in sequence (2,1,3,1,2) means just the obvious equality dim Gg = 1.

We recall from [11] that the set

D=D,UuDyU---UD,U:--



of dimension-sequences (d,,...,d,), s > 2, is defined inductively to be the minimal set
satisfying the following two conditions:

(i) Dy = {(0,0)} and D53 = {(1,1,1)},

(i) if the set D, is defined we define D,y; to be the set of all sequences of the form

(dl,...,d,'_l,d,' +1,1,dig1 + Ld,’.;.g,...,d,)

where (d,...,d,) € Ds;andi=1,...,s - 1.

We note that for each m the set D, of dimension-sequences of length s is closed under
the action of cyclic permutations. It is easy to see that the sequence (2,1,3,1,2) shown
above belongs to Ds. A number theoretic description of the set D is given in [39, 2.2].

Given an F-G-bimodule pNg we set

lLdim(N) =dimg N and rdim(N)=dim Ng
We define the right dualisation and the left dualisation of fNg to be the G- F-bimodule
N = Homg(pNa, G) and N" = Homp(pNa, F)

respectively (see [11]). To any bimodule p Mg we associate a sequence of iterated right
dualisations of Mg by setting

MO =M and MY = (MU
for j < —1. The sequence of iterated left dualisations of f Mg is defined by the formula
MU = (MU= for 21

Given s > 2 we set

da(FA’]G) = (dsdr .. 1dﬁ[—l)

where d}f = dim Mp and d¥ = r.dimM®) for j > 1.
A relation between the set D of dimension-sequences and hereditary rings of finite
representation type is given by the following result proved in [11].

THEOREM 3.3. Let F and G be division rings and assume that pMg is a non-zero
F-.G-bimodule. The hereditary ring Ry = (g F*g’) is of finite representation type and
has precisely s > 3 pairwise non-isomorphic indecomposable right modules of finite length

if and only if the sequence d,(FMg) = (d¥,...,d™ ) belongs to D,. 0

T e-1
It was shown in [37] and [39, Section 2.3] that the existence of a pair of division rings F,
G and an F-G-bimodule z Mg such that the sequence d,(rMg) = (d¥,...,d™ ) belongs
to D, is equivalent to an Artin Problem subject to some additional conditions given by
the relation d,(rMg) € D,. It follows from Theorem 3.2 that there exists pMg such that
the sequence ds(rMg) equals (2,1,3,1,2).
As a consequence of Theorem 3.3 we get (see [11]).

COROLLARY 3.4. Assume that F C G is an embedding of division rings such that
dim G < dim G, and let Rg = (§ ).



(a) The category mod(Rg) has ezactly 3 indecomposable modules up to isomorphism
ifand only if F=G.

(b) The category mod(Rg) has ezactly 4 indecomposable modules up to isomorphism
if and only if dim G = dim pG = 2.

(¢} The category mod(Rg) has ezactly 5 indecomposable modules up to isomorphism if
and only if dim Gp = 2, dim G =3 and dimg Homp(rGg, F) = 1, or equivalently, if
and only if the sequence ds(rGg) is equal to (1,3,1,2,2). In this case there ezists a ring
isomorphism G =2 F. 8]

It follows from Theorem 3.2 that there exists a pair of division rings F C G such that
ds(FGg) = (1,3,1,2,2) and therefore the category mod(f §) has exactly 5 indecompos-
able modules up to isomorphism. However the following generalized Artin’s problem is
still unsolved.

PROBLEM 3.5. For any s > 7 construct a pair of division rings F C G such that the
category mod(% §) has ezactly s indecomposable modules up to isomorphism, or equiva-
lently, the sequence d,(rGg) = (dS,...,dS.,) belongs to D,. a

Following [11, Section 4] we associate with any basic right artinian hereditary ring R
the Coxeter valued diagram (Cgr,m) as follows. Let 4, F3..., F, be division rings such
that

RIJR)=ZFA x - x F,

The diagram (Cg, m) is the valued quiver with vertices 1,2,...,n corresponding to the
division rings Fy, Fy ..., F,. There exists a valued arrow

. m;; .
10 —— 0]

in (Cg,m) if and only if the F;-Fj-bimodule

iM; = F(J(R)[J(R)")F;
is not zero and the ring ({;‘ }7’) has exactly m;; > 3 indecomposable modules up to
isomorphism.

The following classification theorem was proved in [11] for representation-finite hered-
itary rings, and was completed in [41, Theorem | for right pure semisimple hereditary
rings.

THEOREM 3.6. (a) A connected basic hereditary right artinian ring R is of finite
representation type if and only if the Cozeter valued diagram (Cg, m) associated with R
above is any of the Cozeter-Dynkin diagrams A,,, B, (= C,), Dy, E¢, E7, Es, Fy, G,, Hj,
Hy, I(p) with p 2 5, p # 6, (with any orientation) which classify the irreducible Cozeter
groups (see Table 3.7 below).

(b) Let R be a connected basic hereditary right pure semisimple ring. Then either the
ring R is of finite representation type and the Cozeter valued diagram (Cr,m) of R is any
of the Cozeter-Dynkin diagrams A,, B, (= C,.), Dy, Bs, E;, Eq, Fy, G2, H,, H,, I(p)
withp > 5, p # 6, of Table 3.7, or else R is of infinite representation type and the Cozeler

00

valued diagram (Cr, m) contains the arrow e——e. w]



TasLE 3.7. Coxeter-Dynkin diagrams

3 3 3 3 .
An: e——e o—i—0——e e (nvertices,n > 1);
4 3 3 3
Bn=Cn: e——o o— i —e——o o (nvertices, n > 2);
[ ]
Dn |3
" 3 3 3 3
o . o o —iuns ~ o (n24)
[ ]
Eg : 3
6 3 3 3 3
. o . o o
[ ]
Er: 13
3 3 3 3 3
o o o o o o
o
Eg: 13
3 3 3 3 3 3
o o . o . o o;
3 4 3
Fy —o o—o;
6
Go —s;
5 3
Hy: o——o—0;
5 3 3
Hy: o——e o—;

Io(m): olo; (m=5or 7<m<oo)
We finish this section by recalling from [42, Corollary 3.9] the following result.

ProposITION 3.8. (a) For any Cozeter-Dynkin diagram A of Table 3.7 which is
different from [;(m), where m > 7, there ezists a connected basic hereditary artinian ring
R such that (Cg,m) = A.

(b) If A is any of the crystallographic Cozeter-Dynkin diagrams of Tables 3.7 (that is,
A is different from Hj, Hy, 1(5) and I,(m), where m > 7), then there ezists a hereditary
artin algebra R such that (Cg,m) = A.

(c) There is no hereditary artinian Pl-ring R such that the associated Cozeter valued
diagram (Cgr,m) is any of the non-crystallographic Cozeter-Dynkin diagrams Hj;, H,,
I2(5) and [j(m), wherem > 7. a

It follows from Proposition 3.8 that the existence of a hereditary artinian ring R such
that the Coxeter diagram (Cg,m) of R is of the form I;(m), where m > 7, is an open



problem being equivalent with the following one (see [42]). 0

RESTRICTED ARTIN PROBLEM 3.9. For any infeger s > 7 and any dimension-

sequence v = (vy,...,v,) € D, with v, = 1, construct a pair of division rings F C G such
that the sequence dy(rGg) = (dS,...,d%.,) is equal to v. 0

4, Potential counter-examples with two components in their
Auslander-Reiten quiver

In order to formulate a solution of the Problems 2.7, 2.8 and 2.9 for a class of hereditary
right artinian rings R we recall some notation introduced in [41].

Following (38], to any £-G-bimodule Mg for which there exists an integer m > 0
such that d¥ = r.dim M) is finite for all j < m and d¥,; = r.dim M™*") = oo we
associate the infinite dimension-sequence

(4.1) dec(rMg) = (..., d_;(M),...,do(M),d_(M),do( M), 0)
where d_;(M) = d™.  for j > 0. The following definition was introduced in [41].

DEFINITION 4.2. The set of pure semisimple infinite dimension-sequences is
the set
DS,y = DSN U DS

P33 pas
where the sets 'DS,(,:Z and ‘DS’(,EZ are defined as follows.
The set DS())

bes 15 a minimal set of sequences
U= (.00 yVomyVUomily- - -y V=2, U1, Vg, 00)

with v_; € N non-zero for any j € N, satisfying the following two conditions:
Q) w=(.-,2,2,...,2,2,1,00) € DS{1);

pas?
; (i) fv=1_(..,v=my...,v-1,Vp,00) 15 a sequence in 'DSm then all sequences of the
orm

(4.3) E_n(W)=( ., vom-1, 1+ 0o, L, L+ 01, Vomgay - - - U2, Uy, Vg, 00)
belong to DSLL), for allm > 1.

Given a dimension-sequence u = (...,u_j,U_j41,...,U_7,U_1,Up,00) iR 'DSS! we
define the depth of u to be the minimal integer £(u) > 0 such that u_; = 2 for gll
72 1+ {(u).

A sequence v ={...,%m,Vomi1s.. -, V=2, Vo1, Vo, 00) belongs to 'DS’(,EZ if there ezists a
sequence of positive integers jy,J2,...,Js, ... Such that

(a) for every m the set {s € N; j, = m} is finite,

(b) fim €565, &-5(w) = v, here

lim v = w
=00

means that there ezists a sequence 0 < 1) <19 < -+ <1, < --- of positive integers suct
that w((,’) = 1w, wf_’g SwWog,..., W, = Woy,,
(c) for everys > 0 there ist, > s such that j,, > 1+€(£_j”_l£__,~'._1 €, (w)). O
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Note that each of the countably many sequences
(... 2 2 $2,2,3,1,2,00),

(... 2,2,3,1,4,1,2,00),
(er2200,2,2,8,1,4,1,4,1,2,00),
( 21 ,ﬂ&&LthtlLLZmL

belongs to DS
One shows that the following two sequences {...,1,4,1,4,...,1,4,1,4,2,2,2,1,5,00)
and

( '-1y-—m-hy~mv"-1y—5:y-4141112a4a211)4)2v2;211:°°)

belong to 'DS(,,, where y_4 is the sequence 3,4, 1,2,2,4 of length 6 and y_,, is the sequence
3,m,1,2,...,2,4 of length m + 2, for m > 5. The sequence

w=(..,1,4,1,4,...,1,4,1,4,1,4,1,3,00)

does not belong to DSy, (see [41, Example 4.8]).
By [41, Lemma 4.9], the cardinality of the set DS is the continuum ¢ = 2%,

pss

In connection with Problems 2.7-2.9 we have the following result (see [42]).

THEOREM 4.4. Let By = :’“éa), where F', G are division rings and pMg is a
non-zero F-G-bimodule. Assume that every indecomposable non-projective module X in
mod(R) admits an almost split sequence 0 — X" — X' = X — 0. Then the following
conditions are equivalent:

(@) The Auslander-Reiten quiver T'g,, of Ra is a disjoint union of two components,
where one is finite and the other one is infinite.

(b) There ezist an integer m > 0 such that r.dim M{™+Y) = oo, r.dim M s finite
for all j < m and the Auslander-Reiten quiver T'r,, of Ry is a disjoint union of two
components.

(c) There ezist an integer m > 0 such that r.dim M(™*) = oo, r.dim MU is finite
for all j < m and the infinite dimension-sequence d_o(rMg) (4.1) belongs to the set
DS,,, = DS UDSA.

(d) The infinite radical radg),, of the category mod(Ry) is non-zero, whereas its square
(radg,,)? is zero.

COROLLARY 4.5. Assume that F, G are division rings and pMc¢ is an F-G-bimodule
such that the infinite dimension-sequence d_oo(rMg) (4.1) belongs to the set DSy, =

DSMUDSA . Then the ring Ry = (5 F”C’;G) is right pure semisimple and representation-

pss pss*
mﬁmte, that is, Ry = (F "MG) is a counter-ezample to the pure semisimplicity conjecture
(see [37], [38]). o

REMARK 4.6. Since each of the sequences v in DS,,, contains at least one coor-
dinate equal to 1 then the existence of pMg such that the infinite dimension-sequence
d_o(FMg) = v belongs to DS,,, is equivalent to a generalized Artin’s problem on division
ring extensions (apply the arguments on page 356 of [39]).



We hope that there exists a sequence v € DSy,,, a pair F, G of division rings and an
F-G-bimodule Mg such that d_,(rMg) = v. However this is still an open problem. O

5. Special trivial extensions

By [37, Remark 2.4], every basic ring R of length ¢(Rg) two or three which is a
potential counter-example to the pure semisimplicity conjecture is either hereditary with

two non-isomorphic simple modules (and consequently of the form R & Ry, = ("; F ”C’;G)

studied in Section 4), or else R is a local ring and J(R)? = 0. In this section we investigate
a class of such local rings R of length ¢(Rg) two, which are trivial extensions of division
rings.

Assume that F, G are division rings, pMg is F-G-bimodule and 6: F — G is a ring
isomorphism. The trivial extension (see [47])

(5.1) Ty = Fx pMg

of F by pMg is defined to be the ring with an identity element whose additive group is
F@®M and the multiplication is defined by the formula (z,m)(z',m’) = (zz’, zm’ +ma(z').
Our main result of this section is the following.

THEOREM 5.2. Assume that F, G are division rings, pMg is F-G-bimodule such
that dim pM = oo, the associated infinite dimension-sequence d_o(FMc) (4.2) belongs
to DSp,s = ’DS,@}) U ’DS},ZZ and F = G. Let Tyy = F x pMg be the trivial extension ring
(5.1). Then the following statements hold.

(a) The ring Ty = F g Mg is not self-injective and has infinite global dimension.
T is a local ring such that the right Tps-module J(T)y) has a direct sum decomposition
J(Ty) = L™ Ma where Ly is a unique simple Tag-module. The length &(Ty) of the right
Ta-module Tps ts 1 + dim Mg,

(b) The ring Ty is right pure semisimple and of infinite representation type.

(c) The Auslander-Reiten quiver of the category mod(Ty) is connected and has the
form

(5.3) o Loy -e-e- L, Ly ----- Ly ----- Lo
v \

where Loy is a unique simple right Tys-module and L, is the injective envelope of Ly.
(d) For any m 2> 2 there ezists an almost split sequence in mod(Tr)

(3.8) 0 — Ly — (Lny)®m — Lyy_y — 0.

where dM_ = r.dimM©™ for m > 0. The module L, is injective. There is no almost
split sequence in mod(Tys) starting from an indecomposable module L if and only if L is
isomorphic to any of the modules Lo, L) or Ty.

(€) The infinite Jacobson radical rad™(mod T)s) of the category mod(Tas) is generated
by all homomorphisms € : Tpy — Ly, withm > 0.



(f) (rad®(mod Ty))? = 0.

(&) fdea(rMg) = w = (...,2,2,...,2,2,2,1,00) then J(Ty) = Lo, &(Ty) = 2,
€(L;) =25 —1 for j 2 0 and all irreducible homomorphisms L, — L.,_, are surjective.

(h) For every s > 1 the number of indecomposable modules in mod(Ty) of length s
is0 orl.

(i) For anym > 1 there ezists an ezact sequence

(5.4) 0 — Lo 25 TD s ¥, — 0

where ul is an irreducible homomorphism and Yy, is a unique indecomposable Tyr-module
with {(Yn/YaJ(Ty)) = m and {(YoJ(Tm)) = m(dim Mg) — 1). Here ¢{(Z) means the
length of a right Tps[J(Tas)-module Z.

Proof. Since dim M = co then [40, Proposition 4.17), Theorem 6.1 and Corollary
6.2 apply to the hereditary ring Ry = (g‘ P“G'G).

Note that J(Ty) = (0,rMg), R/J(Ty) = F and J(Ty)? = 0. Then the right T,-
module J(Ty) is not projective, Ty is a local ring of infinite global dimension and the
ring

TulJ @i ditas
ATy) =
0 R{J

is isomorphic with Ry, where J = J(Ty) is viewed as a (Tp/J)-(Tn/J)-bimodule in a
natural way.
Following Gabriel [13] we associate with Ty the reduction functor

(5.5) F : mod(Ty) — mod(A(R)) = mod(Ry)

defined by attaching to any module Y in mod(T)) the triple F(Y) = (Y',Y",t), where
Y'=Y/YJ,Y" =YJ are viewed as right Ty /J-modules and ¢ : Y'®r,, /5 J1yy10 = Y7, /5
is a Tps/J-homomorphism defined by formula {(F®r) =y-rforg=y+J and r € J.
The triple F(Y) is viewed as a right A(Ty)-module in a natural way. If f:Y = Z isa
Tp-homomorphism we set F(f) = (f’, f*), where f” : Y” — Z" is the restriction of f to
Y"=YJ and f': Y’ = Z'is the R/J-homomorphism induced by f.

By standard arguments we easily show that the functor F has the following properties
(see [13] and [4, Section X.2]).

(i) F is full and establishes a representation equivalence between mod(7s) and the
category ImF.

(i) A right A(Tps)-module X belongs to ImF if and only if X has no non-zero sum-
mand isomorphic to a simple projective right A(Ty)-module.

(ii1) The functor F preserves the indecomposability, projectivity and the length.

(iv) F carries a homomorphism f:Y — Z to zero if and only if Im f C ZJ.

(v) For any pair Y, Z of indecomposable modules in mod(Tys) the functor F induces
ring isomorphisms

End(Y)/JEnd(Y) & End(FY)/JEnd(FY), End(Z)/JEnd(Z) = End(FZ)/JEnd(F2)
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and an End(Y)/JEnd(Y)-End(Z)/JEnd(Z)-bimodule isomorphism
Ire(Y, Z) = Iee(FY,F2Z)

(vi) The ring T is right pure semisimple (resp. of finite representation type) if and
only if A(Ty) = Ry is right pure semisimple (resp. of finite representation type).

In particular the functor F carries the irreducible homomorphisms to irreducible ho-
momorphisms. By [40, Proposition 4.17] (see also Corollary 6.2) the hereditary ring

ATy) = Ry = ({;‘ ngc)

is right pure semisimple and representation-infinite. Furthermore, the Auslander-Reiten
quiver I'(mod Rys) consists of two connected components: the preinjective one Qs and
the preprojective one Py described in [41, (2.8) and (2.10)]. By [41, Proposition 2.6},
the Auslander-Reiten quiver of mod(Rps) has the form

PO cer eeeas QY . - Q... QY ..., q®

g g T D o® o®
[} 2341 - b L 1

It follows that the ring Ty is right pure semisimple and representation-infinite. Hence
T is not self-injective, because otherwise Tjs should be representation-finite (see [15,
Corollary 5.3, [40, Corollary 2.9]) and we get a contradiction.

By the properties (i)-(vi) above the preinjective component Qs of T'(mod(Ras)) corre-
sponds to the part of the Auslander-Reiten quiver of mod(Ts). Given m € N we consider
the Tp-module

L = [F(Qf(v?))

corresponding to Q'@ via the functor F. Tt follows from (iii) that the module Lq is simple.
Since the inclusion soc(Ty) = J(Ty) «— Ty is an irreducible homomorphism and Ty
has a unique simple module up to isomorphism then Lg is a direct summand of J(Tu)
and there is an irreducible homomorphism Ly — Ty. The preprojective component Py,
of I'(mod(Rar)) consists of two projective modules (0,G) = Py — P, = (F,Mg). It
follows from the properties (i)-(iii) that F(Ty) = P, and F, is not in the image of F.
Consequently the Auslander-Reiten quiver of Ty is connected and has the shape shown
in (b).

In view of the properties (i)-(iv) above, the remaining part of the theorem follows
from [40, Proposition 4.17] and [38, Proposition 3.6]. The details are left to the reader. O

In connection with [37, Remark 2.4] the following observaion is useful.

COROLLARY 5.6. If F C G are division rings such that F = G, dimg G = oo and the
associaled infinite dimension-sequence d_oo(rGg) (4.1)of the F-G-bimodule pGg belongs
to DSy, = DSL UDSR) then the local ring Tg = F x ¢Gg is a counter-ezample to the
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pure semisimplicily conjecture of length two. The global dimension of T is infinite and
the Auslander-Reiten quiver of mod(Tg) is connecled.

Proof. Apply Theorem 5.2. o

REMARK 5.7. Since for any v = (...,v_m,...,v_1,0p,00) € DS,,, there exists j > 1
such that v_j = 1, then according to [37, Remark 4.5] the existence of an F-G-bimodule
Mg such that d_(rMg) = v is an infinite version of the Artin problem for division ring
extensions studied in (8], [27], [37] and [38] (see [37, Section 4]). In the situation studied
in Theorem 5.2 we also assume that F = (.

We hope that, by applying a modification of the bimodule amalgam rings construction
of Schofield [26, Chapter 13], one can construct a division ring embedding F C G = F
such that d_o(rGg) = v for some of the dimension-sequences v € DS,,,. a

The following two interesting problems stated in [41, Problem 4.21] and [40, Problem
3.2] remain unsolved.

PROBLEM 5.8. Assume that F, G are division rings, r Mg is F-G-bimodule such that
the associated infinite dimension-sequence d_o(rMg) (3.2) belongs to the set DS,y =

DS UDSY.
(a) Find a decomposition of the right Rp-module
o (=]
(59) L(Qwm) = [T 9%/ @ QF
m20 m2>0

in a direct sum of indecomposable modules, where Qf,?),Qio),ng),. .. are the preinjective
modules shown in [41, (2.8)] (see also the shape of 'y sown above).
(b) Give a characterization of F-G-bimodules Mg for which the Rpy-module L(Qp)

is projective. O

PROBLEM 5.10 [40]. Give a characterisation of semiperfect rings R for which every
right R-module is pure-projective or pure-injective. Is every such a ring R right artinian,
or right pure semisimple? 0
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THE DERIVED PICARD GROUP AND REPRESENTATIONS OF
QUIVERS

AMNON YEKUTIELI

ABSTRACT. The derived Picard group DPic(A) of a ring A is the group of auto-
equivalences of the derived category DP(Mod A4) induced by tilting complexes. When
A is either local or commutative, DPic(A) is a product of the usual (noncommutative)
Picard group Pic(A) and a cyclic group; in this sense DPie(A) has a noncommutative
geometry content.

In this talk we consider the case where A is the path algebra of a finite quiver A
over a field k (i.e. A is a finite dimensional hereditary k-algebra). There is a natural
action of DPic(A) on a certain infinite quiver. This action is faithful when A is a tree,
and otherwise a connected linear algebraic group may occur as a factor of DPic(A).
At any rate we get an effective description of DPic(A); examples will be shown.

In the hereditary case DPic(A) coincides with the group of triangle auto-equivalences
of the derived category of A-modules. This means that we can calculate the groups
of auto-equivalences of various derived categories occurring, for example, in noncom-
mutative geometry. (Joint work with J. Miyachi.)

1. INTRODUCTION

Let k be a field, A a k-algebra, and let D®(Mod A) be the derived category of A-
modules. The derived Picard group DPic(A) is the group of auto-equivalences of
D®(Mod A) generated by tilting complexes.

The group DPicy(A) becomes interesting when A is nonlocal and noncommutative.
This takes us into the realm of noncommutative algebraic geometry.

Today I will talk about the case when A is a finite dimensional k-algebra. For a
hereditary algebra A we can completely describe the structure of the group DPick(A).
This is a survey of joint work with J. Miyachi. Full details are in the paper [MY].

2. SOME BACKGROUND

Suppose & is a field and A is a (unital, associative) k-algebra. Let Mod A be the
category of left A-modules. Recall that Morita Theory tells us what are all k-linear
auto-equivalences F' : Mod A — Mod A. They are (up to isomorphism) FM = P4 M,
where P is a k-central invertible bimodule (i.e. A = P®4Q = Q®,4 P for some bimodule
Q). We call the group generated by the invertible bimodules P (with operation P®4Q)
the (noncommutative) Picard group of A, denoted Pic(A).

Remark 2.1. If A is commutative then Pici(A) contains the automorphism group
Aut,(A) and the usual (commutative) Picard group Pic,(A) as subgroups.

Complete version of the manuscript submitted to a journal.
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Now let us look at the bounded derived category D®(Mod A). We will not attempt
to say too much about it now. All we need to know are a few facts. The objects of
D®(Mod A) are the bounded complexes of A-modules

M'=(...__,0__,MPL,MP+1 i...._,Mq__,O_,...)

where d 0 § = 0. The category Mod A embeds in D®(Mod A) as the complexes concen-
trated in degree 0. And M([n| is the complex with M in degree —n. If T" is a complex
of bimodules, then one can define the derived tensor product 7" @4 M". We call T" a
tilting complex if the functor FM™ = T" @Y M’ is an auto-equivalence of D*(Mod A).
Tilting complexes were considered by Rickard and Keller.

Example 2.2. If P is an invertible bimodule then P[n| is a tilting complex.

Definition 2.3. The derived Picard group DPici(A) is the group of isomorphism
classes of tilting complexes, with operation 7" ®% S".

One reason to study DPick(A) is:

Theorem 2.4 (Y.). DPicx(A) parameterizes the isomorphism classes of dualizing com-
plezes over A.

We note that DPici(A) contains two natural subgroups: a copy of Z (represented
by the complexes A[n]), and Pici(A).

Theorem 2.5 (Y., Zimmermann-Rouquier-...). If A is either local or commutative,
then DPicy(A) = Picy(A) x Z.

This however is not the general situation:

Example 2.6 (Y). Consider the smallest nonlocal, noncommutative k-algebra A =
k k
|

the class of A*|—1] in DPic(A). Then one can show that 7 ¢ Pici(A) x Z.

The bimodule A* := Homg(A, k) turns out to be a tilting complex. Let 7 be

This raises:

Problem 2.7. Study the structure of the group DPicx(A) and its relation to the ge-
ometry of the noncommutative ring A.

Let us write Outi"(D®(Mod A)) for the group of k-linear triangle auto-equivalences
of DP(Mod A). The next problem is open:

Problem 2.8. Is DPicy(4) = Out!’(D(Mod A))?

Recall that A is hereditary if gl. dim A = 1, or if every left of right ideal is a projective
module.

Theorem 2.9 (Miyachi and Y.). If A is hereditary then the answer to the previous
problem is positive.
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3. QUIVERS AND PATH ALGEBRAS

We will concentrate on a finite dimensional k-algebra A. Let us assume that k is
algebraically closed, and that A is basic (i.e. A/p = k for every prime ideal). Since
every k-algebra is Morita equivalent to a basic one the latter is really no restriction.

_ The geometry of A is described by a quiver A. Here is a nonorthodox definition of
A. The set of vertices of A is Spec A, namely the set of prime ideals. Let ¢ be the
Jacobson radical of A, and for each p; € SpecA let e; € A/t be the corresponding
central idempotent. So

iNp;
v/ = P ei(v/?)e; = Pil1P;
@ ’ b Pl

as A-A-bimodules. Define d;; := dim, "7:—}:1 Then there are d; ; arrows p; — p;. The

connected components of A are called cliques, and they control Ore localization.
Example 3.1. Take A = [g :] The prime ideals are p, = [g :] and p; = [l(; g]

) — 0 k . N . .
Clearly Egﬁ? = [0 0]. So the quiver A is p-l-—>p-2 , & Dynkin quiver of type Aj.

On the other hand, given a finite quiver A we can construct an algebra, called the
path algebra kA. A pathin A is either a trivial path e, for each vertex z, or a sequence
of arrows a2 - - - &, Such that a4 starts where o; ends:

aq a3z a3
> be
Iy Tp Tz X4

The paths form a basis of kA as vector space, and multiplication of paths is by con-
catenation if possible, or 0.

Example 3.2. Take the quiver A = x'n_a_):fz . Then &, ,e., are orthogonal idempo-

tents; e,,a = a = ae,,; and ae,, = a* = e,,a = 0. Thus kA = [g ﬁ], with

o oo o1
€ =1lo o’ %= o 1| % |0 o|"

Here is a classical structure theorem for finite dimensional algebras.

Theorem 3.3 (Gabriel). Let A be a basic finite dimensional k-algebra with quiver A.
Then

1. A= kA/I for an ideal I C a2, wherea C kA is the ideal generated by the arrows.
2. I =0 iff A is hereditary.

Some remarks:

Remark 3.4. According to the definitions of Cuntz-Quillen, a finite dimensional al-
gebra A is smooth iff it is hereditary.
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Remark 3.5. The surjection A — A should be viewed as a noncommutative analog
of the Cohen theorem for commutative rings: k[[ty,... ,ts|] = A. Indeed the arrows
in kA are lifts of a basis of ¢/t2.

Remark 3.6. Beilinson showed that the derived category D"(CohP') of coherent
sheaves on the projective line P! is equivalent to D®(modkA,), for a certain quiver
As. According to Kontsevich-Rosenberg one has D*(Coh NP") ~ D"(mod kA,41),
where NP" is their noncommutative projective n-space, so Out{(D°(Coh NP")) =
DPICk(kAn.H).

4. THE AUSLANDER-REITEN QUIVER

;From now on A = kA and the quiver A is connected. An A-module is also called a
representation of A. As customary we write mod A for the category of finitely generated
A-modules (=finite dimensional representations).

One of the important invariants of the algebra A is the set of isomorphism classes
of indecomposable modules. If this set is finite A is said to have finite representation
type.

Theorem 4.1 (Gabriel). A has finite representation type iff Aisa Dynkin quiver of
type An, Dn, Es, E7 o1 Es.

The Auslander-Reiten quiver ﬁ(mod A) is defined as follows. Its vertices are the
isomorphism classes of indecomposable A-modules, and there are d arrows z — 1y,
where d is the dimension of the space of irreducible homomorphisms Irr(M., M,)) (this
is like t/v?).

Happe! showed how to define the Auslander-Reiten quiver I = F(D®(mod A)). This
is an infinite quiver. Usually it is very complicated, but it contains a nice subquiver
denoted ZA that is easy to describe (ZA was introduced by Riedtmann). When A is
a Dynkin quiver, then in fact F(D®(mod A)) = ZA.

Example 4.2. Take A = s Then [(D®(mod A)) = ZA is

(0, 3)

INSNSNSNS

(02 (1,2

INSNSNSNS

(0 1 (1, l) (2, l)
The vertices in '(mod A) are labeled.

The group DPic;(A) acts naturally on the category D®(mod A), and hence on the
quiver ['(D®(mod A)) (by quiver automorphisms). The element 7 € DPici(A), repre-
sented by the tilting complex A*[—1], is called the translation. In the example above
it is a shift by 1 to the left. Using this action we proved the following theorems. Let
Aut(ZA) denote the group of quiver automorphisms.
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Theorem 4.3 (Miyachi and Y.). Suppose A has finite representation type. Then
DPic(A) = Aut(ZA)™.

Example 4.4. Let o € DPic,(A) be represented by A[1]. If A is of Dynkin type A,
then DPicx (A) is abelian, generated by 7 and o, with one relation 7*+! = ¢=2.

We denote by Aut((ZA)o; d) the group of permutations of the vertex set (ZA)o that
preserve the arrow-multiplicity d.

Theorem 4.5 (Miyachi and Y.). If A has infinite representation type then there is an
isomorphism of groups

DPick(A) = (Aut((ZA)o; d) x Pic)(A)) x Z.
Pic}(A) is a connecled linear algebraic group, and is trivial when A is a tree.
To conclude,

Problem 4.6. Can this analysis of DPicx(A) be carried out for other finite dimensional
algebras A? We note that that the quiver [(D"(mod A)) exists whenever gl. dim A < oo.
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On Auslander-Reiten sequences for irreducible lattices
over integral group rings

SHIGETO KAWATA

ABSTRACT. Let G be a finite group and O a complete discrete
valuation ring of characteristic 0 with the maximal ideal (7) and
the residue field k = O/(n) of characteristic p > 0. Let L be a
non-projective absolutely irreducible OG-lattice such that L/x L is
indecomposable. Then the middle term of the Auslander-Reiten

sequence terminating in L is projective or indecomposable.

GIIERBEELTA. plGOUE |G| 2RV (B -EHLL, (K, O, k)i p-
TEVa27-%tT5. Tibb, OREROOEWESRIERT, TOBKATT
VE () TERLLE, HREE=0/x) 3EEpDHhTHY, KIZODOBKTH
2r¥3.

SITIRRTCOF/EkERL, RG-MBFLVAIL R-LFEATHBRERZbD
¥ERTALDL TS, I OG-INEEL L OG-lattice * Bk L, §1589,/ ASFEYIC
DWTIE OG-lattice DL THTFTYV—TELAZ LIZTA.

& Z AT, OG-lattice L% BE# (irreducible) & 13, K ®¢ LABE#17% KG-In#
DEZIZIES. wanbh Y, LH¥H588% KG-IED O-EREk-oTnaIl L
Thb, RERELLVWEERTH 3.

I [JKM] LIISEHT R Wl BERE OG-lattice T, L/nLI3EEE#H% kG-
MBETHHIDETE. ZDE &, LD Auslander-Reiten 5D P HIHIZ §T /D,
bLCREBHTH 5.

This is a part of the joint paper [JKM] with A. Jones and G. O. Michler, which will be
submitted for publication elsewhere.
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ST MBS i, K OEBOIARE KIZHL K ®o L HEH KG-MBE0 L
&R, BOBHER (BBONKK LOoRR) 2BV T, K 10EH|G|-
FREEOIX, CAREH KG-IBED ARSI AZ EMNAMOLN TS, F1:,
BEEOBRHL KG-MBRTIZHLTT O O-RA LT L/aLAEBREH LD ONHFET
52 &5%, Thompson|[Tho] iZ L hHIGNTWA,

§ 1 TIIFROMEED Auslander-Reiten FIO LR HFAL B L, § 2 TIXERE
BOFRD 7O & L T Knorr, Carlson-JonesA*# AL 7= * virtually irreducible
lattice ” %> “ exponent " {2 DWT DR L B~XE, FTEHDOERIIE 3 THR 5.

BEIRO Auslander-Reiten BERIZ D\ Tid, Benson[B], Erdmann[E], Roggenkamp
[RYICFHELVOTEBLTT S\,

§ 1 FHEOD Auslander-Reiten 5l

BIRRG (RIZ O E1:13 k) ONBOELHE 02 Y L X - 013%0 3
DD&MG%#- T L & Auslander-Reiten 51l (B4RF)) L Lidh 3 ;
(1) X Zi3EHICEEY,
(2) EQRFRL TN,
(3) EED split-epi TLVWHERMERg: W - XIZHL, 5 h: W - Y BHEE
LT o= fRARD IO,

Auslander-Reiten JIDFETEX, TV T 1 v BHOBE4S13 Auslander-Reiten iz & 2 T,
Z L T order ¥ &1E Roggenkamp 52 & o TREN -,

EE FEOHEHTLVEEY RG-IBE X 12, X 2 BiIEE T 5 Auslander-
ReitenH|0 = Z =2 Y = X - 0 D —BMIHFET 5.

HIZ X O Auslander-Reiten FIORHADH Z IE—FWICHRELDT Z=7X L KT
Z &12% 5. (71% Auslander-Reiten translation & Xi¥h3.) R=0DE Xiir=Q
THY, R=kDLZEGIT=0TH5. ZZTQid Hellar "EME, T4DbbOQX
BEXDOHEHERBO QX > Px 2 X - 00BTHA. F/BHEIRY = m(X)
ERTIEILT B,
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Ihh» b R=0 D4 Roggenkamp, Thévenaz 5 iZ & A Auslander-Reiten %
DRIEE BAL 2w,

X, Y % OG-lattice £ ¥ 5. OG-#EEE{R o: X - Y254 EMNEEE &N
TAHLE, pEHENL TS, F7: ProjHomog(X,Y) T X 26 Y NOSHERHER]
HEROTRTOZTHRIEMERTI LTS, 2L T

Homgpe(X,Y) := Homog(X,Y)/ProjHomeg(X,Y)

LB, —is, HEMTIE R WERY OG-lattice X 129V T, Homog(X, X) i
simple socle ¥ F2Z L AN DOND. TDsocleDERTE pL L7zL &, pb X
?) projective cover iZ & 5 pull back & L T X @ Auslander-Reiten I i S 5 :

0 - QX —-m(X) — X — 0 ARVl

” 1 pull back lp
0 — QX — Py — X — 0 ! projective cover

§ 2 Exponent, Virtually Irreducible Lattices & BE¥E{&

Z DEFTIE Carlson-Jones A EFEL 72 “exponent” &, Knorr ASEFL 72 virtually
irreducible lattice ”, BLUEFNLIZHTHHEDOFHHAEZ L 72\,

—#IZ OG-H#ERB o : X - Y IZHL |Gl 3N TH L. Tibb,
|G|Homog(X,Y) C ProjHomog(X,Y)

TH->T, Hampg(X, V)i b—2 a2 O-NETHA. X DESEEHRY ldy TRT
ZELT B, ROEHIX Carlson-Jones[CI) 12 & 5,

EF OG-lattice X IZ2WT, 70-Idx HHEMTH 547, 7ot ldy i24HER
TRV EE, exp(X)=n* L #HE, X Dexponent & L&,
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Homog(X, X) & Hompa(QX,0X) (BRELTRAY) 0T, KA1 5.
HWE1  exp(X) = exp(QX).

&T, XHHEHTEWEBHMEEE 51F Homeg(X, X) ? socle i simple Td -
7:. T®DsocletZML T, Carlson-Jones[CI|13RD & 5 &% b#AL 7.

EHE XSO TEVWERHNER OG-lattice £ L, exp(X)=n2 & T5. X &
property E 2 2 L i,

7! . Hompe(X, X) = Soc(Hompg(X, X))

BEDE->TndEEETS. wudrhid, 70! . ldy 2F Soc(Hompg(X, X)) D
ERTIC2oTWwAEE, Xidproperty E¥FDEZE).

WE2 HENBEH L OG-lattice L 13 property E ¥ #§2.

E K ®o Lid#xBE#% KG-I#% DT Endye(K ®o L) = K Th 5. —
HL=1®cLC K® L %DT, Endog(L) DPEENTTIE Endye(K ®o L) IR
T&T, K®oEndog(L) =Endke(K ®o L) = K. X2 TEndog(L) 2O THh,
Endog(L) DIEEDTUIBEEEROA AT~ bhr 5. O

(222 property E %352 OG-lattice E L TRD I DA H 5.
Bi[C, Cor. 2.9] (1) X PEBEHT ranko(X) ¥ p CHOV I 2iThiE, X it
property E 2 #D.
(2) (@) =|G|-ODEE, XHERHTexp(X)=n"%56iF, X I property
E 2 H#D.
(3) XHHEBESHT property E 2 #TiE, QX b property E 2.

fihF Knorr i3 kD X 9 % virtually irreducible & V2 9 &% #A L 7-.

EH OG-lattice X (& RDFM%% 7% & & virtually irreducible & &5
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(%fFx%) FED ¢ € Homog(X, X) 125 L, Tr(p) € ranko(X)- O THH, »>
Tr(p) € mranko(X) - O L2 5B+ 5EMIT o PEERMTTHHZ L, (2T
Tr(p) i3, o2 X D55 O-BEKICHML TTARRLLEDMN L —R%KT.)

23 Z @ virtually irreducible &, property E 322 [EfET&H B Z & 7% Carlson-
Jones i & > TiREN /-,

%8 3 [CJ, Remark 4.5] X #f virtually irreducible T& 5 7 DLE+ 5 &4
(&, X M EBE# T property EX 22 L TH 5B,

& 612 Carlson-Jones i exponent & Auslander-ReitenFIIC L TRhOER %L 157,

I 4 [CJ, Theorem 2.4] X XM T L VERSH OG-lattice T0 — QX —
m(X) = X — 0 i& Auslander-Reiten & 3 5. exp(X) = 7%, exp(m(X))=nt&
BL IO ERIEFE:

(1) X property E % #.
(2) b<a.

COEBRYRHEHL, BEECHRAIEHOTHORLE L ARDBEENRENS,

#HES V, Wik bil virtually irreducible TH B L T4, COLE VIO W
NDOBMBRIIFEL L v,

it HAMWER Vo WIHFETALEELTAS., THEWTHDS
Auslander-Reiten FIOHFMHEOEFREFL L TVHFRLNE 0 - QW - V- —
W—o0 “wFexp(W)=n° exp(V)=m® e BLEBA4LDb<aThb. KIC
V C#bH % Auslander-Reiten 510 - QV - QW @ --- - V 5 0 2FXHLZED
PHITEIZ QW B BEDbNS. BB LD exp(AW) =1 %2DT, EBAhba<bl
ZoTL IV, FE. O

=117 -



§ 3 TEHEDIMH

O TEETARAFTEROHHEEZ T 5.
Homgg(L, L) 3 simple socle 2 #2045, €DEMIT p & L OFHZHEMIC L 3 pull
back & LT LD ARFID B s 5 :

0 —-QL—>m(L) — L —0

| | puback o
0— QL — P —_— L —0

WE LIZAEHLDT, p=1"-1d; (Gn) LRSI 3,

Casel. n=00L&:. HHEHES Auslander-Reiten 5| TH 5. 4512 PRHIEIL
s, |

CaseIl. n#00t&: mIL)FERNTHLIELERE). EEHTEL
WERELTHS, m(L)=VeW LB, LD pull back % mod (r) T reduction
L CHEL5N 3 kG-INBED pull backid, 77 Td, A 0-map 2 DT, FHT S, Lo<T
m(L)/7m(L) = V/zV @ W/aW X L/xL & QL/xQL %1%5. W/aW 2 L/aL ¥t ¥
5. 2Ok & rankoW =rankoL L WEEHER W — LIZESITH 2. (BRHEHRI
ESP I35 THoA, LPLRARTRZWILIZEETS.) LoTHICW
TAEXBESIT, W, L& $IC virtually irreducible TH 2T LiZi2 5, Lo L i
HBSIZFET 5.

INTEEHOEBHNTE L,

Bl O % BEB% OG-lattice L +3 &, m(Og) S EEES.
§ 4 SHEMEFE Auslander-Reiten il

WEFTISRTE-L 912, Auslander-Reiten FIDPMIAIZ oW T, #ZITEEE
FDEPEHETHILEZIVBEETIILVIHICBDh L, ZoOfTIX, BHE
ICHREmMBER T DN 5 X 9 & Auslander-Reiten FIIZ2WTEEL, 2 PMIED
projective-free part (2 DWW THXTHAIzV,

IFTR=kDLE, THbbEV25-RBROPEEEL L. S ¥l kG-I
WL, P2 SOMHEHBETS. BETR LG IHFHRETRT, Top(Ps)( =
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Ps/Rad(Ps) ) & S = Soc(Ps) & x> T\%. %L T Rad(Ps) i BT Ps DMfE—
DAL kG-IBETH T,

S : 0 — Rad(Ps) — Ps @ Rad(Ps)/Soc(Ps) — Ps/Soc(Ps) — 0

A5, P MShIHICHbN B X 9 L ME—? Auslander-Reiten 5| T& ¥, standard 7
EXifhTva,
Standard 7l SiZ kD L Hi2dFEbEsh 5 .

S:0-Q5-Ps® Rad(Ps)/SOC(Ps) Q7150
Lo THEMEES THDB ARFIZRDOL HIZHIT 5 :
0 — Q25 — Q(Rad(Ps)/Soc(Ps)) — S — 0

EE %E!3 Rad(Ps)/Soc(Ps) #* decomposable %L &b H 5. ERE, p=5T
G = Fy(2) (Fy BID Chewalley #) O & & 53847504 Hiss[H] {2 L o TRIH Eh T
Bh, EOEENS D DY EG-INBE S 1234 L T Rad(Ps)/Soc( Ps) M EBE&IZ 2 &
RO EHbhrs,

LLE, kG-MBOFEX R TELA, RIZ OG-lattice DFEEX EZ I\,

—BRICHHER kG-INB¥E Ps i liftable (35 LIPWRE) TH 5. AL, & 54180
OG-lattice Qs BFEL T, Qs(:=Qs/mQs ) = Ps. 7=, HEEOIHEM L B
OG-lattice 1%, & 25N %L EEEH LG-INBF Ps 0 it (b L) L oTna,
Lo T, HEHIZEBLH OG-lattice & §FRE89 % HELH kG-IBEE DMICIX, b L
Fr2liL T, 1331 o8Ehd 5.

BT, Qs i35ty EEEH OG-lattice T, Qs/mQs =X Ps THEbDLT5H. B
IR OG @ Jacobson 1R3#% J(OG) L BE, Js:=QsJ(OG) EBL. ¥7-B%, Qs
BRTA0G-7ay 2,55 (ZT7uy2biz, BIROGEZWMASIFTILEL
TERHFRLI-LEDRFDIETHA.) '

—RRIZE TS IZEBEH LIRS v, LA L Wiedemann[W] O &R FIHTHIT
RO ENDLNE.
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1% [Ka, Proposition 3] ¥ L BAEREZRBTHIL Js ZEBHTH 5.

EZ AT, Qs/7Qs = PsDsocleidsimple THab, XoT Qs ZFHIZELLH R
K ®0 Qs D OG-ERFMEED L P TEBANL S DN—BRICHFET S8, Thi Ik
B

K ®0 Qs
|
Is : unique minimal overmodule of Qs
l
Qs
|
Js : unique maximal submodule of Qs

147 [Ka, Lemma 4] BRERFABTHILTH, 0L &
(1) Js 2 Qls. I IEERNTHS.
(2) IsT#b % Auslander-Reiten Fid Qs At H b1 5 HE— Auslander-Reiten
5ITHh 5.

EOHEICREL T, b o&—#&IC O-order A D “ bijective " EEE# A-lattice Q
IZ2WT, ROBENREINTWVE I L ETHERRISHE T iBFnk (2
T Q7 bijective & iX, projective #*7 injective D& EEZE.)

& [HN, 23.2) Q% bijective EEEH A-lattice L 5. QD (H—FFETS) &
K A-submodule  ‘Q &L, ¥72Q® (We—FLET ) B/l A-overmodule # Q' &
B, QDOQD Q. TnkE,

(1) 'Q:EBEH < Q@ HEH.
(2) SL'QPEBEHTRITIL, 'Q i3 2 DA T2 WEEL#H A-lattices D
EfiTH 5.

8T, A:0—Js 2 Qs®Ms— Is = 0 % Qs B b 5 Auslander-Reiten 5|
ET5. L SHtliftable 2 H1F (Bib, 3 OG-lattice LAFELEL T LirL=§
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ERBLE) ROZENVZE.

¥ Sidliftable TH AL TE. Qs DBTHOG-70 v 7 i3 ERFHARTH
ArTah ZDLE M, IZHIZETN, oI 2EIZEL L I OGC-lattices
DL THENTERVE—-DLDOTHS

K®Qs
|
Is
/ AN
Qs Ms
AN /
Js

E 512 Ps b A standard Auslander-Reiten F & i3 RD & ) 2EFRbH 5.

T2 [Ka, Theorem 9] S i3 liftable THH LT 5. Qs DET S OG-70 v
JIBERKAMTHLLTSH. ZoLkE, Qs H¥RbIS OG-lattices D Auslander-
Reiten 5] A # mod (7) T reduction L TH 5N 5 kG-MENTEYI A &, Pshirh
MIEICHDLNS standard FIE P RFN0 - S >SS - S—0 LDEHILE 2 5.

BB M DEBRBELLLVEELHLILEFELTBL. HIRT|G| =71,
(My=p-ODLE, BHLHEMEGMES =keiltt L, MsIZEBEHTIIZ, B
BH 72 OG-lattice O FOEHEF L L THDLDNS.
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SOME REMARKS ON (M, N)-INJECTIVE MODULES

Takeshi SUMIOKA and Takashi TOKASHIKI

Let P and Q berings, and M, N, and U, aleft P-module, aright Q-module and a
P-Q-bimodule, respectively, and let @ : M x N = U be a P-Q-bilinear map. Then we say
that (M, Ny) (or (M, Ng; U)) is a pair with respect to ¢ or simply a pair (see [10], [11]
or [1, Section 24]). Forelements x € M, y €N and subsets X c M, YC N, by xy we
denote the element @(x, y), and by ry(X) (resp. £,(Y)) we denote the right (resp. left)
annihilator module {y e NIXy =0} (SN) (resp. {xe MIxY =0} (s ;M)). We say that a
pair (M, N,) satisfies ¢-ann (resp. r-ann) if for any submodule X of M (resp. any
submodule Y of Ng), X = £,r(X) (resp. Y =ryf,(Y)) holds and (;M, Ng) is a dual pair
if M, NQ) satisfies Z-ann and r-ann (see [10]).

Let ;M; be a P-R-bimodule and f an idempotent of R and put Q = fRf. Then a pair
M, Rfy) always signifies the pair with respect to the P-Q-bilinear map ¢: M x Rf — Mf
via @(x, af) = xaf; xe M, afe RE.

Let (M, NQ; U) be a pair. Then U, is said to be (M, N)-injective if the following
condition (*) holds for any submodule K of N, and any homomorphism 6:K — U.

(*) 6: K — U is given by left multiplication by an element of M.

Moreover Uy, is said to be (M, N)-F-injective (resp. (M, N)-cyclic-injective) if (*) holds
forany K(sNg) which is finitely generated (resp. cyclic) and any homomorphism 6 : K —
U, and U, is said to be (M, N)-Fl-injective (resp. (M, N)-Cl-injective or (M, N)-simple-
injective) if (*) holds for any K (£ NQ) and any homomorphism 8 : K 5 U whose image is
finitely generated (resp. cyclic or simple).

Let ;M and L, bea P-R-bimodule and a right R-module, respectively, and let (,L*,
Lz; M) be a pair with respect to a natural map 7 : L* x L — M, where L* = Homg(L, M).
Then (L*, L)-injectivity of M, implies L-injectivity of M, and in particular (M,

The detailed version of this paper will be submitted for publication clsewhere.



R)-injectivity of M, implies injectivity of M.

Ikeda and Nakayama [8, Thoerem 1] and Xue [16, Lemma 3] have shown that a right
Q-module UQ is Q-F-injective (i.e. (U, Q)-F-injective) if and only if é’urQ(a) =Ua and {1
n K) = £,(I) + £,(K) hold for any a€ Q and any finitely generated right ideals I and K of
Q.

On the other hand, as generalizations of [7, Proposition 5.2], in [9, Lemmas 1.13 and
2.4] Kurata and Hashimoto have pointed out that in case ;U is a right dual bimodule (resp.
a dual bimodule), U, is Q-FI-injective (resp. (P, U)-Fl-injective), where U, is called a
right dual bimodule if (U, Q) is a dual pair, and ;U is called a dual bimodule if both (P,
Uy and (U, Qg are dual pairs.

For a pair (;M, NQ; U), in [2, Theorem 12] Anh, Herbera and Menini have shown that if
both ;U and U, are (M, N)-simple-injective and AB5* modules whose socles satisfy
certain conditions, then both ;U and U, are (M, N)-Fl-injective and in [2, Proposition 14]
they have shown that under certain situation, U, is (M, N)-injective if and only if M is
linearly compact.

In this note for a pair (;M, Ny; U), we shall study properties on (M, N)-simple-injective
modules, (M, N)-FI-injective modules and (M, N)-injective modules in relation to [8], [16],
[7], [9] and [2] above.

Throughout this note, every ring has an identity and every module is unitary. Let (M,
Ng: U) beapair, xe M,Z<YSN, and 6:Y — U ahomomorphism. Then,by % :N —
U we denote the left multiplication map by x and by 61, we denote the restriction map of
010 Z

The following lemmas are essentially due to Ikeda and Nakayama [8].

Lemma 1 (see [8, Theorem ] and [2, Theorem 12]). Let (M, NQ; U) be a pair. Then
the following conditions (1) and (2) are equivalent.

¢)) UQ is (M, N)-cyclic-injective.

(2) £yro(y) =My forany y € N.

Moreover in case (M) =0, the conditions are equivalent to the following condition (3).

3) £yto(My) =My forany ye N.



Lemma 2 (see [8, Theorem 1]). Let (M, NQ; U) beapairand Y, < NQ (i=1,2). Then
the following are equivalent.

(1) If 0:Y,+Y,- U is a homomorphism such that ol v = X, for some elements x; €
M(i=1,2),then 8 = X for some element x € M.

(2) If 8:Y,+Y,—> U is a homomorphism such that 6 | y, = X, for some element x, €
M and Y,<Ker 6, then 8=X some element x € M.

(3) £4(Y, n Y =L, (Y) + £,(Y)).

Remark 1. Let 6:Y — U be a homomorphism such that Im 0 is cyclic (resp. finitely
generated). Then there exist submodules Y, and Y, of Y such that Y, is cyclic (resp.
finitely generated), Y,<Ker6 and Y=Y, +Y,.

By Lemmas 1 and 2 and Remark 1, we have the following theorems.

Theorem 3 (see [8, Thoerem 1] and [16, Lemma 3]). Let (;M, Ny; U) be a pair. Then
the following are equivalent.

(1) Uy is (M, N)-F-injective.

(2) (i) £yr(y) =My for any element y € N.

(i) £44(Y, n Y, = 4,(Y,) + £,(Y,) for any finitely generated submodules Y, and

Y, of N,

3) ZU(y"K) = {(K)y for any element y € N and any finitly generated submodule K
of Ny, where y'K denotes the right ideal {a€ Qlyae K} of Q

Theorem 4. Let (M, Ny, U) be a pair. Then the following conditions are equivalent.

) UQ is (M, N)-Fl-injective.

(2) Uy is (M, N)-Cl-injective.

(3) (1) £yrg(y) =My for any element y € N.

(i) £, (Y, ~ Y,)) =£4(Y,) +£,(Y,) for any finitely generated (cyclic) submodule Y,

and any submodule Y, of Ny,

4 ¢'K) = £4(K)y for any element y € N and any submodule K of Ny, where
y'K denotes the right ideal {ae Qlyae K} of Q
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If (M, Ny is a dual pair, then {,(Y, n Y,) = £,(Y) + £,Y,) holds for any
submodules Y, and Y, of N. Therefore by Theorem 4 and Lemma 1, we have the

following.

Corollary 5. Let (;M, Ng; U) be a dual pair. If the pair (U, Q) satisfies ¢-ann, then
Uy is (M, N)-Fl-injective.

Remark 2. Taking M=U,N=Q;or M=P,N=U in Corollary 5, we obtain the

statements [9, Lemmas 1.13 and 2.4] mentioned in the introduction.
As a statement similar to Theorems 3 and 4, we have the following.

Proposition 6. Let M, Ny; U) be a pair. Then the following conditions are equivalent.
(1) Uy, is (M, N)-simple-injective.
(2) (@) fyrely) n Soc(UQ) <My forany ye N.
(ii) £y(yQ ~ K)=£,(yQ) + {y(K) forany ye N andany K<N,, such that (yQ +
K)/K is simple.
(3) ¢,(y'K)=£,(K)y forany ye N and any K< N, such that (yQ + K)/K is simple.

The following proposition is essentially due to Nicholson and Yousif [13] and Anh,
Herbera and Menini [2].

Proposition 7 (see [13, Lemma 4.2] and [2, Theorem 12]). Let (M, Ny U) be a pair
and assume that U-duals of simple factor modules of submodules of N, are simple as left
P-modules. Then the following are equivalent.

(1) Uy is (M, N)-simple-injective.

(2) (M, Ny) satisfies r-ann.

The following lemma is shown by applying the proof of [5, Lemma 2.1].

Lemma 8. Let M, be abimodule and f anidempotent of R with £,(Rf)=0 and put
Q=1{Rf. Then Mf, is (M, Rf)-simple-injective if and only if M, is (M, R)-simple-injective
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(i.e. M is R-simple-injective).

By Proposition 7 and Lemma 8 we have the following corollary, in which the equivalence

of (1) and (3) provides Theorem 2.4 in [10] with another proof.

Corollary 9 (see [10, Theorem 2.4]). Let M, be a bimodule and f an idempoptent of
R with {,(Rf)=0 and put Q={Rf. Assume that Mf-duals of simple right Q-modules are
simple as left P-modules. Then the following are equivalent.

(1) M, is R-simple-injective.

2) MfQ is (M, Rf)-simple-injective.

(3) GM,Rfy) satisfies r-ann.

Let M be aleft P-module. Then a family {L},, of submodules of M is called an
inverse system of M if for any elements i and j of I, there exists an element k of I such
that L, <L, n L. A module M is said to be AB5* if for any inverse system {L;},, of M
and any submodule K of M, Q(K +L)=K+ QLi holds. If (;M, Ny) is a dual pair for
some module N then M is clearly AB5* (see e.g. [14]). Moreover by [3, Theorem 6] (or
[4, Lemma 2.2]) the converse also holds, so a module ;M is AB5* if and only if there exist a
ring Q and aright Q-module N, such that (;M, N,) is a dual pair.

The following theorem is obtained by a slight modification of the proof of [2, Theorem
12].

Theorem 10 (see [2, Theorem 12]). Let (M, NQ; U) be a pair such that Uy has
essential socle and assume that ,U is AB5*. Then the following are equivalent.

(1) Uy is (M, N)-simple-injective.

(2) Uy is (M, N)-Fl-injective.

Let (;M, Ng) be a pair. Then by A (M, N) we denote the class {X < MIX =
£y1y(X)} of submodules of M.

Let ;M be a module and A a class of submodules of M. Then M is said to be
A-linearly compact if any finitely solvable system (x,,X;),, of M with X. € A is

solvable (see e.g. [15] for the definition of “finitely solvable system”).
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As a characterization of an (M, N)-injective module, we have the following theorem,
which is essentially due to [12, Lemma 4], [6, Theorem 2], [16, Lemma 5 and Proposition 6]
and [2, Proposition 14].

Theorem 11 (see [12], [6], [16] and [2]). Let (M, NQ; U) be a pair. Then the following
are equivalent.
(1) Uy is (M, N)-injective.
(2) () Uy is (M, N)-F-injective.
(ii) pM is A,(M, N)-linearly compact.

By a modification of [2, Proposition 14], we have the following theorem.

Theorem 12 (see [2, Proposition 14]). Let (M, NQ; U) be a pair such that UQ has
essential socle. Then the following are equivalent.
) UQ is (M, N)-injective.
2) (i) UQ is (M, N)-simple-injective.
(ii) ;M is A, (M, N)-linearly compact.
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Examples of QF rings without Nakayama
automorphism and H-rings without self-duality *

Kazutoshi Koike

Abstract

By investigating the structure of H-rings deeply, Kado and Oshiro [5] proved that
the following three conditions are equivalent:

(A) Every basic left H-ring has a Nakayama isomorphism.

(B) Every basic QF ring has a Nakayama automorphism.

(C) Every left H-ring has a self-duality.

On the other hand, Kraemer [6] had constructed an example of a QF ring that does
not have a weakly symmetric self-duality. In this note, we shall point out that the
Kraemer’s example is an example of a QF ring without Nakayama automorphism
and give some other examples of QF rings without Nakayama automorphism, and
by giving a necessary and sufficient condition for a special type of H-rings to have
a self-duality, we shall give concrete examples of H-rings without self-duality.

(R TOHBEM self-duality 25 DM) EWSEER, (TXTOQF BRMHPILH
CRABMEHELDN] EWSHBERMTHD T EH, WMFE - Xk 5] ok > TREHE
NTVBH, HEOBBEORELRLIZIZAShTWiMo . —F, Kraemer i1 [6] iz
BT, weakly symmetric self-duality 2 H722 W QF ROFZRK L Tz, ZORE
T, Z® Kraemer OFID, PILACRREH* b QF BOMICE>TnaZ
EEEFTDLLDHIZ, WKOMDOHLECRMNEHKE LRV QF ROHIEE5ZXS.
FBHN KO H B self-duality 2 D720 DL E+H4&4%27RL, ThEfllaD
FREHE S0 QF BEAWNT, REMIT self-duality #7272V H RO Z HEK
7 5.

COHEEIZBNWT, TXTORBIBPNTE DS, TXTOMBIIBPMRTHZ LT
3. i MIizx LT, TOANAEE, radical, socle, top %, THhEh, E(M), J(M),
S(M), T(M) T

E<ASNTWB L DI, EIMEE xUs #f Morita duality 2 &8 5 &3, zUs 218
EMDRGHIT, pU, Us BENEFNANRERRTHZILEVD. FITR=5T

*The detailed version of this note will be submitted for publication elsewhere.
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B EE, gUp i self-duality #E S L4125, Morita duality % F % 2 BHIMBEHEF
93 & &, RI3A Morita duality 2% D& W, R3S 124k Morita dual Th5 &
.

self-duality ZE 2 AMBE U 1I2BNWT, RDEBDOFRBMET e IZXHL T,
T(rRe) = prHomg(T(eRg),Ug) MM DILD & %, gUg id weakly symmetric self-
duality 2EHD LS. ZOLREFIBEEMNHNTHS. Home(T(eRg), Ur) = S(aUe)
TdHDMS, gUg M weakly symmetric self-duality Z#E®H3 & &, RDEBORELKH
Bite IZx LT T(grRe) = S(pUe) B D IUDZ & LIEF{ETH 5. weakly symmetric
self-duality 2% S AINIBENFET 5 & &, B Rid weakly symmetric self-duality
ZHDE0S. ([6, p.12| BHE. )

A8 1 (1) L<A@sNTWBEKIIZ, TXTD artin algebra R I& weakly symmetric
self-duality 24 D. £, K % ROP.L &L, E = E(T(K)) % K-Mod DE/NAKR
ERFEETBEE, U= Homg(R, E) 2B RIC R-IGMIINEE & 72 D, weakly symmetric
self-duality ZE® 5. ULidi-> T, 2 X DI, f£ED artin algebra (I ILUFERE
R (EBRITERE) 2 D.

(2) ERIMMIMEE g Rr H% weakly symmetric self-duality ZE® % & 57z QF 83,
weakly symmetric QF BE L THISHT TS, ZhidhUHEMEENTHH & &
[ T 5. weakly symmetric T2y QF B T#H - Td, weakly symmetric self-duality
EHDEEMNH 5.

[5] iz L /=8> T, IR B E 44 (Nakayama isomorphism) DE#HEH5A LS. R&k
Morita duality # & D EAMNETZLER LT 5. {e,6,... 60} ZTOELIRINETO
SELHEALL, S =Endp (@, E(T (Re;))) % R-Mod DRI/NASRERED HTHIF
BE-T3. f; #HE QL, E(T(Re;)) = E(T(Re:)) \=HIET 3 S OMET LT 5. B
FARE#HT:R- S r(e)=f(=12,...,n) 29 L URBEBRTHS
EnS. [7, p42) KD HRLFERNEBNREET 5N EI ML, BXNETOTELESOR
D HiIzk 570, ([5, Remark in p.387) . )

ROBGYEIZ, weakly symmetric self-duality OFHE PR NEGOEFERRMTH
BZEERLTWS. ([4, Proposition 3.1) iz W T Haack (X 7 WV F > RIZDWTHEH
LM, AUAENERTS. )

#aff 2 ([4, Proposition 3.1]). R %% Morita duality 2 b DEEAMETLEREL, U
% R-Mod ODfE/NARRERK LTS, TOELEROEKBERZRETSHS.
(1) R & weakly symmetric self-duality % & .
(2) RBHPUFRBEH#ZSD.
(3) R DIERDEIAMET e o LT, Ur(e) 2 E(T(Re)) 273 & > nRANE &
7: R — End(gU) NEETS.

QF RizBI 3 PIIBRETUHCSHEFROBEEBVHLTSEIS. REQF
&, {en,ez,-.. .6} EXDERREMETORELEB LTS LE, S(eiR) 2 T(o(e:)R),
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S(Ro(e;)) 2 T(Re;) (1 =1,2,... ,n) BT X572 {ey,€3,--. ,€n} DRI 0 NEHE
5 ZhZRORLUBRENDS. ROACARER rid, HLABEEIEETL&,
FLECARBREMNEINS. GE2LD, EAMQF R ARMMUACREEHE LD
Z & & weakly symmetric self-duality 2 D2 & SRR TH 5.

ROGBIZHNWT, BRlAEO QF RMPIVECRIBNEHE L D/=DOREEZE5XS.
PUTEREZEHBICT 2017, B EBEmIcHL T, B iomick 38N ERRE
[ TETZ&LICTH. £, BERANERo: Ao A, B: B> B EMNMEE 4Mp,
aMp BEZSN-LE, MENMERIRER : M - M2, ¢(amb) = afa)d(m)B(b)
(a€ A, be B,me M) 23736, 613 (a,8)-semilinear THdHL WS T &iZ
3.

i 3. Al,Ag,. .. ,Am (m > 2) ERENTIVF BRE l/, AlUlAz’ AzUZA;n LR AmU"Uh
% Morita duality ZE D SfINEE LT 5.

AU 0 .. 0 0
0 A Uy ... 0 0
0 0 Az ... 0 0
R= : - : :
0 0 0 ... Ap Una
Un 0 0 ... 0 Am

EBE ROBMBEZAMOTANOEREUU; =0(1<4,j <m)Il&>TEDHS. T
DE&E

()RBQFRTH>.

(2) RPILHCRME®Z DL DEDOLETARER, i=12,... mIZDOWT,
RODAEBDORIENETT e i LT T(Ase) = S(Uiri(e)) MR DD LD RRERE
1 Ai = Ay &, (i, Tigyy)-semilinear ZRI NG ¢; : Ui = Ujjyn) PFET D
ZETH3.

COMEDIHIZB VT, (1) IZDW T i-pair 2A VT ROAHFtEEZEMDHNEX
<, (@I TidmBE2 Z2EIIRL.

FE 4. BE3IIBNT, A=A XA % XAy 2BEHEL,U=U PP - DUn
EBFE, UIERIC A-TRNEE&78 D, 4Ua i self-duality 25895, L7ehtoT, Faith
DGR (B A1E[9, Theorem 10.7) BMB) £ D, A DU Ik S trivial extension i3 QF &
E7r5. £id RiZ Z o trivial extension LRI TH 5.

Zh T, Kraemer ORI ERES. TOH—DDOREEEHEATS. C, D ERLET
5. IO & ETMMBE cMp ot L TREMMBEDF C; 2D KD IZRRANICERT 5:
Mi=cMp &dBZE,i=23,... It LT,

M= cHome(pMiic,cCc)p (i MEED & &),
' | pHomp(cMi_1p, pDp)c (i MBED & &)
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# 5 ([6, Remark 6.6]). [8] & [3] D&ER&L 0, FHEDILK C > D TROSRH £
THOMNEETS. (LWHW B Artin’s problem DK H| (D—2). [6, Theorems 6.1 and
6.2]) 8. )
(1) dim(pC) = 2, dim(Cp) = 3.
(2) BRBME®RA: D> C, p:C - DOEET .
(3) (A, p)-semilinear ZZFME ¢ : pCoc = cCip MELET 5.
(4) (a1, az,a3,a4,as) = (3,1,2,2,1) 2D (b, bo, b3, ba, b5) = (1,3,1,2,2), =X L& o
EbIE, FNENC, DELEDRTERT.
D& E, (6, Lemma 6.3] 12k o T,
(5) ¥(cr)(c1) = pler (7)) (e € Cr, 01 € C) REHTEHENBER Y : ¢Crp —
DCZC =8 ([l., A)-semilinear 7‘&@@5{&?55

nWiE
c G\ ,. D G\ ..
A= (0 D) (i MEEDLE), A= (0 C) (¢ W&o &%)
EBLE, TSR E=ZAITHIRT, 51
D 0Y ,. c o0\,.
U= (C.- C) (MHAKDEE), U;= (Ci D) (7 HBED & F)

EBFH, [9, Corollary 10.3] £ U, Uy 1 duality Z2ED 3 (Ajre, A;)-FfllNBEEL 725,
M, 0,V ERAVWNIE, BELTA S A, A2 A THEI3TENDMNE. LEEA>TUs
% Morita dality 2E® 3 (A}, A)- WML R Z EMNTES. Rk U, % Morita
duality 2283 (A2, As)-FHAIMBEERD. WE,

As Uy 0 0 O

0 A3 U, 0 O

R = 0 0 Al U5 0

0 0 0 Ay U

Uy 0 0 0 A,
EBL. CiDRITa;, b ZBHLIE, IXTODA; (6=1,2,...,5) BEWIIIERETH
BTENGMNSE. LEEd->T, 3L, REBFIWBCRMNEREH-TEWVWQFRT
H3. ZD RIL[6, Remark 6.6] DB T b, weakly symmetric self-duality % &7=721)
QFBEFlELTEASHK. RIZ 10 ECHSIMBEORNE % HD.

5l 8. A % self-duality {3 DAt weakly symmetric self-duality iz bR NWTF I F B
ET3(Hl5, THMB). Co&E MEILD, (2RULD) B

AU 0 .-« 0 0
0 AU ... 0 0
0 0 A --- 0 O
R=1. . . -
0 0 0 ... AU
U oo ... 0 A



RPILACERMNERZ LRV QFRTH 5.

Bi5 LRILHBZE ST, #1565 XD HBAMBOEZDO LB VHILACRARNES*
ERWQFROFZEX LS.

M7 #5ELHELCH/EDTT,

cC C, 0 0 o cC C; 0 0 O
0 D C 0 0 0 D C 0 0
A=|0 0 ¢ ¢ 0|,B=|l0 0 C Cs 0],
0 0 0 D ¢ 0 0 0 D G
Cs 0 0 0 C c;: 0 0 0 C
C 0 0 0 CGs
C: D 0 0 0
U=]0 C3 C 0 0
0 0 C D 0
0 0 0 G C

EBL. EEL,ACBIBC, U135 Ce & BIzBIT3Cr 13, BEAMNE/R AT -
C - DERWT, C-HimiEL AR5 ZOL X, [6, Theorem 6.4] &V U I& Morita
duality 283 (B, A)- mg&zn,

a b0 00 Alg) ¢(R) 0 0 0
0cd 00O 0 u(d) v(F) 00
00e fO]—~] O 0 a b 0
000 g R 0 0 0 ¢ d
j 000 ¢ f 0 0 0 e

CEH>TEBINIREREMRB - ANFETS. LMo T, U % self-duality Z5E
D5 A-FTMBEERZZEMNTES. RE AD U IZX3 trivial extension £ 95, C
DL, [9, Theorem 10.7] &K D RIZQFBRTH S. e} & AD (i,i)-{THIWMAL L L, e; Z €]
ZRETB ROMETETS. " (i=1,2,...,5) 12L& > T, T(e;R) £7213 T(Re;) IZ
[F &4 7s composition factor 2% 3T Z &I2T 3. C; DKRITa;, b ZEAL, HEKEEM
B Rp, rRR @ Loewy series IZRDOBMD THD Z M35,

Rp
1 2 3 4 5
22233 34 44555 551 122
4 5 1 2 3

rR
1 2 3 4 5
44455 51 11222 223 344
3 4 5 1 2
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Liedto T, R OFILEBIL ¢; - epyg) CRERTHS. LBL, &R & eeR DHERF
DEEIRBR->TWS. WXIT, 7(e)) = es 27T R OB CRABMEEIIFEE LIV,
L85 T RIZPILUEBRARERE bR,

IS OFLECRMNESHZEZ LWL QF ROH|ZAWNT, self-duality 26724201 H
BOMEMRKRLED. FTHROE#HRZEVWHL THL.

E7NVFCRRE, ROGHE#ETEHXRAMETOREES (el <i<m,1<
<)} BEET S LE EHR (K HaradaR) ThHd&01 5.

(1) B eaRp BARHKTHS.

(2) ei;R = J(eij-1Rr) (7 =2,3,...,n(i)).

EHRbLAKICE#RINS. EHRADEHRE2F[AHREER (5] BH). L, R
ME HRTHN, [5, Proposition 3.2] & 0, BAAMNRERR D, ; E(T(Rey)) 3F
REKTHZH 5, Rid Endr(D;; E(T(Re;;))) 12K Morita dual THH I L 2EEL
TH< ([1, Theorem 30.4]).

BE T~ DI, [5]12BNT, 3544 (A), (B), (C) REATH 2 Z LARENT
WaHN, EOBAIMSSEE (A), (B) I DIz h) S, self-duality ZdH A HBR
MEET DI TH5S. (5, Proposition 3.3) DHHNLBELRH I ENTEIRDEH
13, COXS R HBROBEFZERHT. ZThEBRXDEDIZ, BBEZEALLD.

RE2®R, I #FDHXZFBMETOTELEES LTS, JOETRVWERIES KITHL
T, ek =Y e EBL. £, ROFTIROMET e ITHL T,

eRe eRe eR(1 —¢)
R, =] J(eRe) eRe eR(1—e)

(1—e)Re (1 —e)Re (1-e)R(1-¢e)
EB<. R BEROITFOBBIZEIDR LS.

EE 8. REEAZWQFBREL, | 2ENHERFHMETOREEESE, 0 & ] LOBLE
METD IOEBOETRVWERMMESKIIHLT, e=ek, € = e EBL. D
& &,
(1) R B HRTH 5.
(2) R, {% Ry 177 Morita dual T# 5.
(3) R, Htself-duality 2 HD/-DDLEFFRHEE, 7(e) = ¢ 2/ ROBRENER
TONEETSHILTHS.

SEEADIMRE A =eRe, B=(1—e)R(1—e),U=eR(1-¢),V=(1—-€e)Re&L,A=R,

EBL. ZDEE
A
AU
R= (3 9).a- (M

<R

14

W
~————
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THD. Iy, Ip #ENFNA BOHXRBNETORESHRAL TS, | 2 L2820
0 [WUIg ERAL, Pt o % Wi Lo@MBERLZT. XY € {A, B} izxt
LT, Ixy = {f € Ixlo(f) € Iv}, gxy = ¥ ey, 0(f) EBL. Iy = InaUlys,
Ig = IBAUIBB THD. EHIT

14 0 0 0 0 0 00 0
a=|0 oo, =[]0 14 0),=[00 o],
0 00 00 0 00 1g

0 0 0 0 0 0
ga=|0 gaa 0 [,98=|0 gpa O
0 0 gasB 0 0 g5
EBL.

(1) i-pair IZ DWW THRR, [5, Proposition 3.2] Z Bl WU, aAAfo, aAf3 IBAKRM, AAf; &
J(aAf2), £7=, fiky, fiAy BAHB, oA, = J(HA,) THEZEMNIMNB. Lt
TARFERHETHS.

(2) 13D i-pair IZDW T, [5, Proposition 3.2) #HWhid, A& E(T(Af)) &
Aga, E(T(Af2)) & Aga/S(Aga), E(T(Afs)) & Agp MR DD EMHMS. ROIT

FFRBRIZBINT,
r_ (944 O +_f98a O
= 1—¢ =
© ( 0 gAB) roTe ( 0 QBB)

THHILIERL, ZORBEALNE, EAARKERE DL, E(T(Af)) ol
MEREI R, LA TH D Z EHRYE B,

(3) A’ = ¢Re!, B = (1-€¢)R(1-¢), U =eR(1L-¢), V' = (1 -¢)Re &L,
N =Ry B NOMExs

14 0 0 0 0 0 00 O
fi=]l0 00], f=1[0 14 0], f35=(00 0
0 00 0 0 0 00 1p

EBL.

(=) A 2t self-duality 25D ERETS. (2) & A (& A) EOEERNSMBD AH
&b, [7, pa2] #RVWHIE, BANE®p: A = N T, o(fi) = F; (1=1,2,3) 2l
THOMNEETHIENINS. LENST, AL N OITFAEBLD, pRRORATD
REEHRT Trle)=¢ Z2MTHDEHEL.

(<) ROBHCHRYE /7 Tr(e) = 2T HONGFEEFETIELEETS. p: R. —
Ry 7RIS ZRERB VT p((rij)) = (7(rij)) K& > TEDNE, REL D ZHIZRA
REGTHDZEMNGNS. Lizh>T(2) &0 R, i3 self-duality ZHD.

EE 9. BOFART LI, EOEBRIZENT R 367 L B self-duality 2 D &3
Boizwn, Thabs, —RICR, 2 Ry THS. LAL, MUl o ODNEBARTHS
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N5, R, M5 MASH TAE Morita dual 08 % &5 Z & 2HBEIRD BT, RYIOKR R,
IZR%.

ROFIZEE 8 DHFIRBETHS.

¥ 10. REEANQF R, | 2T OURZMETOZELES, 0 2 ] LOPIERETS.
10781 = LOUU---Oln To(l) = Iy (= 1,2,... ,m) 2L THLONEET S
tﬁﬁ"a’% € = €, R{j = e.-Rej & L/,

Rhn Ry Rz ... Rim
J(Rn) Rn Ri2 ... Rim

A=| Ran Ra Ry ... Rm

Rmi BRmi Rm2 ... Rum

EPL. TOEE,
(DAEMHERTHS.
(2) AR
Ry Ry Ry ... Rom Ran
J(R») Ry2 Rz ... Rom Rz
P Ry Ry Rz ... Ram Ry
!Zm‘Z Rm2 Rm3 e Rmm le
Ri2 Ry R ... Rim Ry
=% Morita dual Td 5.

(3) A At self-duality 2 b D7D DLE+TFREID, 1(e) = e 28729 R ORRRE
B MEETHLTHS.

COREEROBREEL T, MEOPILECRMNEREZ LW QFROFEMRNT
self-duality Z b 7272\ HBRO BAF| ZHK T 5.

B 11. A, U; (=1,2,...,5) RS ERU & T 5. LidioT, ApsnUliv1] 4, ¥ Morita
duality E‘i@, FTTD Al,Az. v ,A5 Piﬁhl:#lﬂﬂ'(‘%é
As As Uy 0 0 O
J(4s) 45 Uy 0 0 0
(=] 0 0 4 m o 0
f=1 o o0 0 4 Us o0
0 0 0 0 Ay Us
Ui Up 0 0 0 A2

EB<. A5 & A IBIERIBTH BN S, & 10 LD A i3 self-duality 2 & 7= /2 Wl H 83
TH5.

FEAE2X21TARTHEHD 5, AR 12 x 121TARTH 5. e % (4,1)-1THIBLf &
U, BiSumngt T(e;R) £7213 T(Re;) % “0" TREE, HUEAHE A InBED Loewy series
HRDED TH5.
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Aa

1 2 3 4 5 6 7 8 9 10 11 12
3 4 2 55 66 7 888 9 10 10 1111 12 111
2 595 4 6 7 8 9 10 11 12 1 333
4 6 5 3 2
d 4
AJ\
1 2 3 4 5 6 7 8 9 10 11 12
12 33 1 2 44 5 666 7 88 99 10 1111 11
11 11 12 33 22 4 5 6 7 8 9 10
12 11 11 3 2

5l 12. R&HI7TOPLUACREEREZHBVWQFREL, e),e,... 65 T DHEKK
WSt E 4%, ROPILRIRIL e — eiys THEKTH S,

e1Re; e Re, elR(1-e)
A= Rel = J(C]Rel) €1R€1 C1R(1 - 61)
(1—-e1)Rey (1—e)Rey (1 —e)R(1—e1)

EBEL. AGEOHMMBOREMEELD. AITLD R & e, RDERANOE SR
o TWwa. LAt T Theorem 8 & D A id self-duality Z H 7=/ Wl HB TH 5.
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