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Preface

Japan-Korea Ring Theory and Representation Theory Seminar supported by
Japan Society for the Promotion of Science was held at Osaka City University
from December 2, 1998 to December 7, 1998. This seminar was the joint seminar
with the 31st Symposium on Ring Theory and Representation Theory to activate
mathematical exchange in Japan and Korea.

Our purpose is to promote our study in the field of algebra (particularly ring
theory and related fields) through mutual understanding of mathematical study
and results in Japan and Korea.

At the second Japan-China International Symposium on Ring Theory, we have
decided that Korea joins this symposium from next time, which will be held at
Korea in 1999, We would like to make this seminar a preliminary step such as we
know and understand the contents of our study each other, which will motivate
joint works presented in the international symposium.

We believe this seminar finished to succeed to accomplish these aim and purpose.
We would like to express our thanks to all the Japanese and Korean participants.
Especially we strongly appreciate the acceptance of proposal of joint seminar to
Prof. Nishida who was responsible for the 31st Symposium on Ring Theory and
Representation Theory, hospitality to all the member of Department of Mathe-
matics at Osaka City University and great help for us to prepare this seminar to
Prof. J. K. Park (Pusan National University).

February, 1999

Masahisa Sato
Department of Mathematics, Yamanashi University
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SEMICENTRAL IDEMPOTENTS AND
TRIANGULAR REPRESENTATIONS

Gary F. Birkenmeier!, Henry E. Heatherly!, Jin Yong Kim?
and
Jae Keol Park’

Throughout R denotes an associative ring with unity. We say R has a triangular
matriz representation if the R is ring isomorphic to

Ry, Ry -+ Ry,

0 R --- Ron
o 0 :-- R,

where each R; is a ring with unity and R;; is a left R;-right R;-bimodule for i < j.

Triangular matrix representations provide an important tool in the investigation of
the structure of a wide range of algebras.

In this expository note extracted from [BHKP], we introduce the concept of a set
of left triangulating idempotents. These idempotents determine a triangular matrix
representation for an algebra. The existence of a set of left triangulating idempotents
does not depend on any specific conditions on the algebra (e.g., {1} is a set of left
triangulating idempotents); however if the algebra satisfies a mild finiteness condition,
then such a set can be refined to a “complete” set of left triangulating idempotents in
which each “diagonal” subalgebra has no nontrivial triangular matrix representation.

An idempotent e € R is left (resp. right) semicentral in R if Re = eRe (resp.
eR = eRe), [Bi2, p.569]. We use S;(R) and S.(R) for the sets of all left and right
semicentral idempotents, respectively. Again taking e to be an idempotent of R, observe
that Se(eRe) = {0, e} if and only if S.(¢Re) = {0,e}; when this occurs we say e is
semicentral reduced. If 1 is semicentral reduced, then we say R is semicentral reduced

An ordered set {e),...,e,} of nonzero distinct idempotents in R is called a set of left
triangulating idempotents of R if all the following hold:

(D) 1=e1+- +en;

(ii) e1 € Se(R); and

(iii) ex41 € Se(fiRfi), where fr=1—(e1 +---+e), forl<k<n-1

Similarly we define a set of right triangulating idempotents of R using (i) and e, €
S:(R), ex41 € Se(fi Rfi). From part (iii) of the above definition, a set of left (right)
triangulating idempotents is a set of pairwise orthogonal idempotents.

The detailed and enlarged version of this note will be published elsewhere with the title “Triangular
Matrix Representations”. All proofs of results of this note cau be found in the forthcoming paper
“Triangular Matrix Representations”.



A set {ey,...,en} of left (right) triangulating idempotents of R is said to be complete
if each e; is also semicentral reduced. - The behavior of a complete set of left triangulating
idempotents is “strictly between” that of a complete set of primitive idempotents and
a complete set of centrally primitive idempotents.

We use I(R) and B(R) for the sets of idempotents and central idempotents of R,
respectively. Observe that S.(R) N S¢(R) = B(R). The following result is a technical
lemma describing the behavior of left semicentral idempotents.

Proposition 1. Let e € I(R). Then the following conditions are equivalent:
(i) e € Se(R);
(ii) 1 — e € S, (R);
(iii) ze = eze, for each z € R;
(iv) (1 —e)Re =0;
(v) 1 —e)x = (1 —e)z(1 —e), for each z € R;
(vi) eR is an ideal of R;
(vii) R(1 — e) is an ideal of R;
(viii) eR(1—e) is an ideal of R and eR = eR(1—e) @ Re as a direct sum of left ideals;
(ix) the function defined by ¢(z) = ("’ge a i”e()lzael 0
eRe eR(1—e¢)
0 (1-e)R(1-¢e))

Proposition 2. R has a set of left triangulating idempotents if and only if R has a
triangular matrix representation.

) is a ring isomorphism

fromRto(

It is worth noting that if the set of left triangulating idempotents is complete, then
the “diagonal” subalgebras are semicentral reduced. Also note that R is semicentral
reduced if and only if R has no nontrivial triangular matrix representation.

Proposition 8. Let e € S;(R)U S (R) and f € Si(eRe) U S-(eRe). The function
h: R— fRf, defined by h(r) = frf, for each r € R, is a K-algebra homomorphism.

If R has a matrix representation

Ry, Ry --- Ry,
0 Ry .- Ron
0 0 - R,

then obviously each R; is isomorphic to a subring of R. Furthermore, by Proposition 3,
each R; is a ring epimorphic image of 1.

For the relationship between the condition of having a (complete) set of left triangu-
lating Idempotents and that of having a (complete) set of right triangulating idempo-
tents, we have the following:

Proposition 4. The ordered set {b),...,b,} is a (complete) set of left triangulat-
ing idempotents of R if and only if {b,,...,b,} is a (complete) ordered set of right
triangulating idempotents.



The next two results show that a set of left triangulating idempotents can be used to
provide an internal characterization of an upper triangular matrix ring. We use T},(A)
for the n x » upper triangular matrix ring over the ring A.

Proposition 5. R 2 T;,(A) for some ring A if and only if there exists a set of left
triangulating idempotents {e),...,e,} of R such that:

(i) there exist ring isomorphisms ¢; : ejRe; — ey Re, for all j, 1 £ j < n; and

(ii) there exist group isomorphisms 6;; : e;Re; — e Re; such that

a) errey - (6;(eise;)) = 6;;((#; " (e1re1) - eise;), and

B) (6ij(esse;))-erres = b;j(eise;- (87 (errer))) for alls, j, 1<i,j <nandr,s€R.

For a chracterization of rings with a complete set of left triangulating idempotents,
we have the following result.

Theorem 6. The following conditions are equivalent:
(i) R has a complete set of left triangulating idempotents;
(ii) {eR | € € S¢(R)} is a finite set;
(iii) {Rf | f € Sr(R)} is a finite set;
(iv) R has a complete set of right triangulating idempotents.

It is worth noting that if {e),...,en} is a complete set of left triangulating idempo-
tents of an algebra R and each of the rings e;Re; satisfies I(e; Re;) = B(e;Re;), then
{e1,...,en} is a complete set of primitive idempotents. This occurs, for example, if
each ¢; Re; is commutative or duo.

We next consider the interplay of upper triangular matrix representations and quasi-
Baer rings. In [Cl] Clark called a ring quasi-Baer if the right annihilator of every right
ideal is generated by an idempotent as a right ideal. Various properties of quasi-Baer
rings are extensively studied in [Cl], PZ] and [Bi4].

Proposition 7. A ring R is prime if and only if R is quasi-Baer and semicentral
reduced.

Proposition 8. If R satisfies any of the following conditions, then

Ry Rz -+ R
ra| @ B B

0 0 --- R,

where each R; is semicentral reduced and satisfies the same condition as /1, R;j is a left
Ri-right R;-bimodule, and the K-algebras (rings) R,, ..., Rn are.uniquely determined
by R up to isomorphism (induced by an inner automorphism of R) and permutation:

(i) R has a complete set of primitive idempotents;

(ii) R has no infinite set of orthogonal idempotents;

(iii) Rr has Krull dimension;

(iv) R has DCC on (idempotent generated, principal, or finitely generated) ideals;



(v) R has DCC on (idempotent generated, principal, or finitely generated) right
ideals;

(vi) R has ACC on (idempotent generated, principal, or finitely generated) ideals;

(vii) R has ACC on (idempotent generated, principal, or finitely generated) right
ideals;

(viii) R has either ACC or DCC on right annihilators;

(ix) R is a semilocal ring;

(x) R is a semiperfect ring;

(xi) R is a semiprimary ring.

Some of our motivating ideas for defining triangulating idempotents originated with
Theorem 5 of [Bil]. This result decomposed a ring with a complete set of primitive
idempotents in terms of iterated triangular matrix representations involving reduced
rings and MDSN rings. Recall that R is MDSN if 0 # e € I(R) implies eR contains a
nonzero nilpotent element. By Proposition 8(i), we obtain that if R has a complete set
of primitive idempotents, then R has a complete set of left triangulating idempotents
{e1,...,en} such that each e; Re; is either an indecomposable reduced ring or an MDSN
ring.

Proposition 9. Let R be a ring. If R has a complete set of left triangulating idempo-
tents and satisfies any of the following conditions, then

Ry Ri2 -+ Ry,
re| O P B
0O 0 --- R,

where each R; is semicentral reduced and satisfies the same condition as R, R;; is a left
Rj-right R;-bimodule, and the rings Ry,...,R, are uniquely determined by R up to
isomorphism (induced by an inner automorphism of R) and permutation:

(i) Rgr has Gabriel dimension;

(ii) R is a (quasi-) Baer ring;

(iii) R is a right semihereditary ring;

(iv) R is a right hereditary ring;

(v) R is an [-ring (i.e., every non-nil right ideal contains a nonzero idempotent ele-
ment);

(vi) R is a m-regular ring;

(vii) R is a right semiartinian ring;

(viii) R is a Pl-ring;

(ix) R is a right PP-ring;

(x) R is a semiregular ring.

Observe in Proposition 9(ii), if R is quasi-Baer, then each R; is prime by using
Proposition 7.

Note that each of the following classes of semiprime rings is closed relative to subrings
of the form eRe, where e = €2: (i) von Neumann regular, (ii) biregular, (iii) (right) fully



idempotent, (iv) right V-ring. Also if R is semiprime, then R is semicentral reduced
if and only if R is indecomposable. Thus we have: if R has a complete set of left
triangulating idempotents and is from one of the above classes, then R = P R;, where
each R; is indecomposable and from the sarne class as R.

Recall that R has a “block decomposition” if and only if R has a complete set of
centrally primitive idempotents [L, Sections 21, 22]. Our next result states that if R has
a complete set of left triangulating idempotents, then R has a “block decomposition”.

For 0 # e € B(R), e is said to be centrally primitive if 0 and e are the only central
idempotents in eR. Also, R is said to have a it complete set of centrally primitive idem-
potents if there exists a finite set of centrally primitive pairwise orthogonal idempoteants
whose sum is the unity f R [L, Sections 21 and 22].

Proposition 10. (i) If R has a complete set of primitive idempotents, then R has a
complete set of left triangulating idempotents.

(if) If R has a complete set of left triangulating idempotents, then R has a complete
set of centrally primitive idempotents.

Acknowledgments. The first author is grateful for the gracious hospitality he re-
ceived at Busan National University and at Kyung Hee University. The participation
in the 31st Japan Ring Theory Symposium and the 1st Japan-Korea Ring Theory and
Representation Theory Seminar jointly held at Osaka City University of the third and
fourth authors was supported in part by KOSEF.

REFERENCES

[BHKP] G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, and J. K. Park, Trigngular matriz represen-
tations, Preprint.

[Bil]  G.F. Birkenmeier, fndecomposable decompositions and the minimal direct summand contain-
ing the nilpotents, Proc. Amer. Math. Soc. 73 (1979), 11-14,

[Bi?]  G. F. Birkenmeier, /dempotents and completely semiprime ideals, Comm. Algebra 11 (1983),
367-580.

[y W. E. Clark, Twisted matniz units semigroup algebras, Duke Math. J. 84 (1987), 417-423.

(L] T.Y. Lam, A First Courss in Noncommutative Rings, Springer-Verlag, Heidelberg-New York,
1991.

[PZ].  A.Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127-138.

1 Department of Mathematics, University of Southwestern Louisiana, Lafayette, LA
70504-1010, U.S.A.

2 Department of Mathematics, Kyung Hee University, Suwon 449-701, South Korea

3 Department of Mathematics, Busan National University, Busan 609-735, South Ko-
rea



7-REGULAR BAER RINGS WITH
COUNTABLY MANY IDEMPOTENTS

GARY F. BIRKENMEIER, JIN YONG KM AND JAE KEOL PARK

R will denote an associative ring with unity, J(R) its Jacobson radical and I(R) its
set of idempotent elements. From [6], R is called a w-regular ring if for every ¢ € R
there exist a positive integer n (depending on ¢) and an element x € R such that
a® = a"za". We use |X| and c to denote the cardinality of a set X and the cardinality
of the continum, respectively.

In 1950 [6], Kaplansky proved that every orthogonally finite (i.e., no infinite set of
pairwise orthogonal idempotents) -regular ring is semilocal. In 1967 [10], Small proved
that every orthogonally finite p.p.-ring is Baer. As a corollary he obtained that every
left perfect left p.p.-ring is semiprimary. In 1974 [9], Rangaswamy established that
a countable regular Baer ring of cardinality less than c is semisimple Artinian. The
foregoing results motivated us to ask the following natural question: Is a countable
n-regular Baer ring a semiprimary ring? In this paper we give a positive answer to
this question. More generally we will show that if R is a n-regular Baer ring such that
|I(R)| < ¢, then R = AP B where A is a finite direct sum of division ring and B is
a semiprimary ring with |[B| < c. Rangaswamy's theorem then becomes an immediate
corollary of this result.

Recall from [1] that an idempotent in a ring R is called left (resp. right) semicentral
if xze = exe (resp. ex = exe) for all z € R. It can be easily checked that an idempotent
e is left (resp. right) semicentral if and only if eR (resp. Re) is an ideal of R. For a ring
R, Si(R) (resp. S,(R)) denotes the set of all left (resp. right) semicentral idempotents
of R. We say that an idempotent e € R is called semicentral reduced if S;(e Re) = {0, e}.
Note that e is semicentral reduced if and only if S.(eRe) = {0,e}. If 1 is semicentral
reduced, then we say that R is semicentral reduced. Recall from [7] and [4] that R
is (quasi-)Baer if the right annihilator of every (right ideal) nonempty subset of R is
generated (as a right ideal) by an idempotent. The study of Baer rings has its roots in
functional analysis [7]. Note that a ring R is prime if and only if R is quasi-Baer and
semicentral reduced [2, Lemma 4.2).

Definition 1. [2] An ordered set {b;,...,b,} of nonzero distinct idempotents in R is
called a set of left (resp. right) triangulating idempotents of R if all of the following
hold:

(i) 1=by+---+by;
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(ii) by € Se(R) (resp. by € S-(R));

(iii) bg41 € Se(cxRex) (I%P biy1 € Sr(cxRer)), where ¢y, = 1 — (by + -+ 4 by) for
1<k<n-1.

Such a set of triangulating idempotents is called a complete set of left (resp. right)
triengulating idempotents if each idempotent of the set is semicentral reduced. Note
that an orthogonally finite ring has a complete set of primitive idempotents. Moreover,
by Proposition 2.14 in [2], a ring with a complete set of primitive idempotents has a
complete set of triangulating idempotents.

Lemma 2. Let A be a ring with unity, » a positive integer such that n > 2, R =
Mat,, (A), and T is the ring of n-by-n upper triangular matrices over A. Then:

(i) R is finite if and only if Sp(T) is finite if and only if I(R) is finite.

(ii) If R is infinite, then |A| = |R| = |Se(T)| = [I(R)|.
Theorem 8. Let R be a ring with a complete set of left triangulating idempotents
{c1,...,¢p} such that each c;Re; is a simple Artinian ring. Then

(i) R = A@ B (ring direct sum);

(ii) A=, Ai, where m < n and A; is a simple Artinian ring;

B, By ... By

. 0 B; ... Bn L e

(i) B | . .. E where each B; is a simple Artinian ring, each B;;
0 0 .. By

is a left B;-right Bj-bimodule, and k < n;
(iv) |B| < oo if and only if [S¢(B)| < o0;
(v) if B is infinite, then | B| = |S¢(B)| < Se(R);
(vi) if |A;| > |I(R)|, then A; is a division ring.
The following proposition provides a large class of rings satisfying the hypothesis of

Theorem 3 including semiprimary herediatry rings and semiprimary right nonsingular
right CS rings [3].

Proposition 4. If R is a semiprimary quasi-Baer ring, then R has a complete set of left
triangulating idempotents {¢y,..., e} such that each ¢;Re; is a simple Artinian ring.

Observe that the following ring is not quasi-Baer, but it satisfies the hypothesis of
Theorem 3:

R={0 F  Maty(F)

F Maty(F) Mato(F)
(8 787 )



where F is a field.

Recall from [5] that a ring R is an I-ring if every nonnil right ideal contains a nonzero
idernpotent. Note that every m-regular ring is an I-ring.

Lemma 5. Let R be an orthogonally finite let p.p.-ring. Then following conditions are
equivalent:

(i) R is an I-ring;

(ii) R is a semiprimary ring;

(iii) R is a w-regular ring.

Immediately we have the following corollary which is due to Small [10].
Corollary 6. If R is a left perfect left p.p.-ring, then R is a semiprimary ring.
Lemma 7. If R is a Baer ring |I(R) < c, then R is orthogonally finite.

Theorem 8. Let R be a n-regular Baer ring with [I(R)| < c. Then

By B2 ... Bu

0 B, ... By
R=AP]| . . . s

0 0 ... B

where
(i) A is a finite direct sum of division rings;
(ii) each B; is a simple Artinian ring and each B;; is a left B;-right B; bimodule;
(iii) either B is finite or |B| = |I(R)| < c.

Corollary 9. Let R be a n-regular Baer ring with |R| < c¢. Then R is semiprimary and

R, Ra ... Ry,
R 0 R“ sz" ,
0 0 .. R,

where each R; is simple Artinian and each R;; is a left R;-right R; bimodule. Moreover
gldmR <n-1.

Since a regular ring is semiprime, Rangaswamy’s theorem (9] is an immediate conse-
quence of Corollary 9.

Corollary 10. Let R be a n-regular Baer ring with only countably many idempotents.
If R is an algebra over a field K where |K| > Ry, then R is a finite direct sum of division
rings.



The following examples are provided to illustrate and delimit our results.

Recall that a ring R is called left (resp. right) weakly regular (or fully idempotent) if
a € RaRa (resp. a € aRaR) for every a € R. Left and right weakly regular rings are
called weakly regular.

By Theorem 8, regular Baer rings with only countably many idempotents are semisim-
ple Artinian. So one may raise the following question: Is weakly regular Baer ring with
only countably many idempotents a semisimple Artinian ring?

Example 11. There exists a weakly regular Baer ring with only countably many
idempoteats, but it is not semisimple Artinian. In fact let R be the first Weyl algebra
over a field of characteristic zero. Then R is weakly regular Baer with only countably
many idempotents, but R is not semisimple Artinian.

Example 12. Theorem 8 cannot be extended to the class of quasi-Baer rings. There
exists a regular quasi-Baer ring with only countably many idempotents, but it is not
semiprimary. For a finite field F, let

A 0
R={ ¢ a | A€ Mat,(F),a€e F,n=12,...}.

0

Then R is prime regular, and so R is quasi-Baer. Also note that R is countable. However
R is not orthogonally finite, hence R cannot be semiprimary. Hence, R cannot be a
Baer ring because of Lemma 5.

Example 18. The condition “orthogonally finite” in Lemma 5 is not superfluous.
There exists a Baer ring which is an I-ring, but not w-regular. Let

R ={(en)zs € [ Q1 en € Z eventually),

where [JQ is the countably infinite direct product of the rationals Q and Z is the ring
of integers. Then [JQ is the maximal ring of quotients of R. Since Q =[] Q is regular
self-injective, it is Baer. Also note that the set of all idempotents of @ is that of R. Now
for a nonempty subset X of R, it follows that rg(X) = ro(X)N R = eQ N R for some
idempotent ¢ € R, where r(—) denotes the right annihilator. Therefore rg(X) = eR,
and hence R is a Baer ring. Next, to show that R is an I-ring, let K be a nonzero ideal
of R. Then there is a nonzero element,say x € X with nonzero k-th coordinate, say zx
for some k. Let y € []Q with the k-th coordinate x; and O for other coordinates. Then
y € R and zy € I is an nonzero idempotent in R. So R is an I-ring.

Finally, let a = (2,2,...) € R. If R is w-regular, then there are a positive integer
n and an element 8 € R such that a™ = a"fBa™. So there is an integer y such that
2" = 27y2", a contradiction. Thus the ring R cannot be m-regular.

Acknowledgments. The author would like to express his gratitude to Professor
Masahisa Sato for his giving the opportunity to present this material on the Japan-



Korea Ring Theory and Representation Theory Seminar jointed with the 31st Japan
Ring Theory and Representation Theory Symposium.

REFERENCES

1. G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), 567-
580.

G. F. Birkenmeler, H. E. Heatherly, J. Y. Kim and J. K. Park, Semicentral idempotents and
triangular representations, preprint..

3. A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct
summand, Quart. J. Math. (2)28 (1977), 61-81.

4. W. E. Clark, twisted matriz units semigroup algebras, Dule Math. J. 34 (1967), 417-423.

5. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colleq. Publ. 37, Providence. 1964..

6. 1. Kaplansky, Topological representation of algebras, 11, Trans. Amer. Math. Soc. 68 (1950), 62-75.
7. 1. Kaplansky, Rings of Operators, W. A. Benjamin, New York, 1968.

8. J. Y. Kim and J. K. Park, When is a regular ring a semisimple Artinian ring?, Math. Japonica
45 (1997), 311-313.

9. K. M. Rangaswamy, Regular and Baer rings, Proc. Amer. Math. Soc. 42 (1974), 354-358.
10. L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656-658.

[ad

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHWESTERN LOUISIANA, LAFAYETTE,
LA 70504-1010, U. S. A.
E-MalL: gfb1127Qusl.edu

DEPARTMENT OF MaTHeEMATICS, KYUNG HEE UNIVERSITY, SUWON 449-701, Sou'm KoRea
E-MAIL: jykimtams.kyunghee.ac.kr

DEPARTMENT OF MATHEMATICS, BUSAN NATIONAL UNIVERSITY, BUsAN 609-735, SouT KOREA
E-MAlL: jkparkShyowon.cc.pusan.ac.kr



SOME PROPERTIES ON AGE AND LSD-GENERATED RINGS

YonGg UK CHO

1. INTRODUCTION

This paper is a summary which is talked at the Korea-Japan Joint Seminar and 31-
Japan Ring Theory and Representation Theoty Symposium in Osaka City University.

In this paper, we will investigate the rings in which all the additive endomorphisms
or only the left mulitiplication endomorphisms are generated by ring endomorphisms.
This study was motivated by: the work on the.Sullivan Problem (i.e., characterize those
rings in which every additive endomorphism is a ring endomorphism, these rings are
called AE rings) [12], (1], [5), [6), (7], [9), and the current investigation of LSD-generated
algebras (3] and SD-generated algebras [2].

Throughout this paper, R denotes an associative ring not necessarily with unity,
End(R, +) the ring of additive endomorphisms of R, and £nd(R,+,-) the monoid of
ring endomorphisms of R. For X C R, we use gp(X) for the subgroup of (R, +) gen-
erated by X. For each z € R, o7 denotes the left multiplication mapping (i.e., a — za,
foralla € R). Observe .7 € End(R,+). LGE(R) istheset {z € R| .7 € gp(End(R, +,
Note that LGE(R) is a subring of R. Sometimes, we will use the notations: Endz(R)
instead of End(R,+), End(R) instead of End(R,+,:) and GE(R) instead of gp <
End(R, +,-) > . Clearly, GE(R) is a subring of Endz(R).

L(R) is the set {z € R | zab = zaxb}. (L(R),) is a subsemigroup of (R,-), and
z € L(R) if and only if .7 € End(R, +,-). Also L(R) € LGE(R) and L(R) contains all
one-sided unities of R, the left annihilators of R? and all central idempotents.

We use RGE(R) and R(R) for the right sided analogs of LGE(R) and L(R),
respectively. We call that a ring R is an AGE ring (LGE ring) if

Endz(R) = GE(R) (R = LGE(R)).

Similarly we can define the RGE ring (i.e.,R = RGE(R)).

Clearly, we see that every AE ring is AGE, LGE and RGE, but not conversely
from the following examples. Note if the left regular representation of R into £End(R, +)
is surjective, then R is an AGE ring.

R is called LSD (LSD-generated) if R = L(R) (R = gp(L(R))), and also R is
called RSD (RSD-generated) if R = R(R) (R = gp(R(R))) [4] and [3]. R is called SD
(SD-generated) if R = L(R) N R(R) (R = gp(L(R) NR(R)) [2]. The classes of LSD,
LSD-generated, SD and SD-generated rings are closed with respect to homomorphisms

N}



and direct sums. Observe that the class of LGE rings contains both the class of AGE
rings and the class of LSD-generated rings. The class of AGE rings is contained in the
class of RGE rings. In the sequel, examples are provided to show that the classes of
LGE, AGE and LSD-generated rings are distinct. Although the class of AE rings is a
proper subclass of the class of SD rings, the class of AGE rings is not contained in the
class of SD-g n particular, since the rings Z and Z,, are additively generated by 1, and
Endz(Z) = Z, Endz, (Z) 2 Z,,, we see that Z and Z,, are both AGE, LSD-generated
and SD-generated rings. However, Z and Z,, are all not AE rings except the cases Z,;
and Z,, because any nontrivial on Z or Z,, is additive endomorphism but which is not
ring endomorphism. on the other hand, z € £(R) implies z3 = z™ for n > 3, then
L(S) = {0} for any nonzero proper subring S of Z. Hence any nonzero proper subring
of Z is an AGE ring which is not LSD-generated and SD-generated.

Proposition 2.2. For every AGE ring R, and for any positive integer n, we get that
@, R: is an AGE ring, where R; @ R, for all i=1,2,....,n

Proof. We prove the case for n = 2, that is, R R . Similarly, we can prove for the
case n > 2. We must show that

Endz(RED R) = GE(RCPR).
Since Endz(RE R) = Maty(Endz(R)), we obtain that

o, [Bndz(R) Endg(R)] _ [GE(R) GE(R)
Bndz(RED R) = [Endz(R) End:(R)] = [G’E‘(R) G’E(R)]'

Let f € Endz(R@ R) such that

u fiz -
f= [ f2: ;J fi; € GE(R).

Then

fi=3"Xikiy fa= 3 Ajhi far =3 Mehr, fra= ) Ache,
i J k t

where, 's € Z and h's € End(R). Thus f is expressed of the form
_ |h O [0 A 0 0 0
f_zi:,\,[o 0]+zj;x,[0 0]+zk;x,,[hk 0]+;A,[0

- : h;
Since all [’6‘ g] , [g d’] , [h(l g] and [g ’g] are ring endomorphisms of REp R.

Hence R R is an AGE ring.

iFrom Example 2.1 and Proposition 2.2, there exist numerously many examples
of AGE rings and LSD-generated rings.

—12—



lemma 2.3. For any onto ring endomorphism h, L(R) and R(R) are all invarant
under A.

Proposition 2.4. Let R be a ring with unity. If R is an AGE ring with S C End(R)
such that Endz(R) = gp < S >, and each element of S is onto, then R is an LSD-
generated, moreover SD-generated.

Proof. Let z € R. Consider a left translation mapping ¢. : R — R by ¢.(a) = za for
all a € R, which is a group endomorphism. Since R is an AGE ring,

¢z = Z ’\ihl')

where \; € Z and h; € End(R) such that h; is onto, i = 1,2,--- ,n. Since 1 € R,
¢z(1) = Y7 Ahi(1), that is, z = 3 \jhi(1) and since 1 € L(R) N R(R) by lemma
2.3, hi(1) € L(R) N R(R). Hence R is LSD—generated and RSD—generated, so
SD~—generated. O

Example 2.5.
(1) If S is an LSD-generated ring, then

S S
r=[3 3]
is also LSD-generated by the set
00 z 0 0 ¥
{[0 v] , [0 I],[O y] |v,z,y € L(S)}.
(2) If S is an RSD-generated ring, then

- [5 3

s also RSD-generated by the set
v O z 0 v v ] .
{3 ][5 o] [¢ 3] 1mmwenn

-t 4

In particular,

i3 an LSD-generated ring with the generators: [g (1)] , [(1) ?] . [g i], and also an

RSD-generated ring with the generators: L 0] , [1 0] and [(1) (1)], but which is

0 0f'|0 1
not an SD-generated ring. Clearly, [% g 13 an SD-generated rTing.
Similarly,
—- Zu Zn
== 2]

is both LSD-generated and RSD-generated, but which is not SD-generated.



Example 2.6. Let S be an LSD semigroup (i.e, zab = zazxb, for all z,a,b € S). Then
the semigroup ring K[S), where K is Z or Zy, is an LSD-generated ring. In particular,
let S be a nonempty set and define multiplication on S by st = t, for each 5,t € S.
Then Z|S] and Z,,[S] are LSD-generated rings. Furthermore if |S| = 2, then Z,(S5] is
an LSD ring which is not an AGE ring.

Proposition 2.7. Let Y C End(R,+,*) and S C R such that f(S), for each f €Y.
(1) If R is an LGE ring and for each x € R, :7 = ) ;e; £f;, where each f; €Y,
then gp(S) is a left ideal of R.
(2) If R is an AGE ring and Y = End(R,+,-), then h(S) C gp(S), for each
h € End(R,+).

Proof. (1) Let = € R and w € gp(S). Then w = ¥, ; k;js;, where each k; € Z and
each s; € S. Also there exist f; € Y such that

T = Z:l:f,'.

iel’
Hence
zw=,r(w) =) *filw) =D £L(D_kisj) = > £k;fi(s;) € gp(S).
tel 1€l JjEJ i€l jeJ

Thus gp(S) is a left ideal of R.
(2) The proof of this part is similar to that of part (1). O

Proposition 2.7 can be ﬁsed to show that R = F(z] is not an LGE ring, where F
is a field. Assume that 0 # f € End(R,+,-). Then f(1) = 1 since R is an integral

domain. By Proposition 2.7 (1), if R is an LGE ring, then gp(U(R)) = R, where U(R)
is the unit group of R. This is a contradiction.

Corollary 2.8. Let S =Z(R), N(R) or the set of quasireqular elements of R.

(1) If R and Y are as in Proposition 2.7 (1), then gp(S) is a left ideal of R.
(2) If R and Y are as in Proposition 2.7 (2), then h(S) C gp(S), for each h €
End(R,+).

Observe that Example 2.5 is an LSD-generated ring which is not an AGE ring.
To see this, let h: R — R be defined by

w5 ep=[o 5}

Then h € End(R, +), but h([g 3]) ¢ N(R) = [g ‘g] . By Corollary 2.8 (2), R is

not an AGE ring.



Corollary 2.9.
(1) If R is an LGE ring with a right unity, then R = gp(Z(R)).
(2) If R is a simple AGE ring, then R = gp(N(R)).
It is immediate that the classes of LGE rings and LSD-generated rings are closed
with respect to direct sums.

Let Y C End(R,+,-) and let RY denote
{z € R|f(z) ==z, foreach fe Y}

Observe that RY is a subring of R (when Y is a group acting as automorphisms
on R, then RY is called the fired ring under Y).

Remark. Let X C LGE(R). For each z € X, pick a representation of .7 =3 ., ki fi
such that k; € Z and f; € End(R, +,-). Let Yz be the set of f; in this representation.
Let Y = UgexYe. If < X > is the subring generated by X, then RY isaleft < X >-
module. If < X >= R, then RY is a left ideal of R and R is an LGE ring.

Proof. Let z € X and s € RY. Then there exists a representation of -7 = ) ;o ki fi
such that k; € Z and f; € Y. Hence

zs = .7(s) = Zkifi(-?) = (Zk")-’ €R".
i€l iel
Since X generates R, then RY is a left ideal of R. O

Lemma 2.10. Let x € R such that .7 = kv fi + ko f2, where k\, ko € Z and f), f2 €
End(R,+,-). Then kika[ky + k2|[r(z)]? € ker f1 N ker fa.

By (3, Proposition 2.2], every prime LSD-generated ring is a domain. Our next
result shows this result can be extended to some types of LGE rings.

Proposition 2.11. Let R be a prime ring with zero characteristic. If for each z € R
there exist ky,ka € Z with k) + k2 # 0 and fy, fa € End(R,+,-) such that .7 =
kyfi + kaf2, then R i3 a domain.

Proof. Let 0 # z € R. There exist k), k; € Z and f), f2 € End(R, +,) such that
2T = ki fi + k2 f2. Let k = kyka[ky + k2] with ky + k2 # 0. Consider the following cases:
Case 1. Assume kR # 0. Then
z(ker fi)(ker fa) = ki fi(ker f1) fr(ker f2) + ka fa(ker f1) fa(ker f2) = 0.

Since R is prime and zR(ker f,)(ker f3) = 0, then either kerf, = 0 or kerf; = 0. By
Lemma 2.10, k[r(z)]? = 0. Hence k[r(z)] = 0. So (kR)R[r(z)] = 0. Since kR # 0, then
r(z)=0.

Case 2. Assume kR = 0. Then either k; = 0 or k; = 0 (but not both). Without
loss of generality, assume k2 = 0. Then .7 = k; f;. Let a € r(z). Then k\x € kerf,.
Hence zRkerf, = 0. Since x # 0, then kerf, = 0. Hence (kyR)Rr(x) = 0. Since
k1R # 0, then r(z) = 0. Therefore, in all cases, R is a domain. O



Proposition 2.12. Let R be a ring and X C R such that R = gp(X).
(1) If I is the ideal generated by {azay — azy | a,z,y € X}, then R/I is an LSD-
generated ring.
(2) If J is the ideal generated by {xbyb— zyb | b,z,y € X}, then R/J is an RSD-
generated ring.

In the class of LGE rings the LSD-generated rings are somewhat well behaved
(e.g., closed with respect to homomorphic images and direct sums). Hence the following
problems naturally arise:

Problem 1. Determine conditions which guarantee that a prime AGE (or LGE) ring
is a domain.

Problem 2. Determine conditions which ensure that an AGE(or LGE) ring is LSD-
generated.
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Differentially simple rings

Naoki HAMAGUCHI

Abstract

We introduce results obtained in [5] of simple derivations. The article also contains
a new example of a simple derivation.

1 Definitions and known results

Let K be a field of characteristic zero, and R a commutative K-algebra. A K-derivation
d of R is a K-linear map of R into itself such that d(ab) = d(a)b + ad(b) for all a, b € R.

Let D be a set of K-derivations of R. An ideal I of R is said to be a D-ideal if d(I) C I
for all d € D. If R has no D-ideal other than (0) and R, then R is said to be D-simple.

Let (R, M) be a local ring that is the localization of a finitely generated K-algebra.
Seidenberg showed that if R is D-simple then R is regular([6]). However, in general, exam-
ples of non-regular local (P-algebras that are D-simple for some D have been constructed
in [4], [2] and [1]. One of them is as follows:

Example 1. ([1]) Let {1, ¥2,---, 21, 22,---} be a set of indeterminates over Q, and
F=Q(w, y2:-*, 21, z2,---). Let z be another indeterminate over F'. Take my, n; €
{0, 1} such that formal power series z := Y o, mizz® and y = Y 32, nipsz’ in F[z]]
are algebraically independent over F(z). Let A = Fl[z]| N F(z, y, 2), B = F[z]]n
F(z, 2), C=Blyl,d=4: F(z, y,2) 2 F(z, y, 2), E={a€C|da)€ A} and
R = E.sng. Then R is D-simple local ring (for some D) which is not Cohen-Macaulay,
and hence non-regular.

On the other hand, there are some problems about simple derivations. A K-derivation
d of R is said to be simple if R is {d}-simple. It is well-known that the Ore extension
RJt, d] is a simple ring if and only if d is simple. Hence, simple derivations are useful for
constructing simple rings.

Now we consider the polynomial ring K|z, y]. Any K-derivation d of K[z, y| has the
form P

0
faat 95y
where f, g € K[z, y|]. We want to know necessary and sufficient conditions on f and g

for d to be simple. However, it is too difficult and we only know partial results and a few
examples of simple derivations. One of them is the following example of D.A. Jordan:

The detailed version of this paper will be submitted for publication elsewhere.




Example 2. ([3]) A K-derivation d) = y* 2 + (1 — zy) £ is simple in k[z, y.

Remark. If d is simple then the ideal (d(R)) generated by d(R) is equal to R. The
K-derivation d) in Example 2 has a considerable property; d,(R) contains no units.

The following result by A. Nowicki gives a first step of the study of simple derivations
d with d(z) = 1, and at the same time, gives another form of simple derivations. The
condition d(z) = 1 means that the restriction d|xj,; is simple in K][z].-

Theorem 1.1. ([5]) Let d be a K-derivation of K[z, y] such that d(z) = 1 and d(y) =
ay + b, where a, b € K[z], a # 0.

(1) If d is not simple and dega > degb, then b=0. :

(2) If d is not simple and dega = degb, then b = aa for some a € K.

(8) Let & be a K-derivation of K[z, y] such that 6(z) =1 and 6(y) = ay + &(c) +,
where b=ac+r, ¢, r € K[z], degr < dega. Then d is simple if and only if § is simple.

The following is a direct consequence of Theorem 1.1:

Corollary 1.2. ([5]) Let d; be a K -derivation of K[z, y] such that dy(z) = 1 and dx(y) =
ay + b where ¢, b € K|z].

(1) If dega > degb > 0, then d; is simple.

(2) If dega = degb > 0 and a # ab for any & € K, then d, is simple.

Remark. If a = 0 or b = 0 then d, is not simple. Moreover, by Theorem 1.1 (3), even if

0 < dega < degb we can reduce to the case dege > degb > 0, and decide whether d; is
simple or not.

The aim of this paper is to give a new example of a simple derivation.

2 An example of a simple derivation

We begin by the next theorem of Seidenberg.

Theorem 2.1. ([6]) Let d be a derivation of a commutative noetherian Q-algebra R.
Then d is simple if and only if R has no proper prime d-ideal.

From Theorem 2.1, we obtain the following:

Corollary 2.2. Let d be a K-derivation of K[z, y] such that d(f) = 1 for some f €
K|[z,y]. Then d is simple if and only if K[z, y] has no principel prime d-ideal other than
(0).

Proof. (=): Clear.

(«<=): Assume that d is not simple and let I be a proper prime d-ideal of K[z, y]. Then
I is maximal or of height one. Since K[z, 3] is a unique factorization domain, height one
prime ideals are principal. Thus, it suffices to show that / can not be maximal.

Suppose that I is maximal. Then there exists a unique K-derivation d of K|z, y]/I
such that 7d = dr where 7 : K[z, y] = K[z, y}/] is a canonical map. Since K[z, y)/I is
algebraic over K, d is a zero derivation. Hence, we have 1 = 7(1) = #(d(f)) = d(=(f)) =
0. This contradiction completes the proof of Corollary 2.2.



To extend Theorem 1.1, it is natural to consider a derivation § of k[z, y] such that
4(z) =1 and §(y) = * + a1y + ao, where a,, ao € K[z]. Let o be a K-automorphism of
K|z, y] defined by o(x) =z and o(y) = y + a1/2. Then

o 'o(z) =1, 67 %o(y) =y + a0+ ;al ia’
where a} = (al) It is known that & is simple if and only if =80 is simple. Thus,

this case, it suﬂicm to consider a K-derivation d such that d(z) = 1 and d(y) = y*> + ¢
where g € K|[z]. If g € K then d is not simple because (2 + g) is a d-ideal . So we take

g€ K.
Now assume that d defined above is not simple. Then, from Corollary 2.2, there exists

0 # f € K|z, y] such that d(f) = pf for some p € K[z, y], and m = deg, f > 1 since
d|kyz) is simple. Write f = fmy™ + -+ + fo where each f. € K[z] and fi # 0. Without
loss of generality, we may assume that Jm is monic. Let ' denote differentiation in K|z]
with respect to z. We have

d(f) = fu™+ o+ fo+Mfmy™ 4+ L) +9)
= p-(fmt™+ -+ fo)

and hence p = my — h for some k € K[z].
Now the following result about A gives an example of a simple derivation.

Lemma 2.3. Let h be a polynomial in K(z] defined above. If QC K CCthenh ¢ K.
Proof. From d(f) = (my — h)f, we have

m = fm-1 = hfm, (*m)
G+ fing+fi = m—i+1)ficy~hfi (=1, ,m—1if m>2), (%)
he+fy = —hfe. (*o0)

First, we suppose that m = 1. If h € K* = K \ {0} then, from (¥,) and (%),

= fo—hfr, fig+ fo = —hfo.

In this case, we have deg fo = deg f, and deg fy = deg f, + deg g. Hence deg g = 0, which
is a contradiction.

If h =0 then

fi=fo, g+ fo=0.

In this case, we have f1¢ + f{' = 0, which is impossible because f; # 0 and g # 0.

Next we suppose that m > 2, and we show that neither h € K* nor h=0.

a) Assume that h € K*. Put ; =deg f; (i =0,--- ,m) and y, = degg. We denote
by 6;, 6, and 6, the arguments of the coefficients of the nonzero leading terms in f;, g and
h, respectively. From (*5,),

Pm-1 = Pm, Om-1 = O, + Oh,

and from (*pm-1),
Pm-2 = Pm-1 + Loy om—z = om-l + 0’ - 9,‘.



By continuous observation, from (¥) ( = 1,--- ,m), we have for odd j and even &
(1<34, k<m)

Pm-j; = ©Pm—j+1, (2. 1)
0,,._,- = 0,,,_,-“ + Oy, (2.2)
Pm-k = Pm-k+1t+ Py, (2.3)
Op-x = Om_k.,.l + 09 — 05 (2.4)

Particularly, f; # 0 for i = 0,--- ,m, and m is even from (2.1), (2.3) and (%). But, from
(*0), the equation 8y = 6, + 6, — 0 is impossible.

b) Assume that h = 0, and put ¢;, @y, 6; and 6, as stated above.

If fm # 1 then, from (%),

Pm-1=0Pm—1, Oy = O,

and from (xp-_1),
Pm-2 = Pm-1+ @5+ 1, Om_2 =0m_1 +6,.

By continuous observation, from (#;) (i = 1,--- ,m), we have that for odd j and even k
(1<j, k<m)

Pm-j = Om-j1—1, (2.5)

Om-j = Om_js1, (2.6)

Pm-k = Pm-k+1+@g+1, 2.7)

om—k = 0m-k+! + 09' (2°8)

Particularly, f; # 0 for i =0,--- ,m, and m is even from (2.5), (2.7) and (). But, from -
(*0), the equation 8 = 6, + 6, is impossible.

Now we suppose that f, = 1. Then, from (*,,), fm-1 = 0, and applying it to (*;,-,),
we have pp_2 = @, and Op,_» = 0. If m = 2 then f; = 0. It means ¢ € K, a
contradiction. Hence m > 3, and from (#;) (i =1,--- ,m-2), fi#0fori=0,--- ,m—3.
In the same way as in the case f,, # 1, we have a contradiction and the proof of Lemma
2.3 is complete. O

We are now in a position to state our example.

Example 3. Let K be a field such that Q € K € C and d a K-derivation of K|z, y)

such that
d(z) =1, d(y) =y* +az + B,

where o, 8 € K, a # 0. Then d is simple.
Proof. Suppose that d is not simple. Let f be a polynomial in K[z, y] such that
d(f) = (my— h)f for some h € K[z], (2.9)

where m = deg, f > 1. Put f = Y1 bz’ where b, € K[y], i =0,---,n, b, # 0. From
(2.9), we have

(my — h)(baz™ + - +bo)
= nbpz™ ! +- +bl+( (bn)z +- +—(bo))(y +az + ),

and hence b,[2(b,) in K[y} This means £ (bs) = 0. Then (my — h)(baz" +- - - + bo) is of
degree n wnth respect to z, and hence A GO}\' which is a contradiction by Lemma 2.3. O
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Abstract. It is shown that if e is an idempotent in a ring ring R with
identity 1 such that eRe and (1-e)R(1-€) are both clean rings, then R is a
clean ring. It is also shown that the ring of all endomorphisms of a countably
infinite dimensional free module over a clean ring is clean ring. Clean rings
with semicentral primitive idempotents and some extensions of clean rings are
investigated.

1. Introduction

An element in a ring R is called clear in R if it is expressed as a sum of
an idempotent and a unit, and the ring R is called clean if every element in R
is clean. Nichloson [4] observed that n X n matrix ring over an algebraically
closed field is clean ring, and also Camillo and Yu [1] extended this to unit-
regular ring. In section 2, we extend these results to the ring of n x n matrix
ring over a clean ring is clean, Nicholson [5] have shown that every linear
transformation on a vector space of countable dimension is clean. Also by
using the result mentioned above we will show that every endomorphism of a
countably infinite dimensional free module over a clean ring is clean ring.

In section 3, it is shown that for any idempotent e in a ring R, eRe is
local ring if and only if eRe is clean ring and e is primitive idempotent. An
idempotent e € R is called left (resp. right) semicentralif for all a € R, ae =



eae (resp. eR = eRe. It is also shown that if R is a clean ring and e is a left
(or right) semicentral idempotent in R, then eRe is & clean ring. In section
4, some extensions of clean rings are investigated as follows; First, in general,
neigher group nngs over clean rings nor tensor product of clean algebras over
a field are clean. Secondly, the ring of formal power series over clean ring
is clean and the converse is true. Thirdly, if A and B clean rings and Mg
is any bimodule, then A and B are clean rings if and only if the ring R =

A M
0 B
matrix ring over a clean ring is clean ring.

is clean. As corollary, we have that any n X n upper triangular

2. Endomorphism Ring over a Clean Ring
The following question is suggested by Prof. Nicholson:

Question If R is a clean ring, is the Mz (R), the matrix ring of all 2 x 2
matrices over R, clean ring?

The answer to the question is affitmative by the following:

Theorem 2.1. € = e € R be such that eRe and (1-e)R(!-e) are both
clean rings. Then R is a clean ring.

eRe eRE]

Proof. Writez=1- d use the Pi d ition R =
roof. e and use ierce decomosition [E Re 2Rz

v
and vis a unit in eRe with inverse vy. Then b- yv;z € ERE so that b- yu,

= g- w;. Hence

[ et (1) i

y g+w+yuz 0 g | | v wtynz

IfA= [a z € R and by hypothesis, let a = f+ vin eRe where f2 = f

Thus it suffices to show that v F | is unit in R. Compute:

¥y wH+ynz

e 0 v z e 'ul:c- (v =z e -—-uz
-y T ||y wymz || 0 € | 0 wi|o z




_lv 0
1o w |
. e 0 e —-uzr v 0 ..
Since . and are all units in R, the
w

—yn € 0 € 0
proof is complete.

Then we have the following corollaries;

Corollary 2.2. If1 =e + -+ + e, in 'a ring R where the ¢; are
orthogonal tdempotents and each e; Re; is clean, then R is clean. In particular,
(see [1, Theorem 9)) every semiperfect ring is clean.

Corollary 2.3. R is a clean ring so also is the matriz ring M, (R).

Corollary 24. M =M @ + --- @® M, are modules and endM; is
clean for each 1, then end(M) is clean.

Corollay 2.4 suggests

Question 1. Does there exists a property x of modules such that a module
M has x if and only if end(M) is clean?

Such a property x must imply the finite exchange property because clean
rings are exchange rings and module M has the finite exchange propery if and
only if end(M) is an exchange ring [3, Theorem 2].

In connection with this question, note that Camillo and Yu [1, Theorem
5] have shown that every unit regular ring R is clean. Here is the following
theorem generalized.

Proposition 2.5. Given a module Mp, the following are eqivalent for a
€ end(Mp):
(1) a is unit regular.
(2) There is an automorphism o : M—M such that M = aM @ o (ker
a). (8) aM and ker a are both summands of M and ker & & M/aM.

Proof. (1) = (2). Let aca = a where ¢ € aut(M). Then
kera=(1-ca)M=c(l-ca)o!M=0(l-ca)Mso(l-oca)M=
o~1(ker a). Also aM = a oM, so we have



M=aocM®(1-ca)M=aM @ o {ker a). .

This proves (2). (2) = (3). Given M= aM @ o(ker a) we have M = ¢~'M
= oc-'aM @ ker a, so both aM and ker a are summands. Finally, M/aM
& o(ker a) & ker a, proving (3).

(3) = (1). Let M= aM @ K= ker a @ N. By hypothesis ker a = M/a M=
K, solet v : K—kera be an isomorphism. We have aM = a{kera @ N) =
aN,so M= aN @ K. Using this define ¢ : M—M by o(an+k = n+7k.
This is well defined because a M NK = 0. To see that aca = a,let me M
= kera @ N,say m=k+ n. Then aca(m) = aca(n) = a(n) = a(m), as
required. Finally kera = 0 because NN o K = NN kera =0, so o is monic,
and oM = N+ oK = N+ kera = M shows that o is epic.

Thus the property x in Question 1 would have to statisfy the properties
in Proposition 2.5.

Proposition 2.6. Let R be a clean ring in which 0 and ! are the only
idempotents. Then R is a local ring.

Proof. Claim: ab = 1 implies ba = 1. [Proof. be is an idempotent, and ba
= 0 implies that 1 = 1? = abab = 0, a contradiction.]
Let a be a nonunit of R; we must show that ¢ € J = J(R). We do this by
showing that 1 - ra is a unit for all r € R. Because R is clean, ra = e + u
where ¢ = e and u is a unit. since ra is a nonunit (by the Claim) it folows
that e= 1, s0 1 - ra is a unit, as required.

Remark. A theorem of Camillo and Yu [1, Theorem 9| asserts that R is
semiperfect if and only if it is clean and I-finite (that is, contains no infinite or-
thogonal set of idempotents). This implies Proposition 1 because semiperfect
rings with 0 and 1 as the only idempotents are local. Hence, using Corol-
lary 2.2, we get another proof of the Camillo-yu theorem if we can positively
answer

Question 2. If R is clean and €2 = e € R is primitive, is the ring eRe
tlean?

Next we have the following question:

Question 3. If R is a clean ring, is the ring of all endomorphisms of a



countably infinite dimensional free module over s clean ring?

The answer to the question could be affirmative. To show this, we will
also need some lemmas as given in (5] by Nichloson and Varadarajan.

Let Mg denote a countably infinite dimensional free right R-module over
a clean ring R, and End(Mpg) denote the ring of all endomorphisms of Mp.
If {z), z2,. .. } is a basis for Mg, the endomorphism ¢ : Mg — Mz
given by o(z;) = Zi4 for each i is called a shift operator on Mp.

Lemma 2.7. Every shift operator on My is clean in End(Vy).
Proof. The proof is similar to the one as given in (5, Lemmal].

Lemma 2.8. If a € End(Vy) is such that Mp is spanned by {z, a(z),
o®(z), . .. } for some z € Mp, then a is clean in End(Mpg).

Proof. We may assume that M # 0. If a"(x) ¢ zR + a(x)R + -+ +
a"-'(z)Rfor all n > 1, then {z, a(z), &?(2), . . . } is a basis for M. Since
o is the shift operator with respect to this basis, it is clean by Lemma 2.7.

Next, assume that a"(x) € zR + a(z)R+ .-+ + a"!(2)R for fome n >
1. If n is minimal with this property, then {z, a(z), ?(2),. . ., a™'(2) }
is a basis for Mp. Thus « is clean by Corollary 2.3.

Lemma 2.9. Let a € End(Mpg) and let U be an a-invariant submodule
of Mp. Assume that a vector z € M - U exists such that V = U + W where
W =zR + a(z)R + ---. If the restriction ayy is clean in End(Mg), then o
is clean in End(Mpg). More precisely:

Ifay =7 + 0, 7 =x, o invertible, then a = m, + o, in End(Mg),
73 = m, oy invertible, where (m)jy = 7 and (o) = 0.

Proof. It follows from the Lemma 2.8 and the proof given in [5, Lemma
4).

Theorem 2.10. If Mg is a countably infinite dimensional free right R-
module over a clean ring R, then End(Mpyg) is clean.

Proof. 1t follows from Lemma 2.9 and the similar proof given in [5, Theo-
rem).



3. Semicentral Idempotents in Clean Rings
In this section, we start by suggesting the following question:

Question 4. If R is a clean ring and e € R is idempotent, then is eRe
clean?

The answer to the question is still open.

Recall that an idempotent e € R is primitive if eRe contains no idempo-
tents other than 0 and e, and an idempotent e € R is called left (resp. right)
semicentral if ae = eae (resp. ea = eae) forall 2 € R.

Lemma 8.1. If R is a clean ring and e is a left (or right) semicentral
idempotent in R, then eRe = Re (or eR) is also clean ring.

Proof. If follows from the observation that when eRe = Re the map ¢ :
R—eRe defined by ¢(r) = refor all r € R is onto ring homomorphism.

Theorem 3.2. Let R be a ring such that I € R can be writlen as e, + e,
+ --+ + eq where e;’s are orthogonal left (or right) semicentral idempotents
in R. Then R is clean ring if end only if e; Re; is a clean ring for each i = 1,
2...,n

Proof. (=) It follows by Lemma 3.1.

(<) Suppose that e; is left semicentral idempotent in R and e; Re; is a clean
ringforeachi=1,2,. .. ,n Foranyz € Ra=1lz=ez + ez + -
+ enr € 1R + R + -+ + e,R. Since e;Re; = ¢ R is clean ring, e;z =
e;a; + e;u; where ¢; q; is idempotent and e;u; is unit in e; R for each i = 1,
2,...,nLetf=eyay + --- + eqa, and u=eyu; + -+ + e, u,. Since
e;’s are orthogonal idempotents in R, f2 = £ To show that u is unit in R,
let e;v; be the multiplicative inverse of e;u; for each §, i.e., (& u;)(ev;) =
(eivi)(eini) = €. Thus uv = (eyuy + -+ + epup)(erv1 + -+ + €uvn) =
e1+ e + -+ + e =1, and similarly, v = 1. Hencez=f+ o f2 = f u
is unit in R, and so R is a clean ring. The case that e;’s are orthogonal right
semicentral idempotents in R is also proved by the similar argument.

Theorem 3.3. Let R be a ring and e is an idempotent in R. Then eRe is



local ring if and only if eRe is clean ring and e is primitive idempotent, i.e.,
eRe has only two idempotents 0 and e.

Proof. (=) If eReis local ring, then eRe is semiperfect ring by |3, Corollary
1, p76], and also is clean ring by [1, Theorem 9. It is clear that if eRe is local
ring, then e is primitive idempotent in R.
(<=) Suppose that eRe is clean ring and e is primitive idempotent in R. Let
ere is be an arbitrary nonunit of eRe. By assumption, ere = e + (ere - e)
where ere - e is a unit of eRe. Then u(ere - e) = u(ere) - ue = u(ere) - u is
unit in eRe for all units u in eRe, and so uzere € J(eRe) = eJ(R)e where J(R)
(resp. J(eRe)) is the Jacobsonradical of R(resp. eRe) by [3, Proposition 1,
p75]. Thus ere € J(eRe), that is, the set of every nonunit in eRe is equal to
J(eRe), and so eRe is a local ring.

Corollary 3.4. A ring i3 local if and only if it is clean ring end 1 is a
primitive idempotent.

Proof. It follows from the Theorem 3.3.

Remark. Let F be any field. Then the polynomial ring Flz] is not clean
ring with its Jacobson radical 0, and 1 is a primitive idempotent of Flz]. But
Fla] is not local ring. Hence the condtion of "cleanness” in Corollary 3.4 is
not superfluous.

Corolary 3.5. Let R be a clean ring such that I € R can be writlen as e,
+ e + --+ + e, where e;'s are orthogonal primitive idempotents in R. Then
R i3 a direct sum of local rings.

Proof. By [2, Theorem 22.5], 1 € R can be written as a sum of centrally
orthogonal primitive idempotents f; in R,say 1 = fy + fa + --- + fi for
some positive integer k. Then by Theorem 3.3, each f; Rf; is local ring. Thus
we have the result.

4. Some Extension Rings of Clean Rings

Recall that an extension ring § of aring R with the same identity is called
a finite centralizing extension of Rif there are z,, z3,. . ., z, € S with z;a



= qz; foralla € Rand S=)R+ .-+ + z,R

By Prof. J. K. Park, one may attempt to show that if R is clean then the
finite centraling extension S is clean. But this does not hold even group ring
of a finite group as the following example:

Example. Let R = ]2, R; where each R; = Z, and let G = {1, g} be
a group with two elements. Then R[G] is not clean ring.

To show this, first we can observe that every idempotent in R[G] is con-
tained in R, and any element a + bg € R|G] is unit if and only a # b and
ab = 0. Assume that R[G] is a clean ring. Choose an element a = a + bg €
R|G) where e =(1,0,0,...,.)and b=(1,1,0,0,...,.) in R. Then o
is not unit by the observation. Thus, & = u + e where zis a unit, and €? = e
(# 0} in R[G]. Note that v = (a - €} + bg and e in R also by the observation.
Since u is unit, by the observation wehave 1 + e #band (1 + e)b=1+ ¢
= 0, which is a contraction. Therefore R[G] is not a clean ring.

Also the following questions are suggested by Prof. J. K. Park:

Question 5. Let R be a clean ring and let G be a finite mitiplicative group.
If the order of G is a unit in R, is the group ring R[[G]] clean?

Question 6. Let A and B be algebras over a field F. If A and B are clean,
is A ® rB, the tensor product of A and B clean?

The question 5 is still open and the answer to the question 6 is negative
by the counter example:

Let A = [I2; R; where each Ry = 2;, B= Z3[G), F= 23, and let G =
{1, ¢} be a group with two elements.Then A and B are clean, but A @ 7B
= [12, R:[G] is not clean by the above example.

The ring R[[]] is called the ring of fomal power series over the ring R.
Then we have the follwing:

Proposition 4.1. A ring R is clean ring if and only if Rf[z]] is clean ring.

Proof. 1t follows from the observations; the set of all idempotents of R is



equal to the set of all idempotents of R[[z]], and any element a(2) € R[]
is unit if and only if a(z) = u + zf{z) for some unit « € R and some f{z) €

R|[]].
Proposition 4.2. Let A and B be rings and sMp be a bimodule. Then A
A M = a m

0

and B are cleen rings if and only if the ring R = 0 B b

:ea€ A,me€ Mandb € B} is clean ring.

Proof (=) Suppose that A and B are clean rings. Let

€ (‘3 A;) be arbitrary. Then [‘5 ";l =

a m

0 b

u+e m
0 v+f]

z(; m ] + [ ; ? ] for some unit » and idempotent e € A (resp. some
v

unit v and idempotent f € B). Note that [ 1(;

m . . Py e, s
l is unit with its inverse
v

-1y lmy!

0 y~!
clean ring.

u

], and clearly [ g g ] is idempotent in R. Hence R is

(&) Suppose that R is clean ring. Let @ € A be arbitraly. Then
a 0 =| ™ + g¢-u —m where uvom is unit and
00 0 v 0 -v 0 v
a—u -m
0 —v
u is idempotent in A. Hence A is clean ring. By the similar argument, B is
clean ring.

is idempotent in R. Observe that v = 1, u is unit and a -

Corollary 4.3. R is clean ring if and only if any n x n upper triangular
matriz ring over R s clean ring.

Proof. It folows from the Proposition 4.2 and the induction on n.
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Separability and the Jones basic construction
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Abstract. Jones discovered his knot polynomials through his work on type I1I; subfac-
tors of finite Jones index. Recently, Kadison studied algebraic aspects of the Jones basic
construction. Using certain separable Frobenius extensions, he produced a tower of alge-
bras and a countable family of idempotents satisfying braid-like relations. In this note, we
introduce Kadison’s methods to define the Jones polynomials.

§0. Introduction

Jones [5] 17 VA F#fL von Neumann {WEEBHRSIT 5 &Itk Y, AFEHE L
3 RER Vi(t) 2/EY £/, #E, Kadison [11] X von Neumann &% Av iz
Jones DRRILEDOAEF 2 AREANTL HRAHE L. ZO@EHE T Kadison [11] i2&5 1 &
D Jones ZBRADHRELZ BT 5. '

§1. Strongly separable extensions with Markov trace

Y, WS OMDEBER<L . UTF, AD S RIEKETS.

EE 1.1 (cf.[12]). Ag t‘ﬁﬂﬂiﬁiﬂ#ﬁﬂ‘m\oma e ¢sHom(As,Ss)a LB LA
BHEBEBRREAD D445 & sHom(sA, sS)s L 2D ZLRRETHD. “hbDRES
{52 H7=F L& A/S IX Frobenius K THB LV 5.

SB% 1.2. multiplication map u: A®sA — A, a®@b— ab M A—- A ERBI L LTHAR
THLE, A/S RSBEEEKRTHEILEV). T titec A®s A Tule) =1 Mo
{EBD a € A THL T ae = ea EHI=T D (separability element &V H) BFETH T
L LRETHS.

SBEILRITOVTH, T L HE |4], = LTHEEF [15]) itBWTHRESh TS,

This paper is in a final form and no version of it will be submitted for publication elsewhere.



©#% 1.3. E € Homs_s(A,S) TEQ1) =1 LR2D2HbDBFETH L%, A/S iXsplit
extension TH3 &V 5. E i § c A x5 conditional expectation & FEIEh 3.

K278, SCA% K-BRBOHKRETE. K—BEBRT: A— K B {EED
a, be AR L TT(ab) = T(ba) 22> T(1) =1 PHI=TEE, TIEM—XEFETINS.
K* TK OBTORTHEERT.

Bl 14 A/S X K-ZRBROWKETS. r € K*, conditional expectation E :
A — S BX separability element e = 75, 2 @y BHY, EED a € A IHLT,
S E(az)y = ¢ HOLniE(me) = ¢ BHI=F L %, A/S IR THS Lvbh
5. 71 1% E-index & &LiTh, [A: Sl TREND. (2,4, B, 7) R AD S I 5H
DEREFEENS. (17! & TR, 5 @y HOREKFTHZ L BD9S. ) BHiZ, bL—
AT: S K TTy=ToE:A—- K bh—RIZRDZBOBFHETDHLE, A/S 1T
Markov b L—REFHOMOBEHEKTHD LV bh3.

Remark. (1) A/S A58QWEHLKTHIUL, A/S i% Frobenius Ik ThD. FE, sA4 IHX
MEE (v, E(—z)} ZFFODOT, ARERAKITHD. Ldb, 245 — aHom(sA, s8)s,
a (z— E(za)) BFRNERTHS.

(2) MIBERERITARER [3) THEBENTVWDH, LOEFLDPLETTHhEDHD LI
BLbhs, 2B, 1) bBROZE.

# 1.1. von Neumann algebra I, factors N C M TN %% HFR® Jones index [M : N|
£ subfactor {2720 TV B b DIt Markov L —Z N — C 20 EHERTHS.
{4cos?n/m|m=3,4,-- YU{reR|r 2} KBTHIERDO v IZHLTr'=[M:N]=v
L7253 pair NC M BFETHZLBABN TS,

#1 1.2. H 38 C OARBE n ORHBHL L, g1, -9, ZTRIRBORER LTS, B
B A=K[G] & §=K[H| #525. 1:A— S CARLREERT (e n(Sye0 kg) =
Thew knh). B L, 1/n€ K THIUI A/S iX Markov b U —2R n, 2 OMaSHILATH
9, (90,97 7n,1/n) IRIERTHS.

P38t R LOREMBET, DREE (fi: P— R, & {z)p, 2b0LT5. [R,RT
{ab—ba|a, b € R} TEREND R DEAMEHERT. TOL &, TYXL, filz)+|R R €
R/|R, R] % Hattori-Stallings 77 &\ WY, r(gP) TET.

ohRH 1.1. A/S iX Markov LV~ T: § = K 2R oMM CHB LTS, 0
& & Eindex [A: S)g iF T(r(sA)) IZB LI



A ZTHBR K- LOSTRT, K-IpEe LTHRERBENTHEbD LTS, {(fi: P —
KYe, & {zi}e X AD K LOBHEELTS. ir(z) = T f(zz) THALND M-
AEHR tr = trayx X Homk (A, K) DIETHY, tr(l) =r(cAl) &723.

$11.3. AZHERBTREL, C 2FOHRLETE. T2 r(cA) 12 C OTHTTH
BLEETD. DX A/C IPRGEEILKTHY, trac ¥ conditional expectation & L
TH. HEER ide : C — C i Markov FL—RXTHD. FIRE, BREE LOLT
5k M, (C) 282, E; 2EMEMATIIBIL 5. ZDL & M,(C)/C iBanMELKTH

Y, e= % 3" Ei;® Ej: i separability element Th 5. E(X) = (1/n) T Xi t&conditional
18]

1

MO O~ 'C%Za ¥/, t = (n? -2+nv/n%?—4)/2

expectation THY, r =

t
i = T+ BAHTT.

#114. AD S HTHRBRLL, AR S EoBEMNI>HRERNENHTHY, 727
T(sA) ‘i S 0)3[557_1:’(‘3;6 L'{Ei"’i‘b. :@k% A/S ii?ﬁﬁﬂ’ﬂlﬁk’(‘b D, tTA/s ‘i
conditional expectation, {EEER ids 1L Markov FV—ARATHS. HIXIE, F/K BKRE
n OEOHBLBEEKTHY, K OEE n IFEVWERTHEI LTS, oLk, [k
Bt BEIEL, F=K(a) E25. p(z) =2" - ""qz‘ ¥ a DK LOBIBERE

L, E= %trace Foa K eBL. Tk {Ot'}n_l & {—‘ﬂ n-l IR DRI

i+1

]
R f(z,y) = E(zy) BT AIHRETHD. E-Li o @ (-5—%;1) i¥ separability

element & 3. (no %%—W,E 1/n) I3ROMRTHD.

M 1.1. (4,5, 20,0, B, 7) YRSBELKLTDLARs AT (a0 ®@a1) (2 ® az) =
E(maz)as LERTBHZ iz Y K-BuBizizd. BTt 1= z0u =1""e THS.

M 1.2. BRE LT A®s A= End(Ay).

A, 6, z2€ AIFHLT Afz) = az £BL. B8 A®s A — End(As)iao @ &y —
Ao © E0 Ag, TR End(As) = A®s A; f — Ty £(24) @ i HEEV\DORE(R,

A={Tiazi®@yi=ar'e|a€ A} CA®s A RBA—RIZLY A ¥ A®s A DELR
& RieT.



#58H 1.3. A/S IX Markov b V—R T 2B OBHEEXRTHY, (zi,0:.E,7)ZADS
R AMAMER L TD. ZDLE, ARsA/A tEMarkov LV —R TV =T o E %RF25845
BEHEKTHY, (T 1@ 14,14 @i, T, 7) VIRAPER L 2B, 7L, p b3 multiplication
map A®sA— A, a®br— ab RT.

BEA. BEy=mp:AQs A= AL T1=ToEoE :AQ@sA— K 28X%. TDLE,
E()=1Zzy =1 %%, TE(e®br'z;®1)(10%) =a® (T E((bz)y:) =a®b.
T1((ao ® a1)(az ® a3)) = 7T(E(a380) E(a:1a2)) = Ti((a2 ® a3)(a0 ® 1)) &RBDT, Ty iE
A®sA DML —AThHS. BIZT =ToE: A— K X Markov hL—RTH 3.

A D S IIMpREEKTHY, E: A — S I conditional expectation, [A : S]g = T,
T:8 = K % Markov hL—R&TH, ZDLE, A = A®s A 13 A OSEHENLK
THY, E, =1u: A — A I conditional expectation, (Z Z Tu I3 multiplication map
A®sA— A), |[A1: Alg=7,ToE: A— K 3 Markov hV—2X, ¢ =14®s14 €
A®g A= A, I separability idempotent &72%( ZZ T, 14 X A DHALST. ) RHRIZL
T, A=A @A =ARs ARs A X A Uﬁﬁﬁﬁﬂﬁk’?bb, B=1u: Ao A M
conditional expectation (Z Z Ty, i multiplication map A, ®4 A1 — A1), [42: Az =T,
Ty=ToEoE;: A — K ¥ Markov Flr—R, ¢, =14, ®414, € A1 @4 A1 = Ao 28
separability idempotent &723 ( ZIZ T, 1,4, 1T A; OHLST. ) RWHR9IZ A, E,, e, &
To=ToEoE 0---0E, #TE#&TD. En(en) = Tun(1®1) =7ls _, THAIDT Tolen) =7
Thd. #-T, ROEXEHES :

SE-AE AR AP AQs AQs A— - & A, = port1 &

#HE14. FoiZ/LT, RE%5Te, €3, -+, en XKD braid like relations ZH7=3:

€i€i+164 = TECi,

eie; = eje; (i—Jj 2 2).

%72 T, =ToEoE0---0F, : Ay = KX b L—RTHY, K BEWey, e2,-+,6i( <n) T
ERINAIBHROT w IZH LT, Ta(wzi) = 1Ta(w) ER5. B, Fe, 2,00, 60 B
£< L H—E LNV monomial ey, - - €5, (1 <35 < n) I LT Thles, 65,00 65,) =
™ LB,

B, eeires = (1o, ® lay)e-1(lai, ®1a ) = 1@ Biog(ei1)l = 14, ®7ly_, =
Tei—1. I eiep6 = Te; BIRF D, A= A, ¢ B ZEIT&Y, Ay =A4,04 4, DBE%E
Z2NUTH45. A1®4A, = AQ@sA®sA RBRI—HIZL Y, Bt (a0 ®a; ®az) (b ®b; @) =
‘rao®a1E(agbo)b1 ®b) &3, &T, e = Tii T OQuzT; ®y; e =1 @1)(1‘_13;;®
NR(1On)=7(191®1) c A®sA®sA &2V, XoTeee) =1@1®@1=71e; &2
3. RTi—j 22 LEETS. ZDLX ej€ Aiy THIDT, ejei=ej(la_,®la )=
(1a,, ®1a,_,)e; = esej. BEDERIT T, DEFD LI LI



§2. Jones IR

ETRSBRT VA FRIZOWTERRS @ELL X 13), [14] 28RO L) . 3 KT
i S oPiIEnAENT, MEDOOWEERBEORL2ZAAOMEEAB (Link) &M
ST, ELT, SERBHAEEECR (Knot) LIRS, ¥/ 2 2OKLR L), L,
HEHE (L) = L) THHLiL, S OMEEROFRMESR b Th(L) = Lo LR DN
FETHILLT S, #BHBEOREE L TERT. &8 L ORMESEY (L] Ld%,
L] =L/ == {[£] | L e £} &BK. BHARXFEAEIC 2 BROAZEHL T, PN
ET 5N IR EN 5L LTIRRTES.

TvA F(braid) &1, LTIEIhiz n BOFDRREFOAELBOMIZFEHESE
DEDHRRNZV2 022 TVBD n KOAR LML TIZHRFIZTR>THEHDET 3. 8
RBFA—THB2 2DT VA Fa b o BEETHS LI (ZZTi3, FATHIZLE
a=o LEL), WREBEL, LTOBOMIHTIE a 5 o ~NUGEANZEKTCES
ZETHB. ZORMEBRICE VL n KOT VA RORHEEDIRE Botd#fiz 5.
Zhd 74 FBE (Artin braid group) Tdh 5. HMITIX n KOFETIZED TV @D b
RBEIVA K (DFRMEEHR) Thd. 22074 F (DFHEE) 8, 8 OIZTOED &
I B OTHREL B OLEREORE, %oﬁMJoﬁ%mlﬁ!( LizkotTtEZL
ha.

dertity
ERWRTIVARLLT, AoTKBRDiHERL i+1 #an&wzt o B&

VEDOHTE 67! BEXHND :
/\
o

‘-\ atl
n KDOT VA KB By tL 01,001 CEREER, _nl‘oliﬂﬂﬁ
(1) owos =050, (5 —5 2 2)
(2) 0014101 = O(41010441 (t' =], ,n— 2)
o N

\ S S N\\
y\ﬁz ]L\ o A

G; G, = GG 0,00, = C.Gi0.




ZVv4 ¥ B DEAE B IXT VA FOMRLEREFHTRRTRAILLDTHS.

X ;
l<§ 8 Q &

Alexander OEHA. EEO#/ALAIY, 7V FORAOKTRENEHBIZFHT
»D.

1 B Markov move &%, B, DT %, D g€ B, iZ LT gfg~1(€ B,) L[MZ#
259,75, 2 B> Markov move &1, B € B, % fBon € Bay TREBRZDZE, b
BZVIXEDOROEE, oY, [ BliZo, BEERTNIL, Lon € Bayy % f € By iTHl

ERADWLTD. g
/7 S
0‘;:20_-; @ % @ O-. )

Markov DEE. 8, € B, 8, € B, ®, Thth, V1 F#f B, & B, AO7vA
KeT5. ZokE, &40 B, & G, BEANIZRBHDOLE5%M4L, B, 2 fa
121 8, 2 B Markov moves ZHMRERET Z LIZL>THLNAIHTHS.

~ T Markov moves D»LHH XN S RMABMRERT = LiZT5 &, Alexander DEHER L
Markov DREEIL[L] & (Lnz: Ba)/ ~ OMIC1H 1 DRIEITFHES S Z L &FT.

BHE 2.1. ADS X Markov FV~A T %§> K LOBHYBHERTHY, (7,4, E,7)
ZRIMERETD. e, e, 0n 1S 14 OREETLTS. bLr=¢/(t+17 %
Bt te K* BFEETHE, wy=(t+De—-13G0=1,---,n) B &%, HPpEY
Vs :Bpy1 = AR TW(oi) =ws (i=1,---,n) ZHITHONRFETS.

EEEH. ﬁ Bn+1 'i %ﬁsa‘;a‘, = 0‘,‘0‘( (l —j Z 2) k0'40'4+10'.' = 0¢410i041 (’& = 1, crry R — 1)
BHIcT 01,0, 00 TEREINBDT,

(1) Wiy = Wtk (1 —j > 2)

(2) Wildj+1wWs = Wip1Wildi41 (1: = 1, e, — 1)

EREET2THD. (1)i3BR ee; =ejey (i—j 2 2) HBRED. (2) BFED.
wiwipaws = (B +1)eg + ( + e — (£ + 1)%(eieig1 + ei188) — 1 = wiprwiwisr.



AD S ix Markov PV —R T %52 K LOMSMIERTHY, (2i,1, E,7) 2WMHEE
RETD. e, e, 60 (IHE 14 ORESTETS. 7=/t +1)? ZHT=T t € KX
MIFEL, EiCt it K ORRESREROLEETS. 0= 0™ -0 € By 2L Y,
L=¢ <‘:2F3<. Wy = (t+ l)e.-— 1, Tn+1 =ToEo EIO'--OE,,.H 8?5%, [L] @ Jones
polynomial value %

i) = (- ) = (- B yponr, w00

TEETD. ZIZT Psi, TATER CTRNIHUEERY, : By — Al,e(0)=n1+---+n,
Xo %o DML LTRLELZDREMTHY, T VA FBE Baypr DEEND, e(o) X
o DHITEFTS.

BE 2.2. Vi(t) i3&HB L =6 OFRES [L] IZLAXBR. 82T, [L]2BK ~
DER L] — Vi (t) BEBEEND.

RER]. BEIZONREE I, [£] & (Unpi Bn)/ ~ OMIZ 13 1 ORIERFEET 0T,
Vi(t) € K 2318, 2 8D Markov move TARERZ & 2RIV BB, o 2 gog~' (g€
Bnt) Elidooi], CREBRITHVi(t) BRERZ LETREIEIV. Top R FV—2
?&)6@?. T,..,.)(‘Ifg(ga'g“’)) = T,,.,.l(\Il,(a')\I'.(g")\Fg(g)) = T,H.I(\I’g(d')) &3, _'jJ_,
Tr42(¥e(00232)) = Tna2(¥(0)wiiz) = Tnta(¥2(0) Bnta(witz)) = ™ Tnsa (¥i(o)).

ER 22 CL VAT TEED V() €K I3HB L=6 OFRERL BT L
TED. ZH Jones ZIHATHD.

EE 2.1. &8 LiceLTVL() = (—(t;‘/il))N'lt"(’)/zTN(‘I’g(a)) % L @ Jones 8

REEB ZZCoiiL=5tR23HD7VvA FBE By O, ¥, ILER 2.1 TR
R, e(o) iXo 2 0; DTE LTRLIZLEDREMTHS.

Jones ZIRFUIRD & 5 RHEHE B2 (cf. [5)) ¢

58 2.1. n(L) THEHB L @ components D &R
(1) n(L) B2 BIE V(1) € Zit, 1)
(2) n(L) MEER BIE VL(t) € ViZt, t™Y).

bR 2.2. A8 L @ mirror image % L~ THET L&, Vi~(t) = VL(2).



Wil 2.8. n(L) iTME 2.1 LEBRETD. T EVL(1) = (—2)MD1,

#ARA LY, L™, L BhDERDEFETRROE IR bDLTS.

S

L

A 2.4, %VL- — Ve = (Vi— —%)VL(t).

§3. Jones ZIRXDERHI

[5] @ table 1 T 0y 235 8 EFTCOKEVRIZHTEI T VA FEBL Jones ZHAL B -
THRZENTED. ZITHL, WL ONDBHED Jones BEAEHB L TAHRLS.

Hopf link.
AN
o / |
L \ o
r=t/(t+1)2 THHDT,
Velt) = (P (VB Ta(d)
= —(t + )VIT({(t + 1)ey — 1}?)
—(t + D)VIL((t + 1)%e; — 2(t + 1)ey + 1)
-+ )V +1)*r =20+ )T+ 1}
= =V +1).

R Vi) =~2= (=21 b n(l)=p=2 (MEH2.3) £22Y, L ® components
DA 2 THHREWVWIWREH .



Left-handed trefoil knot.

& -

() = (S (VR

—t(t + 1)T2({(t + 1)e; — 1}°)

—t(t + 1)Ta((t + 1) —3(t + 1)%e; + 3(t + 1)e; — 1)
=T+ 1){E+13r -3+ 1)*r+3¢+1)r—1)

. <)

Knot 4;.

g -l
um=@7ﬁﬂﬂ“ﬂmwmv) 00 G0
(t +t1)2T3(({(t +1)e; — 1}{—82 1})%)
(t-|-t1)2 ((t+ 1)‘61%816 (t )3 S (‘t_l)smlez_(t_"t'z_l)_a(tz—t+1)ele2 (t+t1)23261+
(t2 1)61 2 132 + 1)
_ (t+t l)sz((tJ;l)“'_e“.,,z_(t_"'t1)_37.3‘_(“;21)a reg—Ct +1)2(t’ —t+1)ey eg(t-l;l)28261+

(1o — ey 1)
_ _1{(t+1)“_3 (t+1)"1_2 (t+1)313 (t+1)2(t2 t+l)13( +1) G+1) e+ (@ =1)r—

t 12
9217+1»

=t 22—t 1+ —t+ 22
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THE CONNECTIONS BETWEEN THE WEAK m-REGULARITY
AND THE MAXIMALITY OF PRIME IDEALS OF RINGS

CHAN YoNG Hong*, NAM Kyun KM, Tal KEuN KWAK AND YANG LEE

The relationship between various generalizations of von Neumann regularity and the
condition that every prime ideal is maximal have been investigated by many authors {3,
4,7,9,13, 15, and 16]. The first clearly established equivalence between a generalization
of von Neumann regularity and the maximality of prime ideals seerns to have been made
by Storrer [13] in the following result: If R is a commutative ring with identity then R is
w-regular if and only if every prime ideal of R is maxirnal. Storrer’s result was extended
to Pl-rings (7, Theorem 2.3], right duo rings [9, Corollary 1] and bounded weakly right
- duo rings [15, Theorem 3], respectively. On the other hand, Hirano [9] proved that if R
is a 2-primal ring, then R is 7-regular if and only if every prime ideal of R is a maximal
one-sided ideal. Recently, Birkenmeier, Kim and Park [3) showed that if R is a 2-primal
ring, then R/P(R) is right weakly m-regular if and only if every prime ideal of R is
maximal. The m-regularity of rings is extended to the weak w-regularity. In general,
w-regular rings are weakly m-regular rings but the converse is not hold.

We investigate the connections between the results of previously mentioned papers
and weak w-regularity in 2-primal rings, right quasi-duo rings and Pl-rings, respectively.

Throughout this paper the letter R denotes an associative ring with identity and all
prime ideals of R are assumed to be proper. P(R), J(R) and N(R) denote the prime
radical, the Jacobson radical and the set of all nilpotent elements of R, respectively.

We begin with the following definitions.

Definition 1. (1) A ring R is said to be (strongly) n-regular if for every z € R there
exists a natural number n, depending on z, such that (z" € z"*!R) z" € az"Rz".
Strong n-regularity is right-left symmetric [6].

(2) A ring R is said to be right (left) weakly n-regular if for every = € R there
exists a natural number n, depending on z, such that z” € z”Rz"R (2™ € Rz"Rz").
R is weakly w-regular if it is both right and left weakly n-regular [8].

Definition 2. A ring R is called 2-primal if P(R) = N(R) [2].

The term 2-primal was come upon originally by Birkenmeier, Heatherly and Lee.
But Hirano [9] used the term N-ring for what we call a 2-primal ring. The 2-primal
condition was taken up independently by Sun [14], where in the setting of rings he

* Corresponding author. E-mail : hcy@nms.kyunghee.ac.kr



introduced a condition to be called weakly symmetric, which is equivalent to the 2-
primal condition for rings.

Hirano showed the following proposition.

Proposition 8. [9, Theorem 1] Let R be a 2-primal ring. Then the following statements
are eguivalent:

(a) R is strongly w-regular.

(b) R is w-regular.

(e) R/J(R) is w-reqular and J(R) is nil.

(d) Every prime ideal of R is @ mazimal one-sided ideal.

The following example shows that in a 2-primal ring “weak w-regularity” is not the
'same “m-regularity”. Hence in Proposition 3, the condition “(b)” can not be replaced
by the condition “R is right weakly w-regular”.

Example 4. Let D be a simple domain which is not a division ring. We consider the

ring
R= {(“ ") |a,beD}
0
Then R is a 2-primal right weakly w-regular ring which is not w-regular.

As a parallel result to this Proposition 3, we obtain the following result.

Proposition 5. Let R be a 2-primal ring. Then the following statements are equiva-
lent:

(&) R/J(R) is right weakly w-regular and J(R) s nil.

(b) Every prime ideal of R is mazimal.

Related to this Proposition 5, we noted that there exists a 2-primal ring whose prime
ideals are maximal but neither right nor left weakly w-regular [3, Example 12].

However, we have the following theorem.

Theorem 6. Let R be a 2-primal ring whose primitive factor rings are Artinian. Then
the following statements are eguivalent:

(a) R is strongly w-regular.

(b) R is w-regular.

(c) R is weakly m-regular.

(d) R is right weakly w-regular.

(e) R/J(R) is right weakly w-regular and J(R) is nil.

(f) Every prime ideal of R is mazimal.

Recall that a ring R is said to be right (left) quasi-duo if every maximal right (left)
ideal of R is two-sided. A ring R is said to be of bounded index (of nilpotency) if there
exists a positive integer n such that e™ = 0 for all nilpotent elements a of R.

The following theorem extends [4, Propesition 2.14].



Theorem 7. Let R be a right quasi-duo ring. Then the following statements are eguiv-
alent:

(a) R is right weakly n-regular.

(b) R is strongly w-regular.

The fact that a right duo ring (i.e., a ring whose right ideals are two-sided) implies
2-primal lead one to conjecture that a right quasi-duo ring is 2-primal. However in the
following examples, the rings R are right quasi-duo but not 2-primal.

Example 8. Let T be the n-by-n upper triangular matrix ring over a field F', where n
is an infinite cardinal number. Then by [16, Proposition 2.1] T is right quasi-duo. Now
consider R = T[[z]], where T'|[z]] denotes the ring of formal power series over T". Then
R is right quasi-duo which is not 2-primal.

On the other hand, Yu [16] proved the following.

Proposition 9. Let R be a right quasi-duo ring. If every prime ideal of R is mazimal,
then R is strongly m-reguler.

However, the converse of this Proposition 9 is not hold by the following example.

Example 10. (4, Example 3.3] Let G be an abelian group which is the direct sum of
a countably infinite number of infinite cyclic groups; and denote by {b(0), b(1), b(-1),
.o yb(2),b(—1),...} of basis of G. Then there exists one and only one homomorphism
u(i) of G, for i = 1,2,... such that u(i)(b(j)) = 0 if j = O(mod 2) and u(i)(b(j)) =
b(j — 1) if j #0(mod 2¢). Denote U the ring of endomorphisms of G generated by the
endomorphisms u(1), %(2),... . Now let A be the ring obtained from U by adjoining the
identity map of G. Let R = A®zQ, where Z is the ring of integers and Q is the field of
rationals. Then R is a right quasi-duo ring of no bounded index and J(R) is nil but R
is not 2-primal. R is also a serniprime strongly w-regular ring, but there exists a prime
ideal of R which is not maximal.

Note that the ring R in Example 8 is of no bounded index and J(R) is not nil.

Proposition 11. Let R be a right quasi-duo ring of bounded index with J(R) nil. Then
R i3 a 2-primal ring.
Corollary 12. Let R be a right quasi-duo ring of bounded index. Then the following
statements are eguivalent:

(a) R is strongly n-regular.

(b) R is w-regular.

(c) R/J(R) is m-regular and J(R) is nil.

(d) R is weakly n-regular.

(e) R is right weakly m-regular.

(f) R/J(R) is right weakly n-regular and J(R) is nil.

(g) R/P(R) is right weakly n-reqular.

(h) Every prime ideal of R is mazimal.

Note that in Proposition 11, the conditions “R is of bounded index” (Example 10)
and “J(R) is nil” are not superfluous.



Example 18. Let F be a field and S denote the full ring of 2-by-2 matrices over F

and T = { g’ g) €S|a€ F} . We consider the ring R = T' + zS|[z]], where S[[z]]

denotes the ring of formal power series over S. Then R is a right quasi-duo, semiprime
Pl-ring of bounded index 2 and J(R) = zS[[z]] is not nil. But R is not 2-primal.

In Corollary 12, the condition “R is of bounded index” is not superfluous (Example
10).
Remaeark. In Example 4, the ring R is 2-primal right weakly m-regular which is of
bounded index 2. But it is not #-regular. The ring in [3, Example 12| is a 2-primal ring
whose prime ideals are maximal, and it is of bounded index 2. But it is neither right
nor left weakly n-regular.

Now we investigate the connection between the weak n-regularity and the maximality
of prime ideals in Pl-rings. '

For a Pl-ring, Fisher and Snider [7] proved the following theorem.

Theorem 18. Let R be a PI-ring. Then the following statements are equivalent:
(a) R is strongly T-regular.
(b) R is mw-regular.
(¢) R/P(R) is w-regular.
(d) Every prime ideal of R is mazimal.

Hirano [9] also obtained the following result.

Theorem 14. Let R be a PI-ring. If R is right weakly w-regular, then R is strongly
w-regular.

Thus the concept of right weak n-regularity, weak w-regularity, strong w-regularity
and the maximality of prime ideals for a PI-ring are equivalent.
However, we have the following.

Theorem-15. Let R be a PI-ring. Then the following statements are equivalent:
(a) R is right (left) weakly w-regular.
(b) R/J(R) is right weakly n-regular and J(R) is nil.

Consequently, for Pl-rings we have the same corollary as 2-primal rings and right
quasi-duo rings without any extra conditions. The following Corollary 16 also includes
[7, Theorem 2.3] and [9, Theorem 4]. )

Corollary 16. Let R be a PI-ring. Then the following statements are equivalent:
() R is strongly r-regular.
(b) R is m-regular.
(¢) R/P(R) is n-regular.
(d) R/J(R) is x-regular and J(R) is nil.
(e) R is weakly m-regular.
(f) R is right (left) weakly m-regular.



(g) R/J(R) is right weakly w-regular and J(R) is nil.

(b) Every prime factor ring of R is right (left) weakly m-regular.
(i) Every prime ideal of R is mazimal.

(i) Every prime factor ring of R is simple Artinian.

Since all primitive factor rings of a Pl-ring and a right quasi-duo ring are Artinian,
we have the following proposition related to Corollary 12 and Corollary 16.

Proposition 17. Let R be of bounded index whose primitive factor rings are Artinian.
Then the following statements are eguivalent:

(2) R is strongly w-regular.

(b) R is w-regular.

(c) R/P(R) is m-regular.

(d) Every prime tdeal of R is maximal.

The conditions of Proposition 17 (1) “R is of bounded index” and (2) “every primitive
factor ring of R is Artinian” are not superflous.

Example 18. (1) In Example 10, the ring R is a right quasi-duo ring, so every primitive
factor ring of R is Artinian. R is also a strongly w-regular ring of no bounded index.
But there exists a prime ideal of R which is not maximal.

(2) [3, Example 13] Let W = W, |[F] be the first Weyl algebra over a field F of charac-
teristic zero. Now we consider the ring

R = {(a;)2, | a; € Maty(W) is eventually
a constant upper triangular matrix },

where Mata(W) denotes the full ring of 2-by-2 matrices over W. Then R is a semiprime
ring of bounded index 2 whose prime ideals are maximal. But R is not m-regular and
so R does not satisfy the condition (2) “every primitive factor ring of R is Artinian”.
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On modules of finite Gorenstein dimension

by

Mitsuo Hoshino

Abstract. In this note, there is given a left-right symmetric condition (*) for left and right
coherent rings, which is weaker than the Auslander condition. It is shown that, if A is a left
and right noetherian ring satifying the condition (*), then for any integer n = 0 the following
statements are equivalent: (1) A has injective dimension at most # on both sides; (2) every
finitely generated left A-module has Gorenstein dimension at most n; and (3) every finitely
generated right A-module has Gorenstein dimension at most n.

1. KRROME

BUNC, 8 HBOBEA%T S, UTICRT. BEMBCT IR0, ATEEAY—HLETS.
EAMBLLTDA X AT. EA-NBLLTDA%R A, THT.
mes X AR inj dim X CHRT. ROFRROMBEHDS.

FI® A. injdim A=injdimA, #?

AR Y CLIRHIIV. BENLERLAYZVLH. ThIIERMELZWE WS R TCHo Tl
LTRL TV E W) BTV, BAMICIE. Dl LLBRBATCIE. HENTHALELS
PV OREN BRI,

LFORBICBIR L TROBELDS ([8] 2ERL L),

@ 1.1, injdim A <A injdimA,<® 75 injdim ,A=injdimA, TH2,
teoT. M A IROBIIBWIRE Sh5b.
BUEE B. injdimA, < /24 injdim ,A<e 7

met X oFExorE flat dim X ¢%Y, ME B ICMRBL TROBRLDS (AL, [2] 28K
24).

@ 1.2. injdimA, <o 5RO (1), (2) iXMETCHA.

(1) inj dim ,A<® T3 23,

(2) (a) {ERDOBME A-HBE S (253 LT Hom (S, F) = 0 %875 i 20 ST 5.
(b) ENAHARA, - [ 12T, 2TD 203 L flatdim F <o TH 5.

This note is not in final form. A detailed version may be submitted for publication elsewhere.



FORERT B%4E (2) @ (a) 12 Generalized Nakayama Conjecture DFFIetBETH 5.
f#i55¢. Generalized Nakayama Conjecture {38302 ) 2REA H@MIBV. ZORGD L.
M B 2R itRgs Bbha, LA, HERILTLOHEI TR, LLALOGHIC
P 224 (2) @ (b) OFMBLVWRTH S, B ROBIENDS ([7] 2ERE L),

@ 1.3. AZBUTILT 4 VRETS, injdimA, < 26RO (1), (2) REHTH 5.
(1) inj dim ,A< ®° TDH5.
Q) EBAAHSRA, - I’ ZRT. £TD 201l T flatdim F < » €55,

12t X @ Gorenstein kt% G-dim X THET. XOBHHD5 (1] 2BREL).

A 1.4. n2028METS, XD (1)3) 1I2oWwT. (1)=(2) = 3) R YLD,
(1) inj dim ,A = inj dim A, sn TH3.

2) 2THOHBERE A- MR X 1oL T G-dim X< n CHA.

(3)inj dim ,A< n TH5.

FosERcRT 5248 (1)3) ic2wT. 3) = (1) PR YHIEOH ? HHE B itz &iew, &
#wer. Q=20 PRYEOH? 2MEST S, BB, ROMBAEERT 5.

BE C. {EROBM n=2 0 1ox L TRD (1)3) i2MElfdH ?
(1) inj dim ,A=injdim A, sn T 5.

2) 2 TOHBERE AMB X 1L T G-dimX<snCdha.
(3) 2TOHBERE AN MR LT G-dim Msn THb.

HBLERSE A-MBOEHS enough injectives (XL, A H7IT 4+ VSTROL &) 726 LOW
HIERD n 20 I L THENTHS (6] 2BWEL). ¥ n<2 0L 3. LokmtiE
BOAITHLTHENTDS (4] 22REL).

Wiz, XOBEHDL (B, [1],[6) i EREL).

Wl 1.5. FROBYn20THLTXD (1), () 12EHETH 5.
(1) inj dim ,A=inj dim A, <n TH 5.
(2) (a) £TOHBERSE A-MB M LT G-dim M<n CH5.
(b) EIANMRA, > ' ZRT. £TDO0<sisnizxL T flatdim F <o T3,

T, Ml C 8RBT HDoTTENAMIE A, = I Ic&2BEL Tk
A,

ARTIE. BREAY B OWTOEEHLEE (*) 25X, TOKE(*) 2R TEHRA S —
BUCH L CIERGEE C AERDO n 2 0 I L THEMNTHAZ L ATT. T it () 126H 1.5
IR A44E (2) D (b) LITRMRTHHZ L E2ERLTHL.

2. HEMCRKERNNR
ERREBNBDICLRLRSEMETH (BEL R [1] 2BREL). UTICRT, Exfn

ST 5. A RENAY-RETH, ARERE A-NINL246ORTEE mod A TET. A DR



ER%E A TRLA A-IBEE AP-MB LAY, $iz. () '=Hom,(- A) L&{.

Ed 2.1, FROX,Ye mod AL T. HRER[MEE A-NBEEHT A f€ Hom (X, V)
2tkh 585 Hom (X, V) D857 —~ V8% Phom,(X, Y) THL

Hom (X, Y) = Hom (X, V)/Phom (X, )

Lit¢. DL %, Ob(mod A)=Ob(modA) kL. {EED X, Ye mod A LTX #6 ¥ A
DA% Hom, (X, V) &3 5misE mod A %135,

ER 22 FANDXe mod Ao LT, PEUEMNLTIREN0 >RX> P> X0
HoTRX emodA 2FERTH. TOLE, MEHHEEFEIS

Q:mod A — mod 4, X1 QX.

EFR23. FXemod AL TC. HRILRP, o P> X->0(Hi5. P, P 2 HRESRYH
WMRLTA5525) 2V S5eR P, = P, > TrX 5 012ik->T TrX € mod A 2EBT 5.
COLE, NMEMREHFEEZNS

Tr: mod A - mod A%, X+ TiX.

B, REEFOH

Tr: mod A— mod A®, Tr:mod A® — mod A
it mod A & mod A% L Rz £ED 5.

EFX24. BXemodAIZHLT
grade X = min{i = 0| Ext,, (X, A) = 0}
L. BL. 2TOi2028 LT Ext (X, A)=00k #1243, grade X= LT3, %=,
reduced grade X = min{i= 1| Ext (X, A) = 0}

LS. HL. 2TD iz 11230 T Ext, (X, A) =00k 21212, reduced grade X= x5,

ER 25 Xe mod AizafL T, reduced grade X = ¢ D reduced grade TrX = DL %
G-dimX =0 L EF8TS. X, 2TD0<i<nizH LT G-dim X, =0 CHA5x2H]

00X 5 2X,5X-0
YEaEETHLE. GAdmX<sn LERTA.
@l 21. FROXe modABIUn20ZHLTRD (1), (2) IEAETHS.

(1)G-dimX<n.
(2) G-dim Q%X) =0.



%22 {£8@0D X € mod A 125 L T G-dim X < proj dim X #& >, L. projdim X |3
X onExTERT.

3. EaHiE

BTFIZRWT. BERBIIT A5, A RANIY—RET S, HRERE A-MBLHHEORTE
% mod A TRV, £z, ADEESRYE AT CRLE A-MBPEE A™- B L AT,
%Y. ROERET .

31 EPAEMEA- I A) LENANSRA, > (A,) EOMOXNEEIT Auslander
condition ([3] 2#RE L) LslizittEL 22w, BI15. flat dim I(,A)° = 1 HD flat dim K(A,)° =
o 2= AbEET A ([7] 2B8WE L),

EBPASIRIBRL DWESHRLRMFHDS.

T 31, {ERD n221HL TXRO (1)4) 2EETH 5.

(1)2THXe modA BLY2<i< iz LT grade Ext, (X, A) =2 i- 1 TH 5.

) 2ThH Xe mod A LU 2<is nicidL T reduced grade THQ(X)) 2 i+ 1 TH 5.
() 2TH Me mod A® BLU2< i< niT# LT grade Ext (M, A) =i - 1 S8 %D,
Q) 2THOMe mod A? L2 <i< n i3 LT reduced grade THQ' (M) 2i + 1 TH 5.

BEEEIE n 2 2 (SR AIBEIEICEKS, WETIISSH. BRICATE S ATHIE. EHT A0
EIRLL 2,

ER 31 BYUn221THLT. &l 3.1 OFAREFIRSh L &, A 134845 (C) 27
TLEBIZEKLTA. )

%7:. Auslander condition & (C,) (it 23R Hrieaih D5 (5] £BRE L),

R 32, FRDOn202HLTXRD (1), (2) 12FHETD 5.
(1) 2THXe modA LU 0<i< niTstLC grade Ext)"'(X, Az i+ 1 3,
Q) B ANIE A T ITRT. 2TD0sisnizdLCflatdim F<si+ 1 €5,

B 32 n=0£BHLT5, B 3.2 OREREIB SN A0 Aizait (C,,,) 2@k
7.

ANTIVT 4+ ROESEITIIIE B 1T 5 BA0REL DA (7] £2REX).
Bl 33. A EWATIVT 4+ RET S, n20 28RL L. n22 OEBEIIE. A& (C,)
BRLTLIRET S, SO &, XD (1), (2) 12FETH 5.

(1) inj dim ,AS n TH 5.
(2) inj dim A, < n TH 5.



Biic. MEBClHT AN ELEER 5,

FH 34 nz0%8HLL. n23 OBEIIT. AlRSHE(C, ) 2RTEEET S, cOk
2. X0 (1)-3) EHETH 5.

(1) inj dim ,A = inj dim A, sn CH 5.

2)2THXe modA LT G-dimX<nChHs.

B3)2TH Me mod AP oL T G-dim Msn T2,

BHR
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ON A GENERALIZATION OF QUASI-DUO CONDITION
CHAN HUH

Throughout this paper, all rings are associative with identity. Given a ring R,
the Jacobson radical of R, the polynomial ring over R and the formal power series ring
over R are denoted by J(R), R[z] and R[[z]], respectively. In this paper we study a
condition that is a Morita invariant property and is a generalization of following two
conditions: (1) the quasi-duo condition, which was initiated by Yu in [12] and is related
to the Bass' conjecture in [2]; (2) the pm condition that was studied by Birkenmeier-
Kim-Park in [3]. Also we study some conditions under which the Jacobson conjecture
[5, p- 241] bolds by using the properties of the condition (*). A ring R is called right
(left) quesi-duo if every maximal right (left) ideal of R is two-sided. Commutative rings
are clearly right quasi-duo and right quasi-duo rings satisfy (*). The n by n full matrix
ring over a division ring, with n any positive integer 2 2, is not right quasi-duo; but
the ring satisfies (*). However the ring of infinite row finite matrices over a division
ring, say R, does not satisfy (*) because there exist maximal right ideals of R that do
not contain the nonzero proper ideal {f € R | rank(f) is finite } of R. Aring R is
said to eatisfy pm if every prime ideal of R is maximal. Such rings satisfy (*) obviously.
However there exist rings which satisfy (*) but do not satisfy pm as in [3, Example
3.3).

We first observe some properties of rings which satisfy (*).
Proposition 1. For a ring R, the following statements are equivalent:

(1) R satisfies (*);
(2) -Every right primitive ideal of R is maximal.

Remark. We may obtain the saine result for the left version of (*) by replacing “right”
by “left” in the preceding proposition.

A ring R is called a PL-ring if R satisfies a polynomial identity with coefficients
in the ring of integers.

Corollary 2. Rings whose right primitive factor rings are artinian satisfy (*); espe-
cially, PI-rings satisfy (*). Hence if R is-a division.ring that is finite dimensional over
its center, then R|z] satisfies (¥).

This is » part of the joint paper "On rings in which every maximal one-sided ideal contains a
maximal ideal, to appear in Comm. Algebra” with Yang Lee



By this corollary the polynomial ring, over the Hamilton quaternions over the real
field, satisfies (*).

As an elementary fact, a commutative semiprimitive ring is & subdirect product
of fields. In the next corollary, we obtain & similar result for rings which satisfy (*).

Corollary 3. A semiprimitive ring that satisfies (*) is a subdirect product of simple
rings.

Lemma 4. If a ring R satisfies (*), then every homomorphic image of R satisfies (*).

Lemma 5. [7, Lemma 4] Let R be a ring and 0 # €2 = e € R. If I is a maximal ideal
of R, then either ele = eRe or ele is a maximal ideal of eRe.

In the preceding lemma, if ReR = R, then eJe G eRe for every proper ideal J of
R; hence ele is a maximal ideal of eRe for each maximal ideal I of R.

Lemma 6. Let R be a ring and 0 # €2 = e € R. If I is s maximal right (left) ideal
of R, then either ele = eRe or ele is a maximal right (left) ideal of eRe.

Lemma 7. Let R be a ring and 0 # €® = e € R. If R satisfies (*), then so does eRe.

Remark. The converse of Lemma 7 does not hold in general. Let R be the infinite
row finite matrix ring over a division ring D, and let e be the idempotent in R such
that (1,1)-entry of e is. 1p and other entries of e are Op. Then eRe(= D) satisfies (*),
but R does not satisfy (*). However if ele G eRe for each proper ideal I of a ring R
and €2 = e € R (for example, if ReR = R), then the converse is also true as in the
following.

Note that if R is a primitive ring, then eRe is also a primitive ring for every
nonzero idempotent e € R. Following theorem is one of our main results of this paper.

Theorem 8. Let R be a ring and 0 # e? = e € R. Suppose that ele g eRe for each
proper ideal I of R. Then the following statements are equivalent:

(1) R satisfies (*);
(2) eRe satisfies (*).

We may compare the following result with {12, Proposition 2.1].

Corollary 9. For a ring R the following statements are equivalent:
(1) R satisfies (*);
(2) Every n by n upper triangular matrix ring over R satisfies (*);
(3). Every n by n lower triangular matrix ring over R satisfies (*),
where n is any finite or an infinite cardinal number.



Corollary 10. Suppose that R is a ring and e is a central idempotent of R that is
neither 0 nor 1. Then the following statements are equivalent:

(1) R satisfies (*);

(2) eRe and (1 — e)R(1 - €) satisfy (*).

Furthermore we observe some properties of polynomial rings and formal power
geries rings that satisfy (*).

Proposition 11. For a ring R, the following statements are equivalent:

(1) R satisfies (*);

(2) R[[z]] satisfies (*).

(3) R|[[z;0]] satisfies (*) for each endomorphism § : R — R.

(4) R|[[z;0]) satisfies (*) for some endomorphism § : R — R,
where R|[x;0]] is the skew power series ring over R by 0, subject to za = 8(a)x for
each a € R.

Similarly we obtain the following resuit.
Proposition 12. For a ring R, if R[z] satisfies (*), then R satisfies (*).

Corollary 13. For a ring R the following statements are equivalent:
(1) R[x] satisfies (*) and R is simple;
(2) R[] satisfies (*) and R is right primitive.

Based on Proposition 11 and Proposition 12, we may raise the following question.
Question. For a ring R, does R[x] satisfy (*) if R satisfies (*)?
Answer. Negative by the following Example 14.

Example 14. Let W = W, [Q) be the first Weyl algebra over the field Q of rationals,
which is subject to yz = zy + 1, and let R be the right quotient division ring of W.
Then the center of R is Q, and since R is purely transcendental over Q, it follows that
A = R®qQ(t) is not a division ring by [4, Theorem 3. 21}, where Q(t) is the quotient
field of the polynomial ring Qf¢] in an indeterminate ¢. Hence A # R(t); so R[t] is right
primitive by (4, Theorem 3. 21}, where R[t] is the polynomial ring over R in t and R(t)
is the right quotient division ring of R[t]. Clearly R satisfies (*). But the zero ideal
of R[t] is right primitive which'is not maximal. Therefore R[t] does not satisfy (*) by
Proposition 1.

In the following lemma we use the method in the proof of [4, Proposition 3.19)].

Lemma 15. If a ring R is simple, then every ideal of R[x] is generated by a central
monic polynomial in R[xz].

Following theorem is also one of our main results in this paper.



Theorem 16. For a simple ring R, the following statements are equivalent:
(1) R[z] satisfies (*);
(2) R[z] is not right primitive.

Remark. We may obtain the same result for the left version of (*) by replacing “right”
by “left” in the preceding theorem.

Corollary 17. Let R be a division ring with its center F. If R[z] satisfies (*), then R
is algebraic over F' and hence the Jacobson conjecture (i.e., if R is a central algebraic
division algebra over F, then is R[z] not right primitive?) holds. Moreover if F is
algebraically closed, then R = F.

We.do not know whether the condition (*) is left-right symmetric. But if Ris a
division ring, then R|z] satisfies (*) if and only if R[z] satisfies the left version of (*)
as in the following results.

Lemma 18. Let R be a division ring. Then R|z] is right primitive if and only if R[z]
is left primitive.

Proposition 19. Let R be a division ring. Then the following statements are equiv-
alent:

(1) R[xz] satisfies (*);

(2) R[z] is not right primitive;

(3) R[z] is not left primitive;

(4) Rjz] satisfies the left version of (*).

Recall that quasi-duo rings satisfy (*) by [7, Proposition 1]. In the following
proposition we have a connection for left-right symmetry between the condition (*)
and the quasi-duo condition.

Propaosition 20. If the condition (*) is left-right symmetric for a ring R, then the
quasi-duo condition is also left-right symmetric for R.

Recall that for a chain R € S of rings, S is called a finite normalizing (centralizing)
extension of R if S has a finite set of generators each of which normalizes R (centralizes
R). Clearly every centralizing extension is a normalizing extension. In Example 14 the
ring R satisfies (*), but R[t], which is an infinite centralizing extension of R, does not
satisfy (*). So we obtain following results.

Lemma 21. Let S be a prime ring and let R C S be a chain of rings. Suppose that
S is a finite centralizing extension of R. Then R is simple if and only if S is simple.

Lemma 22. Let R C S be a chain of rings and suppose that S is a finite normahzmg
extension of R. If S satisfies (*), then R satisfies (*).



Theorem 28. Let S be a finite centralizing extension of a ring R. Then the following
statements are equivalent:

(1) R satisfies (*);

(2) S satisfies (*).

We denote the n by  full matrix ring over a ring R by Met,(R) for any positive
integer n.

Corollary 24. For a ring R and any positive integer n, the following statements are
equivalent:

(1) R satisfies (*);

(2) Mat,(R) satisfies (*).

Now we prove that the condition (*) is Morita invariant.

Corollary 25. Suppose that a ring R satisfies (*). Then for every finitely generated
projective right R-module P, Endr(P) satisfies (*) too; especially the condition (*) is
a Morita invariant property, where Endg(P) is the endomorphism ring of P over R.

Note that a finite group ring over a ring R is a finite centralizing extension of R,
and so we have the following result by Theorem 23.

Corollary 26. Let R be a ring and S be a finite group ring over R. Then R satisfies
(*) if and only if S satisfies (*).

In the following Remark, we consider another extension by tensor product, and
check whether it satisfies (*) when ground rings satisfy (*).

Remark. Regev [10, Theorem 6.1.1] proved that the tensor product of any two PI-
rings is a PI-ring. By Corollary 2, Pl-rings satisfy (*) and hence we may conjecture
that the tensor product of any two rings which satisfy (*) also satisfies (*). But it fails
in general to be true by Example 14. Notice that R[t] = R ®q Q[t] by [11, Corollary
1.7.20]. Both R and Q[t] satisfy (*), but R|t] does not satisfy (*).

Next we obtain a similar result to Theorem 16.

Proposition 27. Let R be a field and R[z;a) be the Ore extension of R by an
endomorphism « of R, subject to rz = za(r) for r € R. If a is not onto, ther R[z;a]
does not satisfy (¥).

Recall that polynomial rings over Pl-rings are also Pl-rings. Hence we may con-
jecture that Ore extensions of endomorphism type over Pl-rings are also Pl-rings. As
a byproduct of Proposition 27, we get a negative answer as in the following example.

Example 28 Let R = Q(z) be the quotient field of the polynomial ring Q[z] over Q,

where @ is the rationals, Define an endomorphism a : R — R by a(f(z)) = f(z?*) for
f(z) € R. Next consider the Ore extension S = R[t; a] subject to at = ta(a) for a € R.



Then since « is not onto, S does not-satisfy (*) by Proposition 26. Assume that S is
a Pl-ring. Then S satisfies (*) by Corollary 2, which is a contradiction.

Acknowledgement. The author would like to express his gratitude to Professor
Masahisa Sato for his giving the opportunity to present this material on the Japan-
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Quadratic bimodule problem *

Osamu Iyama

Abstract

It is shown that a kind of bimodule problem, called quadratic bi-
module problem, can be always solved. As applications, we will show
that a kind of orders which form infinite sequences are of tame repre-
sentation type, and a kind of algebras which generalize string algebras
and clannish algebras are also of tame representation type.

Bamodh. REBELOFRRETRII oD, BIL “tame FKIRE"
BU “wild REE" 9o h 3, ThdtF 4% Drozd @ tame-wild Theo-
rem T b, ,

“tame RJRE" LI ZOMBOBEF—EHZHXRB LOMBEOBEICL T
AP E VI BEHTHY, “wild BREE” LI 20OMBEOBEFIETIR_EHK
SHEARELOMBOB LN ObBEREVSIFTHS, ERLERRUZOIERIL
[CB5]) &8,

COEBIT, HRRSETEREL Y OIEV “BOCS” OFRICBWTEHSH
5o THIRZFINT 27201 reduction & V3 #R{ENTTRE & % o - BAZEH D ELL)
D—2NEETHN, F-20REE L THADHEBELHE WIS B
kL5,

AT BOCS @ dual #AHICE D& L5 “bimodule problem” (B%
LTBP) 25838%WMHK,

1. B (LRI 228K

(I) &% f o bimodule problem PHIZfRF2F LR T, DD bimod-
ule problem BV Tid, TRILAIUSFHAICTN S HE L Y “quadratic bimod-
ule problem” (RERBFIT S, (5.2, 5.5)

~The detailed version of this paper will be submitted for publication elsewhere.




(1) () DIEAE LT, ERESHER R L0d 28D order DBEEHE
FEETRDBILDWETHE I L 2RT (7.1.3)0 ZDHED order I2BWVT
b, (I) EARICZTRIERIEBMICHENZ P L ) “quadratic order” &4
BT 5 (24)0

(1) (I) Dt DIEA E LT, »2HD artin £ TROBEEEMMB L £THRD
BIENTETHD L ERT Thid special biserial algebra ¥ & U° clan-
nish algebra & LTHISN TV Db DERLIIEATV S, (7.2.1)

(IV) (II) @ artin ZTTRITEL THHHL quadratic order 5B 5233 %
EET 5, SN (III) D artin ZFTRRAF IGHER E L Torder 2O
W) BBRBEVRREERL TV, (2.5)

1.1. 8

(1) BBICBWTIE, (II) I “restricted” % 2EHLDEREZ T T/
K, EREEL RETHDENEOBRDERIL ) b0, BL L (6) B
.B-ﬁo ’

(2) UTHO VIR, SEMBEBEIER R RUE k iR hIEoRE

(BT, BB, TN, HREDOHRME etc.) ZEX 2V,

(3) (II) i2BWVT R DRFHEIRBAOAG ERE LAE, FUIC (IIT) 12
BV TERBRSREWBAKLERE L BHEIRENTN tame RRETH S HH®
REh3,

__ (4) —iz (I) ORBIOBIX. skew polynomial ring B U A, AL, By, Cy,
A3 BlD extended Dynkin diagram IZX}53 % hereditary algebra EOM#ED
Bl L o TREBTRETH 2 HA5H %,

(5) MBTOHA LA oA, REMAKLTRVWETRISHL T “tame &
HE" RU “wild RRE" OE#HiX. dichotomy (HIH Drozd @ tame-wild
thorem O—f%{k) PRILL P2 ¥DERREFORIIDOER TBHICHET
LV EMREBRLTHREB TR, $OFREATY R, LIL (4) 0BE
BZOHFMIZBITS “tame RHE" OFHIH L, — 20 ES LTS
tEbha,

—7%. BUHETOEH L LT generically tame K UF generically wild ([CB3]
BH) MbiFohd, ChHoOBSIIE —KOBICH LTS 2 BATERZK
H, EROBR L OMENRENIICHABTRZVWRICEDNh S, &6 ITAKM
% EDOZTRUSN T dichotomy b 4L BN TV,

(6) LAar, Wag 2 —) ¥ 7V A FCHELAARICHAT 2,

(I) DIEBDOBET, Ap, Ay, B, Ca, A3 B0 hereditary algebra £l
BHOBIIBVT, 2K 6.3) PREALTIHERTLENELS, UM
MEDTELREIZL Y COMBERE ) LRA TV, £ HEHEICH



BEMTZVRIELREIIZERTHS ) LREERZEITVS (ZOFE
DRI [CB2| B) . BHAOHETIREZOENF¥ v v TL %Y “restricted”
ZAMMEZBL TV, TOHRNFE T LEERERLS 5 H ORI
L7 (6 ﬁﬁ@.ﬂ-ﬁ)

2. Quadratic extension KU Quadratic order

LT, BAIHL, A-IMBELEATEA-MFELZERTHO0LEL. modA
CTHBRER A- MBORTHEE*RDODTIDLT S, T2 J4 T A @ Jacobson
radical #XbTHIDE T 5,

9. AXTERTHMBEICB W TREEBICRENTL % “quadratic exten-
sion” DEHEZT T D, COERIGMET ETHICABHICRZ 2 hbaNniwn
M, PRI ZOFENESHIHGOND (23) HhH6 LG5 L H I, FEFIC
BUWHERHTH D,

21, EBE K 24¢¥T2. ARR K-FRXROMOBS B — ANt
quadratic extension TH 2 &ii. A PH¥BEMTHY, %D B OMET
e I3 LT 2dimg eBe > dimy ede BRI T 2HTH 5,

2.2. #i

(1) f : B — A % quadratic extension . £ % B DEXMETL ) 2544
BLTR, CORfHhOoHIND f: B :=@,;e.Be; — @, fe:)Af(e;) =:
A’ (e; € ) b quadratic extension £ %5, COHD f' &, f »5EB5h 3
quadratic extension LR |ZT 5,

(2 AVEHMT 1=, XEXPETNOGTHET S, O B :=
Dicicicn €ide; — AL quadratic extension TH b, DD quadratic
extension % A-extension LFEEZ LIZT 3,

(3) LT DD quadratic extension ¥ FhEh type (I),..., type (V)
ERERZ EILT B,

(I) B = A 384k,

(1) SHEDOHD_KILK D C B ¥FELT. B— Mp(D) = A iXIE
RSB,

(IL) B 28HETH D B — BB =: A RHABDAA,

(IV) B — A Mook K,

(V) #4 D ®FHELTB := D[ID — MyD) =: A & (z,y) —

(59

2.2.1. ¥ Bass order #° quadratic extension 25 [£ L %] i3 X {



AMENTVS, (3) (2BiT5 type (I),..., type (V) %5 &t [HN] 2B
% Bass order DFFICETOEEZMLI-bDTHS, ERICIE. SZTD
type (I) i Bass order IZIZBh 3", type (II) i (I) R U* (1) B Bass order
KT %, TOMIZEDT X,

2.3. &% (ETEE) f:B — A ZHBX K-ZTXBOMOYE., A
TEEME T A0, f 5 quadratic extension ThH A LETFE&M4IX. H5%
THR C TUTORGXHI-TODOIFET I,

(1) Jc=JgCBCCCA,

(2) C — A 1% A-extension,

(3) B/Jp — C[/Jc W type (I) 25 (V) OFEOEZOERM P LBONS
quadratic extensiono

24. B#E (F#LIZ[CR]&R)
R ¥ EfREHER. K ¥ ROBE. k % R OFKEET S,

(1) R-Z35C8’ A #* R-order TH 3 Lix. R-IBEL L THBRERSE
MBETHE2E, ZOF A-MBE L A A-BF THHEWE, R-MBFLLTHR
ERSTMETH S8, latA TA-BFORTEERDTEIIT S,

BLF Rorder A, K-ZTTRABLUV R-STBOBMOES A — ANE
AOhTn3ELT 5,
(2) AH A D full order THa i, KQpA=ANKILTSH,
(3) lat(A, A) THHER lim latA EEDLTODLTH, SCTARA

&4 A D full order < 'Bg)k'?‘%o FZIES LA BEDAD full order
261X, lat(A, A) i latA I—3KT 3,

(4) A 2% A ® quadratic order T# 5 & X, quadratic extension B —
A BB @ hereditary full order A TJa=Jy CACALRZLDNHFEEL
T AJ/Jp — A[/Ja H* quadratic extension & %255,

(5) () BV T B=ANBILT SR, A% A D quadratic Biackstrom
order LIFRHIZT B,

2.5. k Lo special biserial algebra KU & ) —4%IC clannish algebra &
quadratic Backstrom order 25186 N5 A5 A%, special biserial algebra
DEHIL [WW)], clannish algebra NDEH L [CB4] £,

@& (1)T % k Lo clannish algebra £ 3%, ZDBF, k[[z]] LD quadratic
Bickstrom order A 3 & U2 OFH ideal  #FEL T, T=A/l,
(2) Wi A % k[[z]] L® quadratic Bickstrom order. A % hereditary



order TJA =JACACALZbDETHE, H£ED A OFHl ideal I/ T
dimi A/I < 00 %2 bDIIKF LEATHELT 5,

(i) A/Jn — A/Ja % type (I)(II]) OEOEZEOER»LFLNE L5
£ A/I X k LD special biserial algebrao

(ii) A/Jp — A[Ja Pt type (D){UI)(V) OEOEZOER > HBLNS
6IXA/I 1 k £ clannish algebrao

ZEBAIE sink 2R A, B quiver S EHE N3 ERAT k- EH
A k[z] £ hereditary order IC%2 2B L W BERILHBLN S,

BLTFD#ET, quadraticorder A 12339 5 lat(A, A) R U quadratic Backstrém
order A I231 3 % mod A 2 RETHENWEEL &5 (7.1.3,7.2.1) o i clan-
nish algebra 7 {2343 % modT dHRES N5,

3. bimodule problem

bimodule problem X BOCS [ff. RIABIZHBIT 54 ORELHE—1IC
BRLBDFES BLEMICHBAINIBETH S, ERRORRECLOLDT
FCHRT 2B OMEICB T, bimodule problem X BOCS £ 9 bgh T
Wb,

PUF. THJ 1381 skeletally small ZeingEE, [BF) 20kl E % &k
+2LDET B, B C ISHL Ob(C) T C DHROLH. C(X,Y) T X b
Y ~oftoekiibl, fec(X,)Y) L gec(Y,Z)nak% fg TEb
Fo F7 J. T C D Jacobson radical EbTZ LilT %,

4. bimodule problem NEH*T 5,

3.1. B%[CB] ¢, D ¥%xB&t ¥ 5,

(1) c- hnB¥ (resp. (C,D)-INR¥) LIXIREMEF : ¢ — Ab (resp. F :
CIID? — Ab) DEEZERT 5o C- IIEE (resp. (C, D)- i) &z, WF
MOBRERELHFLEBOLBIZLYD Abel BERKT,

(2) bimodule problem (L TBP) &ii, ¥ (¢c,M) T, CciIE. M
X (c,c)- Bt THBEI3%bnLT 5,

(3) BP (¢, M) {23 L. B Mat(C, M) 2RD LI ICEHT 5, Mat(C, M)
DHRIL, T Xm TX € Ob(C) L me M(X,X) LWEBbDET 2, 4t
1X Mat(c, M)(Xm, X'm’) = {f € ¢(X,X") | mf = fm'} &L, ORI
CIBIIAEREZDEITHVTERT %,

(4) SHBF Mat(c,M) — CHERIZERENB, Thitk 3 T, D3]
ERL%E (o, M) £ 8L EZhi Mat(C, M) ® ideal £ ), ZhicksH



B % Mat(c, M) := Mat(C, M)/(T, M) L EDTEIZT 5,
(5) X € 05(C) I= X0 € Ob(Mat(C,M)) X EEHHEICLY, ¢ %
Mat(C, M) DFHHFB L R THEMNTE 2,

3.2. g

(1) 43¢ BP i3 (C, M) DAiiC derivationd: ¢ — M i 7: (C, M, d)
ELTEEENS, LOEHIEI d=0 L LEBObDII—5T 5,

(2)d#0D BP 28 T5HICIABRANDERIT (HRBIREVIHET
138 <) reduction WO REELHIENTERL L5 812H5, I BP0
T2\ derivation % EFTHHC L Y, LD T reduction iICBWTHLADTH
5, T1id Drozd ® tame-wild Theorem A*ZF TR OEM A % T7- BOCS
DA BV TIEAE N -FHZ BT 3,

(3) KHMDLLFTUTTIE d=0 DFLDAE) o THIERAIWDIRS
QBP (5.2 CTEH) BT, d =0 D% T reduction 2HTHITEET
HB7:DTHb, BHIH (d =0 D) QBP it reduction ICE WAL TWVBZNDT
Hbo IRLEDLDIZBEEDLDLIZRY BF)D reduction * EHTHLE
»Ha (44) .

3.3. &%

(1) B ¢ #* Krull-Schmidt T#» 3 &k, £FONHI, HCFRRHS
RBERTH5 &) LR OFRBAOEMICFETHLHELEKT 5,

(2) ind(C) T ¢ DEBEMNROREEOLELEDLTHEIITS, UTEE
BIZ. X €0b(C) 1oL X eind(C) T X FEEHTHI2BEEDT,

B)YMEF:c — DH»HEBTHALIE, £ED Y € 0b(D) 123 L F(X)
NY LEABTHEH% X € Ob(C) PEETIHEERT 3,

Q) BFF:c— DHRERMETH 2 Lik. BAEH»OLHTHY ., £EOD
0# X € Ob(C) X F(X) #0 2WATHLE®RTHbDLT S, (F{HEBFE
TLWVWOTHIEHRVEETIREZW) ‘

(5) MBAMBATH S L. W—DDERBTMEE L HFOW, MBIBFT
HHrLiZ. E—DoDHBETERFOH,

3.4. Mat(c, M) DHBDFEFEEELICRET 5F % BP 2R LR
LizTarl, KEBOS{OMEIZBP 2B BICRETAENHRS, LT
OFIERD BERNLBEREERT. 34.1 125D Noether Bt A £D mod A
EROZMEBP 2B HICRHESND, —H 342128 D HBHD order
A’ E0 lat(A', A) %k 3 BEABP 2R BIRF SN,



3.4.1. fI[CB] A % Noether & L P THRENSE A- MEFEORTHE
28T THE Jp BERI (P,P)-E LREENhS, Mat(PIIP,Jp)
5 mod A “DAHFHME FARDOBICER SN D,

(PTIQ)f € ObMat(PII P, Jp)) L. f € Homp(P,Q) THBHDT
F((PIIQ)f) := Cok(f) € Ob(mod A) & B, FHIDWTH @ik,

3.4.2. R E*EMEHTER. K% ROME. ADBE2*FRKRK-%TT
B, ADA *¢biZ B D full R-order T I := Jp % A OFfll ideal TH 3
Biedb0LT 5,

A:=A/LLK:=A/I BE,. T%1I(L,L'):={f €lat(A, A)(L,L")|(L)f C
IL'}, CEHSNSD lat(A, A) O ideal & ¥ 5,

BF modA — mod A, X —» A @5 X RU lat(A, A) — mod A, Y
Y/IY % #hFh g, L EBE. modA % (K, L)-MBLERLAbDY
N ¢¥5%,

&8 Mato(KIIL,N) % f € Homx(B @7 X,Y/IY) DEBELS L5
2R (XMY)f £ %5 Mat(KII L, N) OFEHRFEE T 50, BORIE
F:lat(A, A)/ T — Mato(KII £, N) H*ROBUICEHRE N 5,

X% L € Ob(lat(A, A)) =3t L fr: A Qg (L/IL) — AL/IL ¥ BA%E
—HRELTFL:=(L/ILTIAL)f, £ BL . HIZoWTHEARICED B,

4. A[$9% bimodule problem XU %@ Reduction Lemma

—Af%® BP 2%} LT [CB] it Reduction Lemma &S 28HE 5% 12
KL ThEERHRAYEBLLOTHY, HHWSH BP IHATIRLRE
- MENEV . T T3 Reduction Lemma (4.4) X, 4.1 TEHT 45%
ZBP I LTLPBERATELZVWRD DI, BELZDVBIFTERLEZ>TW
%o

4.1. & (C,C1,Cry M, M') HRI¥ % BP TH 5 & iz, LT OREIRIL
TaHZE,

(1) ¢, G, C- i3 Krull-Schmidt B, M D> M’ L bi2 (G,C,)- Tk,
-CT:=CI/JCHE:=C‘F/JC,.’ M = M/M' tja(o

(2) Ty M +MJe, CMs WAIZM i3 (C,C,)- B 12k 5,

(3) X €ind(C)) #* M(X, ) #0 2@ wid. M(X, ) B - i,

(4) X €ind(c,) 2* M(,X) #0 £#2=€id. M(,X) R ¢- hid.

(5) BIIR : ¢ — GIIC BBRMF. € D Ty, (e HEED X €
0b(C) I L C(X, X) D T (B X, B X) 1 T, (B X, Pe X)) o C:=C/ Tz ]e.



LB,
BT Z 0Tk oT#% BP (C,C1, Cry M, M') 2BET %0

4.2. B8 EZOm e M(X,Y) (X € 0b(C),Y € Ob(C,)) =L W €
Ob(al)) k€ CI(“,)X)) pE CI(X) W)) Z e Ob(Cr)) c€ cr(},) Z)) 1€ Cr(Z)Y)
T (1)(2)(3) 2#7=T b DIFEET 5, _

(1) kitge, (ZOBEENIZ0 W 5H X B Y 52— 0
TLTHHLHERHIIT S, )

0——Gi( , W)—E8( , X)—Z-M(,Y)—2oM(,2)——0
0——C(2, ) —EG(Y, ) —BE-M(X, )—E—M((W, )——0

(2) kp = ].w, ic= ].z.

(3) mei = pkm.

CDORHERIZW, € obG), i € Ct(Wl,X), k € Gi(X, Wh), Z, € Ob(c,-),
i} € C,-(Zl,Y), c € C,-(Y, Zl) T iy = lw‘, 10, = lz‘, 1x =pk +pr1ka ;U
ly =ci+ i PHLETEIORODOEMS. TAHE (4)(5) LT 5,

P i
Wy X —my Yy Tesz
lp'Tk' lc‘T"

Wi o

(4) (-kam) 2L ¢, Wh) — M(,Y)eiy BU T, (, W) — M'(,Y)ai
i eht,

(5) (mCy) 75*@ { c,-(Zl, ) —)plklM(X, ) &U JC,(Zl, ) — plklM'(X, )
i3 &5t

4.3. EFE (1) BFE {}:= ()I[]: Mat(C, M) — GIIC £ UTDES
WEET Do

X Xm € Mat(C, M) IS LT, ROFIA 4.2 DFIETELICLD L)
2 (Xm) € 0b(a), [Xm] € Ob(C,) 2 EHT %0

0—— (X)) —E P X —E P X —E 5 [XT]—0



$1 7 € Mat(C, M)(Xm, X'm’) izt LT, 5.2(2) & b (f) € G({Xm),(Xm))
RU [f] € G ([ Xm), [XT])) £ ATATRICEALILIDELTERTHE
MNT& B,

00— {X) —E P X —F P X —2— [XT] ——0
_L(?) _L]Pl? lPrT _L[?l

0—— (X' —E B X' —2 P, X' —E [ X'm|——0

(), [1 BT { } #° well defined Th2EIZEHIZHD 5,

{A} =0 2 3x% A & hELD Mat(C, M) OFXHEFE T band B, MF
{} »g% string BEFRBIZT 5,

(2) Mat(c, M, M) Z L TOBUIIEET 5o

Ob(Mat(c, M, M")) := Ob(Mat(C,M))
Mat(C, M, M')(Xm,X'm') = {f €c(X,X') | mf— fm' € M}

Xm = Xm X HPF Mat(Cc, M,M') — Mat(C,M) 2853, Zht
{}=010(] 2&83a3c&h, {}=)[]: Mat(c,M, M) — GIIC-
B85,

BB ZUTORICEET 5,

Ob(c') = Ob(Mat(c, M, M"))
C'(Xm, X'm') := {f]]ge€a({Xm),(X'm))[[c-([Xm],[X'm) |
FTII7={k} %3 h € Mat(c, M, M")(Xm, X'm') HFF1E}

BMERIP : ¢ — QIC PROBICEESNSE, R Xm € 0b(C') =
Ob(Mat(C, M, M")) 123t LT B [IP(Xm) := (Xm)II[Xm]o 4§t fFIlg € C'(Xm,
X'm') € C({Xm), (X'm')) 1 Ce([Xm], [ X'm']) S LT R IIR(f19) := fI1 g0

BIP X MBRUM XC-BELALENS,

M(Xm,X'm') = M(B(Xm),P(X'm')) = M({Xm),[X'm])

4.4. &3 (Reduction Lemma) (C,C,Cr, M, M') ET#% BP ¥
bo COR, MELHMWE F: Mat(c, M) — Mat(C', M') BEEIE L TRARK
RTAC I8

(1) F(A) =0 = 538 A X Y3 Mat(c, M) OFiEHFBiz. Mat(C, M)
® band E t ﬁHlEo




(2) { } & Mat(C, M) O string B C'/ T, [1c, PFMEE S 50

FEEXMFLREFICTS, Fickh Mat(c, M) 5. Mat(C,M) ®
band BICFHEZ B AE LR TH S,

DT FOBEET 5. E0LIZi Mat(c, M) RU Mat(c', M') I25F0
WA EMTIR 2 Mat(c, M) RU Mat(¢', M') 2 B2 05D ) 25\,

4.5. EE B Mat(c, M) U TORICEHT 5.

R UZH (Xm, k, p, c,i) € Ob(Mat(C, M))xCi({Xm), BiX) XCi(PiX, (X)) x
C(Pr X, [Xm)) X C([Xm], P X) CUTOLEEBLT S0 kp = Lixmy,
ic= I[Xm], pkm =mci &Utkﬁf 4.2 @ﬁp*?%ﬁo

0——{(Xm)—E P X —F 4P, X —E [ Xm]——0

Fhi Mat(c, M)((Xm, k,p,c,),(X'm', K, ¢, ,7)) := Mat(C, M)(Xm, X'm')
CRET B 42 £ 0 Mat(c, M) & Mat(c, M) & FHETH 5,

4.6. EH B Mat(c', M') 2 LT ORICEHET 5,

Mat(c', M") O33Rk (Ym)n (Ym € Ob(C') = Ob(Mat(C, M, M')), n €
M (Ym,Ym) = M'({Ym),[Ym])) OF%EL TWBHIIER, Mat(c' M')
Ot ((Ym)n, k,p, ¢, i) € Ob(Mat(C, M, M"))xCi{{Y m), BiY ) xCi(R:Y, (Y m)) x
CB.Y,[Ym]) X Co([Ym],P.Y) CUTOREERLT Do kp = Liymy, ic =
Liym), pkm = mci RUKH 4.2 DERTEL,

0—— (Y m)—ERY —F 4p,Y —E [V m]——0

gHit Mat(C', M')(((Ym)n, k, p, c,i), ((Y'm')n', k', p', &, ) := Mat(C', M")
((Ym)n, (Y'm')n') £B<. 4.2 & D Mat(c', M') & Mat(c', M) ICRIETH

4.7. EE K %MF Mat(c, M) — Mat(C, M) U, anG oL,
Q ¥ME Mat(c',M') — ¢ — C' [ TaTle. PEET %, OB, BFF:
Mat(c, M)/ K, — Mat(c', M")] Q EUTORICERT %o

X% X = (Xm, k,p,c,i) € Ob(Mat(C, M)) i=xt L kmc =0 DT kmc e
M'({Xm),[Xm]) = M'(Xm,Xm) TH3. —F Xm € Ob(') THZDT
(Xm)(kmc) € Ob(Mat(C',M')) THb, F(X) := ((Xm)(kme),k,p,¢c,3) &
B<o,



8 f € Mat(c, M)(X,X') (X' = (X'm', K, ¢, ¢, #)) I LROER % #
X3,

P i
0—— (Xm) —LtoRX B 3p X —5— AN —E 5 [Xm] ——0
AL J}Hf J}P S I
E z =

0——{X'm") —EB X' — 2 3 p, X'—& 5[ X'm]——0

ZOBFf = kB )P Ti®f)d LB THLEBRDTREL D k(Bi1f)p =
(f) RV i@, 1) = [f] THAHDT ¢! DEHLY Ff € C'(Xm, X'm') T
5, =5, kmci = kpkm = km RO pk'm'd = m/di'd = m'd THHD
TRALY Ff 25 Mat(C', M')((Xm)(kme), (X'm')(k'm'd)) D4tk 5255
B,

(kmc)(i(B, £)d) = km(B,f)c = k(@if)m'd = (k(B.f)P) (K'm'c)

(1) Ff = {f} A*B3L,

(2) F(K) € Q H*HiLo

(3) £8D f, f € Mat(c, M)(X,X") 123t L F(f) + F(f') = F(f + f') 2%
Vo

(4) HEZED f € Mat(c, M)(X,X') RV f' € Mat(c, M)(X', X") izxf L,
F(AIF(S') —F(ff') € Q AL,

(5) F iXBEME F: Mat(c, M)/ K — Mat(c', M")/ Q %%,

RERR (1) Ff = k()2 TTi(P-f)d = (N T[] = {f}o

Q) h3<, (3) BFELD,

(4) FAR(F) —F(F ) = {fHf} - {f} =00

(B)FARETHB LDAZAREIIRV, F(f)€e Q% BIF, (1) X {f} =
0, WXIZ feko

4.8. EBH BiRG : Ob(Mat(c', M) — Ob(Mai(c, M)) RUEHD
Y,Y' € Ob(Mat(c', M) izt LER G : Mat(C', M')(Y,Y') — Mat(c, M)
(G(Y),6(Y")) 2T oRICE#T 50 G RMFTRLZWVWI LITER,

MRY = (Ym)n,k,p,ci) € Ob(Mat(c M) XL pk(pni + m —
pkmci) = pni = (pni+m—pkmci)ci ThH2 DT, (Y(pni+m—pkmei),k,p,c,i) €
Mat(C, M) %182, G(Y):= (Y(pni +m — pkmei), k,p,c,i) EB<,




§ fIlg € Mat(c', M')(Y,Y') (Y' = ((Y'm')n', K, ¥, ¢, 7)) (5L,
fIIgeC'(Ym,Y'm') THBZDT, ¢ DEHLY he Mat(C, M, M')(Ym,Y'm')
T{h} =FII7 2liTdbOIFLh 3,

s
0—— (Ym) —£ > PY —ZEpY —5— [Ym] »0
7= ﬁﬁi |PA 7=
7 . —
0——>(Y’m’)i->P,Y'—L>P,Y’ € 5 [Y'm’] »0

Wi € 0b(Ci), 7} € (W1, mY"), ki € C(mY', W]) T kiph = 1w, Lpyr =
Pk + ik 27T DORUY Z, € Ob(C,), 71 € C(2,P,Y) 1 € C(P,Y, Z)
T ilcl = 1311 ]'IP,-Y =c+ Clil %Tﬁf\:?% @’EEE‘: bt 5,

KRE 4.2(5) &0 v € Jp(Z1,PY") T (py — pk)(Pih)(p'n'? + m' —
PE'm'di) — (m — pkmci)(P.h)(1 — ') = meyy R T OB, A
2 4.2(4) X9 6 € Jp(BY,W]) T pni(P-R)(1p,y» — i) = Skym’ ZHEL=TD
oD,

(1p,y — Pk)(Bih)(P'n'i' + m! — Pk'm'dé’) — (m — pkmci)(P-h)(1 — c7')
= (1p,y — pk)(Bh)m' — m(P.h)(1 — '¥')
= —pk(Pth)m’ + (Bth)m' — m(P.h) + m(Bh)c'i' =0
P R) (1p,y = &F) = 0
G(fI19) := (pfk' + (1 — pk)(Bih) + k1) TI(cgi’ + (P-h)(1 — &¥) + a17)
B, TAHE G(fIlg) = pfk + (1 —pk)(Bih) [T cg?’ + (BR)(1 - ¥) =

BRIIPR€C(Y,Y) £ G(fI1g) € C(Y,Y) F¥BILL. RARLD G(f1g) €
Mat(C, M)(6(Y),6(Y")) #5375

(pfkl)(plnlil + m — plklmlclil) — pfk’p’n'i' = pfn'i’ = pngi' = pm"cgi'
= (pni + m — pkmci)(cgi’)

((1 — pk)(Brh) + 6K)(P'n's’ +m’ — p'k'm!d?)

= (m — pkmci)(B.h)(1 — i) + meyy + 6k (P'n'i’ + m' — p'k'm/d7)
= (pni + m — pkmei)((P-h)(1 — ') + 1)

4.9. ROFHELY 44 BEHICHELNS,



wHE (C,C,C, M, M) ZT[#7% BP, X RU' Q % 4.7 TEEL - ideal
tTZ’o

CORF R G REVCYEZRER: Mat(c, M)/ K — Mat(c’, M")/ Q
RU G : Mat(C', M")] @ — Mat(C, M)/ K £& <,

A 4.7(5) & Y FIiXBE, WA F HFEETHEHFLRTDIZIERD
(i)(ii) ZREIT1+DH

(i) Fo G it Mat(C', M")/ Q DIESMF i< HE,

(i) G o F i Ob(Mat(c, M)/ K) LiE%,

(i) 2R¥o EED Y = (Ym)n, k,p, ¢,i) € Ob(Mat(c', M")) i=3f LK
HFoG(Y) > Y 2RTo

Fo G(Y) = F(Y (pni + m — pkmci), k,p, ¢, %)
= ((Y(pni + m — pkmci))(k(pni + m — pkmci)c), k, p, ¢, 9)
= ((Y(pni + m — pkmci))n, k,p,¢,i) Y
£ED fI1g € Mat(c', M')(Y,Y") (Y = ((Y'm')n',p, ) 13 LKA
FoG(fIlg) = fIlg Z ¥
FoG(f []9) = F((pfk' + (1 — pk)(®:h) + 5ky) [T (cgi’ + (PR)(1 — ¢'¥') + c17))
= k(pfk' + (1 — pk)(Bih) + k)P’ [[ élcgi’ + (Bh)(1 = ¢7) + ery)d = f[] g
(ii) 2R To ERED X = (Xm, k,p,c,i) € Ob(Mat(C, M)) 125 LKR L b
GoF(X)=X
G o F(X) = G((Xm)(kmc), k,p, c, )
= (X(pkmei + m — pkmci), k, p, ¢,7) = (Xm, k,p, ¢, i) = Xl
5. Quadratic bimodule problem
51. BB (1) B c ¥HEMTHZ Lk, £8D X € 0bC) i3l
C(X,X) BEYHTHEHLEHRT 2,
(2) BEMF F: ¢ — D #* quadratic extension TH 3 Lix, D Ht¥

HHTHHEED X € 0b(C) XL ¢(X,X) — D(FX,FX) #* quadratic
extension (2.1) TH LB L EKT 5,

5.2. B® (c,M) (E®IZ(C,C,Cr,M)) #* quadratic BP (BL T
QBP) TH 3 it (1)-(4) PRIAUTHHETHY, ERIb&h’ QBP ThH3
&k (1)-(5) PRI THH,



(1) C, G, Cr i¥HHTHREAHAR R Lo Krull-Schmidt B, M ik (¢, C,)-
#HT R APLBNHERT 2. CG=Q/ T, Cri=Cr [ Te, EBLE. TR
LI REIC b LHBRRK (k:=R/Jp) o

(2) #ind(Cr0) < 00 %% C, DTEHEAE Coo RV X € ind(C) ISHL N
EM(X, ) D Co ~DHIRETZE. N IR CF- BT Naxo N TE, =
0o

(3) #ind(Cp) < 00 %% C, DFHEHIE Co R X €ind(C,) XL N
EM(,X)DCo~ORRETHL, N IZEF) Co- MBET N Jo, N =00

(4) mIIP. : ¢ — GQIIC ILEKMFE, ¢ D JeTle (ie. £EED X €

Ob(C) ‘:HL C(X’X) D JCI(P(X,PJX) HJc,.(PrX,PrX)) 'Eé b N E = C/JC,HC,.

i3t L € — G TIC, & quadratic extension,
(5) Jc = '7CIHCr°

5.2.1. & (1) QBP (C,M) » #ind(C) < oo X HA¥IE, QIIC %
(¢,a,C, M) BIERILE N/ QBP THABRICI ) ETHITETH S,
(2) R#&pit 7.1.3, 7.2.1 2,

5.3. #& (c,a,C M) ZERENZ- QBP ¢EL. M & M OEKX
(Cl,Cr)' g’ﬂﬁ‘ﬂﬂﬁt '3-53#\ ﬂTﬁ’ﬁﬁi‘T%o
(1) Mat(C, M) itmod A LB LBOBERICEEICL2, BL A 1F
BRR k- ZTERTROVE I,
(a) D idfHE, o i3 D ORECHEB. A := D[t; 0] & skew polynomial
ring (d€ D ISRL td° =dt) o
(b) F i38ME. tp: D — My(F) RV 1g: E — My(F) (a,b=1,2)
i type (I)(ID)(IV)(V) @ quadratic extension, M := Homy(M,3(F), k) &
(E,D)- W@ A:= (2 9%).
(2) (¢,a,Cry M, M") 13WT#7% BP Thh C' % 4.3 ORRICEHET S L.
FKIIP L hEHII B C'/Jc:l'[c.- — G I1C, i quadratic extension & 7%,
¥z, (C,a,C, M) BBU (EHILShTwBERLEW) QBP Lk 5,

SEEA (1) 3% 5o (2) 11 6.1.1,6.2.1, 6.2.2,6.2.3,6.24 L) 5H 5, I

5.3.1. T8 —M%ic (1) DB A > S5HMF { }: mod A — Mat(C,77) 13
CGIIC 2D %o {} DigEstring B, {A} =0%% A Lh%%5 modA
DFEiHHA B % band BLIEREIZT S,

54. E® (C,0,C,M) % QBP ¢¥ 5,



(1) MEOEEF F = {F; | 0 < j < n=ng} 2 (C, M) DRI TH3
Lit, F HUTFOFECHBONEBEERT 5o

MRE(C)_y, M]_,) IME(Cj, M;)—isMak(C), M)

(C(I),CIO)CrO’ M(I)) = (C’CI)CH M) EB<. 0 <j < np iZxL (c;’—l’ Crj-1
\Crgo1, M!_1) 75 QBP T % LARET B C, % Cly DFBHSE
oo kb boE L\ MJ % M_;'—l D c’ ’\Dﬁﬂ“‘ﬂt Téo 5.2.1 & b CI.j—l Hc'r,j—],
DFEH RSB C; 1Cri % (Cj)Cij» Crjy M;) DIERILS NI QB_P_’(‘&B%F*KH
%o Mj DEFTOEXR (CIj,crj)' 5 hnEE M;’Emb v By Mat(cj,M,-) -
MaE(Cl, M!) £ RTEMELT B0 5 E (CCigsCrjs M) 1 5.3 £ ) B QBP
THhb, LLTHER

(2) (€, M) PDREFIF = {F; [0 < j <n=np} EEET 5. Cr %
Mat(C, M) DIHBAE T Fao...oF (A) FERINIMEHR A L D2
bDET S, BF Er R Ep ERTEET 5o

E’F = Fﬂ—l 0...0 Fl . C]? —_ m(Cn) Mﬂ) g _M?t(crll—l’ M:l—l)
Ep:=F,0Ep : Cr—* Mat(Cp, M;)

Br % Cr DEBHBAFET, £ED 0 TLWEMNEAF B T ER(B) #0 22
Ep(B) =0 23 MR A LVERAb DL T 5,

C. RU C, ¥ h N Mat(C,, M") BT Mat(C,, M,,) DFEHERTE & &
L. Sr % Cr DEHBSET, 80 0 TEVWEMRF B »*Ex(B) ¢
Ob(cﬂ) "o ]EF(B) (S Ob(c,l,) %Tﬁf:?ﬁ&i‘jg A X 'O&Zv %@t?éo

55. ¥ (C,M) 2 QBP LI % (C,M) &Ikt Ts, 2D
R T ASRILT %,

(1) ind(Mat(C, M)) = Upe;(ind(Br) U ind(S¢))o

(2) Br %% % band BADEBFMENFET %0

(3) S¢ 15 3 string BNORBFEIFLET 5,

COEHIE, QBP BEIBENTRTHIFLEERT 5o

6 HicHiT2 Im{ } OEBEAVZINC L D, #4% ind(Mat(c, M)) D
RN E 2D, T TIIERET S, BL I ZROH,

LT, 55 2B+ 340 HREOMBEEHET %,

56. EE B cixL. ||| : Ob(C) — Nyp #* norm function TH53
LEED X, Y, Z € Ob(C) i L (a)(b) BT 2%

T #ind(C;) <



@) [IX]|=0 & X =0 FHHo
(b) X Y @ Z \FB% 512 1(X) = I(Y) + 1(Z) FRELT 3o

5.6.1. |||]: Ob(GTIC-) — N>p % norm function, F: Mat(C, M) —
Mat(c', M) #BTEMFE L T 5. || || : Ob(Mat(c, M)) — Ny BT[] || :
Ob(Mat(C', M')) — Nyp 2 ZNFNEHWF L BIIP. : ¢ — qlIC NE
BIIP :C' — QIIC AR LTED B, T5LEED A c Ob(Mat(C, M))
=33 LT )|A]| 2 ||F(A)]] A8R3Lo

5.7. % (C,M) £ QBP : T8, LToOMIIEHINS d: ind(Mat(c, M))
—3 N>p U {00} % depth function &2,

Xm € ind(Mat(C,M)) ZEET 5, X OEMOEMEAFICHB L 2535
RIVED c OFEGHBFTEEL Cx & L. Mx & M O Cx ~DHIRET S,
52.1 XY allc % (Cx,CiCr Mx) PPERLS /- QBP THHIBICNAH
MHCTE&D, m=0 %6 dXm) =00 EBE, £I)TLRIFTNIL I(Xm) %
(C,C)- B Mx/CiymC, DES LTS,

(1) ¢ % Mat(c, M) oFx#ERTB L A% €L, A €ind(Mat(c, M)) 23t
LT d(A) =0 & A€ Ob(C) IR,

(2) F: Mat(c, M) — Mat(c’, M') ¥ BLMF. d:ind(Mat(c',M')) —
N>oU{oo} % QBP (', M’) @ depth function & 328, A € ind(Mat(C, M))
H||A|l = ||F(A)]] 22 d(A) < oo T EIX d(A) > d(F(A))o

5.5 DELAA (2)(3) 11 4.4,5.3 £ DT <6 (1) R T A €ind(Mat(c, M))
¥EEL. o:=min{||Es(A)|| | Fe I,A € 0b(cs)} EH<o

(i) a=0 LEET 3,

F={F|0<j<n=np}el %|Ep(A)]| =0%2L3W3, THE
0<k<n=np TFro...0F(A) =0HD Fr_y0...0F (A) #0%2bDH
FET2. G:={F; |0<j <k} B L AcObBs) PHILT %0 '

(i) a >0 LHEL. b:=min{d(Er(A))|F €I, A € Ob(Cr),||Ee(4)|| =
e} LBE, F={F|0<j<n=np}€l%|Ep(A)] = a2 dEe(4)) =
bbb XH5WB,

b=o00 LIRET S0 TH5L 0L k<nTdFro...0F(A4)) = oc0HD
d(Fi—10...0F (A) # o 22 bDIHHETS, G:={F; |0<j<k} tB
(& Ae Ob(Sg) PBILT 5,

b # oo LIRET B0 EF(A) = Xm, X € Ob(ca), m € M,’. EBlo X
DEMOEMEFICRBME 25208 R LIRS ¢, OXBHTEL Cosa & L.
Mupys Z M, O Copyp ~OHIBRE T 5, #ind(Cop1) < 00 £, 521 &



b Cl,n+lHCrn+l T (Cn+11Cln+l)Cr,n+l) n+1) ﬁqEﬁﬂ:énf‘ QBP ?56
ﬁ&%@i’{#EL E‘- n+1 oﬁk (Cln+l)Crn+l) ”‘Bﬁ‘ﬂﬂﬁ M:H'l 75‘#&
';_60 ]Fn+1 Mat(C,..H, n+1) — Mat(C,, ler'l+1) %ﬁmﬁﬂ%—‘-& L G:=
(F; | 0<j <n+1} EBLo T2 |Ec(A)]| = |[Ex(A)|| #Fa ORAER
U 5.61 & DRLY Do ®W2IZ d(Ep(A)) > d(Eg(A)) 7° d(Ep(A)) < c0 BT
5.7(2) & DA T 20 ZhiZFE. |

6. 35514 Quadratic bimodule problem

5.3 i Reduction Theorem * QBP (S BAL THOLNAH LVEXFEY
QBP 2223 RIET 2, COHTREDEBITTIRLHBELERET 2,

Z Nid4% i skew polynomial ring K UF Ap, An, B, Ca, A; Bl hered-
itary algebra EOIMBEDBICE W TH S ERFEVIERIBILT2HEH L EKRT

%, hereditary algebra OZEIRIE [DR] B8,

6.1. Skew polynomial ring P8& D %4k, ¢ ¥ D OBRACH
B, A:= D[t;o] % skew polynomial ring (td° = dt for any d € D) & L.
modA T D LFERKLE A- IHORTEEZEDLT,

(1) mod A BUTORICERS BB L Al HRITHA X = (U,¢) T,
U € Ob(mod D) BU* ¢ € Homg(U,U) T dd(u) = ¢(d°x) (v € U, d € D) %
#HreT D, Homu((U, ¢), (U, ¢)) := {f € Homp(U,U") | f¢' = ¢f}e

(2) B8F (),[): mod A — mod D H*RDHICEREND, X =(U,¢) €
Ob(mod A) (=3t L. (X) := Kerg, [X] := Cok¢ £B<s Homy(X,Y) —
Homp({X),(Y)), f = {f) RV Homu(X,Y) — Homp([X],[Y]), f ~ [/]
X fEDEINZIDET S,

6.1.1. FE () RU[]% 61 TEELLMFLEL, {}:=()[]:
modA — mod(DIID) £ B, ZOK S, € ind(mod A) (n > 0) BHLE
L. Im{} BUTFCTH5Z6NI%,

ind(Im{ }) 1 S, (n 20) L DEH. (Sa) =D, [Sn] =D MHEILT %,

Homp((Sn), (Sm)) 10 (n < m)
{Hom4(Sy, Sm)} = D (n=m)
0T Homp([S,], [Sm]) (n = m)

BL n=m OHED D Bx3AICEDA T I Endp({S,)) I1 Endp([S,])
OB EERDLT,

6.2. Hereditary algebra D88 ZOHTRBRIIETHE k LAERKRTH
v R -



F Rk, ip: D — M(F) RUip : E — My(F) (a,b = 1,2) %
type (I)(II)(IV)(V) @ quadratic extension. A := (M:i ( F‘)’ E) % % hereditary
algebra ¥ #8733, '

(1) mod A RUTORICEH SN ZBE L A, ¥REE X = (U,V,¢) T,

U € Ob(mod D), V € Ob(mod F) RV ¢ € Homp(U(X),V(X)) (U(X) :=
M (F)®pU,V(X) 1= My(F)®eV) & W5 b Do Homu((U,V, ¢), (U, V', ¢))
BRTHAOLNS,

{(f,9) € Homp(U,U’) x Homg(V, V') | (Lag,.(r) ® f)¢' = $(1a, 5(r) ® 9)}

(2) BF () RU[ ]| BPROBUERE END, X = (U,V,9) € Ob(L) t=xf
L. (X):=Kerg, [X]:=Cok¢ £B<{. Homus(X,Y) — Homp({(X), (Y)),
f e (f) R Homy(X,Y) — Homp([X],[Y]), f[f] & f £ DB HIIS
boLtts,

(3) Za, Pa, Ra TENEN preinjective A- 1B, preprojective A- TNE.
BU regular A- IFEDOKITELTRDTOIDLT S,

6.2.1. T ip B 1p % type (IN(IV)(V). (),[] £ 6.2 CTEHEL-HF
EL, {}:=()1[): modA — mod(FIIF) £Bo DK S, €ind(R4)
(n>0)AFEL., Im{ } HUTTHEALNS,

(1) ind(Im( )) i% ind(Z4) BRU'S, (n 2 0) L DEKoTHBY, (S,) = F,
(X) = Fx (X € ind(Z4),dx = 1,2) TH3, ind(Im{)) LOEEF < %
n<mBUX,Y € ind(Zs) © Homa(X,Y) £ 0 22 bDIHL, S, <
Sm< X <Y EB(HBLINEDD, TOR,

5,
(Homu(X,Y)) = En:A(X) (X = 1_’ € i;d(%A))
0 (X>Y)

AL X =Y € ind(Z4) DA Enda(X) . £HIZEB % Endr((X))
DBFEEFEDT,

(2) ind(Im[ ]) % ind(P4) RS, (n > 0) LVE->THBH, [S)] = F
and [X] = F9 (X € ind(Pa),dx = 1,2) Tdh 5, ind(Im[]) LDEIER
<X %n<mARU X,Y € ind(Ps) T Homu(Y,X) # 0 256 DIZxL,



S >=Sm>X>Y EBLCEBIINEDS, ZOR,

H°$F§[’8’{§Y” (X v 4'12(7? ))

n = € 1In

[Hom(X,Y)] = End:([X]) (X=Y=35 ")A
0 (X>Y)

BL X =Y € ind(P4) DFHED Enda(X) &, EHICFHE %L Endp([X])
OFFEEERDT,

(3) ind(Im{ }) ¥ ind(Z4), ind(Pa) BV’ S, (n 2 0) L WD, X,Y €
ind(Im{ }) <X L.

F X=Y=85,
{Homa(X,Y)} = { Homa Y ) Homa(X, )] (2018)

BELX =Y =8, DHED F iIxtAIcBDA T h/: Endp((S,)) [1Endp([Sh))
DEFHERDT,
(4) 442, Im{ } — mod(F ] F) i quadratic extension,

6.2.2. ip Htype(I) B¢, {}:=()IIUII[] :mod A — mod(FIIFII F)
DBIIUTTEILNS, (a)(b)(c) D3I FEY 25T 5,
(a) tg »F type (II) DB, ind(mod A) = projAUInjA = {P,Q} U
{,LJ} Lo2BFEE P<Q<I<J LtEDS,
(b) ¢ #* type (V) DliF, ind(mod A) = projAUinj A = {P,Q, R} U
{I,JKY LO$EF% PQ<R<I,J < K LD 5,
(c) tg #* type (IV) Ok, ind(mod A) = projAUinjA = {P,Q} U
{I,J} LOLBRF% P<Q<I<J tEDD, .
(1)(a) {P} = OT1011 F2, {Q} = 0L FI F, {I} = OTI F*[10 & {J} =
FIIFII0.
(b) {P} = OIIOIIF, {Q} = OIIOIIF, {R} = OIIFIIF, {I} =
OMFII0, {J} =0I FI10 R {K}=FIIFII0
(c) {P} =0IIOIIF, {Q} =OII FIIF, {I} =OII FII0 RV {J} =
FIIFII0.
(2) (F) T, HAICBDATRI: F LEBZ FIIF ootk b T,
(a) {End4(P)} = OIIOII B, {Enda(Q)} = OII(F), {Enda(I)} =
OII ETI0 B {Enda(J)} = (F) I10e
(b) {Enda(P)} = OII0II F, {End4(Q)} = OTIOTI F, {End4(R)} =
OII(F), {Enda(I)} = 0TI FII0, {Enda(J)} = OII FII0 R {Enda(K)} =
(F)I10e



(c) {Enda(P)} = OIIOII E, {Enda(Q)} = OII(F), {Ends(])} =
OIIETIO BT {Endy(J)} = (F)II0,
(3) X < Y %5 {Homa(X,Y)} = Homeepr r X1 YD X > ¥
& 6 = Oo .
(4) #i2. Im{ } — mod(F I FI] F) & quadratic extension,

6.2.3. ¢z Atype(I) OB, {}:=()IIVII[]: mod A — mod(FIIFI] F)
DRIZLUTTER N5, (a)(b)(c) D3@EDIZHiT 5,
(a) tp #F type (II) DEf, ind(mod A) = projA UinjA = {P,Q} U
{I,J} LO2EREP<Q<I<J LEDS,
(b) tp #* type (V) DB}, ind(mod A) = projAUinjA = {P,Q, R} U
{I,JK} LOXEREE P< QR<I< JK L3,
(c) tp #* type (IV) DB¥, ind(mod A) = projAUinjA = {P,Q} U
{,J} Lo2lEFR %  P<Q<I<J LEDS,
(1)(2) {P} =0l FII F, {Q} = Ol F*I10, {I} = FII FI10 RV {J} =
F2T10]] 0.
(b) {P} = OIIFIIF, {Q} = OIIFII0, {R} = OIIFIIO, {I} =
FIIFIIO0, {J} = FIIO0 &T {K} = FII0TI 0o
(©) (P} = 0N FIIF, {Q} = OLLFTI0, {I} = FILFII0 RU* {J} =
FII0II 00
(2) (F) C, sAc@BDATN: F LEBL FIIF oB54E RO T,
(2) {Ends(P)} = OII(F), {Enda(@)} = OIIDIIO, {Ends(I)} =
(F)I10 &¥ {End(J)} = DII0TI 0o
(b) {Enda(P)} = OII(F), {Enda(Q)} = OIIFIIO, {Enda(R)} =
OI1 FII0, {End4s(1)} = (F)I10, {Enda(J)} = FIIOII0 BT {Enda(K)} =
FTIOTI0o
(c) {Enda(P)} = OII(F), {Enda(Q)} = OII DIIO, {Ends(I)} =
(F)T10 B {End(J)} = DIT0TI 0o
(8) X <Y %5 {Homu(X,Y)} = Homprpn({Xh{¥Y}H. X >Y
& 6 - Oo :
(4) #¥i=. Im{ } — mod(FII FII F) i3 quadratic extension,

6.2.4. tp B vz % type (I) & L ind(mod A) = {P,B,J} LOLEF%
P<B<JltEDD, {}:=()[IUNVI[]: modA — mod(FIIFIIFIIF)
DBIILTCHEALNS,

(1) {P} = OLIOTI FII F, {B} = 0Ll FIL FI10 &V {I} = FII FII 01 0.



(2) {Enda(P)} = OTIOTI(F), {End o(B)} = OII(F) [10 &0 {Enda(D)} =
(F)IIOTI0. L (F) &, HAIEDATNS: F LABZ FIIF OB
EEDT,

(3) X <Y %6 {Homy(X,Y)} = Homprpprpm({Xh{YH. X >
Y & t) = Oo

(4) 4= Im{ } — mod(FII FII FII F) i1 quadratic extension,

7.1. Quadratic order NDHH
ZOHTIE R IISHRBEBMAMER, K3 R oMk T5,

7.11. ®¥ B — A *HBX K-#5xTR®D quadratic extension &
L. A % B O hereditary full order £ 3%, MF lat(A,A) — mod A/J,,
Y = Y/JAY D% £ LB, £ — modA/Ja i3 quadratic extension
b,

7.1.2. I8 COERDERITERET ST, almost Bass order & DRIfR%E
EELTB<,

[H] 123w T, almost Bass order DA HA &N/, almost Bass or-
der IIAENTRETH D, REPICE S LADOZHBFHIHFIET 2,

(V7110 A 288L 5% A D full order,

(2) “B/N" @ quadratic Backstrom ordero

M, EERRFI% BT almost Bass order 32T (1) DETH LIS,

7.1.3. & A # A D quadratic order &£ L, hereditary order A T Jy =
JACACAZZODEMB, T % lat(A,A) @ ideal TI(L, L) := {f €
lat(A, A)(L, L) | (L)f € AL’} CEHShBbDLTHE, QBP (C,M) T
lat(A, A)/ I #* Mat(C, M) OFEHHERTEUCEEL 25 b DHFFIET 5,

8512 lat(A, A) DEEAHSBITLT 5.5 12X HRDZBNTETH B,

AEEA 3.4.2 DEBT(KIIL,mod A, mod A, N) M §H %2l +HERT,

A — A i3 quadratic extension 2D T, X — modA b quadratic
extension TdH b, —Hh 7.1.1 £ Y £ — modA b quadratic extension T
B, WAICHIE 342 LW xREES, 1

7.2. String algebra EADIGH
COHTIE R IREMBERAER. k & R ORKELT S,

7.2.1. & A % quadratic Backstrom order & L. hereditary order A T



JA=JACACARZBLDEND, T5& QBP (¢, M) RV Mat(C, M) #»
b mod A “DBEXBAFIEET 5,

12 R L& quadratic Batkstrom order, k £ string algebra & U clan-
nish algebra {22V TV b £ OEELHMBEEE 5.5 12X ) RdD 2 WA THE
Th5,

AR P R AHBRAERSR A- MBOBE, P L HRENHE A- MBOBE L
T, WHE 341 X0 (PP, P, P, Jp) HRBZWITRENT
#BEiZ 25 L9ohrs. I
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QUASI-DUO RINGS AND 2-PRIMAL RINGS

CHoL ON KM

1. Introduction

Throughout this paper, all rings are associative with identity. Observing the
properties of quasi-duo rings was initiated by Yu in [14], related to the Bass’ conjecture
in [1]. Given a ring R the polynomial ring over R and the formal power series ring over
R are denoted by R|z] and R[[z]], respectively. In [9], if R[z] is right quasi-duo then
R is right quasi-duo but the converse i8 not true in general: similarly R is 2-primal if
and only if R[z] is 2-primal by [2, Proposition 2.6] and [7, Proposition 4]. R is right
quasi-duo if and only if R[[z]] is right quasi-duo [9, Proposition 6]: similarly by (7,
Proposition 12] if R[[z]] is 2-primal then R is 2-primal, but the converse is not true
in general by [10, Example 1.1]. Considering the preceding results, we observe the
similarities or differences between right quasi-duo rings and 2-primal rings.

A ring R is called right (left) duo if every right (left) ideal of R is two-sided. A ring
R is called right (left) quasi-duo if every maximal right (left) ideal of R is two-sided.
Commutative rings are clearly right and left duo; right (left) duo rings are right (left)
quasi-duo obviously. The n by n upper triangular matrix rings over right quasi-duo
rings are also right quasi-duo by [14, Proposition 2.1]. But the n by n full matrix rings
over right quasi-duo rings are not right quasi-duo.

As another generalization of commutative rings, there are 2-primal rings. The
term 2-primal was come upon originally by Birkenmeier-Heatherly-Lee [2] in the context
of left near rings. Shin [13] proved that a ring R is 2-primal if and only if every minimal
prime ideal of R is completely prime, which was one of the earliest results known to us
about 2-primal rings (although not so called at the time.) A ring R is called 2-primal
if P(R) = N(R), where P(R) is the prime radical of R and N(R) is the set of all
nilpotent elements in R. ‘It is straightforward to check that a ring R is 2-primal if
and only if R/P(R) is a reduced ring (i.e., a ring without nonzero nilpotent elements).
Commutative rings and reduced rings are 2-primal obviously, and the n by n upper
triangular matrix rings over 2-primal rings are also 2-primal by [2, Proposition 2.5].
But the n by n full matrix rings over 2-primal rings are not 2-primal.

2. Counterexamples and related results

This is a part of forthcoming joint paper “A study on quasi-duo rings, to appear in Bull. Korean
Math. Soc.” with Hong Kee Kim and Sung Hee Jang



An ideal I of a ring R is called completely prime if R/I is a domain.
Proposition 1. Right (or left) duo rings are 2-primal.

By Proposition 1 and the fact that right duo rings are right quasi-duo, we may
raise the following question:

Question (1). Are right quasi-duo rings 2-primal?
But the answer is negative by the following Example 2.
Example 2. There exists a right quasi-duo ring but not 2-primal.

Proof. We teke the ring R in [10, Example 1.1]. Let F be a field and let V' be a infinite
dimensional left vector space over F' with {v,,v2,...} a basis. For the endomorphism
ring A = Endp(V), define

A, = {f € A|rank(f) < oo and
f(w) =a1v1+--- +a; fori =1,2,... with a; € F}

and let R be the F-subalgebra of A generated by 4; and 14. Let M be a maximal
right ideal of R. Then M is of the form

M = {r € R| (i,%) —entry of r is zero}

for some 7 € {1,2,...}. But M is also a 2-sided ideal of R and so R is right quasi-duo.
By [9, Proposition 6) the formal power series ring R{[z]] over R is also right quasi-duo.
However R[|z]] is not 2-primal by the argument in [10, Example 1.1}.

The ring R[[z]] in Example 2 is not semiprimitive. We have an affirmative answer
to Question (1) when given a ring is semiprimitive.

Proposition 8. Semiprimitive right (or left) quasi-duo rings are reduced (hence 2-
primal).

Remark. The converse of Proposition 3 (i.e., for a semiprimitive ring R, is R right
quasi-duo if R is reduced?) is not true in general by the following Example 9.

There is another condition under which the answer to Question (1) is affirmative.
A subset of a ring is said to be nil if each element of it is nilpotent. The indez of
nilpotency of a nilpotent element 2 in a ring R is the least positive integer n such
that z™ = 0. The indezr of nilpotency of a two-sided ideal I of R is the supremum of
the indices of nilpotency of all nilpotent elements in I. If such 2 supremum is finite,
then I is said to be of bounded indez of nilpotency. By [6, Theorem 6}, if R is a right
quasi-duo ring of bounded index of nilpotency and the Jacobson radical of R is nil then
R is 2-primal. Notice that for the ring R[[z]] in Example 2, the preceding conditions
are not satisfied.



A ring R is called weakly right (left) duo if for each @ in R there exists a positive
integer n = n(a), depending on &, such that ¢"R (Ra") is a two-sided ideal of R.
Weakly right duo rings are abelian right quasi-duo rings by [14, Proposition 2.2].

Lemma 4. Let R be a ring. Then we have the following statements:
(1) Ri[z]] is right quasi-duo if and only if R is right quasi-duo.
(2) If R[[z]] is right duo then R is right duo.
(3) If R[[z]] is weakly right duo then R is weakly right duo.

Remark. We may obtain the same results for the left cases by replacing “right” by
“left” in the preceding lemma and its proof.

The converse of (2) in Lemma 4 is not true in general by [5, Example 4]. So we
raise following as the converse of (3). :

Question. (2). Are formal power series rings over weakly right duo rings also weakly
right duo?

But the answer is negative by the following Example 5. Recall that a right Ore
domain is & domain R in which every two nonzero elements have & nonzero common
right multiple, i.e., for each nonzero z,y € R there exist r, 8 € R such that zr =ys # 0.
Right Noetherian domains are right Ore by [4, Corollary 5.16).

Example 6. There exists a weakly right duo ring such that the formal power series
ring over it is not wealkly right duo.

Proof. We hire the method in [5, Example 4]. Let F be a field of characteristic zero,
A = F[y] be the polynomial ring over F. Define o : A —+ A with o(y) = 1+y, thenc is
an automorphism of A. Let B = A[z; o] be the skew polynomial ring over A, subject to
az = zo(a) for all @ € A. Then since A is right Noetherian and ¢ is an automorphism,
B is a right Noetherian domain by [11, Theorem 1.2.9]. Hence B is also right Ore by
the preceding argument and thus B is a right order in a division ring by [4, Theorem
5.17), say D is the division ring. Then D is a noncommutative division ring.

For each ¢ = 1,2,..., let D; = D and S = [] D; be the direct product of D;'s.
Now define ‘

R={(d;) € S| there exists n such that d; = d,, for all i > n}.

Then R is a strongly regular ring and so it is right duo (hence weakly right
duo). Let e; = (d;) € R such that d; = 1 and ¢&; = 0 for i # 4, and consider
[ = ze1 + ZPeaz + 2%e32® + --- € Rl[z]]. Then for any positive integer k, f* =
Zhey +2%%egzh + 23 egz3% . . ., Assume that R[] is weakly right duo. Then for some
positive integer k, f*R[[z]] is a 2-sided ideal of R[[z]]; hence for g = (y,¥,¥,...) € R
there exists b € R[[z]] such that gf* = f*h. Then

yenznkz(n—l)k = e,.gfk = eﬂfkh = z”"e,.z(“"l)"(e,.h)



and 80 e,k = €52 "*yz"* = e (nk+y). This implies that h = (nk+1y) € S\R because
the characteristic of F is zero, a contradiction. Therefore R[[z]] is not weakly right
duo.

From [5, Theorem 4] we obtain conditions under which the converses in Lemma
4 may be true as in the following.

Theorem 6. Suppose that R is a right self-injective von Neumann regular ring. Then
the following statements are equivalent:
(1) R is right (left) duo.
(2) R is weakly right (left) duo.
(3) R is right (left) quasi-duo.
(4) R is a reduced ring.
(5) R is a 2-primal ring.
(6) R|[[z]] is right (lef) duo.
(7) R|[z]] is weakly right (left) duo.
(8) R[[z]] is right (left) quasi-duo.
(9) R|[z]] is & reduced ring.
(10) R[[z]) is & 2-primal ring.

Remark. The equivalences of (1), (2), (3), (4) and (5) in Theorem 6 hold only when R
is von Neumann regular.

Now we consider a characterization of right quasi-duo rings, obtained from |8,
Proposition 1] and the proof of (14, Proposition 2.1].

Lemma 7. For a ring R, the followings are equivalent:
(1) R is right quasi-duo.
(2) Every right primitive factor ring of R is a division ring.
(3) R/J(R) is right quasi-dun (J(R) is the Jacobson radical of R).

By Lemma 7, every right primitive factor ring of a right quasi-duo ring is Artinian.
Whence we have the following useful result if given a ring is both 2-primal and right
quasi-duo.

Proposition 8. Suppose that R is a 2-primal right quasi-duo ring. Then the following
statements are equivalent:

(1) R is strongly n-regular.

(2) R is w-regular.

(3) R is weakly m-regular.

(4) R is right weakly m-regular.

(5) R/J(R) is right weakly w-regular and J(R) is nil where J(R) is the Jacobson

radical of R.
(6) Every prime ideal of R is maximal.

By this result, Question (1) and the following Question (3) may be meaningful.
Recall that a ring R is called & PI-ring if R satisfies a polynomial identity with coeffi-



cients in the ring of integers. PI-rings are another generalization of commutative rings.
As the converse of Question (1) one may ask the following.

Question (8). Are 2-primal rings right quasi-duo?

But the answer is also negative by the followiné example, although it is a semiprim-
itive PI-ring.

Example 9. There exists a ring S such that

(1) S is 8 domain (hence reduced and so 2-primal),
(2) S is a semiprimitive PI-ring and
(3) S is not right quasi-duo.

Proof. We take the ring R[z] in (9, Example 9]. Let R be the Hamilton quaternion over
the field of real numbers and § = R|[z] be the polynomial ring over R. Then clearly R[z]
is a domain and so it is semiprimitive by [12, Reproof of Amitsur’s Theorem (2.5.23)
after Lemma 2.3.41]. R[z] is also a Pl-ring becaues R is a Pl-ring by [4, Prologue].
But R[z] is not right quasi-duo by [9, Lemma 8].

As we see in the proof of Theorem 6, R is 2-primal if and only if R is right (left)
duo if and only if R is weakly right (left) duo if and only if R is right (left) quasi-duo
if and only if R is reduced, when R is a von Neumann regular ring.

Note that a semiprimitive right (or left) quasi-duo ring is a subdirect product of
division rings, and if the polynomial ring over a ring R is right quasi-duo then R/J(R)
is commutative [9, Theorem 12] where J(R) is the Jacobson radical of R; hence one
may suspect that semiprimitive right quasi-duo rings are PI-rings. However the answer
is negative because there is a division ring which is not a PI-ring. Recall that a ring R
is right quasi-duo if the polynomial ring R[z] over R is right quasi-duo. The preceding
suspicion is affirmative when R[z] is right quasi-duo by [9, Corollary 14]. However
this argument does not hold in general for the formal power series rings. Let D be a
noncommutative division ring, then D is semiprimitive right quasi-duo obviously and
D|[z]] is right quasi-duo by [9, Proposition 6}; but D[[z]] is noncommutative.

Lestly we obtain similar results to (14, Proposition 2.1J.

Proposition 10. Let R, S be rings and gMg be a (R,S)-bimodule. Let E =
(Ig Ig) . Then E is a right quasi-duo ring if aiid only if R and S are right quasi-duo
rings.

For a ring R, let T(R, R) = {(a,2) | a,z € R} with the addition componentwise

and the multiplication defined by (a;,2,)(as,22) = (a;82,8,23 + z142). Then T(R, R)
is a ring which is called the ¢rivial eztenision of R by R. T(R, R) is isomorphic to the

ring of matrices (8 z) with a,z € R.



Proposition 11. For a ring R, T(R, R) is a right quasi-duo ring if and only if R is a
right quasi-duo ring.

Acknowledgement. The author would like to express his gratitude to Professor

Masahisa Sato for his giving the opportunity to present this material on Japan-Korea
Ring Theory and Representation Theory Seminar joined with the 31st Japan Ring
Theory and Representation Theory Symposium.
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SOME RESULTS ON SKEW POLYNOMIAL
RINGS OVER A REDUCED RING

HonG KEE KM

Throughout this paper, all rings are associative with unity. A ring R is called
(quasi-) Baer if the right annihilator of every ((right) ideal)nonempty subset of R is
generated by an idempotent. In [3], a ring R is called a right(resp. left)principally
gquasi-Baer (or simply right(resp. left) p.g.-Baer ) if the right(resp. left) annihilator of
a principal right(resp. left) ideal is generated by an idempotent. A ring R is called a
p.q.-Baer ring if it is both right and left p.q.-Baer. Another generalization of Baer ring
is the p.p.-ring. A ring R is called a right(resp. left) p.p.- ring if the right(resp. left)
annihilator of an element of R is generated by an idempotent. Also, a ring R is called
a p.p.-ring if it is both right and left p.p.

In [3), the following fact was proved;

Proposition 1. The following are eguivalent;

(1) R is a right p.q.-Baer ring.

(2) The right annihilator of any finitely generated right ideal is generated (as a right
ideal) by an idempotent.

(8) The right annihilator of every principal right ideal is generated (as a right ideal)
by an idempotent.

(4) The right annihilator of every finitely generated ideal is generated (as a right
ideal) by an idempotent.

Note that this statement is true if "right” is replaced by "left” throughout.
In (3], they also have shown the following results;

Theorem A. R is g right(resp. left) p;q.-Baer ring if and only if the polynomial ring
R[z] is o right(resp. left) p.g.- Baer ring.

Theorem B. For a ring R, the following are eguivalent;

(1) R is a guasi-Baer ring;
(2) the polynomial ring R[z] over R is a quasi-Baer ring;
(8) the formal power series ring R|[z]] over R is a gquasi-Baer ring.

This is a part of the paper to submit in Comm. in Algebra with Jun Cheol Han and Yasuyuki
Hirano '



Now we try to apply those results for Ore extension and so we recalled the fol-
lowing :
Let a be an endomorphism of a ring R. An a — derivation of R is an additive map
6 : R — R such that §(ab) = a(a)é(b) + 6(a)b for all a,b € R. The Ore extension
R[z;a,6] is the ring of polynomials in = over R with the usual addition and with
new multiplication by za = a(a)z + 6(a) for each ¢ € R. If § = 0, we write R[z;q]
for R[z;a,d] and is called an Ore extension of endomorphism type(also called a skew
polynomial ring). While if a = 1, we write R[z;6) for R[z;1,6] and is called an Ore
extension of derivation type(also called a differential polynomial ring).
Also, we recalled that R is called a reduced ring if it has no nonzero nilpotent elements
and R is called an abelian ring if every idempotent of R is central. We can observe easily
that every reduced ring is abelian and in a reduced ring R left and right annihilaters
coincide for any subset U of R, where a left (right) annihilator of U is denoted by
lrRU)={eeR|aU=0}rr(U)={a€ R| Ua=0}).
Of course, for a reduced ring R, the following are equivalent clearly;
(1) Ris aright p.p.-ring.
(2) Ris a left p.p.-ring.
(3) R is aright p.q.-Baer ring.
(4) Ris a left p.q.-Baer ring.
We have well- known fact:

Theorem 2. Let R be an integral domain with a monomorphism a. Then the skew
polynomial ring R[z; a) is an integral domain.

In this case, the skew polynomial ring R[z; a) is a Baer ring. Also, we have the following
well-known fact:

Theorem 8, Let a be an inner automorphism of a ring R induced by an invertible ele-
ment cfi.e. a(r) =c"'rc for all r € R) and R[z; o] the Ore extension of automorphism
type.

Then the polynomial ring R|x] is isomorphic to R|z; a].

In this case, the skew polynomial ring R[z; a] is a Baer ring by Corollary 2.7[3).

Example 4.

(1) The ring R = Z,[x]/(z?) is not a quasi-Baer, where Z, is the field of two
elements and (z2) is the ideal of the ring Z;[x?] generated by z2. In fact,
Iz(R(z + (z?)) is not generated by an idempotent of R.

But since Rly;6] ~ Maty(Z;[y?]), where a derivation § is defined by 6(z +
(z2)) = 1+ (2?), R[y; 6] is a quasi-Baer because Z,[y?| is a quasi-Baer and so
Matay(Z,[y?)) is also a quasi-Baer.



(2) Let F be a field and R = F[t] a polynomial ring over F with the endomorphism
a given by a(f(t)) = f(0) for all f(t) € R. Then R is a principal ideal domain
but the skew polynomial ring R[z;a] is not an integral domain because xt =
aft)z = 0. Also, the skew polynomial ring R|z;a] is neither a right p.q.-Baer
nor a right p.p.-ring.

In [1), Armendariz proved that if R is a reduced ring, then R is a p.p.(resp.
Baer)-ring if and only if the polynomial ring Rlz] is a p.p.(resp. Baer)-ring. We will
generalize this result by showing that if R is a reduced ring with a monomorpism «
and a(P) C P for any minimal prime ideal P in R, then R is a p.p.(resp. Baer)-ring if
and only if the skew polynomial ring R|[z; o] is a p.p.(resp. Baer)-ring. Based on these
facts, we have the following;

Lemma 5. Let R be a reduced ring. Then for all d, b,c,andd € R,

(1) ab =0 if and only if ba = 0;
(2) Ifab=0andcb+ad =0, thencb=0ad =0;

Proposition 8. If S is a multiplicative subset(i.e. a,b € S implies ab € S) of a ring
R which is disjoint from an ideal K of R, then there ezists an ideal P which is mazimal
in the set of all ideals of R disjoint from S and containing K. Futhermore any such
ideal P is a prime ideal.

Lemma 7. Let R be a reduced ring with a monomorpism a. Assume that o(P) C P
for any minimal prime ideal P in R. Then, for each e,b € R, ab = 0 if and only if
aak(b) =0 fork=1,2,...

Proposition 8. Let R be a reduced ring with a monomorpism.a and let f and g €
Rlz;a] with f = Y5 gaizt,9 = Y inp bizt. Assume that a(P) C P for any minimal
prime ideal P in R.. Then fg =0 if and only ifa;b; =0 foralli and j 0 <i<n,0<
Jj<m)

Corollary 9. Let R be a reduced ring with a monomorpism a. Assume that o(P) C P
for any minimal prime ideal P in R. Then R is a reduced ring if and only if R[z; a] is
a reduced ring.

Corollary 10. Let R be a reduced ring with a monomorpism a. Assume thata(P) C P
Jor any minimal prime ideal P in R. If f € R|z;a] is an idempotent, then f € R, that
i, every idempotent of R[z;a] is an idempotent of R.

Corollary 11. Let R be a reduced ring with a monomorpism a. Assume that a(P) C P
for any minimal prime ideal P in R. If T C R[X;a] and S§ = {ag, @, ...,a,}, where
f=e+a1z+- - +eaz"™ €T, then rgi;o|(T) = ra(S7)[z; o, where St = UjserSy.

Theorem 12. Let R be a reduced ring with a monomorpism a. Assume that ao(P) C P

for any minimal prime ideal P in R. Then R[z;a) is a p.p.-ring if and only if R is a
p.p.-Ting,



Since a p.p.-ring is equivalent to a p.q.-Baer ring for a reduced ring, we have the
following;

Corollary 18. Let R be a reduced ring with a monomorpism a. Assume that a(P) C P
for any minimal prime ideal P in R. Then R[z, a) is @ p.q.-Baer ring if and only if R
i8 a p.q.-Baer ring.

Similarly we can also have the following Theorem:

Theorem 14. Let R be a reduced ring with a monomorpism a. Assume that a(P) C P
for any minimal prime ideal P in R. Then R[z;a] is a Baer ring if and onlyif R is a
Baer ring.

Theorem 12 and 14 extend Armendariz’s results[1, Theorem A and B] if a is the
identity. Also, for a reduced ring R, the following are equivalent clearly;
(1) R is a Baer ring.
(2) R is a quasi-Baer ring.
Hence we have the following;

Corollary 15. Let R be a reduced ring with a monomorpism a. Assume that a(P) C P
for any minimal prime ideal P in R. Then R|z;a] is a quasi-Baer ring if and only if
R is a quasi-Baer ring.

All results in this paper does not hold if the endomorphism a of a reduced ring
R is not a monomorphism even though a(P) C P for any minimal prime ideal P in R.

For an example, let F be a field and R = F{t]] the formal power series ring over
F with the endomorphism a given by a(f(t)) = £(0) for all f(t) € R. In this case,
R=F]Jt])isaP. 1. D. and so R is a Baer ring and also (0) is a uniqe minimal prime
ideal. Since a(0) = (0), the assumption that a(P) C P for any minimal prime ideal P
in R is satisfied. But R[z;a] is neither a right p.q.-Baer nor a right p.p.-ring.

Furthermore, there exists an example such that if R is a reduced ring with an
automorpism a and R is a Baer ring, then R[z;q] is not a p.p.-ring.

Example 16. Let R = Z)9 X Z)¢ with an automorphism o given by a(a,b) = (b,a)

for all (a,b) € R. Then R is a reduced and Baer ring. But the skew polynomial ring
R[z;a] is not a p.p.-ring.
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ON EXCHANGE RINGS

NaM KYun Kmm

Throughout this paper, R denotes an associative ring with identity and all modules
are unitary. Let Mg be a right R-module. Following Crawley and Jénsson [4], Mp is
said to have the exchange property if for every module Ag and any two decompositions
of Ap

AR=M;;®NR=@A.'
iel
with My & Mp, there exists submodules A} C 4; such that

Ar=M o (P 4).

i€t
Mp, is said to have the finite ezchange property if the above condition is satisfied when-
ever the index set I is finite.
Warfield [10] introduced the class of exchange rings. He called a ring R an ezchange
ring if Rp has the exchange property.

Nicholson [9, Theorem 2.1] proved that R is an exchange ring if and only if the n-by-n
full matrix ring Mat,,(R) over R is an exchange ring. But, in general a subring of an
gexchange ring is not an exchange ring. For example, @, the field of all rational numbers,
is an exchange ring but the subring Z, the integer of integers, is not an exchange ring.
So we may suspect that the n-by-n upper (or lower) triangular matrix ring over R is an
exchange ring.

Proposition 1. The following statements are equivalent:
(1) R is an exchange ring.
(2) Every upper triangular matrix ring (finite or infinite) over R is an exchange ring.
(8) Every lower triangular matrix ring (finite or infinite) over R is an exchange ring.
Recall that a ring R is called to be strongly w-reqular if for any a € R, there exists

a positive integer n, depending on a, such that a” = a1z for some z € R. In case
n =1, aring R is called to be strongly regular. A ring R is called to be w-regular if for

This is a part of the joint paper “A note on exchange rings” with Chan Yong Hong, Tai Keun Kwak
and Yang Lee .
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any a € R, there exists a positive integer n, depending on @, such that ¢" = a*za™ for
some z € R. In case n =1, aring R is called to be von Neumann regular.

The following first example shows that there exists an exchange ring whose primitive
factor rings are Artinian but not n-regular and hence it is not von Neumann regular. The
second example shows that there exists a semiprimitive exchange ring whose primitive
factor rings are Artinian but not von Neumann regular.

Example 2. (1)[12, Example 3.3] Let p be a prime number and let R = Z(;), the
localization of integers at (p). Then R is a commutative (hence all primitive factor
rings are Artinian) exchange ring since R is a local ring. If R is m-regular, then J(R) is
nil. However J(Z(y)) is not nil. Therefore R is not w-regular.

* (2)[9, Example 1.7] Let Q be the field of all rationals and S' the ring of all rationals
with odd denominators. Let

[~
R={<aq; >€ HQ,' | @; is eventually in S},
i=1
where Q; = Q for alli. Since S/J(S) is a division ring, it follows that R is 2 commutative
semiprimitive ring. Moreover R is an exchange ring. But, since J(S) # 0, S is not von
Neumann regular. Note that S is a homomorphic image of R. Therefore R is not von
Neumann regular.

(3) There exists a semiprimitive ring whose primitive factor rings are von Neumann
regular but not exchange. For example, in Z, (0) is not a primitive ideal. But every
prime ideal of Z is primitive. So every primitive factor ring of Z is a field and hence
von Neumann regular. Moreover J(Z) = 0. However Z is not exchange.

A ring R is called homomorphically semiprimitive if every ring homomorphic image
(including R) of R has zero Jacobson radical. Von Neumann regular rings are clearly
homomorphically semiprimitive. But the converse is not true in general, for example,
let R = W{[F] be the first Weyl algebra over a field F' of characteristic zero, then R
is simple domain which is not division. So R is homomorphically semiprimtive. But
R is not von Neumann regular. Recently, Yu proved [12, Theorem 3.6] the following:
Let R be an exchange ring whose primitive factor rings are Artinian. If R/J(R) is
homomorphically semiprimitive, then R/J(R) is strongly m-regular. But we have the
following theorem which generalizes Yu’s result and [5, Theorem 1].

Theorem 8. Suppose that R is an exchange ring whose primitive factor rings are
Artinian. If R is homomorphically semiprimitive, then R is von Neurnann regular, In
particular, R is unit-regular.

In Theorem 3, the condition “homomophically semiprimitive” is not superfluous by
Example 2(2). Also the condition “primitive factor rings are Artinian” is not superflu-
ous. Let V' be an infinite vector space of a field . Then R = End(V) is von Neumann
regular and so is homomorphically semiprimitive exchange. While R is primitive but
not Artinian. In fact, R is unit-regular if and only if V' is finite dimensional.



" Corollary 4.5, Theorem 1] Suppose that R is a von Neumann regular ring whose
primitive factor rings are Artinian. Then R is unit-regular.

Recall that a ring R is called right guasi-duo if every maximal right ideal of R is
an ideal. Right primitive right quasi-duo rings are division rings. This implies that all
primitive factor rings of a right quasi-duo ring are Artinian. So we have the following
which generalize results [2, Proposition 3.2] and [12, Theorem 3.8]. A ring R is called
to be bireguler if every principal two-sided ideal of R is generated by a nonzero central
idempotent.

Proposition 5. Suppose that R is a right quasi-duo exchange ring. Then the following
statements are equivalent:

(1) R is strongly regular.

(2) R is von Neumann regular.

(3) R is biregular.

4)Ris homom?rphica.lly semiprimitive.

The following result extends a result [6, Theorem 3.2].

Proposition 6. Suppose that R is a homomorphically semiprimitive exchange ring.
Then the following statements are equivalent:

(1) R is abelian

(2) R is reduced.

(3) R/P is a division ring for all prime ideals P of R.

(4) R is strongly regular.

(5) Every nonzero right ideal of R contains a nonzero central idempotent.

Recall that a ring R is called to be right (left)weakly 7-regular if for any a € R, there
exists a positive integer n, depending on a, such that a®R = e¢"Ra™R. Incasen =1, a
ring R is called to be right (left) weakly regular.

Proposition 7. Let R be an abelian exchange ring. The following statements are
equivalent.

(1) R is strongly m-regular.

(2) R is w-regular.

(3) R is right weakly n-regular.

(4) R/J(R) is right weakly n-regular and J(R) is nil.

Recall that for a ring R with a ring endomorphism a : R — R, the skew polynomial
ring R|z; a] of R is the ring obtained by giving the polynomial ring over R with the new



multiplication zr = a(r)z for all r € R. While R{[z; ] is called the skew power geries
ring.

Proposition 8. If the skew polynomial ring R[z;a] of R is an exchange ring, then R
is an exchange ring.

As a corollary of Proposition 8, we have the following.

Corollary 9. If the polynomial ring R[z] of R is an exchange ring, then R is an
exchange ring.

The converse of Corollary 9 is not true in general. For example, let F' be a field.
Then clearly F is an exchange ring. For z € F[z], zF[z] contains the only idempotent
0. If F[z] is exchange, then 1 € (1 ~ x)F[z] and so 1 — z is invertible in Fjz], which is
a contradiction. Therefore Fz] is not exchange.

Recall that a two-sided ideal I of a ring R is called an exchange ring without identity
if there exists €2 = e € Iz such that 1 —e € (1 —z)R for any z € I.

Proposition 10. Let R be an exchange ring. Then R[:!:] /(z"*!) is an exchange ring
for any n > 1.

However, for formal (skew) power series ring over an exchange ring, we have the
following result.

Theorem 11. For a ring R, the following statements are equivalent:
(1) R is an exchange ring.
(2) The formal power series ring R[[z]) of R is an exchange ring.
(3) The skew power series ring R[[z;a]] of R is an exchange ring.

The following examples show that the center C(R) of R is exchange but R is not
exchange.

Example 12. (1) Let F(z) be the rational functions over a field F,

F(z) F Flz] F
K=[F§3 F§3 ,“‘”’=[ o).

Consider the ring
R={< @, >%,| a, € K and a, is eventually constant in L}.

Noet that R is a semiprime Pl-ring with von Neumann regular (hence exchange) center.
Also note that R is not exchange.



(2) Let D be a division ring and S = [];2, D;, where D; = D for all . Define
a:S — S by afey,a,...) = (a1,0;,0a3,...). Then o is injective but not onto. Let
R = S|z;c] be a skew polynomial ring. Then C(R) = {(a,a,...) | a € D} % D
is exchange. However O is the only idempotent contained in zR and 1 ¢ (1 — z)R.
Therefore R is not exchange.

(3) Let W[Q)] be the 1st Weyl Algebra over Q. Consider R = zW;[Q)] » Q. with
(f,r)(9,8) = (fg +8f +rg,rs). Then R is a domain and C(R) = Q is exchange.
But 0 is the only idempotent contained in (z,0)R and 1 ¢ (1g — (z,0))R = (~z,1)R.
Therefore R is not exchange.

Proposition 13. Let R be a reduced Pl-ring. If C(R) is semiprimitive exchange, then
R is a semiprimitive I-ring.

Acknowledgement. The author would like to express his gratitude to Professor
Masahisa Sato for his giving the opportunity to present this material on the Japan-
Korea Ring Theory and Representation Theory Seminar jointed with the 31st Japan
Ring Theory and Representation Theory Symposium.
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SOME CHARACTERIZATIONS OF 2-PRIMAL RINGS

‘NAM KYUN KIM* AND TAl KEUN KwAK**

Throughout this note R denotes an associative ring with identity and all prime ideals
of R are assumed to be proper.

- Birkenmeier, Heatherly and Lee [1] called a ring R 2-primal if its prime radical P(R)
coincides with the set N(R) of all nilpotent elements of R. Note that commutative rings
and reduced rings (i.e., rings without nilpotent elements) is a 2-primal ring.

Historically, some of the earliest results known to us about 2-primal rings (although
not so called at the time) and prime ideals were due to Shin [10]. He proved that a ring
R is 2-primal if and only if every minimal prime ideal of R is completely prime. Hirano
[5] considered the 2-primal condition in the context of strongly n-regular rings. He used
the term N-ring for what we call a 2-primal ring. The 2-primal condition was taken up
independently by Sun [11], where in the setting of rings with identity he introduced a
condition to be called weakly symmetric, which is equivalent to the 2-primal condition
for rings. Sun [11] showed that if R is weakly symmetric, then each minimal prime ideal
of R is a completely prime ideal, and that the ring of n-by n upper triangular matrices
over R inherits the weakly symmetric condition. The name 2-primal rings originally
came from the context of left near rings by Birkenmeier, Heatherly and Lee [1].

Following Birkenmeier, Kim and Park [2], Koh [7] and Shin [10], for a prime ideal P
of a ring R, we put
O(P) ={a € R| aRb =0 for some b € R\P},
Op = {a € R| ab=0 for some b € R\P},
Op = {a € R| a™b = 0 for some positive integer m and some b € R\ P},
N(P) = {a € R{aRb C P(R) for some b € R\P}, and
Np = {a € R| ab € P(R) for some b € R\P}.
It can be easily checked that for each prime ideal P of R, O(P) and N(P) are two-sided
ideals, but Op,Op, and Np are not one-sided ideals of R. Also O(P) and N(P) are
subsets of P, O(P) C Op C Op and N(P) C Np.

Recall that a two-sided ideal P of R is completely prime (completely semiprime) if
ab € P implies a € P or b € P (if a® € P implies a € P) for a,b € R. Note that if P is
a completely prime ideal of R, then Op is a subset of P.

We use P(R), N(R), and (m)Spec(R) to represent the prime radical, the set of all
nilpotent elements, and the set of all (minimal) prime ideals of R, respectively.

1991 Mathematics Subject Classification: 16D30, 16570.
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Koh [7] proved the following: Let R be a reduced ring.
(1) [Proposition 2.3] If P € Spec(R), then Op is a ideal and Op C P.
(2) [Theorem 2.4] P € mSpec(R) if and only if P = Op and in this case, P is a
completely prime ideal. -

Recall from Lambek [8], a one-sided ideal I of R is called right (left) symmetric if
zyz € I implies zzy € I (yzz € I). We shall say that R is symmetric whenever (0) has
the corresponding property.

Shin [10] called a ring R almost symmetric if it satisfies;

(S1) for each a € R, r{(a) is a two-sided ideal of R, where {a) = {b € R | ab = 0},
and
(S1I) for a,b,c € R, if a(bc)™ = 0 for a positive integer n, then ab™c™ = 0 for some
‘positive integer m.
Also, he showed the following:
(1) [Lemma 1.1] Any reduced ring is symmetric.
(2) [Lemma 1.2] R satisfies (S I) if and only if ab = 0 implies aRb = 0 for any
a,be R
(8) [Proposition 1.4] Any symmetric ring is almost symmetric.
(4) [Theorem 1.5) If R satisfies (S I) then R is 2-primal.
(5) [Corollary 1.10] If R is a 2-primal ring, then P € mSpec(R) if and only if
P = N(P) if and only if for any @ € P, ab is nilpotent for some b € R\P.
(6) [Proposition 1.11] R is a 2-primal ring if and only if every minimal prime ideal
is completely prime.

The converse of [10, Theorem 1.5] does not hold by the following example.
Example 1. Let R = f)' & | where F is a field. Then P(R) = [g g'] = N(R),
30 R is 2-primal, but it does not satisfy (S I).

Now, as the parallel definition to Op, we define the following.

Definition 2. Np = {a € R | a™b € P(R) for some positive integer 7n and some
b € R\P} for P € mSpec(R).

Note that for P € mSpec(R), Np isnot a one-sided ideal of R and Op,Np C Np.
Moreover, if P is a completely prime ideal of R, then Np is a subset of P.

With the above facts, we characterize 2-primal rings. To characterize a 2-primal ring,
we consider 2 useful property which has been profitable in the study of near-rings.

Recall from Mason [9], a one-sided ideal I of R has the insertion of factors property
(or simply, IFP) if 2y € I implies zRy C I for z,y € R. Observe that every completely
semiprime ideal of R has the IFP.

The following results might be helpful for the criterion for a certain class of rings to
be 2-primal.

Theorem 8. The following statements are eguivalent:
(a) R is a 2-primal ring.



(b) P(R) has the IFP.

(c) N(P) has the IFP for each P € mSpec(R).
(d) N(P) = Np for each P € mSpec(R).

(e) N(P)= Np for each P € mSpec(R).

(f) Np C P for each P € mSpec(R).

(8) Npre(r) € P/P(R) for each P € mSpec(R).

In Theorem 3, “P € mSpec(R)" can be replaced by “P € Spec(R)”.

Note that if R satisfies (S I), then Op = O(P) has the IFP for each P € Spec(R).
On the other hand, we have the following result by using Theorem 3.

Proposition 4. We have the following:
(2) -If O(P) has the IFP for each P € mSpec(R), then R is a 2-primal ring.
(b) If R is a 2-primal ring and Op = P for some P € Spec(R), then P is a
completely prime ideal of R, in particular, Op has the IFP.

The converse of Proposition 4(2) does not hold. Moreover, the condition “Op = P”
in Proposition 4(b) is not superfluous by the following example.

F F
0 0
is a minimal prime ideal of R. Then O(P) = 0 and O(P) does not have the IFP.
Furthermore, Op # P and Op is not a one-sided ideal of R.

Example 5. In Example 1, the ring R = [f)‘ f;:] is 2-primal and P =

In [6], Hirano, Huynh and Park showed the following: Let R be a ring, then its prime
radical P(R) contains all nilpotent elements of index.two if and only if for any a,b € R
with zy = 0, it holds yRz C P(R). Observe that if R is a 2-primal ring, then P(R)
contains all nilpotent elements of index two. However, in general, the converse is not
true.

Proposition 8. The following statements are equivalent:
(2) R is ¢ 2-primal ring.
(b) P(R) is a completely semiprime ideal of R.
(c) P(R) is a left and right symmetric ideal of R.
(d) zy € P(R) implies yRz C P(R) for z,y € R.
(e) N(P) is a completely semiprime ideal of R for each P € mSpec(R).
(f) N(P) is a left and right symmetric ideal of R for each P € mSpec(R).
() zy € N(P) implies yRx C N(P) for z,y € R and for each P € mSpec(R).

Recently, Birkenmeier, Kim and Park [3] showed the following;:
(1) [Proposition 1.2] Let R be a 2-primal ring and P a prime ideal of R. Then
(i) OpcNpCP;
(i) N(R) = \pespec(r) O = P(R).
(2) [Definition 1.3] Let z,y € R and n a positive integer. We say. R satisfies the condition

(CZ 1) if whenever (zy)™ = 0 then 2™y™ = 0 for some positive integer m. Observe that
if R satisfies (S II), then R satisfies the condition (CZ 1).
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(3) [Lemma 2.1) Let P be a prime ideal of R.
(i) If P = Op, then P is completely prime. In particular, If P = Op for every
P € mSpec(R) then R is a 2-primal ring.
(ii) If Op = P and R is a 2-primal ring, then P is 2 minimal prime ideal of R which
is completely prime.
(4) [Theorem 2.3] Let R be a 2-primal ring and P a prime ideal of R. If R satisfies (CZ
1), then P is a minimal prime ideal of R if and only if P = Op.
However, we have the following results for 2-primal rings.

Theorem 7. The following statements are equivalent:
(a) R is a 2-primal ring.
(b) Op C P for each P &€ mSpec(R).
(c) N(R) = nPEmSpec(R) Op = P(R).

Recall that R is a 2-primal ring if and only if every minimal prime ideal of R is
completely prime.

Corollary 8. Assume that Op = P for each P € Spec(R). Then we have the following:

(a) R is a 2-primal ring.
(b) Op = N(P) for each P € Spec(R).
(c) Every prime ideal of R is minimal and completely prime.

In Corollary 8, even if we replace “P € Spec(R)” by “P € mSpec(R)”, we have the
same results.

In [4], Camillo and Xiao showed the following: There exists a simple domain which
is not right Ore. Related to [3, Theorem 2.3], we shall show that there exists a 2-primal
ring R with Op # P for some minimal prime ideal P of R, even if every prime ideal of
R is maximal. Moreover, R does not satisfy (CZ 1).

Example 9. By (4, Theorem 17|, there exists a simple domain D which is not right
Ore. Hence we let R = [l(? g] . Then R is a 2-primal ring which does not satisfy (CZ
D D]

1). Furthermore, every prime ideal of R is maximal. Now, we consider P = [ 0 0

Then 5p #P.

Acknowledgement. The authors would like to express their gratitude to Professor
Masahisa Sato and Professor Jae Keol Park for their giving the opportunity to present
this material on the Japan-Korea Ring Theory and Representation Theory Seminar
jointed with the 31st Japan Ring Theory and Representation Theory Symposium.
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Noncommutative Poisson algebras and
the Gerstenhaber’s deformation theory
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Abstract. Noncommutative Poisson algebras are the alggebras having an
associative algebra structure and a Lie algebra structure together with the
Leibniz law. A standard such algebra is an associative algebra with its Lie
product a scalar multiple of the ordinary associative commutator. In this
article we present several noncommutative Pisson algebras which are allowed
to have only standard ones. In the second part we take a look at the origin
of the Gerstenhaber’s deformation theory and then go into the deformation
theory of noncmmutative Poisson algebras.

I Noncommutative Poisson algebras

1 Noncommutative Poisson algebras

If a vector space A over a field k of the characteristic zero has an asso-
ciative algebra product, being denoted by ab the assiciative algebra product
of a,b in A and the Lie algebra bracket {—,—} satisfying the Leibniz law

{a,bc} = {a,b}c+ b{a,c} (a,b,c€ A),

we call such an A a noncommutative Poisson algebra.
Let A be an associative algebra and denote the ordinary associative com-

mutator by
[a,0) =ab—ba (a,b€ A).

We always have a noncommutative Poisson algebra structure on A whose Lie
bracket is given by
{—)_} = ’\[—) —] (’\ € k)
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Let us call this a standard structure, and denote an algebra A with such a
structure by

A\
If we take a ) in an extension K of k, we say it K-standard.

A deformation quantization of a commutative Poisson algebra brings
about noncommutative Poisson algebras such the Weyl algebra after deform-
ing the algebra of polynomials. In the nect section we will find a work of
Farkes and Letzter [FL] and see that the Weyl algebra is allowed to have
only a standard noncommutative Poisson algebra structure.

In another stream the author has asked the question of what possibilities
are allowed when A is finite dimensional over k. Some of answers to this
question will be also found in the next section. Before going next let us state
the foundamental results.

Theorem ([K1]) The noncommautative Poisson algebra structures on either
the full algebra Myn(k) of n x n marices must be standard.

We close this section with basic tools of our investigation.

Theorem ([K3]) Let L be a finite dimensional Lie algebra, A a finite
dimensional associative algebra and simultaniously en L-module such that
an L-action [l,—] on A satisfies

[,ab] =[l,alb+a[l,b] (L€ L,abe A.

If A conlains no proper ideal which is simultaneously an L-submudule, then
(1) A= M_,(k) for somen, or
(2) A is a simple L-mudule and AA = 0.

Sketch of the proof : The Jacobson radical rad(A) of A is invariant under all
associative derivation of A, one has rad(A)<A and [L, rad(A)] C rad(A), and
hence, rad(A) = A or rad(A) = 0 by our hypothesis. When rad(A) = A, we
arrive at the assertion (2). We need a little consideration when rad(A) = 0,
that is, in the case that A is a semisimple associative algebra. Let 1 = e, +
---+er, €8 = €; be a central decomposition of the identity 1 and exp t§ (£ € k)
be an automorphism that exponentioates an associative derivation § of A.
Considering the equation

exptd(er) = ar(t)er +-- - + ar(t)er,



one gets a;(t) = e; and a;(t) = 0 (j # i) by the continuity on ¢ and ob-
serving the starting point a;(0) = e;, a;(0) =0 (F # 7). This leads us that
exptd(e;) = e;, so that 6(e;) = 0. Hence Ae; @ A and [L, Ae;) C Ae;, which
imply A = Ae; for some i. (m]

Let us say a noncommutative Poisson algebra A to be simple if A has no
proper ideal which is simultaneously a Lie ideal.

Corollary If A is a finile dimensional simple noncommutative Poisson al-
gebra then

(1) A= M,(k) for somen, or

(2) A is a simple Lie algebra with the associative algebra mulliplication
AA=0.

2 Standard noncommutative Poisson algebra structures

2.1 Poset algebras

When a subalgebra A of M,{k) contains all the diagonal matrices, hence,
in particular, all ez, ¢ = 1,...,n, A is spanned by those e;; which it con-
tains (e;; is the matrix with 1 in the (3, )-th place and 0 elsewhere). For
if an a in A has the form a¢ = Mux/a.u.mmu. then €iiaejj = \/a.u.m-.u. so if »-.u wm 0
then e;; € A. Such algebras A are called poset algebras ([GS 2]). Now de-
fine a poset J = I(A) by setting i < j if e;; € A, and let T be the poset
(without loops) determined by reducing / modulo the equivalence relation
defined by the loops, i.e., by identifying to a single element any i and j for
which both i < j and j < i (hence identifying any 1,,%2,...,1, whenever
i) < % < ... < ir.) Let © = I(A) be the nerve of I(A). This is a finite
simplicial complex.

Ezample : We express the poset I by their Hasse diagrams. The following
examples consist of the poset algebra A pictured as on the left in the figure
1 (the entries in position marked by * may be chosen arbitrarily from k), the
Hasse diagrams on the center and the geometric realization of I (the nerve
(A) of T) are given on the left in the figure 1.
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We now state the following foundamental result.

Theorem ([K1]) Let A be a poset algebra in Ma(k) and 5(A) the simplical
complex associated to A. Suppose that £(A) is connected and has the property

that for any pair of I1-faces as its edges. Then any noncommutative Poisson
algebra structure on A must be stendard.

3 3
(1) K K K
0**Q
00*0 2 4
000 *
1
3
(2) * kK %
0* * *
00** 2 4
000 *
1
Figure 1

Note here that since the simplical complex associated to M, (k) or T, (k)
is just the (n — 1)-simplex as an example (2) above, noncommutative Poisson
algebra structures on these algebras are allowed to be only standard ones.
The algebra given in the example (1) has a noncommutative Poisson algebra
structure which is not standard ([K2]).

We have some informations about the infinite dimensional cases in [K4].

(1) Every noncommutative Poisson algebra structure on My (k) of all k-
endomorphisms of a countable dimensional k-vector space must be standard.

(2) If Ais a poset algebra in My (k) has the same property as in the
finite dimensional case, then A has only the standard structures.

(8) The Kac-Moody algebra L of affine type have only an almost trivial
structure, that is, [L, L|[L, L] = 0.
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2.2 Farkas and Letzter’s Theorem

Following to Farkas and Letzter [FL] we take a look at the noncommu-
tative Poisson algebra structures on the prime algebras. Before going into
their theorem we recall the Martindale ring of quotients and the extended
centroid.

The Martindale ring of quotient Q of a prime algebra A consists of all the
pairs (U, f) of a nonzero ideal U of A and a right A-module homomorphism
f : U — A by reducing modulo the equivalence relation identifying to a
single element any (U, f) and (V,g) for which f = g on some nonzero ideal
W of A with W C UNV. Its ring structures are given by f+3 := “a class of
UNV,f+9)”, fg:= “aclass of (VU, fog)" for f = “aclass of (U, f)” and
g = “aclass of (V, g)". Then the extended centroid C*(A) of A is defined to
be the center of Q.

By using the corollary in the book [He] that if A is a prime ring and
0 # a,b € A satisfy the condition azb = bxa for any z € A then there exists
a A € C*(A) such that b = Aa, Farkas and Letzter prove the following theo-
rem.

Theorem If A is a prime not-commulative Poisson algebra with a Lie prod-
uct {—, -} then there ezists a A € C*(A) such that {c,d} = Ac,d] for all
c,de A

Hence a prime not-commutative Poisson algebra is allowed to be only the
C*+(A)-standard structures in our context.

This theorem is applied to the Weyl algebras and M, (k) observing that
they are simple and C*(A) = k. Then it follows that every noncommutative
Poisson algebra structure on them must be standard.
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II A brief observation of the Gerstenhaber’s
deformation theorey

3 Deformation theorey of associative algebras

The deformation theory of algebras was introduced by Gerstenhaber in a
series of papers [G1-G5). It has subsequently been extended by Gerstenhaber
and Schack to covariant functors from a small category to algebras [GS 2]
and to algebraic systems, bialgebras, Hopf algebras [GS 3], Leibniz pairs and
Poisson algebras [FGV], etc. We will discuss a little about the deformation
theory of noncommutative Poisson algebras in the next section. In this sec-
tion we go back to the origin of the deformation theory of algebras by going
through the chapters I and 1 of the Gerstenhaber's paper [G2]. We also rec-
ommend the readers to take a look at an essay of Hazenwinkel [Ha] stated in
the opening of the big volume which is edeted by him and M.Gerstenhaber.

3.1 Aspects of Deformation Theory

To explore our subject let us keep the basic key words used here in mind.
These are found in the following aspects of a deformation theory (We pick
up here some of the aspects given by Gerstenhaber).

o Aspects of deformaiion theory

(1) A definition of the class of objects within which deformation takes
place and identification of the infinitesimal deformations of a given object
with the elements of a suitable cohomology group.

(2) A theory of the obstructions to the integration of an infinitesimal
deformation.

(3) A parameterization of the set of objects.

(4) A determination of the natural automorphisms of the parameter space
and the determination of the rigid objects.

3.2 Basic concepts

e Deformation
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Let A be an algebra over a commutative associative unital ring k with
multiplication a : A x A — A. A deformation of A is a formal power series
a; : Al[t]] x A[[g]] — A[[¢]] (¢: deformation parameter) of the form

Otz:=a+ta1+t2a2+---

where each o; : A x A — A is a k-bilinear map and extended to that of k[[t]].
Then a, define an algebra structure on A[[t]] and write such an algebra by

A, = (A[ld]], o).

If A is an associative algebra, A; is required to be the same kind as «, that
is, an associative algebra following to the aspect (1) in 3.1.
When o) = ap = ++- = 0, we say that a; is a null deformation and write
Ao, hence,
Ao = A @ K[[t]]

is a just extension of the coefficients of A.

o Equivalence

Let A;, A be the deformations of an algebra A with o} := a+ta} +t2cb+
-+« A deformation A; is equivalent to A,, denoted by A; ~ A,, if there exists
a k[[t]]-isomorphism f; : A} — A, of the form

fe=1a+th+8f+---,

where f; € Hom,(A, A) is extended to k[[t]], such that

d(a,b) = fla(fi(a), fi(b))
= fila(fe, f)}(a,0) (a,b€ A).
If we write a * b = af(a,b), a-b= a(a,b) then the above equality means

fi(a*b) = fi(a) - fi(b), i.e., fi is an algebra isomorphism. A deformation A,
is said to be a irivial deformation when A; ~ A,.

e Comomology
Let A be an associative algebra over k. In the deformation theory of the
associative algebras we require A; to be an associative algebra, that is,

ay(a, ae(b, ©)) = ae(a(a,b), c).
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This leads the deformation eguaiion

> {op(tg(a,b),¢) — ap(a, (b, )} = (den)(a, b, ) (*)

pte=n
p>0,g>0

here, 4 is a Hochschild coboundary operator, namely, 6" : C*(4,A) :=
Hom, (A", A) — C™+1(A, A) defined by
f(ar,...,0041) = ar1f(@,...,an) + ity (-1 f( - -, 0iCi4a, .. )
+H(=1" f(ay, - ., 2n)an4.

One can see the easy consequences of the equation (*):
Substitute n=1in (*) = by =0, ie., a; € Z%3(A4, A)
o} ~ oy &= oj—-o€ Bz(A,A)

In fact, assume of ~ oy and write o} — o = §f;. Then the isomorphism
fe: Ay — Al isgiven by fi=14+1f;.

o Rigidity
A k-slgebra_ A is analytically rigid if every deformation A, is equivalent
to the null deformation A¢ (A: ~ Ao). Here is a foundamental theorem.

Theorem ([G 2]) If A is an associative algebra with H2(A, A) = 0 then A is
analytically rigid. In particular, the separable algebras are analytically rigid.

Proof. Let o is a deformation and write a¢ = o + ta) + t%a; + - --. By the
assumption that &y € Z%(A, A) = B?*(A, A), one can find fV) € C‘(A A)
such that 6/ = a,. Then we have

ofV = (La —tfM)ay(14 — tfM, 14 — tfD)
= a+tlar+-,

which is equivalent to ;. Repeating this procedure, one gets

H(1A —tf)- ong(lA —tf®, 1,4 = tf) = qq.

i=] i=1
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An associative algebra A is said to be infinitesimal rigid if A satisfies
H?*(A, A) =0.

o Integrable Problem
A 2-cocycle oy € Z%(A, A) is said to be integrable if there exists a one
parameter family o, whose first coefficient is o, so that,

o =a+ta +t2ap+---.

Now go back to the deformation equation (%) in the part of ‘ohomology” .
Suppose that we can find ¢, ..., an-) satisfying (¥). We want to construct
an from ay,. .., an-) satisfying (). But there is an obstruction to do so. If

we put .
fog(a,b,c) = f(9(a,b),c) — f(a,g(b,C)),

the left hand side of (*) can be written in the form (a18ay—1+ « * + @n-15a)
(a,b,c), and then the deformation equation (*) is of the form

01001 + - -+ + Qp—10) = 0.

The left hand side of this equation define the 3-cocycle and is called an
obstruction cocycle. Hence we can now easily understand

Theorem ([G 2]) If A is an associative algebra with H3(A, A) = 0, then
every 2-cocycle is integrable.

Ezample of such an associative algebra A. We consider the poset algebra A
given in the figure 2. Then one has

ISR 5
O % % % X X |
00 % * % 3
000 % % I
0000%0 1
\00000*/

—111—



IR

HYA,A) = HYT(A)k) = Hy(L(A),k) = k&,
HYA,A) = HYT(A)k) = Hy(L(A),k) = 0,

by using the Gerstenhaber and Schack’s theorem H*(A, A) = H*(T(A), k)
([GS 2], p.138) and the famous Kiinneth theorem in algebraic topology.

3.3 Parameter space

Let k be a field and Q an universal domain with £ C Q. Let C be an
n-dimensional vector space over k with a basis {z,...,z,}. For each point
P = (cij) in 9% we have an algebra whose structure constants are (i),
that is, z:z; = Yk GijxZx. Let A be an assosciative algebra over k and fix a
basis {ai,...,a,} of A. Since the condition that an n-dimensional algebra
defined by a set of structure constants (ci;x) be associative is expressible
by vanishing of certain quadratic polynomials in these constants, such points
(csjx) form an algebraic set C of the affine n%-space. We have now a parameter
space C associated to the class of the associative algebras of dimension n.

There are several correspondence between the concepts of algebras and
those of geometric objects. Let G = GL(n, Q) be the general linear group.
Then G acts on C.

(1) Let P € C represent an algebra A. Then a point gP (g € G)
represents an algebra which is isomorphic to A over some common extension
of their coefficient field.

PeV «— A — AL

| Ik

gPeV «— A — A@L

(2) Let P = (cijx) be a point in V corresponding to A. An associative
algebra A is geometrically rigidif the orbit GP contains a Zarisky open subset
of P on C, equivalently a component of C containing P has a generic point
which represents an algebra isomorphic to A over some extension of k.

(3) An element of Z2(Aq, An) corresponds to a tangent vector of C at
P. Let P = (c;jx) be a pont in C corresponding to A and P’ = (c;jx + tcj;,) &
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point in the tangent space of C at P. Then we have an algebra A;/t®A; over
k[[t]]/t2k[[t]] with a multiplication

aia; = (cije + tciix)ax,
%

called infinitesimal deformation.

At /tAt
A =«
At YI'

genericpoint  Speclalization

We close this section with some results on rigidity.

Theorem ([GS 1]) Let k be a field of characteristic zero and A a finite
dimensional k-algebra in any eguationally defined category. Then A is geo-
meltrically rigid if and only if it is analylically rigid.

Note It is still open problem (35years old) to find analytically, but not in-
finitesimally, rigid associative algebras in characteristic zero.

infinitesimally rigid = analytically rigid =+ geometrically rigid
(H*(A,A)=0) & (A¢ ~ Ap) < (GP is open)

4 Deformation theory of noncommutative Poisson algebras

We have seen the aspects of the deformation theory in the previous sub-
sections. The deformation theory of any other algebraic systems seems to
be developped based on these aspects. In this section we will concern such
a model, a deformation theory of noncommutative Poisson algebras, intro-
duced by Flato, Gerstenhaber and Voronov [FGV].
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e Deformation of noncommutative Poisson algebras
Let a noncommutative Poisson algebra (A, , \) be given by

an associative product o : AxA— A
alieproduct A : AxXA— A

with the Leibniz law A(a, a(b, ¢)) = a(a, A(b, ¢))+a(A(a,b),c). A deformation
(A[[t]])ah At) of (A,O!, '\) is given by

an associative product a, : A[[t]] x A[[t]] — A[[t]]
a Lie product X : A[[t]] x A[[t]] = A[[t]]

of the form
a=a+toy+tlap+-, A=A+th +t Ao+
with the Leibniz law A¢(a, ax(d, €)) = au(a, Ae(b, ¢)) + o (Xe(a, b), €).

e Cohomology for noncommutative Poisson algebras

A cohomology group controling a deformation theory of noncommuta-
tive Poisson algebras is proposed to choose a chain complex (Cg,,(A, A), 8i:)
defined by

CLu(A, A) = Bp1qnCP(A, 4), am={ bulowe = bp+bos

Seotlcra op + (—1)%ce (P> 2)°
where
C1 = Hom, (A4, A)
q — ?
cr (A'A)‘{ CP4 = Homy(A® ® (NA),A) (p>2) *

6y is & Hochschild coboundary, and ¢k is a Chevalley-Eilenbrg coboundary
operator defined by, denoting by [—, —] := A(—,-),

(JCEf)(ah e )an) = E?=l(_1)i+l[a'i) f(al; e )dh .. ')
+ZlSi(an(—l)i.Hf([ai’aj]" > )di) L] )dj) o '))

and ép : C1 = Hom, (A1 A, A) — C?9 = Hom,(A2®(A%A), A) is a compo-
sition Homg (A7 A4, A) S Homi(A®(A4), A) i Homg(A%®(A14),4) (e*f(ar®
(a2 A...Aap)) = flaiAaa A...Aay)).
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T5H TJH TJH
Homi(A3,A) 265 Homy(A®® A,A) 25 Homy(A3 ®A24,4) 8
TJH TJH TJH
Homi(A%,A) %5 Homy(A2®A,A) 8 Hom(A2®A24,4) %5
TJP =6y IJP Tﬁp
Homy(A,A) %5 Homy(A24,4) %5 Homy(A%4,4) 5

Let us find out a reason why this chain complex works well in our theory.
We denote by B},(A, A), Z¢,(A, A), H2,(A, A) the k-modules of n-cocycles,
n-coboundaries and n-th cohomology group respectively. We have three de-
formation equations for an associative algebra, a Lie algebra and the Leibniz
law. By looking at the first coefficient of the Leibniz law A.(e,a:(b,c)) =
ai(a, Me(b, c)) + ae(Xe(a,b), c), one has

[z,01(a,b)] + A1 (z, ad) = aXi(z,b) + ai(a, [z, b]) + Ai(z, )b + au([z, a], b),

being denoted by [-,—] = A(—,-), ab = a(a,b). On the other hand, by
identifying Hom, (A% ® A, A) with Hom, (A, Hom,(A?, A)), one gets

(doean)(z)(@®b) = [z,0n(a®b)] — ar([z,a] ® D) — (e ® [z,}])
@GeA)(x)(a®b) = ac*(M)(P®z) - (M) (edb®z)+e* (M) (e ®@x)d
= aM(bAzZ) - A(abAz)+ A(a Ax)b.
Hence the Leibniz law holds modulo 34, if and only if

dpAi+dce=0,0r, ) +; € Zfa(A,A).

e Rigidity of noncommutative Poisson algebras
Now assume that A is infinitesimally rigid, that is, HZ,(A, A) = 0. Let
(Ae, o, A) be a deformation of a noncommutative Poisson algebra (4, a, )).
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Since A\ + a1 € Z2,(A, A) = B2,(A, A), one can find an f € CL,(A,A) =
C'0(A, A) = Homyx(A, A) such that §1,(f) = A + a, hence

ay=0p(f), M= dce(f)

Then consider the k[[t]]-automorphism ®; = 14 +¢f of A.. As in the proof
stated in the part of ‘ohomology” in the section 3, one has

O ey (B, B) =+ 2ol +---, BIN(Dr, B) = A+ 2N+ 1.
Repeating this procedure we have

Theorem If A is a noncommutative Poisson algebra with H2,(A, A) =
0 then A is analytically rigid in the category of noncommutative Poisson
algebras.

The analogous theorems to those in the section 3 are expected for non-
commutative Poisson algebras, but we can not find them in the paper [FGV]
(The authors might think that such theorems are obviously derived). It is a
good exercise to verify these theorems.
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ON RELATIVE PROJECTIVITY FOR
FINITE GROUP ALGEBRAS

Naoko Kunuai

§1. Introduction

Let G be a finite group. Let k be an algebraically closed field of characteristic p > 0.
In modular representation theory of finite groups, it is important to investigate relations
between representations of G and representations of Ng(P) where P is a p-subgroup of
G. There is a well-known conjecture due to Broué.

Conjecture(Broué [1, 4.9 Conjecture] ) Let G be a finite group with abelian Sylow
p-subgroup P. Then the principal block of kG and the principal block of kNg(P) are
derived equivalent.

T. Okuyama showed that the Broué conjecture holds in some cases(see [5]). The Green
correspondents of the simple modules play an important role, there.

In this paper, we state results which may be useful for calculating the Green corre-
spondents. Moreover we apply these results to G = PSL(3, ) in characteristic 3.

§2. Relative projectivity

Let G be a finite group and let # be a family of p-subgroups of G. A kG-module U is
said to be H-projective if each direct summand U; of U is H;-projective for some H; € H.
We recall the definition of relative projective covers which was introduced by Knorr.

Definition 1 ([2, 1.Definition, 2.Proposition]) A short exact sequence
0 —-U—>V—>M—70 1)

of kG-modules is called an H-projective resolution of M if

(i) V is H-projective

(31) the sequence (1) is H-split.

Moreover if U has no non-zero H-projective direct summand then (1) is called an
H-projective cover of M, and we write Py (M) for V and Qy(M) for U.

An H-projective cover of any kG-module exists and uniquely determined up to iso-
morphism. The module Py (M) is also called the H-projective cover of M.

Dually we can define #H-injective hulls. The H-projective resolution (1) of M in Def-
inition 1 is also called an H-injective resolution of U. If M has no non-zero H-injective

The detailed version of this paper will be submitted for publication elsewhere.
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summand then (1) is called an H-injective hulls, and we write Iy (U) for V and Q3,'(U)
for M.

Next we consider the relative projective cover of the trivial kG-module kg. Let H be a
subgroup of G. The induced module k1€ has a unique indecomposable direct summand
containing the trivial module kg in the head. This summand is called the Scott module
and is denoted by Sg(H). The following properties of Scott modules are important.

Proposition 2.1 (Scott, Alperin)(see [4, Chapter 4 Theorem 8.4, Corollary 8.5)) (i)
Sc(H) is self-dual.

(ii) dimg Homyg(kg, Se(H)) = dim;, Homg(Se(H), kg) =1

(iii) Let Q be a p-subgroup of G. Then, Sg(H) &2 Sg(Q) if and only if Q is conjugate
to a Sylow p-subgroup of H in G.

Proposition 2.2 The Scott module Sg(Q) is the Q-projective cover of kg, and is the
Q-ingective hull of kg.

Lemma 2.3 Let Q) be a proper subgroup of a Sylow p-subgroup of G. Then the inclusion
map ¢ : kg — Qg(kg) is not a Q-projective homomorphism.

§3. Green correspondence

In this section we state two lemmas which may be useful to calculate the Green
correspondents of some modules.
Let P be a p-subgroup of G and let H = Ng(P) be the normalizer of P in G. We set

X={sPs"'NP|seG,s¢ H}
P={sPs'NH|s€G,s¢ H}
3={QCP|QZc X}

Then, the Green correspondence f = f(G, P, H) with respect to (G, P, H) is a one-to-one
correspondence between isomorphism classes of indecomposable kG-modules with vertex
in 3 and isomorphism classes of indecomposable kH-modules with vertex in 3. For such
a kG-module U, we write f(U) for the corresponding kH-module. Then, U and f(U)
have the same vertex and

Uly = f(U) ®9-proj
(UM =U & X-proj

(see [4]). It is difficult to determine the Green correspondent of a module by direct
calculations, in general. However, we can give the following correspondence using the
relative projective cover of the trivial module.

Lemma 3.1 Let G be a finite group with abelian Sylow p-subgroup P, end H = Ng(P).
For a proper subgroup of P,

(Qq(ke)/ke)bu= Qq(kn)/kn & (Q-proj).
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Remark 1 In general, the restriction to H of a Q-projective kG-module is a {sQs™' N
H|s € G}-projective kH-module. In the above lemma, by the assumption on P, this
family is conjugate to {Q}. Therefore restriction of a Q-projective kG-module is a Q-
projective kH-module.

Therefore we can determine the Green correspondent of Qg(kg)/kc by calculating
the Scott module Sg(Q). Similarly we consider tensoring by a simple module instead of
restriction to H.

Lemma 3.2 Let G be a finite group and let Q be a proper subgroup of a Sylow p-subgroup
of G. Let S be a simple module such that p{dim; S. Assume that Pg(S) = Ig(S). Then

S ® ((kc)/kc) = Q(S)/S’ & (Q-proj),
where S’ is a submodule of Qg(S) isomorphic to S.

The condition p4 |G : H| in Lemma 3.1 corresponds to the condition p { dimy S.
§4. Application

Let k be an algebraically closed field of characteristic 3, and let G = PSL(3,q) be
the 3-dimensional projective special linear group, where g is a power of a prime satisfying
the condition ¢ = 40r7 (mod 9). In this section, we calculate the Green correspondents
of the simple modules in the principal block of £G by applying the results of section 3 to G.

Assumption. Let k be an algebraically closed field of characteristic 3, and G =
PSL(3,q) where ¢ = 4 or 7 (mod 9). Let P be a Sylow p-subgroup of G. Then
P =3 x Cy. Weset H= Ng(P). Then H = (C; x C3) % Qg where Qg is a quaternion
group of order 8. We denote by A the principal block of ¥G and B by the principal block
of kH. In particular, we denote by A, the principal block of kPSL(3,4).

We consider the Green correspondence f with respect to (G, P, H). The principal
block B of kH has five simple modules ky, 1, 12, 15 and 2. The principal block A of
kG has five simple modules kg, S, T}, T and T3, where dim; S = ¢* + ¢ —~ 1. Since P
is abelian, all simple modules in A and B have P as their vertex. Therefore the Green
correspondence of the simple modules is defined.

Let @ be a subgroup of P of order 3. The group G has a maximal subgroup L of index
¢*> + g+ 1 and H has a subgroup K of index 12. Induced modules ;1€ and kxtH are
both indecomposable. We have the following.

ke kp 1,121,
Se@=| S |, Su(Q) = 22 i
kG kH 11 1; 15

Lemma 4.1

We get the following by Lemma 3.1.
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Lemma 4.2 The Loewy series of the Green correspondent of the simple module S is

1; 1213
22 .
111213
In general, to calculate the relative projective cover of a module is difficult. However,

we can determine the @-projective cover of the simple module S.

Lemma 4.3
S
Po(S) = Io(S) = kaT:STzTa .

Since 3 { dim; S, we have the following lemma by applying Lemma 3.2.
Lemma 4.4
S@S=ked T & T2 ® T3 & (Q-proj).
Therefore we have

f(S)® £(S) 2 kp @ f(Th) ® f(T2) ® f(T3) ® (Q-proj).

Note that the Green correspondent of S dose not depend on g. Thus the Green corre-
spondence of T; dose not depend on g. Schneider determined the Green correspondents
in the case g = 4 (see [6, Theorem]). Hence we get the Green correspondents of all simple
modules.

Lemma 4.5 The Green correspondents of the simple kG-modules in A are determined
and they do not depend on q. The Loewy series are

Lily1s 2
flke)=kn, f(S)=| 22 |, f(B)=| kn L
L1213 2

fori=1,2,3.

Theorem 4.6 The principal block A of kG is Morite equivalent to the principal block A,
of kPSL(3,4)

Proof. We write 4Ap if we regard A as an (A, B)-bimodule and gA, if we regard A
as a (B, A)-bimodule, where B = By(kH) = kH. Then the bimodules gA4 and 4Ap
induce a stable equivalence of Morita type between A and B by a theorem of Broué([1,
6.3 Theorem)). Therefore the bimodules A, ®p A and A®p A, induce a stable equivalence
of Morita type between A and A;. By Lemma 4.5, for any simple A-module U, we have
that A; ®5 A ®4 U = (simple) & (proj). Therefore we have that A and A, are Morita
equivalent by a theorem of Linckelmann([3, Theorem 2.1]). O

The following theorem is showed by T. Okuyama (see [5]).
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Theorem 4.7 (Okuyama) A, and B are derived equivalent.
Therefore we have the following as a corollary to Theorems 4.6 and 4.7.

Corollary 4.8 A and B are derived equivalent, that is, the Broué conjecture holds for
the cases G = PSL(3,q), g=4or7 (mod 9).
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POLYNOMIAL RINGS WHICH ARE QUASI-DUO

YANG LEE

Throughout this paper, all rings are associative with identity. Given a ring R, the
Jacobson radical of R, the polynomial ring over R and the formal power series ring over
R are denoted by J(R), R[z] and R][[z]], respectively. In this paper we continue the
study of quasi-duo rings that was initiated by Yu in [12], related to the Bass’ conjecture
in [2). In section 1 we observe some properties of right quasi-duo rings, and investigate
whether right quasi-duo rings (or thier factor rings) are commutative if the polynomial
rings over them are right quasi-duo. In section 2 we study the connections between
right quasi-duo rings and weakly right duo rings. A ring R is right (left) duo if every
right (left) ideal of R is two-sided. A ring R is called weakly right (left) duo if for each
a in R there exists a positive integer n = n(a), depending on e, such that a”R (Ra")
is two-sided. A ring R is called right (left) quasi-duo if every maximal right (left) ideal
of R is two-sided. Commutative rings are clearly right and left duo. Right duo rings
are obviously weakly right duo, and weakly right duo rings are right quasi-duo by [12,
Proposition 2.2)].

1. Polynomial rings which are right quasi-duo
In this section we study whether a ring R (or its factor ring) is commutative if
R|[z] is right quasi-duo. We first observe some properties of right quasi-duo rings.

Proposition 1. For a ring R, the followings are equivalent:
(1) R is right quasi-duo.
(2) Every right primitive factor ring of R is a division ring.

Remark. We may obtain the same result for left quasi-duo rings by replacing “right”
by “left” in the preceding proposition.

Recall that a ring R is called reduced if R has no nonzero nilpotent elements.
As in the next corollary we obtain the result [12, Lemma 2.3] (i.e., For a left or right
quesi-duo ring R, all nilpotent elements are in J{R)), using a different method of proof.

Corollary 2. {12, Lemma 2.3] For a right (or left) quasi-duo ring R, R/J(R) is re-
duced.

This is a part of forthcoming joint paper “Some results on quasi-duo rings” with Chan Huh
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As an elementary fact, a commutative semiprimitive ring is a subdirect product
of fields. In the next corollary, we may generalize this result to right or left quasi-duo
rings.

Corollary 8. (1) A right (left) quasi-duo semiprimitive ring is a subdirect product
of division rings. (2) Every homomorphic image of a right (left) quasi-duo ring is also
right (left) quasi-duo.

As another corollary, we obtain [12, Corollary 2.4] (i.e., A semiprimitive right (or
left) quasi-duo ring is reduced) from Corollary 3. Following Theorem 5 is one of our
main results of this paper.

Lemma 4. Let R be aring and 0 # €2 = e € R. If I is a maximal ideal of R then
either ele = eRe or ele is a maximal ideal of eRe.

Remark. In the preceding lemma, if ReR = R then eJe g eRe for every proper ideal
Jof R

Theorem 5. Let R be a ring and 0 # €2 = e € R. If R is right quasi-duo then so is
eRe.

Remark. (1) In spite of Theorem 5, the quasi-duo condition is not a Morita invariant
property by the » by » full matrix ring over a division ring which is neither right nor
left quasi-duo, where n is any positive integer. (2) The converse of Theorem 5 does not
hold in general. Let R be the n by n full matrix ring over a division ring D and e € R
be the nonzero idempotent for which (1,1)-entry is 1p and other entries are Op. Then
ReR = R and eRe(2¢ D) is right quasi-duo; but R is not right quasi-duo.

Moreover we observe some properties of polynomial rings and formal power series
rings which are right quasi-suo.

Proposition 8. For a ring R, the followings are equivalent:
(1) R is right quasi-duo.
(2) R[[=;0)] is right quasi-duo for every endomorphism 0 : R — R.
(3) R[[z;0]] is right quasi-duo for some endomorphism 0 : R — R.
(4) R[[z]] is right quasi-duo,

where R[[z;0]] is the skew power series ring over R by 0, every element of which is of
the form 3 .7 | a,z", only subject to za = 8(a)z for each a € R.

Similarly we obtain the following result.
Lemma 7. For a ring R, if R[z] is right quasi-duo then R is right quasi-duo.
Based on Proposition 6 and Lemma 7, we may raise the following question.

Question (1). Is R|z] right quasi-duo if R is right quasi-duo?
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Answer. Negative by the following Example 9.

Lemma 8. Let R be a right primitive ring. Then R[z] is right quasi-duo if and only
if R is a field.

Recall that a ring R is called a Pl-ring if R satisfies a polynomial identity with
coefficients in the ring of integers. We may conjecture that the answer of Question (1)
with Pl-condition is affirmative. However followings, although they are Pl-rings, are
counterexamples to the question.

Example 9. (1) Consider the field F = {0,1,u,1 + u} with u> = 1+ u and the
automorphism 8 : F — F given by 8(a) = o for each a € F. Let R = FJ[[t; 8]] be the
skew power series ring over R by @ with ¢ its indeterminate, subject to ta = 8(a)t for
each a € F. By Proposition 6, R is right quasi-duo. Since ¢ is central and a2 +a € Z;
for all a € F, R satisfies the polynomial identity

71 (2223 — T372)% — (T2T3 — T322)7)1.

Let I = (1 +tz)R[x] then since I is a proper right ideal of R[z] there exists a maximal
right ideal M of R such that I C M. Now assume that R(z] is right quasi-duo, then
M is two-gided and so

1 =u+u? =u(l +tz) + (1 +tx)u? € M,
a contradiction. Thus R[z] cannot be right quasi-duo.
(2) Let R be the Hamilton quaternion over the field of real numbers. Then clearly

R is right quasi-duo and right primitive; but by Lemma 8, R[z] cannot be right quasi-
duo.

The following fact, although the proof is simple, may give a motivation to our
goal in this section.

Proposition 10. (4, Lemma 3] For a ring R, if R|z) is right duo then R is commuta-
tive.

Note that right duo rings are right quasi-duo. So from Lemma 8 and Proposition
10, we ask the following question:

Question (2). Is R commutative if R[z] is right quasi-duo for a ring R?
Answer. Negative by the following Example 11.

F F
0 F

R[:z:]=({; f,) [,,]g(F([)z] g{ﬂ)
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is also right quasi-duo. But R is noncommutative.

Commutative rings are clearly Pl-rings; hence we may consider another question:
Question (3). Let R be a PI-ring and Rz] right quasi-duo. Is R then commutative?
Answer. Negative by Example 11. Note that the ring R is & Pl-ring.

We will find a condition under which Question (2) may be true. For doing it, we
need to prove the following that is one of our main results of this paper.

Theorem 12. For a ring R, if Rlz) is right quasi-duo then R/J(R) is commutative.

Remark. As the converse of Theorem 12, one may conjecture that for a right quasi-
duo ring R if R/J(R) is commutative then R[z] is right quasi-duo. However it fails in
general by the following example.

Example 18. Let C be the field of complex numbers. Define a field isomorphism
o : C — C by o(a + bi) = a — bi where a,b are real numbers. Next consider the
skew power series ring R = C[t; o]], every element is of the form Y ., ant" over C,
only subject to t{a + bi) = (0(e + bi))t, where ¢ is the indeterminate of R. Note that
R is a right quasi-duo local domain and R/J(R) =¢ C; hence R/J(R) is commutative.
Next consider a maximal right ideal M of the polynomial ring R[z] over. R such that
1+ (it)z € M. Assume that R[] is right quasi-duo. Then M is 2-sided and so

% = i(1 + (it)z) + (1 + (it)z)i € M,

which is a contradiction. Thus Rfz] is not right quasi-duo.

We now have a condition under which Question (2) may be true, from Theorem
12.

Corollary 14. Let R be a semiprimitive ring. Then R[z] is right quasi-duo if and
only if R is commutative.

In Corollary 14, the ring R is semiprimitive and right quasi-duo so it is reduced by
(12, Corollary 2.4]; hence as a generalization of Corollary 14 we may ask whether R is
commutative if R is reduced and R[z] is right quasi-duo. But the following proposition
shows that this question is equivalent to the corresponding question in the case where
R is 8 domain. We raise it at the end of this paper.

Proposition 15. For a ring R, the following statements are equivalent:

(1) If R is reduced and Rlz] is right quasi-duo then R is commutative.
(2) If R is a domain and R[] is right quasi-duo then R is commutative.

Given a ring R we denote the prime radical of R, the set of all nilpotent elements
of R and the Jacobson radical of R{x] by P(R), N(R) and J(R|z]) respectively. In the
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followings we obtain some facts about J(R[z]) when R][z] is right quasi-duo, related to
N(R) and P(R).

- Proposition 16. Let R be a ring and suppose that R|z] is right quasi-duo. Then
N(R) is an ideal of R and J(R[z]) = N(R)[z].

Corollary 17. Let R be a ring with right Krull dimension (in the sense of Gabriel -
and Rentschler, see [6] for more detail). If R[z] is right quasi-duo then N(R) = P(R)
and J(R|[z]) = P(R)[z].

Corollary 18. Let R be a ring which is right Goldie or satisfies ascending chain
condition on both right and left annibilators. If R[z] is right quasi-duo then N(R) =
P(R) and J(R[z]) = P(R)[z).

2, Connections between right quasi-duo rings and weakly right duo
rings

In this section we study the connections between right quasi-duo rings and weakly
right duo rings. A ring R is called abelian if every idempotent is central. First we recall
the following fact.

Proposition 19. {12, Proposition 2.2] Weakly right duo rings are abelian right quasi-
duo rings.

It is natural to ask the following question:
Question (4). Is an abelian right quasj-duo ring weakly right duo?
Answer. Negative by the following.

Example 20. Let F be a field and S = F[t] be the polynomial ring over F with ¢
its indeterminate. Define a ring homomorphism ¢ : § — S by o(f(t)) = f(t?). Next
consider the skew power series ring R = S|[z; o]] over S by o, every element of which is
of the form } >, anz™, only subject to za = g{a)z for each a € S. Note that R is an
integral domain and so 0,1 are the only idempotents of R; hence R is abelian. Since
S is clearly right quasi-duo, R is also right quasi-duo by Proposition 8. Next, notice
that all coefficients of the elements of z" R are of the form f(t°") € S by the definition
of o and the property za = o(a)z for a € S, where n is any positive integer. So z"R
cannot contain Rz" and hence R is not weakly right duo.

Every factor ring of a given weakly right duo ring is also weakly right duo. So we
may raise the following question.

Question (5). Is an abelian right quasi-duo ring R, such that R/J(R) is weakly right
duo, weakly right duo?
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Answer. Negative by Example 20. For, since S is semiprimitive, J(R) = Rz and so
R/J(R) is isomorphic to S; hence R/J(R) is commutative.

Based on this answer we will consider a stronger condition than the condition that
R/J(R) is weakly right duo. Recall that a ring R is called von Neumann regular if for
each a in R there exists an z in R such that a = aza; a ring R is called strongly regular
if for each a in R there exists z in R such that a = a?z; a ring R is called w-regular if
for each a in R there exists an z in R and a positive integer n = n(e), depending on a,
such that a™ = a™za™; a ring R is called right weakly w-regular if for each a in R there
exists a positive integer n = n(a), depending on a, such that a™ € a®Ra™R. A prime
ideal P of a ring R is called completely prime if R/P is a domain.

Lemma 21. For a right quasi-duo ring R the followings are equivalent:
(1) R/J(R) is right weakly w-regular.
(2) R/J(R) is strongly regular.
(3) R/J(R) is von Neumann regular.
(4) R/J(R) is m-regular.

Now we obtain one of our main results of this paper from Lemma 21.

Theorem 22. For a ring R suppose that R/J(R) is right weakly w-regular and J(R)
is nil. Then the following are equivalent:

(1) R is weakly right duo.

(2) R is abelian and right quasi-duo.

In Theorem 22, the condition “J(R) is nil” is not superfluous by the following
example.

Example 28. Let S be the quotient field of the polynomial ring F[t| over a field F
with ¢ its indeterminate and define a ring homomorphism o : S — S by

IO\ _ £(2)
a(y(t)) ~g(2?)’

Next consider the skew power series ring R = S[[z; o]] over S by o, every element
of which is of the form Y 7, a,z™, only subject to za = o(a)z for each a & S. Note
that R is an integral domain and so 0,1 are the only idempotents of R; hence R is
abelian. Also note that R is local with J(R) = Rz, so it is right quasi-duo. Next,
notice that

2n
all coefficients of the elements of 2” R are of the form ‘;—ng;

by the definition of & and the property za = o(a)z for a € S, where n is any positive
integer. 8o 2™ R cannot contain Rz™ and hence R is not weakly right duo. And R/J(R)
is isomorphic to S and hence it is right weakly m-regular. However J(R) is not nil.
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From Lemma 21 and Theorem 22, it is natural to ask the following question:

Question (6). Assume that R is abelian and right quasi-duo so that J(R) is nil and
R/J(R) weakly right duo. Is then R weakly right duo?

Answer. Negative by the following example.

Example 24. Let F be a field and S = F[t] be the polynomial ring over F with ¢ its
indeterminate. Define a ring homomorphism ¢ : § — S by o(f(t)) = f(t?). Consider
the skew power series ring T = S[[y; 0]] over S by o, every element of which is of the
form 3 07 o ¥™an, only subject to ay = yo(a) for each a € S, . Next define

R={(g ”) € Mata(T) |a € S, be T}.

a

(g g) and ((1) (1)) are the only idempotents in R; hence

R is abelian. Every maximal right ideal of R is of the form

Since S is a domain,

{(’g :;)ERImEM, beT}

where M is a maximal ideal of S; but it is two-sided so R is right quasi-duo. Note that
S is semiprimitive whence
J(R)={(g g) €R|beT})

Thus J(R) is nil and R/J(R) is isomorphic to S so it is clearly weakly right duo.
However

the right ideal f®RofR, generated by f™, cannot contain the left ideal Rf" of R,
generated by f*, using a computation similar to one in Example 20, where f = 8 2

and n is any positive integer. It then follows that R is not weakly right duo. Notice
that R/J(R) is not right weakly 7-regular.

We end this paper with raising the following questions.

Questions.
(1). Is the quasi-duo condition left-right symmetric?

(2). Suppose that R is a domain. Then R|z] is right quasi-duo if and only if R is
commutative?
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roy 7B, V-ARBoLKE2RETO Y -
Extensions and Cohomology of Hopf

Algebras, Lie Bialgebras

ABER HEXR WM & (Akira MASUOKA)

ABSTRACT

The theory of group extensions was extended to Hopf algebra exten-
sions (Singer, Hofstetter), enriched with a beautiful selfduality.
Previously, special extensions (kG)*s>—>? —»kF of a finite

group algebra by the dual of such an algebra had been investigated
by G.I. Kac, who showed an interesting, exact cohomology sequence
involving the extension group. To obtain a variation of this exact
sequence due to Kac with F, G replaced by finite-dimensional Lie
algebras ﬁ, 0 1in characteristic zero, we shall discuss a corre-
spondence between Hopf algebra extensions (Uq.)° > 2 —» U§: of
the universal envelope Uﬁ,’ by the Hopf dual (Ug.)° (or its appro-
priate Hopf subalgebra) and Lie bialgebra extensions cg,*>—> ? —-»y
of §!’ (with zero co-bracket) by (y? (with zero bracket).

The text of this report is written in Japanese. The survey arti-
cle [4] written in English treats the same subject, which is avail-

able from the author on request.

LERROLHDEXBELIVNFARANSOZM LB TR ET
R @& S 10740012,
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Lits, TOEBHRRLTFLLHDVEHATLAE. ¢HTEHFEOH 24 A
DERD»EDLDERLCOHERAFETCTY, AKE*RBrh - BFEBANADS
i (& 72—-=a%) [l 2BRLTWVWREELSCERLETYT . B2 OD
HEH., B BEHAEERERCBLETFEVWOR, BHEFEIC L8 L.,
ChRBVTRSHBLLIALS BB WL 7.

Ui

Fyv 7TRE2LRAEZ YD . KE¥>FRE>T,. B ("TRT) &
By 7B (ATERT) EXHETS. CORNBRIEE., 2 0 XH %
HFRLT2L0800, HTEOBEHA2MNEEIETHBITERDODELI >R S .

N {1} r A®A k A
o fnes [sx Te o
r r r A A A

CCRABy THEOTREEZMD X T,
(ETR) Fy 7RE =BRoBlsoIETdiR{L

NI EXAMBEDIUAL>. COHEAIX, 54 Drinfeld it W TR FBE] &
Ridns, coOFAAE, FRVNCHy 7THEOF XL D -
Chase ¥ Sweedler wﬁﬁﬁa;#&brutmv&;bl}%nl«lﬂézu-ﬁ‘/

IBRoBREZRAy 7TRBCERL &)

2)
Dbl , SETELFFOYMRLETAFRBBMYONTEL. BHET L

DeoproBmsutmridetickboaLr (REFMRR 877, pp.
101-104 @B O L) .

D et HEHREDC L (4 TREEAAZDOD S 23 B L A .
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BRMBBEEDNCONRABREBNASATUR, BEBIC &> THELH
R ohTELTE, BE{ DB IRESEETh-CLxHEYELEL
.

LA TRy 7RBE, 2O0RHBBULFy 7TREELZTCESPS LD
PRI, AHHEE, BEbEEThBsTLTH->TNWS . 2hilt L
RO THR) TAHMEORELESTHY, RE, HEOLH>HPLETEW S
KR5S . BERCOSFCAGNLHERLLEN (COFaYE 2
- P %FE-TTY)

LT, 2B 2Ry THEBE A *BHCHBLELI>ET2HEEZO
BiEORA%E, tOHBER>7 GI. KaC L L3 HBEMOHL BT OB X
S, o HosALHERXRW.

1. B K>V THE

P #®, M 7-xXLEB &¥+3.
FPoMic&s (B) ILXked, PE2&B, MxBLLHO>BOEREN

(E) = M>—E a5 % . 20 A(E), (B') ' AETH S & it ,
AR (LRI, AF) £: E—E SEELTER

M>—>E —»

Ile |

M—>E'—»([’

ARICTBICELEND.
BUHRK(E) HMEAEPMBLTIHERN = :Px M—>ME2EROATH
3.

N /\_1
Po>m=Fgmy (M TMCE ¢ R 3)

il Wer',men;?u 7O W:E—~> &35 &RL, 20
D) =T ABETEORTH) ., ChOBUH KO ZY . o T
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UBEERAT, (B G(0, M, =) BT, LEVRLTEIN. ~2BE
4 3% ¥ & , MacLane {2 &

Opext({P, M, =) = ([, M, ~a) CRMTEXKOFREHLZ &
&< (Opitoperation &) . T hit Baer iC kO 7 - <X VBEEXLL,
RoLP>@arszroy-CcRbzh 3.
H2(, M) = Opext([", M, =)
PoMi st koREEREE& Ext([?, M) i, $XT o Opext([", M,

) O->iCB ¥ 3 disjoint union L& L WH S, Ext([T, M) 281 3
i

QO IMEEPHNBLTIER =:PxM —oMEFTXTRD,
@HOoPWTEH Opext(", M, =) #RDIAFTR .

BEtTark, sy 78 H K852 c0hhe&hy TREEKX K>
A—2PHODIXTERXLB I

O FHLAKDFSRILBEHFA -: HOK —K t R{EH P: H—
HOK%ZFTXTRD,

@>WTHE Opext(H, K, =, PI(7 -V BELETARE) 2ROILER
weEs>.

3)

EBR, HOATRIPDKPFGTRBZOSFHCHBELL . B4 0EBERIEZCD
BAKCHR? . FhTd, At LTdRTOLAKRTBTOLLVWHBKEWRy 7
KErfBohacetxzEzBELREZN.

2, George 1. Kac 9 4+ ¥ ( 19604 £ # )

LT, BRE&Ek 2EEL, RB, Fy 7/HE., 7YYL RSE, $XT k
todboe ¥ 3.

Vg 7TREFPTRLERIRBELTTRZC L, RTRLIARKELT

TR, 2E08m H— HAOH—"HOHMBALFLWL L 2N .
A x@Yr—>»YQ®x
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F, G HIR#
POE2O0NEN 2 Fy TREZHBAT 3 .

@HM kF: ChiRgFoB8xx e #RBxices, 220

Alx) = x®x, £(x) =1, S(x) =x!

LEDB LR EVATRE TREELT .
eBRmoRKE N k= (k6)* (=MM G—k2&): Thid (sgeg
DUHBIE (elgcg tHXMBRTLL bOFAMRKy THHET,

Oleg) = T e, ®e, . Eleg) =8, Sleg) =e 1

tu=s

tPEHET S .

=T, (A) = k8 > A —» kF

OHOFy 7TREBALXZ R 2. cORH (A*) = k6 «—2*e—kF [
LROBATHAC LR AEBTS. hy TREBAOERI B2 N,
RoBartARCky 7TREOERSANERTE, LEQ) sERL5
Derachr KFO K RragALtBE. coTvHER

OEAMA) O5IsEBCLB2ERA., REABCALEHEALET 2

@®%& Opext(kF, k®,....) H (akeuvaric) >R Exhzdp

THBCLEBVHED .
ChOoRBFAD:D, ETHOEARCDSHEB TS . TRAKRLO
EFELMEE, FOSRTHRFHBOAL (W), cp tBEER OO HME

ZR m#
R

GF = Q? Rux

Th-o-»TRCPREIHMEBFOREEEND .

(auy)(bu,) = a(x =b) ¢’(x, ¥y)u,, (a, bER; %, vy EF)
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TR, Mg aREBET AL
—: F X R—>R
HROBEBAMES5X5%EM.
: FxF—FR"
HABBR (SORBRLVFME) CHTB32a34124ThH5 .
FOERLMUTAREYE E: Rk SEETHE, COBARE —
otk

R>>>R * F —»kF
-,0

LRB23.8L, co2HiE au > E@QXTE5A5h, BnEHKot
Vavu <z 2 b 008K MTHS . XKOGE (H.-J. Schneider ) §
ROTKHBLBE) B, ROBKQ) RrzoRy AY) *cofioi
KTH2TLE2W0NI26DTH 3.

£1 B (Schneider) : KB A REF HBAMCS LS, RB A B ECRAMK
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=: Fxk®— k8 o: FxF—&5",
F \x
x G —kF, 1T: GxG—kf)
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o
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BAXETLEAE—ROFy 7TREBEAEZFTFRAZICEG, ~08H L
- : kF® k® —» k©
e ot
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X—=e_ = A - . = - ’
s esqx 1 e, S es lbx (x €EF, 8 €G)

TRESEH (K4 G, FoOER:25I 888 7T)

q4 b
GCe&—G XF—>F

(DEDr A4, ¢ b PEVWRER) 2BN3 L., Xo&mlE (A
DEROTLSHNZBE) TWIEIRLI»ELREZ . chrymtoME
ORHT2HH.

4)
B8 (HYA) :fFH o, coBRrITRERHEIR, (F,. G b, BPHEHAT
(matched pair)Z 32 &, " D EHELAF xG 58

(x, s)(y, t) = (x(g b y), (s 4 Y)t) (x, yY&F; s, t €G)

AFRELT (1, 1) s BMERicboBERTCL. coB% FPAG D
< .

FrGCGe®MaBRBeLTAGHERHL., o8
FXG=E, (x, 8)€>Xxs

BERODUTE, (F, G)ig FOIG=E L 233 M—DFETHANRT
xRY.

Bl: HHE® S, (n>2) GREEDSI 22D O0WMA4BLEBU -
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n
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BB Cox S 1 =8, BHMOU>$ 6 (Cp, S ) BEARTELL,

C,D4S,_; =5, - —HOHEM b : S _ X C —>C &
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EREBN, bI—FD 9185 x C,—S _  EBETTOEBLY

(FrYE70n=30LExBNTIi)
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G G
Oopext(kF, k) = Opext(kF, k=, =, @)
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I l

2

' = Map(G2 x F, k*) —» Map(GZ x F%, *) — .....
T b3 2 x
Map(G X F, k) —>» Map(G X F°, k) ™ .....
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G UGy
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R &3HE VKR
HY(Q, (UQ)') =0 (n>0, grR*xF)

LabETHEMOERMED .
FEBREWOIRAHOEAR L, RHFOBEM THRXBFOLID>LbLDI TH
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E.RXXOY-<RA[4) bMRA, CHBLIVBATBEDLET .

X ®m

[1] G.I. Kac, Extensions of groups to ring groups, Math. USSR
Sbornik 5(1968), 451-474.
(2] A. Masuoka, Extensions of Hopf algebras and Lie bialgebras,

Trans. Amer. Math. Soc., to appear.

Neof, BXAORROEREBELTVWIEBFELRE>TVS .

—148—



[3] A. Masuoka, Extensions of Hopf algebras and Lie bialgebras II,

in preparation.

(4] A. Masuoka, From Hopf algebra extensions to Lie bialgebra

extensions, preprint.

[5] M. Takeuchi, Topological coalgebras, J. Algebra 87(1985),
505-539.

—149—



DTr-VARIANT MODULES OVER WILD ALGEBRAS

Hiroshi Nagase

INTRODUCTION

Throughout this paper % denotes an algebraically closed field and all algebras are
connected, basic, associative k-algebras with identity. We assume that all algebras are
finite-dimensional unless otherwise stated. An algebla A is called wild if there is an
A-k(z,y)-bimodule M which is a free right k(z, y)-module of finite rank such that the
functor M ®y(z,,) — : mod k(z,y) — mod A preserves indecomposability and isoclasses.
In this case we simply say that the pair (A, F) is wild. Note that the functor above is
faithful and exact by construction. An algebla A is called strictly wild if there exists a
wild pair (A, F) such that the functor F is full.

In [4] Crawley-Boevey showed that if for an algebra A there exists a natural number
d such that infinitely many nonisomorphic d-dimensional indecomposable A-modules
are T-variant, then A is wild, where we call an A-module X t-variant if 7X 2 X.
Therefore in above case we simply call the algebra A r-wild. In the same paper he
conjectured that the converse is true, i.e., wild algebras are 7-wild. In this paper we
will consider the conjecture.

In [14] de la Peiia proved that if A is strictly wild, then the conjecture is true. This
fact immediately follows from a fact (we will see later) and the following our result
in the case that ¢ = 1: Let (A, F) be wild pair and C component of I'; of the form
Z Ay /(") with a natural number ¢.

If F is full, then #{(Im F)oNCo} < ¢/2.

Hence this inequality gives an alternative proof of de la Peiia’s one. The proof uses the
non-existence of irreducible maps in mod k(z,y). But, in the case that ¢t = 1, we will
prove the inequality without using this fact.

In the next step, we will consider the conjecture in the case that A is not strictly wild
algebras. It seems, however, difficult to deal with such algebras in general. Therefore
we will restrict the case of wild local algebras and some two-point algebras, namely al-
gebras with two isoclasses of simple modules. Our second theorem will show that these
algebras are not strictly wild and 7-wild, i.e., the conjecture is ture in the case of some
not strictly wild algebras. Our proof uses the facts that wild concealed algebras are
strongly 7-wild and Galois covering functors with free Galois group preserve strongly
7-wildness.

The detailed version of this paper will be submitted for publication elsewhere.
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1. PRELIMINARIES

For an algebra A (not necessarily finite-dimensional), we denote by mod A the cat-
egory of finite-dimensional left A-modules. For a subcategory A of mod A, define
= {[X] | X is a module in A} where [X] denotes the isoclass of X. We denote
by ra,dA the radical of mod A, namely rad4 is an ideal of mod A defined as follows :
for each X, Y € mod A4, rad4(X,Y) is the subset of Hom,(X, Y) consisting of those f
such that hfg is not an isomorphism for each g € Hom4(U, X) and h € Hom,(Y, V)
with U, V € mod A. Then we can consider the powers rad, for all natural numbers n.
We set rad’, := mod A. For an algebla A, I'y denote the Ausla.nder—Relten quiver of
A and for a component C of I'4, Co denotes the set of vertices in C. By 7 we denotes
the Auslander-Reiten translation DTr. A component of I'4 of the form ZA./{7) is
called homogeneous tube. By k(z,y) we denote a free associative algebra with two
indeterminates. For any set S, by #S5 we denote the cardinality of S.

2. THE FIRST MAIN THEOREM

In [14] de la Peia proved that if A is strictly wild, then the conjecture is true.
This fact immediately follows from the fact that any module which dose not lie in any
homogeneous tube is T-variant if it is a module over an algebra of infinite representation
type (see Hoshino [9]) and the following theorem in the case that ¢ = 1:

Theorem 2.1. Let (A, F) be wild pair end C component of Ty of the form ZA/{r*)
with ¢ natural number t.

If F is full, then #£{(Im F)oNCo} < /2.

The proof of this iniequality uses the following two lemmas. But, in the case that
t = 1, we will prove the inequality without using the first lemma as the following
propsition.

Lemma 2.1. radi(;) = "ad:(z.v)'

Lemma 2.2. Ext!y.,(X,Y) # 0 for non-zero finite-dimensional k(z,y)-modules X
andY.

Proposition 2.1. Let (A, F) be wild pair and C a homogeneous tube, namely a com-
ponent of L4 of the form ZA, /(7).
If F is full, then #{(Im F)oNCp} = 0.

Proof. Assume that there exists a module X in mod k{z,y) with [FX] in (Im F)s N
Co. Then, for any non-zero module Y in mod k(z,y), we have Hom,(F Y,FX) &

DExt!'4(FX, FY) # 0 by lemma above and the assumption that F is a fully faithful
exact functor. But, for any module Z in mod k({z,y), there exists a2 module W in
mod k(z,y) such that Hom,y(F Z, FW) = 0 because F is a fully faithful functor and
mod k(z,y) has infinitely many non-isomorphic simple modules. This gives a contra-
diction. a
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3. NOT STRICTLY WILD ALGEBRAS

We want to consider the conjecture in the case of not strictly wild algebras. It
seems, however, difficult to deal with such algebras in general and we know only a few
examples of not strictly wild algebras. Hence in this section we make some examples
of not strictly wild algebras.

Proposition 8.1. Let B be tame and A — B an algebra homomorphism with sur-
jection. If all bricks over A are B-modules as canonical way, then A is not strictly
wild.

Proof. Assume that A is strictly wild. Then A has infinitely many non-isomorphic
bricks {X;} such that Ext!4(X;, X;) # 0 and Homu(X;, X;) = 0 if i # j by Lemma
2.2 and which have same dimension. Since B is tame, for any natural number d,
there exist only finitely many r-variant d-dimensional B-modules by [4]. Therefore
we can choose X; such that X; = 75X,. Since Hom4(X;, X,) = Hompg(X:, X)) =
Ext!'s(r8X1,X;) = 0, we have that Ext's(X),X;) = 0 for i # 1. On the other
hand, since Ext!4(X;, X;) # 0, we have non-split short exact sequence § : 0 = X; —
Y = X, — 0 such that Y is brick in mod A, because X, and X; are bricks such
that Homu(X;, X)) = 0 = Homu(X;, X)) for ¢ # 1. Hence 4§ is non-split short exact
sequence in mod B, a contradiction. O

Example 1. (1) Wild local algebras are not strictly wild. Let A be wild local. Then

the algebra homomorphism A — k satisfies the conditions of the proposition above.
(2) Wild two-point algebras in the list of [10] except one example numbered (0)

are not strictly wild. For example, the following natural homomorphism satisfies the

condition.
C k? k k?
( 0k )—) (0 & ),C=k[z]/:c2.

(3) For any tame algebra B, we can make an algebra homomorphism A — B which
satisfies the condition and such that A is wild.

4. THE SECOND MAIN THEOREM

From now on, we consider the conjecture in the case of wild local algebras and wild
two-point algebras in the list of Hoshino and Miyachi [10].

A module N is called 7-variant (resp.strongly 7-variant) if 7N is not isomorphic to
N (resp. dimg 7N > dimg N). An algebra A is called r-wild (resp. strongly r-wild) if
for some natural number d there exist infinitely many non-isomorphic d-dimensional
indecomposable 7-variant (resp. strongly 7-variant) modules. For a module N, we
denote by dim NV the dimension-vector of N. For two vectors x and y, we write x 3> y
(resp. x 2 y) if x; > yi (resp. x; 2 y;) for all entries.

Theorem 4.1. (1) Wild local algebras are strongly T-wild;
(2) Wild two-point algebras in the list of [10] ezcept one ezample numbered (0) are
strongly T-wild.
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For the proof of the theorem, we prepare the following lemmas.

An algebra A is called wild concealed if there exists a wild hereditary algebra B
and preprojective tilting B-module T such that A = Endg(T). Here note that wild
hereditary algebras are wild concealed.

Lemma 4.1. Wild concealed algebras are strongly r-wild.

Proof. The proof uses the fact that for any wild hereditary algebra B and indecompos-
able regular B-module X, there is a natural number N and for any n > N, we have
that dim r"* X » dim ™ X (see de la peiia [15]). O

From now on we regard each algebra A as a locally bounded category as follows:

(1) Objects consist of primitive orthogonal idempotentse,,..., e, with e;+---+¢, =
1 and null object;

(2) A(ei, €5) := ejAei;

(3) the composition is given by the multiplication of A

We call locally bounded spectoroid A (see [7]) strongly T-wild if for some dimension
vector d there exist infinitely many non-isomorphic finite dimensional indecomposable
strongly 7-variant modules whose dimension vectors are d.

Let A and B be locally bounded spectroids and F : A = B functor. The pull-up
functor F* : Mod B = Mod A is defined as F*M = M o F for any module M € Mod B.
The pull-up functor F* admits a left adjoint called push-down functor F. : Mod A —
Mod B which is uniquely defined (up to isomorphism) by the following requirements:

(1) F.A(z,~) = B(Fs,-)

(2) F. commutes with direct limits.
Keeping the notation above, we prepare the following two lemmma.

Lemma 4.2. Let F be a Galois covering functor with Galois group G which acts freely
onind A. Then F preserves strongly T-wildness.

Lemma 4.8. If F be full and dense, then F preserves both r-wildness end strongly
r-wildness.

We show ideas of the proof of the theorem.

Proof. (1) By Ringel [16], for any wild local algebra L there exists one of the following
wild local algebras as a factor algebra of L.

(1) Ly = k{z, y)/(zz)zyayzxaya)i

(2) L

(3) L5 = Kz,y)/(z*,y*z,y°, 2y — cyz) (0 # c € k);

(4) Ls = k{z,y)/(z* - 4*, yz);

(8) Ly = K{=z,y,2)/(z? 4*, 2%, 2y, yz, x2, 22, Yz, 21).
Hence, by Lemma above, it is enough to show that L,,..., L, are strongly r-wild. We
show only the case of L3.
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L3 has a Galois covering from the following locally bounded spectroid A with Galois
group Z x Z:

ettt L
o, be lo

- ¢ e— —_— rire
IRTI

Sttt
2 i 2

with a®? — 8?2 = 0 and fa = 0.
Hence L is 7-wild because there exists a full dense functor from A to the following
algebra which is wild concealed (see [18]):

with Ba -6y =0.
(2) We can find the coverings of the two-point algebras in [10]. a
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The Symmetricity of Hochschild extension algebra
given by a 2-cocycle

YoOSUKE OHNUKI AND KAORU TAKEDA

Abstract

Let L be a finite extension field of a basic field K and Q a finite
quiver without an oriented cycle. We study the simmetricity of the
Hochschild extension algebra of a K-algebra LQ corresponding to a
2-cocycle LQ x LQ — Homg(LQ,K). In this paper, we construct
the sufficient condition for a Hochschild extension algebra to be sym-
metric and we introduce some examples of non-symmetric Hochschild
extension algebras.

K %k, A #2H8BRRT K-BXReT5. (AL, ZRRIBBMTERSOF
Rk TTE TR TRAR L T 5). &L Tik Hochschild IEKBRLE TR 235 7
MTHIERYDERPENOOHHIT>WTIHEBE L THS. ¥MIZ[9) 2
BELTIELL, $ESTRDY A A—ItOWTi [1] 28R,

Happel [2] IXZBTTHR A derived equivalent 25| B 261X, ZNSTH
% stable equivalent 5| &R T HER Lic. AXTIL, ZOMBRIULT S D
EWHRIEEZEXD. T I TETR A, B A8 stable equivalent, derived equiva-
lent #5| &R ¥ L i, ThEh mod A ~ mod B, D*(mod A) ~ Db(mod B)
DEEFEBT S, E7z, Skowronski-ILF [7] ,[8] KL VBTR A DI A /<—
BEMY AL INVEEER\VLE, A ® Homg(A, K) 12 & % Hochschild $itk
BL A D Homg(A, K) 2L 5 BHRETRS stable equivalent 3| &
THEIRENTWS. TZTCROMERELLNS.

Rl 1 2R A BEDIAN—RHEERY A INVESTERVLEA D
Homg(A, K) 12X % Hochschild #5x8 & B B2 KBRAS derived equivalent
EE &R TH?

¥ - ROEEN Rickard [4], [5], [6] 12 & D RER TS,
The detail paper of this one has been submitted for publication elsewhere.
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EBE 0.1 K EXRHERETRIC derived equivalence 2B TR b X K L
XN THD.

B BARIERBR A FR22 0 T, BARE 1 2350313 5 72 51F, Hochschild #kXk
BREETHHRUTRTNERER20VE, ZHiZ—RICITREL TV ARV,

Bl 2 74 "A—NICARYTA AL EEERVETEHR A © Homg(A4,K) £
& 3 Hochschild SERBH T RTHERMIZ R B 27

AXTIIBE2 ORPIZEZDZLBTER. LoT, ZTEM derived
equivalent 25| Z & Z 372 61, TDE RN stable equivalent 25| & Z
TEOWII—RITIIRIL RN EBghole. TORPEZEZDHHEE L
TV OPDEREDOT TORKIEERFTARDIODEHEEAD. Z Z Tkt
FEEZARDZIDHOMEEE H7-HIZ, Hochschild KB E 2-a4 A4 It
DR ERAVS. Z Z T Hochschild #ERB & 2-at A 7 VOfizdD L 572
BEER S H BT HNW TN THL.

AZZRR, X Tl AMELTS. 2 RO Hochschild aREw o—8
H(A,X) DBETIZ 23 YA IV AX A X % £BD K-BBERB A X
ARG FY—CR—ELIEZHBDEEZOLND. ZZTa: AXx A5 X
2-aY AL INTHDLIL ADREa,bcicH L, ala, be)+aa(b,c) = a(ab, c) +
ale,b)c W3 K-BRBERLL, K-RBER f: Ao X Danygr¥
Y—2¢id ap(a,b) = af () — f(ab)+ fla)b LKLV EFEEND o : AXA X
DEETD.

Ele a7 v a: AxA = X BEALNRELLEEZ, o ITHETS
Hochschild # K8 T(A, X, 0) 2 K-BWEH A0 X IZa,be A, z,ye X (T
DN T

(a,z)(b,y) = (ab, az + yb + afa, b))

THLERELTEALND K-Z2RLETS.

T3¢, EBIZAD X 12&% Hochschild kKB T #5125 ¢, T ~
TA,X,a) 2T 2-ad 47/ a: Ax Ao X BPFETDS. &-T, &
% 57z Hochschild #EK8R T BSHHTHD2E I DEHET H72DITI,
HB2avAL 7N ailHTD, T(A X, o) ORHELRARDE+5THS.
B%I, BAREKBR LIL T(4,X,0) 0B THAFTER L TBL.
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§1 TNt & 5 Hochschild #E KR

ZH A IZHOWT, Tl AMBE DA ICX Y 8% 2RERIF Homy(—, DA) :
mod A © mod A% % Hom4(Homs(—, DA), DA) ~ id ##ii=+ & & DA %
A OTCHHEMBEL T 5. %ic, Homp(A, K) HIGHHENMBETH 5.

LT, ZOMTIX A% K-Zx8e L, DALY 20T HEMBEL R T
LT3,

A D DA T X% Hochschild ERKBII L THOARNS TR THAE. ¥~ A
@ DAz & 2% #9572 Hochschild IABRMBFET 534 DA 2 Homg (A4, K)
AR AMBEE LTRETHLIFICFETHS. 0 2 DOWEFILE [9)
X omRENTVAS.

INOEBEEXTHE 2 OFGIIREENTWS. EME2 L3P L
BTN BEROMED Happel, Skowrosiski-IUFE (3] , [7] iIt& W RENT
AP-N

il 1.1 & K PREBAGET, K-SR A D7 A "—pBHEYF A I 0%
SERNEE, HY(A,DA) =0 Y 3.

LoT, ZOMBEDEEDTTIX A D DA 2 &3 Hochschild #EXBRIX B
BARILKER T(A,DA,0) iFME (0% Y, AR) T, HHFdThHsd. ZDOMmEE
— B L ROERERT I ENTE R,

EH 1.2 4k K 2REMNEEL L, K28R A = KQ/I 2&5%. EL,
Q IZHMRI A 5—, I iX admissible A TTNETSD, FEloa: Ax Ao
Homg(A,K) 2&%. ZOK, Q AD path D} p,q THEB pqg BEHEY A
INTHBHDIZHONT, Zh HDER

a(p, g)(es()) = (g, p)(es(p))
Tt BL, €s(p)» €s(q) XENEN path p,q IZDBRIZHIET D
_NEETLTH, DL E, T(A Homg (A4, K),a) X K EXNHHTHS.
§2 example ZHRLT DO DHEK

L % K OFBREXRELL, Q 2BFRAYA INVEGSERVWERI A
R—&T3. EBIZ, Qu@Q1, Q4 2LV ENEN Q AD vertex, arrow, K S
1 BAE®D path DEESERT LT, ZOHTIIRERTR A=LQ % K-
ZTBERRL, TDETE A ® Homy(A, K) 128 % Hochschild k8
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IZOWTHERSD. #IT, WAHEMSEE Homy (4, K) 12 & 3 Hochschild #hk8}
T(A,Homg(A, K),a) ZHIZ T(A,a) L RTHFIZT 5.

EE 1 M AMBEL LT, Homg(4,K) & Homy(A, L) XFEBTHS. =
DEH S Homg(A, K) O L-EHEE LT A O L-BEE {e;}ieq, U Q. IBIF
DBHNEEREDIEHBTES. BL, 14 = Ticq, & TEVNHERT B
REBTEADDETE ¢; 1L vertez i ILHELTND LT 5.

HEO-DIZ, ROBFSFEAV 5.
2247V a: Ax A— Homg(A,K) &1 LT,

[z, ¥)a := a(z,¥) - a(y, 2)
(x) y)o = [z! y]u(lA)

LEDD. ¥ o5 Lx L= L((z,y) » afze;, yes)(e:)) i &9 2294 2
Vo BBOND. ZITRD 2ODEBHB LN,

EE 2.1 T(A,Q) 2)5351'%9‘37'4: B'i, EfGQo[L’ L]Q.. 7’-‘ L

B 2.2 Ticq, (L) Lo, + (eirad A, e)a) # L R &, T(A, @) XHEST
H5.

ZD2ODEBIZLIVRDE 23 B B5NS.
F 2.3 T(L,aq) B5H89 <= [L, L], # L

T(A, o) BHHH = & i € Qo 27 L T(L, s) H5H8Y

LR L OELREREN 2 WA TFO L & 13, RO 2-3 %1 7 va: LxL -
LKL, [, Lla # L R 5. S0, T(L,a) BHBLICRS. L

L, 2TOEKE L i3 LT T(L,a) XHFAHITLRDOTIERW. RETRH
BRIC T(L, a) BHRHFRTRVWEIZETS.

§3 RADEAE

B 2 OFBBENE K = Zy(z,y,2) £ EDIKE L = Klo,b,c/(a® -
2,02 -y, =) LR LXK BRHEEFRa: LXx L3 L% L O KEEDOT

atbmen, o' b e (Lmyn,l'm!, 0 120 E70X 1) IZFL,
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a(altmch, af b cY ) = g -Tpm+m’=Tentn’=1(im'e + mn'ab)
iCEVExXRE all2-atrf 7025,

0 3.1 a: LxL— L RIET D Hochschild it KB T(L,L,e) ~ T (L, a)
IR TR2,

D a 2BVWTEROERY A INVEEERVWEIRS A4 28— Q IZ2W
T, 2h% 74 R_—ZHHOETR A T A D Homg(A, K) 12 & 5 Hochschild
EABREB/HFHTRNVLORKRD LI LTHRTE 5.

EBOBEATA I AV EEERVERI A A~ Q 2L Y, K-SR A = LQ
2E25.223YA4 IV B : LXL > LIZHLT,0: AxA - Homg(A,K) ~

Hom,(A,L) % )
B((a,b)) = qu Blaiei, bies)e;’
i€Qo

&9 '5'7:'.6 {E_ l/, a= ZiEQo aie; +Zp€Q+ QpD, b= ZiEQo b.-e; + ZPEQ+ b,,p
(air ap, bi by € L) , & & REE1OLSRLTELNRABNEEDT LT
5. 735L8b22atA 0Lz EHE21, 22 HPHROMENELNS.

Wi 3.2 RIZFRETH 3.
i) [L,L]J#L
ii ) T(L,B) TxHE
i) BAVA ILVEEERVHBIERI A /15— Q IzHoT
T(LQ, B) iLXXHrEY
iv) BRYA INVEFSERVWERDOHRS A 38— Q 22T
T(LQ, B) iIx#reh.

COMEICEY K LB =a 2Z0HofMbdoLd5icésd, £ED
ARV A INVEEERVWERIA/8— Q LT & K¥ET5 LQ @
Homg(LQ, K) = & 2% T2v> Hochschild ILKBENR{ OIS,

T TCETEHIER 2 0K EOESTRTH D, RIRICERE p 248
FcHSER LD TR THIE 2 ORFI LR TE 5. IR T 2B EREE
K OFEEN 0 0L &iX, K L/K BoBiEK L 251D kRkEix 1 L

TTh5b. £oT 2a¥ A7 o iKHL, T(L,0) RRAHHTHB. (#HiC,
T(L,0) ATHTHS ).
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On QF-serial rings

Kiyoichi Oshiro

Abstract
In this note, we discuss the relationship betuween author [2] and Kupisch [3] on serial rings.
1939 5EIC Nakayama IZ & o TEE S/ (artinian) serial ring i3, ML &G LASE, oMl
BYZETRASKTELDOTHS IN, P L b, BEOTHE [2] & Kupisch DIFR (3] Tk, ZOR

DARIL local serial ring L0 skew-matrix ring T3 L ERLTW5, TR, RUTBIROEEIERC
DNTRATHONRZOMDOAMTH S,

FHOGR
17 EIRMAE < —RiEl (2] CEFRROERERLE,

Theorem A. F"~<T® serial Rt QF-serial MEBMRIEKL, TOWMY /e factor ring X L DT &izk»
TRRENhD,

#24, Division ring D L0 triangular matrix ring

D .. D
R= no
0 D

EBATHBE, ORI D ¥ARIHLRLTRLALRTHS,

b 39 LABKRARREIT Z ORBEOEKEZRAT 50IZ, Q % local serial ring. J,S 2ENENQ D
Jacobson radical XX socle &3 3,

Q.. Q
JQ
Q...Q/m_fL
J.(;? (0 0)

YL, serial MTHD, ThbD serinl MiE. Q LARITHKRL, TDfactorring LB LITL VIR
REhTWHERNS,
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KiZ, bo—HMIC R=eR® SR % QF-serial B, {e, f} ¥ HAFUEMETL L, eR/e] = S(fR).
SR/fJ = S(eR) BRYMHLFH. =T

Q=eRe A=€Rf
B = fRe T=fRf
. Q A -
kb(kR=(B T) ERBIND. tokE, BRLREBXR
[Q ... QA ... A
JQ QA ... A
B ... B|T ... T
\B ... B|JT) T/
E D factor ring

[Q ... QA ... A |—|_i(:)
ool 0
Q) @|A ... 4 0
B ... B|lt ... T -‘_|_s‘(j)

S 0
\B ... Bluar) T 0

b, £ serial ring ChHD, ST, J(),S() X TN Jacobson radical & socle BT 5,

DX IHITQF-serial  ring 6B RRILKEREEY . €D fuctorring X HFRAXHZLITL Y, BL D serial
ring A#ER%. Theorem A IZEDRRNEMAL TR TCH S, 5 LT, £TD serial ring A* QF-serial
ring NOMREND Z L1222 Y, serial ring DHIFEIL QF-serial ring OHRICMBF I D, HiT, FFIT
QF-serial ring 2347 L. ROEBETRLE,

Theorem B. Nakayama {H#22¢ identity TRV, 2% ¥ weakly symmetric C22\* QF-serial ring iZ.
local serial ring 0 skew matrix ring % BIACHEA L, €D factorring % & HZ LI L VR END, B
IZ, Nakayama {B#7S identity 258 R IZOVTIX, R/S(R) 7% local serial it £ skew matrix ring & L
TRISNS,

$< LT, local serial ring L skew matrix ring A% serial ring DXR CH D, ORBORRERATD

I, skew matrix ring DEFKER Y QF-ring (BT 5 Nakayama {#i#t. Nakayama BCFEIF{R. serial
ring {ZB8¥" 2 Kupisch series 25 LODERE BB €5,
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Skew matrix ring

QAREL.cecQlocEnd(Q) %8R, g(c)=co(gle=cgV¥ge Q VRV UHNE TS, Q DTXR

BT D0 KOTRIOLEk
Q ... Q
R=
Q ... Q

(za)(yar) = (za)

LT, KEXRDLIICEETS:
(za), (yr) € RITHLT

ST k2iDER

= Zz,-,-a(yg)c+ Z TigYik + Zzﬁyﬁ‘c

j<i 1<j<k k<j

k<iDl &

k= Z zyolyn) + z =ua(y,-u)c+zzuvjk

i<j<k k<j<t i<i

COMEHBOITAIOMT R IRLD, ik Q £D o,cIZBIT S n KD skew-matrix ring L& 5,

Nakayama [ & Nakayama B 2FENZR

R#% Artin ROV bW S basic & U, J % R @ Jacobson radical, E = {ey,... .en} #FZHEIFHRG
A N
RMQF-ring DE &, #He i LT f; € EM—BRBICEE Y e;R D socleS(e;R) M projective cover A%

fiR k8%, #aT ;‘ ;" it~>ORATHD, “h¥ RO Nakayama L5, ROR

1 eee n
BIRE®R o M pley) = fi Vi R T L&, o % Nakayama BERRNEREE D, ZOFRIGFETIHE
PRABICBIT ZEFHRMEE BB 2 CRINEOVTRER LAV,

&T. R¥serinlring & L. T ZTCeJ @ projective cover M e; iR & LT {4R,... ,e R} W~
{enR,...,e1 R} % Kupisch series &¥*5,

QF-serial ring R il L TRAE 2 5:

Proposition: & L. {e,R,...,e; R} » Kupisch series £33 &, 3s:
€5 €2  eerrernereceinns en )
€ €541 -« € € ... €

% Nokayama A & 2 5,

TDsITHVWT, RD4DOBEREX, REMTS,
(I s=n
(D) s>n-3s,8#n
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(1I) n=s¢
V) n=sg+r0<r<s
Case (I): “hid, REBHETS: (*) LU {e R eq-1R,... e R} B Kupisch series 72 &
( ey € ez ... €n
en €1 €3 ... Eny
12 R @ Nakayama @, ZDBREBL TR, RO—8IR2 LMY M2,
Theorem C. R ?* basic indecomposable serial ring © (*) 247 T4 61X, 5 local serial ring
Qic€ J(Q),0 € Aut(Q) MH->T,

ale)=c¢c
olgle=cqg VYqeQ
JQ)=cQ

PRYUL, RiXQ LD o,ciZBIF 5 skew matrix ring & LTHRBLENS,

Case (I} I=n-s+lw=l-Lt=n—-w+1 ¢B L RBRDLIWZERBLIND,

( Ay ... A Ay An )
Awl oo Auvw Awl T . Aun
Ay ..o A An Tel Ain
R= )
A1 Teeea s A1 -0 Atan
A“ C i e 4 An ves Am
\ A o Anw An coee e Ann )
An ... A An ... Am
Rll = “ee Rlz = e
Al v Auw Ayt ... Aun
An ... A Ay ... Ap
Rp=| A R =
Apt ... Am An.l «ee Anpn

EBL L
Ry, Ry
R=
( Rn Rz )
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P%

P= Ay Ay
Aa An
LB E PICBARRAMNERSH. P it (*) 2#7%7 basic indecomposable QF serial ring IZ223, >

T. P X2 KD skew matrix ring & LTRBREND, ZOREFKROL S ICBRICHKT S,
& Ry; I LTRILBIDITHI Py 2RO & 5 IKERT5:

[ An ... An Ay ... Ay
Py = .ok Ppz=

\ J(An) An ) Ay ... Ay

( Ag ... Any \ Ay ... Au
Pn = All Pn =

\ 4u ... Aa / J(An) Au

(1
(1
A

7= ( Py Py )
Py Pn
EBLE, DO Z IR P EBRIZEXLERTHSD, ThARDS serial ring ThHY., ZHH R ~BR%E
E~OBRPRRBRIHB - EIREND,

Case (II): n=sg,n # 8, SDLEROHBEELD
{1,2,...,8}u{s+1,...,28}U...U{(g-1)s+1,...,n}

h=ls=8ts=6+1,8=2s...,8;=(q—1)s+1,8,=n LB&. RO subring

Ay Ay ... Ay,
P= Ag,gl Ahg, ere Ahg.
quh Ag'g, ere Ag'g'

¥BRB, SOk & PiX(*) &7 basic indecomposable QF serial ring CHh 5,
ZITRDE ST (s, 8)matrix Q;j(1<i< g1 5 < q) #ERTS:

Ag‘g‘ .ee Ag‘“
Qi = ..
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Al;l’ “ee Aug"
Q5= o (i#37)

Ahl’ e A“g’

Qu ... Qy
Z= .o
Qa - Qq

LBLL Z 2o ROL~RMFRZMMNH D LMNTEN, RIZ(*) 22477 basic indecomposable QF
serial ring P HRRIZHBRL., T D factorring 2 LA LI XV RAERS,

ELT

Case (IV): n=sg+ 7,0 <r <s. ZOHEE, ROFFEHERS,

{,...,8}u{s+1,...,25}U...U{(g—2)s+1,... ,(g—- 1)s}U

{lg=1)s+1,...,(g=Ve+r}u{(g-s+r+1,...,n}

Al
ti=l8=s8t=8+1,580=2s,... 8 2=(9~ 3)s +1,
8g-2=(9—2)8,8g-1=(9—2)8+1,80-1 = (g —2)s+r,
tg=(g—-2)s+r+ls,=n
1351
Aug, Ag‘.¢1+, e A‘.’l;
R = Auslyy Au+ry+r o0 Agsrgg
Aul; Aﬂ.l,i-l oo Alw,-
L,
Ry ... Rign
R= vee
Ret1n oo Retign
Bic
Roq-1  Rqq  Rgenr )
Rottq-1 Rerrgq Rgpreer
REROEELTWA:
A‘«-‘e-l A‘q-‘c . A‘t-‘wl A‘#-‘c“
* A‘lcn-‘un
A:.t.u . s .
Atqn.t.-: B Aa“..c,“ A‘-H-‘cu
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ZITPERDEIIIBL:

Auty, Anty oo Ayag, A, A‘l‘u-l
Anty Aut; - Anteer Anty Auten
P= ver
Aty Agtr oo Ayt Ay Agten
A‘qnh see A‘vulq-x Aﬂq A‘v-l-l‘v“

ZOk ¥ PIARICHAEE S P 1 (*) £%77 basic QF-serial ring 725, ZIT, Ry ICHESL
T, ALBOKD L 5 % Qy 115,

Ag“‘ ves Ag‘g‘
Q= :
J (Alm) can Aem

Aty oo Am,
Qq-‘-]‘q= eee

Asy - Am,

A“g, res Ag‘g,
Qy=

A“gj aae Ag.g,

G ... Quen
Z= .
Qe+1a +or Qairgrt

LBlL, ZRPoOBRRLKRIZRYD, 2D Z Mo ROL~ORMFABZHAHDZ ENTREN, RIX
Z O factor ring & LTHMBLENS,

LT

Theorem B DRPEDRRIZLLLEDO LBV THD, HEICHL TR, 2% Y, R ® Nakeyama R
identity DBATX R/S(R) 2 (*) W ¥ QF-serial ring 12725 Z L BB HITHM Y, R/S(R) X local
serial ring £ skew matrix ring & LTRBAIRDH I LIRS,

Kupisch OFF 5
ZI7T%. R % indecomposable basic serial ring & L. E = {ey,... ,en} L HRFHERSTLL T2,
;R DBRFIOR & ¥ dy LB & &, Kupisch iZKOEEERL TV,

Theorem D. % L d; # 1 mod(r) Vi 22541 R It local serial ring 0D skew matrix ring O factor
ring & LTRAEND, #>T, T, Nakayama RN identity T2V > QF serial ring 2D & 5 IC#
R&Ehd,

& T, HEFD Theorem B T, QF-serial ring ¥ W->OPAIMTTHR L, THhEHD local serial
ring L0 gkew-matrix ring 2 BARICHA L, D factor LD LR EVMRENDZ LERLTVWS,
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=% . Kupisch L # QF-serial ring ?% local serial ring £ skew-matrix ring @ factor ring & U TR
ENBZELEFRLTVD, #oT, BEDETAThOBELED L I I, skew-matrix ring O factor ring
ER2THWAETHS,

ZOBEUERIELTHD &, BNICHHICETDL TR TN B LHibhs, RORGHLBELS
NHE—-BOBEORBLTHRTEL I,

Q ¥ local serial ring & L. J =J(Q) &<, o€ Aut(Q),c€ JizkEHR AT LT 5:

J=cQ
olc)=c
o{gle=cq VY9€Q

DL E
p=(Q Q)

QR Q o

efsz:.c=(l °),;=(° 0) L35< EFEQMEE A, Ba€ AfE BHiHoT

00 01
(e 4
”‘(BQ)

A=aQ=Qa
B=pQ=Q8

aff =fa=c

ag=qax VQ€EQ
Be=o(g)8 VgeQ

L%, P= ( Q 4 ) AR LR

8 Q
Q--- Q|4
. | [}
Z= J \. . \ X %
J .. J QA
B---- B|Q

EBRXTAHADL, ZORIIRDMIET skew matrix ring

(Q Q)
Q ... @ g,6,k+1
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02 factor ring IZ22 TV D I &Ab»5:

Zil - - =  ZTik+l In ‘- - - = = In T1k+1C
z21c e : {
--- — R : ;
Zk1C ... Tek-1C Zkk ) k+1X
Tk+1l -~ — = Tktl,k+l Txpaf .. - - - - Tk kB Terk4

Theorem B Tik & 2 b7 QF-serial ring R 6 (*) &3 QF-serial ring P 2-0< D D AR 4L
KR ZDfactorring ELTRELELAN. LML, 20 ZBRIXSHNL D 27T local serial ring Q
L® skew-matrix ring @ factor ring (2225 TWT, FOHMR, R bED skew-matrix ring O factor ring =
2B3RTHB,

Kupisch D& Tt Theorem A ITH YT 3152572 A LR D Theorem D TH 5, ThERT,
serial ring MEZETRARA SN TV D LHRT~ANEFITIZDMH L2204,

#. I8+ hif. Theorem A 13iE-# D Harada BRI SHBO—-DEME LTTEALRERTH S,
Harada BRI serial ring @ b0 8 2RO 2 L THERSAERTHY .. VbIY serial ring O
DEIRLDOTHD,

I 1%1Z serial ring D H SR LD skew-matrix ring D EDB AW o T ENEiE~L I,

local serial ringQ _|:® skew-matrix ring

Q ... Q
R= (o0 € Aut{Q),cR=J)
Q ... Q o.cn
ICBWTER
Tt Ziz ... Iin Znn Zn1 e Inn-1
In ;o Tam || o(Z1n) a(zn) ... o(zin-1)
Tnl Tn2 .. Znn U(-"’n-l.n) a(zn-l.l) vee U(’n—l.n-l)

IR R ® Nakayama BERMERIZZ Y. THNRTEETSRDIZ, TTo serial ring 2 BERNFMIZ2D
DTHDH, (IR (1] 2BM)

B35 Xk
[1] J. Kado and K. Oshiro: Self-Duality and Harada Rings To appear in J.Algebra
[2] K. Oshiro: Proceedings of The 20th Simposium on Ring Theory. 108-133(1987)

[3] H. Kupisch: Uber ein Klasse von Ringen mit Minimalbedingung II.Arch. Math.26,23-35(1975).
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On semisimple extensions of serial rings
Kazuhiko Hirata and Kozo Sugano

Throughout this report A will always be a ring with identity 1, and B a subring of A con-
taining 1. In their previous paper [4] the authors introduced the notion of semisimple extensions
of a ring. A ring A is said to be a left semisimple extension of B in the case where every left
A-module M is (A,B)-projective, that is, the map = of AgM to M, defined by = (22m) = am for
any 2 € A and m € M, splits as lefR A-homomorphism, or equivalently, for every left A-module
M, every A-submosule which is a B-direct summand of M is always an A-direct summand. (See
Theorem 1.1 [4] ). The right semisimple extension is similarly defined, and the both left and right
semisimple extension is called semisimple extension. Till now some tipical examples of the
semisimple extension are known, for example, each semisimple ring is a semisimple extension of
each subring of it, and each separable extension is a semisimple extension. However, since the
. semisimplicity is a quite abstract condition, it is very difficult to research the structure of the
semisimple extension or find proper examples of it.

In this report we will give some structure theorem of semisimple extensions of (two-sided)
uniserial local rings. A ring R is said to be left serial in the case where R is left artinian and Re
has the unique composition series for each primitive idempotent e of R. In the case where R is a
direct sum of finite primary left serial rings, R is said to be a left uniserial ring. It is a well
known fact that R is primary left uniserial if and only if R is a full matrix ring over a local left
serial ring. Right (uni) serial ring is defined similarly, and a both left and right (uni) serial ring is
called (uni) serial ring. It is also a well known fact that, if R is serial, R satisfies the following
two conditions;

(1) Each left R-module is a direct sum of indecomposable submodules

(2) A left R-module is indecomposable if and only if it is 2 homomorphic image of some
Re, where e is a primitive idempotent of R.

In the case where R satisfies the condition (1), the indecomposable decomposition of each
module compliments direct summands by Corollary 2 to Theorem A [7). Therefore in this case we
see that the indecomposable decomposition of each module is unique up to isomorphism by
Theorem 12. 4 [1], and that R is lefi artinian by Corollary 28. 15 [1]. Consequently each left
R-module has the projective cover. In addition it can be easily proved that, under the condition
(2), for each primitive idempotent e of R Re has the unique maximal left subideal, and each
epimorphism of Re to M is a projective cover of a indecomposable left R-module M. Under these
preparations we have;

Theorem 1. Let both A and B satisfy the above conditions (1) and (2), and suppose that A
is a left semisimple extension of B. Then for each left ideal L of A and each primitive idempotent
e of A, there exist a left ideal I of B and a primitive idempotent e’ of A such that there is an
A-isomorphism of Ae to Ae' whose restricion on Le is an isomorphism of Le to Ale'.

The detailed version of this report will appear in Hokkaido Mathematical Journal.
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We will apply Theorem 1 to two cases. One is the case where B is a commutative local
serial ring and A is a B-algebra, the other is the case where both A and B are local serial rings. In
either case the converse of Theorem | is true.

Proposition 1. Let B be a commutative ring and A a B-algebra, and suppose that both A
and B satisfy the conditions (1) and (2). Then A is a left semisimple extension of B if and only if,
for each left ideal L and primitive idempotent e of A, there exist an ideal I of B and a primitive
idempotent ' of A such that there is an A-isomorphism of Ae to Ae' whose restriction on Le is an
isomorphism of Le to Ale'.

Theorem 2. Let B be a commutative local serial ring, and A a B-algebra. Then if A is a
left semisimple extension of B, A is a uniserial ring. In addition if A is indecomposable as a ring,
the length of the composition series of Ae coincides with that of B for each primitive idempotent
e of A.

In what follows we will always denote the radicals of A and B by N and J, respectively.
The above theorem can be described more generally as follows;

Theorem 3. Let B be a commutative local serial ring and A a semiprimary B-algebra such
that N = AJ. Then A is a uniserial ring. If furthermore A is indecomposable as a ring, the length
of Ae is equal to the length of B for each primitive idempotent e of A.

By Theorem 1 and a part of the proof of Theorem 2 we have

Theorem 4. Let B be a commutative local serial ring and assume that A is a serial
B-algrbra. Then A is a left semisimple extension of B if and only if N = JA

Nextly we will consider the case where B is not necessarily commutative, and we have

Theorem 5. Let A and B satisfy the conditions (1) and (2), and assume A has no
idempotent except for 1 and 0. Then A is a left semisimple extension of B if and only if for each
left ideal L of A there exist a left ideal I of B and a unit u of A such that Lu = Al.

Applying the above thecrem we see that the same results as Theorems 2 and 4 hold in the
case of local serial rings as follows;

Theorem 6. Let A and B be local serial rings. Then the following conditions are equi-
valent;

(i) A is a left semisimple extension of B

(i) N=AJ

(iii) The lengths of the composition serieses of the left A-module A and the left B-module
B are same.

(vi) A is a right semisimple extension of B

Theorem 7. Let B be a local serial ring and A a local ring, and assume that A is finitely
generated as a left B-module. Then if A is a left semisimple extension of B, A is a left serial ring.

Finally we will give examples of ring extensions which satisfy the conditions of Theorem 6.
Let D be a division ring with a discrete valuation v. Proposition 17.6 [6] shows that such division
rings really exist. An uniformizer at v is an element z of D such that v(z) < 1 and v(z) generates
the cyclic group v(D - {0}). As usual we write

OD)=0({D,v)={xED|v(x)=1}, PD)=PD,v)={xE€D|v(x)<1}
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It is well known that O(D) is a local ring with the radical P(D), and P(D) = O(D)z = 20(D) for
each uniformizer z at v. It is also obvious that O(D)/P(D)" is a local serial ring with the length of
the composition series n for each natural number n. Now the next proposition gives examples one
of which satisfies the conditions of Theorem 6 and some other do not.

Proposition 2. Let D be a division ring with a discrete valuation v and E a division subring
of D. Then O(D)YP(D)" is a semisimple extension of O(E)P(E)" for each natural number n if and
only if E contains a uniformizer at v, that is, if and only if v(D) = v(E).
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THE FUNDAMENTAL GROUPS OF HAKEN
MANIFOLDS

Shinsuke Takashima

Abstract

The main result of this paper is the existence of recursive algorisms of
finding the sequence called "Hierarchy” of "Haken manifolds”.

1 Introduction

The classification theory of 2-dimensional bounded PL-manifolds is already com-
pleted and it has been well known the existence of recursive algorisms for com-
pareing given two such a spaces. But it is not found the same theories for
3-dimensional version. For this, we have to study for fundamental groups of
such a spaces.

2 Preliminals

In this paper, all of the topologies are considered in PL-categories, and we'll omit
the word "PL-". When we want to consider in general topological category
we put the word "topological-" above the words, for example, "topological-
continuous map” or ” topological-manifolds” and so on. And all manifolds
are admited "bound”. We call n-dimensional manifold to n-manifold. We use
following notations throughout this paper;

I:=[0,1]

Bn:=Jn

8X := (the boundary of .X)

intX := (the topological-interior of X)
S" := Bt

The detail version of this paper will be submitted for publication elsewhere
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A sub 2-manifold F of 3-manifold M is called imcompressible if there exists a
some z € F such that the cannocical inclusion map F < M induces the injection
m(F,z) = m(M,z). A 3-manifold M is called irreducible if any sub 2-manifold
F homeomorphic to S? is boundary of some sub 3-manifold homeomorphic to
B3, An irreducible orientable 3-manifold which has some imcompressible sub
2-manifold are called Haken-manifold.

The following result of Haken manifolds is very basic and important.

Theorem 1 (Walthausen, F. (see [4])) Let M be a Haken manifold. Then
there ezists the sequence of manifolds S = My, M,,--- M, = M and imcom-
pressible 2-manifolds F}!,F? C 8M; such that M;,, is homeomorphic to the
manifold given by attaching F} and F? from M;.

The sequence appeared in the above theory is called hierarchy. The theory
of combinatorial group theory called "HNN-extension” (see [3]) shows that for
given Haken manifold M, one can solve the word problem of fundamental group
of M if the hierarchy of M is found. So, we can say that the word problem
of fundamental groups of Haken manifolds can be reduced to the problem of
finding the "hierarchy”.

3 Universal Cover of Haken Manifolds

For finding a hierarchy, we'll study universal-cover of Haken manifolds and its
fundamental domain.

Theorem 2 Let (f}, f2)ics be the sequence of sub 2-manifolds of 8B3, and let
M; be the manifold given by attaching all of f} and f? ini € J from B3 Then
the following are all equivalent.

1. The fundamental domasn of universal cover of My given the canonical lift
of My is simply connectded.

2. There exists sequence@=Iy C I, C--- C I = I such that M;,, My, ,-- -, M;,
gives a hierarchy of M.

Above two results shows that the problem for finding hierarchy is replaced the
problem for finding simply connected fundamental domain of universal covers.

Example 1 The figure 1 shows the relationship of hierarchy and simply con-
nected fundamental domain.

After these reduction of problems the problem of finding the hierarchy sequence
is affirmatively solved with following theorem.

Theorem 3 There exists a recursive algorism to find the simply connected fun-
damental domain of universal cover of given Haken manifolds.

—175—



= }\JQYOX’GL‘.? =

@9 —

= "‘WO.M\A.Q AOMTV\ =

sty - /Cb&h Tt = BS\(}W‘/\
~vaected
-;:v\da:wu\ \l

&ow\a:th

Figure 1: the hierarchy and simply connected fundamental domain of universal
cover of S x B?

— 176 —



4 Applications

We'll study of applications of above section’s results. First, we solve the next
important problem.

Problem 1 Let M be a Haken manifold and X be a some loop of OM. Check
the ezistence of the sub 2-manifold F' of M such that F is homeomorphic to B?
and it‘s boundary coincide l.

To combinate the classical topological theory called "loop lemma” (see [2])
and above section’s results, we can get the next.

Theorem 4 There is a recursive algorism for checking the above problem.

Next, we try to use above theory to "Knot theory”. The injection map
K : 8' = S8 is simply called knot, and given two knots K and K* are called
equivalent if there exists map F : S! x I = S3 such that;

1. F(?,0)= K and F(?,1) = K'.
2. F(?,t) is injective for any t € I.

For given knot K, the sub 3-manifold E of S? is called knot complement of K
if S3\ E contains imK and S \ E has B? bundle structure of imK. The knot
K is called trivial if it is equivalent to the knot K’ which is factors through the
cannonical injection B? < B% < §3. The following is classical knot theory (see

(1),

Theorem 5 For given knot K and E be the kont complement of K. Then the
following are all equivalent.

1. K is trivial.

2. Let | be the meridian loop of OF, that is the loop of 8E of homology 0.
Then there ezists 2-manifold F' of E such that F is homeomorphic to B?
and it’s boundary coincide l.

The second condition of above theorem is just the first problem of this section,
and we have already get the recursive algorism for checking it. So we can get
the following.

Theorem 6 There exists recursive algorism for checking the given knot i3 triv-
ial or not.
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Introduction to Kuhn's theory

-— Algebraic topology and representation theory —

Mitsuhiro Takeuchi

Institute of Mathematics, University of Tsukuba

In a series of papers [Kl1-3] Nicholas J.Kuhn has developed a very
interesting theory which combines algebraic topology and representation
theory. In Part I, he deduces several important properties on the
Steenrod algebra which are used to solve the Segal and the Sullivan
conjectures from his original generic representation theory. I intro-
duced this part at the 31st symposium. My private motivation is that
my debut paper [T] is effectively used in his generic representation
theory.

In the foliowing, I reproduce my talk briefly. Refer to the origi-
nal papers for details.

1. One-sided Morita theory

Let &4 and B be abelian categories with exact direct limits. It is
well-known that if f:# > B is an exact functor having a fully faithful
right adjoint then it induces an equivalence of & /Ker{({) to B.

Let kX be a fixed base field. Let;g be a small subcategory of a
k-additive abelian category  with exact direct limits. Denote by
Rep (;K°p) the category of k-additive functors from;JOP to the category
of krvector spaces. The functor r:{ - Rep (.&°p) given by

r{c) = Homc(-,C)
has a left adjoint £. Kuhn has proved the following theorem and calls

This 1s in final form.
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it one-sided Morita theory. The essential part is (1) = (2) and
known as Gabriel and Popescu's theorem in case £ = one object. In my
debut paper [T] I gave a very short proof of it and Kuhn uses and
generalizes my argument to multi-object version.
Theorem. TFAE
(1) & generates .
(2) / is exact and r is fully faithful.
(3) ¢ has enough injectives and if I, J are injectives in(, then
i) r(I) is injective,
ii) Hom,(I,J) -5 Homp, (r(I),r(3)).
2. Generic representations
In the rest of this article, let k = Fq the field of q elements.
Let V(q) (resp. Vgin (q)) be the category of vector spaces (resp. finite
dimensional vector spaces) over Fq. A (not necessarily additive)
functor F: Ufin (q) » UWq) is called a generic representation.
Examples.

n

™: vev n

s v vz, s v v R

én
14

where Zn is the symmetric group of degree n.

Let F(q) be the category of generic representations. It has the
following structures, Let F, G be generic representations. The ten-
gor product F ® G is defined object-wise (F ® G) (V) = F(V) ® G(V).
The dual functor DF is defined by DF(V) = F(V*)*, For example, st
and 5, are dual to each other. We have obviously

Homg(q) (F,DG) = Homf(q) (G,DF).

let We vfin (q). Let PW(V) be the F_ vector space with basis

q
Hom(W,V). Py's form projective generators of F(q) since we have

Hom?(q) (Pw,l-") = P(W).,

and this yields that P_ *"

q

We have further Pv ® Pw &~ P‘mw », n= 0,1,2,...
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form projective generators of ZF(q).
Dually we put Iw = DPW. Since we have
Homg(q)(F,IW) & Homa(q) (Py,,DF) & DF (W)

® n=0,1,2,... form injective cogenerators of F(q).

one sees that I,
3. (Locally) fingte functors

Let & be an abelian category with exact direct limits. An object
A of /] is simple (resp. finite, resp. locally finite) if A # 0 and
A has no nontrivial subobjects (resp. if A has a Jordan-Hélder series
of finite length, resp. if A is the union of its finite subohjects).
The subcategory of all locally finite objects of F(a) is denoted by
$,@). We call Fé& F(q) weakly finite if F: Ufin(q) ->'Ufin(q). Our
previous basic examples Tn, Sn, Sn, PW' Iw are all weakly finite.

For a weakly finite functor F, let dF(n) be the dimension of

F(Vh), where vh is (any) n-dimensional vector space over Fq.

Examples. 1) F = o, dF(n) = nT,
= of _ (n+r-1
2) F=5". a,m = (*I7Y).
= _ N
3) F= IFq or PFq. dF(n) =q .
Note that dF is a polynomial function in case 1), 2) but not in 3).

Theorem. For F € F(q), TFAE.

(1) F is finite.

(2) F is a subquotient of a finite direet sum of g,

(3) F is weakly finite and dF is a polynomial function.

Therefore, Tn, Sn, Sn are all finite but not PW or IW'
Corollary. 1If F is finite, then so is DF and we have F = DDF. The
tensor product of two (locally) finite functors is (locally) finite.

As a less trivial result, Kuhn has shown that I, are locally finite.

én

F
q

One concludes that I , n=20,1,2,... form injective cogenerators

of F, (a).
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4, Generic embedding theorem

Alperin (1986) proved that every finitely generated Fq[GL(V)]
module embeds into a finite direct sum of S"(V)'s. Kuhn has proved
the following generic version of this and further has shown it is
equivalent to the End (V) version of Alperin's embedding theorem.
Theorem. If F & Alq) is finite, F embeds into a finite direct sum
of sg,

Since Sn = Ds“, we have
Corollary. S_, n = 0,1,2,... generate 7 (q).

n
We have reached the following one-sided Morita context. We put

A = 1s%, st, s2, ...}
AL = {87 Sys Spv i:.}

These subcategories are dual to each other by D. Me Rep(,?3 means

a Fq-additive functor M: Sn'»——)m% € Yqg). We think M is a graded
vector space (Mh) with the following additional structure.
- n m [ ] 3 .
a: § »8 or a.Sm > Sn induces a: Mn —)Mm.
If Fe F,(q), r(F) € Rep(f") is defined by
1:(1-")n = H°m5\'.(q) (Sn,F).

In particular we have

= = = n
i.e., r(Iv): st +— S?(V). The functor r: ?w(q) - Rep(x?) has a left
adjoint { and we have a one-sided Morita context. The results are
interpreted in terms of the Steenrod algebra yielding some important
results in algebraic topology.
5. Steenrod algebra

Let C{q) be the polynomial F_ algebra in gl, §2,...,§n, e

q
We give the followingzso graded Hopf algebra structure:
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deg(3;) = 1 - %,

J
Alg,) = z iiq ® ;j' where §o =1,
i+j=n

£(8,) = dpn- . .
The set of monomials $, .. 5 * with d(x) = £y (q=L)+. ..+, f-1) = 4
forms a basis of C(q)_4, hence it is finite dimensional.
The dual graded Hopf algebra A(q) is called the Steenrod algebra.
It is positively graded with A(q)d = C(q)_d*. Let
Plasr), a(x) = d
be the dual basis of §1r1... 3

(4
A graded A(q) module M = 0;:0 M, is called unstable if

]’t

¢+ d(r) = d. We put e(r) = r+...+x, .
Pla;x)M = 0 if e(r) > n.
Let [{(q) denote the category of unstable A(q)-modules.
Example.
Let S°(V) be the graded vector space (s” V). It is identified
with the symmetric algebra of V. Define an algebra map
f:8°(W) 8 MI15,5,,...1] = 8°(V) 8 cla)
by setting

© n
Fx) =3 x1 @3 for x in V.
n=0

Then S° (V) becomes a graded C(q) comodule algebra with comodule structure

s"v) » s™w) e clq)_y, d,n = 0,1,2,...
Hence it is a graded A(q) module algebra. It is easy to check
i i
2, x, 7 Lox 3™ ifelm <n
Plar)xqeeex, =4 =
0 if e{zr) > n
where i runs over all permutations of
(0...0 1...1 ees et e l.ool)
n-e(r) r, z,

Hence S®(V) is an unstable A(q) module.

—183—



This example means that the Steenrod algebra A(q) acts on the

functor $' unstably. Thus we have a natural linear map

n n+d
A(q)d — Hom}(q) (s",s )

If M e Rep(£°), composing it with the canonical map

n,s™d) Homy, (M, /M 4)
q

one gets an unstable A{q) module structure on M = ‘"n)n;O' In other

Homa‘(q) (s

words we have a natural functor
M (M) 00 Rep () — Ua).
Theorem. This is an eguivalence of categories.
This follows from the fact that the set P(q;r), e(r) < n, d(r) =

d forms a basis of Homﬁ(q)(sn,sn+d

n .m
i =0 ss
) and that Hom,?,(q) (s",sM) unle
n<m,
Thus we can interpret the one-sided Morita context in terms of

the Steenrod algebra as follows. We have a one-sided Morita context

L{(q)'é’jw(q) {4r
r

where

L) (V) = s,(V) % ()™
Here we view S' (V) as a left unstable A(qg)-module, hence dually S, (V)
as a right A{q)-module with negative gradation; 54(V) having degree -d.
Note that we can identify

r(Iv) = 8" (V).
6. Main results

Applying the one-sided Morita theorem to the previous context,

one gets the following results.



Theorem. (1) S°(V) is injective in Ul(q).

(2) If V, We “Ufin (q), then
E‘q[Hom(V,W)] ~*> Hom ) (8*(V),8°(W).

(3) L is exact and r is fully faithful. / induces an equivalence
U)/ma) = #,(q)
where
M) =M € i) | Homy \M,8" (V) = 0 V¥ V].
(2) follows from the fact
Hom;(q) (IV,IW) o~ Homa(q) (Pw,Pv) = Py W) = Fq[Hom(V,W)].

7. Tensor products

If M and N are unstable A(q) mcdules then the tensor product
M @ N is unstable with obvious gradation and module action. Thus
Uta) and F, (q) are both tensor categories. Kuhn has proved that both
functors / and r preserve the tensor product. In particular we have

({M(V) ® IN(V))* = [(M ® N) (V)*
and this is interpreted as
Homu(q) (M@N,S* (V)) &~ Hom

Ulq
for M,N in L{{q) and V in vfin (q).

y (4,5° (V) @Hom, .+ (N,S° (V)

ula
Kuhn says that these results yield analogous results with the fol-
lowing substitutions:
q —> P
Algq) —> Ap Steenrcd algebra with Bockstein

Ua) — Up unstable A, modules

s°(V) —> H'(V) cohomology of BV with ccefficients in Fp
and the results are used in solutions to the Segal and the Sullivan

conjectures.
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Principal blocks with extra-special

defect groups of order 27

Yoko Usami
Department of Mathematics, Ochanomizu University

2-1-1, Otsuka, Bunkyo-ku, Tokyo, 112 Japan

Abstract. The principal 3-blocks of the groups PGU(3.q2) defined over
the finite field GF(qz) satisfying qE2 or 5 ( mod 9 ) are Morita equivalent
to one another. The principal 3-blocks of the groups PGL(3,q) satisfying
qE 4 or 7 ( mod 9 ) are Morita equivalent to one another. The principal
3-blocks of the groups SU(3.q2) defined over the finite field GF(qz)
satisfying q2 2 or 5 ( mod 9 ) are Morita equivalent to one another. The
principal 3-blocks of the groups SL{3,q) satisfying q= 4 or 7 ( mod 9 ) are
Morita equivalent to one another. EBach of these groups has a Sylow 3-subgroup
isomorphic to the extra-special group of order 27 of exponent 3. This paper

also contains some other results.

§ 1 Introduction

1.1. In modular representation theory there is an important conjecture
due to M.Broué ( Question 6.2 in [Br2]). For principal blocks this conjecture

can be gtated like the following:

Broué's conjecture. Let G and G' be finite groups having the same
p-local structure and in particular having a common Sylow p-subgroup P. If P is

abelian, is it true that their principal p-blocks BO(G) and BO(G') are derived

( This is not a final versiomn. )

—187—



equivalent?
When P is cyclic, this conjecture is proved by M.Linckelmann [L] and J.Rickard

[Ril]. On the other hand, it is known that if P is not abelian, this is not
true, ( see section 6 in [Br2] for counter examples). Nevertheless, it seems
that there are not so many derived category equivalence classes among the
principal p-blocks of finite groups having a fixed p-local structure. Keeping
this in mind, in this paper we consider the case p = 3 and offer some examples
of Morita equivalent principal 3-blocks of an infinite series of finite groups
having the same 3-local structure with the same non-abelian Sylow 3-subgroup.
( Note that if two blocks are Morita equivalent, then they are derived

equivalent. )

1.2. To be accurate, here we give the exact definitions of technical
terms in 1.1. The definition in §4 in [Ri2] states as follows: Finite groups
G and H have the same p-local structure if they have a common Sylow p-subgroup
P such that whenever Q1 and Q2 are subgroups of P and f: Ql---'i'Q2 is an iso~
morphism, then there is an element g& G such that f(x) = x8 for all erl
if and only if there is an element h€ H such that f(x) = xh for all xéQl.

( In this case group theorists often say that G and H have the same fusion on
p-subgroups of P . ) Let ( X, 0, &) be a splitting p~modular system for all
subgroups of the considering groups, that is, 0 is a complete discrete
valuation ring with unique maximal ideal P , X is its quotient fiels of
characteristic zero and & is its residue field O/P of prime characteristic
p and we assume that X and 4 are big enough such that they are splitting
fields for all subgroups of the considering groups ( see § 6 in Chapter 3 in
[NT}). The principal p-block Bo(G) of a finite group G is the indecomposable

two-sided ideal of the group ring of G over O to which the trivial module
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belongs. In this paper " modules" always mean finitely generated modules.

They are left modules, unless stated otherwise.

1.3. Our starting point is the following two theorems stating on the
principal 3-blocks of finite groups having non-cyclic abelian Sylow 3-subgroups.
More precisely, the groups in Theorem 1.4 and Theorem 1.5 have a common Sylow
3-subgroup isomorphic to an elementary abelian group 23x 23 of order 9 and
have a common normalizer H of this common Sylow 3-subgroup, which is iso-
morphic to the semi-direct product (Z3XZ3)>4Q8 of st 23 by a quaternion
group 08 of order 8 with the faithful action. Then all of them have the same
3-local structure. Actually PSU(3,22) is isomorphic to H and Bo(H) = OH. Let
G be a group in Theorem 1.4 or Theorem 1.5 and set

| [H&Psu3,2")  if G s a group in Theorem 1.4 ,
¢ =‘{PSL(B.Q) if G is a group in Theorem 1.5,
Then a Morita equivalence between BO(G') and BO(G) is given by functors

M ® - and W ® —
B,(G") B,(6)

with a suitable indecomposable (G,G')~bimodule M and its O -dual M#.
Furthermore, M is 4(Q)-projective trivial source module as GXG'-module,
where A(Q) is the diagonal group { (x.x), x €Q } and Q is the common
Sylow 3-subgroup above. Hence M induces also a Morite equivalence between
Bo(Cc.(R)) and Bo(cG(R)) for each 3-subgroup R of Q via a Brauer morphism ,
and then this equivalence is a Rickard's splendid equivalence ( see Theorem
4.1 in [Ri2] ) and also a Puig equivalence ( see Puig and Scott's Theorem 1.6
in [M] ). We remark that M is the unique indecomposable non-projective direct

summand of BO(G)ga BO(G'). I heard that T.Okuyama has proved that BO(PSU(3.22))
H

and BO(PSL(S.a)) are derived equivalent to each other dnd then all principal
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3-blocks in : Theorem 1.4 and Theorem 1.5 are derived equivalent to one

another.

Theorem 1.4, (S.Koshitani and N.Kunugi 1997 [KK]) Let G be a projective
special unitary group PSU(3.q2) defined over the finite field GF(qz) satisfy-

ing q22or 5 (mod 9 ) . Then BO(G) is Morita equivalent to BO(PSU(3,22)).

Theorem 1.5. (N.Kunugi 1997 [K]) Let G be a projective special linear
group PSL(3,q) defined over the finite field GF(q) satisfying q= 4 or 7 ( mod

9 ). Then BO(G) is Morita equivalent to BO(PSL(S,A)).

1.6. Note that each projective general unitary group PGU(3,q2) contains
PSU(3.q2) as a normal subgroup with index 3, when 3 I q+1 , and each projective
general linear group PGL(3,q) contains PSL(3,q) as a normal subgroup with
index 3 , when 3 | q-1. Let M(3) be the extra-special group of order 27 of
exponent 3. The projective general unitary groups PGU(3,q2) satisfying q=E2
or 5 ( mod 9 ) and the projective general linear groups PGL(3,q) satisfying
qQuédor 7 (mod9 ) have a common Sylow 3-subgroup P which is isomorphic to
M(3) and have the same 3-local structure: More precisely, we have P = < Q,w >
and Q & Z3xz3 with a 3-element w and these groups above have a common
normalizer H of Q and H contains a common normalizer of P and H controls
the fusion on 3-subgroups of P in these groups. Furthermore, H is isomorphic
to the semi-direct product (z3x Z3)><1 SL(2,3) with the faithful action. Actu-

ally, PGU(3.22) is isomorphic to H and BO(H) = OH.

Theorem 1.7. ( N.Kunugi and Y.Usami 1998 [KU] )

(i) Let G be a projective general unitary group PGU(3,q2) defined over the
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finite field GF(qz) satisfying q22 or 5 ( mod 9 ). Then BO(G)‘ is Morita
equivalent to B_(PGU(3,2%)).

(i1) Let G be a projective general linear group PGL(3,q) defined over the
finite field GF(q) satisfying q=Z 4 or 7 ( mod 9 ). Then Bo(G) is Morita

equivalent to BO(PGL(3 4)).

1.8. Let G be a group in Theorem 1.7 and set
. Hg PGU(3.22) if G is a group in (1)
¢ l={l’(;l.(3,lo) if G is a group in (ii).
Then each Morita equivalence between BO(G') and BO(G) in Theorem 1.7 is
given by functors

M@ o and M* ® -~
BO(G ) BO(G)

with a suitable indecomposable (G,G')-bimodule M and its O-dual M¥. Further-
more, M is a A(P)-projective trivial source module as a G XG' module.
Hence M also induces Morita equivalence between Bo(CG'(R)) and Bo(cG(R))

for each 3-subgroup R of P via a Brauer morphism and then this equivalence
is a Rickerd's splendid equivalence and also a Puig equivalence. We remark

that M is an indecomposable direct summand of BO(G)®B°(G') and any other
OH

indecomposable direct summand is A(<wd>)-projective. When we investigate
the principal p-blocks we may assume that the maximal normal p'-subgroup
Op,(G) of G is trivial, since Op.(G) is contained in the kernel of any G-
module lying in the principal p-block of G. Using the classification of the
finite simple groups, we can list up all finite groups G with 03.(G) =1
and having the same 3-local structure as that of PGU(3.22): namely, G is
either a group in Theorem 1.7 or G is an extension of G° with some Go among

the groups in Theorem 1.7 by a field automorphism and in such case Bo(G) is

—191—



isomorphic to Bo(co) . ( More precisely, they are Morita equivalent by a
suitable bimodule having the same property stated above. ) Then by Theorem
1.7 we can conclude that there are at most two derived category equivalence
classes of the principal 3-blocks of the finite groups having the same 3-local
structure as that of PGU(3.22) ( using the classification of finite simple

groups ). Outline of the proof of Theorem 1.7 is given in § 1 in [U].

1.9. Note that when 3| q+l, the special unitary group SU(3,q2) defined
over the finite field GF(qZ) contains a normal subgroup of order 3 as its
center and PSU(3,q2) is the factor group of it by this normal subgroup.
Similarly, when 3] q-1,the special linear group SL(3,q) defined over the
finite field GF(q) contains a normal subgroup of order 3 as its center and
PSL(3,q) is the factor group of it by this normal subgroup. Furthermore, the
special unitary groups SU(3,q2) satisfying qE 2 or 5 ( mod 9 ) and the special
linear groups SL(3,q) satisfying q=4 or 7 ( mod 9 ) have a common Sylow 3-
subgroup P isomorphic to M(3). These groups also have a common normalizer
H of P which is isomorphic to the semi-direct product M(3)>de with the
faithful action. Actually, SU(3,22) is isomorphic to H and Bo(") = OH.

Any two of these groups have the same 3-local structure.

Theorem 1.10 ( Y.Usami )
(i) Let G be a special unitary group SU(3.q2) defined over the finite field
GF(qz) satisfying Q=2 or 5 (mod 9 ). Then BO(G) is Morita equivalent tb
B,(sU(3,2%)).
(i1) Let G be a special linear group SL(3,q) defined over the finite field

GF(q) satisfying q = 4 or 7 ( mod 9 ). Then B,(G) is Morita equivalent to

BO(SL(3.A)).
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1.11. Note that the projective general unitary group PGU(3.q2) is the
group obtained from the general unitary group GU(3.q2) on factoring this group
by its center of order q+l. Also note that the projective linear group
PGL(3,q) is the group obtained from general linear group GL(3,q) on factor-
ing this group by its center of order q-1. Furthermore, the general unitary
groups GU(3,q2) defined over the finite field GF(qz) satisfying q=s 2 or S5
( mod 9 ) and the general linear groups GL(3,q) defined over the finite field
GF(q) satisfying q# 4 or 7 ( mod 9 ) have a common Sylow 3-subgroup of order

81 and also have the same 3-local structure.

Theorem 1.12, ( Y.Usami )
(i) Let G be a general unitary group GU(3.q2) defined over the finite field
GF(qz) satisfying q= 2 or 5 ( mod 9 ). Then BO(G) is Morita equivalent to
B,(GU(3,29)).
(ii) Let G be a general linear group GL(3,9) defined over the finite field

GF(q) satisfying qZ 4 or 7 ( mod 9 ). Then BO(G) is Morita equivalent to

BO(GL(3.4)).
§ 2 Outline of the proof of Theorem 1.10 and Theorem 1.12

2.1, Let G be a group in Theorem 1.10 and Z be its center of order 3

and set
o =[H & SU(3,22) if G is a group in (i)
SL(3,4) if G is a group in (ii)
and also set G = G/Z, G' =6'/Z and H=H/Z . Let M be a (G,C')-bimodule

which induces & Morita equivalence between B (&') and Bd(ﬁ). Then by the
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remark in 1.3 M is obtained from a (G,G')-bimodule BO(C)C% BO(C') by

subtracting all indecomposable projective direct summands. On the other

hand, any indecomposable direct summand of BO(G) ® BO(G') is a trivial
OH

source module and contains A(Z) in its kernel and then contains A(Z)

in its vertex. Let M be the (G,G')-bimodule obtained from BO(G)OQ:l BO(G')

by subtracting all indecomposable direct summands with vertices A(Z).

Now the character of any direct summand of BO(G)@ BO(G') is the sum of
OH

the first part and the second part; namely, the first part is a Z-linear
combination of products of an irreducible character of BO(G) containing 2
in its kernel and an irreducible character of BO(G') containing Z in its
kernel, and the second part is a Z-linear combination of products of an
irreducible character of BO(G) not containing Z in its kernel and an
irreducible character of BO(G') not containing Z in its kernel. Let X

be an irreducible character of BO(G) containing Z in its kernel and ¥'

be an irreducible character of BO(G') containing Z in its kernel. The multi-

plicity of XX' in the character of BO(G)® BO(G') can be calculated by
OH
( Xy x'ﬂ-l )H and then the first part of the character of BO(G)® BO(G')
CH
coincides with the character of B o(ﬁ)@ BO(G') ( Here ¥ 4y is the restriction
(7]

of X to H.) Let S be a simple BO(G)-module ( namely, a simple Bo(ﬁ)-
module) and S' be a simple BO(G')-module ( namely, a simple Bo(ﬁ')—module).
Let P(S gs') be the projective cover of 888' as a (6% G')/A(Z)-module and
p(S 38') be the projective cover of sgs' as a Gx §'-module . Note that
P(S? §') is an indecomposable G x G'-module with vertex A(Z) and the first

part of its character coincides with the character of p(Sg S'). We can
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show that the multiplicity of P(S%S') in Bo(G) ® BO(G') is equial to the
oH

multiplicity of p(S%S') in BO(G)O% BO(C') using G.R.Robinson's results

on projective summands of induced modules ( Theorem 3 in [Ro]). Consequently
we can show the first part of the character of M coincides with the character
of N and

H= C@M® 0T (2.1)
oG 0G'

and then by Lemma 10.2.11 in [Ru] we can conclude that M and its O-dual M#

induce a Morita equivalence between Bo(G') and BO(G).

2,2, The center of any group in Theorem 1.12 is a direct product of the
maximal normal 3'-subgroup and a normal subgroup of order 3. Let G be the
factor group of a group in Theorem 1.12 by its maximal normal 3'-subgroup and
let Z be a normal subgroup of G of order 3 which is the center of G. Now
< 2,Q,w > is a common Sylow 3-subgroup gf these groups G with elementary
abelian group Q of order 9 and a 3-element w. Note that < Z,Q,w >/Z is a
common Sylow 3-subgroup of the groups in Theorem 1.7. These groups G have a
common normalizer H of ZQ. set

. [H 2 6U(3,2%/05,(6U(3,2P)) 1f G is a group in (1)
¢ Q{‘GL(3,4)/O3.(GL(3,6)) if G is a group in (ii),
and set § = G/2, G' = G'/Z and H = H/Z. Let M be a (G,G')-bimodule which
induces a Morita equivalence between Bo(c') and Bo(ﬂ). Then by the remark

in 1.8 M is obtained from BO(C) gHBo(C') by subtracting all indecomposeble

A(<wd)-projective direct summands. On the other hand, any indecomposable

direct summand of BO(G)® BO(G') is a trivial source module and contains A(Z)
OH

in its vertex as in 2.1. We define M ss the (G,G')-bimodule obtained from
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BO(G)é% Bo(G') by subtracting all indecomposable A(Z<w>)-projective

direct summands. Here we have to investigate the indecomposable G XG'-
modules with vertices A(Z<w)>) applying Theorem 3.2 in [Brl] and the Green
correspondence. We also have to study the relation between them and the
indecomposable & x §'-modules with vertices A(<w>). As in 2.1 we can show
a close relation between the charactersof M and M and obtaiﬁ (2.1) and then

by Lemma 10.2.11 in [Ru] we get the conclusion.

2.3. I did not mention the results in Theorem 1.10 (ii) and Theorem 1,12
at the symposium in November. Actually, they are obtained after the
symposium. Since they are new and I do not have enough time to check them

carefully again and again now, so I have to confess that I feel uneasy about

the correctness of these results.
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Lattice @ cancellation & Eichler condition

LIl —

R: Dedekind domain, p € Max R(R®D maximal ideal £4%) i L. R, := RD p-

adic completion R := H R, £33, £ RMB X IHU. X, := XQrRy, X :=
. pEMax R
X ®R R&T’S < o

L %% R-lattice &{3TFRERK projective R-module TH 5 Z &o ADS R-order &3 R-
lattice T1 2FORTH S I &, L #A-lattice &iX R-lattice TH > TA-module TH 3
Z &

L, L'EAlattice LT D' L D& L & LERHRABET . Loy L'ERTS

bBAAL~L = L~ L

>1,LeLl®~ L' gL®"

RO DOEE, L & IIZEERE (stably isomorph) && Do EHEH#IZRO—FEEIRE
DAUDREREERBLERBPARUIZES I EI3HBETH B0 §EX T HDI3EMH
ABO—BHIRY ML NVBETH S, BEP BB OSHITIIWUDN, HTHATS &
I IKRERBEIIRHERIRIZE S0

—RIZB% 1 2bOREL. BREBO—RBRIER GL(n,B) 82 5, elementary
matrix subgroup % E,(B) &9 %, bbb

eij = ((i,7) BEFDH 1, fi2i3 0 OFH) BT
En(B)={(1+zeie € B, 1<i,j<n, i#j)

(( YR CORBOERT HWBABETEH%KT 5, )
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BX
E34 & B*%2R—# LT, B* C GL(n,B) &AH4T,

BIiZh 2 %&U4%#RET S (K5 Dedekind domain D& T BHHRIRITT K-algebra D &
&, Bb B, bBb O&#EST),

CDESED b EICRDEEHER D ILD,

FEM(Vaserstein)  E,(B) N B* i3 n(> 2) iZ depend €3 FTOE(B) %L1,

E(B)={(1+zy)1+yz)""|z € B,y € B,1+zy € B*)
¥7: E(B) D [B*,B*]|( = B*DX#HFE)

Ki3 ROMiEE LT A=AQg K,L ZA-lattice & L. V=Leg K (=L TiEoh
B3 K-R7 MNEH) &T3, VIdE A-module tZ7i3, B=End,V, T =End,L 3%
NEN K-algebra, R-order {27830 L~ L'DEE. ENFHhDOBRS K-X7 M NZEMIZ
% A-module & UTRBTH B0 (#->Ts SHER—BRLTVETSHE B=EndV bk
BEAHIEEB)

Loy I' &= 30 € B, I'=0(D)
L=L"¢ EDoizo To €T* ([ =EndsL)
LxL' < 3% eB*, L' =0(L)

#->T LIcRFRBLARGORE G(L) (Sh#E L ®genus EF9) 13 B\ B/~
E—H—izRIET 30

L & UHEERAY < 30 € BXE(B)c B*, L' = o(I)

E(B) #*B*DERBABTH 5 &S BXE(B) 3BEUT, &> TEERAE
P RUABIGRIC B,

L ERFERANEFARSOREE F(L), EDRME f(L) &4 3, i LicRRRDL
REAWFOREE C(L), TDOTLHE (L) £ 5,
ay= Y fI)

L'eC(L)
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L' e C(L), f(L') =1 D& &, TXTORERMBBIZ DT cancellation RILEBTHR L.
Z D& E5E2L cancellation RILET Ho T € C(L), f(L) > 1DEE, TNTORE
RBBIZ DT cancellation REIAFR L. D & &2 cancellation £EF Ho

A% R-order £33 &%, 5X ShilcA-lattice L, MiZ3 LIRD cancellation law (jc)
AR D ALOFGE R T I EIIEXHMETH 3,

(ic) L &EMPRERES L~ M.

(je) BAL <= f(L) =1

A-latficeL IZH UL :=EndpaL, B:= K ®gT, Bix K_E central simple D& % B! :=
{b € BX| reduced norm b=1} C B! ¢ B* &%, &#(al) 2RO XS ITED B0

(al) B3B! T dense.

33 & RO E KL%k, Bid K E central simple &{RE L THR®D Jacobinski-
Swan DEZEHER Y ILD,

(JCT) (al) = (jc) KD ILD,

ftu 5 Eichler-Kneser O5&:E{UERE (SAT) &id. K, BiZDWT LERIUIRED S &ic

(SAT) (al) & (ec):=(%v # Max R s.t. B® K, is not division)

FHEDIHD>ZETH B,

LomERIZ. KXFRELO—ZEHMBIEDRE S Swan iICL DR UHERIE S
hiz,

BUEW+ H %213, B' DR D IZ Vaserstein DB E(B) (—AEDR Bizft LE(B) :=
<(14+zy)(1+yz) ! z,y € B,1+2y € B* > ELTEHRINB) TH\TEHE (al) %
RO (a) THEEDMZB & (JCT) 1. —A&D Dedekind B RIZDNT B, KI2 D TOEE
HUTCKDIDI &E%ERLI,

(a) E(B)E(B) ®HT dense.

% T T—f% Dedekind 3 EA-lattice DERIR%E K% A-field DIBE LRBHIZIRD S Z &
HIC (a) 1S9 5 (SAT) O—RILERD B3 Z EVBELEMBE LTRLEL,

MEZOMBEEERLT. ROBREW]I,

(a) DABIZRD DO approximation property £%% 3, ( )12 B*TD closure & LT



(2') E(B)c B*.

(") E(B)c RxB~.

L& =->D approximation property DMiZii (a) = (a') = (2") ORAFHH 5,

Proposition 1 (jc) for L & E(B) c T*B*

Proposition 2 (jc) for YL s.t. K ® EndyL ~ B & (a") for B.

Z i3 Endomorphism ring D BHEIZ L S (jc) DELIIKFHFTIITH 3.

Theorem 1 B/J(B) = .'é;x My, (D;), J(B) i% Jacobson iR, n; = 1(1 < ¢ <
r)yn;22(r<is<m) EPHvoE &

(@) for B& (a')for D;(1<i<r)

(a) (resp. (a")) for B = (a) (resp. (a")) for D;(1 <i < 7).

Bt simple algebra & &, B®D center % L,RD L TOWHAA%: R &9 5. Riid
REFRBERET S,

(a) (resp. (a')) for B/R & (a) (resp. (a')) for B/R;.

(a") for B/R = (a") for B/Ry.

(#~ T (a') i central division algebra DIFRITHE)

Zhis—ARD Bizxd % approximation property %. central division & BiZXf 9%
ZhICRBBSEIFREEZ 5, LUTOER 2 & 3 Tt Bl central division &9 5,

Theorem 2 K#H¢PF & (37835 product formula % b 2fk) D& & (a”) = (ec).

BEAEIIAHED AR SRIZL B0 Kneser IR & > T 237 MEERWIRWICY
IZ. PF ZDREITF T—ALTE 7,

Theorem 3 AHEIAER LO—ZHRBMAMED L ZE (ec) = (a) (-T (a) ©
(a) & (a") & (ec))

TS, BRMEREANT. K =R(X) OBAICRBIES. A =R(X) D4
IIEH DML (1] IT&k D RRE S

[1] Strong Approximation Theorem for Division Algebras over R(X).

Journal of Mathematical Society of Japan. Vol. 49. No.3 (1997) 455-467

[2] Cancellation of Lattices and Approximation Properties of Division Algebras.
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[3] H.Hijikata: On the decomposition of lattices over orders.
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&%

Q EPUTEEUA H 124 vTHE (ec) AR D IL727/E WY #E > T cancellation law $HAX D 3L
A0, COPA. BERDSNRBEIC LD KADNEIE Svan MEMKNIEN
T 5, [4] LIT. € ODH#E8E,

Cn =Q((n)y Cn =™ % n RAME. Ry % C,D index 2 DELFHMEET 20 n A
FPDEE C, = Con i, MHEDIDn B ET S, £/ C, = Q REBRKELS
n>4&9 5,

Hp = Co[ICnj, 2 = =1, ,V2 € Cpy jz =7j ( IZHERHR) 1KLY H 2R, E
central division algebra(Quaternion algebra) 27 50 H,®D Z-order TR, DEHR R4S
HH DI Rorder THH 5o 4« HaDHEK R-order A (unique TiELY) IZBREBUT. A
Ht cancellation property % b0 &S HEWRS, HRIZROMAY, (COEREHL
3. HHEO RN (M. BB 2UETHS.)

(1) n = 4,6,8,10,14, 18 i TREERBE  RBBH 72 7L—DT cancellation BRI,
n=12,30 iIZ2WTIRTERBEIL 2 25 3 H582 cancellation K7,

(2) n = 20,24,42 iIZ2 T, RERMBBIL 2 2H D —FliL cancellation FRIL. fliid
RBILT 2 >ORBFI N5,

(3) £ DD n IZ DO TIX5ELIE cancellation,

Swan & SITHBAR T Rorder IZDWOTHPXRTIS, WFNICL AL n HSKE
D42 FE cancellation TH B (—HRICA C A TAMt cancellation property % Tid
A B E S, FE-> TEK R-order D582 3 cancellation 22 S, X TD R-order »'522 3k
cancellation T%» 3 ),
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($2) quaternion algebra H iIZD T, HXIZEE N3 EJRARBIY G =£X 3,
LRI G C HOTH Y HY /(1) ~ SU(2)/(£1) ~ SO(3) #h . G IZ=RTEIER
SO(3) OFRFRPABOLHE L TH OIS, BHEIISHEHER (polyhedral group)
EEIh, ZE#E D,, WIER T, \IEH O, Z1+E@&B ITIRTTH 5. MEd
3 HOOFRBAB4ED,,, T,0,T&3 3 (Zh# binary polyhedral group &EEH)o =D
HIBD—D2%E G & LT, G TERETNS H OFHRERR sub Z-module Z(G) i3 Q-algebra
Q(G) @ Z-order TH 3 (Q(D2n) = Hon, Q(O) = Hs, Q(I) =Hyo, LML QT) i3 Hy
T3 { TH = (Cg,0,-2) THB)o

Swan i3 Z(G) @ cancellation IZDWTE L { W~Ti 3, #%Ri1D,, Ds, Ds, Do,
T, 0, I iZ2W T cancellation 3o ZHLHDD,, 122 TIRRKIL,

D2, Du, Dis ROOTRRIOKREEERERBMT LICB~THS (Do
TI—HBOEERBIFIZ DT cancellation BRI, BEL K IRERABEIZIL DH»T,
f(L)121,1,33 TH3)

20D, x C; (Cpit 2 KKERE) 45 EIZONWTHENTNS (S DE4A cancellation
NI AT
[4] R.G.Swan: Projective modules over binary polyhedral groups. J.reine angew.Math.
342(1983)66-172
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NON-COMMUTATIVE GALOIS THEORY
AND ACTIONS OF HOPF ALGEBRAS

TADASHI YANAT*

1. Introduction and notation

This note is a summary of the author’s recent results on a study concerning Galois
correspondence theory for prime rings and actions of finite dimensional pointed Hopf
algebras, started in [Y). This consideration is based on Kharchenko’s Galois theory
for prime rings [K] established in 1970’s and Milinski’s result [Mi], which generalizes
the theory of linear differential identities with automorphisms of prime rings.

In the first place, we list the notation which we use here. A detailed definition
can be seen in [K, M, §].

Let R be a prime ring and F the set of all nonzero ideals of R. We denote by @
the symmetric Martindale quotient ring of R and by K the center of Q. It is well
known that @ is a prime ring and K is a field.

In this note, all algebras, coalgebras, Hopf algebras, and tensor products are
assumed to be defined over a fixed field k, unless mentioned otherwise.

Let H be a finite dimensional pointed Hopf algebra with comultiplication A,
counit €, and antipode S. As we assumed that H is finite dimensional, S is bijective.
We denote the inverse map of S by 5. G(H) represents the set of all group-like
elements of H.

Throughout, we assume that Q is a k-algebra and H acts on @ continuously, i.e.
for any h € H and I € F, there exists J € F with h- J C I.

For nonempty subsets A, B in the smash product algebra Q#H, we set AB =
{a € Alab = ba for all b € B}. The following fact is implied easily.

Proposition 1 [Y, Lemma 2.4]). R coincides the subring of all invariants in R:
RH = {r e Rlh-r =¢e(h)r for all h € H}.

Furthermore, we assume that (Q#H)® = K. In this case, we say that the action
of H is X-outer (due to [Mi]).

2. Correspondence mappings

A subring U C R containing RH is called rationally complete if for a € R and a
nonzero ideal I of U, al C U implies a € U. A rationally complete subring satisfies
the following,. '

The detailed version of this paper will be submitted for publication elsewhere.
*The author is supported by Grant-in-Aid for Scientific Research (No. 10640052).
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Proposition 2 (Y, Proposition 2.5). If a rationally complete subring U contains a
nonzero ideal of R, then U = R.

The following fact enables us to determine a correspondence which generalizes
the usual Galois correspondence.

Lemma A [Mi, Y)]. .
(1) K is stable under the action of H.
(2) K#H is a right H-comodule algebra.
(3) For RH CU CR, (Q#H)Y is a right H-comodule subalgebra of K#H.
(4) For K CAC K#H, R is o rationally complete subring.

For a rationally complete subring U of R containing R and a right comodule
subalgebra A of K#H containing K, we define ®(U) = (K#H)V and ¥(A) = R:.
Then, by Lemma A, & and ¥ determine the following correspondence:

RHcUc o K CACK#H,
oeven | dafurgrcee L

rationally complete subring v right comodule subalgebra

Our principal objective is to show that the above correspondence is one to one.
In concrete, we intend to verify the following two equations:

WU =U
) { B(U(A)) = A

If H = kG, where G is a finite group of automorphisms, this correspondence
essentially represents the usual Galois correspondence, and in this case, we know
by Kharchenko's result [K, Theorem 3.10.2] that & and ¥ give a one to one corre-
spondence.

As another example so that the above correspondence is one to one, we consider
the action of the following Hopf algebra.

Example. Let N > 2 be an integer and ( a root of the N-th cyclotomic polynomial
over Z. Assume that k contains (. We define the Hopf algebra Ay, which is called
the Toft Hopf algebra, as follows:
(1) as an algebra, Ay is generated by generators X,Y and relations XV =
L,YN =0,YX = (XY over k.
(2) Comultiplication is given by A(X) =X @ X, A(Y)=1Q@Y +YQ® X,
(3) counit by e(X) =1, (Y) =0, and
(4) antipode by S(X) = XN-1 §(Y) = (N1 XNy,
If H= Apn acts on @ in a continuous and X-outer way, then it can be computed
that both of (*) hold. Moreover, we know that there exist the following types of
rationally complete subrings and corresponding right comodule subalgebras:
(i) R— K,
(ii) {r € RIX"-r =r} «— K < X" >, the subalgebra of A'#H generated by
X" over K, where n is a divisor of N with n # N,
(i) {reRX" - r=r,Y - r=a(r-X r)} — K < X",Y + aX >, where n
is a divisor of N with n # 1 and « € K, and
(iv) RH «— K#H.
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Above example generalizes [Y, Theorem 6.10]. More generally, we have the
following result, which is the main theorem in this note.

Main Theorem.
If K = K3 then both of the equations in (*) hold.

3. Related results and proof of the Main Theorem

Here, we state several lemmas related to our correspondence theory and needed
to describe the outline of the proof of the Main Theorem.

For a,z € Q@ and h € H, it is easy to see that @ is a left Q# H-module via
(a#h)-z = a(h-r) and a right Q#H-module via z a(a#h) = Sh - (za).

The following Lemma is a modification of [Mi, Theorem 4.1}, which generalizes
the theory of linear differential identities with automorphisms [K, Theorem 2.2.2]
to the actions of pointed Hopf algebras.

Lemma B [Mi]. For I € F, define @ mapping p : Q ®x Q#H — Hom(I,Q) by
g®kEr(r—€-(rq)) forqe Q, £ € Q#H, and r € I. Then, u is injective.

The following Lemma is a development of [Mi, Theorem 2.3].

Lemma C. Let U be a subring of R containing R¥ and M a nonzero (R,U)-
subbimodule of Q#tH. Then, there ezist a € R, 0 € G(H), and £ € ®(U) such that

0 # (a#to) € M.

For a left integral £ in H, we apply Lemma C to the (R, U)-subbimodule RtU
of Q#H and have a nonzero element (a#1)§ € RStU, where @ € R and £ € ®(U).
Write 2 r;Sts; = (ef1)¢ for r; € R and s; € U. Then, applying this element via

< for :r: € Q, we have a Hopf version of [MP, Proposition 4].

Corollary. Let t be a nonzero left mtegral of H. Then, there ezist a,r; € R,
s;eU (i=1,...,n), and £ € &(U) with Et (z:r,)s, = (za)af forallz € Q.

Let B be a right coideal subalgebra of H. We define [5 = {b € B|p'b =
&(¥')bfor all ' € B} and [ = {b € B|bb' = ¢(b')b for all b’ € B}. We call an
element in f; (resp. fig) & left (vesp. right) integral of B.

Since we assumed that H is finite dimensional pointed, we have the following,.

Lemma D [Mal, Ma2, Ko]. Let B C B’ be right coideal subalgebras of H. Then,
we have the followings.

(1) B is a Frobenius algebra.
(2) B’ i3 free as a left B-module and as a right B-module.

(3) [ and [ 5 are 1-dimensional k-spaces.
(4) B is generated by a nonzero element in | ; as a right H-comodule.
As a consequence of the above result, we have
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Lemma E. For 0 # b9 € f; and 0 # " € [g, there exists h € H so that
SH® = pbn),

Proof. For b9 ¢ f; and V' € B, we have
Sb(l)e(bl) = ESb(l)Sbllblz = E S(b’lb(l))b’g — E S(e(bll)b(l))blz = Sb(qb’.

Let {h;} be a right B-basis for H. Then, St = 3 hib; for some b; € B. By
the above formula, we have 3 kb’ = 3 hibie(b') for b’ € B and so, b; € [ for
alli. As f, ; is a 1-dimensional k-space, b; = a;b{” for some o; € k. Hence, setting
h =3 a;h;, we have the conclusion. 0O

Now, we are ready to describe the outline of the proof of the Main Theorem.
Hereafter, we assume that X = K#. Then, K#H = K ® H is a Hopf algebra over
K. We can assume K = k without the loss of generality.

Proof of the Main Theorem (sketch).

(2(¥(A))=4A)

Note that A C ®(¥(A)) are right coideal subalgebras of H. Let £ € [, ,f yI1eF
with £ - I C R, and n € ®(¥(A)). For r € I, we have £ - r € ¥(A) and

) -r=n-(§-7)=¢e(m)¢ )

Hence, (7€ —e(n)€)-I = 0. By Lemma B, it is implied that n¢ = ¢(3)¢ and £ is also
a left integral of ®(¥(A)). Then, by Lemma D(4), it follows that &(¥(A)) = A.

(¥(2(U)) =U:)
First, we note that A in Lemma E is a group-like element in this case. Using
this fact and the Corollary to Lemma C, we have elements a,r; € R, s; € U

n

(i=1,...,n), and £ € [y, 50 that (0 #) 3 rSts; = (aff1)SE. Let I € F with
i=1

t-IC R. For 2 € I, we have

n n
x4 Z riSts; = Zt ‘(zri)sieU
i=1 i=1

ast-I C RH. On the other hand, for u € ¥($(V)),
u(zx a(a#1)S€) = ué - (za) = ¢ - (uza) € € - (1a).

Hence, A = £-({a) is a left ideal of ¥(®(U)) contained in U. A4 # 0 is guaranteed by
Lemma B. Considering R°P and H °P, we have a nonzero right ideal B of ¥(®(U))
contained in U. Then, AUB is a nonzero ideal of ¥(®(U)) contained in U and
¥(®(U)) = U is implied by Proposition 1. O

It is expected that the method to prove the Main Theorem is also effective to
consider the unsolved case K # KH.
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