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Preface

These Proceedings report on talks delivered at the 30th Symposium on Ring
Theory and Representation Theory held in Nagano City. Japan during October
20~22, 1997. The Symposium consisted of fifteen talks by twelve speakers
including series of lectures by Birge Huisgen-Zimmermann on *Homological
dimensions in represcntation theory of finite dimensional algebras”, and by
Shigeo Koshitani on “Some topics on modular group algebras of finite groups”
and “0On p-blocks of finite groups”. T'd like to give my gratitude to both of
them.

The Symposium on Ring Theory and Representation Theory has been or-
ganized by Yasuo Iwanaga (Shinshu University), Kiyoichi Oshiro {Yamaguchi
University ), Yukio Tsushima (Osaka City University), Hidetoshi Marubayashi
(Naruto College of Education) and KKunio Yamagata (Tokyo University of Tech-
nology and Agriculture) since 1996. Originally, the Symposium on Ring Theory
has started in 1971 by Shizuo Endo, Hiroyuki Tachikawa, Hisao Tomninaga and
Manabu Harada. We succeed this new-named Symposium.

The Symposium was financially supported by Masahisa Sato ( Yamanashi
University) through the Grant-in-Aid for Scientific Research from the Ministry
of Education, No. 09640022, and the Proceedings by Yukio Tsushima (Qsaka
City University) through the Grant-in-Aid for Scientific Rescarch from the
Ministry of Education. No. 09640056. We wish to express our thanks for their
financial support. We wish also to extend our thanks to all speakers of the
Symposium,

Nagano, February 1998 Yasuo Iwanagn
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AN INTRODUCTION TO SEPARABLE HOPF ALGEBRAS

Yukio Doy

ABSTRACT. The purpose of this note is to give a quick introduction about
finite dimensional separable Hopf algebras for ring theorists. In particular [
gave a new approach of the trace formulae of Larson and Radford [LRI, 2]:
Tr(S?) = e(t)¢(1) = nTr(S%{gy), where H is any n-dimeusional Jlopf algebra
with antipode S, t an right integral in H, ¢ an right integral in JI* with ¢(f) =1
and y a specific element in H,

1. H-Frobenius algebras

We first recall a well known fact that any finite dimensional Hopf algebra is
Frobenius as an algebra. Suppose that H is a finite dimensional Hopf algebra
over a field & with comultiplication A and counit :. We use the following
Sweedler notation:

A(h) = Zhl & ha,
(id ® A)A(h) = (A& id)A(h) = Zh, Sha®hy, ... (he H)
For any k-algebra A with augmentation ¢ : 4 — &, the spaces of left and right
integrals in A are defined, respectively, as follows:
Hom -(k, A)={s € A| as = ¢(a)s. Y a € A},
Hom_ 4(k, A)={t € A| ta = ts(a), Va € A}.
Here the base field £ is a trivial right A-module via ¢ : A — &. One sees that
if A is Frobenius, ie., A & A* := Hom(A, &) as right (or cquivalently left)
A-modules, then the space of left (right) integrals is one dimensional. A is
called unsmodular if Homy—(k, A) = Hom_,4(k, A). Obscrve that the spaces
of left (right) integrals in the dual Hopf algebra H* coincides the space of all
left (right) H-comodule map from H to k, where & is a trivial right H-comodule
viaunit mapu:k - H=t®H,ie,
Hompy._(k, H*) = Hom"~(H, k)
={v e H"| ) hu(hs) = 6(h)1. ¥ h € H),
Hom-_py-(k, H*) = Hom'H(H, k)

={6€ H'| )_¢(h)hz = o()1, ¥ h € H}.

Typeset by AuS-TEX



2 YUKIO DOl

As H is finite dimensional, there is a canonical k-isomorphism
H*oHZEnd(H). f&h — [z f(x)h)].

We identify these two spaces. We define a right H-Hopf module structure on
H* which is different from Sweedler’s:

— H @H —H*, (f=h)x)= f(ha). feH. h, x€ H.

p:H" — H" & H(= End(H)), p(f)(h) =) _ f(h)S(h2).
Thus, if we write p(f) =3 fo® fi € H* @ H. then Y fo(h)fi =Y f(h1)S(h2)
for all h € H. It is not hard to check that H* is a right Hopf module, with
action — and coaction p. By the fundamental theorem of Hopf modules (cf.

[M, 1.9.4]),
(HY*"oH=H*, feahv— f—h

and counting dimension we get dim(H*)°! = 1. Now

fe@ )y & pfy=fol

)

JL= " f(h1)S(h) forall h € H
= f(1 =) f(hi)hs forall h € H
< p()f=fp(inH*)forallpe H*

< f(h

Thus (H*)}°! = Hom~!(H, k).
Choose (and fix) 0 # ¢ € Hom~Y(H, k). We then get a Hopf module
isomorphism

@ H=H*", hw— ¢h

and in particular H is a Frobenius algebra with H-colinear Frobenius map.
Choose t in H satisfying O(t) = ¢, i.e., ¢ — t = ¢. One can easily check
that @(th) = O(te(h)) for all h € H. Thus th = te(h) and so ¢ is a right
integral in H. Note that if ¢ is a right integral in H with ¢(f) = 1, then
o(th) = ¢(te(h)) = é(t)e(h) = ¢(h) and so ¢ — t = z. Thus
Theorem 1.1. Let H be a finite dimensional Hopf algebra. Then

1) There is @ nonzero right integral ¢ in H* end a right integral t in H with
é(t) = 1.

2) The mup @ : H — H*, h — ¢ « h, 13 a right H-modulc and a right
H-comodulc isomorphism.

3) The antipode S is bijective.

Praof.. It remains to show the bijectivity of §. For a right H-comodule V, set

RV)={) &mm|veV, eV}
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We compute R(H") for the right H-comodule H* by two ways. First,

R(H) = {D_€(fi)fol fEH", E€ H")
= {D_hfl fe H'. I H)
={>_f(h1)S(ha)| f € H", hr€ H} C S(H).

On the other hand, since @ is a right H-comodule isomorphism, we have

RH*)={D_&O(h))hao| he H, £ H*"}
={D _¢(h)ha| he H, C€ H} D {D_e(h)hs| h€ H} = H.

Henee S is surjective, thus bijective. O

In case H = kG. finite group algebra. onc can take é(g) := 8,,4. 1 := ) ¢.
9€G

Note that the above theorem can be gencralized to Hopf algebra objects in

Yetter-Drinfeld categories (see [D2]). We denote by S the composition inverse

of S. Since S (hence also S) is an antialgebra map and an anticoalgebra map.

we have

Zg(hz)hl =¢(h)l = Zhg?(h.) forall h € H.

Proposition 1.2. Let H be a finite dimensional Hopf elgebra. Then
1) h =3 5(t2)é(8 k) for all h € H, i.e.. {S(t2), 11} are dual bases for ¢.
2) idy =Y. ¢ —t, © S(t2) in End(H) = H* o H.
3) S hS(t)ot, =Y. S(t)oth (WheH)in He H.
4) The inverse of @ : H — H* is given by O~ (p) = 3. p(S(t2))ty for all
peEH".

Proof. 1) We compute for h € H,
h= Zs(h.)hg = Zé(fh.)hz (by ¢ —t =2)
= Zg(f:z )o(t) hy )tzhy (since Zg(fz)f'z =¢(ta)1)
=Y " S(t2)é(t1h) (since ¢ty )tzhy = (th)1 by ¢ € Hom™F(H, k),

2) and 4) follow from 1}).
3) These are the same mapping [r — hx| under the map

doO@:HoH=HQH" =End(H). O
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Theorem 1.3. Let H be e fintte dimensional Hopf algebra. Then the following
are equivelent:
a) &(t) #£0, b) H is separable., c) H is semisimple.

Proof. a)=>b): Since Y 5(t3)t, = £(t)1 and &(¢) # 0 it follows from 1.2.3
that H is separable.

b)=>¢): standard.

¢)=>a): Consider the following exact sequence of left H-modules

0> Kere — H-5S k0.

Since H is semisimple, there is a ¢ € Hom_y(k, H) with eq = idy. But ¢(1)
is a right integral in H with ¢(g(1)) = 1 and the space of right integrals is one
dimensional. Hence £(¢) #0. 0O

Remark. Replacing H by H* in the above, we obtain

&(1) # 0 < H" is separable <= H" is seimisimple.

Definition. Since At is also a right integral for any h € H and the space of
right integrals is one dimensional, we have

ht = a(h)t for some o € Alg(H, k).

We say o is the (right) moduler function on H (does not depend on right
integrals t # 0). Dually, since f¢[h — > f(h1)é(h2)] is an element of
Hom~¥(H, k), we have

fé = f(g)¢ for some g € G(H).

We say g is the (right) modular element in H. Clearly we have

Remarks.

1) H (resp. H*) is unimodular <> a = ¢ (resp. ¢ = 1).

2) H (resp. H*) is semisimple = H (resp. H*) is unimodular [Apply ¢ to
ht = a«(h)].

Hence, a # ¢ (resp. g # 1) = ¢(t) = 0 (resp. ¢(1) = 0).

Definition. Let A be a right H-comodule algebra. A is said to be H-
Frobenius if A is finite dimensional over k and there exists a right A-module
and a right H-comodule isomorphism @ : A =2 4*. Here A* is a right A-module
and a right H-comodule by

— A @A — A, (f —u)(2)= f(az), fE A", a, v € 4,
p:A® — A" ® H(=Hom(4, H), f(f)Ya)= Y fo(alfy = 3 flao)S(ar).
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We have (4*)°" = Hom~"(A, k). If A is H-Frobenius, then @(1) is clearly
a right H-colinear map from A to &, which is called an H-Frobenius map.
Conversely one can see that any (right H-comodule) Frobenius algebra with
H-colincar Frobenius map is H-Frobenius. Thus H itsclf is H-Frobenius. For
other recent work concerning H-Frobenius extension, see [D1].

The next theorem is essentially the same to [O, Thm 1.1].

Theorem 1.4. Let H be a finite dimensionel Hopf algebra and A e right H-
comodule algebra with structure mep py : A = A Q@ H. If H* is semisimple
and A is H-Frobenius, then A®®Y is a Frobenius algebra.

Proof. Since A = A* as right H-comodules, we get a right A“#-module
isomorphism A°°# = Hom=Y(A, k) by taking (=)°°¥. So it suffices to show
that the restriction map

x:Hom ™ H(A, k) — (A", [ — f|eon

is a right A°°”-module isomorphism. To sce this, choose ¢ € Hom™H(H, k)
with ¢(1) = 1 (such a ¢ exists by the above remark since H* is semisimple).
Define

tr: A — A®H tr(a) = ) aod(S(ar)),

where we write pa(a) = 3 g @ a;. Indeed, tr(e) is in A% since

altr(a)) = Zao ® a1 ¢(S(az))
= Zaomé (a3))S(e2) (by o€ Hom™f(H, k))
= Zﬂo ® 8(S(ar))
= tr(a) ® 1.

For F € (A"’H)" define A(F): A — k by A(F){a) = F(tr{a)). Then A(F) is
right H-linear, since
Y AF)ao)ar = Y F(tr(as))en

= F(a0)$(S(a1))ez

= Z F(ag)S(az)9(S(ay))es

(since ¢ is left H-colinear by H* is unimodular)

= Z F(ag)é(S(ay))1
= MF)(a)l.
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Thus A is a map from (A°°H)* into Hom™//(A. k). We also have

Mr(f)a) = k(f)(tr(a))
= Z f((l())d)(s("‘l ))
= @(S()_ flag)m))
= $(S(f(a)1))
= fla)d(1) = f(a),
and for b € A%l
K(A(F))(b) = AF)(b) = F(tr(b)) = F(b) by tr(b) = b.

Thercfore & is bijective, which is clearly a right A -module map. O
] ) g p

2. Trace formulae

Let Tr : End(H) — & denote the (usual) trace map. Then we have
Tr(f @ h) = f(h) via identification: H* @ H = End(H), f 5 h e [x— fl2)h].

Proposition 2.1. Let H be ¢ finite dimensional Hopf wlgebra and ¢, t as in
1.1.

1) nl = Tr(idy) = 3 6(t15(t2)).
2) (trace formula 1) Tr(S?) = £(t)¢(1).

Proaof. 1) follows from 1.2.2.
2) Since $2 =) 6 — t; @ S(t2) we have

Te(S%) =) (6 — 1h)(S(12)) = Y _ o(11S(t2)) = 6(=(1)1) = &(t)o(1). O

Corollary 2.2. H and H* are semisimple (= scpareble) < Tr(S?) # 0.
In perticular, if S? = id. then H and H* are scparable <=> nl # 0 (n =
dim H).

Definition. For any p € H* we define p™~. p™ € End{H) by
! I

- pT(h):= Zp(hl)hg, pMh) = Z’I]]J(’lg) forall he H.
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Lemma 2.3.

1) (p™)° = L(p). (p*)* = R(p). where L(p) (resp. R(p)): H* — H" denotes
the left (right) multiplication by p € H=, t.e.. L(p)q) = py and R(p)(¢) = qp
in H*.

=361 D p(S(13))S(t2). pP =T 6 — t, © p(5(12))5(13). Hence

Te(p™) = p(Y_ é(1h5(12))5(t3)).  Tr(p™) = p(D _ o(115(t3))S(t2)).
3) (¢ — W)™ = ¢ — h, @ S(hy). Hence Tr((¢ — h)~) = 3 6(h,5(1)).

Praof. 1) (p™)(g)(h) := q((p™)h)) = (3 plhi)hz) = 3 plhy)g(hy) =
(pg)(h). Hence (p™)'(q) = pg = L(p)q)- Similarly (p)* = R(p).

2)  pY(h)=p~()_ #(tih)S(t2)) (by 1.2.1)
= Z o(t h)p(S(t3))S(t2) (since S is an anticoalgebra map).

Hence p~ = Z(b — 1, & p(S(t3))S(t2) in H* & H
3) (¢ = Wy~(x) = X dlhay )y = 25(h3)¢(h| 21)hzry = 3 S(hy)d(hy).

Definition. Dehine an element y in H by
ply) = Te(p") (= Te(p™") = Te(R(p)). p€ H".
As H” is Frobenius, Tr(R(p)) = Tr(L(p)). and so the following holds
ply) = Tr(p~™) = Tr(p™*) = Tr(L(p)). p€ H".

The next proposition 2.4 follows from the above lemma.

Proposition 2.4,
1) y= ZCJ)“ S(h S(f'z ZQ‘)(“ fg))S(f:;)
2) (¢ — h)(y) = Tr((6 — h)™) = (3 h1S(h)).

Proposition 2.5.

1) e(y) =nl, where n = dim H.

2) S(y) = v.

3) y is @ cocommutative clement, that 1s, A(y) = >y 5 y1.

4} If ¢ is a cocommutative element, then cy = ¢(c)y = ye. In particular
y? = ny.

5) é(y) = &(1).

Proof. 1) c(y) = 3. o1 S(12))S(t2) = T 6(t1S(t2)) = nl.
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2) We first show (po S)» = Sop~o S. Indeed,
B(S() =SS pS)S(h) = 3 p(S(ha))ly = (po SYNR).

Now we have
P(S(y)) = Tr(R(po S)) = Tr((po S)*) = TH(S 0 p~ 0 §) = Tr(p™) = ply)-

This shows S(y) = y.
3)Forp, g€ H*,

(P (h) =) hi(pg)(h2)

=D hiplha)g(hs)
=p"()_ higlha))
= (p" 0 ¢™)(h).

Thus (pg)(y) = Tr((pg)") = Tr(p" 0 ¢") = Tr(¢" 0 p*) = Tr((gp)") = (gpXy)-
Hence y is a cocommutative element.

Another proof : We can check directl) the cocommutativity of y:
Ay) =) 8(t:5(t1))S(ts) © 5(t2)
=Y Si(ts) @ 5(t2)6(115(14))
=Y 5(t3) © S(t2)é(t15(t6 )t25(ts)

= Z—g(tz) ® ¢(£15(t4))S(t3)
= twist 0 A(y).

4) (¢ — h)(ey) = (¢ — he)(y)
= Z¢ ’l]C]S(’l;f‘g ) b) 24 2
=Y $(h1c15(c2)S(hs))
= Z d(hyc2S(c;)S(h2)) (since ¢ is cocommutative)

=) _ d(e(c)hiS(h2))
= (¢ « h)(e(c)y).

It follows from H* = ¢ «— H that cy = ¢(c)y. Next notices that S(c) is also a
cocommutative clement. Hence S(c)y = ¢(c)y, and

yc = 5(5(c)S(y)) = 5(S(c)y) (by the above 2) = S(e(c)y) = &(c)y.
5) We have ¢(y) = Tr(¢™) = é(1), since ¢~(h) = Y_ ¢(hy)hy = ¢(R)1. O

We can now prove the second Trace formula,

)
(
(
)
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Theorem 2.6. (trace formula 2) Let n = dim H. Then e(t)é(1) =
nTr(S%|uy)-
Proof. Notice that S?(Hy) = Hy by 2.5.2. Now we have from 1.2.1
hy = Z_g(fg)¢(t|hy) for any h € H.
It follows that nhy = ¥ S(t5)y¢é(t1hy) (by y? = ny) and
nS%(hy) =Y S(t2)ys(t hy) (by S*(y) = y).
Hence nS?|y, = Y.6 ~ t, @ S(t2)y in (Hy)" @ Hy. Since é(y) = #(1) by

2.5.5, we have
nTe(S%|uy) = Y_(¢ — h)(S(t)y) = D &(11S(t2)y) = £(1)d(y) = e(t)o(1).
O

Corollary 2.7. [LR1, Theorem 2] H and H* arc semisimple = nl # 0.

3. Applications

In this section we give some applications of trace formulae and the element
y. Recall the Nekayame automorphism N : H — H with respect to ¢, which
is defined by the rule

o(zy) = ¢(yN(zx)) for x, y € H.
We need the following results.
Theorem 3.1. Let H be ¢ finite dimensional Hopf algebra. Then
1) Za(h,)?z(hz) = N(h) = g(1)~Y(3 S%(hy)a(h2))g for all h € H. Here

a denotes the moduler funclion on H and g the modular element in H.
2) (Radford, 1976) S1(h) = ¢(} a(h))haa™(hy))g, for all h € H.
3) (Larson, 1971) H and H* arc unimodular = S* = id.

Proof. We follow a very nice proof given by Schneider [S].
1) We have

N(h) =) " S(t2)é(t N(h)) (by 1.2.1)
=Y S(t2)e(ht))
=33 o(ht1)S(t2))
=53 o(hit1)hat2S(ts))
= 5°(6(h1t)hs)
=53 a(h)et)h2)
=3 a(h)8 (ha).
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We next show that {S(¢;)g, t,} arc dual bases for ¢, i.c., h = 3 S(t))gé(tzh) :

> S(t)gdltzh) = Y S(t1)t2h1g(t3ha) (by the definition of g)
=) hid(thy)
= Zhls(h2) = h.

Now

N(h) =} _ S(ti)go(t2N(h))
=Y S(t)ge(htz)
= g7 gS(t1)s(ht2))g
=g7'S*()_ g5(t1)é(ht2))g
(¢ € G(H) implies S(g) = ¢~' and so S*(g) = ¢)
= g-'sz(z hit26(hat3)S(t))g (by the definition of g)
=¢7'S*()_holhat)y
=g7'S%(D_mallz)é(t))g
=971 () S*(m)a(hz))g (by o(t) = 1).

2) By 1), T a(h))S (k) = g~ (S S2(hy)a(hy))g. Hence

9(D_all)hs)g™" =Y S'(h)a(hy)

and so
SYh)y =" S'(h)alhe)a™ (hy) = ¢(D_ a(hy)hya~"(hy))g™".

3) Since H and H* are umimodular, we have o = ¢ and ¢ = 1. So by 2),
St=id 0O
Corollary 3.2. [AN, Proposition 2.14] Suppose that H is unimodular (i.c.,
a=c¢). Then

1) N=5".

2) H is symmelric with respect to ¢, i.e. &ay) = d(yxr), Y, y € H
(& N=id) == S*=id

3) d(ay) = HyS%(r)) = N =85° = S1=id.
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Theorem 3.3. [LR2, Theorem3] Let k be e field of characteristic zero. Then

H and H* ere semisimple — §%=1id.

Proof. <« follows from corollary 2.2.

=): The proof follows the lecture note of Schneider [S]. As H and H* are
unimodular, S = id by 3.1.3. Hence the eigenvalues of S* and §%|y, are all 1 or
—1 (e Q@ C k). Say, respectively. iy, 2, -, tn } M2 Y2, m (m = dim Hy).
Then, by trace formula 2 (and 1),

mtprt o dpa=nlmtaet oo+ ) #0
implying
n= |+ g2l + o 4 pal 20 A2+ o4 m| >0.
So, lg+n2+ -4 | =1,0r gy +p2+ -+ + pp = £n. But, as there is

at least one y; which equals to 1 (since $%(1) = 1), then all y; must cqual to
1,thus S2=id. O

Remark. In [LR2|, Larson and Radford proved that finite dimensional
cosemisimple Hopf algebras in characteristic 0 arc semisimple. Hence the fol-
lowing holds under char & = 0,

H is semisimple <= H* is semisimple <= $? = id.

Theorem 3.4. [LR2, Theorem 4.3]

y is a nonzero left integral => H* is semisimple and S? = id.

Proof. =) We have that for any h € H,

&(h1S(h2)) = (¢ — h)y) (by 2.4.2)
= é(hy)
=¢e(h)d(y) (since y is a left integral)
=¢g(h)9(1) (by 2.5.5).

Since y # 0 and ¢ « H = H*, there is an element = in H such that
(¢ — z)y) #0. Thus z(z)é(1) # 0 and hence H* is semisimple. In particular
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H* is unimodular and ¢ : H — k is left H-colinear, that is, ¢(h)1 = 3_ k) é(h3)
or, equivalently ¢(h)1 =Y S(h,)¢(h2), h € H. Now, we compute

$(Dh =) e(ha)g(1)hy
= Z #(h2S(h3))h,  (by the above)
=3 5(125(hs))$(h3S(ha))hy  (since ¢ is also left H-colinear)
= "5 (hs)S(h2)h1 6(h35(ha))
= 5" 5 (hy)#(h1 S(h2)
= 3" S (ha)e(hi)e(1) = 8(1)S ().

So 5° = id, thus §% = id. _
<) We have y # 0 since ¢(y) = ¢(1) # 0. Next, S? = id implics S = 5. So,

y=_ 6(t15(t2))S(ts) = Y ¢(t15(t2))S(ts)
=Y 8(e(1)1)S(t2) = $(1)S(2).

This shows that y is a left integral, since S(¢) is a left integral. O

Corollary 3.5. [LR2, Theorem 4.4] y is a nonzero left integral and nl # 0 if
end only if S? = id end H and H* are semisimple.

Proof. 1t follows from the above theorem and Corollary 2.2. O
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GELFAND-KIRILLOV DIMENSION
FOR QUANTIZED WEYL ALGEBRAS

NoBuyvKl FuKuUDA

ABSTRACT. We obtain an analogue of Bernstein's inequality for quantized Wey|
algebras.

1. Introduction
Let & be a field. For an n-tuple ¢ = (g1, ,¢u) € (4%)" and n x n
matrix A = (A;;) over k such that A;; = 1 and );; = ,\;-',-' for all 1, j, the
n-th quantized Weyl algebra A% is the k-algebra generated by the clements
Ti, s Ty Y1+ « Yo with the following relations:

Ty = q,'/\,-ja'j;r,',
Yiy; = Aijyivi,
J'i.’/j = Aji!lﬂ".w

(1.1) yirj = 47 Nz jyi.
i-1
2jyi— Gyiri =1+ (@ = Dy,
=1

(tiyy —qrypzy = 1),

where 1 < i < j < n (see [AD. 3.4]).

This algebra 4%-*. appeared in the work of Maltsiniotis on noncommutative
differential calculus [Ma, is regarded as a g-analogue of the Weyl algebra A,,.

Bernstein's ineguality says that, if M is a nonzero module over the Weyl
algebra A, then the Gelfand-Kirillov dimension GIKdim(Af) 2 n. The purpose
of this note is to obtain an analogue of this result for quantized Weyl algebra
AZA | To this end, a simple localization of A%* studied in [J] plays an important
role.

1991 Mathematics Subject Classification. Primary 16P90; Scecondary 17B37.

Key words and phrases. Quantized Wey| algebras. Gelfand-Kirillov dimension, Bern-

stein’s inequality.
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Throughout this note, let g, A be as above, and suppose that no g; is a root
of unity.

For ring theoretical notions including localizations, filtrations and Gelfand-
Kirillov dimension, we refer to [McR].

2. Preliminaries

]
For1<i<m,let z;=1+ 3 (¢ — 1)yzi. By [J, 2.8] these elements satisfy
{=1

the following relations:

..y._{yszj ifj <z, ,.1;._{35&21 if 5 <4,
(2.1) R WHTEIEE ¥ -2 A W ar T -

zizj = 2jzi.

Thus, for each i, the set Z; = {z{},»0 is an Ore set in A%*, and the set
Z2=2,...2Z, is too. We denote by Bi* the localization of A{* at Z.

Proposition 2.2 {J, Theorem 3.2]. Suppose that no gi is a root of unity.
Then B is simple. In particular BI** has no nonzero finite-dimensional
module.

Let us consider standard filtrations for A = A%A and B = Bi*,
PutV==4k+kzy+- - +kan+ky) +---+ ky,. This is a (finite-dimensional)

generating subspace of A, that is, A = ¥ V!, where V? = k. Then A has the
>0
filtration B(A) defined by

B,(A) = i 14
=0

For the localization B of A, the subspace W = kz, +ka:2::l'] 4 -+kr"z;_f_, +
ky, +---+ky, + kg + -+ hzp + kz,'" +++ 4+ kz71 is a generating subspace.
Denote by I'( B) the filtration of B associated with the generating subspace W.
Thus

8
T(B)=) W'
=0
A k-algebra R is called semi-commutetive if R is generated as a k-algebra by

elements ry,: -+ ,r, such that ryrj = pirjr; for 1 < ¢,j < n, where u;; € £™

([Mc, 3.7)).
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Lemma 2.3. The graded cigebre grr B of Bi* associated with the filtration
T'(B) is semi-commutative.

Proof. This is clear from the observation that x;z;—y ~'y; — qiyizizi; "' =1
for each z. O

By the lemma we can apply [Mc, Theorem 3.8] to B, so the following propo-
sition is obtained. Also see [McP, Section 5] .

Proposition 2.4. Let notations be as above.

(1) For any finitely generated B-module M, the Gelfand-Kirillov dimension
GKdimg(M) is a nonnegative integer.

(2) For any nonzero finitely generated B-module M, there czists ¢ nonneg-
ative integer cg(M) 2 1 such that

eg(M) =ep(L) + cg(N)

for any ezact sequence 0 = L — M — N — 0 of finitely gencrated B-modules
with GKdimg(L) = GKdimp(M) = GKdimg(N).

(3) For a B-module M of finite length, the endomorphism ring Endg(M) of
M is algebraic over k.

In general, eg( M) is called the multiplicity of M.
3. Main Results

Theorem 3.1. Suppose that no g; i3 e rool of unity. Let M be a nonzero
Bi* .module. Then
n < GKdimge.a (M) < 2n.

Proof. We modify the proof of [McR, Proposition 5.5 to prove the thcorem.

Write B, = B{"*. Let M be a nonzero B-module. Since GKdim(B) = 2n
by [GL, Proposition 3.4], it follows that GKdimg(M) £ 2n.

We will show the inequality n < GKdimg(M) by induction on n. We can
assume that M is finitely generated. If n = 1, it is clear from Proposition 2.4
(1) and Proposition 2.2, Assume that the incquality holds for n — 1. Let ¢ =
(41, +qn-1), A’ be the subarray (Aij)1<ij<n—1 of A. Then Bn_y = BIY can
be regarded as a subalgebra of B,,. If GKdimpg, (M) < n, then GKdimg, (M) <
n—1. We claim that M has finite length as a B, —;-module. It suffices to show
that any finitely generated B,,_,-submodule of M has finite length < eg, (M).
Let N be a finitely generated nonzero B, _;-submodule of M. By the induc-
tive hypothesis, one sees that n — 1 < GKdimpg,_,(N) < GKdimg, _,(M) £
GKdimg, (M) = n — 1, so that GKdimp, _,(V) = GKdimg,(M) = n - 1.
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Then it follows from [McP, Proposition 5.7] that eg,_,(N) < ep, (M). Using
Proposition 2.4 (2), one secs that N has finite length < ep,_,(N) < ¢, (M).

Now, by Proposition 2.4 (3), End g, _, (M) is algebraic over k. From the rela-
tions (2.1), left action by 2,2,-1~! on M is a left B,,_;-module endomorphism
of M. Moreover, since M is faithful as a B-module, the k-algebra generated
by zpza-1 ! can be regarded as a subalgebra of Endg,_,(3). However it is
easy to check that z,z,-,”! is algebraically independent over k, which is a
contradiction, O

Corollary 3.2. Suppose that no ¢; is e root of unity. Let M be a finitely
generated nonzero AL -module. If M is not Z-torsion, then

n < GKdim o.4(M) < 2n

Proof. Put 4 = A%*, B = B¥*. First, we claim that
GKdim 4(M) = GKdimg(B &4 M)

for any Z-torsionfree finitely gencrated nonzero 4A-module M. We modify the
proof of [GL, Lemma 3.3] to prove the claim. Let V be the generating subspace
of A described before. It is ovbious that W = V + kz;! is a genecrating
subspace of the localization Z;'4 of A at Z,. There exists a nonnegative
integer ¢ such that W™ C 7™ V™ for each m. Let M, be a finitc-dimensional
generating subspace of the A-module M. Then W™ M, C z; ™V ™ My, so that
dim W™ My < dim V™ M. Since M is Z;-torsionfree, we can regard M as
an A-submodule of Z7'M = Z7'A®4 M via the map M — Z7'M, m —
1®@m. In particular M, is a gencrating subspace of the 277! 4-module Z; ' M.
Thus GKdimz1 427" M) < GRdima(3). Clearly GRdimz-1,(Z7' M) 2
GKdima(M). Hence GKdimz-1 ((2;'M) = GKdima(M). By coutinuing
similar argument, we can prove the claim.

Let M be a nonzero A-module with T(M) # M. Since M/T(M) is Z-
torsionfree nonzcro module, it holds that

GKdim,(M/T(M)) = GKdimz-1 4(Z~Y(M/T(M))) > n

by Theorem 3.1. It follows from [McR, 8.3.2] that GKdim(M/T(M)) <
GKdim 4(M ), which implies n < GKdim 4(M).

The upper bound is clear since GKdim(A) = 2n (see [GL, Proposition
34])). O
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Remark 3.3. The corollary fails without the condition on a A7*-module M.
In fact, for 1 <7 < n, there exists a Z-torsion finitely generated A%A-module
M with GKdim o4 (M) = 4. Put A = A% Let L = Ayigr + -+ + Ay +
Az, +--- + Az,. The A-module M = A/L has the filtration B'(M) induced
by the filtration B(A) of A. Thus Bi{(M) = (B,(A) + L)/L is isomorphic as a

vector space to
SRR
ar+--+aiLs

Hence dim;B(M) = (’ +L‘) This implics that GKdim (M) = 1.
?

Another Bernstein’s inequality for quantized Weyl algebras has been con-

sidered by Demidov in [D].
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CATENARITY IN MODULE-FINITE ALGEBRAS

SHIRO GOTO*AND KENJ NISHIDA

ABSTRACT. The main theorem says that any module-finite (but not necessarily
commutative) algebra A over a commutative Noetherian universally catenary ring
R is catenary. Hence the ring A is catenary if R is Cohen-Macaulay. When R is
local and A is a Cohen-Macaulay R-module, we have that A is a catenary ring,
dimA =dimA/Q + ht, Q for any @ € Spec A, and the equality n = ht, Q@ -~ ht, P
holds true for any pair P C Q of prime ideals in A and for any saturated chain
P=P C P C..C Py, =Q of prime ideals between P and Q.

1. Introduction

Let R be a commutative Noetherian ring and let A be an R-algebra which is
finitely generated as an R-module. Here we don’t assume A to be a commutative
ring. The purpose of this article is to prove the following

Theorem (1.1). Any module-finite R-algebra A is catenary if R is untversally
catenary.

Before going ahead, let us recall the definition of catcnarity and universal cate-
narity ([Ma, p.84]). We say that our ring A is catenary if for any pair P C @
of prime ideals in A and for any saturated chain P=F, C P, C .. C P, =@
of prime ideals between P and @, the length n of the chain is independent of
its particular choice and hence equal to hty;p@/P, where ht;;pQ/P denotes the
height of the prime ideal @/P in A/P. The base ring R is said to be universally
catenary if any finitely generated commutative R-algebra is catenary. Hence R is
universally catenary if and only if R/p is universally catenary for every prime ideal
p in R. Naturally, homomorphic images and localizations of universally catenary
rings are universally catenary. And our theorem (1.1) asserts that not necessarily
commutative but module-finite R-algebras are still catenary if R is universally
catenary. The converse is also true in some sense if R is a local integral domain
(Corollary (3.4)).

Since Cohen-Macaulay rings are necessarily universally catenary, from Theorem
(1.1) it follows that

*Supported by the Grant-in-Aid for Scientific Researches (C)
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Corollary (1.2). Suppose R is e Cohen-Macaulay ting. Then the ring A is
catcnary.

And in the case where R is local and A is Cohen-Macaulay as an R-module,
one can improve Theorem (1.1) to get the following, whose consequences will be
discussed in the forthcoming paper [GN].

Corollary (1.3). Assume that (R, m) s a local ring and A 1s a Cohen-Macaulay
R-module. Then A 1s catenary and one has the equality

dimA =dimA/Q +htyQ

for any prime ideal Q in A (here dim A/Q and dim A respectively denote the Krull
dimension of the rings AJQ and A). The equality n = ity @ — hta P holds true
for any peir P C @Q of prime ideals in A and for any saturated chain P = Py C
P, C..C P, =@ of prime ideals between P and Q.

The study of catenarity in coimmutative Noetherian rings dates back to coun-
terexamples of Nagata [N1] in 1956. In it he constructed also examples of catenary
but not universally catenary Noctherian local domains (cf. [N2, p. 203. Exam-
ple 2]). And after Nagata's cxamples people had focused in vain a great deal
of their effort on the problem if Noetherian normal local domnains are catenary,
until Ogoma [O] constructed in 1980 his celebrated counterexamples. Neverthe-
less their effort was not entirely useless and as an inheritance it has left deep
researches on chain conjectures and quasi-unmixed local rings ([R1, R2, R3, R4,
Mc], etc.). Sec Nishimura [Ni| for the recent developments.

The study of catenarity in non-commutative Noetherian rings is much steadier.
We note here the following two strong results. Firstly, Schelter established the
catenarity in Noetherian P. 1. algebras finitely generated over central subfields.
Subsequently in 1978 he succeeded in deleting the Noctherian assumption from
his theorcm ([S]). And in 1996 Goodearl and Lenagan [GL] showed that certain
Auslander-Gorenstein and Cohen-Macaulay quantum algebras finitely generated
over central subfields arc catenary.

The researches [S] and [GL] study finitely gencrated algebras over fields, while
we are going to explore module-finite algebras over commutative Noetherian rings.
And as we shall eventually show in the present paper, comparing with [S] and [GL),
our assumnption that A be module-finite algebras over commutative Noetherian
rings R makes the problem simpler and the proof casier. Actually in 1983 Brown,
Hajarnavis, and MacEacharn [BHM, 5.2 Theorem]| alrcady tried to give a proof
of our Corollary (1.3). However it should be mentioned that their argument has
contained a serious gap and is not acceptable.

The proof of Theorem (1.1) shall be given in Section 3. In Section 2 we will
sunmnarize some basic results on A, that we need to prove Theorem (1.1).
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In what follows, let I be a commutative Noetherian ring. Let A be an R-
algebra with f : R — A the structure map. The R-algebra A is throughout
assumed to be finitely generated as an R-module. We denote by Spec A, Min A,
and Max A the set of prime ideals, the set of minimal prime ideals, and the set
of maximal ideals in A. respectively. Otherwise specified. all A-modules stand for
left A-modules.

2. Some basic results and notation

The purpose of this section is to summarize some basic results on prime ideals in
A, that we shall freely usc i Section 3. We begin with the following, in which for
cach ideal I in A let 7 N R denote the inverse image f~}(1) of L.

Lemma (2.1) ([MR, Chapter 10]). Suppose thet the structure map f : R — A
1s injective. Then the following assertions hold truc,
(1) (Lying-over) For any prime ideal p in R there is ¢ prime tdeal P in A
with p = PN R.
(2) (Going-up) Let p C q be prime tdeals tn R and Ict P € Spec A unth
p = PN R. Then there is a prime tdeal Q in A such that P C Q and
qg=0QNR.
(3) (Incomparability) Let P C Q be primc ideals in A. Then P = Q if and
onlyif PNR=QNR.
(4) Let P € SpecA. Then P € Max A if and only if PN IR € Max IR.
(5) For each P € Min A the prime ideel p = POR in R consists of zerodivisors
for A.
(6) dimA = dim R = dimg A, where dimp A denoles the Krell dimension of
A as an R-module.
(7) For each P € Spcec\ we have hty P = hty PA\y, < dim R),. where p =
PN R. In particuler hty P is necessarily finite.

In the case where (R.m) is a local ring, for each finitely generated R-module M
we put

depthy M = inf{n € Z | Extji(R/m, ) # (0)}

and call it the depth of M. This invariant depthp A equals the length of maximal
M -regular sequences contained in m. See [BH| and [Ma] for detailed investigations
about. it.

Corollary (2.2). Assume thet (R.m) is a local ring end Max AN MinA # 0.
Then the following asserlions hold truc.

(1) depthR A=0.
(2) dimR =0 #f A is a free R-module.

Proof. Let P € MaxA N MinA, Then because P € Max A, we have m = PN R
(sce (2.1) (4)). whence by (2.1) (5) the idcal m consists of zerodivisors for A
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since P € MinA. Thus depthz A = 0. To see asscrtion (2) let p € Spec R.
Then since P D pA, we have P/pA € MaxA/pA N Min A/pA. Hence by (1)
depthpyp A/pA = 0, which yields depthgyy, R/p = 0, because A/pA is a free R/p-
module. Thus dim R/p = 0 since R/p is an integral domain, so that we have
m =p. Hence dim R = 0.

Lemma (2.3). Letk=inf{n >0]|¢,¢,,...,t, € QNR such thet Q is a mintmal
prime ideal of (£, 12,...,t4)A }, for cach Q € Spec A. Then, the equality ht\Q = k
holds true.

Proof. Wc may assume that the structure map f : R — A is injective. Let
h =ht,@. To check h > &, we may assume that h > 0 and our inequality holds
true for prime ideals with height at most h —1. Let F be the set of minimal prime
ideals P of A contained in @. Then since F is a finite set ([MR, 2.2.17]) and since
any P € F is strictly contained in @, by {2.1) (3) and [AM, 1.11] we see the ideal

@ N Ris not containedin |J PNR. Lett=t, e QNRwitht¢g |J PNR.
PeF PeEF

Then since hty ;4 Q/tA < h — 1 for the choice of ¢, by the hypothesis on h we

may choose elements #;,13,...,¢5 of @ N R so that @ is a minimal prime ideal of

(t1,t2,--.ts)A. Thus h > k and so we get htaQ = k, because h < k by [MR,

4.1.13).

In the case where (R, m) is a local ring, we denote by R* the m-adic completion of
R. Reccall that R* is a faithfully flat extension of R, which is a Noetherian local
ring with maximal ideal m* = mR* and dim R* = dim R. We put M* = R*Qnp M
for cach R-module M.

Corollary (2.4). (1) Supposc (R,m) is a local ring and let Q € Max A. Then
Q@* € Max A® and hty-Q* = ht; Q.

(2) Let Q € SpecA and lett € Q N R be a nonzerodivisor for A. Then
htaQ = hty ;s Q/tA +1. Consequently, if t is an element in the Jacobson
radical J(R) of R and if t is a nonzerodivisor for A, the cquality dimA =
dim A/tA + 1 holds irue.

Proof. (1) Since @ 2 mA and R* ®r R/m = R/m, we have the isomorphism
A*/Q* = R* ®p A/Q = A/Q and so certainly Q* € MaxA*. We put 2 = ht, Q.
The inequality ht-@* < h follows from (2.3). In fact, choose t;,t,,...,1 € QN R
so that @ is minimal over IA, where I = (#,12, ...t )R, It suffices to see Q" is
minimal over TA* too. Let P € Spec A* with Q* 2 P D IA*, Then@ =Q*NAD
PN A D IA clearly. Since PNA € Spec A and since @ is minimal over TA, we have
Q = PN A whence @* = QA* C P. Thus Q* is minimal over JA* and by (2.3)
htp-@Q* < h. Let us check that hty-@* > h by induction on h. We may assuimne
that i > 0 and our inequality holds truc for h = 1. Let P, C P, C .. C P, = Q
be a saturated chain of prime ideals in A. Then because htp;p, Q/FPy = h -1, by
the hypothesis on k& we see that htp.;p: Q* /Py > h —1. Choose p € Spec A* such
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that @* 2 p 2 Py and ht. ,Q" /p = htpe/pe @* /Py > h—1. It is enough to show
p € MinA*. Let us choose ¢t € Py N R so that t € Py, N R (by (2.1) (3) this choice
is possible). Then since ¢ is a nonzerodivisor for A/P,, the element # must be a
nonzerodivisor for A*/ Py too (recall R* is R-flat). Therefore if p were a minimal
prime ideal in A* then so is the prime ideal p/ Py in the ring A*/Pg and hence by
(2.1) (5) the ideal p N R* consists of zerodivisors for A*/Py. This is impossible
because ¢t € pN R* and ¢ is a nonzerodivisor for A*/Py. Hence p & Min A®.

(2) By (2.3) we get htAQ < hty;2Q/tA + 1. The opposite incquality hta@ >
hty;aQ/tA + 1 follows from the fact that for any P € Min A the ideal ¢A is not
contained in P (cf. (2.1) (5)). The second assertion is now clear because t € QN R
for all @ € Max A (cf. (2.1) (4)).

Suppose that R is a local ring. Then we say that R is quasi-unmixed if dim R* /p
= dim R for all p € Min R*. The next epoch-making characterization is due to
Ratliff [R2, Theorem 3.6].

Proposition (2.5) (|R2]). Suppose that R is a locel domein. Then the following
two condilions are equivalent.

(1) R is universally catenary.
(2) R is quasi-unmized.
When this is the cese, the ring R/p is also quasi-unmized end onc has the equality

dim R/p + dim Ry = dim R for all p € Spec R.

We close this scction with a few remarks on canonical modules. Let R be a local
ring and assume that R is a homomorphic image of a Gorenstein local ring S.
Then we put

Kpr = Extg(R,S) (n=dimn$S - dimR)

and call it the canonical module of R. Properties of canonical imodules are closely
explored in [HK] and [BH]. Here let us pick up two of them, which we will need
to prove Theorem (1.1). We indicate a sketch of proof for assertion (2), since we
have no dircct reference for it.

Lemma (2.6). (1) K(g,) = (Kg)y for any p € Suppg Kg.
(2) Suppose that dim R > 2 and lel ay, a; be a subsystem of parameters for R.
Then the sequence ay,a, is Kg-regular.

Proof. (1) See [HK, Korollar 5.25] or [A, Corollary 4.3].

(2) Write R = S/I with an idecal I in S. Then I contains an S-regular se-
quence fy, fa,..., fn of length n. Passing to the ring S/(fi, f2, ..., fn)S, we may
assume n = 0 whence Kxp = Homg(R, S). Choose an S-regular sequence by, by
so that @y = b; mod I and az = b, mod I. (This choice is possible. Sce
[K, Theorem 124].) That the sequence a;,a; is Kg-regular now follows, since
Kgr = Homg(R, S) and the sequence b, b; is S-regular.
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3. Proofs of Theorem (1.1) and Corollary (1.3)

The purpose of this section is to prove Theorem (1.1} and Corollary (1.3). We
begin with the following.

Lemma (3.1). Supposc that (R, m) is a local ring and that R is a homomorphic
imeage of e Gorenstein local ring. Let P € SpecA end putp=PNR. T = A/P.
Then tf dimT > 2. there exist a short ezacl sequence

0—Ir-x-4Ly—o

of finitely gencrated I'-modules and an element t € m \ p saiisfying the following
condilions.

(1) depthy X > 2.

(2) t i3 X-regular and 1Y = (0).

Proof. Let K = Kpyy be the canonical module of R/p. We put
X = Homgp(Hompgy (T K'). K)

and let a : ' — X denote the canonical homomorphism of G-modules. Then X
is finitely generated and depthy X > 2 by (2.6) (2) because dim R/p = dimT > 2
by (2.1) (6). Since Ky = Kp,/pr,) = Rp/pRp by (2.6) (1). we sce the homo-
morphism R, ©p o is an isomorphisin. Hence o is a monomorphism because the
R/p-module T is torsionfree. As Y, = (0) where Y = Coker a. we have 1Y = (0)
for some ¥ € m\ p. The elemnent ¢ is X-regular since it is R/p-regular (cf. (2.6)
(2)).

The next result is the key in our proof.

Proposition (3.2). Let (R.m) be e universally catenary local ring end assume
that A is e prime ring. Then dinA = 1 if A contains ¢ mezimel ideal Q of

ht, @ = 1.

Proof. We may assume that f : R — A is injective. Hence R is a local integral
domain and dimR = dimA (cf. (2.1) (6)). Firstly we consider the case where
R is a homomorphic image of a Gorenstein local ring. Assume that dimA > 2.
Then by (3.1) we get an embedding A — X of finitely generated A-modules and
an clement 0 # t € m satisfying the conditions (1) depthgp X > 2 and (2) ¢
is X-regular with X C A, Weput Z = X/tX and D = Endy Z. Let I =
(0) :a Z. Then since IX C+X C A by condition (2) and since Q € Max A by our
assumption. we have 12 C I?X C tA C Q whence tA € I C Q. Because t € PNR
for any P € Min A by (2.1) (3) (note that ¢ is A-regular) and because ht, @ =1
by our assumption, we have Q/I € Min A/I N MaxA/I. Hence depthp, A/T =0
by (2.2) (1). On the other hand, from the embedding

A/l — Endp Z
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of R-algebras induced from the canonical homomorphism A : A — Endp Z. we
have depthp A/T > 0 because depthy Z = depthy X — 1 > 0 by condition (1).
This is a contradiction.

Now we consider the general case. Let R* denote the m-adic completion of R.
Then since @* = R* Hg Q is a maximal ideal of A* = R* =p A with hty. Q" =
htaQ =1 (cf. (2.4) (1)), we get hty.,pQ*/P =1 for some P € Min A®. Hence
dimA*/P = 1 because R* is a homomorphic image of a Gorenstein (in fact,
regular) local ring. Let p = PN R*. Then we have

Claim. (1) PnA =(0).
(2) pe€ MinR*.

Proof of Claim. (1) Note that PNA € Spec A and Q*NA = Q. Then if PNA # (0),
we have @ = PN A since @ 2 PN A # (0) and ita@Q = 1. Henee Q* € P which
is impossible.

(2) By (1) pN R = (0) since the map f : B = A is a monomorphism. Let Q(R)
denotc the quotient field of R. Then since Ry - A* = Ry gy (QIR) S rA), we
get Ap is a free Rj-module with PAg € Max A; N Min A7 ((2.1) (4), (7). Henee
dim R, = 0 by (2.2) (2).

By Claim (2) and (2.5) we have dm R = dim R*/p = dim A*/P = 1. Hence
dimA =1 since dim A = dim R.

We now come to the following

Theorem (3.3). Supposc that R i3 e universally catenary local ring end A 1s @
prime ring. Then the equality

dimA =dimA/Q + ht,Q

holds true for all ) € SpecA.

Proof. We may assumme f : R — A is injective. We first consider the case where
QQ € MaxA. Let h = htyQ. By (3.2) we may assume that h > 2 and our
assertion holds true for h — 1. Let (0) =Py € Py C ... C P, = Q be a saturated
chain of prime ideals in A. Let p = Po—y N R, Then dimA/P—, = 1 by (3.2).
On the other hand, since P,_Ap is a maximal ideal in the prime ring A, and
hty, Pro1Ap = hty Py = h — 1 ((2.1) (7)), by the hypothesis of induction on h
the ring Ap has Krull dimension h —1. Consequently, by (2.1) (6) and (2.5) we get
dimA = dimR =dimR/p+dimRp = dimA/Py-y +dimAy, =1+ (h-1) =1
Now let @ € SpecA and put @ = @ N R. Then since QAq € Max Aq, we see
dimAq = hty QA4 = ht, Q. Hence dim Ry = ht, Q. Because dim A/Q = dim R/q
and dim A = dim R = dim R/q + dim Rg by (2.5), we get the equality dim A =
dim A/Q + htp Q.

Now we are in a position to prove Theorem (1.1).
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Proof of Theorem (1.1). Passing to the ring A/P, we may assume P = (0). Let
p = QN R. Then after the localization at p, we may furthermore assume that R is
local and @ € Max A. Let (0) = Py C P C ... C P, = Q be a saturated chain of
prime ideals in A, We will show n = dim A by induction on n. By (3.2) we may
assume that n > 2 and our assertion is true for n—1. Then since dimA/P; = n—1

and hty P, = 1, we get n = dimA/P; + 1 = dimA/P, 4+ htp, P, = dim A by (3.3).

Proof of Corollary (1.8). We may assume f: R — A is injective. Let d = dim R.
Let R* denote the m-adic completion of R and we get the embedding R* — A* of
R*-modules too. Hence Assge R* C Assg- A* and we have dim R*/p = d for all
p € Assp. R* (cf. [Ma, p.107]), because A* is a Cohen-Macaulay R*-module of
dimg. A* = d. Therefore for every p € Spec R the local ring R/p is quasi-unmixed
([N2, (34.5)]), whence by (2.5) R/p is universally catenary. Thus R is universally
catenary, so that by (1.1) A is catenary.

Let @ € Min A and put g = QNR. We will show dim A/@ = d. The prime ideal

q consists of zerodivisors for A (see (2.1) (5)). HenceqC |J  p(cf. [Ma, p.50,
pEAssp A

Corollary 2]) and we have q C p for some p € Assg A (cf. [AM, 1.11]). Note that
dim R/p = d (cf. [Ma, p.107]), because A is Cohen-Macaulay and dimz A = d.
And we get q = p since p € Min R. Hence dim R/q = d so that by (2.1) (6) we
have dim A/Q = d for all @ € MinA.

Thanks to the universal catenarity in R, Theorems (1.1) and (3.3) and this
observation readily imply that for any pair P C @ of prime ideals in A with
P € MinA and @ € Max A, saturated chains of priine ideals between P and @
have the same length equal to d = dim A. Hence the equality

dimA =dimA/Q + ht, @

holds true for any prime ideal ¢ in A. We also readily have n = ht,Q — ht, P for
any pair P C @ of prime ideals and for any saturated chain P=PyC P, C ... C
P, = @ of prime ideals in A. Thus Corollary (1.3) is proven.

To conclude this paper, we note the following. The equivalence is a direct conse-
quence of Theorems (1.1), (3.3), and [R2, Theorems 3.1 and 3.6].

Corollary (3.4). For ¢ commautative Noetherian local integral domain R the
following conditions are equivalent.

(1) R is universelly catenary.

(2) R is quasi-unmized,

(3) Every module-finite prime R-algebra A is catenery and the equality
dimA =dimA/Q + ht,Q

holds true for any @Q € SpecA.
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PHANTOMS IN THE REPRESENTATION
THEORY OF FINITE DIMENSIONAL ALGEBRAS

BIRGE HUISGEN-ZIMMERMANN

1. INTRODUCTION AND PREREQUISITES

Our principal goal in this overview is to exhibit the importance of phan-
toms in the process of understanding how a full subcategory A of A-mod is
embedded into the latter category in terms of maps leaving A. (Here A is a
finite dimensional algebra over a field K'.) The purpose of phantoms in this
connection is twofold: On one hand, they represent the - so far - only tool for
systematically tackling the question of whether or not A is functorially finite
in A-mod. On the other hand, certain of the A-phantoms of a given object
X € A-mod capture ~ within a minimal frame - the relations of those objects
in A which have nontrivial homomorphisms to X.

For a preview of the central definitions, let ¢ C A and recall that f €
Homu(A, X) is a C-approximation of X inside A in case A belongs to A and
all maps in Homa(C, X) with C € C factor through f [20]. In case C = A,
we re-encounter the classical (right) A-approximations of X as introduced by
Auslander and Smalg [3]. Note that C-approximations of X inside A need not
exist in general, but are always available when C is finite. So if C is count-
able, for instance, say C = {C, | n € N}, it is natural to consider minimal
{C\,...,C,}-approximations of X inside .4 and to explore whether they can
be glued together to an object in 4 which serves as the source of a C-approx-
imation of X inside A. Of course, forming the direct sum of a full collection
of {C),...,C,}-approximations of X inside .4 will always yield the, not nec-
essarily finitely generated, source of a homomorphism through which all maps
Cn — X will factor. However, such sums will be highly redundant relative to
this stipulation, as a rule. The minimality condition which we impose to pro-
duce more informative glueings is as follows: An 4-phantom of X is a module
H € A-Mod such that, for each finitely generated submodule H’ of H, there
exists a finite subclass A’ C A depending on H' with the property that H' is
a subfactor of each A’-approximation of X inside A. The class of all A-phan-
toms of X is closed under subfactors and direct limits (of directed systems) and
contains non-finitely generated objects if and only if X fails to have a classi-
cal A-approximation. In this negative situation, there always exist non-finitely
generated A-phantoms H of X which are effective relative to certain subclasses
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C of A in the sense that H is a direct limit of a directed system in A, and all
maps in Homa(C, X) with C € C factor through a suitable homomorphism
H — X. More detail on these concepts and results can be found in Section 4.

Our favorite category will be P*(A-mod) - for a definition, see under ‘Pre-
requisites’ below. To place the concepts of Section 4 into context, we will discuss
and exemplify in Sections 2,3 how massive an impact contravariant finiteness of
P*(A-mod) has on the representation theory-of A. The most striking results
in this context are Theorems 2 and 3 of Section 3 which identify the mini-
mal P (A-mod)-approximations of the simples as the basic building blocks
of arbitrary objects in P*°(A-Mod) and as the key objects to consider when
determining finitistic dimensions. This program of accessing P> (A -Mod) can
be carried out in an ideally explicit format when A is left serial [7]. This first
model situation will be presented at the end of Section 3. The second class
of algebras for which the theory developed yields particularly complete and
smooth results is the class of string algebras. In that case, answers to essen-
tially all homological questions one might pose can be provided in the form of
a finite number of ‘characteristic’ P*°(A -mod)-phantoms, one for each of the
simple left modules. This is the content of ongoing joint work of the author
with Smalg [27], and is sketched in Section 5. We include a brief history of
insights into the representation theory of string algebras, since these algebras
have established their role as excellent display cases of the methods developed
during the past decades.

Since we consider examples as the key to an intuitive grasp of the type of
information stored in phantoms, we start by setting up a sequence of ‘test
examples’ to which we keep returning as the discussion proceeds.

Content overview.

2. Contravariant finiteness and first examples

3. Homological importance of contravariant finiteness and a model applica-
tion

4. Phantoms. Definitions, existence, and basic properties

5. Phantoms over string algebras

Prerequisites.

Throughout, A = KT/I will be a path algebra modulo relations with Ja-
cobson radical J, and the vertex set of I' will be identified with a full set of
primitive idempotents of A. By A-Mod we will denote the category of all left
A-modules and by A-mod the full subcategory of finitely generated modules.
Moreover, P*°(A-Mod) and P=(A-mod) will be the subcategories of A-Mod
and A-mod, respectively, having as objects the modules of finite projective di-
mension. The suprema of the projective dimensions attained on P*(A -Mod)
and P*(A-mod) will be labeled 1 Findim A and 1findim A, respectively.
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Given a path p in KT, we will denote by start(p) and end(p) the starting
and end points of p, respectively, and our convention for multiplying paths
p.q € KT is as follows: “qp” stands for “q after p”.

Our most important auxiliary devices will be labeled and layered graphs
of finite dimensional modules. Since our graphing conventions differ to some
extent from those of other authors (in particular, they are akin to but not
the same as the module diagrams studied by Alperin [1] and Fuller [14]), we
include an informal description of our graphs for the convenience of the reader.

The graphs we use are based on sequences of top elements of a module M
which are K-linearly independent modulo JM. Here z € M is a top element of
M if X ¢ JM and z = ex for one of the primitive idempotents e corresponding
to the vertices of T'.

Let A = KT/I be the algebra presented in Example C.1. That the inde-
composable projective module Aeg have the graph

6
4AN

5 5
AN

5 5

with respect to the top element eg means that J3es = 0 and Jeg/J%es = J2eq
S5 @ Ss, that peg and ceg are K-linearly independent modulo J2eg, and that
6peg and epeg are K-linearly independent (modulo J3e;), while §ceg = ebeg = 0
in Aeg.

Whenever we present the graph of an indecomposable projective module Ae,
we tacitly assume that the corresponding top element of Ae is chosen tobe e. In
our first example the choice of top element of Aeg does not influence the graph,
but it will in other situations. For instance, the module M = (Aes @ Aeg)/U,
where U = A(pes, peg), has graph

AVAN
56/ \65

relative to the top elements z;, = (eq,0) and z, = (0,e¢), while its graph
relative to the top elements y; = z) + 22 and yp = z2 is
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n Y2

6 6

'@ N\

5 ‘VF)\C 5
5 5

Note that the graph of a module need not determine the module in question,
up to isomorphism. For example, each of the modules My = Aeg/Ur, where
Uy = A(o - kp)eg with k € K°, has graph

o )o

9

with respect to the top element eg + Ui of My, while My, 2 My, iff k) # &».
To enlarge the family of objects in A -mod which possess labeled and layered

graphs relative to suitable sequences of top elements, we also allow for graphs

with ‘pools’ along the following model. That a module A € A-mod has graph

I, Tg9 ZIyo ESS N §
1 9 10 11 12

o T
T 7 8 6 6
A | NG Y4
2,225 5.5

is to encode the following information: The module A is generated by top
elements z; of type ¢; (i = 1,9,10,11,12) which are K-linearly independent
modulo JA (here automatically satisfied, since e; # e; for i # j) such that
J3A =0, and

(a) JA/J?A = 5; @ Sg & SE, with pzg, vzi0, 211, X212 being K-linearly
independent modulo J2A4, and

(b) J?A = S2 ® S, and the “pooled elements” nz,, fuzy, nrz)g are K-
linearly dependent, while any two of these elements are K -linearly independent;
analogously, Tvz19, p¥z11, pXZ12 are K-linearly dependent with any subset of
two A'-linearly independent.

Note that in this particular example, the module A is determined up to
isomorphism by its graph, since the coeflicients arising in the mentioned linear
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dependence relations can be adjusted by suitably modifying the top elements
by scalar factors.
It is clear that we will not lose information if we omit the labels on edges

i
|

J

with the property that there is a unique arrow { — j in I'. Moreover, it should
be self-explanatory that certain countably generated left A-modules can be
communicated by graphs as well. The infinite graph

EVAVAN

for instance, goes with a module B, uniquely determined up to isomorphism,
which is generated by top elements z,, 2, z3, ... of type eg which are K-linearly
independent modulo J B such that ¢z; = pz,4; for all i > 1, and such that the
elements oz;, i € N, are K-linearly independent (modulo J2B = 0).

2. CONTRAVARIANT FINITENESS AND FIRST EXAMPLES

In 1980, Auslander and Smalg [3] gave the following definitions and their
duals, in connection with their search for conditions ensuring a full, extension-
closed subcategory A of A-mod to have almost split sequences. It turned out
that this outcome is guaranteed provided that A is both co- and contravariantly
finite in the sense recalled below. Even though their result has been applied
since the 1980’s, it was not until the 1990’s that the concept of contravariant
finiteness reached a high level of popularity, due to its links with homology and
tilting. The spark in the tinder barrel was a paper by Auslander and Reiten
[2]. We will describe their homological results in Section 3.

Credit for the concept of ‘approximation’, which lies at the heart of con-
travariant finiteness, should also go to Enochs [12], who introduced and studied
it independently under the name ‘cover’ around the time at which the initial
Auslander-Smalg article appeared.

Definitions. Let A C A-mod be a full subcategory and X € A-mod.

(1) A right A-approzimation of X is a homomorphism f : A — X with
A € A such that each ¢ € Hom(B, X) with B € A factors through f, or
equivalently, such that the following sequence of functors induced by f is exact:

Hom,\(—,A)|A -_ HomA(_X)IA — 0.
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(Since we will hardly mention the dual concept of ‘left approximation’, we will
systematically suppress the qualifier ‘right’ when discussing approximations.)
(2) The subcategory A is said to be coniravariantly finite (in A-mod) if each
X € A-mod has an A-approximation, i.e., if each of the functors Homy (—, X)|a
is finitely generated in the category of all contravariant functors from A4 to Ab.

Suppose that X has an A-approximation. By a slight abuse of language,
we will then also refer to the source of this map as an approximation. Not
surprisingly, the A-approximations of X of minimal length are all isomorphic.
Indeed, as was shown by Auslander and Smalg {3], given a minimal .A-approx-
imation f : A — X and any A-approximation f’ : A’ — X, there exists a split
embedding ¢ : A — A’ which makes the following diagram commute:

A—*A'

N s

It is thus justified to refer to the minimal A-approximation of X in case of
existence.

If A is a resolving subcategory of A -mod, i.e., if A contains all projectives in
A-mod and is closed under extensions and kernels of epimorphisms, then the
simples play a prominent role in checking contravariant finiteness. Indeed:

Theorem 1. [2] Suppose A is a resolving subcategory of A-mod. Then A is
coniravariantly finite in A-mod if and only if each of the simple left A-modules
has an A-approzimation. [

Since, clearly, our favorite category P°(A-mod) is resolving, this will pro-
vide a convenient test for contravariant finiteness. As we will see in the next
section, the minimal P*°(A -mod)-approximations of the simples are the basic
structural building blocks for the objects in P*°(A -mod) in case of existence,
whence it is a problem of high priority to understand the structure of these
particular approximations.

To provide examples, we begin with some

Well Known Facts.

o A subcategory A C A-mod is contravariantly finite in case it is ‘very big’
or ‘very small’. Indeed, if A = A-mod, then clearly contravariant finiteness is
guaranteed, the minimal approximations being the identity maps. So, in par-
ticular, P*°(A-mod) is contravariantly finite provided that A has finite global
dimension. On the other hand [2], if A has finite representation type, i.e., if
there exist objects A;,..., A, € A such that each object in A is a direct sum
of copies of the A;, we have contravariant finiteness as well. To construct an A-
approximation of a module X, simply add up as many copies of each A; as the
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K-dimension of Homy (A;, X) indicates. In particular, if A is the category of
all finitely generated projectives in A-mod, the minimal .A-approximations are
precisely the projective covers. This latter category coincides with P (A -mod)
precisely when 1findim A = 0.

e [2] If A is stably equivalent to a hereditary algebra A’ (meaning that the
stable category A-mod, obtained as a factor category from A -mod by killing the
maps that factor through projectives, is equivalent to the corresponding stable
category A’-mod), then P*°(A -mod) is contravariantly finite. This hypothesis
is, in particular, satisfied if /2 = 0, and in that case, the minimal approximation
A(X) of any A-module X can be readily pinned down as follows [23): A(X) =
P{(J P)an, where P is the projective cover of X and (J P)gy is the direct sum of
those homogeneous components of J P which have finite projective dimension.

o [7] If A is left serial, then P°°(A-mod) is always contravariantly finite.
The minimal approximations of the simples arising in this situation will be
described in the next section.

¢ The first example for which 7*°(A-mod) was shown not to be contravari-
antly finite is due to Igusa-Smalg-Todorov [28]. It is a monomial relation
algebra with J3 = 0 and |findimA = 1 which is closely related to the Kro-
necker algebra, its K'-dimension exceeding that of the latter algebra only by 2.
In this example, the right finitistic dimension is 0, which, in view of our first '
remark, demonstrates that the right-hand category P*°(mod-A) is contravari-
antly finite in mod-A. Thus contravariant finiteness of P°°(—) is not left-right
symmetric. '

e In [20], very general criteria for the failure of contravariant finiteness of
P>{A-mod) are developed. We refer the reader to the examples worked out
there and in (25].

The emerging picture indicates that, while hardly any of the traditionally
considered classes of finite dimensional algebras enjoy en bloc the property that
P>(—) is contravariantly finite, the positive case is ubiquitous. In fact, the
condition of having contravariantly finite P*°(—) appears to slice diagonally
through the prominent classes of algebras of infinite global dimension.

First Installment of Nonstandard Examples.

We will next present a first set of examples which are to communicate the
flavor of prototypical phenomena ensuring that a given simple module has a
P>=(A -mod)-approximation or that it fails to have such an approximation.
These specific algebras will then continue to serve us as illustrations along the
way. We will follow with proofs of some of the positive instances, but defer the
discussion of the negative instances to Section 4.

Examples A. Our first example shows that, for each natural number n, there
exists a finite dimensional monomial relation algebra A and asimple S € A -mod
such that P*°(A -mod) is contravariantly finite and the minimal 7°°(A -mod)-
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approximation of S is a direct sum of n distinct nonzero indecomposable com-
ponents.

A.l. Fixn € N, and let A = KT/I be the monomial relation algebra with
quiver T'

%
=/ R

==

Gn

having indecomposable projective left modules with graphs

2

m

2 3
VN
3 3 3 2 ..

i
2
d
3
Then P*°(A-mod) is contravariantly finite, and the minimal P* (A -mod)-ap-
proximations A, A», A3, A,,, ..., Aq, of the simple modules §;, S,, S3,

Says -+« Sa, have the following graphs (which determine the corresponding
modules up to isomorphism).

1 ay 1 an 2
VAR VAR
2 2 3 3
3 a; 1
Ag, \/ (1<i<n)
2

Ajz:
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A.2. Now let A = KT'/]', where T’ is obtained from the quiver T of A.l by
removing the arrow 7, and the ideal I’ C KT’ is such that the graphs of Aes,

Aeq,, ..., Ae,, are as under A.l, whereas Ae; and Aes have graphs
2
a and )
2 3

respectively.
Then S; = Aey/Jey has minimal P*°(A -mod)-approximation

S2 has minimal P*°(A -mod)-approximation Aes, and S,,, ..., Ss, belong to
P>=(A-mod). In particular, P*°(A-mod) is again contravariantly finite.

Examples B.
B.1. Let A = KT/I, where I is the quiver

\
6
/
and the ideal / C KT contains the relation y8a — rop, together with suitable

monomial relations, such that the indecomposable projective left A-modules
have graphs

l/ \l

QN ~— OO —= b

/'
\

3

/1\3 (|i (li i /7\5 4/8\5

— N
—_—

N — e — N0
oy — Y — W

N/
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Then S; € P®(A-mod) for i = 2,3, the minimal P*°(A -mod)-approximations
of S4, S5, Ss are Aeq, Aes, and Aeg, respectively, while none of S, S7, Sg has a
P*(A -mod)-approximation. In fact, in Section 4, we will see that there is no
object A € P®(A -mod) such that all of the homomorphisms from the modules
in the following subclass of P*°(A -mod) - call it C - factor through A.

Yn 2 N oz 2 W 3 Yn
7 8 7 1| 1 8\ /7\ 8\ 7\
5 4 --- (4 5 2| @ 1|3/ 4 ) 4 --- 4 5
4 5

B.2. Now let A be the factor algebra of the algebra described in B.1 modulo
the ideal generated by e; and eg. Then the graphs of the indecomposable

projective modules Aej, ..., Aeg remain unchanged, but this time P*°(A -mod)
is contravariantly finite. Indeed, the minimal P*°(A -mod)-approximations of
Sa, ..., Se are as above, while §; has the following minimal P° (A -mod)-ap-
proximation:

1 1

2 @ 3

4 5

The next example shows that the structure of the minimal P*° (A -mod)-ap-
proximations of the simple modules need by no means be as simplistic as in the
previous instances, not even in situations where the indecomposable projective
modules are of a simplistic makeup.

Examples C.

C.1. This time, let A = KT/I be the monomial relation algebra with quiver
r
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.
11 ¥ )
12/ ’ €

and choose the ideal I C KT of relations so that the indecomposable projective
left A-modules have the following graphs:

1 2 3 4 5 6 7 8 9 10 11 12
72V B R AN AN B A
2 3 3 3 3 2 5 5 5 5 2 2 5 7 8 6 6
| AN AN A L N e e
3 3 3 5 5 3 3 2 2 5 5 5
B8 |7 § ¢
3 3 5 b

In this example, P*°(A -mod) is again contravariantly finite, and the minimal
approximations Aj, ..., Aje of the simples S, ..., S2 are determined by
their graphs as follows:

T
Ay 'I7
2
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12 11 5 112 6 11 12
| | |
As: 6 (|5 6 € 6 6 Ag: o 6 6
. o Lol
ls 5l5 558
7 1 10 1112 12 11 8 1
o O N
Ar: {2 2.8 6 6 As: 6 6 {2 2
AV Jood
238 8 8 25 .55

11 12
Ag = S, Ao = Spo An= A 6 (|i
N,/

C.2. Finally, let A be the factor algebra of the algebra under C.1, modulo the
ideal generated by €;; and e;2. Note that the graphs of the indecomposable
projectives Ae;, ..., Aejo remain the same as in C.1, since e;; and e;» are
sources of ['. This time, P*°(A -mod) fails to be contravariantly finite, S;, Ss,
Ss, Ss being precisely those simples which have lost their P*°(A -mod)-approx-
imations in the passage to the smaller algebra. As we will see in Section 4, the
homomorphisms onto Ss from the modules of the following P (A -mod)-family
can, for instance, not all be factored through a fixed A € P*°(A-mod):

6 e 6 6 6 6 e 6
p p p p 2
N TNTNTNT N T
5 =+ b 5 5 5 5 -+ 5 5

(On the other hand, observe that they can be factored through the module A;
over the algebra in C.1.)

To sketch justifications for some of the minimal approximations we have
exhibited, we first spell out an obvious sufficient condition for a simple module
S = AejfJe to have a P*°(A-mod)-approximation. Indeed, this is the case

FRo—t——
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provided that the following is true: There exist indecomposable modules T3,
vory Trp in P2 (A -mod) with top elements z; € T; of type e such that for each
indecomposable object X € P*(A-mod) having a top element z of type e,
there exists a factor module X/Y with T =z +Y # 0 which can be embedded
into some T in such a fashion that T is mapped to z;. If there exist T}, ...,
T as stipulated, we know moreover that the indecomposable direct summands
of the minimal P°°(A -mod)-approximations of S are all recruited from the 7.

Ad Example A.1l. In arguing that A, is the minimal P> (A -mod)-approxi-
mation of Sy, we bypass the facts that lfindim A = 1 (use the methods of [21],
for instance), that A; has finite projective dimension, and that this module
has the required minimality, provided that it is an approximation of S;. To
verify the latter, we let X € P*(A-mod) be indecomposable and endowed
with a top element r of type e;. Then axz # 0, since otherwise the module
2
with graph | would be a direct summand of Q!(.X), which is impossible. If
3

yaz # 0, then X = Az = Ae; (use indecomposability and finite projective
1 a;
dimension), and X/socX embeds into each of the modules \ / for
2

i=1,...,n. So suppose that yaxr = 0. In this case, J2X = 0, the socle of X
being homogeneous of type e», and Q!(X) = (Aes)" for some r. One infers the
existence of a factor module X/Y with graph

N/

for some j. O

Ad A.2. To see that, also in this example, the exhibited module A, is the

2 \n
minimal P* (A -mod)-approximation of Sy, observe that Q!(4,) = ( |6 ) =

3
(Aea)”, whence A, € P*®(A-mod). The rest of the argument is similar to the
one given above. 0O

Ad B.2. Once more, we will show that A, is a P°°(A -mod)-approximation of
S, (minimality being clear then). Any indecomposable module in P*(A -mod)
containing Ae) is clearly isomorphic to Ae,, and the only proper nonzero factor
modules of Ae; which embed into indecomposable modules X € P*(A -mod)
are the direct summands of 4;, as well as
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1 1

/ N\ /N

2 3 and 2 3

4 5

Observe that none of these factors of Ae) has a proper extension to an inde-
composable in P (A -mod). Since clearly the former factors are in turn factor
modules of the latter, our claim follows. O

All direct summands of the minimal approximations of the various simple
modules S = Ae/Je exhibited above contain factor modules of Ae which are
minimal with respect to the property of being top-embeddable into modules of
finite projective dimension. (We say that a monomorphism A — B is a top-
embedding if it induces a monomorphism A/JA — B/JB.) This is generally
true for the minimal P (A -mod)-approximations of simples, whenever A is
either left serial or a string algebra (see Sections 3 and 3), a fact which greatly
facilitates resolving the existence question (always positive in case of a left serial
algebra and algorithmically decidable for string algebras) and the construction
of such approximations. We conclude this section with an easy example showing
that this cannot be expected to hold in general. In Section 5, we will follow up
with an example demonstrating that the mentioned asset of string algebras is
not shared by arbitrary special biserial algebras either.

Example D. Let A = KT'/I be the monomial relation algebra with the fol-
lowing indecomposable projective left modules:

2 3 4
/N
3 4 3

W —

Then P (A -mod) is contravariantly finite, the minimal P% (A -mod)-approx-
imation A, of S) having the following graph:
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6

VA

1
v T
3

Note that the second summand of A, contains a copy of Ae;, whereas Ae; /soc(Ae;)
is the (unique in this case) minimal factor module of Ae, which can be top-
embedded into an object of P*°(A -mod).

3. HOMOLOGICAL IMPORTANCE OF CONTRAVARIANT
FINITENESS AND A MODEL APPLICATION

As surfaced in [22], [24] and [34], non-finitely generated modules of finite
projective dimension may display structural phenomena which are completely
different from those encountered in finitely generated modules of finite projec-
tive dimension. (We labeled them ‘domino effects’ in [22].) In particular, there
may be objects in P (A -Mod) whose projective dimension exceeds 1fin dim A
by any predetermined amount, even when lfindimA = 1 [34]. Moreover, the
left cyclic finitistic dimension lcyc findim A, i.e., the supremum of those pro-
jective dimensions which are attained on the cyclic modules in P (A -mod),
may be strictly smaller than 1findimA. In fact, for each natural number n,
there exists a finite dimensional algebra A, such that l1findim A,, is not at-
tained on any n-generated module (see [24]). However, in case P*(A -mod) is
contravariantly finite, all of the left finitistic dimensions of A coincide, and the
objects of the big category P°°(A-Mod) are as well understood as those of the
small P*(A -mod).

The following notation will be convenient: Given objects Aj,...,Ap in
A-mod, let filt(A,,..., A,;) be the full subcategory of A-mod the objects of
which are those modules which have filtrations with consecutive factors among
A,,...,A,. More precisely, X belongs to filt(A;,..., A,) if and only if there
exists achain X =X 2 X, 2 - 2 Xpn = Oﬂch that each of the factors
Xi/Xis1 is isomorphic to some A;. Moreover, filt(A;,..., An) will stand for
the closure of filt(A,,..., Ap) under direct limits in A-Mod.

Concerning the structure of the finitely generated modules of finite projective
dimension in case A = P*®(A-mod) is contravariantly finite, Auslander and
Reiten proved the following result in the more general context of an arbitrary
resolving subcategory A.

Theorem 2. [2] Suppose that A is a resolving contravariantly finite subcate-
gory of A-mod, and that A,,..., A, are the minimal A-approzimations of the
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simple left A-modules. Then a module X belongs to A if and only if X is a
direct summend of an object in filt(A,,..., A;). O

Of course, this theorem, applied to A = P*(A-mod), yields the following
consequence:

Corollary 3. [2] If P®°(A-mod) is contravariantly finite and A,,..., A, are
the minimal P*°(A-mod)-approzimations of the simple left A-modules, then

IfindimA = lcycfindimA = ma.x{pdin_lAl,... ,pdimA,}. O

Due to the fact that the requirement that P*®(A-mod) be contravariantly
finite places demands only on the finitely generated modules, the strong im-
pact which this condition has on non-finitely genereted modules may come as
a surprise. In fact, the structure theory for objects in P°°(A -mod) extends
smoothly to P> (A-Mod).

Theorem 4. [26] Again suppose that P®(A-mod) is contravariantly finite,
and let Ay,..., A, be as in the corollary. Then

P (A-Mod) = filt(4y, ..., An),
and, in particular,
IFindimA = lfindim A = max{pdimA,,...,pdimA,}. O

Thus, contravariant finiteness of P*°(A -mod) resolves the notorious quandary
of locating objects in A-Mod on which 1 Findim A is attained; this search may
be a very difficult task, even when finiteness of | Findim A is guaranteed in ad-
vance. The helpfulness of the above theory will be displayed to full advantage
in our examples.

Examples of Section 2 revisited.

For the moment, we will only determine the finitistic dimensions of those
algebras displayed which give rise to contravariantly finite categories P>°(-).
By the preceding discussion, the objects of A-Mod having finite projective
dimension are precisely the direct limits of the objects in filt(A,,..., A,) with
the A; as shown in Section 2.

Ad A.1. Clearly,pdimA; = pdimA4,, =1fori=1,...,n, whereas pdim A, =
pdimAa = 0. Hence, | FindimA =1findimA = 1.

Ad A.2, In this example, the minimal P°°(A-mod)-approximation of each
simple S, centered in the vertex a; coincides with S;, and has projective
dimension 1, as does the minimal approximation of S). The minimal approxi-
mations of S2 and S3 are again identical with their projective covers. So, once
more, |FindimA = lfindimA = 1.
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Ad B.2. Here A;, A4, A5, Ag are projective, while pdim A; = pdim A3 = 1,
and we obtain the same conclusion as before. O

We will briefly digress from our main line of thought for another corollary
of the preceding theorem. The existence theorem for internal almost split se-
quences [3] which we quoted at the outset can be strengthened for the category
A = P®(A-mod) as follows.

Corollary 5. If P®(A-mod) is contravariantly finite, then P*°(A-mod) is
also covariantly finite and thus has almost split sequences.

Proof. By a result of Crawley-Boevey [9, Theorem 4.2], it suffices to show
that arbitrary direct products of objects in the category P°°(A-mod) be-
long to its closure 7—'_’_°°'(A-mod) under direct limits in A-Mod. But in view
of the theorem, contravariant finiteness of P*°(A-mod) entails the equality
P=(A-Mod) = 77£(A-mod) and, in view of the finiteness of 1 Findim A, this
guarantees closedness of this latter subcategory under direct products. O

As a class of examples of algebras A with very rich, complex module cat-
egories, for which the above program of zeroing in on the structure of the
objects in P*°(A-Mod) works to perfection, we will present the left serial al-
gebras. Recall that a split algebra A = KT/ is called left serial in case no
more than one arrow leaves any given vertex of I'; equivalently, this means that
the indecomposable projective left A-modules are all uniserial. To describe the
minimal P* (A -mod)-approximations of the simple modules in this situation,
we require the following definition.

Definition. Suppose that T3,...,T,, is a sequence of nonzero uniserial left
A-modules, and let p; be a mast of T;, namely a path in KT of maximal length
with p;T; # 0. A left A-module T is called a saguaro on (py,... ,pm) if

() T= (B,1cicm Ti) /U, where U € @, <;<m JTi is generated by a sequence
of elements of the form g;t; — g/, ti+1, 1 <1< m—1, where t; € T; are suitable
top elements and ¢;, ¢} are right subpaths of the masts p; such that ¢;t; # 0,
and ¢, ti+1 # 0; moreover, we require that

(ii) each T; embeds canonically into T via

T,—“»(@ T.-)/Us:r.

1<ism

The uniserial modules T; are called the trunks of T'.
We will identify T with (@15i$m T;)/U. To avoid ambiguities, we will

denote the canonical images of theﬁtrunks T: inside T by f‘,-Aand ths canonical
images of the top elements ¢; by ¢;. Any such sequence (¢,,...,¢,) will be
called a canonical sequence of top elements for T,
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Note that saguaros are particularly amenable to graphing, the shape of their
graphs explaining their name (they share shape and name with a cactus found
in the Sonoran desert, Cereus giganteus). In fact, the definition forces them to
be glued together in a very straightforward fashion from their uniserial trunks:
Layered and labeled graphs relative to a canonical sequence of top elements
always exist (not only over left serial algebras), and are built on the pattern
illustrated below.

o L & s
12 & 1
7
2 |2 2
/
3 /3
Y
3
4

Here T = (@;_, T;) /U, where the trunks T; = At; of T have graphs

Theorem 6. [7] Suppose that A = KT /1 is a left serial elgebra. Then P> (A -mod)
is coniravariantly finite, and the minimal P®(A-mod)-epprozimations of the
simple left A-modules are saguaros with simple socles.

More precisely, the minimal P (A -mod)-approzimation of a simple left A-
module S = Ae/Je can be described as follows: If Ae/C is the (unigue) minimal
nonzero factor module of Ae which has finile projective dimension, there is a
unique saguaro A(S) of mazimal length in P*°(A-mod) such that Ae/C is a
trunk of A(S) and soc A(S) is simple. Moreover, the canonical epimorphisms
A(S) — S, which map Ae/C onto S and send the other trunks of A(S) to zero,
are minimel P> (A-mod)-approzimations. 0

To refer back to the concluding remark of Section 2: In the setting of the
theorem, Ae/C actually coincides with the nonzero factor module of Ae which
is minimal with respect to top-embeddability into a module of finite projective
dimension.

Actually, not only is P°°(A -mod) always contravariantly finite in the left
serial case, but so are the categories P(¥) = P(@(A.mod) consisting of the
finitely generated left A-modules of projective dimensions at most d. Moreover,
the minimal P{%-approximations of the simples are again saguaros, and the
sequences of these saguaros for 1 < d < IfindimA record the homological
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properties of A with high precision, the case d = 1findim A leading back to
P (A -mod).

Example E. [7, Example 7.3]
Let A be a left serial algebra whose indecomposable projective modules are
represented by the following graphs.

13 12 13 14 13 12 12 12

13

The evolution of the P(9-approximations of the simple left A-module S; is
graphically represented below. We exhibit the minimal P()-, PQ). P3)_ap.
proximations of S) from left to right; the last candidate coincides with the
minimal P*°(A -mod)-approximation, since the left finitistic dimension of A is
3 in this example.

10

/

8 7 1 6 8 1 11

NN N
N N N

\

4

N — O
OO —— O

4. PHaANTOMS. DEFINITIONS, EXISTENCE, AND BASIC PROPERTIES

The objects discussed in this section were introduced by Happel and the
author in [20]. Their purpose is twofold: In the first place, they serve as indi-
cators as to whether or not a given subcategory A C A-mod is contravariantly
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finite. Their second role is that of retaining the kind of information which is
stored in minimal A-approximations in case of existence, within potentially in-
finite dimensional frames; this role is played most satisfactorily by the ‘eflective’
phantoms, as defined below.

Since the concept of a phantom is possibly not easily translated into an
intuitive picture, we break up the relevant definitions into several parts, and
add more extensive discussion than we did in [20]. A detailed analysis of the
examples of Section 2 should also aid the recognition that we are dealing with
objects arising very naturally in comparisons of the relations of an arbitrary
left A-module X with those of the objects in a given subcategory A.

Definition, Part I. (Relative approximations) Let A be a full subcategory of
A-mod, and C C A a subclass of the object class. Moreover, let X € A-mod.

A C-approzimation of X inside A is a homomorphisms f : A — X with
A € A such that each map in Hom(C, X) with C € C factors through f.
Again, we will loosely refer to the object A as a C-approximation of X inside
A

Clearly, whenever X has a minimal A-approximation, Ay say, then the A-
approximations of X are precisely the {Ag}-approximations of X inside A. In
particular, we obtain Ao as a C-approximation of X inside A, where C is a finite
subclass of A. Moreover, Ay is a direct summand of any {Ag}-approximation
of X inside A, and so, a fortiori, is a subfactor of any such approximation.
On the other hand, given a finite subclass C C A, the module X will have
C-approximations inside A provided that we require .A to be closed under finite
direct sums: Just sum up a sufficient number of copies of the objects in C. In
other words, approximations relative to finite classes are always available, and
in case of existence, minimal A-approximations are always of that ilk. The idea
is to find means of efficiently surveying them.

Definition, Part II. (Phantoms) Retain the notation of Part I, and suppose,
in addition, that .4 is closed under finite direct sums.

A finitely generated module H € A-mod is an A-phantom of X in case

(*) there is a finite subclass A’ C A such that H arises as a subfactor of
every A'-approximation of X inside A.

More generally, an arbitrary module # € A-Mod will be called an .A-phan-
tom of X if each of its finitely generated submodules satisfies (*). Of course,
the choices of the finite subclasses A’ C A will vary with the finitely generated
submodules H' of H.

Clearly, the class of all .A-phantoms of X is closed under subfactors, so the
two parts of the definition do not conflict with each other. Moreover, this
guarantees that the class of phantoms of X is closed under direct limits of
direct systems as well. In fact, a module # € A-Mod is an A-phantom of X if
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and only if H is the direct limit of a direct system of finitely generated .A-phan-
toms of X. This may make the class of A-phantoms enormous: Indeed, the
class of all A-phantoms of a simple module S may encompass the entire class of
indecomposables H in A-Mod with S C H/JH. This looseness in the definition
of phantoms has the advantage of facilitating their construction. Often, the
particular structure of phantoms is irrelevant - their sheer size is enough to
permit conclusions concerning the existence or non-existence of traditional A-
approximations of X. In fact, if X has an A-approximation then the class
of A-phantoms of X coincides with the set of subfactors of the minimal such
approximation. Consequently, the existence of phantoms of X of unbounded
lengths is enough to guarantee non-existence of traditional A-approximations.
Of course, in terms of encapsulating information about the relations of objects
in A relative to a set of relations of X, the usefulness of phantoms so generously
defined is moderate. Hence, we single out a subclass of phantoms which carry a
full complement of information and which are more strongly tied to the category

A.

Definition, Part ITI. (Effective phantoms) Keep the notation of Part II, and
denote by A the closure of A under direct limits (of direct systems) in A-Mod.
Moreover, fix a subclass C C A.

An A-phantom H € A is called effective relative to C if there exists a
homomorphism h : H — X with the property that each map in Hom(C, X)
with C € C factors through h. (In other words, & must be a C-approximation

of X inside j)

In case X has a traditional A-approximation, the minimal such approxima-
tion is clearly the only effective A-phantom of X relative to A. Otherwise,
existence of interesting phantoms, effective or not, is not immediately clear,
but is guaranteed by the following result.

Theorem 7. [20] Again, let A C A-mod be a full subcategory which is closed
under finite direct sums. For X € A-mod, the following conditions ere equiv-
alent:

(1) X fails to have an A-approzimation.
(2) X has A-phantoms of infinite K -dimension.

(3) There exist countable subclasses C C A such that X has infinite dimen-
sional A-phantoms which are effective relative to C. O

Ad B.l. Here are two infinite dimensional P*°(A -mod)-phantoms of S,, for
example:
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1 7 8 7 1 8 7 8
o| IN/ N/ \ !l IN/ N/ \

U: 2 5 4 5 .- v: 3 4 5 4 ---
8 a'l
4 5

Note that U & V is in turn a P*°(A-mod)-phantom of Sy, since there is no
object in P°(A-mod) having a graph with subgraph

/\ N\, /\5
5/ \4

In fact, the phantom U @ V is effective relative to the class C € P*°(A-mod)
exhibited in B.1.

We will justify only that U is a P*°(A -mod)-phantom of S,. Consider the
class of objects

3]

T W 21 v

N /\5/8\5/\5 VAVAN
!

[ X3

Yn

in P°(A-mod), and observe that U = li_qu,.. Hence, it suffices to show that,

for each n € N, the module U, is a submodule of each {U,}-approximation of
S1 inside P°(A-mod). To see this, fix n, and let A be any {U, }-approximation
of S inside P°(A-mod); say f: A — S) has the factorization property of the
definition, and g € Hom(U,, A) factors the canonical epimorphism U, — 5.
Let a = g(a). Then a is a top element of A of type e;. Due to the fact
that finiteness of the projective dimension of A entails either faa # 0 or
opa # 0, our factorization requirement forces faa to be nonzero. Consequently,
g(Baz) = Paa. If the arrows 7T — 4 and T — 5 are named x and 1, respectively,
we deduce faa = f(xy1) # 0, and hence f(y;) # 0. The element b, = f(y,) is
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a top element of A (necessarily of type e7), since 7 is a source of I'. To prevent
the syzygy Q'(A) from having a summand Ss (the latter being incompatible
with finite projective dimension), we require 0 # ¥(b;) = pf(z,), where u is the
arrow 8 — 5. Setting ¢; = f(z1) and repeating the above argument in spirit,
we see that 0 # ve; = f(xy2) if v is the arrow 8 — 4. Set by = f(y2). It is
readily checked that the top elements b,,b; are K-linearly independent modulo
JA, and an obvious induction on m < n gives us sequences of top elements,
by,...,by of type e;, and ¢;,...,¢, of type eg in A, both of which are K-
linearly independent modulo JA. It is now straightforward to deduce that the
submodule of A generated by a and the b;,c; has the same graph as U,. But
this graph clearly determines the corresponding module up to isomorphism,
which completes the argument.

Each module from the subclass D = {D,, | n € N} of P®(A-meod), with D,
determined by the graph

n 1 Y2 in
8

AVAVANERVAN

is a P°(A -mod)-phantom of Sz, and consequently lim D, provides us with an

infinite dimensional P*° (A -mod)-phantom of S7 which, moreover, is effective
relative to the class D. The simple module Sg shows analogous behavior.

Ad C.2. An infinite dimensional P (A -mod)-phantom of S; is determined
(uniquely, up to isomorphism} by the graph

......

This phantom is effective relative to the class of modules in P*°(A-mod) ob-
tained by chopping suitable ‘infinite tails’ off the given graph.

An example of an infinite dimensional P (A-mod)-phantom of Sg, finally,
is
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......

27,

......

IN/N N

fiv———o

The following criterion from [20] guaranteeing non-existence of P*°(A -mod)-
approximations is based on phantoms.

Criterion for failure of contravariant finiteness of A.

Let A = KT/I be asplit finite dimensional algebra, and, once more, suppose
that A € A-mod is closed under finite direct sums. The simple module § =
Aey/Jey centered in the vertex e fails to have an A-approximation in case the
following holds:

The vertex e; can be supplemented to a sequence ey,...,em of distinct
vertices of [, together with sequences py,...,pm, q1,--.,¢m in J, where p; =
pie; and ¢; = g;e; are such that conditions (1) and (2) below are satisfied:

(1) For each n € N, there exists a module M,, € A having a graph that
contains a subgraph of the form

n repetitions

"

(2) Given any object A in A, the top elements of A of type e; are not
annihilated by p,, and

pia=qwb#0 = piab#0

folra,be Aand 1 <i<m;here pmt1 =p and g1 =q. O

In fact, the hypotheses of the criterion yield an infinite dimensional factor
module of lim My which is an .A-phantom of S and has a subgraph obtained
from the graphs under (1) by ‘infinite extension’. It is this criterion which
hovers in the background of most of the displayed phantoms over our test
algebras.
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5. PHANTOMS OVER STRING ALGEBRAS

In this section, we present a preview of joint work with S. O. Smalg which
is still in progress.
A special class of string algebras A n — those on the quiver

aC.Qg

subject to the relations a8 = Sa = 0 and relations of the form a™ = ™ = 0 for
suitable integers m, n > 2 - was first singled out by Gelfand and Ponomarev in
the late 1960’s, as being intimately related to the representation theory of the
Lorentz group [19); in fact, classifying the finitely generated indecomposable
modules of the former amounts to a classification of the Harish-Chandra mod-
ules of the latter. Taking this route, Gelfand and Ponomarev gave a hands-on
structural description of the finitely generated indecomposable objects in A,; -
mod. In particular, their results show that over an algebraically closed base
field the algebras A, , are tame. Subsequently, Gahriel presented a categorical
reinterpretation of the Gelfand-Ponomarev approach (see [15]), which in turn
caused Ringel to recognize that these methods are applicable in a far wider
context: In a first round of generalizations, he used them to describe the finite
dimensional indecomposable representations of the dihedral 2-groups in char-
acteristic 2 [30]; this work appeared in tandem with a paper of Bondarenko
containing roughly the same information [6]. Next, Donovan and Freislich
picked up on these methods, proving them applicable to the algebras all of
whose indecomposable projective modules P are ‘special’, i.e., have the prop-
erty that rad P = U + V with U,V uniserial and U NV = soc P simple [11].
In due course, this observation triggered the following definitions which cover
all the special cases considered at that point.

Definitions. (see [36) and [8]) (1) A is called biserial if each indecomposable
projective left or right A-module P has the following property: rad P = U +V,
where U,V are uniserial (possibly trivial} with U/ NV either zero or simple.

(2) A is special biserial provided A is of the form KT'/I such that

¢ Given any vertex e of I', there are at most two arrows entering e and at
most. two arrows leaving e, and

o Given arrows o, 8,7 of I, either Sa or ya is zero in A, and either of or
ay is zero in A.

Moreover, A is a siring elgebra if, in addition, A is a monomial relation
algebra, meaning that I can be generated by certain paths in I'.

Clearly, special biserial algebras are biserial. All finite dimensional biserial
algebras over algebraically closed fields are known to be tame: the special
biserial case was completed by Wald and Waschbiisch in [36], while the general
biserial sitnation was settled much later by Crawley-Boevey [10] on the basis of
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an alternate description of biserial algebras due to him and Vila-Freyer [35] and
a remarkable result of Geiss [16] (saying that algebras with tame degenerations
are always tame).

All the while, special biserial algebras have continued to provide challenges
which, in spite of the availability of a highly explicit classification of the inde-
composables, were far from resolvable at a glance. We mention only a few such
lines, together with a selection of references, not aiming at completeness:

Let A be biserial.

e When does A have finite representation type? (See [33].)

e What does the Auslander-Reiten quiver of A look like? (See, e.g., [8], [13],
and [17].)

e Describe the maps between the indecomposables in A -mod. (See [29] and
(18].)

e Characterize the auto-equivalences of the category A-mod. (See [4] and
[5].)

New sources of symmetric biserial algebras can be found in [32].

Here we will provide an overview of a comiplete, constructive solution to the
problem as to which string algebras A have the property that P*°(A-mod) is
contravariantly finite. Qur proof of the answer - not given here - makes full
use of the description of the indecomposable objects in A-mod, as reviewed
graphically below.

Theorem 8. (Its evolution can be traced in [19], [30], [11], [36]) Let A =
KT/I be a special biserial algebra over an algebraically closed field K. Then
each indecomposable object in A-mod is either a band module or a string mod-
ule. Here the string modules are those with graphs of the form

YN N

where the p;,q; are paths in KT\ I, with q, and p,, possibly trivial, such that
firstarrow(gq;) # firstarrow(p;) - this condition being void if i = 1 and q, is
trivial or if i = m and py, is trivial - and lastarrow(p;) # lastarrow(g;+,) for
1<i<m-1.

The band modules are characterized by their graphs, paired with irreducible
vector space automorphisms as follows. The pertinent graphs are of the form

T n Ta Yo Ts Ys
® e o ® e o artrnesvees ®  eew o
qy \ q/ \qy \ qr/ n gr
P Pr.\-/.P1 / px / px
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where p;, y; are paths of positive length in KT\ I with firstarrow(g;) # firstarrow(p;)
for alli and lastarrow(p;) # lastarrow(g;4.;) for i < r, and also lastarrow(p, ) #
lastarrow(q,). The nature of the dolted pool is specified by

3
pry = kigias,

i=l

where .. - | is the Frobenins companion matriz of an irreducible auto-
0 - 1K
morphism of K*.
Moreover, all modules having one of the above descriptions are indecompos-
able. O

This classification can be completed with a suitable uniqueness statement
which we will not require here. For our main theorem, the string modules will
be of particular relevance. We will call generalized string module any module
X € A-Mod which arises as a direct limit of a countable directed system of
string modules, each embedded into its successor, i.e., any module X having a
graph of one of the following forms

RAVANEYAVAS

such that each finite segment is the graph of a string module. (Here the dotted
edges may but need not appear, if the graph is one- or two-sided finite.) It
should be self-explanatory what we mean by a left and right periodic generalized
string module (where the “left” and “right” periods may differ, and termination
is regarded as a period). These modules were also considered by Ringel in [31]
as “modules associated with N-words of Z-words” over the alphabet [y Uy v
where [p is the vertex set of the quiver I of A.
We are now in a position to state the main new result of this section.

Theorem 9. [27] Let A = KT/ be a finite dimensional string algebra and S €
A -mod simple. Then there ezists a generalized string module H = H(S) which
ts uniquely determined by ' and I, together wilh a canonical homomorphism
f i H — S, having the following properties:

..................

(I) H is left and right periodic and can be construcled from I' and I in fewer
than 3(To| steps.

(II) H belongs to P*(A-Mod) and is a P*®(A -mod)-phantom of S.
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(III) The following stalements are equivalent:

(i) S has a P°(A-mod)-approzimation;

(1) dimg H < oo,

(iii) f: H — S is the minimal P (A -mod)-approzimation of S.
(1V) The map f : H — S makes H an effective P*°(A-mod)-phantom with
respect o the class S®°(A-mod) of all string modules of finite projective di-
mension. O

Given a simple module § = Ae/Je over a string algebra A, the module
H = H(S) of the theorem is called the characteristic P*(A -mod)-phantom of
S. Following a first example, we will give an inductive description of the finite
segments of a graph

Zo
coe ® ® e ® ° “e
YOVEVAVAVAN
2 Q Al T2
.o [ ] [ ] [ ] [ [ [ ] ...
of H which are centered at the top element 2o € H. Sending this top element

to e+ Je in S and sending the y; and z; to zero will then yieldamap f : H — S
as stipulated in the theorem.

Example F. Let A = KT/I be the string algebra with the following indecom-
posable projective left A-modules

8 9 10 11 12

NN

6 7
%3!:)66910101112
4

Then the characteristic P°°(A-mod)-phantom H, of S| has graph

VAVAN /\3/6\2/1\3/6\2
| \



PHANTOMS IN REPRESENTATION THEORY 59

and f : H; — S is a homomorphism (unique up to a nonzero scalar) which
sends =g to a nonzero element of S) and the z; for i > 1 to zero. In particular,
S does not have a P°(A -mod)-approximation.

The characteristic P*°(A -mod)-phantom of S7, on the other hand, has graph

7
|
6
|
3

and thus coincides with the minimal P*° (A -mod)-approximation of S7. These
statements are consequences of the algorithm which we describe next. O

Recall that we refer to a module X as a top-embeddable submodule of Y
if there exists a monomorphism f : X — Y which induces 2 monomorphism
X/JX —Y/JY. Dually, we call X a socle-faithful factor module of Y if there
exists an epimorphism f : Y — X which induces an epimorphism socY —
socX.

Description of the characteristic phantom of a simple module S €
A-mod, where A is a finite dimensional string algebra.

Let S = Ae/Je. The following are the steps of an algorithmic procedure for
constructing H = H(S), but here we will not discuss the algorithmic nature,
nor prove that the quantities stipulated in the process exist.

Step 1. Let p, and p; be paths starting in e which have minimal lengths
> 0 such that

I
I-’V V»’x
L ] L ]
is the graph of a string module which can be top-embedded into an object in
S%(A-mod). In particular, we have p; # p; unless both of these paths are
trivial, and startarrow(p;) # startarrow(p; ) if both are nontrivial.
If both p; and p; are nontrivial, we set H = S. Otherwise, we proceed to

Step 2. Let ¢; and §i be paths ending in end(p;) and end(p1), respectively,
which have mazimal lengths > 0 with the property that

N

1
®
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is the graph of a string module which arises as a socle-faithful factor mod-
ule of an object in $°(A-mod). In case p, is trivial, set ¢; = e, and deal
symmetrically with g,.

If both ¢, and § are trivial, i.e., if the graph of Step 2 coincides with that
of Step 1, we let A be the string module having this graph. Otherwise, we
proceed to

Step 3. Let p» and pa be paths starting in start(q,) and start(q;), respec-
tively, which have minimel lengths > 0 with the property that

ANAIAS

is the graph of a string module which can be top-embedded into some object
in $®°(A-mod), ... etc.

After fewer than 3|T¢| steps, this procedure either terminates or has become
periodic on both sides. It is easy to recognize when one has hit a left or
right period: Indeed, if startarrow(p;} = startarrow(p;) for some i < j, then
Pi+r = Pj4r and giyr = gj4 for all r 2 0, the symmetric criterion holding for
the other side. O

As one gleans from this inductive description of the phantoms H = H(S) of
the simple modules $, string algebras merit their name also from a homological
viewpoint. Indeed the sizes and structures of the modules H(S) depend only on
the string modules of finite projective dimension, and the K-dimensions of the
phantoms H(S) in turn determine whether or not P*°(A-mod) is contravari-
antly finite for a string algebra A. One may wonder whether this emphasis of
string modules is just dictated by convenience and whether band modules can
be attributed a similar homological role. This is not the case: In fact, there ex-
ist string algebras of positive little finitistic dimension which have no nontrivial
(finitely generated) band modules of finite projective dimension. Another asset
of string algebras that arises as a byproduct of our main theorem we record
somewhat more formally.

Corollary 10. Suppose that S is a simple module over a finile dimensional
string algebra A. If S has a P™(A-mod)-approzimation, then the minimal
P®(A-mod)-approzimation of S is a string module and, in particular, is inde-
composable. O

There is no analog for arbitrary special biserial algebras, as the next example
demonstrates.

Example G. Let A = KT/ be the special biserial algebra with indecompos-
able projectives
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12 3 4 5 6 7T 8 9 10
AN ANEEN
2 3 4 5 6 6 7 8§ 8 9 3 2
R

4 5 6 6 7 8

\/

o —

In particular, we observe that the factor modules of Ae; contained in the two
rightmost summands are not minimal with respect to top-embeddability into
objects of P°(A-mod). Thus the alternation “choose a minimal factor module
embeddable into a module in P*°(A -mod), then choose a maximal essential
extension arising as a factor module of a module in P*°(A -mod)” which leads
to the minimal approximations of the simples over string algebras in case of
existence, cannot be expected to achieve this goal in the more general situa-
tion. O

To give another illustration of our algorithm, we conclude with an example
of a string algebra A and a simple left A-module S, the characteristic phantom
of which is twosided infinite with left/right periods reached at different steps
of the algorithm.

Example H. Let A = KT/I be the string algebra with the following inde-
composable projective left modules:
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0 1 2 3 4 5 6 7 8
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| N |

4 1 7 2
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2 5

Then the characteristic P°°(A -mod)-phantom of § = Aeg/Jeg has a graph as
follows:

AV IV NRRR,
1
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A CHARACTERIZATION OF FINITE
AUSLANDER-REITEN QUIVERS OF ORDERS

OsaMU IyaMa

0. Krull-Schmidt categories which have ASS

Let C be a skeletally small additive category and C( X, Y") denote the morphism
set from X to Y. We adopt the convention that niorphisms will be written on
the right side of the object on which they operate. We denote by Mod C the
category of additive functors C°P — A4b, which foris an abelian category. We
call L € Mod C finstely generated if there exists an epimorphism C( ,X) — L,
and finitely presented if there exists an exact sequence C( ,Y) — C( , X)) —
L — 0. We denote by mod C the category of finitely presented additive functors.
Remark that L € mod C is projective if and only if there exists X € C such that
L = C( ,X). Hence C is cquivalent to the category of projective objects in
mod C. For any L € Mod C, we will denote by RL € Mod C the radical of
L, i.e., intersection of all maximal submodules of L. Next, we will define the
contravariant functor a : niod ¢ — mod C°?. For X, Y € C, put o(C( , X) -4
C(,Y)) = (C(Y, ) L5 (X, )). For general L € mod C, take a projective
resolution Py Py — L — 0 and put aL = Ker{aa). Dually, we define
3 :mod C°? — mod C.

Throughout we assume C is a Krull-Schmidt category (1e. If X € C is in-
decomposable, then C(X, X) is a local ring, and cach object of € is isomorphic
to some finite direct sun of indecomposable objects). Let J(C) be the set of
isomorphismn classes of indecomposable objects in C. Then we can identify the
sct of isomorphism classes of objects in C with the free monoid NJ(C) with base
set J(C). Remark that if L € Mod C is finitely gencrated, then there exists the
projective cover (i.e. esscntial epimorphism from a projective object) of L since
C is a Krull-Schmidt category.

In this paper, we study Krull-Schmidt categories which satisfy the following
definition. Remark that we do not assume C is noetherian.

0.1 Definition. We say that C has ASS (resp. ezact ASS) if the following
(1), (2) hold.

The detailed version of this pnper will be submitted for publication elsewhere.
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(1) For any simple S € Mod C. there exists a minimal projective resolution
inmodC: P, 25 P, 2 Pp— § — 0 (resp. 0 — P, = P, 55 Py —
S — 0). Morcover, if P # 0, then aFy 2 aPp = aPy, — Cok(av) — 0
(resp. 0 — aPy 25 aPy =% aP; — Cok(av) — 0) is exact and Cok(av) is
simple in Mod C°P.

(2) Mod C°-version of (1).

For L € ModC and n < m, put R"L := R(R"~'L), R*L := (| R"L and

n>0
(R"/JR™)L := R"L/R™L. We will denote (the first 3-terms of) the minimal
projective resolution of R®/RC(X, ) and R°/RC( ,.X) by the following.

C(,7eX)-5C(.0:X)5C(,.X)— RYRC(.X)—0
C(re X, ) 5 C07 X, ) =5 C(X, ) — RY/RC(X. ) — 0

¢ (resp. 8¢, 7o, 6;) is simply denoted as 7 (resp. 8, 77, 7). Put
P(C) := {X € J(C)|rX =0} and Z(C) := {X € JC)|7~X = 0}. It is cas-
ily shown that 7 gives a bijection from J(C) — P(C) to J(C) — I(C). X € J(C)
is called weakly projective (resp. weakly injective) if 0 — C(X, ) — C(6X, )
(resp. 0 — C( ,X) — C( ,67X)) is not exact. Put w-proj C := {X €
J(C)| X is weakly projective} and w-inj C := {X € J(C)| X is weakly injective}.

0.2 Examples

(1) Let A be an Auslander-Gorenstein artin algebra with gl.dim.A < 2. Then
the category of finitely generated projective A-modules has exact ASS.

{2) Let R be a complete discrete valuation ring and A an Auslander order
over R (4.1). Then the category of finitely generated projective A-modules has
exact ASS.

(3) Let R be a 2-dimensional integrally closed complete local noetherian
domain, A a teme R-order (4.5.2), and C the catcgory of finitely gencrated
A-modules which are reflexive as R-module. Then C has exact ASS [RV].

0.3 Remarks about quotient categories Let § be a subset of J(C) and
Is the ideal of C generated by morphisms which factor through some object in
S. We define the quotient category C/S as follows. The objects of C/S arc the
same as C. C/S(X.Y) :=C(X,Y)/Is(X,Y) for each pair of objects X, Y. There
exists the natural full functor - : ¢ — C/S.

Proposition. Let S be ¢ subset of 3(C) and C := C/S. If C has ASS, then C
also has ASS. Morcover, for any X € J(C)— S, the minimal projective resolution
of R®/RC(,X) € Mod C is given by the following sequence.

O, 7eX) 5 C(,0:X) L 8. X)—R°/RC( ,X)—0 (if 6cX #0)
0—C( ,X)—R°/RC( ,X)—0 (if8:X =0)
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1. A characterization of finite Auslander-Reiten quivers of orders

Main application of results in this paper is to characterize finite Auslander-
Reiten quivers of orders over complete discrete valuation rings. This can he seen
as onc-dimensional version of Igusa-Todorov theorem [IT3] which characterizes
finite Auslander-Reiten quivers of artin argebras. But most difficult point in our
proof is to show that some (infinite dimensional) algebra over a field becomes
an order over some complete discrete valuation ring. This is a peculiar problem
to onc-dimensional case.

1.1 Definition. (A) Let @ be a set. (Q.P(Q).Z(Q),7.d.d") is called a
pre-transtation quiver if the following conditions (1), (2), (3) are satisfied.

(1) P(Q) and I(Q) are subsets of Q and 7 : @ —P(Q) — Q@ - I(Q) is a
bijection.

(2)d:@xQ — NU{0} andd': @ x @ — NU {0} arc maps.

BNLEY.X)=dX,Y)forany X € Q.Y € Q — P(Q).

(B) A pre-translation quiver is called a translation quiver if there exists a map
n : Q — N which satisfies the following equations (4), (5).

(4) n(rX) =n(X) for any X € Q — P(Q).

(3) (X)d(X.Y) =d'(X.Y)n(Y) for any X.} € Q.

(C) A translation quiver is called a finite translation quiver if ) is a finite set.

1.2 (A) Let @ be a translation quiver.

(1) Let ZQ be a free abelian group with base set @. On Q. we introduce the
inner product { , } taking @ as an orthonormal base. We shall also introduce
an ordering in ZQ by X <Y & (X,L) < (Y,L) for any L € Q. For L € ZQ.
let (Ly.L_) be clements of ZQ such that L=Ly —L_, Ly 20, L_ > 0 and
{Ly L) =0.

(2) For X € Q. definc 80X, 8- X € Z@ by

60X := ) dY.X)Y, 6" X:=) d(X.V)
YeQ YeQ

Let 7~ : Q = Z(Q) — Q — P(Q) be the inverse of 7. For X € P(Q) (resp.
X € I(Q)), put 7.X := 0 (resp. 7~X :=0). Thus we obtain 7.X. 77X € ZQ for
any X € Q. 8, 8", r and 7~ uniquely extend to elements of Endz(Z@).

(3) For asubset Sof Q. let is : Z(Q—S) — ZQ (resp. ps : ZQ — Z(Q-S5))
be the natural injetion (resp. natural projection). For f € Endz(Z@}), define
foss € Endz(Z(Q — S)) by fgss:=pso fois.

(B) Let C have ASS. Define ZJ(C), inner product and ordering in ZJ(C) and
8, 8=, 7,7~ € Endz(ZI(C)) by similar way in (A).
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1.3 Theorem. For a finite translation gquiver QQ, the following conditions are
equivalent.

(1) There is a complete discrete valuation ring R end R-order A such that
Q = U(latA) where A(latA) is the Auslander-Reiten quiver of A (3.2).

(2)(C1) For any I € I(Q), put X, := 6~1I, X, := 0071 — I and X; :=
0X,_y —7X;_5 fori > 3. Then X; > 0 for any i, and therc crists n > 1 such

that X,, € P(Q), Xn41 = 0. Moreover. X,,... ,X,- have no P(Q)-summaeand.
(C2) Put s(I) := |J {non-zero components of X;}, then Q= |J s({).
i=) 1e1(Q)

(C3) For any X € P(Q), put Yy := 0, ¥ := X and Y := (0g;1(q)Yi-1 -
7Q12(Q)Yi-2)+ for i > 2. Then therc ezists n > 1 such that Y, = 0.

1.4 Remark. (A) More strong than (2)=>(1), we show the following asser-
tion (*).

(») Let k be any fileld and @ a k-modulated finite translation quiver (3.1).
If |Q] satisfies (C1). (C2). (C3), then there exists a k[[x]]-order A such that
Q = A, (latA).

(B) The correspondence Z(C) 3 I — X, € P(C) gives the Nakayama functor
of A. s(I) gives the sct of indecomposable A-lattices L such that the projective
cover P — L satisfies X,, < P.

2. Minimal projective resolution of some special modules

First important step is to compute the minimal projective resolution of some
special L € mod C. This is a key lemina to prove 6.1.

2.1 Theorem. Assume C hes ASS and fiz A € 3(C). Let C(8~4, ) =
C(A, )—RYRC(A, ) — 0 be the minimal projective resolution and define
LemodC byC( ,A)-5C(,0-A)—L — 0. Assume L #£0.

(A) (1) There czists X; — Y; such that C( ,X;) =5 C( ,Y;)—R'L — 0
gives (the first 2-tcrms of ) the minimal projective resolution of R'L.

(2) (Xo0.Yo) = (A.6074), (X,Y]) = (7Y, — (8, — 7Y5)~, 66~ A — A) and
(X3, Yi) = (rYic1 — (8Yi — 7Yioi)-, (8Yicy ~ 7Yio2)4) for any i > 2.

(B) Assume C has ezact ASS and there exists the minimal n > 1 such that
R"L =0.

(M) (XuY) = (7YYo, 8Yioy = X)) forenyi=1,... ,.n =1,

(2) A ¢ w-inj C if end only if Y,,_, € addP(C).

2.1.1 Corollary. Assume C has ASS. Fiz A€ C andi > 0.

(1) There ezists ;4 — 6;4 iy A such that C( ,m:A) =5 C( .6;4) N
'R,’_'C( A} — 0 gives (the first 2-terms of ) the minimal projective resolution of
RIC( ,A).

(2) (o4, 6p4) =(0,4), (nA,0,4)=(74, 0A) and (1;4, 6;A) = (16;-, A -
(606;4 — 10,1 A)_. (80,1 A - 78;_24);) for any i > 2.
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2.2 This is proved by showing the existence of ‘ladder’. Ladder is a special
case of deformation of complexes [I]. In [IT1], it is shown for C = mod A where
4 is an artin algebra of finite representation type (resp. an algebra over an
algebraically closed ficld). But their proof heavily depends on the fact that
for the Auslander-Reiten quiver of such category, cach arrow has a valuation
(1,n), (n,1) where n = 1,2 or 3 (resp. (n,n)). Here, we will give a general (and
easy) proof.

Lemma. (Existence theorem of ladders) Assume that C has ASS end
¢g € RC(Xy,Yy) satisfies ag + R2C(Xo,Yo) € Aut(Xo)epAut(Yy). Define L €
mod C by C( ,X¢) =% C( ,Yy) — L — 0. Then the following (1), (2), (3)
hold,

(1) For anyi > 0, there ezxists ({;) : Pia®Qi — Pip such that the following

sequences give the minimal projective resolutions.
Pyt Py —RIL—0

Jigr *
0 (r)
P18 Qin ( ) Piy106 Piy =25 Pig — Pio/RP;y — 0

(2) If ap 13 a monoemorphism end C hes exact ASS, then Q; =0 for anyi > 1.
(3) Define M € mod CP by C(Ys, ) =5 C(Xo, ) — M — 0. If M is
semi-simple, then R'*'aQ; = 0 for any i > 0.

2.2.1 Sketch of proof. Fix X, X", Y € C and take the minimal projective
resolution C( ,7Y) =5 C( .8Y) -5 C(,Y) — R°/RC( .Y) — 0. Let
1RC(X,Y) be a subset of RC(X,Y) formed by o« such that there exists a split
monomorphism 7 : X — 8Y such that a = ip. Also, let RIC(7Y,X') be a
subsct of RC(7Y, X') formed by a such that there cxists a split epimorphism
p: 8Y — X' such that a = vp. It is easily shown that {RC(X,Y’) (resp.
R,C(7Y,X")) is union of cosets modulo R2C(X,Y) (resp. R2*C(7Y, X')).

For any decompaosition 8Y = X @ X', we will define the map

ix.y : Aut(X)\ RC(X,Y)/Aut(Y) — Aut(rY \R{C(rY, X')/Aut(X").

For a € RC(X,Y), by definition, there exists an isomorphism (g) :
X @ X' — 8Y which makes the following diagram commutative. Then put

ixy(le]) =[]

c(.ryy B2, o x e x) 2L ey

| lo |

c(,7y) == c¢(,0y)y —L-C(.Y)



70 OSAMU IYAMA

Then the following (1)—(4) are easily verified.

(1) jx.y is well defined.

(2) jx,y is surjective. If ¥ has no P(C)-summand, then jx y is bijective.
(3) For n 2 2. jx.y induces

idy s Aut(XNGR/RC(X, Y))/Aut(Y) —>
Aut(rY (R /R"C(7Y, X))/ Aut(X").

(4) Forn 2 2.1f jx.v([a]}) = [4'] and ' - 3] € R"C(7Y, X'), then there exists
a; such that jx v([a,]) =[#}] and a — o, € R"C(X,Y).

2.2.2 We will prove 2.2 (1) and (2). By induction, we only have to prove the
following (*).
b
(*) There exists a decomnposition ag = (;) : Xo = 29 = Uy — Yy such
that by € |RC(Zo.Yy). If oy € RIC(X).11) satisfies [a1] = jz, ve([bo]), then
a; + R2C(X,, Y1) € Aut(X))ay Aut(Yy). Moreover, if ¢o is a monomorphism,
then a; is also a monomorphism.

In general, it is easily shown that there exists a decomposition a9 = (fz) :
Xo = Zy DUy — Yy such that by € ;RC(Zy,Yy) and ¢y € R2C(Uy, Yy). Since
ag— (b(;)) € R%(Xo, Yh), (l;)) € Aut(Xo)apAut(Yp) by our assumption. Hence
the first part of () is proved. To prove the second part, take an clement ¢} € «;+
R2C(X1,11). By 2.2.1 (4), there exists by € 1RC(Zy, Ya) such that jz, v, ([06]) =

b
[@}] and & — b, € R?*C(Z.Ys). By our assumption, Aut(_\’o)((;))Aut(}'}]) =

!
Aut(Xo)(l:;’)Aut(}’b), hence Aut(Zg)boAut(}p) = Aut(Zp)bgAut(Yy). Since

72,,v, is well defined, Aut(X))e;Aut(Y)) = [a1] = jz, vo([bo]) = Jz,. v, ([bh]) =
[¢}] = Aut(X)a)Aut(Y]). We will prove the third part. Sinec ag is a monomor-

phism, by = ap and Uy = 0. Since € has cxact ASS, 0 — C( .X;) o )

. (5g) . . . -
Cl.Y)&20) —250(,Y,) — RY/RC( ,Yp) — 0 gives the miniinal projective
resolution by the definition of jz, y,. Since bp is a monomorphism, it is easily
shown that a; is also a monomorphism.

2.2.3 Fix XY, Y’ € C and take the minimal projective resolution C(7~ X, )
LLC067X, ) 5 (X, ) — RY/RC(X, ) — 0. Let R,C(X.Y) be a subsct
of RC(X,Y) formed by a such that there exists a split epimorphism p :
0-X — Y such that « = vp. Also, let | R'C(Y'.77X) be a subset of
RC(Y',7~X) formed by a such that there exists a split monomorphism i :
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Y’ — 8~ X such that & = ig. For any decompositionn 6~ X =Y ¢}, we can
define the map

Jxa PARANRC(X, Y)/Au(Y) — Aut(YHLGR'C(Y', 7~ X )/Aut(r~ X)

by dual argument of 2.2.1.
2.2(3) is casily shown by the following lemma.

Lemma. Assume thet C has ASS end f € Ry(X.Y). f' € \RI(X'.Y').
g € 1R(A,B) end ¢' € R\(A', B') satisfy the following conditions (1), (2).

(D) ixy([f]) =[] and ja,s(lg]) = [9'].

(2) There ezistt € C(Y.B') and a split monomorphism s € C(X, A’) such that
ft=sqg".

Then there exist ' € C(Y', B) and a split monomorphism s' € C(X', A) such
that f't' = s'g.

2.4 The following corollary is a key lemma to prove the structure theorem
3.5.

Corollary. (Radical layers theorem) Assume C has czact ASS. Then for
cach X € C and n > -1, the following is czact.

0 — Rn/Rn+lC( ,T.\’) -v, Rn+l/Rn+2c( ’9-\') L an+2/Rn+3C( “\7) =0

2.5 We call C left artinian (resp. right artinian) if C( . X) (resp. C(X. }) is
finite length for any X € C. C is called artinian if C is 2-sided artinian.

Corollary. (Criterion for C to be artinian) Assume C has ASS.

(1) C is left artinian if end only if for any A € C. there ezists n 2 0 such that
0,4=0.

(2) Assume (C) (3.2) is connected, I(C) is ¢ finite sl and T(C) # B. Then
C is left artinian if and only if for any A € Z(C). therc czists n 2> 0 such thet
8, A=0.

2.6 Corollary. (Criterion for C to have exact ASS) Assumc C has ASS
and R>C( . }=0. Then the following conditions are cquivalent.

(1) C has cxact ASS.

(2) Z(C) 2 w-injC.

(3) 86,014 > 70,4 forany A€C andi 2 0.

3. A construction of categories which has ASS

In this section. we introduce Igusa-Todorov construction of mesh categories
of modulated translation quiver [IT2].
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3.1 Definition. (A) @ = (Q,P(Q),Z(Q), 7, Dx, x My, a,b) is called a mod-
ulated translation quiver if the following conditions are satisfied.

(1) P(Q) and Z(Q) arc subsets of Q and 7 : Q@ — P(Q) — @ - I(Q) is a
bijection.

(2) Dy is a skew field for any X € Q.

(3) x My is a (Dx, Dy )-bimodule for any X,Y € Q.

(4) ax : Dx — D,y is a ring isomorphism for any X € @ — P(Q).

(3) bx,y : yMx ®@py rxMy — Dy is a non-singular (Dy . Dy )-homomor-
phism for any X € @ —P(Q)and Y € Q.

(6) 3> dimp, xMy and Y dimp, y My are finite for any X € Q.

YeQ YeQ

(B) Let @ be a modulated translation quiver and £ be a field. @ is called a
k-modulated translation quiver if Dy is a finite dimensional division k-algebra,
k acts x My centrally and any ax and by y are k-linear,

(C) Let @ = (Q.P(Q),Z(Q),7, Dx, xMy.a.b) be a modulated translation
quiver. We define a pre-translation quiver |Q| = (Q,P(Q),I(Q), 7.d,d") by
putting d(X,Y) := dimp, x My and d'(X,Y) := dimp, xMy for any X, Y €
Q. Remark that if Q is a k-modulated translation quiver, then |Q| becomes a
translation quiver by putting n(X) := dim, Dy for any X € Q.

3.2 Definition. Let C have ASS.

(A) We define a modulated translation quiver U,,(C) called the modulated
Auslander -Retten quiver of C as follows.

(1) @:=3(C). P(Q):=P(C), I(Q):=I(C) and 7 : @ - P(Q) — Q - I(Q)
1s defined in §0.

(2) Dy := R*/RC(X.X) and x My := R/R*C(X,Y) for any X,Y € 3(C).

(3) For any X € @ — P(Q), take the minimal projective resolution of
RY/RC( . X). ax(f) is induced from the following commutative diagram.

C(,7X) —— C(,8X) —— C(,X) —— R°/RC(,X)

[axtn | s |
c(.7X) —— ¢(.8x) £ ¢(,X) —— RYRC(,X)

-~

(4) Forany X € Q-P(Q)and Y € Q, bx y(f®g) := fg is induced from the
following commutative diagrams.

C(Y.)

0 lg  §N\
RY/RC(+X.) — C(rX,) & C(8X,).
C(.Y)

JF LfooN
c.8Xx) % C(,.X) — RYRC(.X)
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(B) We call A(C) := |A,(C)| the Auslender-Resten quiver of C, which is a

pre-translation quiver.

3.3 Definition. Let @ = (Q,P(Q),Z(Q),7, Dx, x My,a,b) be a modulated
translation quiver.

(A) We define an additive category Pg called the path category of Q as follows.

(1) The objects of Pg are NQ.

(2)For X, YeQandn>1,

. 0 X#Y
Postty={ ) T
Dx (X=Y)
Pon(X,Y):i= @ xMz @b, --- Oy, z. My
ZOV"erAGQ
Po(X,Y):= @) Po.n(X,Y).
n>¢

(B) We define an additive category ﬁg called the mesh category of Q as
follows.
(1) Forany X € @ -P(Q) and Y € Q, take a Dy-basis ul,, ..., ul of y M.

By 3.1 (5), take its dual basis v}, ... ,v¢ of ;x My. Put v X(Y) := i v @ul €
xMy ©p, yMy and 7X i= ¥ 7X(Y) € Po(rX, X). =

(2) Let Ig = @ Ig,n be thzel?omogeneom ideal of Pg generated by vX for
any X € @ — 'P(E)Z)(.)

.'\/IQ'" = PQ,n/IQ,n
Mg := [ Me.n
n>0
Remark that Pg is not necessarily a Krull-Schimdt category, but M ¢ becomes
always a Krull-Schimdt category.

3.4 Eeﬁnition. For any Krull-Schmidt _category C, define the additive cat-
egory Gr(C) as follows. The objects of Gr(C) are the same as those of C.
Gr(C)}(X,Y) := J] R"/R"!C(X,Y) for each pair of objects X,¥. Compo-

n>0

sition is given by

(F)izo(gi)izo = () figi-;)izo-

j=0

It is casily seen that a(C) becomes a Krull-Schmidt category.
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3.5 Now, we can statc the main theorem in this section. This gives one-to-
one correspondence between modulated translation guivers and complete graded
Krull-Schinidt categories which have ASS.

Theorem. For any moduleted translation quiver Q, its mesh category ﬂg
has ASS and A, (Mg) = Q. Conversely, if C has ASS. then Gr(C) is equivalent
to My, (¢). In particular. Gr(C) has ASS.

4. A characterization of Auslander orders

Throughout this scction, let R be a complete discrete valvation ring and A
an R-order, i.c., R-algebra which is finitely gencrated torsion free R-module.
We denote by latA the category of A-lattices. i.e.. A-modules which are finitely
generated torsion free as R-module. Also. we denote by proj A (resp. inj A)
the set of isomorphism classes of indecomposable projective (resp. injective)
A-lattices.

4.1 Definition. A is called a gencralized Auslander order (resp. Auslander
order) if the following (1), (2) (resp. (0). (1), (2)) are satisfied.

(0) K ®g A is a semi-siimle K-algebra where K is the field of quotients of R.

(1) gl.dim.A < 2.

{2) There exists an exact sequence 0 — A — Iy — I} — 0 such that [y
is a projective injective lattice and I is an injective lattice.

4.2 We can characterize generalized Auslander orders as follows.

Theorem. Let A be an R-order with gldim.A < 2. Then the following
conditions are equivelcnt.

(1) A is a generalized Auslander order.

(2) The categary of finitely generated projective A-laltices hus ASS.

(3) For any I # I' € inj A°P, Q(I) and XI') do not have common direct
summands.

(4) For any P € proj A, if pd(P/radP) = 1, then Homna (P, A) € ing AP,

(i*) A°P-yersion of (i) (1 =1,2,3,4).

4.3 On the other hand, Auslander and Roggenkamp show that the category
of lattices over an order of finite representation type can be characterized as the
category of projective modules of Auslander order.

Proposition.([AR]) The following conditions are equivalent.

(1) A is an Aunslander order.

(2) There exists an R-order A and an additive generator M of latA such that
Enda(M) = A

4.4 Combining 4.2 and 4.3, we obtain the following main theorem in this
section. This is the second important step to prove 1.3,
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Corollary. Assume that C is a Krull-Schmidt category with an additive
generator M and C(M, M) is an R-order. Then the following conditions are
equivalent,

(1) C has ASS.

(2) There exists an R-order A such that C ~ latA.

4.5 Theorem 4.2 can be applied to prove the following results in [I2].

4.5.1 Corollary.([I2]) Let R be a complete discrete valuation ring with ficld
of quotient K, A an Auslender order and ¢ e central idempotent of K @ A.
Then cA i3 also an Auslander order.

4.5.2 In this subsecction, let R be a 2-dimensional integrally closed complete
local noetherian domain.

(A) An R-algebra A is called tame R-order if the following conditions (1). (2)
arc satisfied.

(1) A is a finitely gencrated reflexive R-module.

(2) Ay is a hereditary R,,-order for any height 1 prime of R.

(B) Let A be a tame R-order. We denote by ref A the category of A-modules
which are reflexive as R-module.

Corollary. ([12]) Let k be a field, R = k[[x,y]], A ¢ taine R-order and \' a
tame overorder of A. Assume that C := ref Afref A’ has an additive generator
M. Then there ezists o complete discrete valuation ring R' such that C(M. M)
s e generalized Auslander order over R'.

5. A generalization of overorders

This section is, in a scuse, a central part of this paper. Results in this section
arc used to prove the lemmas in §6. Throughout this section, subcategories
are assumed to be full and closed under isomorphisms. direct sums and direct
sunimmands.

5.1 We introduce the concept of well behaved subcategories. By 5.2, this can
be seen as a generalization of ‘category of lattices over some overorder'.

Definition. Let C have exact ASS. For a subcategory C' of C, we define (C')
as the minimal subcategory of C which satisfies the following conditions.

(1) {C)y 20"

(20— C(.X)—C(,Y)—C(.2Z)isexact and Y € C', then X € C'.

U0 —C(X, )—CY, ) —C(Z, )isexact and Y € (', then X € C'.

A subcategory C' of C is called well behaved if {C') = ¢’ and C/C’ is artinian
(2.5).
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5.2 Proposition. Let A be an order over complete discrete valuation ring
(resp. artin algebra), C = latA (resp. mod A) and C’ a subcategory of C. Then
the following conditions are equivalent.

(1) (¢ =C'.

(2) There exists an overring (resp. quotient algebra) A’ of A such that C' =
latA’ (resp. C' = mod A').

5.3 The most remarkable properties of well behaved categories are given by
the following theorems. They obviously hold for the cases in 5.2.

Theorem. Assume thatC has ezact ASS end C' i3 a well beheved subeategory
of C. Then C' also has ezact ASS.

5.3.1 For the cases in 5.2, we have a natural functor ( ) : C — (', X =

Homj (A', X). We can prove that there exists a similar functor in our gencral
cascs.

Theorem. Assume thatC has ezact ASS and C' is a well behaved subcategory
of C. Then there exists an functor ( ) : C — C' and e netural transformation

a:( ) — 1¢ which satisfy the following propertics.
(1) ( Mer = 1¢r end ax = 1x for any X € C'.
(2) -ay :C(X,Y) — C(X,Y) is o bijection for any X € C' and Y € C.

(3) For X € 3(C'), X € Z(C') if and only if therc ezists I € I(C) such that
X<I.

5.4 In [I], for the cases in 5.2, Rejection Lemma (i.e. a characterization
of well behaved subcategorics by the language of Auslander-Reiten quivers) is
established. Here, we can generalize Rejection Lemina to our general cases.

_ 5.4.1 Theorem. Assume thet C has ezact ASS, C' is e subcategory of C. and

:= C/C' is artinian. Then the following conditions are equivalent.

(1) C' 1s @ well behaved subcategory of C.

(2) w-proj C € P(C) and w-inj C € Z(C).

(3) (i) For any X € J(C) — P(C), put X, := 6zX, X3 := 070X — X and
Xn:=0"Xn_y — 77 zXn_2 for n 2 3. Then for anyn >0, X,, > 0.

(ii) For any X € 3(C) = I(C), put X, := 07X, Xp := 6207 zX — X und
Xn:=0:Xnoy — 75Xn-2 for n > 3. Then for anyn >0, X,, > 0.



FINITE AUSLANDER-REITEN QUIVERS OF ORDERS 717

5.4.2 Theorem. Assume that C has ezact ASS. C' is a subcategory of C.
and both C :=C/C' and C/I(C) are artinian. Then the following conditions are
equivelent.

(1) (¢') =c.

(2) For any P € P(C) and I € I(C), C(P,I) = 0.

(3) For any P € P(C), put Xo := 0, X} := P and X, := (67 gXp-y -
T gXn-2)4 forn 2 2. Then (X,,I}) =0 for any I € I(C) and n > 1.

6. Sketch of proof of theorem 1.3

6.1 By the following lemma, we can translate the combinatorial conditions
(C1), (C2), (C3) to some categorical conditions. We call this categorical condi-
tion (C). Remark that (C) is casily checked for C = latA where A is an R-order
of finite representation type and R is a comiplete discrete valuation ring. Hence
1.3(1)=-1.3(2) is proved.

Lemma. Assume that C has ASS, J3(C) is a finite set and R=C( , ) = 0.
Then the following (1), (2) are equivalenl. In this case, C has ezact ASS.

(1) Q :=2U(C) satisfies (C1), (C2) and (CS).

(2) (i) For any X € I(C), 0 — C( , X) — C( ,0~X) — M — 0 is ezact
where M 1s finite length.

(ii) For any X € P(C), 0 — C(X, ) X5 C(6X. ) — M — 0 is ezact
where M is finite length.

(iii) For any non-zero X € C, there ezists I € I(C) such thet C(X,I) # 0.

(iv) C/Z(C) is artinien.

6.2 Maximal case Let C have exact ASS. C is called mazimal if C does
not have a well behaved subcategory except 0 and C. This is a generalization
of ‘categories of maximal overorders’. Similar to the cases of overorders, the
following property holds.

6.2.1 Lemma. Assume that C has ezact ASS and is mazimal. If C satisfies
(C), then A(C) has the following form.

O L0

6.2.2 Lemma. Assume that a k-elgebrea A end an idempotent e € A selisfy
the following conditions.

(1) A= H A,', radA = H A.' and A;Aj - AH'j for eny J',j.

i>0 i>1

(2) cAe has ASS and A(eAc) =0,

(3) cAge is a finile extension of k.

Then cAe is a k[[z]]-order and eAe @) k(7)) is @ semi-simple k((2))-
algebra.
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6.3 Reduction to well behaved subcategories

Lemma. Assume that C has ezact ASS and C' 1s a well behaved subcategory
of C.

(1) If C satisfies (C), then C' also satisfies (C).

(2) Assume that C satisfies (C). C has en additive generator M and C' hes
an additive generator M'. Let k be a field. If C(M,M) is a k-elgebre and
C'(M'e,M') is a k[[z]}-order, then C(M,M) is a k[[«"]]-order for some N >
0. Moreover, if C'(M', M') @) *((x)) is a semi-simple k((x))-algebra. then
C(M. M) @y k((x™)) iz a semi-simple k((z™))-algebra.

6.4 Proof of 1.3(2)=1.3(1) Take a finite translation quiver ¢ which sat-
isfies (C1), (C2), (C3). In general, it is casily shown that for any translation
quiver @, there exists a k-modulated translation quiver @ such that |Q| = Q
(3.1). Take such a Q, put C := .ﬁg and take an additive gencrator M of C. By
3.5 and 6.1, C satisfies (C) and has exact ASS. By 4.4, we only have to show that
there exists a complete discrete valuation ring R with field of quotients K such
that C(M, M) is an R-order and C(M, M) @g K is a semi-simple K-algebra.

Take a maximal well behaved subcategory C' of C and an additive generator
M' of C'. By 6.3(1), C' also satisfies (C). By 6.2, C'(M', M') is a k[[«]]-order and
C'(M', M") ®[z) k(7)) is a semi-simple k((z))-algebra. By 6.3(2), C(M, M) is
a k[[x¥]]-order for some N > 0 and C(M, M) Gy(z~y) k((x™)) is a semi-simple
k((x™))-algebra. Hence 1.3(2)==1.3(1) is proved.

6.5 Swnmarizing above argument, we obtain the following corollary.

Corollary. Let k be a field and A @ k-algebra which satisfies the following
conditions (1}~(5). Then Cen(A) contains a subring R which is isomorphic to
k[[z]], end A becomes an R-order.

(1) A =[] Ai, radA = [] A; and AjA; © Ay j for any i, j.

20 i>1

(2) dimg Ap < 00.

(3) Any simple module S satisfies Ext}(S,A) = 0 and hes the projective
resolution

0—P, —P —FP—5—0

where Py, Py and Py are finitely generated.
(i) If pdS < 1, then Ext}(S, A) is a finite length A°P-module.
(i) If pdS = 2, then Ext)(S,A) =0 and Ext3(S,A) is a simple A°P-module.
(4) A°P-version of (3).
(5) Let € be a complete set of orthogonal primitive idempotents of A and put

f:= p e. Then A/AfA is artinian.
e€E&,pd(A/radAe)<]
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SOME TOPICS ON MODULAR GROUP
ALGEBRAS OF FINITE GROUPS

SHIGEO KOSHITANI

0. Introduction and notation

In the representation theory of finite groups, especially, modular represen-
tation theory of finite groups, there are several problems and conjectures (or
(uestions) given by, first of all, of course, R. Brauer, then by J.L. Alperin, E.C.
Dade, M. Broué, L. Puig, P. Donovan and so on (sce [1], [2], [4], [5], [7], [8], [9].
[10], [12], [13], [14) [21], [22]). Actually, the conjectures by Alperin (Alperin
weight conjecture) [4], which has been changed more precisely by Dade [13],
[14], and that by Broué [8], [9], [10], [11] seem in the center of modular repre-
sentation theory nowadays (see a survey [22, pp.95-96] by Linckelmann, too).
In this note, however, we are not going into these conjectures. Probably, it will
be treated in part in another article in these procecdings by the same author.
As a matter of fact, nevertheless, we are going to consider several topics on
structure of group algebras of finite groups over an algebraically closed field of
prime characteristic. It should be remarked that the subjects we will treat here
in the article arc just only from the author’s point of view, although it seems
that they are still so important objectively.

Anyway, let’s go into the subject. The main problem we treat throughout till
the end is the following well-known problem which was announced by R. Brauer
(1901-1977) who actually was a founder of modular representation theory of
finite groups. Namely,

Problem 16 (R. Brauer, 1963, [7, p.145]). Obtain classes of groups G
by imposing group theoretical conditions which can also be characterized by
algebra-theoretic conditions imposed on the group algebra kG, where k is a
field.

G — kG
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Because of a well-known theorem by H. Maschke, 1898 [23], we will consider
group algebras over a ficld which has prime characteristic. So, let’s start by
giving some notation we need here, and they will be fixed throughout this

paper.

Notation. We use the following notation.

k = an algebraically closed field of prime characteristic p
p = a prime number such that char(k) = p

G = a finite group

kG = the group algebra of G over &

Syl,(G) = the set of all Sylow p-subgroups of G

kg = the trivial #G-module of k-dimension one

By(kG) = the principal block (ideal) of kG

A = a finite dimensional k-algebra with unit element 1,
J(A) = the Jacobson radical of 4

a module = a finitely generated left module

Perhaps, it would be better to mention on blocks of the group algeba kG.
Namely, we say that 4 is a block of kG if A is an indecomposable direct
summand of 4G as a two-sided ideal. In this case A can be regarded also as an
indecomposable left &[G x G]-module where the action by G x G on 4 is given
by

(g1.92)a = grag;’

for g; € G and a@ € A. Then every indecomposable AG-module M belongs to
a unique block A of kG in the sense that 1,4-M # 0. So, in the case, M can
be considered just a left A-module. Now, for any finite group G therc always
exists at least one simple kG-module, say, the trivial module which is afforded
by the following trivial A-representation

G — GL\(k) = k%, g+ 1.

As in the list of notation above, we denote by kg the trivial ¥G-module. Then
we say that a block A of kG is the principal block of kG if k¢ is contained in A
as a left kG-module (cquivalently, if k¢ is an epimorphic image of A as a left
kG-module). Anyhow, this particular and important block, say, the principal
block of kG, is denoted here by By(kG) as in the list of notation.

For other notation and terminology, see the standard next text books by
Alperin [3], Nagao-Tsushima [26] and Thévenaz [30].
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1. Isomorphism problems for LG

In this section we will discuss on isomorphisim problems for modular group
algebras kG over an algebraically closed field & of prime characteristic p. There
are, of course, several papers (articles) on this subject. But, the ingredient there
looks much different from ours. Therefore, we believe that it seems meaningful
to give the following material we discuss. Anyway. the first result we want to
describe here was the following (it secems that it was due to R. Brauer).

(1.1) Theorem. The following two assertions are equivalent.
(1) diing S = 1 for any simple kG-module S.
(2) G has a normal Sylow p-subgroup P. and morcover the factor group

G/P is abelian.

Remark on (1.1). It sure is well-known that G is abelian if, and only if
every irreducible complex representation of G has degree one. So, (1.1) can be
regarded as a gencralization of this fact.

Definition. We say that A is primary if the factor algebra A/J(A) is a
simple algebra. We call G p-nilpotent if G has a normal p'-subgroup K" such
that G/ K is isomorphic to a Sylow p-subgroup P of G, (and hence G is a semi-
direct product of i by P). Of course. nilpotent groups G (which means that
G is just a dircet product of Sylow {-subgroups for all primes ¢ which divides
the order |G| of G) are p-nilpotent, always.

It looks that the next one was also obtained early 40’s by M. Osima (1912

- 1993).

(1.2) Theorem (M. Ositna, 1942 [29], K. Morita, 1951 [25, Theorem 7).
The following two assertions are equivalent.

(1) For any block A of kG. A is primary,

(2) G is a p-nilpotent group.

Almost ten years later, as mentioned above already, K. Morita (1915 - 1995)
gave the following result, which was a gencralization of (1.2). K. Morita is, of
course, famous because of Morita duality and Morita equivalence, by the way
(see [3]). Before we state his result we need onc more definition.

Definition. As a genaralized notion of p-nilpotent groups, we call G a p-
solvable group of p-length one or just a group of p-length one if G has a normal
p'-subgroup R such that for a Sylow p-subgroup P of G. A'P is a normal
subgroup of G.
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(1.3) Theorem (K. Morita, 1951 [25, Theorem 6], sce (1.2) and [12, §62C]).
The following three conditions are equivalent.

(1) For any block A of kG, it follows that dim; S = dim T if S and T are
simple kG-modules in A.

(1) For any simple kG-module S in the principal block By(kG) of kG, it
follows dim; S = 1.

(2) G is p-solvable of p-length one (namely, G has a normal p'-subgroup K
such that K P is normal in G, where P € Syl ,(G)), and furthermorc G/K P is
abelian.

In the same paper as above, Morita gave the following result, too.

(1.4) Theorem (K. Morita, 1951 [25, Theorem 8], see [12, (62.29) Theorem
and (62.26) Theorem]). The following three conditions are equivalent.

(1) kG satisfies the condition (1) in (1.3), and moreover kG is a Nakayama
algebra (say, a generalized uniserial algebra, that is, every projective indecom-
posable left kG-module has a unique composition series).

(1') There exist elements a,b € kG such that J(kG) = kG-a = b-kG.

(2) G is p-solvable of p-length one. and Sylow p-subgroups of G are cyclic.

Remark. The equivalence (1) « (1’) actually holds for not only the group
algebras kG but also gencral finite dimensional k-algebras (see [25, Theorem
1] and [12, (62.26) Theorem]). Of course, nowadays, everybody knows that
the group algebra kG is of finite representation type if and only if Sylow p-
subgroups of G are cyclic. And it is not difficult that Nakayama algcbras are of
finite representation type, so that Sylow p-subgroups of G are cyclic by a well-
kniown result obtained by D.G. Higman [17] in 1954 and F. Kasch-M. Kneser-H.
Kupisch [18] in 1957. So, a part of (1.4) above is an easy consequence from it.
But, let’s consider that the year. It was in 1951. Namely,

(1.5) Theorem (D.G. Higman, 1954 [17], and F. Kasch-M. Kncser-H.
Kupisch, 1957 [18]). The following are equivalent.

(1) kG is of finite represcntation type, that is, there are only finitely many
non-isomorphic indecomposable left kG-modules.

(2) Sylow p-subgroups of G are cyclic.

The two papers above are not so long, in particular, the second one by Kasch-
Kneser-Kupisch has just one or two pages. It is, however, very fundamental
and important.

Now, let’s skip 30 ycars!

Around mid 80’s G. Michler prove the following interesting result which is
related to the first theorem (1.1). Namely,



SOME TOPICS ON MODULAR GROUP ALGEBRAS OF FINITE GROUPS 85

(1.6) Theorem (G.O. Michler, 1986 [24, Theorem 5.5]). By making use
of the classification of finite simple groups [15], [16], for any odd prime p, the
following arc equivalent.

(1) For any simple kG-module S, p Jdim; S.

(2) G has a normal Sylow p-subgroup.

(1.7) Remark. For the case p = 2, the same thing in (1.6) holds. It was
proved by T. Okuyama [27], probably, early 80’s. It should be mentioned that
T. Okuyama didn’t use the classification of finite simple groups.

So far, we have not mentioned clearly isomorphism problems for kG. How-
ever, we have already treated it actually. Namely,

(1.8) Theorem. Let G and H be finite groups. In cach case (1.1) - (1.7),
if we assume that kG = kH as k-algebras and that G satisfies the condition
(2), then H satisfies the condition (1) as well.

(1.9) Corollary to (1.6) and (1.7). Assume that kG = kH as k-algebras
and that G is of p-length one. Then H is of p-length one, too.

Remark on (1.9). Because of (1.6), the above (1.9) for p odd depends on
the classification of finite simple groups [15], [16].

Then, let’s conclude this section by giving the following problem.

(1.10) Problem (sce (1.4)). Give a necessary and sufficient condition on
G under which kG is a Nakayama algebra. That is.

(1) kG is a Nakayama algebra « (2) G 7

Remark on (1.10). The author was told very roughly that the above (1.9)
can be proved by making use of the classification of finite simple group.

2. Loewy length of projectives for &G

In this section we discuss on the Loewy length of the projective indecompos-
able AG-module corresponding to the trivial kG-module k. In the proceedings
of this mecting (which was held in 1993), the author actually discussed on the
same topic more or less, and he gave there a conjecture (question). And this
is, as a matter of fact, true. That is to say, the next year in 1994 the author
could affirmatively solve the conjecture given in 1993, which will be mentioned
in the following (2.4).

So, first of all, we have to give notation here.
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Notation. Throughout this section we use the following,.

P(kg) = the projective cover of the trivial £G-module k¢
namely, P(kg)/J(kG)-P(kg) = kg as left kG-modules

J = J(P(kg)) the Loewy length of P(k¢),
namely, j is the least positive integer i such that J(kG)'-P(kg) = 0.

In this section we consider the following problem.
Problem. Determine G when j is given, especially for small .

We start here assume only that k is an algebraically closed field, though we
assume that &t has prime characteristic p in a minute. Then, the starting point
of the subject discussed hicre in §2 is, again, the following Maschke’s theoren.

(2.1) Theorem (H. Maschke, 1898 [23]). The following are equivalent.

(1)j=1
(2) char(k) = 0, or char(¥) = p > 0 and p/|G|.

Because of this, we can assume here again that & has prime characteristic p.
!
Namely.

Assumption and notation. We use also the following notation.
p = characteristic of &

P = a Sylow p-subgroup of G

¥» = the symmetric group on n letters

Cy = the cyclic group of order n

The next result was, firstly, announced (published) by D.A.R. Wallace.

(2.2) Theorem (D.A.R. Wallace, 1962 [31]). The following arc cquivalent.
(1) j=2
(2) p = 2 and Sylow 2-subgroups of G are cyclic of order 2.

Then, of course, we might be interested in the next step. Unfortunately,
however, finite groups which satisfy j = 3 have not been determined vet as far
as we know. T. Okuyama, however, gave the following nice result which is a
partial answer to the problem for j = 3 under the assumption p = 2. Namely,

(2.3) Theorem (T. Okuyama, 1986 [28, Theorem 2]). Assume that p = 2
and j = 3. Then. Sylow 2-subgroups of G are dihedral (can be an clementary
abelian group C; x (3 of order 4).

On the theorem (2.3) above, it should presumably be noticed the following
a couple of remarks. That is,
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(2.4) Remark on (2. 3) (see T. Okuyama [28]).

(i) If p=2and G = I, then j = 4. Actually, in this casc. the structure
of P(k¢) and P(2) are the following. where P(2) is the projective cover of the
another simple £G-module, which has k-dimension 2. In the following we write
1 for k¢.

1

1/\2 /\
l

s \/

1

— —

(i1) If p is odd and G = &, then the projective indecomposable £G-modules
have the following structure.

/\ /\
\/ | \/

. -++  stops in finite steps

—— G ——

Hence. j = 3 in this case.

Now, let’s go to the next step. say, the case j = 4, though the case j = 3 has
not been completely scttled. Actually, as the author wrote in the introduction
of [20]. the condition j = 4 could be stronger. As we have already conjectured
in1993 in [19], we fortunately could give an affinnative answer. Namely,

(2.5) Theorem (S. Koshitani, 1996 [20. Corollary]). If j = 4. then p =

(2.6) Remark on (2.5). We did not use the classification of finite simple
groups to prove the above (2.3). It is just a sort of feeling. But, as far as we
feel, the reason why the condition j = 4 implies p = 2 would be the fact that
the group algebras kG of finite groups G over a field & are symmetric algebras.

As in §1. we finish this section by giving a few problems (questions) we are
interested in. That is,

(2.7) Problems.

(1) Determine finite groups G which satisfy j = 3.

(i1) Determine finite groups G which satisfy 7 = 4. Thanks to (2.5), we have
to think of this only in the casc that p = 2.
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(2.8) Question. Is it true that the condition j is even would imply that
p = 2? This is truc at least for the casc j = 2,4. However, there arc. of course,
infinitely many even numbers still. What can we do then?

Acknowledgements. The author would like to thank Professor Y. Iwanaga
for giving him an opportunity to give two talks in the mecting, the 30th Sym-
posium on Ring Theory and Representation Theory.
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ON p-BLOCKS OF FINITE GROUPS

SHIGEO KOSHITANI

0. Introduction and notation

In this note we try to give two results we got recently, and their atmosphere,
on p-blocks of finite groups in modulrar representation theory. These two results
arc not going to be accompanied with their proofs, because one of them will be
published in other journal with complete proofs [12] and the other will probably
be submitted somewhere clse. We will try, however. to give the readers to
understand what’s going on there, anyhow.

In representation of finite gorups, or even of finite dimensional algebras, a
notion Morita equivalence is so important. As M. Broué says in his article [5,
Remark p.10], Morita equivalence between blocks of finite groups does not occur
so frequently. Especially in oreder to solve Broué’s conjecture on derived equiv-
alence between two blocks with the same abelian defect groups. As Broué writes
there, Morita equivalence secins too strong practically, (sce Broué’s paper [3],
[4], [5], [6]). However, here in this article, we will give two results which are both
on Morita cquivalence between two blocks of finite groups. In particular, the
second one implies an affinnative answer to what is called Broud's conjecture on
derived cquivalent blocks with abelian defect groups for a type of finite Cheval-
ley groups, say PSU(3,¢*) in non-defining characteristic casc, which contains
infinitely many simple groups.

Throughout this note we use the following notation.

Notation. We use the following notation.

p = a prime number

k = an algebraically closed field of prime characteristic p
G = a finite group

P = a Sylow p-subgroup of G

Syl,(G) = the sct of all Sylow p-subgroups of G

&G = the group algebra of G over &

ke = the tivial kG-1nodule of k-dimension one

1991 Mathematics Subject Classification. Primary 20C03, 20C20, 16G10, 16G60, 16S34.

Key words and phrases. block, group algebra, Morita equivalence, Broué conjecture,
derived equivalence.

A part of this paper will be published in detailed version elsewhere, and a part of this paper
will prabably submitted for publication somewhere else with complete proofs.
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By(kG) = the principal block (ideal) of £G

A = a finite dimensional k-algebra with unit element 1,4

J(A) = the Jacobson radical of A

a module = a finitely generated left module

Irr( B) = the set of all irreducible ordinary characters of a block B

IBr(B) = the set of all non-isomorphic simple G-modules in a block B of
kG

M, (A) = the full matrix algebra over A of degree n forn € N

For other notation and terminology see the books of Alperin [2|, Nagao-
Tsushima (21] and Thévenaz [23].

1. Isomorphic blocks

In this section we discuss on isomorphic blocks of finite groups, which is much
stronger than even Morita equivalent blocks, and however, a fundamental and a
starting point on the subject we will discuss.

When we consider blocks of finite groups, the following should be placed at
first. Namely,

(1.1) Theorem (see [7, (62.21) Theorem]). Let A be a block of ¥G. Then
A is of finite representation type (that is, there are only finitely many non-
isomorphic indecomposable left kG-modules in A) if, and only if defect groups
of A are cyclic.

Now, let’s begin with giving the following two old results.

(1.2) Proposition. If G = P is a finite p-group, then kG has only one simple
module, say k¢, so that kG is a local algebra and kG = By(kG), namely, kG
itself is a block.

For the proof of (1.2), see, for example, [21, Chapter 5, Problem 2.10] or
[2, §3 Corollary 3 (p.14)].

(1.3) Theorem (K. Morita [20, Theorem 2]). Assume that G is a p-nilpotent
group with Sylow p-subgroup P. Then

Bo(kG) = kP  as k-algebras.

Now, as a kind of generalization of Morita’s theorem (1.3), I.M. Isaacs and
S.D. Smith gave the following result, which characterizes finite groups of p-length
one in terms of representation theory. (see [17, (1.3)] for the definition). Namely,
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(1.4) Theorem (I.M. Isaacs and S.D. Smith, 1976, [14] ;and S. Koshitani
1981 [15], 1990 [16]). Assume that P € Syl,(G), and let H = Ng(P), A =
Bo(kG) and B = By(kH). Then the following four conditions are equivalent.

(1) G is p-solvable of p-length one.

(2) Irr(A) — Irr(B), x = \|u (restriction) gives a bijection.

(3) IBr(A4) — IBr(B), S+ S| (restriction) gives a bijection.

(4) B— A, b+ b1, gives an isomorphism of k-algebas (so that 151, =
14).

It is, of course, natural to consider relations between the principal blocks
Bo(kG) and Bo(kH) in the case that H is a normal subgroup of G. There are
actually results, due to Alperin and Dade, which arc on isomorphic principal
blocks of a finite group and its normal subgroup.

(1.5) Theorem (J.L. Alperin 1976, [1] and E.C. Dade 1977 [8]). Let H be
a normal subgroup of G satisfying p /||G : H|. Thus the Sylow p-subgroup
P of G 1s also that of H. Assume, furthermore, that G has a factorization
G = H.-Cg(P) (note that the condition G = H-N¢g(P) always holds by the
Frattini argument ). Then, the principal blocks Bo(kG) and Bo(kH) of kG and
kH, respectively, are isomorphic as k-algebras. More precisely, it follows the

following. Let A = By(kG), and B = By(kH). Then
B — A, b b1,
gives an isomorphism of k-algebras and
Irr(A) — Irr(B), X & XiH (restriction)
is a bijection.

2. Naturally Morita equivalent blocks

In (1.4) and (1.5) in the last section we gave two results on isomorphic prin-
cipal blocks of 4G and kH for a subgroup H of G, in the cases that H = Ng(P)
and that H 4 G. In this section, we actually treat these two cases together at
the same time, and even under weakened situation that Morita equivalent blocks
instead of isomorphic blocks.

Anyway the motivation here was, as a matter of fact, given by B. Kiilshanumer
[19], where he gave a new, but very natural (canonical) notion he calls naturally
Morita equivalent blocks. So, let’s start the second section by giving the defi-
nition of it. It should be, however, noticed that the notion we state below is a
little bit different from Kilshammer’s because he gave it for a normal subgroup
H of G, while we consider it for any subgroup H of G. That’s the difference.
Of course, they are the same once we assume that the subgroup H we consider
is normal in G.
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Definition(B. Kilshammer, 1990, [19]). Let H be any subgroup of G (not
necessarily normal in G}, and let A and B be blocks of &G and k H, respectively.
We assume that n is a positive integer. Then we say that 2 and B are naturally
Morita equivalent of degree n when the next conditions hold:

There exists a k-subalgebra S of A which satisfies

14 €5 =M,(k), as k-algebras
B®,S — 4, b s bs
gives an isomorphism of k-algebras (so that 1514 = 1,4).

Remark. It should be noted that if two blocks 4 and B arc naturally Morita
cquivalent of degree one. then it means that A and B are isomorphic as k-algebras
via restriction just as in (1.4) and (1.5).

In the above situation, say, if two bloeks A and B are natwrally Morita equiv-
alent of degree n, then it holds that A = M, (B), so that A and B are Morita
cquivalent, of conrse.

There had been, actually, one result by B. Kilshanmer [18], which was a
generalization of a theorem on isomorphic principal blocks duc to Alperin and
Dade (see (1.5)) and. at the same time, which was a motivation of having notion
"naturally Morita equivalent™ blocks. Namely,

(2.1) Theorem (B. Kiilshammer, 1984 [18], see also M.E. Harris, 1994 [10]).
Let H be a normal subgroup of G aud let ) € Syl (H) and B = Bo(kH).
Suppose that G has a factorization G = H-C¢(Q). Then. for any block A of kG
which satisfies that 1,4-1p # 0 (whicl means A covers B) and that @} is a defect
group of 4 as well, there is an isomorphisms

B ®Ta‘(.4) — 4 and W(A) = J‘Iln(}‘)
k

of k-algebras for some positive integer n, where = is a k-algebra-epimorphism = :
kG — k[G/H] induced by the canonical epimorphism G — G/H. In particular,
A = M,(B), which implics that A and B arc naturally Morita equivalent of
degree n.

Recently, A. Hida and the author got results [12], which are mainly on gen-
cralization of ones by B. Kilshammer [19]. Actually, our joint paper [12] have
several theorems. So, readers who are interested in our results stated below,
please lock at it. It has much more things there.



ON p-BLOCKS OF FINITE GROUPS 95

(2.2) Theorem (A. Hida and S. Koshitani. 1997 [12, (2.10) Theorem, (3.6)
Theorem]. See also B. Kilshammer 1990 [19, Theorem 8 and Proposition 10]).
Let H be any subgroup of G and let A and B, respectively. be blocks of kG and
kH. Let D be a defect group of B. Assume that A and B are naturally Morita
equivalent of degrec n. (Then, it follows that D is a defect group of A, too).
So, let N = Ng{D) and M = Ny(D). Then it is well-known that there are two
blocks A and B of kN and kM, respectively. such that A and A correspond via
the Brauer correspondence with respect to D, and so are B and B.

Then, The blocks A and B are also naturally Morita equivalent of degree n.

Remark. The above was proved by B. Kilshammer [19] in the case that
H is normal in G. It should be, presumably, noted that the above was related
to a theorem due to M.E. Harris and R. Kuorr, 1985 [11]. The converse of
(2.2) holds as well, roughly speaking, if H is normal in G. One more thing.
Everything mentiond so far in this section here (so that in §1, as well) can hold
for a suitable complete discrete valuation ring O not only for k (see [12]).

3. Morita equivalent 3-blocks with abelian defect groups

In this section we consider very particular cascs and treat very special cocrete
examples. It looks. however, important to investigate such concrete examples
because we have had only a few (or a little bit more, maybe, but not many,
anyway ), where so-called Broué’s conjecture on derived equivalent blocks of finite
groups holds. Last year 1996. T. Okuyama actually announced very nice and
interesting results. He gave several examles where Broué's conjecture holds [22].
We almost forgot, by the way, to tell what the Broué's conjecture is. That is,

Broué’s conjecture([3, 6.2 Question], [5, 4.9 Conjecturc]). Let 4 and B be
principal blocks of kG and k[Ng(P)). respectively. where P € Syl (G). If P is
abelian, then A and B would be derived equivalent,

We are not going into detail about derived cquivalent blocks (sec Broué's
articles [3], [4], [5]. [6]). The point here is just that Morita equivalence implies
derived equivalence.

In the remainder of this section we assume the following,.

Assumption and remarks. We assume that char(k) = p = 3. Let G =
PSU(3,¢%), the projective special unitary group of degree 3 over a finite field
GF(g?) of ¢ clements, where g is a power of a prime such that ¢ = 2 or 5 (mod
9). In this case, a Sylow 3-subgroup P of G is elementary abelian of order 9,
say C3 x Cy. Let H = Ng(P), the normalizer of P in G. Then, it is known that
H = PSU(3,2%) = PQ, the semi-direct product of P by the quaternion group
of order 8 (sce [13, 11 §10]). Finally, let A = By(kG) and B = Bo(kH) = kH,
the principal blocks of ¥G and kH, respectively. It should be noted that G is a
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simple group if ¢ > 2, and that there are infinitely many such ¢’s by Dirichlet’s
theorem.

It had been known from a result by M. Geck [9, pp.571-573] that the principal
block A of G has a decomposition matrix and a Cartan matrix for a prime 3,
which are independent from gq if ¢ satisfies the above condition. So, it could have
been imagined that for any such g the block A would have the same structure,
say, uniquely determined up to Morita equivalence. Actually, this is true! It is
a recent joint work with N. Kunugi, which is the following.

(3.1) Theorem (N. Kunugi and S. Koshitani, 1997). For any power q of
a prime which satisfies ¢ = 2 or § (inod 9), the principal 3-block A = By(kG)
of the projective special unitary group G = PSU(3, ¢*) is determined uniquely,
up to Morita equivalence. Therefore, the two principal blocks A = By(kG) and
B = By(kH) = kH are Morita equivalent, where H = Ng(P) = PSU(3,2?),
P € Syl;(G) (so that P = C3 x C3).

(3.2) Corollary to (3.1). Broué’s conjecture holds for the case p = 3 and
G = PSU(3,¢*) when ¢ =2 or 5 (mod 9).

Remark. (3.1) (so that (3.2) as well) can hold for a suitable complete discrete
valuation ring O not only for £.

Acknowledgements. The author would like to thank Professor Y. Iwanaga
for giving him an opportunity to give two talks in the meeting, the 30th Sym-
posium on Ring Theory and Representation Theory.
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KAC-MOODY GROUPS AND SOME GAUSS DECOMPOSITIONS

JUN MoORiTA

ABSTRACT. We will give an introductory explanation of a paper “On some Gauss de-
composition of a Kac-Moody group” by E. Plotkin and the author, In such a paper, an
axiomatic approach to a Gauss decomposition of a Kac-Moody group has been given,
and a certain prescribed version has been discussed (cf. [13]).

1. Introduction

In 1968, the so-called Kac-Moody theory was born. V. G. Kac and R. V. Moody
have independently constructed the theory of a certain class of infinite dimensional Lie
algebras (cf. [5], [9]). The year 1998 is the 30th anniversary of the Kac-Moody theory.
We shall celebrate it! (In another sense we must remember the vear 1998 as the vear
of Nagano Olympic Game.) And also the theory of associated Kac-Moody groups has
been studied. It contains the theory of semisimple algebraic groups. If we consider a
Kac-Moody group over a commutative ring, then it contains the theory of Chevalley
groups. It is very intcresting to study these objects comparing the infinite dimensional
casc to the finite dimensional case. Lots of theorems in the finite dimensional casc
have been generalized to those in the infinite dimensional case. However, there are
many open questions about infinite dimensional Kac-Moody groups. One of the most
difficult questions is to study the simplicity of a Kac-Moody group over a field in
the non-affine case. We need much more explicite information about the structure
of Kac-Moody groups. In the paper [13], we have begun to study a certain Gauss
decomposition of a Kac-Moody group, which might be helpful to get an explicite
group structure of a Kac-Moody group. To do so, recent successive papers [1], [2], [3].
[4] by E. W. Ellers and N. Gordeev gave us a new shed of light. They gave a Gauss
decomposition (with a prescribed torus element) of a simple group of Lie type. And
also they discussed an application to the O. Ore conjecture and the J. Thompson
conjecture (cf. [4], [14]). To discuss a Gauss decomposition in our situation, we will
give an axiom of a triangular system. This is a general sctting. But mainly we are
interested in an application to Kac-Moody groups. Then we will deal with a Gauss
decomposition { with a prescribed torus element ) of an infinite dimensional Kace-Moody
group of rank two.

Iu Section 2, we will give a quick review of Kac-Moody groups. We will present an
axiom of a triangular system in Section 3. And, in Scction 4, we will study a Gauss
decomposition with a preseribed torus element in the rank two case.
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2. Kac-Moody Lie algebras and Kac-Moody groups

We will review the definitions of Kac-Moody Lie algebras, root systems and Kac-
Moody groups (<f. [3], {6]. [7]. [9], [20], [11], [15], [17]).

An n x n integral matrix A = (@;;)1<i,j<n is called a generalized Cartan matrix if
a;i;=2(1<i<n),a; <0(1<i#j<n)a;=0& a; =0(1<i,j<n) A
triplet (h,II,IIV) is called a realization of A if b is a vector space over C of dimension
2n — rank(4); I = { a;.---.a, } is a set of n linearly independent elements of
h* = Home(h,C); TV = { hy,--- ,hn } is a set of n linearly independent elements of
b; and a;(h;) = aj; for 1 < i,j < n. Let g be the Lie algebra over C generated by the
so-called Cartan subalgebra b and the so-called Chevalley generators ey,--- ,e, and
fi,--+, fa with the following defining relations:

(R R )=0(h k' €h), [eifi]—dijhi=0(1<4,j<n),
?,nm_ — D...:La.. = ?,\L +ai(h)fi=0 Q~ €h1<i<n)
(ad ;)" e = (ad f)"PNf; =0 (1< i # j<n),

where n(i,j) = —a;j + 1. This Lie algebra is called a Kac-Moody Lic algebra.

Let w; be the involutive automorphism of h* defined by w;(u) = 2 — p(hi)a; for all
p € h*. The subgroup of GL(h*) gencrated by w,,--- ,w, is called the Weyl group
and denoted by W. Let w be the involutive automorphism of the Lic algebra g defined
by w(e;) = —fi,w(fi) = —e; and w(h) = —hforall 1 <i<nand h €h. Thenwis
called the Chevalley involution.

Under the adjoint action, b is diagonalizable on g, that is, g = Gaeye 9%, where
g ={zeg | [h,z]=a(h)zforallheh}. Let A={a€h* | g #0}. WecallA
the root system of g, and II the set of simple roots of g. We sce that g% = Ce;, g7 =

Cfi and g° = b, hence {0} U{+ai}iL; C A. Let Ay = AN(Y Zyo a;\ {0}), the set

=1

o

=1
of positive roots, and A_ = —A,, the set of negative roots. Then A = ALU{0}JUA_.
One sees that A is W-stable. Therefore, we can define A™ = |J Wa;, the set of real

=1
roots, as a subset of A. For cach a € A, we obtain a € A™ ZaNA = {0,+a}.
Furthermore, dim g* = 1 if a € A™. For each a = wa; € A™ with w € W and
a; € II, we put b, = wh; by the contragradient action of w on h. The h, are
well-defined.

For each a € A™, a pair (eq,6-0) € 8% x g~ is called a Chevalley pair for o
if [ease—a] = ha and w(es) + e—o = 0. There are presicely two Chevalley pairs for
cach o € A™. If one is (¢q,€-q), then (—e,, —e_q) is the other. We choose and
fix a Chevalley pair for cach a € Alf = Ay N A™ with ¢,;, = ¢; and e_,; = f; for
1 <7 < n. Then we obtain the set € = { eo | a € A"}, which is called a Chevalley
basis for A'e,

Now we define the numbers 7,4 and N,z by the following:

(exp ad e, }(exp ~ ad e_q )(exp ad ¢q)eg = Hageg

for all o, 8 € A™, and
_no: au_ = Nogeats
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for all @, 8 € A" with o + 8 € A", where ' = 3 — B(ho)a € A'. Then, neg = £1
and Nog = 2(p + 1), where p is the largest integer satisfying 4 — pa € A'®.

A g-module M is called integrable if M = &,ey- M* and ecach ¢, islocally nilpotent
on M, where M» = { ve M | hv=pu(h)vforall h € h } and a € A™. A basis
of M is called standard if it consists of the bases of the M* and its Z-span is stable

under e™ for all @ € A™ and m € Z>g, where

m

(m) _ Sa
ea = ——'
m!

We take an integral g-module M with a standard basis. Let Mz be the Z-span of this
standard basis in M. For a commutative ring, R, with 1, we put M(R) = R® Mz.
Then, for cach o € A™ and t € R, we can consider the R-linear operator xz,(¢) on

M(R) defined by
Z4(t)(r @ v) = Z t™r @el™y
m=0

for all r € R and v € M. Since z,(—t) is the inverse of 2,(1), the operator z,(t) lies
in GL{M(R)). Now we define the associated (standard or elementary) Kac-Moody
group Gar(A, R) as the subgroup of GL{M (%)) generated by 24(t) for all a € A
and ¢ € R. Then, in G y(A, R), we obtain the following relations (cf. [12], [16], [17]):

(A) zo(s)zalt) = zals +1),
(B1) [zal(s),z3(t)] =1
if Qaﬂ = m»
(B2) [ra(s),z3(t)] = za+3(Nagst)
HfQus={a+3}CA™
(B3) [zals), 2a(t)] = Zatp(Est)zas2g(Est?)
fQog={a+3.a+28}CA",
(B4) [ra(s),23(1)] = Tats(£251)T204(£35%)7 0 424(L351°)
if Qs ={a+8,2a+8,a+28}C A",
(B5)  [za(s),75(1)] = Tass(£5t)T2045(£5 1T304 4(£5° ) T30 425(£25%7)
if Qap = { 0+ 8,20 + B30 + 5,30 + 28 } C A™,
(B")  walu)zs(t)wal—u) = zg(napu't),
(C)  hal(u)ha(v) = ha(uv),

where s, € R, a € A", Qag = (Zsoa + Z>0B)N A, § = B — B(ha)a, u' =
uPthe) and wo(u) = 2a(u)z_o(=u"")2q(u) and ho(u) = we(u)wa(—1) with u in
the nultiplicative group, R, of R.

Tlere are several ways to construct Kac-Moody groups - for example, Marcuson-
type Kac-Moody groups (cf. [8]) or Tits-type Kac-Moody groups (cf. [17]). We take
here standard (or elemantary) Kac-Moody groups, which are just corresponding to
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the clementary subgroups of Chevalley groups over commutative rings in finite di-
mensional case [16].
3. Triangular systems
Here we call (G U T,V {¢1,--+ . ¢, }) a triangular system (or a Gauss system) if
(1) G is a group, and U. T,V < G are subgroups.,
(2) ¢ : SLa(K') — G is a group homomorphisin of SL; over a ficld K into G with

(a) ¢ M.u M | ae ¥

-

Ui U5

-

(b & | te KXy =T, <T;

(=]
-~ —-

—
o

(c) & | a € K =V; <V,

Q
—

NG={U.V,--- ,V,),and TU; = U;T for 1 < ¢ <,
(4) there exist the subgroups of G called U] and V/ for 1 < < » such that

U=U;=Ul].
V=VV,=VV,
ViUl = UV,
UV = ViU,

Then we can establish

Q
I

UVTU
C:QEQE

uel/

{see below). We call this decomposition a Gauss decomposition of G.

Theorem 1. Every trienguler system hasz a Geuss decomnposition.

Let It be a field. and G = Gy(A. K') a Kac-Moody group over K. Then, we put

U=(2qla) | a €AY, a€ ),
T={(ha(t) | 6 €A™, 1€ K™),
V=(x.e) | a €A, a€ ).

-
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& W M — Xo{(a).

. t 0

@ 0 .‘l_ = }9%:,
1 0

sii (b 9) = reata)

Ul = (Tai(s)r3(D)ra—s) | s,t € K. 3€ AT\ {ai} ).
V! = (2 0,(8)23()T—a;(—5) | st €K, §€ A%\ {-a;}).

Then (G, U,T,V,{¢1, -+ . én}) is a triangular system. Hence,
G=UVTU
C u(VTU yu™t.

vel!

4. Prescribed Gauss decompositions

Let (G,U.T,V,{¢;.--- .0,}) be a triangular system. Then. as in Section 3, we
obtain
G=J w(VTUW .
uel

We now take an element 1* € T. And we put

G(h*)=Z(G)u | atVhT)g™".
g€
where Z(G) is the center of G. Then we want to consider whether G = G(2*) or not.
If G = G(h*) for all h* € T, then we say that G has a Gauss decomposition with

prescribed clements in T. This is equivalent to the fact that a non-central element
g € G can be written as the form

g = qivhug;’

with ¢y € G, v € V, u € U if we fix any prescribed element h in T.
Here, we will check this in the case when G = SL,y( /), which is the easiest but
important in our discussion. We choose and fix

t 0
}i = W m \.N._.
t
Let
A: b € VTU C SLy(k).
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Then ¢ # 0, and

N
) <Y
=5 o=
~———
Il
TN
QAje =
— o
\_—/
AN
o )
Q|- (=]
SN——
PN
o —
- Qo
SN—

If b # 0, then
( 1 0) (a b)( 1 O) | (
a—1 t—a =1 ¢
5 1 c d b 1 7 1

{ta+td—f2—ad-i-bc}.

o -~
~~ | — [e=]
SN ——
——
[e=] —
_— O
\—-/

where

'
c =

Sl B

If ¢ # 0, then

COEIETEIEIC)

where

¥ = %{ta+td—t2—ad+bc}.
fb=c=0, a+# £1, then

1
1 -1 a b 11 a a-—-—
_ a
0 1 c df \o 1 o 1
a
which arrives at the case of b # 0 above. If b=¢ =0, a = £1, then
a b +1 0 ,
(c d) = ( 0 :1:1) € Z(G).

G = G(h*)

for all h* € T when G = SLy(X). Hence, SLy(K) has a Gauss decomposition with
prescribed clements in 7. Similarly we can obtain the following result.

Therefore, we obtain

Th 2. Leta=(2 ¢
eorein 4. ct A = —b 2

m = max {a. b}. Let K be a field with | K | > m + 3. Then every standard Kac-

Moody group G over K of type A has a Gauss decomposition with prescribed clements
in T

be a generalized Cartan matriz with ab > 4. Put

It remains to consider the same problem for (infinite dimensional) standard Kac-
Moody groups of rank > 3.
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ON EVERETT RING EXTENSIONS
AND EVERETT FUNCTIONS

TAKAO SUMIYAMA AND MANABU MATSUOKA

ABsTRACT. Concerning Schreier’s extension problem for rings, C. J. Everelt
considered four functions, which are called Everett functions. For a ring H and
an ideal 7 of R, if there exists a multiplication-preserving right inverse of the
natural ring homomorphism of R to R/I, we can 1ake one of the four Everett
functions trivial. This paper is concerned with existence and extensions of such
right inverses.

Introduction

When we refer an extension of a ring, it has two different interpretations.
In the first case, when R is a ring and R’ is an abelian subgroup of R which is
closed under multiplication, we say that R is an extension of R'. In the second
case, when R is a ring and I is an ideal of R, we say that R is an extension
of I. When we refer Everett ring extensions, we mean the sccond case. By an
Evcrett extension of a ring I by a ring 4, we understand any ring R with the
properties that I is an ideal of R and there exists an isomorpliism R/I = A.

Let I be an ideal of R, and 7 : R — A = R/I be thc natural ring homo-
morphism. A mapping f: A — R is called a right inverse of 7 if 7o f = ida.
In [2], for two rings I and A, to construct all Everett extensions of I by A, C. J.
Everett directed his attention to right inverses and considered four mappings,
which are called Everett functions. The detailed discussion on this subject will
be found in [4, §52].

A multiplicative systemn of representatives is a right inverse which preserves
multiplication. If there exists such a right inverse f, then, among the four
Everett functions, we can take {a,b) =0 (sec [4, §52]).

For instance, let R be a commutative ring with 1. Assune that R is Haus-
dorff and complete with respect to the topology defined by a decreasing se-
quence I) D I; D --- D I; D Iiyy D --- of ideals such that I;I; C Ii;j. Let
7 : R —— R/I) be the natural ring homomorphism. If the residue ring R/I, is
a perfect ring of characteristic p (p a prime), then by [5, Chapter 11, §4, Propo-
sition 8], therc exists a inultiplicative system of representatives f : R/, — R.

The detailed version of this paper will be submitted for publication elsewhere.
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In what follows, we shall consider conditions for existence and extensions of
multiplicative systems of representatives.

Throughout this paper, all rings are associative rings (not necessarily with
1). Let R be aring, and I an ideal of R. Let A = R/I, and n : R — A be the
natural ring homomorphism. A mapping f : A — R is called a multiplicative
system of representatives from A to R if f satisfies the following:

(1) mof=ida,
(2) f(ab) = f(a)f(b) (a,b€ A),
(3) f(0)=

To begin with, we shall define double homothetisms of rings. Let N be a
ring. Let E,(N) denote the endomorphism ring of N as a right N-module, and
E5(N') denote the endomorphism ring as a left N-module. Elements of E;(N)
or Eo(N) act on IV from the left. The abelian group E (N) & E;(N) together
with the multiplication

(', # )W, ) = (¢ o¥', ¥?09?) (8',9' € Ei(N), ¢*,¢* € Ex(N))

is a ring, which will be denoted by E'(N). An element ¢ = (¢', ¢*) of E'(N)
is called a double homothetism of NV if it satisfies

(4) =(¢'y) = (¢°2)y,
(5) ¢'(¢%x) = ¢*(¢'z) (z,y € N).

Let us denote by DH(N) the set of all double homothetisms of N.

Let K and N be rings. Let [, ] : (a,) — [a, 8] be a mapping from K x K
to N and d: a — d, = (d,, d2) be 2 mapping from K to DH(N). The couple
([, ],d) of these mappings will be called an Everett couple for K and N if the
following (6)-(15) are satisfied:

(6) [a.8)=[B,0],

(M) oy Bl + [+ B,9] = [a, B+ 7] + [8,7],
(8) [0,a]=0,

(9) d wspt +lenBlz =diz+ dyz,
(10) &%, 4% + z[a, f] = diz + djz,
( dl [CY ﬂ]) = [70,‘7ﬂ],
(12) dz([a ﬂl)— (a7, 8],

(19) di(de) = G(d)

(14) diz = d2z =

(18) dap = dadg (a,ﬂ,'r € K,z € N).
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Let us assume that ([, ],d) is an Everett couple for I and N. The set
I x N together with the operations

(16) (a,2)+(B,v) = (a +B. [a,8] + = +y),

(A7) (a,2)(B,y) = (af, dyy + djz + zy)
is a ring, which will be denoted by I ¢ N(| j4). The ring N is regarded as an
ideal of ' ¢ N( |4 by the embedding ¢ : x +— (0,x). Let 7 : (a, 1) — a be
the projection of ' e N(| |4 onto K. Then we get an exact sequence of rings:

0 » N —— KeNy.j9y — K 0

Theorem 1. Let R be a ring, [ an ideal of R, and A = R/I. Letiy: I — R
be the natural embedding, and my : R — A the natural ring homomorphism.
Then there ezists ¢ multiplicative system of representatives from A to R if and
only if there ezists an Everett couple ([, |.d) for A and I, and there ezisis
¢ ring isomorphism o from A e I 14 lo R which commautes the following
diagram (18):

0 v I - Aol 10 T 4 A + 0
(18) lid la lid
0 v I —2 R — T A ——0

Proof. Let ([, ], d) be an Everett couple for A and I, and let 0 : Ao [ .4y
— R be a ring isomorphism which commutes the diagram (18). Then we see
that the mapping f : A — R given by a — o(a, 0) is a multiplicative system
of representatives.

Conversely, assume that there exists a multiplicative system of representa-
tives f: A — R. Wecandefine [, |: AxA—Tandd: A — DH(I) as
follows:

(19) [a,8] = f(a) + f(8) = fla+B) (a,8 € 4),
(20) do = (dy, d2),
where d\z = f(a)z ,d’z = 2f(a) (a € A,z € ).

We see that this couple (| , ],d) satisfies the conditions (6)-(15), and the
mapping o : A e [[ , }.¢) — R defined by (a,z) = f(a)+ x is a ring isomor-
phism which commutes the diagram (18). O

In [6], it plays an important role to extend multiplicative systeins of rep-
resentatives, In what follows, we shall consider extensions of multiplicative
systems of representatives and their uniqueness.

Let R* be a ring, and I* an ideal of R*. Let R be a subring of R*, and I an
idcal of R. We say that (R*,I*) dominates (R,I)if I = I* N R (cf.[3, p.14]).
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In this case, A = R/I is naturally regarded as a subring of 4* = R*/I*. Let
f : A — R be a multiplicative system of representatives. If there exists a
multiplicative system of representatives f* : A* — R* such that f*|4 = f.
then f* is called an extension of f. If f*: A* — R* is thc only multiplicative
system of representatives from 4* to R* which is an extension of f, then we
say that f is uniquely extended to f*.

In what follows, we assume that (R*,I*) dominates (R, I). Let A* = R*/I*,
and A = R/I. Let // : I* — R* be the natural embedding, and =’ : R* — A4~
the natural ring homomorphism.

Let f be a multiplicative system of representatives from 4 to R. Let us
assume that therc exists a multiplicative system of representatives from A to
R* which is an extension of f. Then there exists an Everctt couple ([, ]*,d*)
for A* and I* which is defined by the following:

(21) [a, 8" = f*(a) + £(8) — f*(a + B),

(22) &y = (dz), d3?),

where d3'z = f*(a)z, d3%z = zf*(a) (a € A*,x € I*).

By Theorem 1 and its proof, we sce that there exists a ring isomorphism
c:R*— A oI a0 and o(R) = {(a,z) E A* e I [ d*) | o« € A,z € I}.

Let us assume that there exist an Everett couple ([, |, d) for A and I, and an
Everett couple ([, ]*,d*) for A* and I*. We say that ([. |*.d*) is an extension
of ([, |,d) if it satisfies the following:

(28) If o, 8 € A, then [, 8]* = [, 8];

(24) Ifa € A, then d3/(I) C I, d22(I) C I, di}r = d\x, and d3%r =
d’z (x €l

In this case, A ® [{ }g4 is regarded as a subring of A* e I(‘[ 10 ) by the
embedding (a,z) — (a,z).

Let us assume that there exist two Everett couples ([, |*,d*)and ([, |**,d**)
for A* and I* which are extensions of ¢ = ([, ],d). Then Ao |4 is regarded
as a subring of A* e I | )+ .4+ and a subring of A e Ig  yee gesy- Let o I° —
A* e I('[ 1o e be x — (0,z), ** : I* — A* o I('[ ) ]..'l‘..)be z — (0,z),
i A% I(‘[ Jedy A* be (a,2) — a, and 7** : A* e I(‘[ ey T A"
be (a,z) = a. Two Everett couples ([, ]*,d*) and ([ , ]**,d**) which
are extensions of ¢ = ([, ], d) are said to be e-equivalent if there exists a ring
isomorphism 7 : A"OI(‘[ ) — A‘OI("[ e der) which satisfies Tl,\.[([ i
id and commutes the following diagram (25).

1)

0 » It » ATelr . A » 0

(25) E |- |

* [ R » - T - R
0 I > A .I([ !l..'d..) A — 0
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This means that two rings A e I([ o e .yand A* [ o dee ) BTE equivalent as
ring extensions of 4 e [; |4 by a ring 1bomorph:sm which leaves the clements
of Ae [ | afixed and maps every class modulo I* onto itself (see [4, p. 196]).

Proposition 2. (cf.[5, p.196, Satz 114 and Korollar]) Let ¢ = ([ , ], d) be
an Everett couple for A and I. Let ([, |*,d*) and ([ . |**.d"*) bec two Everett
couples for A* and I" which are extensions of e = ([ . |.d). Then(|. |*.d*) and
([, ]"*,d°") are e-cquivalent if and only if there exists a mapping A : A* — I*
which satisfics the following (26)-(30).

(26) Ma+8) = Ma) = AI) = [a, 3" = [a. 3]".
(27) MaB) = Ma)MB) = d3" (M(B)) + d3**(M(a)).
(28) Ma)z =dt}z —d*'e,

(29) 2A(a) = d3?x —d3 e,

(30) Ala=0 (a,3€ A*,z e I*).

Proof. Let 7 : A™ e I[ [y — At I([ [ do*) be a ring isomorphism
which satisfies (a7 | 1.¢y = id and commute the diagram (25). We can define
the mapping A : 4* — I* by M a) = z, where 7(a,0) = (a, r). We see that A
satisfies (26)-(30), and Aa) =0 (a € A).

Conversely, suppose that there exists a mapping A : A* — I* which sat-
isfies (26)-(30). We can define 7 : A* o Iy sy — AT O TG oo geuy DY
7(a,r) = (a,z + Ma)). This mapping 7 is a ring isomorphism which satisfies
Tlaery . 1.4y = id and commutes the diagram (25). O

If there exists a multiplicative system of representatives f from A to R, we
can define an Everett couple ¢ = ([, ].d) for A and I as follows:

(31) IG Bl = f(a) + f(B) = fla + B),

(32) do = (d},d2),

where dl r= f(a)z, &z =2 f(a) (a,3 € A.x €I).

Theorem 3. Let f: A — I be a multiplicative system of representatives,
and e = ([, |,d) be the Everett couple for A and I which is defined by ($1) and
(32). Then:

(1) There ezists a multiplicative system of representatives f* : A* —
R* which is an exiension of f if and only if therc ezists an Everetl couple
([, ]*,d*)for A*and I*which is an extension of ¢, and therc crisls a ring iso-
morphism o : A‘OI('[ ey R* which satisfics o(a,0) = f(a) (a € A) and
commaules the following diagram (33):

0 —— I'" —" A%eLj gy —— A 0

(33) i‘“’ l, l.-.,

0 > I* Ly R* u A* — 0
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(11) Let f* : A* — R* be o multiplicative system of representatives which
is an extension of f. Let (|, |*,d")be the Everett couple for A*and I* dcfined
as follows:

(38) [0 A]* = f*(a) + £*(B) - f*(a + B).

(35) do = (dg,d3),

where dflz = f*(a)r, dfr=zf*(a) (a,f€ A", x€I")

Then f is uniquely extended to f* if and only if, for each Evereit couple
([ ]"*,d**)for A* and I* whick is e-equivalent to ([ , |*,d*), A = 0 is the only
mapping of A* to I* which satisfies (26)-(30).

Proof. (1) Let f*: A* — R* be a multiplicative system of representatives
which is an extension of f.

Then we can define an Everett couple ([, |*,d*) for A* and I* by (34)
and (35). This Everett couple ([, |*,d*) is an extension of e. The mapping
o A* OI('[ ey R* defined by (a,z) — f*(a)+ z is a ring isomorphism
which commutes the diagram (33) and o(a,0) = f*(a) = f(a) (a € A).

Conversely, suppose that there cxists an Everett couple ([ , |*,d*) for A*
and I* which is an extension of ¢, and there exists a ring isomorphism o :
At e I(‘[ ) R* which satisfies o(a,0) = f(a) (a € A) and commutes
the diagram (33). Then we can define f* : A* — R* by a — ¢(«,0). This
mapping f* is a multiplicative system of representatives from A* to R* which
is an extension of f.

(IT)  Let ([, ]**,d**) be an Everett couple for A* which is e-equivalent
to ([, ]*,d*). Suppose that there exists a non-zero mapping A : 4* — [I*
which satisfies (26)-(30). Let o : A* o I§ gy — B be the isomorphism
stated in (I). Two mappings f* : @ = o(a,0) and ¢* : a — o(a, —A(a)) are
multiplicative systems of representatives from A* to R* which are extensions
of f, and we see that g* # f*.

Conversely, let g* be a multiplicative system of representatives different from
f* which is an extension of f. We can define an Everett couple ([, |**,d**) for
A* and I* as follows:

[, 8]** = g*(a) + g"(B) - g"(a + B),
di'e = g*(a)s,
d**r = z¢*(a) (a,f € A%,z € I").
Then the mapping A : A* — I* defined by a — f*(a) — g*(a) satisfics
(26)-(30), and is not the zero mapping. O

Example. Let A = GF(2) = Z/(2), A* = GF(4) = GF(2)[X]/(X?2+X +1)
and ¢ be an auntomorphism of A* defined by * — 2. The Abelian group
V =A@ A* together with the multiplication

(a1, b1 )(az, b2) = (a1a2, a1by + o(a2)by)
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is a ring, which is denoted by R*. We see that I* = {(0,b) € R* | b€ A*} isan
ideal of R*. The natural homomorphism =* : R* — A* given by (a,b) — «
yiclds R*/I* = A*. Moreover, R = {(a,b) € R* | a,b € A} is a subring of
R*,and I = {(0,b) € R | b€ A} is an ideal of R. We get R/I = A by =*|x.
Let v be a generator of A* which satisfies the relation 4% + v 4+ 1 = 0. The
mapping f* : A* — R* defined by ¢ — (@,0) is a multiplicative system of
representatives. As f = f*| 4 is a multiplicative system of representatives from
A to R, so f* is an extension of f.

Let e = ([, ],d) be the Everett couple for A and I defined by (31) and (32).
That is,

[a, 8] =0,
d' (0,2) = &%(0,z) = (0,az) (a,B € A,(0,2) € I).

Let ([, ]*,d*) be the Everett couple for A* and I* defined by (34) and (35).
That is,

[a,8]" =0,
d:}(0,z) = (0,azx), d:3(0,z) = (0,c(a)z) (a,8€ A*.(0,2) € I").

Let ([, ]**,d**) be another Everett couple for A* and I* defined as follows:

[, 8]** =0,

d*'(0,2) = d§**(0,z) = (0,0),

dy*'(0,z) = d;*%(0,z) = (0, x).

d3;"(0,2) = (0,7=),

d3"(0,z) = (0,7%x),

d33'(0,2) = (0,7%2),

d33(0,7) = (0,77) (a, € A", (0,x) € I*).

Let A: A* — I* be the mapping defined as follows:
1— (0,0), 7+—(0,1), ~+*+—(0,1).
This mapping A satisfies (26)-(30), so ([ , ]*.d*) and ([ , ]**,d**) arc

e-equivalent by Proposition 2. Since A is not the zero mapping, by Theorem 3
(II), we see that f is not uniquely extended to f*.
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FINITE HOPF ALGEBRAS IN
BRAIDED TENSOR CATEGORIES

MITSUHIRO TAKEUCHI

The notion of Hopf algebras in a braided tensor category has been introduced
by S. Majid [M] under the name ‘braided groups’. Later, V. Lyubashenko [L]
has generalized the notions of Hopf modules and integrals to this context and
has proved the fundamental structure theorem of Hopf modules, originally duc
to Larson and Sweedler [LS]. He has also claimed that the space of left or right
integrals in a finite Hopf algebra is an invertible object. However, his proof
docs not seem complete.

On the other hand. Y. Doi [D] studies Hopf modules for Hopf algebras in
the Yetter-Drinfeld category and proves bijectivity of the antipode of a finite-
dimensional Hopf algebra.

Motivated by these works, I talked about how to approach Hopf algebras
in a braided tensor category with diagrammatic methods and how to prove
correctly the uniqueness of integrals for finite Hopf algebras, with main source
in [T]. In the following, I reproduce the transparency sheets I used in my talk
so that the reader can imagine and enjoy the atmosphere of my talk.
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ON LOCAL SYMMETRIC ALGEBRAS

TAKAYOSHI WAKAMATSU

1. Nilpotent Selfinjective Algebras

Throughout this note, all algebras and modules are assummed to be finite
dimensional vector spaces over a fixed algebraically closed field K. The dual
functor Homy(?, K) is always denoted by D.

In the previous paper [1], we have proved that any selfinjective algebras can
be constructed by using nilpotent selfinjective algebras. So, we start by recall-
ing the definition of nilpotent selfinjective algebras. Let A be an algebra and
aM, and 45,4 bimodules. The module 45,4 is called an injective cogenerator
if the functor Hom4(?, 454) induces a duality between A-mod and mod-A.
We consider a pair of linear maps

@AM @AMy — s M,

and
Y AM@aMy — 4Sa.

The map ¢ is called an associative map if the equality
plp(z@y) @) =plr @y ©:))

holds for any elements x,y, = € M. If the mmap ¢ is associative, then we get an
associative algebra A(p) = A @ M with the multiplication

(a,m)-(a',m’) = (ed', am’ + md' + p(m @ m'))
for (a,m),(¢’,m') € AP M. It is casy to sce that M is always an ideal in
the algebra. We call an associative map ¢ is nilpotent if M in A@ M is

nilpotent. In this case, we say that ¢ is a nilpotent algebra. The map ¢ is
called -associative if the equality

YT O y)®z) =Pz @ Yy @ z))

The final version of this paper will be submitted for publication clsewhere.
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hold for any z,y,z in M. We call a system (g, 1) a nilpotent sclfinjective
algebra if the following conditions are satisfied;

(1)  is a nilpotent associative map and ¢ a @-associative map,

(2) 4S54 is an injective cogenerator, and

(3) v is non-degenerate in the sense that one of the couditions ¢(m & A) =0
or y(M @ m) = 0 implies m = 0 for an clement m € M.

From a nilpotent selfinjective algebra (p,+'), we can form the usual self-
injective algebra A(p,¢) = A@ M @ S by giving its multiplication as

(a,m,s)-(d¢',m',s") = (aa',am’ + md' + o(m ® m'),as' + sa’ + y(m & m'))

for (a,m,s),(da'.m',s") € A. It is proved that any sclfinjective algebra .1 with-
out semisimple part is of the form A(e, #) for some nilpotent selfinjective alge-
bra (. ). If Ais Frobenius then we may suppose that the injective cogenerator
A5 is of the form ,D(A), for some K-algebra automorphism o € Aut(A).
Morcover, if .1 is symmetric then we may suppose that 454 = 41D(A)4 and
that the map ¢ has the property

(m @ m')(14) = $(m’ @ m)(La).

We call a nilpotent selfinjective algebra (i2,4) a nilpotent Frobenius algebra
(resp. a nilpotent symmetric algebra) if 1S4 = o D(A) 4 (resp. 454 = AD(A),
and the map ¢ posesses the above property).

Any nilpotent symmetric algebra (. ') gives the isomorphisin

vaM4 = AD(M) 4

defined by y(m)(m’') = @ (m@m')(1,), which satisfics the relations y(m)(in') =
x(m')(m) and x(o(m & m’))(m") = x(m)}(¢(m’' @ m")). Conversely, such an
isomorphism Y determines the map ¢ by ¢¥(m ® m'}(a) = x(m)(m'a). So,
we may use the isomorphisin x to denote nilpotent symmetric algebra and we
write sometimes (i, y) instcad of (@, ¥).

As studied in the paper [2], in order to construct graded Frobenius algebras,
we start from a bimodule 4X 4, an automorphism o € Aut(A), a birmodule

isomorphism v : A X 4 =, ,X,, and a surjective bimodule map
8: AX®"y — ,D(A4)a
satisfying the following conditions;

(1) 8(z1 @22 ©--- @ n)(1a) =8(22 8+ @ xp @ ¥(x1))(14), and
(2) 8(z @ X®(—1) = 0 implies = = 0.
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Define the map
8i: aAX® 4 — sHomumed a(a X% 4 4 D(A)a)n
by 8:(y)(z) = 8(y @ z). Then, the space
R(8) = Ker(62) @ + -+ @ Ker(8,) @ X"t o ...
becomes an ideal in the tensor algebra
TA(X)= A3 XX G... @ XO g XOth g
and we have a graded Frobenius algebra A(8) = Ta(X)/R(8). If we put
AMA=X 8 X% Ker(0:) @ - & X /Ker(8,,_,),
then the algebra-structure of A(#) gives two maps
Wi aM Ga My — aM4, o aMEa My — X9 /Ker(8) = ,D(A)a,

and we get a nilpotent Frobenius algebra (¢, ¥').

Finally in this section. we would like to mention that the Krull-Schiidt
property for nilpotent algebras holds true.

Theorem 1. Any nilpoient algebra s a direct product of indecomposable nilpo-
tent elgebras, and such a decomposition is essentially unique.

2. Local Symmetric Algebras

In this section, we study only local symmetric algebras. Since we are assum-
ing that the field K is algebraically closed, we may suppose that the underlyin
algebra A is i itsclf, and we have to construct nilpotent symmetric algebra
(2, x) over a vector space V, where ¢ : V & V — V is an associative map and
\ : V — D(V) a bijective map satisfying

(1) x(v1)(v2) = x(v2)(e1). and

(2) x(p(v1 @ v2)vs) = x(v1)(w(v2 D w3)).

By the following result, we know that all nilpotent symmetric algebras arc
obtained by combining only nilpotent symmetric indecomposable algebras.
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In fact. using the notation of the above theorem, we have the following character-
ization of standardly X-stratificd algebras.

Theorem 2. ([ADL1]) Let (4, e) be a K -algebra. Let X' = (X(1), X(2),...,X(n)).
where for eack 1 < i < n, cither X(i) = A(i) or X(i) >~ A({). Then the following
statements are equivalent.

(i) (A.e) is standardly X-stratificd.

(ii) Ext}(X(:).DY(j)) =0 forall1 <i,j <n. X(i)€ X, Y(j) € A°.

(iii) {M | M is filtered by modules from X} = {M | Ext}(M,DY(j)) = 0 for all
1<j<n Y(j)e A}

Here, DY denotes the dual A-module Homy (Y, R) of Y. We can also formulate
quite generally the following Bernstcin-Gelfand-Gelfand reciprocity law.

Theorem 3. Let (A, e) be a (Y. .X)-stratified algebre. Write d; = dimy End(S(7)) =
dimy End(S°(¢)), 1 £ 1 £ n. Then

d;[P°(i): Y(j)] = di[X(j) : S(7)] and
&;[P(i): X()] = d;[Y(): 8°()] for all 1 < iij < n.

Moreover. in reference to [D], we can formulate the following theorem.

Theorem 4. A (Y, A')-stratified algebra (A,e) is a quasi-hereditary algebra if and
only if st is of finite global dimension.

One of the immediate goals of the theory should be to determine under what
couditions (?) for the sequence X and the algebra (A, e), one can assert the following
general statement: Given e right stratifying sequence X = (X (1), X(2),...,X(n)) of
en algebra (A, e) satisfying the conditions (?), there is « right stretifying sequence Z =
((Z(1),2(2),...,2Z(n)) end e left stratifying sequence Y = (Y(1),Y(2)....,Y(n))
such that X(i) is filtered by Z(i) for each 1 <i < n, and (4,e) is a (Y, Z)-stratified
algebre.

We have alrcady pointed out that the statement holds for & with X(i) ~ A(7)
or A(i) for each 1 € i < n. It is also casy to verify it in the case when (4,e) is a
monomial K-algebra over a finite (connected) quiver which has a stratifying sequence
A" such that the filtration of cach projective module P(j) by modules from X9 is
compatible with the A'-basis of 4 consisting of the paths. In such situation, proceeding
by induction on the trace filtration of A4, we deal with a A'-basis B, of P(n) which
satisfics the following properties:

B, = {c.= g{") = hgn),g;"),...,gs':).hg"),.. .,h(s':)}U

U{af,’;) = g;")hfl") [2€<p<r,, 2<¢< .s,.},
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™n

P(n) = ngA DD H.=) gAD-DH, =gADH, 1, =0

p=1 p=r
is a trace filtration of P(n) by X(n), ie. H /Hrpy > X(n)for all 1 <r <, and

Hl/H2 J---D (Z"(q")‘4+H2)/H2 Deer D (h‘(,:).‘l"'Hg)/Hg DO
q=6

is a composition series of H,/Hz = X(n).
Similarly, for every 1 < j < n =1, we have (compatible) K-basis of ¢ Ae,A:

Bi={¢" |1<p<r}uf{al) =g hM 1< p<rj. 2<g<sa}s
such that

¢jdend D 32«;“’43 2gW4>0

is a filtration of ¢jde, A by X(n).

We have . 4
g;,” = ng};')e,, foral1<j<nand1<p<ry,
and
;,'q) = e,a},ﬂ,’c,q forall1<j<n, 1<p<r;, 1< g< s, and a certain 7,
here,

G(I',;)—’,,( < g <sp)

Now, if the A'-subspace V() of the vector space Ae, gencrated by the subset

{ald) | e, = aff)}

of the R-basis B = |J Bj of AcpA is a left ideal of A (i.c. if V(72) is an A-submodule
1=l
of P°(n) = Aey), then the K-space ¥'(n) gencrated by

{¢11<5<n 1<p <))

is a factor module of P?(n),Y(n) = P%(n)/V(n) and the partition of the sequence
(h{" = AW, b = b, . ,h(,:)cir") into n subsequences (some of which may
be void) of elements with equal right annihilators (i.e. with the same ¢; 's) determine
filtrations of AenAcj by Y(n). Observe that

Y(n)on X(n) >~ de, 4
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and thus
dimy Y(n) - dimy X(n) = dimy Ae, A.

Let us conclude our report with a few examples.
Example 1. Let (4, e) be the monomial algebra KQ/1, where
1.4 2 3 .3
Q: o * M)y and I = {a4.3a.73.7°).

—
3

Thus the right regular representation (the left one looks similarly) is as follows:

1 2
Ag=2812
1 2

Here. Aepd is filtered by X(2) = P(2)/{7?), but P(2) is not filtered. There is no
right (and no left) stratifving sequence of (A, e).

Example 2. Let (4, e) be the monomial algebra K'Q/I. where

a 6
Q: s3>
~

8

Thus the right and left regular representations arc as follows:

[ 23]

and I = (aé, 3a,(78)%,63).

2 3 2 3

1 3 12 1 3 12

Ag = 3‘@195 3 and 4= 3 T oo U 3
1 5 2 12 5 2

3 3

Here, AezA is filtered by X(3) = P(3)/(6448), but neither ¢;Aez A nor e3A is filtered.
There is no left filtration of AezA by a local mocdule.

Example 3. In order to illustrate the statement following Theorem 4, let (A.e)
be the 72-dimensional monomial algebra IXQ/I. where

10 396 2 ‘ PPN SN 1
Q: o = ° = N and I = {Bap.aBady, 3a(b4) . yBady, (64)").

(a) Let X = (S(1),S(2), P(3)/{8%}); then Y = (5§°(1), 5°(2). P°(3)/(4v.3a)) is a left
stratifying sequence and (4, e) is a (Y, A')-stratified, i.e. Z =24,

(b) Let X = (S(1), $(2), P(3)/{8aéq,(67)?)); then Z = (S(1),5(2), P(3)/{67)), Y as
in {(a) and (A, e) is a (Y, Z)-stratified algebra.
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Example 4. (E. Lukdcs) Let (A, e) be the algebra K'Q}/I, where

o
Q: l — § O Y and I=(Bab,v8.4%, afa — av).
B

lé

[ 4

2
Here, (A, e) has a right stratifying scquence X = (5(1), $(2), ez A/(BafB,v8, fa —7)).
On the other hand, considering the left regular representation of A, one can see
immediately that there is no left stratifying sequence of (A4, e):
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