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*-MODULES OVER RING EXTENSIONS

Kent R. Fuller

A module gV with endomorphism ring S =End(gV) is called a *-module in case
the functors induced by zVs define an equivalence of categories

Hompg(V,.): Gen(gV) S Cogen(sK) : (V ®s5.)

where K =Hompg(V,C) for an R-cogenerator gC. Equivalently, the classes of R and
S modules such that the natural maps

V ®s Homg(V, M) ¥ M and N 23 Homg(V, (V ®s N))

are isomorphisms are closed under epimorphic images and direct sums in R-Mod and,
respectively, submodules in S-Mod. Thus tilting modules and quasi-progenerators
are *-modules. (See [12], [5] and [6].) Here we shall outline our results in [10], after
presenting a sketch of a modest improvement of the main theorem in [10].

*-FACTS: (1) *-modules are finitely generated [17).

(2) A »-module RV is a quasi-progenerator iff Gen{gV) is closed under submodules
(6].

(3) A »-module gV is a tilting module iff Gen(gV') contains all injectives [6].

(4) If R is left artinian any faithful *-module is a tilting module [Corollary to (3)].

We say R is a ring ertension of A if there is a ring homomorphism £ : A — R.
Then given an R-module g M, the induced A-module is 4M with am = £(a)m, so
Hompg(M,, M2) CHom4(M,, M2). A ring R is a split extension (R = A x Q) of a
ring A by an ideal Q C R in case R = A® Q; if @ = 0, such an extension is called a
trivial eztension (R= A x Q).

Miyachi [13] proved for an artin algebra R = A x Q that R®4 U is an R-tilting
module iff oU is a tilting module and 4U generates both Q®4U and D(Q4). Assem &
Marmaridis [1] extended this to R = A « @ with Q nilpotent. Miyashita [15] proved
that if R is a ring extension of A, 4U is a (generalized) tilting module, and V = R®4U,
then RV is a (generalized) tilting module whenever Ext4(U, V) = 0 =Tor*(R,U).

1. *»-MODULES

Theorem 1.1. Let £ : A — R be a ring homomorphism end let gV = RO U. If U
i3 a x-module and oAU generates 4V then rV is a *-module.

The detailed version of this paper has been submitted for publication elsewhere.



Proof. (Sketch.) Let B =End(4oU) and End(grV) = S. Then
Hompg(V, M) = Hom4(U, Homg(grRa,M)) = Hom4 (U, M). 1)
Thus
UQpS=U®g Homy(U, V)=V (2)
since by hypothesis, £,v is an isomorphism. Now if gM € R-Mod, we have

V ®s Hompg(V, M) (U ®p S) ®s Homp(V, M)
U ®p Hompg(V, M)
U ®p Hom, (U, M)

and it follows that €, is an isomorphism iff €, ps is an isomorphism. Also

Homgp(V,(V®sN)) & Homu(U,(V ®s N))
2 Homa(U,(U ®g N))

S0 @, n is an isomorphism iff so is ¢, n. Now the desired closure properties of

R IR mw

{rM |, p is an isomorphism} and {sN | N is an isomorphism}
are inherited from the corresponding subcategories of A-Mod and B-Mod. (|
Corollary 1.2. Let sU be a *-module with End(AU) = B inducing an equivalence
Homa(U,):Co R Dy: (U®p.)

and suppose that there is a ring homomorphism £ : A - R. If gV = R®4 U and
AV € Gen(4U), then there is a ring homomorphism x : B — End(grV); and if S is a
ring with ideal I such that S/I = End(rV), then rVs induces an equivalence

Homp(V,2):CRD:(V®s.)
with
C={RM|AM€C()} and D = {3N|IN=0 and BNGD()}.

Here C closed under direct sums and epimorphic images, D closed under direct prod-
ucts and submodules.

Corollary 1.3. Given a ring homomorphism £ : A —» R, a quasi-progenerator U,
and RV = R®4 U. If AU generates 4V, then rV is a quasi-progenerator.

Proof. »-fact (2) applies. (|

In a split extension R = A o« @, 7 = a + g denotes a typical element of R. (Thus
(e +g)(a’ +¢') = ad' + (ag’ + ga’ + gq').) In this case we have ring homomorphisms
£: A—> Rand { : R — A with £ injective and ¢ surjective with kernel Q. If
rM € R-Mod, then we have the £ induced A-module by s M, and if 4 X € A-Mod ¢
induces pX via (a + g) = az to obtain an R-module that is annihilated by Q. Also,
we may identify R®, U = U @ (Q ®4 U) where R operates on U & (Q ®, U) via

(@ +p): (u+(g®w)) =au+|(ag®@w) + (p®u) + (pg ® w)].
Thus Q@4 U < gV and V/(Q®4 U) = gU.



Theorem 1.4. Let R = A « Q be a split extension of A by Q, and let AU be an
A-module. If AU is a *-module that generates Q ® 4 U, then gRR®4 U is a *-module.
Conversely, if RV = R®4 U is a *-module, then AU is a *-module.

Proof. The first statement is by Theorem 1.1. For the second we can apply Theorem
1.1to {: R — A since pV generates U and

AQrV =AQr (R®AU) 2 (AGRR)® U= AQ,U = 4U. O

Corollary 1.5. If AU is a *-module or a quasi-progenerator, then so is Alr)V =
Alz]®a U.

Theorem 1.6. Let R= A x Q and V = R®4 U, and suppose that R is noetherian
and Q is nilpotent. Then gV is a x-module if and only if ,U is a *-module and AU
generates Q ®4 U.

2. TILTING MODULES
Regarding tilting modules we have

Theorem 2.1. Let R = A < Q be left artinian with nilpotent ideal Q, and let U be
a left A-module. Then rV = R®, U is a tilting module if and only if AU is a tilting
module, AU generates Q ®4 U and Anng,(U) =0.

Proof. Uses Theorem 1.6 and *-Fact (4). m]

Corollary 2.2 (Assem & Marmaridis). Let R = A « Q be a finite dimensional al-
gebra with Q nilpotent. Then R® 4 U is a tilting R-module iff 24U is a tilting module
and AU generates both Q ® 4 U and D(Q4)-

Proof. By Theorem 2.1, in either case 4Up is a tilting bimodule where B =End(4U).
Thus D(Q4) € Gen(aU) iff 0 =Ext), (U, D(Q.4)) & D(Tor(Q,U)) iff Q4 is torsion
free in Mod-A iff 0 =Ker[Qa —Homp(U,(Q ®4 U))] =Anng,(U). O

In [14]) Miyachi presents a proof of M. Hoshino’s observation that if R = 4 x Q,
Tor*(R,U) = 0 and V = R®4 U is a (generalized) tilting module, then LU is
tilting and Ext4(U,V) = 0. It seems likely that, as in Theorem 2.1, some finiteness
conditions on R = A « @, are required in order to characterize “R®4 U tilting” with
no prior condition on 4U.

3. ToRrsION THEORY COUNTER EQUIVALENCES

In [3] and [4] we considered pairs of category equivalences T 2 £ and F 2 S
between the members of torsion theories (7, F) in R-Mod and (&, £) in S-Mod. Such
a pair of equivalences is called a torsion theory counter equivalence; it is induced by
a pair of bimodules gVs and ¢Vp. In particular, gV and sV’ are *-modules.

Theorem 3.1. Suppose that sUp and gU) induce a torsion theory counter equiv-
alence between (7g,F,) in A-Mod and (S59,€,) in B-Mod. Let A— Rand B —» S
be ring eztensions, and let V = R®, U and V' = S ®g U’. If there are bimodule
structures pVs and gVpq that admit isomorphisms

Pp:U®g S — AVs and ¢/ :U' @4 R — gV



such that Y(u®p 1) =1@au and P'(u' ®41) =1Q@p v’ for allu e U, u' € U’, then
rVs and gVp induce a torsion theory counter equivalence between (7, F) in R-Mod
and (S, &) in S-Mod where

T={RM|AM€7B}, .7'-={'RM|AME.7:0},

S={sN|sN €S}, £€={sN|sN €&}

Corollary 3.2. Suppose that sUp and gU), induce o torsion theory counter equiva-
lence. IfS=BxZ,U®pZ =0and Z®gU' =0, then ,Us and U/, induce a
torsion theory counter equivalence.

Proof. AU®pS=(U®sB)o(U®pZ)2U = A®4U,etc. (]

Tachikawa [16] and Yamagata [18] (for a larger class of Frobenius trivial extensions
of A) proved that if A is a hereditary artin algebra and S = Ax.D{4A,4), the number of
indecomposable S-modules is ezactly twice the number of indecomposable A-modules.
(This is obvious if A is indecomposable with a non-zero projective injective module,
for then A is serial.) To do so, they were in effect employing a torsion theory counter
equivalence. Indeed, from the last two results we obtain

Proposition 3.3. Let A be a hereditary ertin algebra with no injective projective
modules, let U = D(4A4) and let S = A x Z with be the trivial estension (QF)
algebra with Z = 4U,. Then oUs and GUY = Ezth, (aUs, A) define a torsion theory
counter equivalence between (T, F) in A-Mod and (S,€) in S-Mod. Here,

T = Gen(aU) = A-Injectives
F = {AM with no injective summands}
8 = {sN| AN has no projective summands}

£ = Cogen(S/Z) = {sN | aN is projective}.

In Proposition 3.3 (7, F) splits so the torsion theory counter equivalence yields a
bijection

Ind(A-Mod) «—s Ind(€) U Ind (S)

between the indecomposable A-modules and the indecomposable S-modules that are
either torsion or torsion free, while the main parts of Tachikawa’s and Yamagata’s
proofs establish a bijection

Ind(A-Mod) «— T
where 7 is the set of N € Ind(S5-Mod) such that
0— HTN-—N—DHTN -0

is non-trivial.
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INJECTIVE DIMENSION IN NOETHERIAN ALGEBRAS

SHIRO GoTo!

1. INTRODUCTION.

What I wish to perform in this note (and in the forthcoming paper [G] as well) is to
trace the theory of injective dimension in Noetherian algebras to its source, following
the flavor of development in commutative ring theory. Let R be a commutative ring
and let A be an R-algebra with the structure morphism f : R — A. I assume the
algebra A is left Noetherian. Let J(R) and J(A) denote the Jacobson radicals of R
and A, respectively. Otherwise specified, all modules stand for left modules.

I would like to choose a result (2.1) of Bass [B1, Corollary 1.3] which says any
localization of the ground ring R be compatible with the A-injective envelopes to
be the starting point of my rewriting. As is well-known, thanks to it and Matlis’
decomposition theorem of injective modules, you can handle the injective dimension
under the base changes modulo the reduction (and the localization as well) by A-
regular elements in R ([B1l, Theorem 2.2]). The primary decomposition theorem
inside of finitely generated A-modules also readily follows (Corollary (2.3)).

In Section 3 and the subsequent sections also, I assume that R is Noetherian and
the algebra A is finitely generated as an R-module. Firstly I will show the result
[B2, (3.1) Lemma] of Bass which estimates the prime ideals associated to a minim
al injective resolution for a given fininitely generated module over a commulative

Noetherian ring remains true in our context. Namely

Theorem (3.2). Let M be a finitely generaled A-module. Let lel P,Q € Spec R and
essume P C Q withdimRqg/PRg = 1. ThenQ € Assg E‘;“(M) if P € Assg E4,(M).

Secondly I will explore in Section 4, using the above theorem (3.2) and some con-
sequences of it, the structure of minimal injective resolutions of finitely generated
A-modules possessing finite injective dimension. The result (4.1) is a natural gener-
alization of the main theorem in [IS] due to Iwanaga and Sato.

1991 Mathematics Subject Classification. Primary 16D50, 16L60; Secondary 16L30, 16P40.

Key words and phrases. Injective dimension, minimal injective resolutions, Cohen-Macaulay al-
gebras, Gorenstein rings.

This paper is in a final form and no version of it will be submitted for publication elsewhere.
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Theorem (4.1). Suppose R is local and let depthg A = . Let M be a non-zero
finitely generated A-module with idg M = n < 00. Then

(1) t<n.

(2) Ift < n, the A-modules E*, (A) and E}(M) have no common direct summand.

I will show that from Theorem (4.1) the results [R, Corollary 2.15] and [V, Theorem
3.1] of Ramras and Vasconcelos on quasi-local algebras A (that is the algebras A with
A/J(A) simple rings) of finite self-injective dimension readily follow.

1 will give in Section 5 some equivalent conditions for quasi-local algebras A to have
finite self-injective dimension (Theorem {5.1)). The conditions are entirely parallel
to the fundamental characterizations [B2, (4.1) Theorem] of Bass of commutative
Gorenstein local rings.

In the final section the algebra A is assumed to be a free R-module. Let me note
the following criterion for the algebras A to have seli-injective dimension equal to
dim R:

Theorem (6.2). Let (R, m) be a Gorenstein local ring of dim R = d and assume that
A is a finitely generated free R-module. Let A = AjfmA. Let

0—R—-E'—E'— .. —E{—

be a minimal injective resolution of R. Then the following five conditions are equiva-

lent.
(1) ida A =d.
(2) id;Z =0.

(3) idag/Qae AQ/QAqQ =0 for any Q € Spec R.
(4) The A-module A @p E is injective for any injective R-module E.
(5) The sequence

0-A=AQrR— AQrE’ - AQrE' — .. — AQ@r E*—0

s a minimal injective resolution for A,

When this is the case, for any integer 0 < i < d the equality fd 4 E,(A) = i holds true
and one has an isomorphism

E}(A) = ®gespec Rwithheg 0=iA ®r Er(R/Q)
of A-modules.

Throughout this note let R be a commutative ring and A an R-algebra with f :
R — A the structure map. Let J(R) and J{A) denote the Jacobson radicals of R and



A, respectively. Otherwise specified, all modules stand for left modules. In Section 2
the ring A is assumed to be left Noetherian. In Section 3 and the subsequent sections
we assume that the ring R is Noetherian and A is a finitely generated R-module. In
Section 6 A is furthermore assumed to be a [ree R-mo dule.

2. PRELIMINARIES ON LOCALIZATION.
Let S be a multiplicative system in R. Let me give a brief proof for the next lemma.

Lemma (2.1) ([B1, Corollary 1.3]). LetI* : 0 — M — I = [ — . — [ — .. be

a minimal injective resoluiion of an A-module M. Then the localization
ST 0 =S M ST =S5 S5 -

gives a minimal injective resolution of the S=! A-module S~ M.

Proof. The exact functor S~! preserves injectives. Let ¢ : X — Y be an essential
monomorphism of A-modules and let 0 # y/1 € S™'Y. Let £ = {(0) 14 z | = €
Ay, [(0) 14 2] N f(S) = ¢). Then (0) :4 y € £ so that £ # ¢. Let (0) :5 = be
a maximal element € . Take a € A and z € X with az = g(z) # 0. Then the
maximality of the left ideal (0) :4 z in T claims a/1-z/1 = (S~'g)(z/1) # 0. As
a/l-z/1€ S~'A-y/1, this shows the morphism S~!g is essential. //

This result (2.1) is no longer true unless A is left Noetherian. For example, let
(R,m) be a Noetherian complete local integral domain of positive dimension. Let
E = Eg(R/m) be the injective envelope of R/m and let S = R\ {0}. Take the trivial
extension A of E over R. Then A= E,(E) but Eg-:4(S™1E) = (0).

Corollary (2.2). Let I be an indecomposable injective A-module. Then the following
assertions hold irue.
(1) S~ =(0) if sz =0 forsome s€ S and 0 F£ z € [.
(2) #Assgpl <1
(3) #Assg I =1 if R is Noetherian.
(4) Assume that (R,m) is a Noetherian local ring and let HE (#)(i € Z) denote
the i-th local cohomology funclor with respect lo the marimal ideal m. Then
HE (I) = (0) for alli > 0. ( Hence for any A-module M, the local cohomology
module Hi (M) is given by the i-th cohomology of the complex H3(I*) :

e = 0= H(1%) — H (1) — ... — HY(F) — ...

of A-modules, where I* : 0 — M — I® — I' — ... — I' — ... denotes an

A-injective resolution of M. )



Proof. (1) Let L = Az. Then by (2.1) S~ = Eg-14(S~'L) since I = E4(L), so
that $—11 = (0) because S~ L = (0). (2) Let P,Q € Assr [ and assume P € Q. Let
t€ Pwithtg Q. Let S= R\ Q and choose z € I so that (0) :r 2 = P. Thentz =0
whence Ig = (0) by (1), which is absurd. Thus P C Q and so # Assp/ < 1. If the
ring R is Noetherian, # Assg / = 1 because Assp I # ¢. (3) Left to readers.//

Passing to the decomposition of the injective envelope E4(M) of M into a finite
direct sum of indecomposable injectives, the next result follows from (2.2)(3). The
proof is standard and I omit it.

Corollary (2.3). Suppose R is a Noetherian ring and let M be a finilely generated
A-module. Then
(1) Assp M is a finite sel.
(2) Let Assg M = {Q1,Q2,..,Qn} with n = # Assp M. Then M contains A-
submodules {M;}1ci<n which satisfy the following two conditions :
(a) Nici<a M; = (0).
(b) Assp M/M; = {Q;} forall 1< i< n.

For an A-module M let ‘M = {m € M | sm = 0forsomes € S} and "M = M/'M.
The S-torston part ‘M is an A-submodule of M and the A-module ” M is S-torsionfree.
If I is an indecomposable injective A-module, then 7 = ‘I or ‘I = (0) by (2.2)(1). As
for a general injective A-module I, passing to the decomposition into a direct sum of
indecomposable injectives, we see the submodule ‘I of I is also A-injective and hence
get a direct sum decomposition

I='1e"I

of I. The canonical map “I — S~YI (= S~1I) of localization is bijective, because
all elements of S act on each indecomposable component of “I as A-isomorphisms.
Apply this observation to a minimal injective resolution

" 0-M-—-I"-1"—. . - —_.
of a given A-module M. Then we get a short exact sequence
0= 'I'=1'="I'—0
of complexes together with an isomorphism
Hps = g=lupe — g-lpe

of complexes of injective A-modules. And a simple diagram chase will prove the next
assertion.



Corollary (2.4). Assume any element of S acis on M as a nonzerodivisor. Lel
i€ Z. Then
EL(M) = ETY S 'M/M)® B, ,(S™'M)

so that idg M = max{id4 (S~ M/M) + 1,ids-1, S~ M}.

If S = {t' | i > 0} for some ¢ € R, the equality in (2.4) is improved as follows. Let
me note a sketch of proof.
Theorem (2.5). Lett € R and assume S = {t! | i > 0}. Suppose ¢ is a nonzerodi-
visor for both A and M. Let A= AJ/tA and M = M/tM. Then

(1) ([B1, Theorem 2.2]) idq M = max{idg M + 1,ids-1, S~ M}.
(2) fda EY(M) = max{fdzEL(M) + 1,fdg5-14 B, 4,(S~' M)} for all i € Z.

Proof. Let I* :0 = M — I — ' — ... — I’ — ... be a minimal injective resolution
of M. Then the element ¢ acts on each term I as an A-epimorphism, since ¢ is a
nonzerodivisor for A. Let J? = (0) ;5. ¢ for each i € Z. Then we have a complex J*

of injective A-modules and a short exact sequence
0—=J* =TI =1 =0

of complexes of A-modules. Note J* is a subcomplex of ‘I* and J* = (0) if and only if
'I* = (0). On the other hand, since ¢ is a nonzerodivisor for M too, we have J° = (0).
And from the long exact sequence of cohomology modules derived from the above
short exact sequence 0 — J* — I* L —0of complexes, we see that

0—-M—J' =T = =T
is a minimal A-injective resolution for M. Hence we get assertion (1). The second

assertion is due to the next general result (2.6). //

Proposition (2.6). Let A be an algebra over a commutalive ring R and I en A-
module. Let t € R. Suppose t is a nonzerodivisor for A and { acls on I as an
epimorphism. Lel J = (0):y ¢ and A = A/tA. Then we have the equalily

fdal = max{fdzJ + 1,fda, I,}.

3. ESTIMATION OF PRIME IDEALS ASSOCIATED
TO A MINIMAL INJECTIVE RESOLUTION.

. From now on let me assume R is a Noetherian ring and the R-algebra A is finitely

generated as an R-module. To begin with I note



Proposition (3.1). Let I be an indecomposable injective A-module. Then the fol-
lowing assertions hold true.

(1) Asspl = {Q} for some Q € Spec R.

(2) The A-module I is a direct summand of Homa(Aa,Er(R/Q)).

(3) The A-module I contains a unique simple Aq-module S so that I = E4,(S5).

Proof. See(2.2)(3) for assertion (1). To show assertions (2) and (3), passing to the
local ring Rg, we may assume without loss of generality that the base ring (R, m) is
local and Q = m. Take 0 # x € I so that mz = (0) and put L = L. Then mL = (0)
and the injective envelope Eg(L) of the R-module L is a direct sum of finite copies of
Er(R/m). Since L is an A-submodule of Homp(A4, Er(L)) and Homg(A4,Er(L))
is a direct sum of finite copies of Homgp( A4, Eg(R/m)), the indecomposable injective
A-module I = E4(L) is contained in Homg(A,, Eg(R/m)). Assertion (3) follows
from the fact that the A-module L has a composition series. //

In the case where (R, m) is a local ring, for each A-module M and i € Z we have
that m € Assg E' (M) if and only if Ext,(A/J(A), M) # (0). Also

depthp M = inf{i € Z | Ext},(A/J(A), M) # (0)}

if M is a finitely generated A-module.
The next result is essentially due to Bass [B2, (3.1) Lemma)].

Theorem (3.2). Let M be a finilely generated A-module. Lel P,Q € Spec R and
assume P C Q with dimRq/PRq = 1. Leti € Z. Then Q € Assg E'YY(M) if
P € Assgp Ei, (M).

Proof. May assume (R, m) is local and Q = m. Let L = h~'(J(Ap)) where h :
A — Ap denotes the canonical homomorphism of localization. Then L D PA
and (A/L)p = Ap/J(Ap). Choose an element { € m so that ¢ € P and put
C = A/(L +1tA). Then dimgC = 0 because dimR/(P +tR) = 0 and L D PA.
Therefore the A-module C possesses a composition series. On the other hand, from
the short exact sequence 0 — A/L = A/L — C — 0 of A-modules, we get an exact
sequence Ext(A/L, M) L Ext,(4/L, M) — Ext}}'(C, M) of R-modules. We see
Ext'(A4/L, M) # (0) because

Exta(A/L, M)p = Ext} . (Ap/I(Ap), Mp) # (0),

so that Ext;'“(C, M) # (0) by Nakayama’s lemma. Hence Ext’}!(S, M) # (0) for
some composition factor S of C and so m € Assg ESFH(M). //

Thanks to the dimension theory in commutative Noetherian rings, from (3.2) we
readily get the following



Corollary (3.3). Let M (# (0)) be a finitely generated A-module.
(1) Let (R, m) be a local ring. Then m € Assg Ei:'dimR/P(M) if P € Assg Ei\(M).
(2) Assume idg M = n is finite. Then Assp EG(M) C Max R and hence ER(M)
contains an essential socle.
(3) (Auslander) If (R, m) is a local ring, then

idg M = sup{i € Z | Ext}y(A/3(A), M) # (0)}.
(4) dima M <ida M.

Proof. 1 give a proof for assertion (4) only. Let Py C P, C ... C P be a strictly
increasing chain in Suppy M with P = P, is minimal in Suppp M and Q = P, is
maximal in Suppg M. Then by (1) we have k <idq M. Hence dimpg M <idg M. //

The next result is well-known. But let me give a brief proof in our context.

Corollary (3.4) (cf. [R, Theorem 2.10]). Let M be a finitely generated A-module.
Let t € J(R) and assume thaii is a nonzerodivisor for both A and M. Let A= AJtA
and M = M/tM. Thenidg M = idz M + 1.

Proof. If ida M = oo, AsspEY,(M) # ¢ for each integer i > 0. Let P € Assg E, (M)
and choose a maximal ideal Q in R so that @ D P. Then by (3.3)(1) Q@ € Assgp Ei,“‘(M),
where k = dim Rq/PRq. Let I = Ei:-k(l‘/f). Then (0) :; t # (0). Hence from the
proof of (2.5) we see idy M > i+ k — 1 and thus idz M = co. Assume idy M =n
is finite. Since Assgp E% (M) C Max R by (3.3)(2), any element Q € Assg E%(M)
contains £, so that by the proof of (2.5) we get idg M =n—1. //

4. A STRUCTURE THEOREM FOR MINIMAL INJECTIVE RESOLUTIONS.
The main result of this section is the following.

Theorem (4.1). Assume that R is a local ring and let t = depthp A. Let M be a
non-zero finitely generated A-module with idg M = n finite. Then
(1) t < n.
(2) Ift < n, the injective A-modules EY,(A) and E, (M) have no common non-
zero direct summand.

Proof. Let zy, z3, ..., z; be a maximal A-regular sequence and let I = (2, z2, ..., z¢)R.
Let K, = A ®g Ko(23,23,...,2;, R) denote the Koszul complex generated by the
elements f(z;), f(x2), ..., f(z;) over A. Then K, is a minimal A-free resolution of
A/IA. Hence hdy A/IA = t. We compute Ext',(4/1A, M) with this resolution K,
of A/IA and get an isomorphism Ext’,(A/JA, M) = M/IM. Hence by Nakayama’s



lemma Ext!,(A/IA, M) # (0), so that t < n = idqg M. Assume E(A) and E} (M)
have a common indecomposable direct summand, say I and let S denote the simple
A-submodule of I (cf. (3.3)(2)). Then, applying the argument in the proof of (2.5)
to EY(A), we see S is contained in A/IA too. Let C = (A/IA)/S and consider the
short exact sequence 0 — S — A/IA — C — 0 in order to get an exact sequence

Ext%(A/IA, M) — Ext’y (5, M) — Ext}t(C, M).

Then because Ext3t!(C, M) = (0) (recall that id4 M = n) and Ext}(S, M) # (0)
(note that S is an A-submodule of E% (M) too), we get Ext}y(A/TA, M) # (0) so that
n<t=hds A/IA. Hencet=n. [/

Let id4 A = n be finite and assume that E%(A) and E?,(A) have a common inde-
composable direct summand I. Choose @ € Assg I. Then after localizing at @, we
have that depthg, Aq = 0 and that E}  (Aq) and E} ,(A¢) have a common non-zero
direct summand I = Ig. Hence n = 0 by (4.1) and so we have

Corollary (4.2) ([IS, Theorem]). Suppose 0 < idy A = n < 0o. Then EY(A) and
E% (A) have no common non-zero direct summand.

We say that A is a quasi-local ring if the ring A/J(A) is a simple ring. When A is
quasi-local, the algebra A has a unique simple module. Hence from (4.1) we readily
have

Corollary (4.3) (cf. [R, Corollary 2.15]). Assume that R is local and A is quasi-
local. Then one has the equalily

idg M = depthg A

Jor any non-zero finitely generaled A-module M of finile injeclive dimension.

Corollary (4.4) ([V, Theorem 3.1]). Assume that R is local and A is quasi-local. If
idg A < 00, then A is a Coken-Macaulay R-module and id4 A = dimg A.

Proof. This follows from (3.3)(4) and (4.3). //
5. CHARACTERIZATIONS FOR A TO HAVE FINITE SELF-INJECTIVE
DIMENSION IN THE CASE WHERE R IS LOCAL AND A IS QUASI-LOCAL.

In this section I assume that (R, m) is local and A is quasi-local. The purpose is to
give the following characterizations for A to have finite self-injective dimension. Let
d = dim R and n = dimg A.



Theorem (5.1). The following conditions are equivalent.

(1) idg A < 0.

(2) idg A=n.

(3) A is a Cohen-Macaulay R-module and the local cohomology module HZ(A) of

A is A-injective.

(4) Exty(A/3(A),A) =(0) if i #n.

(5) A is a Cohen-Macaulay R-module and Hom4(A/J(A),E}(A)) = A/1(A).
(If R is a Cohen-Macaulay local ring possessing the canonical module Kg, one may
add the nezxt condition :

(6) A is a Cohen-Macaulay R-module and Ext% "(44,Kgr) = A4.)

When this is the case, the following assertions hold true.
(a) ([R, Corollary 2.15]) The right self-injective dimension of A is finite and equals
n.

(b) ER(A) = H(4) = Ea(A/3(A4)).

(c) ([V, Theorem 3.2]) id4, Ag = dimg,, Ag for all Q € Suppg A.

(d) Let Q € Spec R and i € Z. Then Q € Assg E',(A) if and only if Q € Suppg A

with dimno AQ =1

(e) fd4EY(A) =iforall0<i<n.

Proof. To check the equivalence of conditions from (1) to (6), we may assume by
(2.5), (3.4), and (4.4) that A is a Cohen-Macaulay R-module (recall depthp A =
inf{i € Z | Ext%,(A/J(A), A) # (0)}). Hence by induction on n = dimg A we may
furthermore assume that d = n = 0. In this case the proof is faitly standard and left
to readers. Among the last assertions, (a), (b) and (e) similarly follow by induction
on n = dimg A. Look at assertion (c). Let Q € Suppg A4 and put id4, Aq = k. Then
Q € Assg EX (A),since QRg € Assp, EﬁQ(Aq) by (3.3)(2). Therefore k+dim R/Q <
n by (3.3) (1). On the other hand, since A is a Cohen-Macaulay R-module, we have
dimRQ AQ + dim R/Q = n. Hence & S dimno AQ so that (:limnQ AQ = idAQ AQ by
(3.3)(4). The implication <=) in assertion (d) is clear and the implication =) readily
follows from the fact that Ag is a Cohen-Macaulay Rg-module and the equality
depthp, Ag = sup{i € Z| Extiyy (Ag/I(4q), Aq) # (0)). //

Remark (5.2). Some part of Theorem (5.1) holds true for any Cohen-Macaulay R-
algebra A, as 1 will discuss in [G].

6. CHARACTERIZATIONS FOR A TO HAVE SELF-INJECTIVE DIMENSION
EQUAL TO dim R IN THE CASE WHERE A IS A FREE R-MODULE.

In this section I assume that (R, m) is a local ring and A is a free R-module. Let
d = dimR and A = A/mA. Let me briefly state two results on A4, which clarifies



when the algebra A has self-injective dimension equal to dim R. The detail will be
postponed until [G].

Lemma (6.1). The following assertions hold true.
(1) Any injective A-module is R-injective.
(2) d4A=idg R+ id-A-Z.
(3) If gldim A < o0, R is a regular local ring.
(4) If gldim A < oo and R is regular, then gldimA = dim R+ gldim A.

Theorem (6.2). Let (R,m) be a Gorenstein local ring of dim R = d and let
0—.R-—~E0-—~El-—~“_—oEd—oO

be a minimal injective resolution of R. Then the following five conditions are equive-

lent.
(1) ida A =d.
(2) idxz =0.

(3) idag/Qaq AQ/QAq =0 for any Q € Spec R.
(4) The A-module A ®p E is injective for any injective R-module E.
(5) The sequence

0 A=AQrR— AQRE’ - A®prE'— .. AQrE*—=0

is ¢ minimal injective resolution for A.

When this is the case, for any integer 0 < i < d the equality fd 4 E (A) = i holds true
and one has an isomorphism

E'(A) = ®gespec Rwith ey @=i4 ®r ER(R/Q)

of A-modules.
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GOOD FILTRATIONS ON EQUIVARIANT MODULES OVER
GRADED ALGEBRAS WITH REDUCTIVE GROUP ACTION

Mitsuyasu HasHimoTO

Abstract

Homological aspects of (G, A)-modules are considered, and Auslander-
Buchweitz type approximation theorem which unifies Cohen-Macaulay approxi-
mation and Ringel's A-good approximations {in some sense) is proved. We show
that determinantal rings give non-trivial examples of the theorem.

1 Homological algebra of equivariant modules

Let k be an algebraically closed field, and G’ a reductive algebraic group over k. Let
S = Sym Q be a polynomial ring over & on which G’ acts k-linearly. Let I be a G’-ideal
which is homogeneous and perfect of codimension & so that A := S/I is a homogencous
Cohen-Macaulay k-algebra with a degree preserving k-algebra automorphism action
of G'. A G'-module A-module M is called a (G’, A)-module (or a G’-equivariant A-
module) if g(am) = (ga)(gm) holds for any g € G’, a € A and m € M. Let A be the
category of graded (G’, A)-modules which is A-finitely generated. The study of the
category A is the main snbject here. However, the graded conditions are sometinies
nuisance, and we use the following trick.

We set G := G' x G,,, where G,, = GL (= k*) is the one-dimensional alge-
braic torus. For a Z-graded G'-module V = @, V;, we define the G-action on V by
(g, t)(vi) := i+ (guvi), where the product - in the right-hand side is the scalar product.
Conversely, for a G-module V, we define V; := {v € V| (e, t)v = t' - v}, and it is easy
to verify that V = @, Vi is a graded G'-module. Thus, the category of Z-graded
G'-modules and the category of G-modules are equivalent in a canonical way. [t is
easy to verify that a G'-action on a k-algebra A as degree preserving k-algebra an-
tomorphisms is nothing but a G-action on A. A graded (G’, A)-module is nothing
but a (G, A)-module. Note that A is nothing but the full subcategory of the category
of (G, A)-modules consisting of A-finite objects. The category A is abelian, but has
neither enough projectives nor enough injectives in general. However, the category
of (G, A)-modules is abelian with enough injectives and exact filtered inductive lim-
its. We denote the category of (G, A)}-modules by B. As G’ is reductive, G is also
reductive.

A little bit more generally, if G is a given reductive group with a specified G,, C
Z(G), then any G-module V admits a canonical grading V = @, V; with each V; a

The detailed version of this paper will be submitted for publication elsewhere.



G-submodule. In this case, we assume that @ is a finite dimensional G-module which
is positively graded, and S = SymQ, and A = S/I are as above.

For example, if G = GL,,, then G has a G,,, as its center (the subgroup of non-zero
scalar matrices), but it is not of the form G’ x G,.,.

Let M and N be (G, A)-modules, and V a G module. The tensor product M ®V
is a (G, A)-module by g(m ® v) = gm ® gv and a(m ® v) = am @ v. It is easy to see
that M ®4 N is a (G, A)-module so that the canonical map M @N —~ M @4 Nisa
(G, A)-linear map.

If M € Aand N € B, then Homuy(M, N) is a (G, A)-module by (gf)(m) :=
9(f(g~'(m))) for g € G, f € Homy(M,N) and m € M.

The following is a consequence of so-called the local finiteness theorem.

Lemma 1.1 Let M be an object of A (resp. B). Then, there is an epimorphism
P — M in A (resp. B) with P being A-free. More precisely, we can take P of the
form P = A® P, with P, a finite dimensional G-module (resp. a G-module).

Although A and B do not have enough projectives, we can construct the derived
functor of 7 ®4 N in those categories, thanks to the theory of derived categories [7,
Corollary 5.3.3].

Proposition 1.2 Let N € B. Then, there ts a derived funclor
L(?®a N): D~ (B) - D (B)
of ?®4 N. For any M € B, we have
Li(?@a N)(M) = L;(M®4?)(N)

in B, and both are isomorphic to Torf(M, N) as a graded A-module. Similarly, there
is a derived funclor

RHomu(?,N): D~ (A) — D¥(B)
of Homu(?, N). For M € A, we have that R' Homy(?, N)(M) = Ext',(M,N) as
graded A-modules.

On the other hand, the derived functor of Hom4(M,?) exists, as B has enough
injectives.

Theorem 1.3 Let M and I be objects in B. If I is B-injective, then we have
Ext,(M,I)=0 fori> 0.

However, note that I is not A-injective in general. In this case, there is some
A-module M’ (which does not have any (G, A)-module structure, by the theorem)
such that Ext},(M’,I) # 0. Thanks to the theorem, we have

R'Hom (M, ?)(N) = R Hom,(?, N)(M)

in Bfor M € Aand N € B.
Thus, we consider that Tor?(M,N) is an object in B for M,N € B and i > 0,
and that Ext!,(M, N) is an object in B for M € Aand N € B.



Proposition 1.4 Let M and N be objects in B, and V a G-module. Then, the
following hold.

L If V is finite dimensional, then there is a canonical isomorphism
Exts(M @ V, N) 2 Exty(M, Hom(V, N)) = Exth(M,N @ V-).

2 There is a spectral sequence
E} = Extl;(V, Exty (M, N)) = ExtiH(M @ V, N).
3 If M,N € A, then the canonical map
Ext', (M, N) — Exty(M, N) (1)

is an isomorphism for any i > 0. Moreover, Ext'y(M, N) is finite dimensional
for i > 0. In particular, the Krull-Schmidt theorem holds for A.

The author does not know if the map (1) is isomorphic when we consider non-
reductive groups.

2 Cohen-Macaulay approximations and Ringel’s A-good approximations

Thanks to the construction in the last section, the canonical module K, :=
Extg(A,ws/k) of A is endowed with a (G, A)-module structure, where h is the codi-
mension of A, and wsy,. is the (G, S)-module A"’ Qg = S ® A" Q.

Let & be the full subcategory of A consisting of all M such that M is maximal
Cohen-Macaulay as an A-imodule and that the canonical dual Hom4(M, K 1) admits
a good filtrations as a G-module. Let ) be the full subcategory of A consisting of
all N such that the A-injective dimension of N is finite, and Homa(K 4, N) admits
a good filtrations as a G-module. Here, we say that a G-module V admits a good
filtration when there is a filtration

o=VacWVicVac-.-CY, Uw:v

of G-modules such that V;/V;_, is isomorphic to some induced module of G (or
equivalently, (V;/Vi_1)" is isomorphic to some Weyl module of G) for any i > 1. This
notion has been considered by many authors in representation theory of algebraic
groups, see (3, 4, 5,6, 9, 11, 12]. Weset w =X NY.

For a full subcategory Z of A, Z denotes the full subcategory of A consisting of all
objects with a Z-resolution of finite length. For M € A, we set Z -resol.dim(M) = oo
if M ¢ Z, and define 2 -resol.dim(M) to be the minimum length of the Z-resolution
of Mif M€ Z.

Utilizing the theory of X-approximation by M. Auslander and R. O. Buchweitz
[2], we obtained the following.

Theorem 2.1 Assume that S, A and K, admils a good filtrations as G-modules.
Then, the following holds.



lo=)Y
2 If M € A, then the following holds.
i (X-approzimation) There is an exact sequence in A
0—-YLXxXLM—~o

such that X € X and Y € ).

ii (V-hull) There is an ezact sequence in A
0—-M-YILX—0
such that X € X and Y € ).
3 For M € A, the following are equivalent.

iMeX ii Ext,(M,Y)=0 (i >0)
ii' Extl,(M,¥) =0. ifi Ext’,(M,w)=10(i > 0)

iv M =0 or Xs -resol.dim(M) = h = dim § — dim A,

where Xs is the full subcategory of the category of graded G-equivariant S-
modules consisling of those F such that F is a finile S-free module and
Homg(F, S) admits good filtrations. In particular, the map p in the ezact se-
quence in 2,1 is a right X -approzimation of M. We can make it right minimal,
removing common direct summands through i if any.

4 For M € A, the following are equivalent.
iMey ii Ext’,(X,M)=0 (i > 0) ii’ ExtL (X, M) =0

Hence, the map ¢« in the ezact sequence in 2, ii is a left Y-approzimation of M.
We can make it left minimal, after removing common direct summands through
7 if any.

5 For M € A, we have

X -resol.dim(M) = sup({7| Extf:A(M,J?) #0}u{0})
sup({i| Ext’4y(M,w) # 0} U {0})

6 ForY € ), we have w -resol.dim(Y’) = X -resol.dim(Y).

7 Any object in w is uniquely a direct sum of indecomposable objects of the form
KA ®T()\), where T()) is the indecomposable lilting G-module of high weight A
Jor a dominant weight X of G (see [5]).

The theorem generalizes both the graded version of Cohen-Macaulay approxima-
tions and Ringel’s A-good approximations in the representations of reductive groups.

For the proof, as well as both Cohen-Macaulay approximations and Ringel's A-
good approximations, the following theorem plays an important role,



Theorem 2.2 Let V and W be G-modules with good filtretions. Then, V ® W also
admits a good filtration.

This theorem was proved by S. Donkin for the case the characteristic of & is not
two or G does not have a component of type E; or Eg, and O. Mathieu proved in the
full generality [11].

3 Examples of determinantal rings

Furthermore, the determinantal ring satisfies the assumption of the theorem. Namely,
flgtsdmn, V=t Ws=£kG=GLV)x GLW), S = Sym(V © W),
and [ is the ideal of S generated by all t-minors of a generic m x n matrix, then the
assumption of the theorem is satisfied. We have the following.

0 There is a canonical inclusion G,, — Z(G) given by t — (t- ly,t - lw), and
Q = VW is of degree one. It is easy to see that I is a (homogeneous) G-ideal.

1 M. Hochster and J. A. Eagon proved that I is perfect of codimension (m — ¢t +
1)(n — t+ 1), so A is Cohen-Macaulay [8].

2 The straightening formula (see e.g., [1]) tells that both S and I are good, so A = S/1
is also good.

Thus, the only thing to be checked is the following.
Theorem 3.1 The canonical module K 4 is good.

The proof consists in Kempf’s construction, with some detailed observation on
G-actions.

In what follows, a scheme mean a k-scheme separated of finite type. For two
schemes X and Y, we denote the product X Xgp..x ¥ by X x Y. For a k-morphism
f : X — Y and a vector bundle V over Y, we sometimes denote f~V simply by V,
by abuse of notation.

Let X be a scheme, and ¥V and W vector bundles over X of rank m and n,
respectively. Then, there is a canonical functor F from the category of G-modules to
the category of GL(V) x GL(W)-modules. For a G-module M, we denote F(AM) by
M(V,W). If X is a G-scheme and V and W are homogeneous vector bundles, then
M(V, W) is a G-linearlizable quasi-coherent Ox-module in a natural way.

We also need the notion of universal functors. Let A be a commutative k-algebra.
We denote the category of A-modules by sM. The full subcategory of finite free
A-modules is denoted by F(A). A universal functor of type (r,s) is a pair family of
functors M = ((M ), (ps)), where

1 A runs through all k-algebras,
2 M, is a functor from F(A)" x (F(A)*?)* to sM for each A.

3 f runs through all k-algebra maps.



4 For each f : A — B, py is a natural isomorphism from (B®?) o M, to Mpo
((B®?)" x (B®?)*), which satisfies the condition: For any maps of commutative
k-algebras f: A — B and g: B — C, the [ollowing diagram is commutative:

C .
CoOpB®, MA—% C®p Mp(B®,4?)",(B®4?)")

|enttBo.?Y, (BoA?Y)

as Ma Mc((C®p (B®a?))",(C ®8(B®4?))")
’ Mc(araa‘)
CosM, Pat Mc((C®A7)", (C®4)")

where a: C ®@p (B®4?) — C®a7 is the usual identification.

For a universal functor M of type (7, s) and k-vector spaces V..., V,.,W,..., W,,
there is a canonical representation M(W,...,V,,W,,...,W,) of GL(V}) x +++ x
GL(V,)x GL(W,) x - -- x GL(W,,), restricting each M4 to the groupoid GL(V) ® A) x
-+ x GL(V, x A) x GL(W, ® A)"’ x -.-GL(W, ® A)P.

A morphism of universal functors ¢ : M — N is a collection ¢ = (¢ ) such that for
each k-algebra A, ¢4 : M4 — N4 is a natural transformation, and the compatibility
B®ada = ¢p((B®a?),(B®4a?)") is satisfied for any k-algebra map A — B. The
category of universal functors (of type (r,s)) is obtained. This category is abelian.

It My,..., M, , are universal functors of type (71,81)y++.,(Ts4x) Sit), TESPEC-
tively, each (A;); is a functor to the category of finite dimensional k-vector spaces,
and N is a universal functor of type (r,s), then N(M,(?),..., M,+.(?)) is also uni-
versal of type (X0, mi + St h, 1 56 Torey 8i + Lid k.1 74), as can be easily seen.

For example, (14,...,V,) — V1 ®---@V,. is universal of type (r,0). The symmetric
power S;, the exterior power A’, and the divided power D; are universal of type (1,0)
for any i > 0. The hom-group Hom(?2, ?;) is universal of type (1,1).

We consider the case (r,s) = (1,0), the simplest case. In this case, we call a
universal functor a polynomial representation of GL. There is a remarkable family of
polynomial representations of GL, parameterized by partitions. A sequence of non-
negative integers A = (Aq, )s,...) is called a parlition if it is weakly decreasing and
Ai = 0 for i 3> 0. For each partition ), a polynomial representation V(1)) of GL
corresponds (the Schur functor Lj of Akin-Buchsbaum-Weyman, see [1]). Let V be
an n-dimensional vector space. Then, V(A)(V) = 0if A4 # 0, while V(A)(V) is the
induced module of highest weight (A1,...,A,) of GL(V), if A\,,4y = 0.

A universal functor M of type (2,0) is said to be a functor with good filtrations,
if M admits a filtration

0=MyCMiCMC---

of M such that lim M; = M and M;/M;_, = V(A)(?)) ® V(g)(?2) for i > 1. Good

filtrations for universal functors with more variables are defined similarly.
The following is a restatement of the theorem of Akin-Buchsbaum-Weyman.

Proposition 3.2 The symmetric algebra S(?,,7?2) = Sym(?;®72) admils a good fil-
trations as a universal functor of type (2,0). The determinantal ideal generaled by



t-minors in §(?,,72) is elso a universal functor, which we denote by 1(?1,72), also
admils good filtrations.

Now we consider X := Hom(V,W~") = Spec S, and we denote by Y the closed
subscheme Spec A = Spec §/I. We denote the Grassmann variety of (¢ — 1)-quotients
of V by G. Note that G = G/P for some appropriate maximal parabolic subgroup
of P, and G is a k-smooth projective G-variety (on which GL(W) acts trivially). Let

0-R=-V—-0Q0-0

be the tautological exact sequence in G. Note that Q is of rank ¢t — 1, and the exact
sequence is that of homogeneous G-bundles.

We set Z := R ® W=, which is also a vector bundle over G. Obviously, there is
an exact sequence of homogeneous bundles

0-ZLXxG =~ QeW" —o.

We denote the first (resp. second) projection from X x G to X (resp. G) by p, (resp.
p2)-
The following is a variation of Kempf’s vanishing.

Proposition 3.3 Let M be a universal functor of type (3,0) with good filtrations.
Then, we have H'(G,M(V,Q,W)) =0 for i > 0, and H"(G,M(V,Q,W)) is a G-
module with good filtrations. Moreover, the map of G-modules

MV, V,W) = H*(G,M(V,V,W)) — H" (G, M(V,Q,W))
induced by the canonical map M(V,V,W) — M(V,Q,W) is surjective.

This proposition is essentially proved and used by Roberts-Weyman [13].

As pa is affine and (p2).Oz = Sym(Q ® W) = S(Q, W), we have that R'r.Oz =0
for : > 0, and H"(Z, Oz) admits good filtrations. Moreover, as we have I(Q, W) = 0,
we have S(Q,W) = S/1(Q,W). Some detailed observation yields that the canonical
map S/I = S/I(V,W) — H*(G, S/I(Q,W)) is isomorphic. With some additional
observation, we have the following.

Proposition 3.4 (Kempf) The composite morphism p1i : Z — X factors through
Y, and induces a morphism w:Z — Y. The morphism 7 is a resolution of singular-
ities. Moreover, we have that R'm.Oz =0 fori > 0 and 7.0z = Oy. Hence, Y isa
normal variety.

Now we calculate the canonical module K 4.
Proposition 3.5 The canonical sheaf wz := N"* Q3. is isomorphic to
(/\!up V)@(g_” ® (Ah)p ‘V)Qu_x) ® (Ah)p Q)@(,._,,.|
as a G-equivariant Oz-module.

Hence, we have that Rim.wz = 0 for i > 0. Now we may invoke the theory of
rational singularity [10], and we have that Y is Cohen-Macaulay (already proved by
Hochster-Eagon), and 7.wz = K 4. This shows that K4 admits good filtrations, and
Theorem 3.1 is proved.
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AUSLANDER-REITEN COMPONENTS AND
TRIVIAL MODULES FOR INTEGRAL GROUP RINGS

TAKAYUKI INOUE AND SHIGETO KAWATA

ABSTRACT. Let G be a non-cyclic p-group and @ a complete discrete
valuation ring of characteristic 0 with the maximal ideal (7) and the
residue field O/() of characteristic p > 0. Let A be the Auslander-
Reiten component containing the trivial OG-module Og. Suppose fur-
thermore, if p = 2 and G is the Klein four group, (7) # (2). Then the
tree class of A is A,.

G EHRKET S, O3B 0 OEFEEBATHBR, (7) 120 OBRKATFTTINT, FHhik
E=0/(r) BT p>0 (pR |G| 2 EIZHEHEH) THEETE. RTOE
i3k 2FTLDETA. BB RG D Auslander-Reiten component (AR-component)
© @ tree class {22V, Webb (3RERLA :0 BH T3 70y 7 ORREHKOE
TIEFHIE, © D tree class i

Ay o—0—6—o—...

Boo % o o ... Coo 2% o o ...

Do ._I+._ Y ( JP P P S S S

71T Euclidean diagrams @ ENTdH 35 [13, Theorem A)]. & 5iZ Erdmann {3
R=F Of&iciE, O BXBTE370yv 7 wild 25 5i1d O D tree class 13 Ao TH
BIEERLI[T). SITE R=0 DR{IZ, ROWENFFGSNII EEHELR.

=B G 2REAB TR p-BEL, A ZHHL OG it Og 28T AR-
component £33, 5T, blp=2TGC A 54 D4HDEEITUL, (7) #(2)
bEFETE. ZDEE A Diree class IX Ao TH3B.

GCHpBOLER, RCASHTO Y 7IZH->T3S. BEDRED S LTIX OG
B wild THEZEMHMSNTNB 5] £ G WIS/ D4EHT (1) = (2) D&
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x(3, BEALIEE Og %81 AR-component @ tree class 3Dy &3 2 &0EISHT
U»3 [4, Proposition 3.4].

CITEXS RG-MBHET~XT REFMAERT R-AMET 5. HEOTEVERE
# RG-ImBt W 129 LT A(W) &#vT Auslander-Reiten 71 (AR-5) 0 — 7W —
MW)—=W —=0%2&%TZ&EITB(MW) TAW) OFMEEET). R=00
LE3r=Q THY, R=kDEEIIT=Q? TH3 (ZZTQ it Heller operator)
(BRI [10), 1)) BR). F/ OG-MB W icH LT W EH0T AG-MBE W/rW %%
T & LT 3. BBEOD Auslander-Reiten OHEBOREEIIHIZ DT, [2), [6]) BH
73,

1. HEMN OG- HEREER

RG-BRBER f: M — N BHEMBEEHATIEE, fEHBHEIS
DT, G p-HELT, HEN OG- BRBERIZOVLTELXS. OG- M,
N 233 UTHomp (M, N) := Hompg(M, N)/Proj(Homog(M,N)) £kL. 22T
Proj(Homog(M,N)) (& M 05> N ~DHEN OG- BRANEROLETHS. /-
OG-MB M i3 LT idy EB|INVT M DIESERERTZ&iCT 5.

ETAT, ALK OG-MEE Og &, O DI a iZ2WT, aido, PHERTH S
Hizi

cido, = Trf(Mido) (I € O)
ENT B EHEA RO TR DN S.

WELL ok OODRETE. ZDEE, aido, HEHEN < o € (|G]). &
12, Endoe(0g) = O/(IG)) -

HE 11 2 SERD OG-MBE M 1220 |Glidy (= [Clido, @0 idy) (XM
THE. & UUEED OG-MB M, N 1220 THome g(M, N) H b—% 2 ¥ O-mek
TH3. Thirs ((Homog(M, N)) &BTHome (M, N) ® O-MEEE LTDES
=y EiITTA.

ROFHHE 1.2 {TKIHTT “additive function” AHiERT 3 & XIS,

fRRE 1.2 GlIpB &L, OG-l M i3 projective-free &3 3. /M O

MEEHEE Py L. ZOLERDABHIURILT S:
ranko Py < |G|(4(Homep (M, 0g)) + {(Homy 6 (QM, Og))).



2. Additive functions

G I3—ADHMEL L, © R RG D AR-component &35, f:0 — N 40
BT BEBO W S LT f(W) + f(rW) = Savw f(V) (2 2T ayw it AR5
A(W) OFME M(W) iIZB135 V ORBUE) DI EE, f % 6 Lo additive
function &5, A SIZETDO W IH LT f(W) = f(-W) KRV U EE, f %
T-periodic additive function & X3¢ &9 3.

Okuyama {3, [9] T8H} kG D AR-component LiZ additive function ZHiR L 7z.
ZOMiTIE, EITOHMETKRT S LITE>T, OG D AR-component {231 T
b additive function YR TE 3 T E&F Lcty, (BUIED SEX TU7EUhz)

OG-8 X, W 1%t LT,
dx (W) = {(Home (X, W)) + £(Homo (271X, W)

EBL.

O roHEMOG-MBEV 2—D2&E-TL 3. P4, V |p BHENIZESRRNEI L
G D pEABDIEITRNISDEL, U %V |p OEHMATTHEMNTE L OP-NE
ET3. ZDEE (3, Lemma 2.5) QU = U MK D LD, [9, Lemma 3] &R Uk
K&oT, OIKBTAEED WITHL U QW |p PHFEMTIRENI Edbh5a (22
T, U* = Homo(U,0) : Biiud¥). ChooWrss, #il1.2 hpoKRO I EXEHNAS.

&m21  d=dye E85L (U [= Uoop OG : HEME).

(1) © iICBT3FE®D W iZxL d(W) > 0.

(2) © 1B BAEED W i L d(W) = d(QW).

(3) A(W):0 — QW — (Bayw V) & (projectives) — W — 0 % AR-FI&F 3 (7
LV I MW) oHENTRITOEBEHETT, avw I MW)IZBII3 V OE
gE). CoLEUW)> Y avwdV).

(4) b U © & Q-periodic WHEHBEHMBES T, (3) THESHED I,

CowBE, ARFIOHALI SROPIEAB SIS,

2.2 © 2t periodic WEBFIMBPESF /T NIE, d 13 Q-periodic additive
function TH 5. &IZd i3 O D tree class LD additive function %3 3.

*23 X i3 0 EBILVEEHNRT, O ICET SETOHEBMME W

IHL X W IZHERNTIILENET S, Z0&E dy (30 LD (Q-periodic EiZfR
7iL1) additive function TdH 3.



3. A(Oc) OHRIE M(Og)

% 9" Thévenaz [12, Section 6] IZ# > T, HEMOTHEUOEEH OG-m# W iZx L
T AR-¥I A(W) &HiBRd 3.

Endy (W) := Endog(W)/{ $1EEM ASHERBIER } {simple socle 2FFD. p %
Z® simple socle DAEKITLET S & AW) {3RD & 375 pull-back & LTSNS :

0 — QW — MW) — W — 0
[l l PB. |p
0 — QW — Py — W — 0

(7=72L, Pw & W OHRHE).

AT, GRpBEL, Oc DARFI A(Og) %A 5. #H 1.1 XYEnd,;(0g) =
0/(|G|) DT |G|r~Nido, #t Endyg(Og) @ simple socle DERKTTLEL S, O D
HEWE OG — GOG =06 (0G 32— Gz € GOG, 22T, G =Y ,c2) &
[Glr=Yidog 12k B pull-back 2H B Z &ick b, AR-FI A(Og) DHHIIE M(Og) it
O0G & OC DBAMBELTROESI N SDTHSZ Lbsbh5 :

M(0¢) = (IGI7~'1,6)0G + ) _(z - 1,000G C OG & OG.
r€G

IO EhLREBS.
#h78 3.1([8, Proposition 3.2]) M(Og) FHEBHTSH 3.

filiE 3.2 Endoc(M(0g))/J(Endoc(M(0g))) =k =0/(7). &<
EndOG(M(OG))/J(Endoa(ﬂ’l(@a))) = Endo(;(OG)/J(Endo(;(OG)).

Hi 3.1 005 O 12 A OHRT ' UELTNT, A D tree class it AZ Tid
B &dbnd., £H#H3.2 o,

rad(Homy((M(Og), OG))/radz(Homoa((M(Oa), Og))

® Endog(M(Og))-m#teE LTORSE & Endog(Og)-THEE LTOEIH (GHIC kK
TCEL->T) FLLAEBH, Thit AR-FI A(Og) OHMTICEITE M(Og) OHEH
HE(=1) & AR5 AQ"'M(Og)) OFMHEIZE TS O OBBEENH LI LR
L TINBDT, A Dtreeclass{d By, Cop TR EHHNE,

Webb O£ E [13, Theoremn A] v, A D tree class i A, Booy Cooy Dooy AD 0E
72{3 Euclidean diagram T$H3DT, FEAEAT 27-DICi3H &L, A D tree class



¥ Dy, Tb Euclidean diagram TH A I L& REIT LU

ZEDIDITHERITET S,
Case I. |G| > p® iz (m) # (p) .
Case II. G =Cp x Cp (par&) o (7)) = (p) .

44T Case ] E%, S5MiTC Casell 28X 221273,

4. Casel

Z DT Case | DEE
|G| > pP&E i (7) # (p)

DHETERFEKYIADI EXERLIZU.
ROFE 4.1 #FHTBZLICE 2T, Case ] DEXlE A D tree class {3 D, T
LN ST 5.

fliRfi4.1 Case |l DIRED b &TiL, A T 2ERD (FEHTAL) BBE
$1 OG-MBE W 12 LT, A(W) : 0 — W — M(W) — W — 0 12HEF 3.

7z, [13,Theorem A] DAAD PD M LFMABIITLD, A D tree class iT
Euclidean diagram THINI EAUREh B, SR

A BT AEBEAMB W i UT, »(W) = rankoW EHL. OG-ttt W Mt
projective-free 23 HiE W & projective-free TH 3. - THHE4.1 S Case | DEF
A BRHEMBEIILE. SO EPS rid A LD additive function &85, »
%, A O tree class % Euclidean diagram &{H#ET 5 &, r IE bounded &7 H ([13,
Corollary 2.4]), &< {dimpQ"kg} 4% bounded 72 Og At Q-periodic &7 5.
LALZhiz OC P HREBRETHAZLIZHEOFIETHS. L>T A D tree class
i3 Euclidean diagram TN &EbbDHBEDT, A D treeclass it A THB.

5. Case Il

Z DHiTIE Case 1l DE

G=CpxCp (p: FH) £ () = (p)



DHETEANEYIUDIEETRT. Casell DEERIROHES.1 hho, A D tree
class {% Do, TIXEHT EHRIF B,

#®Es5.1 Casell DEED S & T,
A(M(03)) : 0 — OM(Og) — M(M(Og)) — M(Og) — 0 {2, AR-FI A(kg): 0 —
QQkG — M(kc) — ke —0 & Sp]it 50— Qkg — Qkg @S Qg — Qg —0 DEFT
b3,

B2, A O tree class i Euclidean diagram TR E&R L.
G = (z) x (y) &BL. Oz)-MBE QO I (v) EAYNFEHSEE I &iTkD,
hiE OG-MBEEAET. D OG-t X 6L, X 20 TR DN S.

W52 ()AX 2T
(2) © KB T3 EROEBEAMME W IS L X* @ W IZSHENTIRA L.
(3) X % Q-periodic Ti¥7it .

3T, filE52 &% 23 o dy 13 0 EOD (Q-periodic &IXBR 5751>) additive
function TH 3. L FE, A D tree class A% Euclidean diagram &{RET 3 &, dx 12
bounded &759 ([13, Corollary 2.4]), #EH 1.2 205 &< {dime2" X} H¢ bounded
T Og ¥ Q-periodic &85, LA LIhiIFES.2(3) iCFETS. L>TA O tree
class X Euclidean diagram T2 &b - 7.

PEDIZ EDS, A Dtreeclass it Ao, THEALEWNTEXA.
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A GENERALIZATION OF REJECTION LEMMA OF
DROZD-KIRICHENKO

OsAMU [vYAMA

Abstract

Let R be a complete discrete valuation ring and A be an R-order. Rejection
Lemma of Drozd-Kirichenko [HN-1][DK] asserts that if projective injective
A-lattice L satisfies L # rad L, there is an overorder I" of A such that any
indecomposable A-lattice except L is also I'-lattice. In this paper, by using the
language of Auslander-Reiten quiver of A, we characterize every finite subset S
of Ind A such that there is an overorder I of A which satisfies Ind A—Ind " = 8.

1 Introduction

In this paper, let (R, A, ,9) be one of the followings.

(1) R: complete discrete valuation ring, \: R-order in semisimple Q(R)-algebra,
A category of left A-lattices [CRYJ.

(2) R: commntative artin ring, \: R-algebra which is finitely generated as R-
module, A9N: category of finitely generated left A-modules.

We call A in (1) an order, and A in (2) an algebra. [n both cases, Krull-Schmidt
Thorem and Existence Theorem of almost split sequences hold in 490

IndA = { Le M| Lisindecomposable }
projA = { LelIndA| Lis projective }
injA = {LelIndA| Lisinjective}

For an overorder ( resp. quotient algebra ) I’ of A, we may naturally consider
Ind " as a subset of Ind A.

1.1 Definition A subset S of Ind A will be called

(1) rejectable if there is an overorder ( resp. quotient algebra ) I' such that § =
IndA = IndT.

(2) bounded if sup; o5 (L) < 0.

| length g gyoen) (Q(R) g L). ( Aisan order. )

Here, [(L) := { length 5 (L) ( A is an algebra. )
(3) trivialif A(S) = A.
llere, \(S) = { n’.(—lml A ~-S{J: € Q(R) Sg A | +L ¢ I‘} (\isan order. )

A/lNgetnas-s Ann L) (s an algebra. )
. ] B ctnan g L is a faithful A-module.  ( Ais an order. )
(4) cofuithful if { always ( A is an algebra. )

The detailed version of this paper will be submitted for publication elsewhere.



The map I' = (Ind A — Ind ") defines a bijection from the set of all overorders (
resp. quotient algebras ) of A onto the set of all rejectable subsets of Ind A.

1.2 Our Results In this paper, we give a criterion for bounded S to be rejectable
=Rejection Lemma ). Becanse S is minimal rejectable if and only if S is minimal
non-trivial cofaithful, it suffices to give the followings.
(A) A criterion for S to be cofaithful (2.2).
(B) A criterion for S to be trivial (2.3).
(C) An algorithm to describe the Auslander-Reiten quiver A(A(S)) of A(S) from
A(A) for rejectable S (2.4).

A remarkable fact is that the criterion for S to be rejectable depends, as in the
case of D-K Rejection Lemma, only on the structure of S, but not on the structure
of the whole 2(A). To be precise, the information we need is the following.

(I1) Structure of S as valued translation quiver.

(12) Preassignment of the subset S, ( resp. S; ) consisting of projective ( resp.
injective ) vertices in A(A) contained in S.

It turns out that for any valued translation quiver § with the information above
(I1) and (I2), rejectableness of S coincides in order cases and algebra cases.

1.3 Notations

1.3.1 Let Z(Ind A) be the free Z-module generated by the base set Ind A. By
Krull-Schmidt theorem, we can identify A9 with the submonoid N(IndA). On
Z(Ind A), we introduce the inner product { , } taking Ind A as an orthonormal base.
We shall also introduce an ordering in Z(Ind A) by

X<Ye& (X,L)<(Y,L)forany L € Ind A

1.3.2 Let § be a subset of IndA. The inclusion § € Ind A induces a 2-
mononorphism is : ZS — Z(Ind A), by which we often identify as ZS C Z(Ind A).
Then Z(Ind A — S) is the orthogonal complement of Z$ with respect to the inner
product {, ). Let |5 : Z{Ind A) — Z S denote the orthogonal projection.

1.3.3 The source map from L € Ind A is written as L — 8~ L, the sink map to
L is written as 8* L — L. The Auslander ( resp. inverse Auslander ) translate of L
is written as 7L (resp. 7 L ). We put 77 L (resp. 7+L ) := 0 if L is injective (
resp. projective ). 8*,87, 7% and 7~ uniquely extend to clements of Endz(Z(Ind A)).
Morcover, we define ¢t ,¢ " € Endz(Z(Ind A)) and df;.c); € Endz(Z S) as follows.
ot =1 -8t 4+ 7t O i=1—-6" 47"

0§ :=|s00" oig, 05 =500 oig
1.3.4 The Auslander-Reiten quiver A(A) of A is, by definition, a valued translation

quiver with the vertex set Ind A; the valued arrow L ')A witha = (L8t A1), 0 =
(8- L,M) ( provided ¢ # 0 ); the translation 7 := 7! ie. 7/, := 7V L ( provided



L ¢ projA ). Whenever we regard S as a subset of the vertex set of 2(A), we
consider S to be a full subquiver of 2(A).
Note that ¢% and ¢35 can be read from the information (11) and (12) of S.

2 Main thecorems

2.1 Definition Let & be a subset of Ind A and V' € Z(Ind A).
(1) A ( finite or infinite ) sequence (T3) = (75, Th, .. .) will be called an S~ -sequence
Jor V if the following two conditions are satisfied for any j.

(s1) 0#£7,eNS
(s2)  sup{0,(V =72 ¢T;, L)} > (T}, L) for any L € Ind A.
(2) Let T be a subset of Ind A containing Sand V € Z7.

[T.8]"V := {Ue€ZT | There exists an S~ -sequence (Tp,...,Ty) for V
such that V - %7 67T, =U }
{T.8}°V = {Uel[T,8]"V|Uls <0}

Note that we can determine only from the information (I11) and (12) of S whether
(T;) is an S~ -sequence for V or not. Similarly, [7,8]”V and {7,S} "V is computable
only from the information (I1) and (I12) of 7.

Put S, := SNprojA,S; :=SNinjA, Ps := ®Les,. Land Is:= @ g, L

2.2 Theorem A Let S be a non-emply bounded subset of Ind A. Then the follow-
ing conditions for § are equivalent.

(¢) S is cofaithful.

(c1) For any V € s M, every S~ -sequence for V is finite.

(c2) {S,8} Ps is not empty.

2.3 Theorem B Let S be a bounded subset of Ind A. Then the following conditions
for S are equivalent.

(t) S is trivial.

(t1) Uls, €0 for any U € [S,S - S:| ™ Ps.

(t2) Uls, <0 for any U € {S,5 - Si} ™ Ps.

(t3) There exists U € {S,S — Si} ™ Ps such that Uls, <0.

(t4) There exists T € N(S = S;) such thet ¢gT > Ps.

2.4 Recovering A(l") from 2A(A)

2.4.1 Definition For an overorder [ ( resp. quotient algebra I' = A/T ) of A,
() ¢ AM =M (XN~ NXN:=CN (resp. X/IX))
() @ aM—=M (N = X:={zeX|T2C N (resp. I2=0)1})

2.4.2 Proposition Write (6" MY~ (v~ M) as
@ My=(rMY=U-V (U,VeprM{UT}=0)



Then we have one of the following three results,
(1) IfV #£0, then M ¢ injI", V € IndT and the I'-almost split sequence from M
is given by
0 + M U v 0

(2) If V=0 and M € injl', the complex of the I'-source map from M is given by

0 M U 0 +()

(3) IfV =0 and M ¢ inj[", the I'-almost splil sequence from M is given by

0 M Ua M A 0

Remark that if the case (3) happens, then A is an order and 2A(I') has a connected
component of the form of 4.2.4.

2.4.3 Theorem C Let T be e subset of Ind A containing a finite rejectable subsel
S and put I' := A(S). For any V € \9M, {7,858}V is a singleton set consisting of
Vig.

Remark that using the dual version of the Theorem C, we can determine whether
A is injective or not. Hence, by 2.4.2 and the Theorem C and the duality 2.5, for
any T containing a finite rejectable subset S, whenever we are given the information
(I1) and (12) of 7 in A(A), we can obtain the information (11) and (12) of 7 — & in
A(NS))

2.5 Duality Ve explain the dual version of the above theorems. Namely, it
is obviously valid for M, (ie. for 4..9 ) by the same proof. Taking the duality
() My — A9, we get the dual result. We give a dictionary of duals here. The
map

() Z(Ind A°?) - Z(Ind A), X — X°

is a Z-isomorphism compatible with the inuner product { , ), which induces a
hijection projA°? — inj A, inj A°” — projA. Endomorphism 8~ .77,0~ corresponds
o 8t, vt ot For an overorder { resp. quotient algebra ) T' of A, () corresponds to
( ) in the obvious sence, for examples

(8 L) =8* (L"), (L) = (L") etc.

3 Examples

if $ is minimal finite rejectable, then each of §, and &, is a singleton set ( 4.2.2
). su that we write as 8§, = { P}, & = {I}. In the diagrams below. unspecified arrow
— has the valuation (1,1).

3.1 Assume that S has at most four points, # S < 4. If § is minimal rejectable,
then it should have one of the following forms.

(1 .
P=1



(3-0) R (u,b)* -
P ! — L (e
(3_0!) . la.b) (ﬂ’vb) - (1' ])7(112) 01 (2v 1)
—p- & >0
P I
3-1 ab .a
(3-1) et e  P=11, (a,b)=(1,2),(2,1),(1,3)0r (3,1)
P I
(4-0) o L. — —- o
40) P i/
(4- . RPN U0 - (a,0) = (1.1),(1,2)or (2, 1)
OH P [
(4-0) . ° R L >0
P 1
(4-1) ° >0 (a-b) PP (b,0) >0 N =71
P X 1 (a,b) = (1,2)0r(2,1)
(4-1%) ot g @ _, > o P=r}
. P Y {
(4-2} o X
P=7l.X=7X
[ — ® > &
P I
(2x2)
o— 0 |
P=7l

O ———p

P
Here, (1) is the case of D-K Rejection Lemma and appeared in the sequence of
Bass orders and almost Bass orders [HN-3] [HN-1|[H]. Also (2x2) appeared in the
sequence of local orders of finite representation type [HN-2].

3.2 For any n > 1,m 2 1, the following square ( with n x m vertices ) is minimal
rejectable.



{(n xm)

P

where diagonal arrows indicate 7.
There is an infinite sequence of orders of finite representation type Ay DA D ...
such that &; = Ind A; — Ind A;4, has the above form for any ¢ for one fixed {n,m).

4 Applications

4.1 The following 4.1.1 is one of key facts to prove lemma 5.4. As an easy corollary
of 4.1.1, we obtain a generalization 4.1.2 of Roiter's Theorem.

4.1.1 Proposition For f: X =Y, g: X - Z,putS:={ L €IndA| fHom(Y,L) #
gHom(Z,L) }. If S is bounded, then S is finite.

4.1.2 Corollary A bounded rejectable subset S of Ind A is necessarily finite.

4.2 Our rejection theory has wide applications for the problem characterizing
a subquiver of some special type of A(A). For example, as an application of the
Theorem C, we obtain a generalization 4.2.1 of Bautista-Brenner’s Theorem [BB].
Similar arguments give the classificaion in 3.1.

4.2.2 is a direct consequence of the Theorem B, but we can also give more ele-
mentary proof. On the other hand, we can apply the Theorem A to give a purely
combinatorial proof of well known facts 4.2.3 and 4.2.4.

4.2.1 Proposition If S is a finite rejectable subset of Ind A. then any arrow in
S has the valuation (1,d) or (d.1) whered =1,2 or 3.

4.2.2 Proposition Any non-trivial subsel S of Ind A contains at least one projec-
live und at least one injective. Moreover, any minimal non-trivial subsel § of Ind A
contains exactly one projective and exactly one injective.

4.2.3 Proposition [BS| Lel A be an algebra and assume that thereare Ly, Lo, ..., L, €
Imd A, (Lyyy i= Ly, Lpga := Ls) with irveducible maps L; — L,y (1 <t < n). Then
there is some 3 <1< n+2 such that 7l; = L,_».

4.2.4 Proposition [W] Let A be a ring indecormposable R-order and assume that
there ts Lo € Ind A with an irreducible map to itsclf. Then A(A) has the following
form by some n > 0; L, € projANinj A, 7L, = L(0 <7 <n).

I - S 7 L,.,=—=L,

Lo
O



5 Idea of the proof of the main theorems
Let A = (4;,a:) denote a complex of A-lattices

ar.1 ar

A —.4[_1 ‘A[

A

We write the action of A-morphism from right. Let T € A9 be non-zero and
assume that there is a split monomorphism i : 7' — 4, satisfying the following
property:

ia,, € ra.d(T, -4n+l)

where rad(T', A4, ) is defined by the same way as [R] 2.5.
Then it is easily seen that there is a chain homomorphism given by the following

commutative diagram. Here, 0 = T % 6T £ 7-T — 0 is the complex of A-source
map from 7T'.

u

0 — 0 T ——6°T T —— 0 ——0——
A: An2 A An ~»An Ange *Anys 0
By a mapping cone, we obtain a new complex
Ap——d, g—— A, O T—— A4, 90 T——A, BT T . W

It is casy to show that A, have a direct summand of the form

n—1 n
0——0 T —7 0 0

By canceling this, we obtain a new complex

Ao -'ln.—" -"n 1 (:ln/T) Sy 9—’1‘—'.",,+1 s T :ln+-)

5.1 Definition (1) Thus obtained A» will be called the complex obtained from
A by rejecting T from A,, and will be denoted as
n
Ag =A-T.

(2) Let S be a subset of Ind A and n be an arbitrarily fixed integer. A ( finite
or infinite ) sequence (A'®?, A" A . ..) of complexes of A-lattices will be called a

successive §” - rejection sequence with the initial complex A, if there is a sequence
(7)) with 0 # 7, € NS, by which A" is defined inductively as A = A AV .=

AV - T;.

5.2 Lemma Put A- T'= (4}, ¢)).
(r1) A, = Ay = Ay = Auyr — 67T,



(r2) If X € \M and {X,T) =0, then a, -, Hom 4 (4,,\) = a)_, Hom 4 (4}, X).
(r3) There are exacl sequences of homology:

0——H""YA) —— H" Y (A') —— kerv ——— H"(A)——H"(A")
—— kerp/imy ——— H"PY(A)——H"PHA)Y—— O

0——H'(A) HY(AY——0 (l#n-1,n,n+1)

5.3 Proposition Let (T;) be an S~ -sequence for V" and A a complez with A, -

.o . e 0 1
Any1 = V. Then there ezists a successive S~ -rejection sequence of compleres (A0 AN ),

n
AO = A AV = AUV T with AV - AY) = V.

By 5.3, whenever we are given an S~ -sequence, we can obtain a successive 5~ -
rejection sequence of complexes. For exainple, main part of the Theorem A is proven
from the following lemma.

5.4 Lemma Let S be a bounded cofaithful subset of Ind A. Then any successive
S -rejection sequence with the initial complez A terminates al a finite number of
sleps.

Moreover, 5.2 gives many information about these complexes. However they suffice
to prove the Theorem B and the Theorem C, our method is rather complicated and
we shall omit.
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COHEN-MACAULAY APPROXIMATIONS FROM
THE VIEWPOINT OF TRIANGULATED CATEGORIES

Kiriko KATO

§1 Introduction.

Let (R,m,k) be a complete Gorenstein local ring, and let M be a finitely
generated R-module. Auslander and Buchweitz introduced the notion of Cohen-
Macaulay approximation (1) and a finite projective hull (2), of M, which are
the exact sequences dnal to each other [1], [6] :

0-YE S XE™ Ao, (1)
my 00— MY o XM o, (2)

where X§, X! are maximal Cohen-Macaulay modules and Y, Y} are mod-
ules of finite projective dimension.

If X& and Y, (resp. X} and Y}) have no direct summand in com-
mon, according to the inclusion map appeared in the sequence (1) (resp. the
projection map in the sequence (2)), it is called the minimal Cohen-Macaulay
approximation (resp. the minimal finite projective hull), which exists uniquely
up to isomorphisms. We may assume henceforth the minimality of (1) and (2),
omitting common summands if necessary.

The above exact sequences suggest an idea to treat a finite module as a
kernel or a cokernel of a homomorphism from a finite projective dimensional
module to a Cohen-Macaulay module. Indeed, on researching Cohen-Macaulay
approximations, there arises a natural question: If Xar = Xy, Yay = Yy, do
two modules M and N share any common property? As the simplest case, we
obtained the following:

Theorem 12 Suppose A~ := Hompg(M, R) = 0. If for an R-module N has
the property that XV = X and YN = VM then N 2 M.

We discuss the problem within a framework of the theory of triangulated
categories; in other words, we focus on the fact that the category of Cohen-
Macaulay modules over a Gorenstein ring is Frobenius. In addition to above
two exact sequences (Cohen-Macaulay approximation and finite projective hull),
in the section 2 we construct another exact sequence “origin extension” which is
the dual of the other two. The notion of origin extensions enables us to consider
two R-modules M and N with X = Xy, VM = Y¥ as two elements of an
R-module ExtL(Y*, QR(X ),

Unlike a Cohen-Macaulay approximation and a finite projective hull, a non-
minimal origin extension does not always includes the minimal origin exten-
sion. The existence of a non-trivial non-miniral origin extension obstructs the

The detailed version of this paper will be submitted forpublication elsewhere.



uniqueness of the correspondence between finite modules and elements of the
module of the form ExtL(Y, X).

§2 Origin Extensions.

Thoughout the paper, we fix a complete Gorenstein local ring (R, m, k), and
a “module” always means a finitely generated module over R. We call a module
without a free summand a “stable module”.

Definition 1 For a finite R-module M, an origin extension of M is the ezact
sequence
C:0- XS MaPBY o0 (3)

with a Cohen-Macauley module X, a free module P, and a finite projective
dimensional module Y.

Definition 2 An origin extension (3} is called minimal if it satisfies the fol-
lowing conditions:

MN1) The Cohen-Macaulay module X is stable.
MN2) There ezists no common summand with P end Y through p..

MN3) For any origin extension (' : 0 > X' = M® P - Y' — 0 of M,
there ezist linear mapsa : P — P, b:Y = Y', andc: X — X' that
make the following diagram commutative.

¢: 0 - X —- MoeP —- Y —= 0

| [ey s (4)

¢: 0 = X' = MaP — Y — o

Theorem 3 For an R-module M, there ezists a minimal origin ezlension of
M.

pproof) The minimal finite projective hull 7as : 0 —» M =¥ — XA — 0 and
the syzygy of XM yield a pull-back diagram;

0 0
l l
NR(XY) = QL(xM)
l l
0 - M - M&G - G - 0
| !
0 - M —- ¥Y¥ L XM S 0
l l
0 0
Car



where G is a free module and both X A and Q}(.X A") are stable Cohen-Macaulay
modules. Since the middle row splits, the middle column {ys is an origin exten-
sion of M.

We claim that the exact sequence {ar € Exth(VA!, 2R(XA')) on the middle
column, satisfies the condition MN3). Let ¢’ be an arbitral origin extension of
M:

(0 X'aoMaP =Y =0
We shall show the existence of maps that make the diagram (4) commutative.
We may assume that X' is stable. 1t follows from the following commutative
diagram
0 - X' 5% MaP - ¥ - 0
] I I
0 - C Y MeP - 7z - o,

where X' = C' & V" with a stable Cohen-Macaulay module C’ and a free module
V, and Z' is of finite projective dimension because of the induced exact sequence
0=V -2 -Y =0

Together with the cosyzygy sequence of X', {’ gives the following push-out
diagram:

0 0
| l
¢: 0 = X = MaP - Y =0
l l I
=0-: 0 — G - Er =y -0
—ll -7 - —-11 ]
Q' (X)) = oz (X))
! |
0 0

where G' is a free module, We may take Q]‘.’(.\") stable to make the second
column the minimal finite projective hull of Af & P’ hence Ep = Y,Q’ & P,
X'=oL(xM)and G =G

Now we shall show that an extension ¢’ is carried to {as via the homo-
morphism Extk(pe. RR(XAN) 1 Extp (Y, QR(XN) — ExtR(Ep, QR(XY)) =
Exth (YA, QR(XA), which implies the commutative diagram:

Ca: 0 — QLAY = MaGaP — YispP - 0

" 1 lﬂn'
¢: 0 — X - M P - Y’ - 0



Two sequences (' and 8’ make the pull-back diagram:

0 0
l !
G = G
! !
(: 0 = X' = E — YMaP - 0

u o o

¢: 0 - X' - MeP - Y = 0

{ {
0 0
o' 6’

Calling the middle row ¢, we easily see Extk(pg, X')(¢) = ¢’. Provided that the
sequence ¢’ splits. Then E¢ = M & P'© G, which implies ¢ = (,, by virtue of
Lemma 5. And moreover, we obtain the required diagram on the bottommost
two rows in the diagram above, since p,- is an splitting epimorphism.

We are now to state that the sequence ¢’ splits. On the long exact sequence
induced by ¢', o’ is Lhe image of 8, while @ is also the image of the inclusion
map in the cosygyzy of X': 0 —» X' X G- Q,}'(X’) — 0. So ¢’ is trivial
as an element of Exth(M © P',G). (Sce the diagram below whose columns are
induced by the cosyzygy sequence X' and rows by ¢'.)

! l

- Endg X' —  Extp(Y'. X"
w w
1 ¢
| l

- Homg(X',G) — Exth{Y",G) — Exth(Me& P'.G)
w w W
£y 0' 0'
l

Homg (X', QzH{X")

Our final step is splitting off the maximal comnmon free summand Q between
G and Y,‘z" from (as to obtain the exact sequence (,,:

Ca i 0= QXM s MaG/IQ-YHIQ -0

The sequence Z-\L satisfies MN1) and MN3) as well as (s, and also MN2) by
difinition. Thus (,; is a minimal origin extension of M. (q.e.d. for Theorem 3.

)

Lemma 4 Let A be a finite R-module, P-a free module. The exact sequence
0:0-P—-Ey—-M—-0splitsif Eg=Ms P



proof) The corresponding chain map 6, : Fy;, — P(—1) may be taken as
0; = 0 (i # 1). The mapping cone Cone (8,), is the minimal free resolution of
M @ P considered ranks of each free modules. So there exists a chain isomor-
phism a, : Fyy, — Cone (8,),.:

l l
ay
Fay — Fyss
drpry drgpy
ay
E\fl - FMI

(5] Lt

Fyo®P ——— Fyo® P

l l
MoP E=2MopP

We have 8a, = cdF,, ,, which means 6, = 0 as an element of Extk(M, P) since
a is an isomorphism. (q.e.d. for Lemma 4.)

Lemma 5 Let Y be a module of finite projective dimension, and X be a stable
Cohen-Macaulay module. Let ( € Extr(Y, X) be an eztension

(0= X->MsGEY =0

with a stable module M and a free module G. Suppose ( has the following
properties;

o ¥ = Y‘,ﬁl,
[ ] X = Q‘;t(4\,ﬁr).
o 1k(G) = u(X}),

then ( coincides with (g in Theorem 3. In other words, an extension with the
three conditions above, is unique in ExtL(Y, X).

proof) There exists an epimorphism # € Homp(Y* % G, YA} such that
P¢ = TEnpge Where &,,, . is the inclusion map appeared in the minimal finite



projective hull of M & G. We have the following commutative diagram:

0 0
! ! '
C: 0 = QXM - MaG B v¥ - o0
! [erme
0 — zZ - Y¥MeG o VY - o0
,\’l,g’ = XM
! l
0 0

Since Z := Kerw is Cohen-Macaulay and finite projective dimensional at the
same time, Z is free. In view of the leftmost column, we have rk(Z) = u(X})
hence Z 2 G. So the middle row splits becanse of Lemma 4. Consequently, for
any ¢ with three properties of this Lemma, p; = 7¢,,,oc where 7 is the split
epimorphism 7 : YA @ G Y. (q.e.d. for Lemma 5.)

Theorem 6 The minimal origin extension of an R-module M is unique up to
isomorphism. In other word, if two origin extensions of M; ( : 0 — X —
MeP—-Y —=0and( :0—=- X' - M@ P —Y' — 0 are both minimal,
linear maps a, b and ¢ in the diagram (4) are isomorphisms. The minimal origin
extension of M 1is, after adding some free summand, of the form

Cr:0- QXM o MG -YM o0
where G_y XM is the minimal projective cover.

proof) We may assume that (' = (3y. The proof of Theorem 3 tells us X =
X’ = QL(XM). The diagram (4) is decomposed into two parts;

C: 0 - X - MgP —- Y = 0
lc la:(alag) lli
" 0o — X' = E - Y =0 (5)

lll ln:(;;;) lb
r=¢C: 0 = X - M&P - Y = 0
_ 31(1| 5]0’2 _ idM 0
3(] - (3-_)01 (530-_) - 0 al)’ (6)
Since 31y = idag, M is a direct summand of E: E2 M Q& N (Q:free
, N:stable). The sequence " is an origin extension of M © N, which implies

with



QXYY =2 QL(XM & XV) hence N is of finite projective dimension. After
partitionwise isomorphic transformations,

1
) = 0
0

, Bi=(1 0 0),

together with (6), «, 8 is of the form

M P

M{1 0 MoQ N
M1 0 0

a = Q 0 q ) ;B = P 0 a .
N 0 a» 3 G

We shall show that (” & (4~ There exist homomorphisms &',5,¢ that
make the upper half of the following diagram.

™ o
o

ZM(BN: 0 - X A MaPaN —- YN - 0

|+ [Geh [

¢": 0 - X' - M&QasN - Y - 0

lu la:(,', ) lb

‘
4
1

;

¢: 0 - X 3 MeP 5% v S0

Reviewing the proof of Theorem 3, we may take the identity map of X as ¢'.

The equation
1 00 )
FRIEHIORE
“ 4/ %o 0 1/ \o 2

is reduced to &), = aza’c,. We claim that aza’ is an isomorphism.

.. d¢ .. . '
The minimal cover Gy X induces a homomorphism £ as

™ m
&~ —

(LR LY

p’

Go > P
deu Il

ot
=2

X = P

This 27 has the same property z””° = aza’z? | since » = hdg,.
ve e . ' _ P’ _
With respect to matrix representation eza’ = (a,,),_\,.‘)smp,). and ¥ =

. . 3 1P S
{(£x)icrcrn(pry. 1<i<ekiGyy+ the above equation means (aza’z™ ), = 27, that



is,
rk(P’)

Z QikZrj = Ty
k=1

for 1 <i <rk(P), 1< j < 1k(Go). Now suppose that aza’ is not an isomor-
phism hence is not an epimorphism. Then aza’ has at least one row, say, the
first row, whose all entries belong to the maximal ideal m. We have

rk(P")
(1-an)zy; = Z a1kTk;
k=2

for 1 < j < rk(P’) with (1 — a11) a unit, which implies that zP' has a zero row
after some row-transformations.

On the other hand, it is easy to see the equivalence of the following condi-
tions:

1) A common summand splits off through p- from P’ and Y.
2) There exists a split epimorphism s : P’ R such that s¢, = 0.
3) There exists a split epimorphism s : P’ R such that sz = 0.

- ’ -
4) After some row-transformations, ¥ contains a zero-row.

P

0 - X - MgP =S Y - 0
‘
N
PI
R =¥ R

So we get a contradiction to the condition MN2) of ¢'.

Now that a' is a split monomorphism, the exact sequence 0 — Y' & N LA
¥ — Cokera’ — 0 splits since Cokera’ = P'/Q is a free module. Therefore ("
is a direct summand of (g, which means {"" = ¢, due to the minimality
of (argn-

Next, looking back the upper half of the diagram (5),

(mm)

¢: 0 = X = MsP 4 Y - 0
|- [a=(d ) I

l” l"_| o
C,,: 0 —_ ‘\- — ﬁf@P’fB/V (1)’__1:!)

Ve N — 0,



we get

M P
_Y' ([ pa
(pl p'.?) - N ( 0 as .

To see the surjectivity of a, first @2 is clearly an epimorphism from the above
. . . . . pyPa
equation. If e, is not surjective, neither the homomorphism M & P( gkt ) ¥’

is; since on {’, p5 is induced from the minimal projective cover P’ Coker p).
It follows that c is surjective, equivalently is isomorphic, because Cokerec =
Cokera. As a conclusion, { = ¢, which implies N = 0 hence " =2 {’. (q.e.d.

for Theorem 6.)

Remark 7 The minimal origin extension of the direct sum M & N of modules
is the direct sum of the minimal origin ectension of M and that of N.

83 Non-trivially non-minimal extensions.

Any non-minimal Cohen-Macaulay approximation or finite projective hull is
the direct sum of the minimal oue and some trivial complex. Although it is not
the case for non-minimal origin extension as seen in the following example.

Example 8 Let R := k[[z,y])/(zy), and M := k. We have

ro
5 L0y (zy)

) LG,
-—»R"—bR'——bR —ﬂR—»k—»O,
(3) o (8

(1) .
0—R— R*=YM g,

R R* — XM o,

Taking e finite projective dimensional module Y' as

(1)
0 - R — R - ¥YM o 0

I lan s

we gel .
0 — QFf(XMy -~ MsR — ¥YM — 0

I [ ) |

0 — QMXM) - MasR - Y = 0
The the second row is ¢ non-minimal origin extension of M that is not a direct
summand of the first row.



Definition 8 A non-trivially non-minimal origin extension of a module M is a
non-minimal origin extension that does not include the minimal origin extension
of M as a direct summand.

Let 0 - X — M &P — Y — 0 be an origin extension of a stable R-module
M that is not necessarily minimal. We observe that

X= Qf(XM) up to frec summands, (7

and
0-Guy_ Yo P-oY =0 (8)

where Gp;_, X* is the minimal projective cover. from the argument in
the proof of Theorem 3. Through this observasion , non-trivially non-minimal
origin extensions exist with respect to the homological property of Y.

Lemma 10 For a module Y with finite projective dimension, if ExtL(Y,R) =
0, then for any stable Cohen-Macaulay module X, each non-zero element of
Exth(Y,X) is the minimal origin extension of some stable module. In other
words, ExthL(Y, X) contains no nontrivially-nonminimal origin eztension.

proof) It suffices to prove for a stable Y.

Suppose the contrary; let 0 — X — M &P — Y — 0 be a non-minimal origin
extension of a stable module M. Then we have a non-split exact sequence (8)
0—-+G_, —YM® P~ Y =0, which contradicts to the assumption. (q.e.d.)

Remark 11 The converse of the above Lemma is not true. (see [5].)

Theorem 12 Suppoe.:e M* := Homg(M,R) = 0. If for an R-module N has
the property that XV = XM and YN = VM, then N = M. Moreover, if
Exth(M,R) =0, therz_Ext},(Y“,Qf(l\’M)) is principally generated by the min-
imal origin extention Cy, of M as an an Endr (YM)-Endg (Qk(XM)) bimodule.

proof) The sequence 0 — M — VM — X} *2% 0 induces
Hompg(YA', R) = Homg(X}, R), (9)
Extih(Y},R) = Exth(M,R). (i #7,0) (10)

From (9) we have (Y*)™" 2 X'M_ Since XM is reflexive and p,,, is an epimor-
phism, p,,, is nothing but the natural homomorphism Y% — (¥'¥)™". (See the
diagram below.)

yM Pure M

1 Ul

()pn,)-- P'lﬂ’ (‘\_AI)--



On the othe hand, p,, : Y™ — XM = (Y )" is also an epimorphism , hence
also isomorphic to the natural map Y¥ — (YA)™",

To prove the latter part, let ¢ : 0 = QF(XY) > Lo P - YH -~ 0an
arbitrary element of Extp(Y* QR(Xy))

with a free module P and a stable module . We have Exth,(Y2/,R) =0
from (10), which implies ¢ is isomorphic to the minimal origin extention of L by
virtue of Lemma 10. We have Y+ = YM @ F for some free module F and X% =
XM since YM is stable because (Y*)™ = X' Moreover, on the minimal

(PxP:)

projective hull of LO —» L = Y* & F """ XM 0, py = (p)) #+ 0 py,,. As
for the syzygy sequence of X¥ 0 — QL(X¥) = G — XM = 0 with G a free
module, induced map Homg(Y* , XM) — Ext; (Y'Y QL(XM)) is surjective
because Extp(Y ¥, R) = 0. Here ¢ € ExthL(YM,0QL(X4)) is the image of
p1 = (p1) ** 0 p,,, while (,, is that of p,,,. (q.e.d. for Lemma 12.)
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NON-COMMUTATIVE VALUATION RINGS AND THEIR GLOBAL
THEORY

HIDETOSHI MARUBAYASHI

Abstract

This is a survey of Iast decade on non-commutative valuation rings, and of
semni-hereditary and Priifer orders in a simple Artinian ring which are considered,
in a sense, as global theory of non-commutative valuation rings. The article also
contains a several open problems,

1.Non-commutative Valuation Rings

Histrorically non-commutative valuation rings of division rings were first treated
systematically in Schilling’s book[S], which are nowadays called invariant valuation
rings, though invariant valuation rings can be traced back to Hasse's work in {H].
Since then various attemptions have made to study the ideal theory of orders in finite
dimensional algebras over fields and to describe the Brauer groups of fields by usage
of "valuations”, " places”, "preplaces”, ," value functions” and "psuedoplaces”.

In 1984, N. I. Dubrovin defined non-commutative valuation rings of simple Artinian
rings with notion of points in the category of simple Artinian rings and obtained sig-
nificant results on non-commutative valuation rings(namend Dubrovin valuation rings
after him)which sygnify that these rings may be the correct definition of valuation
rings of simple Artinian rings.

The aim of this section is to give a surmmary of his results. We begin with the
definition of invariant valuation rings and their generalization. Let D be a division
ring with finite dimension over its center F and let R be a subring of D. Consider the
following two conditions:

(T) For every deU (D), either deR or d-'€R.
(I) For every deU(D), dRd—'=R.

Here we denote the unit group of a ring S by U(S) and the center of S by Z(S).
If R satisfies the condition(T), then it is called a total valuation ring of D. If R satifies
the conditions (T) and (I), then it is called an invariant valuation ring of D. If R is

This is In a final form and no verslon of It will be submitted for publication elsawhere



invariant, then any one sided ideal of R is two-sided and we can define the value group
of R as follows: T'g = U(D) \ U(R), which is made into a totally ordered group by
d\U(R) < d;U(R) if and only if d\R 2 dz R for any d),d; € U(D). Then the natural
mapping v: U(D) +— T'g given by d — dU R) satisfies the following two conditions:
(V1) v(ab) = v(a) +v(b) (we use an additive notation for I'g).
(V2)v(a + b) 2 min{v(a), v(b)} if b # —a.
In general, a surjective mapping v: U(D) — G which satisfies the conditions (V1)
and (V2) is called a valuation on D,where G is a totally ordered group. This was an
original definition given by Schilling. If v is a valuation on D, then it is easily checked
that R = {d € U(D) | v(d) 2 0}U {0} is an invariant valuation ring of D and I'p & G
naturally.

Let Q be a simple Artinian ring with F = Z(R) and let V be a valuation ring
of F. An order R in Q is called an eztension of V to Q providled RN F = V. The
following is the classical result which is concerned with extension.

Theorem 1.1[S]. Let D be a division ring with finite dimension over its centerF'
and let V be a valuation of F. Suppose that V is either complete or Henselian. Then
there exists an invariant valuation ring of D extending V' to D.

However any valuation V' of F is not necessarily to be extended to an invariant
valuation ring of D(even to a total valuation ring of D). If D is the quaternion alge-
bra over the rational field, then only 2-adic valuation can be extended to an invariant
valuation ring of D(see|GB]). Of course, The class of total valuation rings is much
bigger than the class of invariant valuation rings(see |GB1], [GB2| and [M]).

As we have already seen, the invariant and total valuation rings have the following
two problems.

(1) Any valuation ring of F is not necessarily to be extended to an invariant(a total)
valuation ring of D.
(2) They are not defined in a simple Artinain ring which is not a division ring.

In 1984, N.I. Dubrovin defined non-commutative valuation ring by using the con-
cept of points as follows:
Let Q be a simple Artinian ring. We adjoint a new symbol co to @ and define
g+o0o=00+qg=o0 for any g € Q,
and
c-00=00-c=co for any c € U(Q).
Note that we do not define co + 0o and oo - q if ¢ ¢ U(Q). We denote this set by
(Q,00). Now let D be another simple Artinain ring. A mapping f of (Q, co) onto
(D, 00) is called a point of @ onto D if
(i) f(1) =1,7(gr) = f(g) f(r) and f(g+ 1) = f(q) + f(r)
for any ¢,r € (Q, 00) whenever the right hand sides of (i) are defined, and for any
g € Q with f(g) = oo, there exist r, s € Q such that
(ii) f(gr) # 00,0 and f(sq) # 00,0 with f(r) # oo and f(s) # co.



The points are just a generalization of places in commutative rings(see [B] and
[ZS]). However, he has not only solved the problems (1) and (2) above but also ob-
tained significant results which look like genuine non-commutative valuation rings as
it will be enumerated in the following.

Proposition 1.2[D1]. Let Q and D be simple Artinian rings and let f be a
point of Q onto D. Then R = {q € Q | f(g) # oo} is a subring of Q and M =
{g € R| f(g) =0} is an ideal of R such that
(1) R/M is a simple Artinain ring, and
(2) for any g € Q\R there exist r, s € R with gr, sg € R\M.

Conversely, if R is a subring of Q@ with ideal M satisfying (1) and (2), then the
mapping defined by

_ | [a+M], foraec R
f(a) = { 0, foraeQ\R

is a point of R onto R/M.

A subring R of Q satisfying the conditions in Proposition 1.2 is called a Dubrobin
valuation ring of Q. Let R be a Dubrovin valuation ring of a simple Artinain ring Q.
Then he first points out the following:

(a) M = J(R),the Jacobson madical of R, and
() gRNRC J(R) (9 €Q) =g € J(R).

Next, he proves the following by skillfully combining the facts (a) and (b) with the
properties of the Jacobson radical, Nakayama's Lemma and etc..

Theorem 1.3[D1]. Let R be a subring of a simple Artinain ring Q. The the
following are equijvalent:
(1) R is a Dubrobin valuation ring of Q.
(2) R is a local and semi-hereditary order in Q.
(3) R is a local and Bezout order in Q.

Here we give some defintions on terminology described in Theorem 1.3. A ring
S is called local if S/J(S) is a simple Artinian ring. If any finitely generated one
sided ideal of S is projective, then S is called semi-hereditary. An order S in a simple
Artinian ring is called Bezout provided any finitely generated one sided ideal of S is
principal.

Furthermore, he proves the following by usage of Theorem 1.3 (3) and the fact that
any overring of a Dubrovin valuation ring is again a Dubrovin valuation ring(|D1, The-
orem 4]).

Proposition 1.4|D1]. Let R be a Dubrovin valuation ring of a simple Artinain
ring Q. Then the set of all R-ideals is linearly ordered by inclusion.



In his another paper, he gives an example of ring R in which the set of all R-ideals
is linearly ordered but not a Dubrovin valuation ring. To obtain the further detailed
results on Dubrovin valuation rings, we assume, in the rest of this section,that @ is a
simple Artinian ring with finite dimension over its center F. Then any orderin Q isa
Pl-ring. Combining these facts with the results stated before, he proves the following:

Theorem 1.5|D2]. Let R be a Dubrovin valuation ring of Q. The [ollowing hold:
(1) V = FN R is a valuation ring of F.
(2)P € Spec(R). Then C(P) = {c € R | c: regular mod P} is a regular Ore set of
R and Rp={ec”? |e € R, c€ C(P)} is a Dubrovin valuation ring of R.
(3) The set of all R-ideals is a commutative semi-group.
(4) there is a bijective mapping between Spec(R) and R, the set of all overrings of R
given by P+— Rp and S +— J(S), where P € Spec(R) and S € R.

The existence theorem has also been proved by Dubrovin ,and later Brung and
Griter gave an elementary proof of it. The conjugacy theorem is due to Wadsworth
by using Henselization.

Theorem 1.6. Let V' be a valuation ring of F.
(1)(The existence theorem)[D2| and [BG2]. There is a Dubrovin valuation ring R of
Q withV=RNF.
(2)(The conjugacy theorem)[W]. Any Dubrovin valuation ring of Q whose centers are
V is conjugate.

We have mainly introduced some results due to Dubrovin. After Dubrovin, some
researchers who had been studying invariant and total valuation rings started study-
ing Dubrovin valuation rings and related topics by using Dubrovin's results, For
example, Proposition 1.4 and Theorem 1.5 (3) enable us to define the value group as
follows:

Let st(R) = (g € Q | gR = Rq} is a commutative group and U(R), the set of all units
in R, is a subgroup of st(R). The factor group I'p = st(R)/U(R) is a total abelian
group in the following definition;

gU(R) 2 sU(R) <> qRC sR

,where q,s € st(R). T'r is called a value group of R. It is easy to see that 'y is
naturally embedded in ', where V = RN F. However, we can not freely handle I'p
in order to get some good informations on R as in commutative case. In the case R
is integral over V, Wadsworth obtains the following.

Theorem 1.7[W|. Let R be a Dubrovin valuation ring of Q with V = FnR.
Then the following are equivalent:
(1) Any element in R is integral over V.



(2) For any q € Q, there exists s € st(R) with RgR = sR = Rs.

This theorem was extended by Grater|G2| to the case R is a Bezout order in Q.
By using the property (2) in Theorem 1.7, we can define a mapping w : Q —
I'rU {00}, given by w(g) = sU(R) and w(0) = co, where g € Q with RgR = sR = Rs
and the mapping w satisfies the following which look like valuations in commutative
rings.

(V1) w(g) =00 = ¢=0,w(-1) =0.

(V2) w(g + s) 2 min{w(q),w(s)}.

(V3) w(gs) 2 wlg) + w(s).

(V4() )I}m w = {w(g) | ¢ € Q} = w(st(w)), where st(w) = {g € U(Q) | w(g™') =
-w(q)}.

As we can guess from the properties (V1)~(V4), in the case R is integral over V', we
can use the value group of R. In fact, Wadsworth, Haile and Morandi have used the
value group for further development of Dubrovin valuation rings and for characterizing
Dubrovin valuation rings in crossed product algebras and tensor product algebras(see
[HM], [HMW] and [MW]).

2. Semi-local Bezout Orders

Throughout this section, let Q@ be a simple Artinian ring with finite dimension
over its center F and let R,,..., R, be Dubrovin valuation rings of Q. We say that
Ry, ..., Ry, have the intersection property if

¥ :R(R) V... UR(R,) — Spec(R)
defined by #(S) = J(5) N R is well-defined and an anti-inclusion-preserving isomor-
phism, where R = R; N...N R,, R(R;) is the set of all overrings of R; and S € R(R;)
for some i. As you can see from the following theorem, this condition is not queer.

Theorem 2.1. Let R be an order in Q. The following are equivalent:
(1) There are a finite number of Dubrovin valuation rings Ry, ..., Ry, of @ having the
intersection property such that R = Ry N ...N Ry,
(2) R is a semi-local Bezout order in Q.
(3) R is semi-local and for any prime ideal P of R, C(P) is a regular Ore set of R
and Rp is a Dubrovin valuation ring of Q.

The proofs of (1)== (2) and (2)= (3) are due to Grater(|[G1] and [G2]). The
proof of (3)= (1) is found in [MMU2].

In[G1], Griter gets the following existence , uniqueness and conjugacy theorems
by usage of the intersection property.

Theorem 2.2. Let I be a valuation ring of F.



(1) (The existence theorem). There are a finite number of Dubrovin valuation rings
Ry, ..., Rn having the intersection property such that R = Ry N...N Ry, is a semi-local
Bezout V-order in Q with V = Z(R).

(2) (The conjugacy theorem). Let R and S be a semi-local Bezout V-orders in Q,
where Z(R) = V = Z(S). Then R is conjugate to S.

(3)(The uniqueness theorem). Let R = Ry N...N R, = 5 N...N S be a semi-local
Bezout V-order in Q@ with V = Z(R), where R,,..., R, and S, ..., Sa are both in-
comparable Dubrovin valuation rings of @. Then n = m.

This theorem shows that semi-local Bezout orders are very important class of rings
from the viewpoint of orders. The another important result on semi-local Bezout or-
ders is the approximation theorem which is one of the main tools to study semi-local
Bezout orders. The approximation theorem was obtained by Morandi[M1]. In addi-
tion to [G1] and [G2], we refer the reader to [PR] , [MMU2] for further development
of semi-local Bezout orders.

3. Global Theory and Some Open Problems
The following are well-known in commutative rings.

Theorem 3.1|G]. Let D be a domain with its quotient field F.
(1) The following are equivalent:
(i) D is a Priifer domain, that is, any finitely generated ideal of D is invertible.

(ii) Dp is a valuation ring of F for any prime ideal P of D.

(2) Let K be an algebraic field extension of F and let R = {k € K | k is integral over D}.
If D is Priifer, then so is R.

Remark.(1) Suppose that D is a Dedekind domain and K is a finite dimension
over F, then R is also Dedekind.
(2) Let F = Q, the field of rationals, D = Z ,the ring of integers and let K be the
algebraic closure of Q. Then, of course, R is a Priifer domain by Theorem 3.1 and
it is known that any prime ideal P of R is idempotent, that is P = P2?([G|). This is
one of the big differences between Dedekind domains and Priifer domains. Another
difference we want to point out is ; the Krull dimension of any Dedekind domain
is one, and it is known that there exists a Priifer domain which has infinite Krull
dimension.
(3)As you can see from Theorem 3.1 that the theory of Priifer domains is a global
theory of valuation theory and contains the theory of infinite number theory.

In commutaive domains, an ideal is invertible if and only if it is projective. How-
ever, in non-commutative rings , an invertible ideal is of course projective and the



converse is not generally held. This leads us, at least two, the following orders which
are considered as global theory of Dubrovin valuation rings; semi-hereditary orders
and Priifer orders. An order in Q is said to be Priifer if any finitely generated one-
sided ideal is progenerator([AD]). Semi-hereditary rings have studyed from time to
time. However, it seems to me that the study of semi-hereditary and Priifer orders
has just started from the viewpoint of orders (|[AD], [MMU1], [MU1] and [MUZ2]).
There are so many unsolved problems in the subjects we have just obserbed. Finally
we want to introduce several tpyical ones.

Problem 1. Let R be an order in a simple Artinian ring @ with finite dimension
over its center F and let D = Z(R). Suppose that D is a Priifer domain.
(1) Does there always exists a semi-hereditary D-order in Q?
(2) Moreover, does there always exist a Priifer D-order?
The answer is affirmative if D is either Noetherian or valuation.
(3) By Zorn's lemma, there exists 8 maximal D-order. Does any maximal D-order in
Q is semi-hereditary?

Problem 2. Let R be a Bezout V-order in a simple Artinian ring with finite
dimension over its center F, where V' = Z(R), a valuation ring. Is the set of all
R-ideals G(R) a commutative semi-group? if the answer is affirmative, then we can
get some igformations on R by G(R)([G2]).

Problem 3. Let Q be a simple Artinian ring with F' = Z(Q). Suppose that Q is
infinite dimensional over F. Characterize the structure of Dubrovin valuation rings,
Priifer orders and semi-hereditary orders in Q. This is not only replaced finite di-
mension by infinite dimension but also contans the theory of quantum type algebras.
See [MV ] and [VW] for valuation rings in quotient rings of quantum type algebras.

We have roughly given a survey of non-commutative valuation rings and their
global theories. We refer the reader to the book [MMUZ2] for more detailed results
and would like to end with mentioning that Alajbegovic and Dubrovin will also pub-
lish books on Priifer rings from Marcel Dekker.
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ON THE RINGS OF THE MORITA CONTEXT WHICH ARE
SOME WELL-KNOWN ORDERS

HIDETOSH! MARUBAYASHI, YANG ZHANG
AND PO YANG

Abstract

Some necessary and sufficient conditions are given for the ring of a
Morita context to be a maximal order (resp. an Asano order, a Dedekind
order, a Krull order).

1990 Mathematics subject classification: Primary 16D90, 16H05, 16N60

0. Introduction

A Morita contezt will be aset M = (R, V, W, S) and two maps & and ¢, where
R and S are associative rings with identities, V = pV5s is an R-S bimodule and
W = sWg is an S-R bimodule. The map §: V@sW — R is an R-R bilinear
map and ¢p: W®RrV — S is an S-S bilinear map, furthermore these two maps

satisfy the associativity conditions that are required to make T = ( p};{f ;, )

be a ring. T is called the ring of the Morita contexzt.
For any v € V and w € W, we shall write vw for §(v@w), and wv for

¥(w®v). Similarly, Im ¢ will be denoted by VW, and I'm ¢ by WV. We refer

the reader to [1] and [7] for Morita context theory.

R V

Throughout this paper, we assume that T = ( W s

) is the ring of the
Morita conlezt.

1. Maximal orders, Asano orders and Dedekind orders

For any ring R, we denote by Cr(0) the set of all regular elements of R. Let
M be a right R-module. Then My, is said to be torsion-free ( with respect to
Cr(0)) if mc # 0 for every 0 # m € M and every c € Cgr(0).

Lemma 1.1.
T is an order in a simple Artinian ring Q(T) if and only if

"The detailed version of this paper has been submitted for publication elsewhere.



(1) R and S are orders in the simple Artinian rings Q(R) and Q(S) respec-
tively,
(3;) vW =0 implies v =0, Vw = 0 implies w =0 and
(8) VsW = 0 implies s = 0.
Furthermore, the quotient ring of T has the form:
om)= ( g S grn OSSN,
Q(S)eWeQ(R) Q(S)

Remark: For simplicity, we denote Q(R)®V®Q(S) by Q(V) and
Q(S)8WBQ(R) by Q(W).

We know from [ 1, Theorem 2 and Corollary 3 ] that dimVs = dimRg =
dimgpR = dimsW and dimWg = dimSs = dimgS = dimgV, where dimVs
denotes the uniform dimension of V as a right S-module. Since V is a torsion-
free right S-module with finite uniform dimension, V®Q(S) is isomorphic to a
finite direct sum of simple right ideals of Q(S). For any ¢ € Cg(0), ¢(V®Q(S)) =
VeQ(S) and ¢(VOQ(S)) C V ® Q(S). Hence c(VEQ(S)) = VR®Q(S) and so
VRQ(S) = c1(VeQ(S)). This implies that Q(V) = V ® Q(S). Similarly
Q(V) = Q(R)@V and Q(S) ® W = Q(W) = W @ Q(R).

When T is a prime ring, if one of R, S,V and W is zero, then it is easy to
check that T becomes the trivial form. Therefore we all assume that

none of R, S,V and W are zero throughout this paper and T is an order in
a simple Artinian ring Q(T) throughout Sections ! and 2.

Lemma 1.2. Let A be a nonzero (T, T)-submodule of Q(T). Then A has
uI,l ‘;l ), where I is an (R, R)-submodule of Q(R), J is an
(S, S)-submodule of Q(S), Vi is an (R, S)-submodule of Q(V) and W) is an
(S, R)-submodule of Q(W), which satisfy: \W C I, W,V C J, IV C Vi,
JWCW, WV, CJ, VW, CI, VICV, and WICW,. O

the form:

Let A be a (T, T)-submodule of Q(T). Then A is called a fractional T-ideal
of Q(T) (for short, a T-ideal of Q(T)) if :

(1) there exist a, 8 € C+(0) such that aA C T and ABCT.

(2) AnCr(0) # #.

Note that the second condition is equivalent to AQ(T) = Q(T) = Q(T)A.

A T-ideal A of Q(T) is said to be integral if A C T. This is equivalent to
say that A is essential as a right ideal of T as well as a left ideal of T.

Following the definition of fractional T-ideals, we now introduce the concept
of fractional modules of Q(V) and Q(W) as follows :

Let V] be an (R, S)-submodule of Q(V'). Then V; is called a fractional (R,
S)-module of Q(V) if

(1) 1Q(S) = Q(V) = Q(R)V1 (note that V1Q(S) = Q(V) if and only if
Q(RV: = Q(V)) and



(2) there exist ¢ € Cr(0) and d € C5(0) such that ¢V} CV and VidC V.

If V; is contained in V, then it is called integral , equivalently V; C V and
V1Q(S) = Q(V) = Q(R)V:. Similarly we can define fractional (S, R)-modules
of Q(W) and integral (S, R)-modules of Q(W).

To characterize the maximality of T, we need to pick up some integral T-
ideals.

Lemma 1.3. Let T be an order in a simple Artinian ring Q(T). Then:

(1) If I is an integral R-ideal, then ( WI'I WI'},V ) is an integral T-ideal.
VIW VJ

(2) If J is an integral S-ideal, then J ) is an integral T-ideal.

JW

In particular, ( P}:' W",V ) and ( V‘:,V “; ) are integral T-ideals.

Proposition 1.4. Let T be an order in a simple Artinian ring Q(T) and
let A= ( v{,l ‘;‘ ) be a (T,T)-submodule of Q(T). Then A is a T-ideal of
Q(T) if and only if
(1) I and J are an R-ideal of Q(R) and an S-ideal of Q(S), respectively.
(2) Vi and W, are a fractional (R,S)-module of Q(V) and a fractional
(S, R)-module of Q(W), respectively.

Corollary 1.5. Let T be an order in a simple Artinian ring Q(T) and let
A= ( WI’I ‘;‘ ) be a (T, T)-submodule of Q(T). Then A is an integral T-ideal
of Q(T) if and only if :
(1) I and J are an integral R-ideal and an integral S-ideal, respectively.
(2) Vi and W, are an integral (R, S)-module and an integral (S, R)-module,
respectively. O

Let R be an order in a simple Artinian ring Q. Recall that R is said to be
a mazimal order if O, (I) = Oy(I) = R for all integral R-ideals of Q (see [11]).

For any (R, S)-submodule V; of Q(V), we use the following notation : (S :
V)i = {w € QW)|&V1 C S} and (R: V), = {w € QW)iis CR}. Ina
similar way, we can define (R : W), = {# € Q(V)|tW, C R} and (S: Wy), =
{v € Q(V)|Wrt € S}. H T is an order in a simple Artinian ring Q(T), then,
by comparing the Goldie dimension (see Remark to Lemma 1.1), we can obtain
that Homgqm)(WQ(R),Q(R)) = (Q(R) : WQ(R)): = Q(R)V. Thus we easily
obtain that (R : W); = Hom(Wg, Rg). Similarly, (R : V), = Hom(rV, rR),
(S : V)t = Hom(Vs, Ss), (S : W), = Hom(sW, sS). Obviously we have that
(R:V),, (S: V) contain W and that (R: W), (S : W), contain V. However,



if T is a maximal order in Q(T'), then we have

Theorem 1.6. Let T be an order in a simple Artinian ring Q(T). Then T
is a mazimal order in Q(T) if and only if the following are satisfied:

(1) R and S are mazimal orders in Q(R) and Q(S), respectively, and

(2)(R:W);=V=(S:W),. and(R:V), =W=(S5:V).

Remark: (1) If R and S are maximal orders, then (R: W), = (S : W),,
i.e., Hom(Wg, Rp) = Hom(sW,sS). Since for any ¥ € (R: W), iW C R
implies WiWV C WRV C WV, so Wi C O)(WV) = S ie., 5 € (S : W),.
Thus (R: W); C (S : W), and the converse inclusion is proved similarly. Hence
(R: W) = (S :W),. Similarly, (R: V), = (S : V)i. Therefore the sufficient
condition of Theorem 1.6 only need that "V = (R: W), and W = (§: V),” or
"W =(S: W), and W = (R:V),".

(2) Let Z be the ring of integers. Then it is well-known that the matrix ring

g nZZ ), where 0,1 # n € Z, is not a maximal order. So the condition (2)

of Theorem 1.6 is necessary.

Corollary 1.7. Let R be a mazimal order in a simple Artinian ring Q(R)
ande € R, e = ¢, e* = 1—e. Then eRe is a mazimal order in eQ(R)e. In
particular, mazimal order is a Morita invariant property .

In [8] Martin discussed when a skew group ring R * G is a maximal order in
a simple Artinian ring. From above corollary we gft the fixed ring case.

Corollary 1.8. Let G be a finite group, |G|™" € R, e = |G|-lzgeag. If
R %G is a mazimal order in a simple Artinian ring, then R® = e(R*G)e is a
mazimal order in a simple Artinian ring . O

Next we consider Asano orders and Dedekind orders.

For any T-ideal A of Q(T), we use the following notation:

(T:A) ={g€Q(T)| A CT} and (T: A), = {g€ Q(T) | Ag C T}

It is clear that (T : A), is a left T-submodule of Q(T), a right O;(A)-
submodule of Q(T) and (T : A); NC(0) # ¢. Furthermore (T : A);A C T and
A(T : AjA € A. Thus if T is a maximal order, then (T : A), is a T-ideal of
Q(T), because O;(A) =T.

We define A, = (T : (T : A)i),, a T-ideal containing A. Similarly we can
define ;A = (T': (T : A),);. We say that A is a v-ideal of Q(T) if A, = A =, A.

Following order’s case, for any fractional (R, S)-module V; of Q(V), we de-
fine Vi, =(5:(S:Vi)i)r and \V; = (R: (R: V1),)i. We say that V; is a v-(R,
S)-module of Q(V) if Vi, = ; = V5. Similarly we can define W,,,,W; and
"v-(S, R)-modules " for any fractional (S, R)-module W, of Q(W).



Proposition 1.9. Let T be a mazimal order in a simple Artinian ring Q(T)

I W .
and let A = ( W, Jl ) be a T-ideal of Q(T). Then

om0 )

R:I), S: W),
W a,=( ED G,

- IV Vl" - vI lIVl
=y " )and.,A_(uwl ).

Lemma 1.10. Suppose that T is a mazimal order in a simple Artinian ring
Q(T). Let Vi and W, be a fractional (R, S)-module of Q(V) and a fractional

. ww Vi Vvw, vwv
(S, R)-medule of Q(W), respectively. Then ( W{’1W Wi’l ) and ( Wll WllV )
are both T-ideals of Q(T).

An order R in the quotient ring Q(R) is called Asano if any integral R-ideal
is invertible. As in the case of an order in a simple Artinian ring (see [ 7, Propo-
sition 5.2.6 ]), R is an Asano order in Q(R) if and only if it is a maximal order in
Q(R) and any integral R-ideal of Q(R) is a v-ideal. We use this characterization
for Asano orders to prove the following:

Theorem 1.11. Let T be an order in a simple Artinian ring Q(T). Then
T is an Asano order in Q(T) if and only if the following are satisfied :

(1) R and S are Asano orders in Q(R) and Q(S), respectively.

(2)(R:Wy=V=(S:W),and(R:V), =W =(S:V),.

(8) any integral (R, S)-module of Q(V) is a v-(R, S)-module.

(4) any integral (S, R)-module of Q{W) is a v-(S, R)-module.

Corollary 1.12. Lete € R,e®? = e. If R is an Asano order in a sim-
ple Artinian ring Q(R), then eRe is an Asano order in a simple Artinian ring
eQ(R)e. In particular, Asano order is a Morita invariant property. O (see [ 14,
Lemma 4.2 ]).

According to [7] , we say that an order in a simple Artinian ring is Dedekind
if it is a maximal order and hereditary.

It is well-known that T is right Noetherian if and only if Rg, Ss, Vs and
Whg are right Noetherian (see [ 7, Proposition 1.1.7 ]).

Proposition 1.13. Let T be an order in a simple Artinian ring Q(T). Then

T is a Dedekind order sf and only if
(1) R and S are Dedekind orders and



(2) VW =Rand WV =6,
2. Krull orders

In this section we consider when T is a Krull order by using some methods of
divisorially graded rings. For terminology on divisorially graded rings we refer
to [9], [10] and [12].

Let K = 3 ®K, (9 € G) be a graded ring by any group G with unit element
e and K, be the part of degree e. Define:

Flok,) = {H : right ideal of K, | Homg, (K./H : E(Q./K.)) = 0};

F(o' ) = {H' :left ideal of K. | Homg, (K./H': E'(Q./K.)) = 0},
where E(Q,/Ke) (resp. E'(Q./K.)) is a right (resp. left) injective envelop
of Q./K. as a right K.-module (resp. as a left K.-module). So ok, (resp.
o',) stands for the idempotent kernel functor cogenerated by right (resp. left)
K.-module Q./K..

K is said to be divisorially graded if the following properties hold:

(1) K is (o', o)-torsion-free;

(2) Q,.K. (KgKn) = Kgn = Qqy, (KgKp) for any g,h € G,

where Q,,, (V) (resp. Qo1 (N)) is the module of quotient of a right (resp.
left ) module N with respect to o, (resp. o ).

Note that by Proposition 5.5 of [ 15, p.147 ], the right Gabriel topology
Flok.) = {H : right ideal of K,|(K. : k"*H); = K, for any k € K.}, where
k='H = {z € K, | kz € H}. For the left Gabriel topology (o), we have a
similar form. For terminology on localization at kernel functors we refer to [15].

. R V R 0O 0oV
Since T = ( W S ) = ( 0 S)e( W o ) = To & T (say), then
T is graded by G = Z/2Z.
Next we shall prove that T is divisorially graded by Z/2Z.

Proposition 2.1. Let T be a mazimal order in a simple Artinian ring Q(T).
Then T is divisorially graded by Z/2Z.

Let R be any ring, 7 be any idempotent kernel functor on R and F(r) be
the right Gabriel topology corresponding to r. For a submodule N of a right
R-module M, we define the r-closure of N as cl,(N) = {m € M|mH C N for
some H € F(r)}. We say that N is r-closed if N = cl,(N) and M is said
to be r-Noetherian if M satisfies the ascending chain condition on r-closed
submodules of M. An order in a simple Artinian ring is called a Krull order
(in the sense of Chamarie [2] and [3] ) if it is a maximal order and satisfies the
ascending chain condition on 7-closed one-sided ideals. Now we are in a position
to prove the main result of this paper which is



Theorem 2.2. Let T be an order in a simple Artinian ring Q(T). Then T
is a Krull order if and only if

(1) R and S are Krull orders in the simple Artinian rings Q(R) and Q(S),
respectively;

(2)(R:W);=V=(S:W), and (R:V), =W =(S:V),.

Next we consider localizations of T which is a Krull order in a simple Ar-
WI’I ‘;‘ ) is a v-ideal
of T', then I and J are v-ideals of R and S, respectively. Furthermore, in the
case of prime v-ideals, we have the following more detailed result.

tinian ring. From Proposition 1.9, we know that if A =

Corollary 2.3. If R is a Krull order in a simple Artinian ring Q and
0 # e? = ¢ € R, then eRe is a Krull order in a simple Artinian ring eQe. In
particular, Krull order is a Morita invariant property.

Lemma 2.4. Suppose that T is a mazimal order in a simple Artinian ring
Q(T). If I is a prime v-ideal of R, then A = ( v{,l ‘3‘ ) is a prime v-ideal
of T, vhere Vi={veV|wWCI},W={weW|VwCl},J={s€e S|
VsW C I}.

Let R be a Krull order in a simple Artinian ring @. Then note that any
prime v-ideal is a maximal v-ideal, i.e., maximal among v-ideals of R. Thus the
following theorem follows from Lemmas 1.2, 2.4 and Proposition 1.9.

Theorem 2.5. Let T be a Krull order in a simple Artinian ring Q(T). Then
there ezist inclusion preserving (1,1) correspondences among the prime v-ideals
of R, S and T. For any prime v-ideal I} of R and any prime v-ideal J3 of S,
these correspondences are given by

L W I V,
I,H(Wl Jl),.lg«—b(w2 Jz)
,whereVi={veV|wWCh}, Wi={weW|VwCh}, 1 ={s€S

|VsW C L}, L={r e R|WrV C J3}, Vo = {v € V| Wv C J3},
Wa={weW |wVCd).O

Let D(R) denote the set of all v-ideals of R. If R is a Krull order, then D(R)
forms a free abelian group generated by the maximal v-ideals of R ( see [2] and
[3] ). From Theorem 2.5, we have:

Corollary 2.6. Let T be a Krull order in a simple Artinian ring Q(T).
Then D(R) = D(S) & D(T) ( as group isomorphisms ). O



We closed this section with localizations of a Krull order T at prime v-ideals.

I W\

Let A= w, J

that the localization T4 of T at A exists and it is a local Dedekind order in

Q(T). Here for any ring K , we denote the Jacobson radical of K by J(K) and
K is called local if K/J(K) is a simple Artinian ring.

From [1], we know that Jacobson radical J(T') is of the form ( Jgf ) JY:S,) )
,where Vi = {veV|vWCJI(R)}={veV|WvCJ(S)and W, ={weW
| Vw € J(R)} = {w € W | wV € J(S)}.

Hence if T is local, then so are R and S. Furthermore if T is a Dedekind
order, then so are R and S by Proposition 1.13. Thus J(R) and J(S) are
invertible.

Combining these facts with the methods in Lemma 1.1 and its remark, we
have:

) be a prime v-ideal of T. Then from [2] and [3], we know

Proposition 2.7. Let A = ( uI, ‘;‘ ) be a prime v-ideal of ¢ Krull order
1

T. Then the localization T4 of T at A is of the form
( Ry R1®V®S; ) with
S;@WQR, Sy
S () vIED ) (1, TEV) o
1xa=( w15y )= isaw ey )

3. Remark

Following [13], we say that T is (R, S)-faithful if T satisfies the following
conditions:

"WrV = 0, where r € R, implies r = 0” and

"VsW =0, where s € S, implies s = 0".

Note that if T is a prime ring, then T is (R, S)-faithful (see [ 13, Propaosition
3]) and when T is a semiprime ring it is usual condition (see [1]).

Now the (R, S)-faithfulness can be explicitly characterized as follows :

Proposition 3.1. Let T be an order in a semi-simple Artinian ring Q(T).
Then the followmg are equivalent :

(1) T is (R, S)-fasthful.

(2) VW is an integral R-ideal and WV is an integral S-ideal.

By [ 4, Theorem 2 ], "T is an order in a semisimple Artinian ring if and
only if (1) R and S are orders in semisimple Artinian rings (2) vyW = 0 implies
v =0 and Vw = 0 implies w = 0". If we assume that "T is (R, S)-faithful”,
we can find that all the results in Sections 1 and 2 hold by using Proposition 3.1.
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WEAK GLOBAL DIMENSION AND DUBROVIN VALUATION
PROPERTIES OF CROSSED PRODUCTS

HIDETOSHI MARUBAYASHI AND ZHONG Y1

Abstract

In this paper some conditions for a skew group ring or a crossed prod-
uct to have finite weak global dimension are given. Using these results
we obtain some necessary conditions and some sufficient conditions for a
skew group ring or a crossed product to be a Dubrovin valuation ring.

1. Introduction

In this paper, all rings are associative and have identities, and modules are
unitary. For simplicity, we use Mz and gN to denote that M is a right R-
module and N is a left R-module respectively. If R is a ring, J(R) is used
to denot e its Jacobson radical. For the basic properties and some well-known
results of skew group rings and crossed products, see [Mo] and [Pa] for details.
For the definition and basic properties of Dubrovin valuation rings, see [D1],
[D2] and [Wa] for details. For homological notation and terminology we use
[Ro] as a reference.

In section 2, for the use in later sections, we first study the weak global di-
mension of skew group rings and crossed products. Some necessary conditions
and some sufficient conditions for a skew group ring or crossed product to have
finite weak global dimension are given. These results are the analogues of the
results about the global dimension of skew group rings and crossed products
given in [Yi2]. Section 3 is the main part of this paper. Using the results in
the previous sections, we obtain some nece ssary conditions and some sufficient
conditions for a skew group ring or a crossed product to be a Dubrovin valu-
ation ring. In the skew group ring and commutative coefficient ring case we
prove that R*G is a Dubrovin valuation ring if and only if R is semihereditary,
G-local and G(M) = 1, for some maximal ideal M of R, where G(M) is the
inertial group of M. (See section 2 for the definition of inertial groups.}) As a
special case of this result, we obtain that ! if R is a commutative valuation ring,
G is a finite group and R * G is a skew group ring, then R # G is a Dubrovin
valuation ring if and only if GT =< 1 >, where GT is the inertial group of R.

The detailed version of this paper has been submitted for publication elsewhere.



In section 4, some examples are given to show that the results we obtained are
the best in their nature.

2. Weak Global Dimension of Skew Group Rings and Crossed
Products

Let R be a ring and let M be a (right or left) R-module. We use f.dh.g(M)
to denote the flat dimension of M. The weak global dimension of R, denoted
by w.gl.dim.(R), is definied by

w.gl.dim.(R) = sup{f.dh.r(M)| for all right R-modules M},
see [Ro, p.239] for details. In [Yi2], some necessary and sufficient conditions
for a crossed product and a skew group ring to have finite global dimension are
given. In this section we prove some results for a crossed product and a skew
group ring to have finite weak global dimension. These results are analogues
of the results about global dimension and they are essential in the later sections.

2.1 LEMMA. [Yil, 2.8.2 Lemma] Let G be a finite group and let R =
Dgec Ry be a strongly G-graded ring. Then
(i) if Mg is a right R-module, and RN = ®y4¢g N, is a graded left R-module,
then
M®rN =2 M®g, Ny

forallg € G;
(i) if Nr = @yec N, is a graded right R-module and rM is a left R-module,
then
N@pM = Ny ®r. M

forallgeG.

Using 2.1 Lemma, we obtain the following proposition. Its parts (i) and (ii)
appeared in [Yil, 2.8.3 Proposition]. Parts (iii) and (iv) can be easily proved
by using parts (i) and (ii).

2.2 PROPOSITION. Let G be a finite group and let R = @,¢cR, be
a strongly G-graded ring. Suppose thet H is a subgroup of G, Mg is a right
R-module and pRN = ®yeg N, is a graded left R-module. Then

(i) TorR(M,N) = TorRe(M,N,) = TorEn(M,Ny), for all g € G, where
Ny = ®nenNy;

(i) f.dh.p_(M) < f.dh.g, (M) < f.dh.r(M), and equalities hold if

f.dh.R(M) < 00;

(iii) w.gl.dim.(R.) < w.gl.dim.(Ry) < w.gl.dim.(R), and equalities hold if
w.gl.dim.(R) < oo;



(iv) if R is semihereditary, then Ry is semihereditary for each subgroup H
of G, so in particular R, is semikereditary.

A ring R is called semilocal if R/J(R) is a semisimple Artinian ring, and R
is called localif R/J(R) is a simple Artinian ring. Let R be a ring, G be a group
and R*G be a crossed product. If R/J(R) is a G-simple Artinian rin g, that is,
the G-invariant ideals of R/J(R) are only itself and 0, then R is called a G-local
ring . Suppose that M is an ideal of R, we call Gy = {g € G|M? = M} the
decomposition group of M, and call G(M) = {g € G|g acts on R/M trivially
} the inertial group of M. Obviously G(M) C Gu. If R is a local ring with
unique maximal ideal M, then we denote G(M) by GT, and call it the inertial
group of R.

2.3 LEMMA. Let R be a ring, G be a finite group and R+ G be a crossed
product.

(i) R+ G is semilocal if and only if R is semilocal.

(ii) R+ G i3 local if and only if R is G-local and (R/M) * G is a local ring
for some mazimal ideal M of R.

2.4 REMARK. In [Ma, 4.2 Theorem and 4.3 Lemma] some conditions con-
cerning the local properties of group rings and skew group rings are given.

2.5 LEMMA. Let R be a ring, G be a finite group and R * G be a crossed
product. Then R * G is left coherent if and only if R is left coherent.

The following result must be well-known. (Also see [Ro, Theorem 9.25 and
Exer. 9.26].)

2.6 LEMMA. Let R be a ring. Then R is left semihereditary if and only if
w.gl.dim.(R) €1 and R is left coherent.

The following is the weak global dimension version of (Yil, 2.5.10 Proposi-
tion|, and the proof is roughly the same as that of [Yil, 2.5.10 Proposition], by
noting that finitely presented flat modules are projective.

2.7 PROPOSITION. Let R be a ring, G be a finite group and S =
R * G be a skew group ring. If there ezists a proper ideal M of R such that
char(R/M) = m > 0 and G(M) has an element ¢ # 1 of order dividing m,
then w.gl.dim.(R *G) = oo.

Now we are prepared to obtain a sufficient condition for a crossed product
to have finite weak global dimension.



2.8 THEOREM. Let R be a left coherent semilocal ring with w.gl.dim.(R) <
oo. Let G be a finite group and let S = R * G be a crossed product. Suppose
that for each mazimal ideal M of R with char(R/M) = p > 0, (R/M) * G
is s emisimple Artinian, where Gy is the decomposition group of M. Then
w.gl.dim.(R *x G) = w.gl.dim.(R) < co. Furthermore, if R is semihereditary,
then R » G is also semihereditary.

2.9 REMARK. The above theorem is an analogue of [Yi2, Theorem 3.2}.

2.10 THEOREM. Let R be a commutative coherent semilocal ring. Let G
be a finite group and let R x G be a skew group ring. Then the following are
equivalent:

(i) w.gl.dim.(R*G) < c0;

(i) (a) w.gl.dim.(R) < oo;

(b) (R/J(R))*G is semisimple Artinian; (From the proof of 2.3 Lemma
(ii), we see that this condition is equivalent to the condition that (R/M)* Gy
is a semisimple Artinian ring for each mazimal ideal M of R.)

(iti) (a) w.gl.dim.(R) < oo;

(b) for each mazimal ideal M of R with char(R/M) =p > 0, G(M)
contains no elements of order p, where G(M) is the inertial group of M.

2.11 REMARK. 2.10 Theorem is an analogue of [Yi2, Theorem 5.2].
3. Conditions for R * G being a Dubrovin Valuation Ring

Let R be an arbitrary ring, G be a finite group and R * G be a crossed
product or a skew group ring. It is easy to see that R being a commutative
valuation ring can not imply that R * G is a Dubrovin valuation ring. We can
also easily find examples to show that R« is a Dubrovin valuation ring (even a
simple Artinian ring), but R is not even a local ring. In this section we study the
conditions under which R * G being a Dubrovin valuation ring. Some necessary
conditions and some sufficient condi tions for R * G being a Dubrovin valuation
ring are given in terms of the coefficient rings and the acting groups.

Let R be a ring, G be a group and R x G be a crossed product. Suppose
that R is an order in a ring @. Then it is easy to see that the crossed product
R x G can be uniquely extended to a crossed product @ *G.

At first, in the most general situations, we give some sufficient conditions
for R * G being a Dubrovin valuation ring.

3.1 THEOREM. Let R be an order in an Artinian ring Q, G be a finite
group and R« G be a crossed product. If the following conditions are satisfied,
then R+ G is a Dubrovin valuation ring.

(i) R is G-local;

(it) R is semshereditary;



(iii)’ G is outer on R/M for some mazimal ideal M of R.

3.2 REMARKS. (a) If R is G-local, and G is outer on R/M for some
maximal ideal M of R, then G acts transitively on the set of maximal ideals of
R and so for all maximal ideals M of R, Gy is outer on R/M.

(b) From 2.2 Proposition (iv) and 2.3 Lemma (ii) we know that (i) and (ii)
of 3.1 Theorem are always necessary conditions for R * G being a Dubrovin
valuation ring. But if R+ G is a crossed product, even R is commutative,
condition (iii)’ of the above Theorem is not necessary for R#G being a Dubrovin
valuation ring, see 4.2 Example. If R is non-commutative, even R * G is a skew
group ring condition (iii)’ of 3.1 Theorem is neither necessary for R+ G being a
Dubrovin valuation ring, see 4.1 Example.

(c) It is obvious that condition (iii)’ of 3.1 Theorem is equivalent to (G pf)inn =<
1 >. Condition (iii)’ can also implies that J(R*G) = J(R) * G and G(M) =<
1 >. If R is commutative, G(M) =< 1 > can also implies (iii)’ of 3.1 Theorem.
Therefore when R is commutative, condition (iii)’ of 3.1 Theorem is equivalent
to G(M) =< 1 >, for some maximal ideal M of R.

Although in the above we remarked that the conditions given in 3.1 Theorem
are not necessary for R * G being a Dubrovin valuation ring. In the skew group
ring case, we can weaken the condition (iii)’ a little bit to obtain some necessary
conditions for R * G being a Dubrovin valuation ring.

3.3 THEOREM. Let R be an arbitrary ring, G be a finite group and R+ G
be a skew group ring. If R x G is a Dubrovin valuation ring, then we have:

(i) R is G-local;

(ii) R is semihereditary;

(iii) G(M) =< 1 > for some mazimal ideal M of R. (ThenG(M)=< 1 >
for all mazimal ideals M of R.)

3.4 REMARKS. (a) If R is non-commutative, even in the case |G|~! € R
the conditions (i), (ii) and (iii) of 3.3 Theorem are not sufficient conditions for
R x G being a Dubrovin valuation ring; see 4.3 Example. In skew group rings
and crosse d products theory, it is well-known that if the order of the acting
group G is invertible in the coefficient ring R, then many classical properties can
be transfered from the coefficient ring to the skew group ring and the crossed
product, such as, fi niteness of global dimension, semiprimeness etc. But as
indicated by 4.3 Example, there is not much relations between the Dubrovin
valuation property and the invertiblity of the order of the acting group in its
coefficient ring, mainly because of the loca | property.

(b) Combine the above argument and 3.2 Remarks (b), we see that the con-
ditions (i), (ii) and (iii) of 3.3 Theorem are too weak to be sufficient conditions
for R*G being a Dubrovin valuation ring (mainly because of (iii)); but the con-
ditions (i), (ii) a nd (iii)’ of 3.1 Theorem are too strong to be necessary (mainly



because of (iii)’).

(c) If R+G is not a skew group ring, even it is a twisted group ring and R is
commutative, (iii} of 3.3 Theorem is not a necessary condition for R * G being
a Dubrovin valuation ring, see 4.2 Example.

In 3.3 Theorem, if the coefficient ring R is commutative, then the conditions
(i), (ii) and (iii) becomes necessary and sufficient conditions for R * G being a
Dubrovin valuation ring. This is one of our main results.

3.5 THEOREM. Let R be a commutative ring which is an order in an
Artinian ring Q. Let G be a finite group and let R » G be a skew group ring.
Then R* G is a Dubrovin valuation ring if and only if the following conditions
are satisfied:

(1) R is G-local;

(i) R is semihereditary;

(i) G(M) =< 1 > for some mazimal ideal M of R.

3.6 REMARK. In the above Theorem, R is not necessary a domain. 4.4
Example shows that R * G can be a simple Artinian ring (thus is trivially a
Dubrovin valuation ring), but R is not even a prime ring.

3.7 PROPOSITION. Let R be a commutative ring which is an order in
an Artinian ring Q, let G be a finite group and let R x G be a skew group ring.
Then R * G i3 a Dubrovin valuation ring if and only if the following conditions
are satisf ied:

(i) The G-invariant ideals of R are linearly ordered;

(i) R is semihereditary;

(#i) G(M) =< 1 > for some mazimal ideal M of R.

As we remarked before when R« G is a Dubrovin valuation ring, R may not
be a valuation ring (even not prime, not local), but if we suppose that R is a
commutative domain we can easily see that, in this case, R is always a semi-
local Bezout domain, and R, the fixed subring of G acting on R, is always a
commutative valuation ring.

3.8 COROLLARY. Let R be a commutative domain, let G be a finite group
and let R+ G be a skew group ring. If R+ G is a Dubrovin valuation ring, then:

() RS is a valuation ring;

(i) R is a semi-local Bezout domain.

If the coefficient ring is a commutative valuation ring, we immediately ob-
tain a simple and nice condition for R« G to be a Dubrovin valuation ring.



3.9 COROLLARY. Let R be a commutative valuation ring, let G be a

finite group and let R * G be a skew group ring. Then R G is a Dubrovin
valuation ring if and only if GT =<1 > .

4. Examples

In this section, we collect some examples to show that the results we obtained
in the previous sections are the best in their nature. Most of the examples pre-
sented here are well-known in skew group rings and crossed products.

4.1 Example. [Yi2, Example 2.6] Let K be a field with char(K) = p > 0,
let S = K|z|[y;d/dz] be the first Weyl Algebra over K and let R = Q(S) be
the quotient division ring of S. Define an automorphism g of R by g : R —
R;7 — zrz~!. Let G =< g > and let R » G be the skew group ring of G over
R. Then R =G is a simple Artinian ring, see [Yi2, Example 2.6] for details. So
it is trivially a Dubrovin valuation ring; but G(o) = G is inner on R/(0) = R.
‘Therefore the condition (iii)’ of 3.1 Theorem is not necessary for R * G being a
Dubrovin valuation ring. (Confer 3.2 Remarks (b).)

4.2 Example. [Yi2, Example 6.4] Let K be a field of char(K) = p > 0,
let S = K[z,z~'], and let R = K[z?,27?] C K|[z,z™!]. Then S = K[z,z™!] =

f;ol K[zP,z7?)z’ = R+ G is a twisted group ring, where G =< g > is a cyclic
group of order p. Let M = (z —1)R. M is a maximal ideal of R = K[zP,z~F).
Denote 2 = R\M. Since  is G-invariant, we have Sq = Rq * G = Ry * G.
Because S is hereditary, Sq is also hereditary. We can directly check that
Sq = S(z—1)s, s0 Sq is a local ring because (z — 1)S is a maximal ideal of S.
Thus Sq is a Dubrovin valuation ring. But G = Gy, acts on (Rps)/(Mum)
trivially. So G acts on (Rar)/(Mp) innerly. This example shows that (iii)’ of
3.1 Theorem is not necessary for R+ G to be a Dubrovin valuation ring and 3.3
Theorem (iii) is not a necessary condition for! R*G to be a Dubrovin valuation
ring if R* G is not a skew group ring.

4.3 Example. Let K be a field of characteristic 0 and let V' be a valuation
ring in K with unique maximal ideal N. let @ = M2(K) and let R = M2(V) be
the 2 x 2 matrix ring over K and V respectively. Then R is a Dubrovin valuation
ring in @ with unique maximal ideal M = ( 113 113 ) Letu = ( (1) _i ) €
R. Then 2 = 1. Define an automorphism g of Rby: g: R = R;r —m uru~!. It
is clear that g can be uniquely extended to an automorphism of @, which will
still be denoted as g. Let G =< g > . Then we can form the skew gro up ring
R*G and Q * G. Obviously G(M) =< 1 > . By [HLS, Example 1] @ *G is
a semisimple Artinian ring, but it is not simple. So the order R+ G in Q@ *G
is not prime and thus R * G is not a Dubrovin valuation ring. In this example



|G|~! € R. Thi s example shows that the conditions (i), (ii) and (iii) of 3.3
Theorem are not sufficient conditions for R*G to be a Dubrovin valuation ring,.
But note that in this example, Gy is inner on R/M. In the situations which
G is outer on R/M, we have 3.1 Theorem.

The example giving above is motivated by [HLS, Example 1]. If we take
V = K to be the trivial valuation ring, then we obtain a trivial example having
the same properties. It is just [HLS, Example 1].

4.4 Example. Let K be an arbitrary field and let V' be a valuation ring
in K. Let R=V xV and @ = K x K. Define an automorphism g of R by:
g : R = R;(a,b) — (b,a). 1t is clear that g can be uniquely extended to an
automorphism of @, which is still denoted as 9. Let G =< g >. Let R* G and
Q@ * G be the skew group ring of G over R and G over @ respectively. Then it
is easy to see that Q » G is a simple Artinian ring and R *x G is a Dubrovi n
valuation ring in Q # G; but R is neither prime nor local. If we take V = K, we
obtain a trivial example having the same properties.

ACKNOWLEDGEMENTS. The second author would like to thank Pro-
fessor H. Marubayashi for his kindness, and to thank the Mathematics Depart-
ment of Naruto University of Education for its hospitality. He would also like to
thank the Japanese Government and Guangxi Education Committee for their
support.

References ‘

[D1] N. L. Dubrovin, Noncommutative valuation rings, Trans. Moscow
Math. Soc. 1(1984), 273-287.

[D2] N. I. Dubrovin, Noncommutative valuation rings in simple finite-
dimensional algebras over a field, Math. USSR. Sbornik 51(2)(1985),
493-505.

[D3] N. I. Dubrovin, Noncommutative Priifer rings, Math. USSR. Sbornik
74(1) (1993), 1-8.

[Ha] D. Haile, Crossed-product orders over discrete valuation rings, J. Al-
gebra 105 (1987), 116-148.

[HM] D. Haile and P. Morandi, On Dubrovin valuation rings in crossed
product Algebras, Trans. Amer. Math. Soc., Vol 338 (2), 1993.

[HLS] D. Handelman, J. Lawrence and W. Schelter, Skew group rings, Hous-
ton J. Math. 4 (1978), 175-198.

[Ma] R. Martin, Skew group rings and maximal orders, Glasgow Math. J.
37 (1995), 249-263.



[ME]
[Mo]
[Pal
[Ra)
[Ro]
[Wal
[XC]
[vil]

[Yiz)

J. C. McConnell and J. C. Robson, Noncommutative Noetherian
Rings (Wiley-Interscience), 1987,

S. Montgomery, Fixed Rings of Finite Automorphism Groups of As-
sociate Rings, Lecture Notes in Math. 818, Springer, (Berlin), 1980.

D. S. Passman, Infinite Crossed Products, Academic Press, (San
Diego), 1989.

M. Ramras, Orders with finite global dimension, Pacific J. Math. Vol.
50(2)(1974), 583-587.

J. J. Rotman, An Introduction to Homological Algebra, Academic
Press, (New York), 1979.

A. Wadsworth, Dubrovin valuation rings and Henselization, Math.
Ann. 283 (1989), 301-328.

J. Z. Xu and F. C. Cheng, Homological dimension cver non-
commutative semilocal rings, J. Algebra 169 (1994), 679-685.

Z. Yi, Homological Properties of Noetherian Rings and Noetherian
Ring Extensions, Ph.D. Thesis, University of Glasgow, 1993.

Z. Yi, Homological dimension of skew group rings and crossed prod-
ucts, J. Algebra, 164(1)(1994), 101-123.

Department of Mathematics, Naruto University of Education
Takashima, Tokushima 772, Japan

Department of Mathematics, Guangxi Teachers University
Guilin, Guangxi, 541004, P. R. China






GENERARIZATIONS OF THEOREMS OF FULLER

MARI MORIMOTO AND TAKESHI SUMIOKA

This is a summary of the authers’ paper [5].

Let R be a right artinian ring and e and f a primitive idempotents of R. In [3,
Corollary 3.2 and Theorem 3.4], K. R. Fuller showed that the following conditions are
equivalent.

(1) eR is an injective right R-module with S(eR) = T(f R), where S(M) and T(M)
denote the socle and the top of M, respectively.

(2) S(eR) = T(fR) and S(Rf) = T(Re).

(3) (3€) €cr(rry(el)) = el for each left ideal I of R, and

(3r) rry(€er(K f)) = K f for each right ideal K of R, where rpy(/) = {a €
Rflla =0} and £,p(K) = {b € eRJbK = 0}.

Let R be a semiprimary ring. Then for primitive idempotents ¢ and f of R,
(eR, Rf) is called an i-pair in [2] if the above condition (2) is satisfied. In [2, Theorem
1, Proposition 4 and Corollary 1], Y. Baba and K. Oshiro extended t hese results to
semiprimary rings to show the following statements.

(a) If R is a semiprimary ring, then the condition (1) is satisfied if and only if both
(2) and (3r) are satisfied.

(b) If R is a semiprimary ring satisfying the condition (*) below, then the conditions
(1) and (2) are equivalent.

(*) The lattice {rpy(X)|X C eR} satisfies the ascending chain condition.

Moreover, in [2, Theorem 2], they showed the following statement (c).

(c) If R is a semiprimary ring and (eR, Rf) is an i-pair for primitive idempotents
e and f of R, then the following are equivalent.

(cl) Rf is artinian as a right fRf-module.

(¢2) eR is artinian as a left e Re-module.

(¢3) eR is an injective right R-module and Rf is an injective left R-module.

In this note, for a right R-module M with S(M) = T(fR) and P = EndM, we
consider a pair (pM, Rfsgy) instead of an i-pair (.p.¢R, Rfjry) and give general-
izations of the results (a), (b) and (¢) above. In particula r, for a module Ng, we
give a property for the pair (pM,Ng), which is related to Theorem 1.1 in Morita
-Tachikawa [6].

Throughout this note we always assume that every ring has an identity and every
module is unitary. In particular, R always stands for a semiprimary ring. For a ring
H,by My (y M) we stress what M is a right (left) #-module. Le t M be a module.
Then L < M (resp. L < M) means that L is a submodule of M (resp. L < M and
L #M). By S(M), T(M) and E(M), we denote the socle, the top and an injective

The final detailed varsion of this paper has been submitted to Osaka Journal of Mathematics for
publication.



hull of M, respectively, and by |M| we denote the composition length of M. Assume
every homomorphism always operates from opposite side of scalar. “Acc” (“dec”)
means the ascending (descending) chain condition. We denote the set of primitive
idempotents of R by Pi(R).

1. Colocal pairs of modules

Let P and Q be rings and pM, Ng and pUq be a left P-module, a right @Q-module
and a P-Q-bimodule, respectively. Let ¢ : M x N — U be a P-Q-bilinear map, i. e,
a map satisfying the following prop erties:

(1) ¢(z1 + z2,y) = p(z1,9) + (22, 9),

(2) p(z, 41 + y2) = o(z, 1) + ¢(z, 1),

(3) v(pz,y9) = po(=, y)a;
for any z,r;,r2 € fwlyayl!yZ € NsP € P and g€ Q

Then, we say that (pM, Ng) is a pair with respect to ¢ or simply a pair.

Let (pM,Ng) be a pair with respect to ¢. Then for z € M,y € N and for
pX <p M,Yq < Nq, by zy we denote the element ¢(z,y), and by XY we denote
the P-Q-subbimodule of pUq generated by {zy|z € X,y € Y'}. Moreover, for A C M
and B C N, we define submodules r(A) (= ry(A)) of Ng and £(B) (= &p(B)) of
pM, as follows: r(A) = {y € N|Ay = 0} and €(B) = {z € M|zB = 0}, and we call
r(A) (resp. £(B)) the right (resp. left) annihilator of A (resp. of B).

For an arbitrary ring H, we call an H-module V' colocal if V has the (non-zero)
smallest submodule. We call a pair (p M, Ng) colocal if the module pUqg(=p M Ng)
is colocal both as a left P-module and as a right Q-module. No te, in case (p M, Ng)
is a colocal pair with U = M N, we have S(pU) = S(Uq). We call a pair (M, N) left
faithful (resp. right faithful) if £(N) = 0 (resp. r(M) = 0), and a pair (M, N) faithful
if it is left and right faithful . We denote the class of right annihilator submodules
in Ng by Ar(M,N); that is Ar(M,N) = {Y < Ngl|Y = r{(Y)}, and similarly
AYM,N) = {X <p M|X = £r(X)}, and the lattice of submodules of pM (resp.
Ng) by Lat(pM) (resp. Lat(Ng)). We say that a pair (p M, Ng) satisfies r-ann
(resp. €-ann) if Ar(M,N) = Lat(Ngq) (resp. AYM,N) = Lat(pM)).

Let P be aring, M a P-R-bimodule and Q = fRf; f € Pi(R). In this case, unless
otherwise stated, by the notation (pM, Rfq) we always mean a pair with respect to
the bilinear map ¢ : M x Rf — M f defined by ¢(m,a) = ma;m € M,e € Rf.

Lemma 1.1. Let (pM,NQ) be a colocal pair and put U =p MNq, M’ = £)(N)

and N' = rn(M). Then pUq - dual takes simple left P-modules and simple right
Q-modules 1o simples or zero.

Proof. Let K = zQ be a simple right @-module. If 0 #p Homg(K,U), then
a(z)Q = o K) = S(Ug) = S(pU) = Pa(z) for any 0 # o €p Homg(K,U). Hence
Pa(z) > PB(x) for any 0 # o, f €p Homq(K,U) and consequently Pa > PS, which
implies p Homg(K,U) is simple.

For the following lemma, we give a proof which is different from that of Lemma
1.1 in {5]. The proof is essentially owe to {6, Theorem 1.1] by using Lemma 1.1 above.

Lemma 1.2. Let (pM,Ngq) be a colocal pair, and Y’ <Y < Nq withY’ = r{(Y’).
If (Y/Y")q is simple, then p(¢(Y')/€(Y)) is also simple and Y = rf(Y).

Proof. Put U =p MNqg. From r{(Y') = Y’ <Y < rf(Y), we obtain £(Y) < £(Y’),
ie., p(&(Y')/€(Y)) # 0. Let ¢ :p (Y') —p Homq(Y/Yq.p Uq) be a map such that



(z)¢¥ = z for any = € {(Y’), where z : Y/Y) — Uq is a left multiplication map by
z. Then ¢ induces a monomorphism p(L(Y')/¢(Y)) — pHomq(Y/Yg,p Ug). Hence
P{E(Y')/UY)) (2p Homq(Y/Yq,pUq) ) is simple by Lemma 1.1. By the same
argument, it follows that (ré(Y)/ré(Y'))q is simple. Hence we have ¥ = ré(Y) from
rf(Y)=Y' <Y < r{(Y).

Lemma 1.3. Let (pM,Nq) be a colocal pair, and Y and Z submodules of Ng
with Z = rl(Z) < Yq. If |(Y/Z)q| < o0, then Y = r{(Y).
In particular, if (pM, Nq) is right faithful and |Yg| < o0, then Y = rf(Y).

Theorem 1.4. (See {2, Lemma 3 and Propositon 5].) Let Q@ be a semiprimary
ring. Assume (pM,Ngq) is a colocal pair and put M’ = ¢(N) < M and N’ = r(M) <
N. Then the following condilions are equivalent:

(1) Ar(M, N) satisfies acc, (or equivalently A(M,N) satisfies dec).

(2) [(N/N")q| < co.

(3) |p(1\/l/1\/[')| < 0.

Moreover, in case the above condilions are satisfied, we have X = £r(X) (resp.
Y =rl(Y)) for any X with M’ < X <p M (resp. for any Y with N' <Y < Ng),
and |p(M/M")| = |(N/N')q|-

We call a pair (pM, Nq) right (resp. left) finite provided the lattice Ar(pM, Ng)
(resp. Al(pM, Nq)) satisfies acc and (p M, Ng) finite provided (p M, Ng) is left finite
and right finite. As a special case of Theorem 1.4, we have the following corollary.

Corollary 1.5. Let Q be a semiprimary ring and (pM, Ng) a right finite faithful
colocal pair. Then it holds that [pM| = |Ng| < o0 and (pM, Nq) satisfies r-ann and
£-ann.

2. Indecomposable injective modules

As mentioned in the introduction, we assume that R always stands for a semipri-
mary ring.

Let M be a right R-module. Then we call M quasi-injective if for any submodule
L of M, any homomorphism & : L — M can be extended to some endomorphism
of M. By [4, Theorem 1.1],M is quasi-injective if and only if M = M, where
H = EndE(MRg).

Lemma 2.1, Let M be a right R-module. Then the following are equivalent.
(1) S(MR) = T(f Rg).
(2) M fq is colocal and £y (Rf) = 0.

Cororally 2.2. Let M be a right R-module, and put P = EndM and Q = fRf
(= EndrRf); f € Pi(R). Then the following are equivalent.

(1) (pM,RfQ) is a left faithful colocal pair.

(2) pM £ is colocal and S(Mg) = T(fRRg).

Moreover, in case the conditions are satisfied, any endomorphism « of S(MRg) can
be exended to some endomorphism of M.



Corollary 2.3. Let e and f be primilive idempolenis of R. Then (eR,Rf) is
an i-pair if and only if (peR, Rfg) is a faithful colocal pair, where P = eRe and
Q= fRf.

Lemma 2.4. Let M be an injeclive (resp. quasi-injective) right R-module with
S(MR) = T(fRRr);f € Pi(R). Then (pM,Rfq) is a faithful (resp. left faithful)
colocal pair, where P = EndM and Q = fRf.

The following theorem is a slight generalization of Baba-Oshiro [2, Theorem 1].

Theorem 2.5. (See [2, Theorem 1].) Let M be an indecomposable right R-module.
Then the following conditions are equivalent.

(1) M is injective.

(2) (pPM,Rfq) is a faithful colocal pair salisfying r-ann for some f € Pi(R), where
P = EndMpg and Q = fRf.

The following theorem shows that in case (M, Rf) is finite, the converse of Lemma
2.4 holds.

Theorem 2.6. (See [2, Theorem 1 and Corollary 1].) Lel M be a right R-module.
If (PM,Rfq) is a right finite faithful (resp. left faithful) colocal pair for some f €
Pi(R), where P = EndMpg and Q = fRf, then Mp is injective (resp. quas i-injeclive)
with S(Mgr) = T(fRr).

Lemma 2.7.[7, Lemma {] Let pMp be a P-R-bimodule such that Mg s injective
and X = €p(rr(X)) for any submodule X of pM. Then pM is linearly compact.

By this lemma, we have the following proposition.

Proposition 2.8. (See [2, Theorems 1 and 2]) Let M be an indecomposable right
R-module and (pM,Rfq) a faithful colocal pair, where f € Pi(R), P = EndMg and
Q = fRf. Then the following are equivalent.

(1) The pair (pM, Rfq) is right finite.

(2) The pair (p M, Rfq) salisfies r-ann and €-ann.

(3) MR is injective and the pair (p M, Rfq) salisfies £-ann.

As application of colocal pairs, by using Lemma 2.4 and Theorem 2.6, we can give
elementary proofs of the following theorem which is due to Baba [1]. (See [8] for the
definition of a quasi-projective module and its characterization.)

Theorem 2.9. (Baba [I, Theorem 1]} Let ¢ and f be primitive idempotents of R
and put E = E(T(rRe)), P = eRe and Q = fRf. If Ar(peR, Rfq) satisfies acc or
dce, then the following condilions are equivalent.

(1) rE is quasi-projective with T(gE) = T(rRf).

(2) eRR is quasi-injective with S(eRR) = T(fRR).

(3) (peR,Rfq) is a left faithful colocal pair.

(4) peRf is colocal and S(eRg) = T(fRr).



Theorem 2.10. (Baba {1, Theorem 2]} Let E = E(T(fRp)) and let
(p.eiR,Rfq) be a right (or left) finite colocal pair for anyi=1,... ,n, wheree;, f €
Pi(R),P; = e;Re; and Q@ = fRf. Put P = EndEg. Then the following conditions
are equivalent.

(1) S(rRS) = T(rRer) @ - -- & T(rRen).

(2) T(ER) = T(e1RRr)® - e ®T(eq RR).

Moreover in case the conditions are satisfied, S(RRf) (or equivelently T(ER)) is
square-free and the pair (pE, Rfq) is finite.
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SOME EXAMPLES OF THE DECOMPOSITION MATRIX OF MACKEY
FUNCTORS
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Abstract
We computed the decomposition matrices of Mackey functors for some small
finite group in the same way of Thévenaz and Webb.

1. INTRODUCTION

In recently J. Thévenaz and P.J. Webb studied the structure of Mackey functors
for finite groups. They established the modular representation theory for Mackey
functors [7] (vertices, sources, Green correspondents of the projective and simple
Mackey functors and blocks) and gave some examples of the computations of the
decomposition matrices of Mackey functors. The purpose of this paper is to describe
the computations of the decomposition matirices of Mackey functors for some small
finite groups. We have made essential use of various computer algebra system GAP
to obtain our results about the decomposition of @\ G/NP.
The results of this paper is the following.

Proposition 1 The decomposition matriz of Macki(As, 1)

Decomposition matrix

Ag
characteristic 2

0N
Q

R
o]

o

.-v-n.-Q
(5]
[
(5]
[

S

1 [

1 4, 4, 8, 8y 1 1
Sq.w 1 1 1 1 1
1 1
1 1

Dg 1 1

1991 Mathematics Subject Classification. Primary 20C20; Secondary 19A22, 20J05, 16G20.
The detailed version of this paper will be submitted for publication elsewhere.



2. PRELIMINARIES

Throughout, we shall let k denote a splitting field in characteristic 2 for Ag and all its
subgroups, and let (k, R, K') denote a splitting 2-modular system for Ag. We denote
each simple module for a group by its dimension, together with a subscript if there is
more than one simple module of that dimension. For a subset X of a finite group G
and an element g of G, we put 7X := gXg~!, X¢ := g~! Xg. We refer to [7] for some
other notations.

Lemma 2 Let H < G. Let N be a Mackey functor for H. Then

N1G()= @ NLnH)
9€[L\G/H}

for every subgroup L of G. In particular the conjugation o of Mackey functor N 15
Jor G is given as follows; if

z= ), =z eN1§()
9€[L\G/ H}

where x, is the component in N(L* N H), for a € G, we have

0’: : N TIG-I (L) - N TIG-I (GL); I— Z Ta-1g.

g€[L\G/ H]
Moreover,
-1 ’ ]
Yo Ty =Y men, (a7'g=lyg'hy € L' No(H))
9€[L\G/ H] 9'€[L\G/ H]
= 3 erM(zg) (zg € N(L* N NH))

9'€[L\G/H]

where c,l.'i”" is the conjugation of N :
9

cEIOH L N(LT N H) - (L% 0 H).
We refer to the definition 2.8 of [3] or section 11 of [6] for details.

For a subgroup S of G, we use the following symbols for the normalizer and the
Weyl group :
NS := Ng(S), WS :=Wg(S)=NS/S.

For a subgroup H of G and an irreducible W H-module V we can define the simple
Mackey functor
Shv = (It st 16u

for G from the theorem of Thévenaz and Webb [5]. By Lemma 2 we have next lemma
which is Proposition (8.8) of [5].



Lemma 3 Let L < G. Then

S!GJ,V(L) =

where T(H,L) = {g € G|*H < L}.
Next lemma is corollary (9.10) of [5].

D

9E[L\T(H,L)/ N H)

T ()

Lemma 4 Let p be a prime and J o p-perfect subgroup of G. Then the square

Go(Mackk (G, J))
a
Go(Mack(G, J))

¥p

B @, Go(KWH)

d

—_— @H Go(kWH)

commute, where H runs up to conjugacy classes of subgroup of G such that OP(H) =

J.

Throughout of this paper, G denotes the alternating group As,

Ag =< (1v2v3)v(1v 2)(314)v(1’ 2)(4v5)v(1v2)(5v6) >.

We shall have cause to look at the following 2-subgroups of G and its Weyl groups.

Lemma 5 The representatives of conjugacy classes of 2-subgroups of G and some of
its normalizers and Weyl groups are as follows.

2-subgroup P | Ng(P) | Wg(P)
1 G G

Cg Dg Cg X Cz
Cy Dg Co
Ea = Cz X Cz 54 Ss
Eb = Cg X Cz 54 53
D := Dy Dy !

3. THE EVALUATION S,y IN CHARACTERISTIC 0

In this section, we shall describe the characters of evaluation S) v(Q) at 2-subgroup @
for simple Mackey functor indexed by the trivial subgroup of G as a KW Q-module.
Since S),v(1) = V it suffices to compute S),y(Q) at non-trivial 2-subgroup Q of
G. But it is easy to compute the character of WQ-module S, v(Q) = Tr,Q(V) =
(X2eq )V. By the restrictions of the irreducible characters of G to its 2-local sub-
groups and the character tables of Weyl groups we have next submatrix of ¥ which
is the matrix of ¥ of Lemma 4.

Proposition 6 The submatriz of W( indezed by the trivial subgroup of Ag is



Ag Sp.v

characteristic 0 1
1 5, 5, 8. 8 & 10
QW 1 1 1
5a 1
LTS 1
8, 1
8 1
9 1
10 1
[¢]] 1 1 1 i 1 T 2
la 1 1 1 1 1 1
1 1 1 1 1 1 1
1. 1 1 1 2
. T[T T 1T 1 T 2
-1 1 1 1 2
Ea 1 1 1 1
-1 1 1
2 1 1 1 1
Ly 1 1 1 T
-1 1 1
2 1 1 1 1
D 1 1 1 1 1 1 2

4. THE EVALUATION OF S),y IN CHARACTERISTIC 2

In this section, we shall describe the character of evaluation S, (Q) at 2-subgroup
Q for simple Mackey functor indexed by the trivial subgroup of G as a kW Q-module.
Since S;,v(1) = V it suffices to compute S, y(Q) at non-trivial 2-subgroup Q of
G. But we need some lemmas to compute the character of WQ-module S, v(Q) =
(W) = (Xzeq )V The next lemma is a part of Lemma 2.4.1 of [1].

Lemma 7 Let M and N are kG-modules. Then the following expressions are equal;
(i) The multiplicity of projective cover Pi of trivial module as ¢ summand of
Hom(M,N)=M*@®N,

(i1) The rank of 3, g in the matriz representations of Hom(M, N).

By the above lemma, we have next useful lemma.

Lemma 8 Let H £ G and let V be an simple kG-module. Then the dimension of
Siv(H)= Tx{! (V') is as many times as the multiplicity of P, as @ summand of V |y
where P, is the projective cover of k as a kH-module.

The next Erdmann’s result (Theorem 1 of [2]) is useful for the simple modules of
Ag = PSL(2,9).

Lemma 9 Let G = PSL(2,q), ¢ = 1mod4. Then (i) The vertez V of a nontrivial
simple Bo(G)-module S is a Klein {-group.

(it)he Green correspondent fS in NV is a module of length 2 without trivial compo-
sition factors.

(1#41) If G has 2-conjugacy classes of Klein {-groups, then both occur as vertices of
simple simple By(G)-modules.

The next result is 2.6 of [4].



Lemma 10 Let Q be a normal subgroup of G whose indezx is coprime to the charac-
teristic of k and V a kG-module. Then the Loewy series of V' | g is the restriction of
Loewy series of V.

Now we compute the character of the evaluation S; p(Q) over k.

Proposition 11 The evaluations of S),v at cyclic subgroup Ca of order 2 as kWCs-
module are

(2) $11(C2) =0,

(i) S;,q,(Cg) = S;Ab(Cg) > 2k,

(i) 51,8.(C2) = 51,,(C2) = 4k.

Proof. By the dimension of the trivial kG-module and Lemma 8, we can see (i).
Since 8,, 8, are projective 8, |¢,, 85 lc, are the direct sums of kC,. So (iit) follows
by Lemma 8. ;From the ordinary character tables of G (pp 205 of [1]) and 32 : 4
(Appendix 2),

4, 132.4= 4o, b 1524= %

wherer 4, and 4, are projectives of 32 : 4. Hence, we obtain (i¢) by Lemma 8. i

Proposition 12 The evaluations of Sy v at cyclic subgroup C; of order 4 as kWCjy-
module aere

(#) 511(C4) =0,

(ii) S14, (04) =4 31.4,,(04) =k,

(#47) S1,8,(C4) = 51,5,(Ca) = 2k,

Proof. 1t is similar to the proof of the above proposition. 1

We have that the vertices of simple kG-modules 4, 4, are Klein 4-groups and the
vertices are not conjugate in G from Lemma 9 (it). So, we put E, be a vertex of 4,
and E; of 4,.

Proposition 13 The evaluations of S)v at elementary abelian 2-subgroup E, of
order 4 as kW E,-module are

(%) 51,1(E.) =0,

(it) 31.4¢(Eu) = k, Sl.-lb(Ea) = 0,

(#4) S1,8,(Ea) = S1,8,(Ea) = 2k.

Proof. Since 4; |yg,= 2+ 2 and the vertex of 4 is E,

2
4b lNEng 2

by Lemma 9 (i5) . Since the length of Loewy series of kE, is 3 44 | g, is not projective
by Lemma 10. Hence we have Sy 4,(Fa.) = 0 by Lemma 8. Since 4, |yg,= 2k +2

&

4, Inp. &2 2 or llz @2

&



by the self duality of 4,. If we assume the latter case then k@k is the direct summand
of 4 |¢,, contradicting Proposition 11 (i¢). The former case follows.

k
4, |lp= 2
k
from Lemma 10. So 4, | g, = kE,. Thus we have S 4,(E.) = k by Lemma 8. Since

8 Ine =8 INe 2P

where P, is the projective cover of simple kN E,-module 2, we obtain (#if). The proof
of (1) is similar to Proposition 11. 1

Proposition 14 The evaluations of S, v at elementary abelian 2-subgroup E; of or-
der 4 as kW Ey-module are

(1) $11(Es) =0,

(ii) Sl,%(Eb) &k, Sl,db(Eb) =0,

(48) S18.(Fs) = S1,8,(Es) =2,

Proof. It is similary to the above proposition. 1

Proposition 15 The evaluations of Sy v at dihedral subgroup D of order 8 as kW D-
module are

(4) $121(D) =0,

(i) 81,4,(D) = 51,4,(D) =0,

(iit) 51,8,(D) = 51,8,(D) =k,

Proof. From Lemma 8 we obtain Proposition 15. i

Proposition 16 The submatriz of ¥o indezed by the trivial subgroup of Ag is

Ag Spv
characteristic 2 1
1 4a 4 8a 8p
G W T 11
4, 1
4, 1
8, 1
8 1
Co 1 2 2 4
Cyq 1 1 1 2 2
Ea 1 1
2 1 1
£, 1 1
2 1 1
D 1 T T




5. THE EVALUATION Spy INDEXED BY NON-TRIVIAL 2-SUBGROUP

In this section, we shall first describe the characters of evaluation Spy(Q) at 2-
subgroup @ for simple Mackey functor indexed by non-trivial 2-subgroup of G over
K. In general if P is non-trivial then the carrier P into Q

T(P,Q)={9€G|P* < Q}

is not equal to G. Hence we must have the decomposition of double coset
P\T(P,Q)/NP. The GAP may be applied to the double coset Q\G/NP to determine
the representatives in T(P,Q) .

Proposition 17 (i) E,\ T(Cs, E;)/NCy; = E,g1NCy UE 9 NCy U E,93NCs,
where

a =
g2 = (315)(41 6)1
g = (1,5,3)(2,6,4).

(#) Ey \ T(C2, E})/NC; = Eyg1NC3 U EpgoNC, U Eyg3NCo,

where
g = ()1
g2 = (21 3)(51 6)1
g3 = (2) 394)

(466) C4 \ T(C2,C4)/NC2 = C4NC;.
(MJ) D \ T(Cz, D)/NCg = Dg;NCy U DgoNCy U Dga NC,U,

where
n = ()1
g2 = (31 5)(41 6)1
g3 = (21 3)(51 6)'

(’U) D \ T(C4,D)/NC4 = DNC4,
(vi) D\ T(Ea, D)/NE, = DNE,.
(vii) D \ T(Ey,D)/NEs = DNE;.

Proposition 18 The permutations of the representatives {g;} of the double coset
Q\T(P,Q)/NP by the action of WQ are as follows.

(i) If 14, 24, and 34 are the representatives of conjugacy classes of WC> then the
permutation of E, \ T(C3, E,)/NC, are as follows.



) AP A [ BN
1A .1 v 24 = 1 . . y 3A A | .
P | P | 1 . .

(i1) If 1A, 24, and 3A are the representatlives of conjugacy classes of WC5 then the
permutation of Ey \ T(C2, E,)/NC; are as follows.

1 . . .1 . . .1
1A — 1. , 2A A | y 3A | A .
[T | | N S T

Proposition 19 The submatriz of ¥ indezed by non-trivial 2-subgroup of Ag is

Ag Spv
characteristic 0 Ca [o]] Ea by D
1 1a 1y 1. 1 -1 1 -1 2 1 -1 2 1
QW C2 1 1
la 1
1 1
1¢ 1
Cy 1 1 1
1a 1 1
c: 1] 1 1
1 1 1
2 1 1 1
c; 1 1 1
-1 1 1
2 1 1 1
Dg 1 3 1 1 1 1 1 1 111

Proof. If P and Q are not conjugate in G Sp,y(Q) = 0 by Lemma 3. Hence we
have to calculate Sc,,v(Q), Sp,v(D) where C2 < @, and 1 # P < D. Since we can
compute by the same manner we only describe the character of

Sc,,v(Es). By Lemma 3 and Lemma 17 (i) we have

3
W0 (Ca)
ng,V(Ea) = @Tl'l Fe V)
=1
where Wgs: (C2) isomorphic to C for 1 < i < 3. Now, we commute the character of

W_0:(C2)
Tr, 5= (V) = SWE (Wgai (C2))

as Wwc,(Wgs: (Cz))-module. Since Wwc, (Wi (C2)) = Wie, (Ngsi (C2)) = Ce
Ire(Wwe, (W (Ca)) = {1, La}.
From the appendix of [7] we see the characters of Slv_vlf" (Wgsi (C2))(i=1,2,3).

Thus we have determined the characters of Sp,, (£,) 88 W E;-module by Propo-
sition 18 (i) and GAP as follows.

1 24 2B 3C
Sc,a(Bl) |1 O 0 0
Scy-1(E,) |0 1 0 0
Sc,2(Ex) |0 1 0 0



The others follow in the same manner. We have now proved Proposition 19. [

Proposition 20 The submatriz of W9 indezed by non-trivial 2-subgroup of A is

Ag Spv
characteristic 2 C | Cs | C5 C; Dg
1 1 | 2] 0 2]
a.w Cy 1 1
Cy 1 1
cF 1 I
2 1
CF 1 1
2 1
Dg 1 1 1 1
Proof. Immediately from Lemma 8 and the proof of Proposition 19. 1

Proof of Proposition 1. We obtain the matrix of ¥g by Proposition 6, 18 and
the matrix Wo by Proposition 16, 20. Thus we obtain the matrix of A from

A = ode;t

in Lemma 4. 1

APPENDIX
Table 1 The ordinary character table of 32 : 4

1A 2A 3A 3B 4A 4B
1 1 1 1 1 1
1, 1 1 1 -1 -1

1, -1 1 1 A -A
1. -1 1 1 -A A
4, . -2 1
4 . 1 -2

where A = ER(-2) = 42.

Table 2 The 2-modular character table of 3% : 4

1A 3A 3B
1 1 1
4, -2 1
4, 1 -2



Table 3

Decomposition matrix of Macky(D3,1)

D2 Spv
characteristic 2 1 Ca Cy | C2 | C3
1 2 1 2 1 1 1
Sq.w 1 1 1 1 1 1
1a 1 1
1y 1 1
1. 1 1
2 1 1
2a 1
Ca 1 1
-1 1
2 1
Ca T 1
-1 1
o7 1 T | 1
-1 1
C3 1 1

References

[1]
2l
[3]
[4]

(5]

[6]

[7]

D.J. BENSON, Modular Representation Theory: New Trends and Methods,
SLN 1081, Springer, Berlin, (1982).

K. ERDMANN , Principal blocks of groups with dihedral Sylow 2-subgroups,
Comm. Algebra 5, (1977), 665-694.

H. SASAKIL, Green correspondence and transfer theorems of Wielandt type
for G-functors, J. Algebra 79 (1982), 98-120.

WH. SCHWARZ, Die struktur modularer gruppenrigr endlicker gruppen der
p-lange 1, J. Algebra 60 (1979) 51-57. (1982), 98-120.

J. THEVENAZ and P.J. WEBB, Simple Mackey functors, Proc. of 2nd In-
ternational Group Theory Conference, Bressanone (1989), Supplemento ai
Rendiconti del Circolo Matematico di Palermo 23, 1990, 24-56.

J. THEVENAZ, Defect theory for mazimal ideals and simple functors, J.
Algebra 140 (1991), 426-483.

J. THEVENAZ and P.J. WEBB, The structure of Mackey functors, Trans.
A.M.S . 347 (1995), 1865-1961.



TRIPLE REPRESENTATIONS OF KUPISCH SEMIGROUPS

HIDEO SaTo

Wakayama University

ABSTRACT. We investigate semigroup rings of Kupisch semigroups over which we can
define a notion of piled modules. We study such modules to get a criterion for such a
ring to be Gorenstein or Auslander-Gorenstein.

1. Introroduction.

Gorenstein Bt &1 self-injective dimension 2%, ZH&ELAHAROXRY —BROZ &TH
3, CDEE, EADKTIZ—HTSE0DT, £k Gorenstein BOKITTEL S KT
0 D Gorenstein ]&E L, BT7OR=—0 XBICMAL ST, x5 —HREEEZ, KT
%1 @D Gorenstein |TH 3, W# Gorenstein TIZDUVTiT Bass [2) DEERITTTR
Gorenstein RBDEYETH 3 L[EHFIZ, Gorenstein BR—FED, HAEHKTO, B
Kb -oTB,

%7z, Weyl Algebra A, (C) 2008 ET 5, REBHE LD Differential Operator
Rings ¥, C" IZ{EAT 3 HME G i2&k 3 A,(C) D invariant subring %, @S
%H T Tl Gorenstein BIZL 5, HIMBSICH L TER S NS Sklyanin Algebras {3
global dimension 23R ®D Noetherian domain ( L72H¢> T Gorenstein ) THA L,
Sklyanin algebra @aiHt & RiAL X B ~% Artin-Schelter DFEHTD Regular Algebras
i, BENLSHHETHIY, x5 —RTHIIL, global dimension HFFBRD Gorenstein
BTHd. ZhoEREMITH Gorenstein BEFHT S5, ZhSIZDONTIZEKDREHR
[5,6) B, ZlihifohTHaXmERSh L, o, REME LOTREY -
@ universal envelopping algebra U(®) & Gorenstein BiZ7 3 ([1]) o

REGBATI Gorenstein B A ORI, HHL4a Auslander-Gorenstein graded alge-
bra THH, €HHEH domain THAB3H, €5 THithid gr(A) (30 domain IT75
DTN, Fo, FITOHMTIE, (Gabriel-Rentschler DE%RTD) Krull Kie&d,
Gel'fand-Kirillov (RICOB N { . B, B FATHY Gorenstein BD self-injective
dimension %, £®DHMD Krull &kyt, F72iL, Gel'fand-Kirillov KX TEX Sh3
ENEBL, —K, U(®) IZD0TIE, €O self-injective dimension ¥, & O FHE L
TORTIZH LI, Malliavin EOHMER T &, Bass DHEROT7FoV—%il»
TWBES5ICRAS. ZOXSABWKTIL, REWBATHY Gorenstein B d U(S) bR
Gorenstein BiZVEHE X 5,

—%, RLERERTLEEZTEET, L STHLRITDH Gorenstein BIZTFEET S,
F 7z, Tiled Orders iIZ2WWT HIHIRA L TH 3. Th o OFEUTS fully bounded TH
B, 2@ Krull kjeid, Eh®h 0 THH, 1 THB, —ARICIT graded (TIXL ST,

ZDEHITBDRILS Gorenstein BAHBLUL, ThoE—BOICMOES 2 &%
HRT2013, BRI OUBRTHBEE>TbLI . JOBEIIN - EEDERER,

This paper is in a final form and no version of it will be submitted for publication elsewhere.



WaRATH S, Gorenstein BEM minimal injective resolution OfFFATH B, ZH Ll
LO—MREERIE, HERRHFT VB, BRY (78] &LEH[10], BIUEIITHIA
ShTWAXBRERNTIZERY 5.

MEFOTEEIT, €D minimal injective resolution % EL{AINZEE T % 5 Gorenstein
BOH LY I RAEBETH 270, TOERIINI) ICF LY, ZORMHKES
ABZENFBOBMNTH 3. Nk, RBKRIEFOBRELD MM Noetherian
Algebras DRETERL T3, ZOMBRFAHRERICRBEEINBITTH S,

2. Basic Notions.

UL bw 3 Gabriel Quiver 4%, relations & U Tid, zero relations & commutativity
relations L b7-F, D, non-zero paths e & LTRARTHIBELXEZ L
Jo MM, & vertex % HEAYN path & RALEIE, i non-zero % idempotent
THB, ShoREKiZ 0 BHIMAIMEE S THL, paths DEEE S DR EER
hid, S IROERBEHIZT,

(1) Si20 2B ELTELHBERTH S,

(2) S D nonzero idempotents &% I(S) = {e1, €2, ,en} EBIFL, S # {0}
(3) ei-e; =0ifi#j

(4) Vs € S I LT, Jes,ej €S sit. ejsej =s

(5) T=S\I(S) &BiHE, Im>1st. T" = {0}

Definition 1. L O%RHE (1) ~ (5) AT B S%& Kupisch semigroup&ird,

4%, Kupisch semigroup &3 & %13, LEOREXEET S, ZOERIITT
2 [12] THRH-THAH, ZORBHICOVTIE, EAE B ZR SN0,

S % Kupisch semigroup, A ZBTE bDERD ring &5, ZDEE, AR
TR A(S] 2EBBTEE, ey + - +e, 1T AIS] DMfITETED. ENT A C A[S]
EEZX B, T, ARIZS C A[S] THB, 51T A[S] 13 S\ {0} *% basis &F 3 free
A-module TH 3,

Zhil, HLBEKROBETER S,

R % (Noetherian) discrete valuation ring, J = (7) % R @ Jacobson radical, &
% ROFMH%, K % R O@§h&E 3 5. Kupisch semigroup S IZ# LT, 3DD¥H
B:;A=R[S], T=KI[S], A=k[S)%%X5, (AT,A) %S D triple representation
ENd, CORA BMEHREIEI 5 RET 5.

Lemma 2. A X FBN(=fully bounded Noetherian) ring C semiperfect 5> Krull X
FER 1 THB,

(FBN #¢& Krull RITiTOWTIE [4] %, semiperfect ring (220 TiE[14] 285
nizin,)

N=3%,rRsCAI% A Onilpotent radical TH 3, LZDHREDIITHS TSk
i, Ye € I(S) iU T, Ae=Re® Y ,cp, ®Rse D unique maximal submodule %
Je®), .cr. DRse THEAONB I LTHB. $4bBL, Rad(Ae) = Jed},, .. DRse.
F72, X = Ae/Ne 13 R-torsionfree 7% A—module T, X/JX = Ae/Rad(Ae) =
Ae/Rad(Ae). Bl EDRET,

Lemma 3. A—simple modules 24D E & A—simple modules 24k DHSIT—HL,
{Ae/Rad(Ae)

le € I(S)} TBA LB, Fi:, ['—simple modules £ DEE1E, {T'Q4(Ae/Ne)le €
I(S)} THEAohB,
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3. Piled Modules.
AX IZHLT, X(i)={ze€ X|r'z=0} &<, Zhiz X ® A-submodule T,
0=X0)cXx()cX@®@)c---

Definition 4. A\ X BTEOKRGEHITEE, A M % slice £33 piled module &
I,

(1) X =UX()

@) JX(G+1)= X(@) for Vi> 1.

(3) M = X(1) (as A-modules.)

B8 o DMZ piled module X 1% R-torsion module T 7 23 Lick-THOH
3 A-epimorphism T, X/X(j) = X, X(i+1)/X() = X(1), X(i+1)/X(1)= X(j)
BERBEHRE SN, Soc(X) (3 essential in X T Soc(X) C X(1)»

BEZ ohiz A-module M T3 LT, £h% slice &9 5 piled module DFELEITR
IZOAEETH AL, RIZAHTHE,

Lemma 5. R4/ R-torsionfree 73 A-module L iZ¥# LT, M = L/JL, X =
KLJJL (#2720, KL =K ®gL) &8I, X (2 M % slice £9°3 piled module T
5.

N CEE LB, A-simple module 3 LR DHIBIORME ST, T2, Ve e
I(S) 1S LT Ae = (Ae/JAe) I3BASH, 2 51T [13, Proposition 2.7] DA% Rhid,
fEFD indecomposable injective A-mopdule b LEDEHEMOEHESH12T. LT,

Proposition 6. HRER A-module M (Z5UT, M #€simple or projective or
injective IS, M % slice & U THD piled module I3TH#1ET 5. &I, e € I(S)
22T, TefAe 1T Ae % slice {ZdD piled module TH 3.

Zfts, R4 A-module M A% A-module & U TOMHERIENLS 1 BHIE M %
slice & LT b~ piled module DEENR SN B, ZDHEED DD —RAFRLEIIAR
TH B,

Lemma 2 & [9, Corollary 3.6]) iZ& - T, RFIEATE 3,

Proposition 7. piled module X {Z24VT, X : A-injective <= X(1) : A-injective.

125, [13) Tl = DRI X(1) OFRERMZEE LY, JORGRTET
bB. (EBBEAKRDOERE) . LMo, injective A-module Q iZ3 LT, E£h*% slice
& LT b piled modue 3—HFET 500, £hiE: P(Q) &FT. £/, LUTTR
A-module Z @ minimal injective resolution @ i-th term % EY(Z) T, i-th cosyzygy
Q0 (2) THY. ESIT, ida(2), 1da(Z), pda(2) T ThEh 27 DBAKR,
EHKIT, HERTEERT,

Corollary 8. injective A-module Q (<3 LT, P(Q) = E(Q).

Lemma 9. X & Y i, & b2 piled module T, X i Y @ submodule &3 hid,
Y/X b piled module ‘T slice i3 Y(1)/X(1) TH 3,

UL oROERGBONEB.

Theorem 10. A X 2% slice oM % & piled module 7551, Ei(X) = P(EL(M))
T, (X)X QL (M) % slice & LT H piled module TH 5,
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Corollary 11. ids(Te/Ae)= ida(Ae) for Ve € I(S).

%&iz piled moduel DFBRFTEEZ B, [13, Proposition 4.5] DIFHAEKHTHiL,
TROZ &b 3,

Proposition 12. 7 X #HMLER slice aM % b piled module T, pdaM < 00 755
4 ,
fdn(X) =pda(M) + 1. i, fda(E,(Te/Ae)) = pda(Ex(Ae)) for all e € I(S).

4. Minimal injective resolutions for A, I' and A.
F'= KA T, &LITT i3 A D classical quotient ring TH A Z &5, RAEHS
ha,

Lemma 13. e € I(S) < ULT, EX(Ae) = EXTe) THY, LARD exact sequence
RH B,
0 — Fe/Ae — QL (Ae) — Q- (Te) — 0.

Te/Ae i& Ae % slice i & D piled module 722n 5% D minimal injective resolution
{3 Theorem 10 o bh B, Fi, Q(Te) D A-injective hull {IT-injective hull &—
5. 8542, E§(Te/Ae) & EL(Te) @ A-uniform dimensions 28& bIZHRTH B
Z ExEZhIL, E)(Ae) =E}(Te/Ae))®EL(Te) TH Y, D,

0 — Q) (Te/Ae) — Qi (Ae) — Q%(Te) — 0

73 3 exact sequence 2B SN 3, JORELBROICEIET I ENTES, LT,
Theorem 14. Ve € I(S) 28 LT, A-module Ae @ minimal injective resolution %
rRTHEZo5hB,

0 — Ae — EQ(Te) — EL(Te) ® Ea(Te/Ae) — EE(Te) @ EX(Te/Ae) —

-+ — Ef(Te) @ Ej"}(Te/Ae) — - --
Zh & Corollary 11 EDSEBIZERDHH B,

Corollary 15. idy(Ae) = maz{ida(Ae) + 1, idr(Te)}.
51, A : Gorenstein < A : Gorenstein and T : Gorenstein.

zi3, bhbhOREDOREMEN S,

Lemma 16. A 4% Gorenstein T, €ORL%E n &Thid, E}(A) I essential socle
xH2,

7z, T'—module i A~module & LT socle % b7ciii v, n =idp(Ae) < o0 &
KD 3 & ,
Eg(Te) =0. W 2R 3L, idr(Te)<n—-1. £»T,

Theorem 17. A 2% Gorenstein %2 5if, id(T) <id(A) =id(A) - 1.

X7 =B A RUVEH ;> 0i220T, fd4EH(44) < i Vi< jIiZ20OTIKILT S
&%, AL j-Gorenstein EBbhB, ChRRELARMTH S, (Auslander 2k 5, )
E5IZ, A FWIT n D Gorenstein D &%, (n+1)-Gorenstein 72 5, Auslander-
Gorenstein LEb B, EiL, n RITD Gorenstein B A {E n-Gorenstein Thh
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tZ, Auslander-Gorenstein ©# %, Inroduction Tili~<7?z Gorenstein DO LMD
{2 Auslander-Gorenstein T% 3,
bhbhOR A IZOOTHENTASE, £7, M-module M iZoU T, pdr(M) =fda(M)
&E753, & -T, Theorem 14 & Proposition 12 5,
fdA(E}(Ae)) = pdr(EL(Te)) for i =0,
= maz{fda(EY (Ae)) + 1,pdr(Ef(Te))}  for Vi> L.

L7zH5T, Corollary 15 %#X hid,
Proposition 18. A : Auslander-Gorenstein <= A and I' : Auslander-Gorenstein.

5. Global dimensions of A, I and A.

M % A-module T, HR4MKY R-torsionfree A-module X #H->T M = X/JX
EIEBbDET B, (simple A-module (3 Z DM EAH723). X D A-module & LT
@ minimal projective resolution %

o Py S Ppy— o — P X — 0

&Téo ] Z 1 l:i‘ib'C. X,' =Im(€,~) =Ker(€,'_|) &*5(0 :@&%. Qo = PO/JP[)
¥ M D A-projective cover T, 2D, e(JPy) = JX X, TED commutative
diagram with exact rows and columns %% 5.,

0

!

J Py

|
I
i

!

Qo

!

0
& T, the compositemap : Pp— X — M % p ’Céi'&‘li, 0—JP+ X — P2
M — 0 713 short exact sequence %183, £ZTi> LiZ2WWT, M; =JP_+X; &
1<, Zhit P, ® BRERKA A-submodule THIZ R-free THED 0, JP_1NX; =
JXi Vi 2 LIZDWTRYT 3, JOI ERALTRAGEHSh S,
Lemma 18. j > 1 i2UWT, X; # 0 &EET . p; : JP1 0P — M; %
pi(z,¥) = —x+c,(y) l-&ofﬁﬁ?‘hii pj {3 M; @ (A-module J:b'CfD) projective
cover 352X, D, Ker(pj) = {(¢;(¥),¥)ly € Mj1} = Mjy1 TH 5o
T, po = p po=p EBE, j > 212D0TIE, p; = the composite map
: JPj_y @ P; 25 M; ZLKer(pjy) — JPjoa ® Pjoy &350 ZZi2 05 1 M —
Ker(pJ 1) lihﬁ@ﬁﬁ@lﬁlﬂ’(’?),%o &-T,

o > JP@P; 25 JP_y@Pjy — - — JP@ P £ JP®Py 2 TP 2 M =0

—

|
I

. T_o
I

(=T =
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I3 LROHENS, M O A-module & L TD minimal projective resolution T 5.
A-module M 1% R-torsion 75 pda(M)=m+1for 0<m< o &EHiTH. U

T, ZOEBTERS,

Lemma 19. i < m 85, JP, C My, £z, m<oo KBS JPp = Mpmya-

ZITi<m it UT Mizr = Mig1/JP, Pi=P[IP EBLE, 0# M C
Rad(P,) &153, O &d o, LED M @ minimal A-projective resolution %, M
@ minimal A-projective resolution 25| X3 bbb, i, i<m &LT,
1 JP_1®JP; — JPiy % pi D restriction &3 i, FELD commutative diagram
with exact rows and columns %85,

0 0 0
l l l

0 —— JP, —— JP®JP, —— JPL, —— 0
?1 fl !

ZZTa, B 7 idinclusion maps THB. 22k, AL Ker(r;) = {(ei(y), y)ly €
JP;}) #3335, Z ZTHTFBO short exact sequence i¥ M; ®A-module & LTD
projective cover &5 %, L LOERIIRDZ LE2EHT 5,

Proposition 20. B4R R-torsionfree 7 A-module X iZ2OWT, M =X/JX &
7% A-module M {Z2\TIE, pda(M) =pda(M) + 1. (HREREMDE ! )
TEICEBLTHUIVzL S, A-simple module M {3 Proposition 20 D%ki% &

729 F7 A IE Krull RN 1 THB05, [11, Corollary 4] i2k D, gldimA =
sup{pda(M)|M : simple} THB. £>T, Lemma 3 ickd

Theorem 21. gl.dimA = gl.dimA + 1 BRI DH STRILT B,
iz, XF—I A IZDOUWTid global dimension HRA 5L, gl.dimA = id(A) T

HY, BRERIZMD ST gldimD < gldimA THBHh S, Theorem 17 & Theorem
21 h

Corollary 22. gl.dimI < gl.dimA.

6. Remarks.
(1) id(l) = 0 < id(A) = 0o &4 3 BNLIELET 5.
(2) gldim T < gldim A < 00 &SRB HFEET 3.
(3) S iTxiEd 3 Gabriel quiver @ relations %3XT zero-relations 7% 5, gl.dim
I =gl.dim A.(Burgess-Fuller-E. L. Green- Zacharia)
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(4) for all n > 2 {Z2UT, A ¢ n KIFLD Auslander-Gorenstein ring &753 D
PEET 5. Ld, global dimension MEROD LD LHRDO LD BIEET 3.

(8) RDHEK F C F' iIZ2T gl.dimF[S] = gl.dimF'[S] KD ILDs Lzt
T, gl.dimF[S] (kDB D RT3,

(6) #& F io4 LT, Kupisch semigroup S DEBB F[S] D self-injective dimension
&, F[S] %% finite representation type 275 378 Sif, HEEICHYTEE, Z0
BHT, ARTEAIEERIIBUT A D self-injective dimension 2% A T OF
NIKX>THRBTELIEERLTHBEDTIEE

ABFIITE DS University of Jowa ICHFERIZL S N7o, Professor Kent Fuller iZ.0
BT 5,
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DEGENERATIONS OF FINITE DIMENSIONAL
MODULES AND TAME ALGEBRAS

ANDRZEJ SKOWRONSKI

0. Introduction

The present notes are an extended version of two lectures given during the 29-th
Symposium on Ring Theory and Representation Theory held at Kashikojima in
November 1996.

The class of finite dimensional algebras (associative, with an identity) over an
algebraically closed field may be divided in two disjoint classes. One class consists
of tame algebras for which the indecomposable modules occur, in each dimension
d, in a finite number of discrete and a finite number of one-parameter families.
The second class is formed by the wild algebras whose representation theory is as
complicated as the study of finite dimensional vector spaces with two noncommut-
ing endomorphisms, for which the classification is a well-known unsolved problem.
Hence, we can realistically hope to describe indecomposable finite dimensional mod-
ules only over tame algebras. Among tame algebras we may distinguish the class
of representation-finite algebras, having only finitely many isomorphism classes of
indecomposable modules. The representation theory of representation-finite alge-
bras is presently rather well understood. In practice, we have enough methods to
decide whether a given algebra is representation-finite and, if it is the case, to de-
scribe all its indecomposable modules. A representation theory of arbitrary tame
algebras is presently only emerging. We are still looking for methods to describe
the indecomposable modules over tame algebras and efficient criteria for the tame
representation type. On the other hand, even for representation-finite algebras,
the representation theory of arbitrary finite dimensional modules is relatively poor.
In this article we are interested in the geometry of modules of a fixed dimension.
We shall report on recent advances in the investigation of degenerations of finite
dimensional modules and connection with the representation type of algebras.

We divide the notes into the following parts:

1. Preliminaries on module categories.
2. Tame and wild algebras.
3. Affine varieties of modules.

This paper is a final form and no version of it will be submitted for publication elsewhere.
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4. Degenerations of modules.
5. Degenerations in Auslander-Reiten components.
6. Degenerations to indecomposable modules.

The author gratefully acknowledge support from the Polish Scientific Grant KBN
No. 2 PO3A 020 08.

1. Preliminaries on module categories

Throughout this article A will denote a fixed finite dimensional associative K-
algebra with an identity over an algebraically closed field K. We denote by mod A
the category of finite dimensional (over K') right A-modules and by ind A its full
subcategory consisting of indecomposable modules. The term module is used for
an object of mod A if not specified otherwise. We shall denote by rad(mod A) the
Jacobson radical of mod A, that is, the ideal of mod A generated by all noninvertible
morphisms in ind A. The infinite radical rad™(mod A) of mod A is the intersection
of all finite powers rad’(mod A), i > 1, of rad(mod A). We shall denote by D :
mod A — mod A°P the standard duality Homg(—, K'), where A°P is the opposite
algebra to A. Without loss of generality we may assume that A is connected and
basic.

Let 1 = e; + ...+ e, be a decomposition of the identity of A into a sum of
primitive orthogonal idempotents. Then it is known that:

o P =¢eA,...,P, =e,A is a complete set of pairwise nonisomorphic inde-
composable projective A-modules;

e 5 = e Ajerad A,..., 5, = e,Afeqrad A is a complete set of pairwise
nonisomorphic simple A-modules;

o I) = D(Aey),...,In = D(Ae,) is a complete set of pairwise nonisomorphic
indecomposable injective A-modules.

It is well-known that any X from mod A has a finite chain of submodules
0=X0§X1 §§X1=X

with X;/X;_, being simple for all 1 <i <!, called the composition series of X. A
useful point‘of view concerning the composition series of a module from mod A is to
consider the Grothendieck group Kp(A) of the category mod A. It follows from the
Jordan-Hélder theorem that the images of the isomorphism classes [Sy],... ,[Sn]
of the simple A-modules form a Z-basis of the group Ky(A), and hence we may
identify Ko(A) with Z™. We may then assign to each module M from mod A its
dimension-vector dim M € Ko(A) = Z", being the collection of the multiplicities
of $),...,8n in the composition series of M. It is well-known that

(dim gHoma(P;, M))1<ign = dim M = (dimgHom 4 (M, I;))1<i<n-
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One of the main objectives of the representation theory of finite dimensional alge-
bras is to study modules having a fixed dimension-vector.

We denote by T'4 the Auslander-Reiten quiver of A. We shall agree to identify
an indecomposable A-module with the vertex of 'y corresponding to it. By a
component of Iy we mean a connected component of the quiver I',y. Recall that
a component C of T'4 is called preprojective if C has no oriented cycle and each
module in C belongs to the Tr D-orbit of a projective module. Dually, C is said to
be preinjective if C contains no oriented cycle and each module in C belongs to the
DTr-orbit of an injective module. Following [26] a component 7 of T4 is said to be
a tube if it contains an oriented cycle and its geometric realization || = S! x RJ,
where S! is the unit circle and Ry the set of nonnegative real numbers. A tube 7
of T'4 containing no injective modules (respectively, projective modules) is said to
be a ray tube (respectively, coray tube). Finally, a component C of T4 is said to be
a quasi-tube [27] if its translation subquiver formed by all vertices which are not
projective-injective is a tube.

The Auslander-Reiten quiver I'y of A describes mainly the quotient category
mod A/rad®(mod A). If A is representation-finite then rad®(mod A) = 0 and we
may recover the morphisms in modA from the quiver I'y. On the other hand,
if A is representation-infinite and X, Y are indecomposable A-modules lying in
different components of "4, then Hom4(X,Y) = rad™(X,Y). Hence rad*(mod A)
contains lot of information on the representation theory of A. In order to study the
behaviour of components of T4 in the category ind A, the author introduced in [30]
the component quiver ¥ 4 of A. The vertices of £ 4 are the components of ' 4. Two
components C and D are connected in £4 by an arrow € — D if rad®(X,Y) #0
for some (indecomposable) modules X from C and Y from D. Clearly, if A is
representation-finite then X 4 consists of exactly one vertex, namely the quiver I' 4.
Following [31] a component C of T 4 is said to be generalized standard if £4 has no
loop at the vertex C, or equivalently, rad®(X,Y) = 0 for all modules X, Y from
C. Observe that any preprojective component of T'4 is a source of ¥4 and any
preinjective component of ' 4 is a sink of X4, and hence all such components are
generalized standard.

For basic background on the representation theory of algebras we refer to [6]
and [26].

2. Tame and wild algebras

An intuitive notion of wild algebras was built on investigations of A. L. S. Corner
and S. Brenner who showed that there are algebras A such that for any finite dimen-
sional algebra B there is a full exact embedding of modB into mod A. Presently,
following Y. Drozd [14], we say that an algebra A is wild if there is a K{z,y)-
A-bimodule @, where K{z,y) is the polynomial K-algebra in two noncommuting
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variables such that g(.,)@ is free of finite rank and the functor
~ ®K(z,y) @ : modK (z,y) — mod A

preserves indecomposability and isomorphism classes. It is known that if B is
a finite dimensional K-algebra then there is a full exact embedding modB —
mod K (z,y). Hence, if A is wild, the classification of indecomposable A-modules
is as complicated as that for any finite dimensional K-algebra B, an impossible
task! Following [14] an algebra is said to be tame if, for any dimension d, there
exists a finite number of K[z]-A-bimodules Q;, 1 < i < ng, which are free finite
rank left modules over the polynomial K-algebra K|z] in one variable, and all but
finitely many isomorphism classes of indecomposable A-modules of dimension d are
of the form K[z]/(z — A) ®k[s) Qi for some A € K and some i. Denote by p4(d)
the least number of K[z]-A-bimodules satisfying the above conditions for d. Then,
following [27], A is said to be of polynomial growth if there is a positive integer
m such that ps(d) € d™ for all d > 1. From the validity of the fameous second
Brauer-Thrall conjecture we know that an algebra A is representation-finite (ind 4
has only finitely many pairwise nonisomorphic objects) if and only if z4(d) = 0 for
alld > 1.

The following Tame and Wild Theorem proved in 1979 by Y. Drozd [14] is
remarkable for the modern representation theory of algebras.

Theorem 2.1. Every algebra A is either tame or wild, and not both.

It is known that an algebra A is hereditary if and only if A is isomorphic to
the path algebra K@ of a finite quiver @ without oriented cycles. The following
classical result due to P. Gabriel [15] describes all representation-finite hereditary
algebras.

Theorem 2.2. Let A be a hereditary algebra. Then A is representation-finite
if and only if A is isomorphic to the path algebra of one of the Dynkin quivers

An: —eo—...— e—e (n-vertices, n > 1)

D, : o— . —o—e (n-vertices, n > 4)

LRI
SN I
LR
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where e—e means e — o or ¢ — o,

The following theorem due to L. Nazarova [21] and P. Donovan-M. R. Freislich
[13] (see also V. Dlab-C. M. Ringel [11]) describes all representation-infinite tame
hereditary algebras.

Theorem 2.3. Let A be o hereditary algebra. Then A is representation-infinite
tame if and only if A is the path algebra of one of the extended Dynkin quivers

[
:&n : / \ (n + 1-vertices, n > 1)

*—0— i —o—o

=]
/

*—0—---—o—s {n + 1-vertices, n > 4)

?,.
o
L.
I

N S
L

where e——e means e — o or ¢ «—— o,

5!

It is also known (see [11]) that if A is tame hereditary then the component quiver
X4 is directed (has no oriented cycles) and p4(d) <1 foralld > 1.

The problem of when a finite dimensional algebra A of finite global dimension
{even of global dimension 2) is tame remains still open. Recently the author ob-
tained two general criteria for the tame representation type of triangular algebras,
that is, algebras whose ordinary quiver has no oriented cycles. An important role in
these investigations is played by two integral quadratic forms on Ko(A): the Euler
and the Tits form.

Let A be triangular and Ko(A) = Z". Consider the Cartan matrix

Ca = (dimgHom A (P;, Pj))1<i ign

of A. Then C,4 is invertible over Z, and we get an integral quadratic form x4 :
Z"™ — Z on Ko(A) = Z" defined by

xalz) =zC3'z* forz € Z™
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It has been proved by C. M. Ringel [26] that if X is an A-module then

xa(dim X) = ) (-1)'dimgExt (X, X).

i>0

Hence, x4 is called the Euler form of A.
The Tits form g4 of A is the integral quadratic form g4 : Z" — Z defined by

qA(:z:) = Z.’E;" - Z a:ia:jdimKExth(S,-,Sj) + Z a:ia:jdimKExtf,(S;,Sj).

i=1 i,j=1 ij=1

In [7] K. Bongartz proved that if gl.dim A < 2 then x4 = g4. The Euler form xa
(respectively, Tits form g4) is said to be weakly nonnegative provided xa(z) > 0
(respectively, ga(z) 2 0) for all z € Z" with nonnegative coordinates.

Recall that following D. Happel-1. Reiten-S. O. Smalp [16] an algebra A is called
quasitilted (almost hereditary) if gl.dim A < 2 and for each module X from ind A
we have pdyX < 1 or idgsX < 1. It is known that any quasitilted algebra is
triangular. The following characterization of tame quasitilted algebras has been
proved by the author in [33].

Theorem 2.4. Let A be a guasitilted algebra. The following conditions are
equivalent:

(i) A is tame.
(ii) A is of polynomial growth.
(iii) ga (= xa) is weakly nonnegative.
(iv) dimgExth(X,X) < dimgEnd4(X) for any module X in ind A.
(v) X4 is directed.
(vi) A is tame tilted or tame of canonical type.

The last condition means that A is a tame tilting of a hereditary algebra or a
canonical algebra (in the sense of [26]).

In the representation theory of finite dimensional algebras an important role is
played by the simply connected algebras. The importance of simply connected al-
gebras follows from the fact that often we may reduce, with the help of coverings,
the study of modules over an algebra to that for the corresponding simply con-
nected algebras. Recently strongly simply connected algebras introduced by the
author in [28] have been investigated extensively. Recall that a triangular algebra
A is called strongly simply connected if, for every convex subcategory C of A, the
Hochschild cohomology group H(C, C) vanishes (that is, any derivation§: C — C
is inner). In particular, any algebra whose ordinary quiver is a tree is strongly sim-
ply connected. We note also that strongly simply connected algebras may be of
arbitrary large finite global dimension. In [36] (respectively, [22]) a class of minimal
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wild (respectively, tame minimal nonpolynomial growth) strongly simply connected
algebras, called hypercritical algebras (respectively, pg-critical algebras), has been
classified by quivers and relations. We have the following characterization of poly-
nomial growth strongly simply connected algebras established by the author in [32]
(the conditions (iii) and (iv) in the joint work with J. A. de la Peiia [23]).

Theorem 2.5. Let A be a strongly simply connected algebra. The following
conditions are equivalent:
(i) A is of polynomial growth.

(ii) A does not contain a conver subcategory which is hypercritical or pg-critical.

(iii) The Tits form g, is weakly nonnegative and Ext% (X, X) = 0 for any module
X inind A.

(iv) dimgExt} (X, X) < dimgEnd4(X) and Ext}(X,X) = 0 for any module
XinindA and r > 2,

(v) 4 is directed.

3. Afline varieties of modules

In this section we assign to A a family of affine varieties of modules. This allows
to study the finite dimensional A-modules using geometric methods, in particular
methods from algebraic transformation groups and invariant theory (see [17], [18],
[20]).

Let @) = 1,as3,... ,am be a K-basis of A. Then we have the associated structure
constants azji, 1 < i,j,k < m, defined by

m
a;a; = Z Qi@ .
k=1

Let d be a positive integer. Then the affine variety mod 4(d) of d-dimensional (right)
A-modules consists of m-tuples M = (My,... ,Mp,) € Mgxa(K)™ of d x d matrices
with coefficients in K such that M, is the identity matrix and

m
M;M; =Y Myayj:
k=1

for all 1 € 4,7 € m. Observe that moda(d) is a closed subset of K md® in the
Zariski topology. A d-dimensional A-module M can be regarded as a K-algebra

homomorphism
M : A — Endg(K?) = Maxa(K),

and hence we may assign to M the m-~tuple (M),...,M,,) € mods(d) given by
M; = M(a;) for any 1 < i < m. We shall identify a d-dimensional A-module M
with the point (M,,... , My,) of mod4(d) corresponding to it.
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Let G(d) = Gla(K). Then G(d) acts on mod4(d) by conjugation:
gxM=(gMg™",... ,gMmg™")

for all g € G(d) and M = (M,,...,M,,) € moda(d). Hence mod4(d) is an affine
variety with a natural action of the affine (reductive) algebraic group G(d). For a
module M € mod s(d) we denote by O(M) its G(d)-orbit G(d)M = {g*M; g € G}.
Observe that two d-dimensional A-modules M and N are isomorphic if and only if
O(M) = O(N). Indeed, M ~ N if and only if there exists a K-linear isomorphism
g: M =K% — K9= N such that the diagrams

Kd M(a() Kd

ls ls

Kd N(Gi) Kd

1 £ i £ m, are commutative, or equivalently N = g* M.
We are interested in the orbit closures O(M) of modules M € mod a(d) in the
Zariski topology. The following facts are well-known (see [17], [18]).
Lemma 3.1. Let M be a module in mod4(d). Then
(i) O(M) is a union of G(d)-orbits.
(ii) O(M) is open in O(M).
(iii) O(M)\ O(M) is a union of G(d)-orbits of smaller dimension than O(M).

(iv) O(M) contains ezactly one orbit of minimal dimension (closed orbit) given
by the semisimple A-module with dimension-vector equal dim M.

Let 1 = e; + ... + e, be the decomposition of the identity of A into a sum
of primitive orthogonal idempotents, d = (d,,... ,d,) € N* be a dimension-vector
andd =d, +...4d;,. Foreach 1 <i < n, denote by E; the matrix of the projection

K= éK"" — K%,

=1

Then we may consider the affine subvariety
mods(d) = {M € mod4(d) | M(e;) = E; forall 1 < i < n}

of moda(d). Moreover, the affine algebraic subgroup G(d) = [Ti, Gl (K) of
G(d) = Gl4(K) acts on mod 4(d) by conjugation. We have the following facts.

Lemma 3.2. Let M and N be two modules in mods(d). Then
(i) M =~ N if and only if G(d)M = G(d)N.
(i) N € O(M) = G(d)M in moda(d) if and only if N € G(d)M in mod 4(d).
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In this setting a number of interesting questions arises very naturally: what
are the irreducible components, orbits closures and singularities in the varieties
mod 4(d) (respectively, mod4(d)). It is known that all varieties mod(d), d > 1,
are nonsingular if and only if A a hereditary algebra. Moreover, the following known
facts show a connection between homological and geometric properties of modules.

Theorem 3.4. Let M be a module in mod4(d). Then
(i) If ExtL(M,M) = 0 then O(M) is an open subset of moda(d) and its
closure O(M) is an irreducible component of mod(d).
(ii) If Ext3(M, M) =0 then M is a nonsingular point of mod,(d).

4. Degenerations of modules

One of the important problems in the geometric classification of finite dimen-
sional modules is to study their degenerations. For M, N € mod.(d), we say that
N is a degeneration of M if N belongs to the closure O(M) of O(M) in mod 4(d),
and we denote that fact by M <geg IV, and not by N <qeg M as one might expect.
Then <4eg is a partial order on the set of G(d)-orbits in mod(d) (equivalently,
the set of isomorphism classes of d-dimensional A-modules). We have the following
fact.

Lemma 4.1. Let M,N € mod,(d). Then M <geg N if and only if there is an
affine variety Z and a (regular) morphism p : Z — mod o(d) suck that pu(z) =~ M
for some open and dense subset U of Z, and u(z') =~ N for a point 2’ € Z.

Proof. Assume M <geg N. Then we may take Z = O(M) and p : Z — mod 4(d)
the canonical embedding. We know by Lemma 3.1 that U = OQ(M) is an open
dense subset of Z = O(M). Clearly, M =~ Z for any Z € O(M) and N € O(M) by
our assumption. Conversely, assume that there are an affine variety Z, a morphism
g : Z — mods(d), and an open dense subset U of Z such that p(z) =~ M for
any z € U and p(2') >~ N for some point z' € Z. Then p(U) € O(M), and
Z =T = p~Y(O(M)). Hence, N = p(2') € O(M), and therefore M <goq N.

A classical example of degenerations is provided by filtrations of modules. For a
filtration
F:M=M2OM2O...O2M, DM, =0

of an A-module M we denote by gr (M) the associated graded A-module
P Mi/M;y,y.
i=1

Moreover, for a one-parameter subgroup x : K* — (G(d) and modules M,N €
mod 4(d), we write lim¢—p x(t) * M = N if the regular map ¢ : K* — moda(d)

=115—



which assigns to each t € K* = K \ {0} the point x(t) *+ M € moda(d) has an
extension to a regular map % : X — mod4(d) and N = p(0). We have then the
following classical fact (see [18]).

Theorem 4.2. Let M,N € mod(d). Then M has a filtration F : M = M 2
My D ...2 My, 2 Mgy, = 0 with gr p(M) ~ N if and only if there ezxists a
one-parameter subgroup x : K* — G(d) such that limy_o x(t)» M = N.

As a direct consequence of Lemma 4.1 and Theorem 4.2 we get the following

Corollary 4.3. Let F: M =Mg D M; 2... 2 M, 2 M4y =0 be a filtration
of a module M € moda(d). Then M <geg gr F(M).

In particular, if 0 X - M — Y — 0 is an exact sequence of A-modules, then
we conclude that M <ges X DY

The geometric structure of the modules over the truncated polynomial algebra
A = KJz}/(z™) has been completely analyzed. In this case, mod4(d) consists of
dxd matrices M with M™ = 0. In particular we know from the resutts by H. Kraft-
C. Procesi [19] (characteristic 0) and S. Donkin [12] (positive characteristic) that the
orbit closures are normal varieties. Moreover, we know the following fact (see [18]).

Theorem 4.4. Let A = K[z]/(z™) and M,N € moda(d). Then M <4eg N if
and only if tk(M?) > tk(N?) for alli, 1 <i <m.

It is not clear how to characterize the partial order <4eg on the isomorphism
classes of d-dimensional modules in terms of the representation theory. There has
been an important work by S. Abeasis and A. del Fra (1], K. Bongartz [8], [10]
and C. Riedtmann [25] connecting <geg With other partial orders <exy, <vire and

< on the isomorphism classes of modules in mod 4(d) which are defined in terms of
representation theory as follows:

o M <ot N : & there are modules M;, U;, V; and short exact sequences
0-U; - M; - V; > 0in mod A such that M = M;, M;y, = U;®V,,
1<i<s,and N = M, for some natural number s.

o M <Zyin N: & M®X <geg N ® X for some A-module X.

e M <N:& [X,M] <[X,N] holds for all modules X in mod A.

Here and later on we abbreviate dimgHom4(X,Y) by [X,Y]. The fact that <
is a partial order on the isomorphism classes of modules follows from a result of
M. Auslander [4]. We have also the following related facts.

Lemma 4.5. Let M, N € mods(d). If M < N then dim M = dim N.

Proof. We know that dim M = ([P;, M]),<icn and dim N = (|P;, N])1<i<n, where
Py,..., Py is a complete set of pairwise nonisomorphic indecomposable projective
A-modules. Then M < N implies dim M < dim N. But since dimxgM = d =
dimg N, we get dim M = dim N.
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Lemma 4.6. Let M,N € moda(d). Then M < N if and only if [M, X] <
[N, X] holds for all modules X in mod A.

Proof. First observe that if [M, X] £ [N, X] holds for all modules X in mod 4 then
dim M = ([M, L])icicn £ ([N, ])1<cicn =dim N

where I;, 1 £ i € n, is a complete set of pairwise nonisomorphic indecomposable
injective A-modules, and consequently dim M = dim N. Hence, we may assume
that dim M = dim N. But then, for X an indecomposable nonprojective A-module
and Y an indecomposable injective A-module Y, we have the following Auslander-
Reiten formulas [5):

[X!M] - [M,DTI‘X] = [XvN] - [N,DTI‘X],
[M,Y] - [Tt DY, M] = [N,Y] - [Tx DY, N].
Then the required equivalence follows.
The following result (see [10], [25]) is remarkable for our investigations.

Theorem 4.7. For M,N € moda(d) the following implications hold:
MSEX‘N=>M5degN=>MSvirtN:MSN.

Unfortunately, the reverse implications are not true in general, and it is interest-
ing to find out when they are. This is the case for all modules over the truncated
polynomial algebra K[X]/(z™). The following example shows that <exi and <geg
do not coincide even for modules over very simple representation-finite algebras.

Example 4.8. Let Q be the quiver
8

1 2
_C.>a

KQ the path algebra of Q and A = KQ/(a?). Then A is a 5-dimensional algebra
and mod A is equivalent to the category of finite-dimensional K-representations

Vli'vz
O

of Q satisfying the condition f2 = 0. It is not difficult to show that ind A has only
7 pairwise nonisomorphic objects, and hence A is representation-finite. Consider
the A-modules
1
(o]

M: K——K?

Ofss]
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0
H
N : K——K?
00
| Ol
Then M and N are nonisomorphic indecomposable A-modules of dimension 3. Let
¢ : K — mod4(3) be the regular map given by

A
r(X) : KlivK2
00
Ol
for all A € K. It is easy to check that u()\) ~ M for all A € K* = K \ {0}. Clearly,

1(0) = N. Applying now Lemma 4.1 we get M <geg N. On the other hand, since
N is indecomposable, we have M e N.

Example 4.9. Let @ be the quiver

a v
1—/—/—2—3
o

and A the bound quiver algebra KQ/(ca,vB,ya — o). Then A is a tame algebra
with p4(d) < 2 for all d > 1. Consider the following indecomposable A-modules

B no
K—— K? » K

P: .
e

1
U»: 0 KK
A

WiK__—_—K—0
1

for A € K. Observe that P is an indecomposable projective module P, and Uy, Vi
are homogeneous modules over the corresponding Kronecker algebras. Then one
can prove that for A, x € K the following facts hold:

P <gggUndVyeoAd=p
P <inUx®V, forall \p.

Hence, for A =0, p2 =1 we have P <.is Up & V; but P £geg Up ® V3.

The property M <,in N is called in [25] a virtual degeneration. Observe that
if M <yinn N & M <4eg N then we have a cancelation property of degenerations.
The above example shows that in general it is not the case. But we have the
following important result due to C. Riedtmann [25).
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Proposition 4.10. Let M, N, Z be modules in mod A. Then

(i) If there is an exzact sequence0 - Z - Z® M — N — 0 then M <geg N.
(ii) If there is an ezact sequence 0 = N - M @ Z — Z — 0 then M <geg N.

In [25] C. Riedtmann proved also the following theorem.

Theorem 4.11. Let A be a representation-finite algebra, d > 1, end M,N €
moda(d). Then M < N = M <un N.

It is still an open question whether, for a representation-finite algebra A, the
partiall orders <4eg and < (equivalently, <geg and <,ir) coincide. From Exam-
ple 4.9 we know that it is not the case for representation-infinite (tame) algebras.
But we have the following positive result proved by K. Bongartz (8], [10].

Theorem 4.12. Let A be the peth algebra KQ of a Dynkin quiver Q (of type
An, Dy, Eg, By or Eg). Then the partial orders <exi, <deg, Svirt, < coincide in
each variety mod 4(d).

In [9] K. Bongartz proved also the following fact.

Theorem 4.13. Let A be the path algebra KQ of an eztended Dynkin quiver Q
(of type A,, Dy, K¢, Er or IEg). Then the partial orders <geg, Svirt, < coincide in
each variety mod (d).

Recently (after Symposium at Kashikojima) my student G. Zwara has proved
(see [39]) the following fact which completes the above theorem.

Theorem 4.14. Let A be the path algebra KQ of an extended Dynkin quiver Q.
Then the partial orders <exi and <geg coincide in each variety mod 4(d).

An algebra A is called biserial if the radical of any indecomposable nonuniserial
projective, left or right, A-module is a sum of two uniserial submodules whose
intersection is simple or zero. Note that the algebras condsidered in Examples 4.8
and 4.9 are biserial. We have the following result proved by G. Zwara in [38].

Theorem 4.15. Let A be a representation-finite biserial algebra. Then the par-
tial orders <gey and < coincide in each variety mods(d).

We refer also to [38] for a criterion when the partial orders <ex, and <geg coincide
for all modules over representation-finite biserial algebras. In particular, we have
from [38] the following interesting fact.

Theorem 4.16. Let A be a block of the group algebre K|[G] of a finite group G.
If A is representation-finite, then the partial orders <oxy, <deg, Svirt, < coincide
in each variety mod,(d).
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5. Degenerations in Auslander-Reiten components

In this section we are interested in the following problem. Let C be a (connected)
component in the Auslander-Reiten quiver I'4 of A. Denote by add(C) the additive
category of C, that is, the full subcategory of mod A formed by all modules which are
isomorphic to finite direct sums of modules from C. We may ask when M <geg N
for two modules M and N in add(C) of the same dimension. By Lemma 4.5 we may
assume that dim M = dim V. In order to discuss the above question it is convenient
to consider an additional partial order. For M, N € add(C) with dim M = dim N
we set

M<eN: & [X,M]<L[X,N] for all (indecomposable) modules X in C.

One can prove that M <¢ N if and only if [M, X] < [V, X] for all modules X
in C. Moreover, <¢ is a partial order on the set of isomorphism classes of mod-
ules in add(C) having the same dimension-vector (see [34]). We note also that by
Lemma 3.2 and 4.5 the study of degenerations of modules in mod 4(d) is equivalent
to that in the corresponding subvarieties mod 4(d), where d ranges all dimension-
vectors d = (d,... ,d,) with d) + ... + d,, = d. Observe also that

M<N=M<cN for M,N € add(C) n moda(d).

For the preprojective components and preinjective components we have the follow-
ing theorem proved by K. Bongartz [8].

Theorem 5.1. (i) Let P be a preprojective component of T 5. Then the partial
orders <et, Sdeg, Svire, <, <p coincide for all modules in add(P).

(ii) Let Q be a preinjective component of T' 4. Then the partial orders <ext, Sdeg,
<virty <, <@ coincide for all modules in add(Q).

Following [26] an algebra A is said to be representation-directed if [ 4 is finite
and directed. Clearly, then A is representation-finite and I 4 is both a preprojective
and preinjective component. We then have the following consequence of the above
theorem, which generalizes Theorem 4.13.

Theorem 5.2. Let A be a representation-directed algebra. Then the partial
orders <ext, Sdeg, Svirn 6nd < coincide for all A-modules.

An important future of the preprojective (respectively, preinjective) compo-
nents is that they consist of indecomposable modules not lying on oriented cycles
of nonzero nonisomorphisms between indecomposable modules {directing modules
[26]), and hence such modules are uniquely determined (up to isomorphism) by their
dimension-vectors. On the other hand, by an independent result due to L. Peng-
J. Xiao [24] and the author [29], the Auslander-Reiten quiver T4 of any algebra A
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has at most finitely many DTr-orbits containing directing modules. Hence, a real
problem is to study the degenerations of modules having nondirecting indecompos-
able direct summands. Examples of components containing many cycles are tubes
(see Section 1). In recent investigations of tame simply connected algebras appeared
a natural generalization of the notion of tube called coil, introduced by 1. Assem
and the author in [2], [3]. Roughly speaking a coil is a translation quiver whose
underlying topological space, modulo projective-injective vertices, is homeomorphic
to a crawned cylinder. Special types of coils are quasi-tubes [27] whose underlying
topological space, modulo projective-injective vertices, is homeomorphic to a tube.
It is shown that coils can be obtained from stable tubes by a sequence of admissible
operations. Moreover, it was shown by the author in (32] (compare Theorem 2.5)
that a strongly simply connected algebra A is of polynomial growth if and only if
every nondirecting indecomposable A-module lies in a coil of a standard multicoil
of I'y. We note also that quasi-tubes frequently appear in the Auslander-Reiten
quivers of selfinjective algebras. For such components we have the following fact
proved by the author and G. Zwara in [34].

Theorem 5.3. Let C be a generclized standard quasi-tube of an Auslender-
Reiten quiver T 4. Then the partial orders <exi, <deg, Svirt, < and <¢ coincide for
all modules in add(C).

If C is a generalized standard coil of 'y which is not a quasi-tube then there
exist in € (indecomposable) modules M and N such that dimM = dim N and
M <geg N, and clearly M Zexe N. But we have still the following fact proved by
G. Zwara [37].

Theorem 5.4. Let C be a generalized standard coil of an Auslender-Reiten
quiver 4. Then the partial orders <qeg, Svirt, <, <c¢ coincide for all modules
in add(C).

In general we have the following fact proved by G. Zwara in [37], which generalizes
Theorem 4.11.

Theorem 5.5. LetC be an arbitrary generalized standard component of en Aus-
lander-Reiten quiver. Then the partial orders <in, < and <¢ coincide for all
modules in add(C).

6. Degenerations to indecomposable modules

In this section we are interested in the problem when there exists in mod(d)
a proper degeneration M <geg N with N indecomposable. Observe that in such
a case M £, N. Example 4.8 shows that there are proper degenerations to
indecomposable modules over very simple representation-finite algebras. Consider
an another example.
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Example 6.1. Let A = KQ/I where Q is the quiver

and I is the ideal in the path algebra KQ of Q generated by vBa. Observe that A is
a one-point extension of the hereditary algebra H = KA, where A is the extended
Dynkin quiver of type Dg given by the vertices 1,2,...,7, by an indecomposable
regular H-modules of regular length 2. Hence A is a tame but nonpolynomial
growth algebra. It has been proved in [35] that for any positive integer 7 > 2 there
exist exact sequences

0= N - NdMyy =M -0

1<t<r-1,in mod A, where Ny,... ,Nr_y,M,..., M, are pairwise noniso-
morphic indecomposable A-modules (even lying in one component of I'4). Then,
applying Proposition 4.10, we get a sequence of degenerations

A’[r <deg Mr—l <deg o <deg M2 <deg Ml
in mod 4(d), where d = dimg M;. Therefore, we have arbitrary long sequences of
proper degenerations of indecomposable A-modules.

In the remaining part of this article we shall present some results proved in
the joint work with G. Zwara [35), which show a strong relationship between the
considered problem and the representation type of an algebra.

Applying the above example, Theorem 2.1 and Proposition 4.10, one may prove
the following fact.

Theorem 6.2. Let A be an algebra. Assume there is an integer m such that for
any sequence

Mr <deg M, <deg oos Zdeg M2 <deg M,
with My,... ,M, € ind A, the inequality r < m holds. Then A is tame.
As a direct consequence we get the following

Corollary 6.3. Let A be an algebra. Assume that, for any proper degeneration
M <4eg N of A-modules, the module N is decomposable. Then A is tame.

The following theorem shows that we may characterize the tame quasitilted
algebras completely in terms of degenerations of modules.
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Theorem 6.4. Let A be a quasitilted algebra. Then A is tame if and only if for
any proper degeneration M <4y N of A-modules the module N is decomposable.

Proof. One implication follows from the above corollary. Assume A is tame. Let
M <g4eg N be a proper degeneration in a variety mod(d). Suppose N is inde-
composable. Let C be a component of 'y containing N. Further, take an inde-
composable direct summand X of M. Since M <geg N implies M < N, we get
0 # [X,M] < [X,N] and 0 # [M,X] < [N,X]. Hence [X,N] # 0 # [N, X].
Moreover, X is not isomorphic to N because dimg M = d =dimg N, X is a direct
summand of M and M <geg N. Now it follows from Theorem 2.4 that the compo-
nent quiver X4 of A is directed, and moreover any component of I' 4 containing an
oriented cycle is a ray or coray tube. Therefore, we deduce X € C, and hence C is
a tube, Clearly, then M € add(C). Since C is a generalized standard tube (hence a
quasi-tube) we infer by Theorem 5.3 that M <g4eg N implies M <qx N. But then
N is decomposable, a contradiction.

We shall note that for arbitrary tame quasitilted algebras the partial orders <ex
and <g4eg do not coincide (see Example 4.9).

Applying Theorem 2.5 we proved in [35] the following characterization of poly-
nomial growth strongly simply connected algebras.

Theorem 6.5. Let A be a strongly simply connected algebra. The following
conditions are egiuvalent:
(i) A is of polynomial growth.
(i) For A-modules M, M', N such that M <geg N, M’ <geg N and N is
indecomposable, M ~ M' and is indecomposable.
(ii) There ezists an integer m such that for any sequence

Mr <deg Mr—l <deg .- <deg M2 <deg Ml
with My, ... , M, indecomposable A-modules, the inequality v < m holds.

Observe that the condition (ii) means that for any indecomposable A-module N
over a polynomial growth strongly simply connected algebra A we have at most
one proper degeneration M <ge; N, and, in such a case, the module M is also
indecomposable. In fact we proved in [35] that all indecomposable degenerations
are given by the Riedtmann’s Proposition 4.10.

Theorem 6.6. Let A be a strongly simply connected algebra of polynomial
growth, and M, N be two indecomposable A-modules. The following conditions
are equivelent:

(i) M <aeg N.
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(i) There exists a nonsplittadle short exact sequence of A-modules
0-Z—-ZoM-N—-0

with Z indecomposable.
(iii) There ezists a nonsplittable short ezact sequence of A-modules

0O N-MOZ—-2-0

with Z indecomposable.

We end the article with the following consequence of Theorems 2.5, 6.5 and 6.6.

Corollary 6.7. Let A be an algebra whose ordinary quiver is a tree. Then A

is of polynomial growth if and only if for any proper degeneration M <geg N of
A-modules, the module N is decomposable.

Finally, Example 6.1 shows that there are tame algebras with ordinary quiver a

tree having many proper degenerations of indecomposable modules.
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ON GENERALIZED DIMENSION SUBGROUUPS

KEN-ICHI TAHARA, L.R. VERMANI and ATUL RAZDAN

Abstract

This is a summary of the general Fox problem and the generalized dimension
subgroup problem centering around our joint paper [10]. Let G be any group,
and H be a normal subgroup of G. Then Hartl identified the subgroup G N
(14 &3(G) + A(G)A(H)) of G. In [10], we give an independent proof of the
result of Hartl, and we identify two subgroups G N (1 + A(H)A(G)A(H) +
A([H,G))A(H)), G (1 + A% (G)A(H) + A(K)A(H)) of G for some subgroup
K of G containing [N, G].

CGRIHEL, ZCEBHRZLOBGCOMBELAG) =<g—-1|1#g€CG >z
% ZG OFMA FTNETE. ZDEE, (AG)" = A™G) LS
Da(G)=GN(1+A™(G)={g€C|g—-1€ A G)}n21

ZCDEn REVABELD. ZOLE, S, Da(G) 2 7(G) 2KH LD, X
FTHABMBEEE (D,(G) OWMBERET I L] ThHhb. ZOMEIZHMLTIE, %
n > 4iIZHUT exp(Da(G)/70(G)) = 2 E1LBH G IFET B EXUMHIITE
. £/ ezp(Dn(G)/7a(G)) & 1 F2{2 2 THE I ETFHINB I &0 5, BEN
ETRROEGOoNhEITHS.

ZIT, TORTHABUMEL —RILTIZEEEXS.

1. —4% Fox RSZ8

—8 Fox BB &1, G B H IZoWT GN(1 +AG)A(H)) DM ERETSE 2 &
ThH5. COMEITHLT, RESZ TIPSR TOBERIIKOEY TH3.

1) Bergman-Dicks (1975): $RASEKILT 5.
G A1+ AG)AH) = va(H) = H".

2) K. Khambadkone (1985)[5], Vermani-Razdan-Karan (1985)[11): H 4> L4%F
BISBEIT, G (1+ A2(G)A(H)), G N (1 + AXG)A(H)) E&p-.

3) Narain Gupta (1987)[1]: FREHN, RE FOEREAIBRLTILE

FA(l+A"F)AR) = VG, R), n> 1

TH3. 122U, G(n, R) =< [Iyim)[Ress Rzs - Re ] 12EmSn-1> &L,
R‘ =Rn7l(F)1t(m)=(tl|t2|"'|tm)y L >05 t|+t2+"'+t:‘,+"'+tm Zﬂ(l S
i<m) &T35.

This paper is in final form and no version of it will be submitted for publication elsewhere
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4) Curzio-C.K.Gupta (1995) [1]: &RASEKILT 3.
GN(l+ AYG)A(H)) = Kg(H)ys(H)[HNG', H NG
721U, Kg(HY &, HDH 3 EHBTH 3.

5) Tahara-Vermani-Razdan [10): H & USBRISIEIC, G N (1 + A%(G)A(H))
ZRPTNEICL.

2. —AESINTRTER S B

—RLE NIRRT BME 3G H, n>3is8LT GN(l+AMG) +
A(G)A(H)) Dhl kB T2 2 &THD. ZOMERI-DULT Karan-Vermani (1988)
3G=H-K, HOK C((G) (G DH») &4 3 L% GN(1+ A¥G) + AG)A(H))
D% KT [4].

IITRn=3D&E B GCO—WRMOERWH H IZH LT, —fFiLEhizkx
BaBoMEe kD5, €OLDHII ETHRNT F EEDERMLB R ICO>WHWTEE
1 2EEAT 3.

SEE A (Hartl, Tahara-Vermani-Razdan). G %8, H #EBOESRBHRETIEE

GN (1 +A%G) + AG)AH))
= 13(G)<[z™y] | HE2m> 1 FEELT ™,y € HG' (z,y €G) >

THB.
EE 1. FrEMl, R FOERBOMETIES
Fn(1+ A¥F)+ A(F)A(R))
= BF)<[Z™y] | HE2m210FELT2™,y™ € RF' (z,ye F) >
TH3.

M HB m>1ITHLT 2™, y" € RF' (z,y € F) LB [z™,y) 2% U &b
(. E-EHhm# F o aHEE%: {z,,22,---,2,} &L,

R =< xilflr't;:fz: e :J-':rfr,fr-i-l,' cc >P

ETB.ZZT,elezx] - v,ep> 0,6, € F & TEB.
T, 13(F)U C FN(1+A3F) + A(F)A(R)) 277, U OEZOERT [z, 1)
Iz T

[=™,y] - 1 {(z" = 1)(y-1)—(y—1)(=™ - 1)} (mod A3(F))

{-DE™ =)= (y-1)E"-1)} (mod AXF))

RO IS, 22T, (2= 1)(y™ = 1) = (y—1)(z™ - 1) € A(F)A(RF') C A(F)A(R)+
A3F) THBDS

[z™,y] € FN(1 + A3F) + A(F)A(R))
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PERILTBDT, UC FN(l+A3F)+ A(F)A(R) THB. Licdi-T yn(F)UC
FN(l+A3F)+ A(F)A(R)) #1853,
DFZ, FN (1 + A%F) + A(F)A(R)) C wa(F)U #7%. Fn(l+ A¥F) +
A(F)A(R)) OE#OTTE w &4 3 &
w € FN(1+ A3F)+ A(F)A(R)) C [F, R]va(F)
THB. Z-T
[F.R] =< [z8€i, 250, [ ze] 1 1 < i jk < mr+1<g>F
THEIDPOROR %S,

w = [z TTlee, o1 (mod v3(F)), (aij, b € Z)
i<y q<k

r-1
H H[xz,.,z'_]an.(e-/en)"'-* (mod v3(F))

k=1k<i

r—1
[Tz, TT 707 (mod ya(F)).

k=1 k<i

SIT sp(w) = [Tees =™ desfen)=bix pisidfw= [Tizilz*, sk(w)] (mod ya(F)) &
BDT, 2+ € RF' E@F UL

sp(w)* €RF (1<k<r-1)
ERBE IO EDIE. &EIAT
w = [LiZi[=5*, sk(w)] (mod 13(F))
)
w-1 =TLIH(E - D(se(w) = 1) = (si(w) — 1)(z5* = 1)} (mod AX(F)
THY. 51T (se(w) — 1)z — 1) € A(F)A(RF') C A(F)A(R) + A3(F) &b

E{(z — 1)(sk(w) — 1) (mod A3(F) + A(F)A(R))

w-—1

E(xk ~ 1)(se(w)* = 1) (mod A3(F) + A(F)A(R))

EWBB. Lictt-T, Tiol(zel — D(se(w)™ - 1) € AYF) + A(F)AR) TH5. &
DEX, 2y - 1(1<k < 7) IREMEETHE05 A
si(w)™ —1€ AXF)+ ZFAR) = AXF)+ A(R), 1 <k <r—1

LD, kT se(w)* € FN(1+A2(F)+ A(R)) € RF '3 5h 3.
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PLEtnd, U ORBICED [z, su(w)] €U &#D, k-T

r-1

w= H[::;",sk(w)] € va(F)U
k=1

ARKILTBDT,

FO(1+ 8%(F) + A(F)A(R) € 1s(F)U
35, N LTREBS.
FO(1+83F) + AF)A(R) = 1a(F)U. O

FHAXNBTEIEICE>TRDOEEB%:# 5.

EIE B. G OESBAB HAHLT

GN(1+ AH)A(G)A(H) + A([H,G)A(H))
= m(H)<[z"y] | HEm>IHEELT™,y" € [H,G] (z,y€ H) >

TH3.
G b H &LARLTELT
l1—H—G-—=G/H—1

XL,  OYIE% p: G/H — G E4hid, G/ HOEEDE a, B 1250T, H 3 w(a, f)
PEELT p(a)p(B8) = plaf)w(a, B) D IUD. TDEE K =< [H,G|,w(a, B) |
a,B€G/H > EBFIETRIBONS.

TR C. G OEMMBHAR H it T

G N (1+AXG)A(H) + AK)A(H))
= 13(H)<[z™,y] | HEm > 1 BFELT 2™, y" €K (z,y€ H) >

TH5.
FECOHRLELT, B8 H HRJEBEICRDOED, EX185.
#D.GPHuwapf)e HNG (o, € G/H) &THiE

GN(1+A%G)A(H))
= 1H)<[z™y|BEm>1PEFELT",y" € HNG (z,y€ H) >

TH5.
RE. G=H-KCHNnG &+hi&

GN (1 + A%(G)A(H))
= 71(H)<[z™ 9] | HEm > I BFEELT ", y" € HNG (z,y€ H) >
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TH3.

rORIMWULT, BRIEER HG /G —G/G' — G/HG B3R THIEHR E Ht
BRM$T3. 2O UETIAELT, ROWThhSERIIThiSL.

l. G/HINART—_NVTH 5,
2. HGIiTHOTTRTSH B,
3 HNGITBWTHET 5.

#-T, 01,2 T3 OB/AIT K E RT3 &40 3.
# D, E O#R> S, —SROERBHRIZONT n =2 OBAICH 3 FEIMESH
5. RBICENER[ALES.

FHF BG, 2OERBAIE HIZOWTRMEERILTS.

GN(1+ AXG)A(H))
= 1(H)<[z"y]|552m> 1 BEELT",y" € HNG' (z,ye H) > .
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V-RING THEOREM RELATIVE TO
HEREDITARY TORSION THEORIES

TsubpA KENTARO

ABSTRACT AND INTRODUCTION

V-rings and their generalizations have been studied by many authors. Recently C.
Faith and P. Menal [2] gave a duality theorem for semisimple right R-modules, so
called V-Ring Theorem, which characterizes V-rings. In this paper, we will inves-
tigate relative V-Ring Theorem to hereditary torsion theories, using known results.
Throughout this paper, R denotes a ring with unit, every right R-module is unital,
and Mod — R denotes the category of right R-modules. For a right R-module M,
rad(M) and soc(M) will denote the Jacobson radical of M and the socle of M, respec-
tively. In particular J denotes rad(R). E(M) and Z(M) will denote the injective hull
of M and the singular submodule of M, respectively. G. Michler and O. Villamayor
(6] showed that every simple right R-module is injective if and only if every right ideal
of R is an intersection of maximal right ideals, or equivalently the Jacobson radical
of any right R-module is zero. If a ring R satisfies these equivalent conditions, R is
called a right V-ring. B. Johns showed that if a right Noetherian ring R in which
every right ideal is a right annihilator ideal, 1then rg(J) = soc(M) = {p(J), where
rr(S) (resp. {r(S)) denotes the right annihilator ideal (resp. left annihilator ideal) of
a subset S of R in R, (see [4]). C. Faith and P. Menal called such a right Noetherian
ring a right Johns ring, and showed that rg(soc(M)) = J = Ig(soc(M)), (see [3]).
C. Faith and P. Menal proved that a ring R is a right V-ring if and only if there
exists some semisimple right R-module M satisfying the double annihilator condition
with respect to right ideals, that is I = rpiy(I) for any right ideal I of R, where
Iu(S)={m e M | mS =0} and rg(S) = {r € R | Sr = 0}. This characterization
of a right V-ring is called V-Ring Theorem. C. Faith and P. Menal showed that if a
ring R is a right Johns ring, then I/J = rp;sl,oc(rp)(1/J) for every right ideal 7/J
of R/J,i.e. R/J is aright V-ring by V-Ring Theorem. V-rings relative to hereditary
torsion theories were introduced and studied by Y. Takehana in [9], and V-rings rela-
tive to stable torsion theories were studied by K. Varadarajan in [7]. We will establish
V-Ring Theorem relative to hereditary torsion theories.

1. A NOTE ON V(§)-RINGS

For fundamental definitions and results related to torsion theories, we refer to ([5]).
A family § of right ideals of R is called a right Gabriel topology if § satisfies following

The final version of this paper will be submitted for publication elsewhere.
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axioms:

(Al)IfI€ Fand any a € R, then (I : a) € §, where (I :a)={r€R| rael};

(A2) If I is right ideal and there exists J € § such that (I : a) € § for everya € J,
then I € §.

It is well known that a right Gabriel topology §J is a filter, i.e. satisfies:

(A3)If JeFand J C I, then I € §;

(Ad)If I and J in §,then INJ € §.

Let § be a nonempty right Gabriel topology. The hereditary torsion class of Mod—
R associated with § is defined by setting C(F) = {M € Mod—R | rp(z) € § forall x €
M}. And for a hereditary torsion class C, the right Gabriel topology associated with
C is defined by setting F(C) = {I right ideal | R/I € C}. It is well known that
there is one to one corespondence hetween hereditary torsion theories (classes) and
right Gabriel topologies (i.e. C(F(C)) = C and F(C(F)) = §)- Any right R-module in
C(%) is called a torsion right R-module. A right R-module M is called §-injective, if
Hompg(—, M) preserves the exact sequence of the following form:

0—I—R— R/l —0 with I€§.

A submodule L of M is called an §-submodule, if (L : z) € §, for all z € M. We
denote by F(M) the family of all F-submodules of M. And we note that L is an
§-submodule if and only if M/L is a torsion right R-module in C(F). Let E be a right
R-module. If there is a monomorphism 0 — M — E such that E is §-injective and
M € J(E), then E is called an §-injective hull of M, which is denoted by Ez(M).
Furthermore E3(M) = {z € E(M) | (M : z) € §} is unique up to isomorphism.

We need the next lemma.

Lemma 1.1, Lel § be a nonemply righl Gabriel topology and let C = C(F) be e
hereditary torsion class of Mod — R associaled with §. And lel C be a right R-module.
Then the following conditions are equivaleni.

(1) C cogenerales each right R-module in C.
(2) For each simple right R-module S in C, C conlains a copy of E3(S).

Proof. (1)= (2). Let S be a torsion simple right R-module. Since E3(S) € C,

Therefore there is a set Y such that 0 — E3(S) ER CY. Let p; : C¥Y — C be the
natural projection for each i € Y. But since S is an essential right F-submodule of
E3(S), there exists i € Y such that ker(p;f) = 0. Therfore C contains a copy of
E3(S).

(2)=(1). Let M be a torsion right R-module and let m be a nonzero element
of M. Then we have mR = R/rr(m). Since rg(m) is a proper right idealof R,
there exists a maximal right ideal L of R in § such that rg(m) C L. Hence if
we set S = R/L, mR has the torsion simple homomorphic image S. Since E3(S)
is §-injective and mR € F(M), Proposition 6.2.in [S] implies that there exists an
f € Homp(M, E3(S)) with f(m) # 0. But since E5(S) C C by (ii), C cogenerates
M. O

Let {Si}ica be a complete isomorphic set of simple right R-modules in C = C(§),
Yiea ®E5(S;) (resp. [[;c 4 E5(S:)) denotes the direct sum (resp. direct product) of
each Eg(S;) (i € A). By Lemma 1.1, we see that 3, . ®E5(S;) and [[; 4 E5(Si)
cogenerates any torsion right R-module in € = C(F).
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Proposition 1.2. Let § be a nonemply right Gabriel topology and let C = C(F) be
a hereditary torsion class of Mod — R associated with §. Then the following are
equivalent:

(1) Every torsion simple right R-module in C is F-injective.

(2) rad(M) =0 for any torsion right R-module M in C.

(3) rad(E3(S)) =0 for any lorsion simple right R-module S in C.

(4) For M € Mod — R and every submodule N of M with M/N € C, N is an
inlersection of mazimal submodules of M, equivalently, red(M/N) = 0.

(5) Every right ideal I in § is an infersection of mazimal right ideals.

Proof. (1)=>(2) and (5)=>(1) are similarly proved as in the proof of Theorem 2 in
(9D). (2)=(3). 1t is obvious.

(3)=>(1). We show that E3(.S) = § for each simple right R-module S in C. Suppose
that E3(S) is not equal to S. We may assume that each L which is a maximal
submodule of E3(S) is non-zero. But since S is an essential J-submodule of E3(S),
we have S C L. Hence S C rad(E3(S)). This is a contradiction. (1)=>(4). Since
[Tic4 E5(S:) cogenerates any torsion right R-module in C and each E3(S;) is simple,
it is clear that rad(M/N) = 0. (4)=>(5). If we set M = R in (4), we have (5). O

Y. Takehana [9], a ring satisfing the equivalence conditions (1),(2), and (5) of the
preceding proposition is called a V{(C(F))-ring. A ring R in which any simple right
R-module is either injective or projective is called a GV-ring, (see [8]). Let T be
a hereditary torsion class in Mod — R. K. Varadarajan (7], a right V(7 )-rings are
studied for stable torsion classes 7 (i.e. 7 is closed under taking injective hull). Asa
special case of this setting, K. Varadarajan proved that if 7 is a Goldie torsion class (it
is well known that Goldie torsion theory is a stable torsion theory.), the V(7 )-ring is
just a GV-ring. In this paper, we start with right Gabriel topologies coresponding to
hereditary torsion theories. Therefore we call a right V(C({))-ring a right V(§)-ring.

2. V-RING THEOREM RELATIVE TO HEREDITARY TORSION THEORIES

We need the following notations. Let M, N be a right R-modules, and § =
Homp(M, N). For each subset X of M and each subset Z of S, we shall define the
left annihilator of X in S, I5(X)={f € S| f(z) = 0 for all z € X} and the right
annihilator of Z in M, rp(Z) = {z € M | f(z) =0 for all f € Z}. We note that

Is(X)={f €S| X Cker(f)}, rm(Z)=0yezker(f)

The following proposition including its proof is a slight modification of Proposition

3.5 in ([1]).

Proposition 2.1. Let § be a nonempty right Gabriel topology and let C = C(J)
be the hereditary torsion class of Mod — R associated with §. Then a ring R is a
right V(F)-ring if and only if there ezisis a semisimple right R-module E such that
N = rpplpyg«(N) for M € Mod — R and every submodule N of M with M/N € C ,
where (=) = Hom(—, E).
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Proof. Sufficiency. It suffices to prove that for M € Mod — R and every submodule
N of M with M/N € C, N is an intersection of maximal submodules of M. The
assumption, N = raslys+(N) implies that

fiMIN — E'"®N) - m g N (f(m)) ety (v)-

is a well defined monomorphism. Since the M /N embeds the direct product of copies
of semisimple right R-module E, the proof of sufficiency is completes.

Necessity. Suppose that R is a right V(F)-ring. We note that S =) "._, ®E5(S;)
is semisimple and it cogenerates any torsion right R-module in C. We show that S
satisfies the double annihilator condition for M € Mod — R and every submodule N
of M with M/N € C. Hence there are some set Y and a monomorphism M/N — NY
, and so there exists a family (f;);ey with f; € M* such that N = Njcyker(f;). Then

N C rarlpg- (N) = Ngeyy,. (nyker(f) C Ny ker(fi) = N.
So N = rMIM-(N). O

Corollary 2.2. Lel § be a nonemply right Gabriel lopology and let C = C(F) be the
hereditary torsion class of Mod — R associaled with §. Then a ring R is a right
V(F)-ring if and only if there exists a semisimple right R-module E such that N =
rarlar«(N) for any lorsion right R-module M in C and every submodule N of M.

Corollary 2.3. Let § be a nonempty right Gabriel topology and let C = C(J) be the
hereditary torsion class of Mod — R associated with §. Then a ring R is a right
V(§)-ring if and only if there ezists a semisimple right R-module E such that N =
rey(5)Ey(5)- (N) for any torsion simple right R-module S in C and every submodule
N of Ex(S).

In Proposition2.1, if we take M = R, we have M" = Homg(R,U) = U. Therefore
we obtain the following.

Corollary 2.4, Let § be a nonemply right Gabricl topology and let C = C(F) be the
hereditary torsion class of Mod— R associated with 5. Then a ring R is a right V(F)-
ring if and only if there ezists a semisimple right R-module such that I = rplp(I)
for every right ideal I in §.

Remark 2.5. Let § be a nonempty right Gabriel topology, and let € = C(§F) be the
hereditary tosion class of Mod — R associated with F. If there exists a semisimple
right R-module W satisfies the double annihilator condition N = rg,s)lg,(s)(N)
for any torsion simple right R-module S in C and N is an every submodule of E3(S),
where E3(S)* = Homp(E£3(S), W). Then W cogenerates any torsion right R-module
in C.

Proof. Since R is a right V(J)-ring by Corollary 2.3, every torsion simple right R-
module S in C is F-injective. So it suffices show that W contains a copy of each S by
Lemma 1.1. If S* = 0, we have S = rgls.(0). This is a contradiction of 0 = rgls. (0).
Therefore since S is simple, W contains a copy of S. O

Then the following corollary which is almost actually due to C. Faith and P. Menal
(Corllary [2]).
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Remark 2.6. Let § be a nonempty right Gabriel topology and let C = C(F) be the
hereditary tosion class of Mod — R associated with §. If there exists a semisimple
right R-module W satisfying the double annililator condition I = rglw (I) for every
I €. Then W cogenerates any torsion right R-module in C.

Proof. Since R is a right V' (J)-ring by Corollary 2.4, every simple right R-module S in
C is F-injective. So it sufficies to show that W contains a copy of each S by Lemma 1.1.
But, since S = R/M where M is a maximal right ideal in §, we have M = rgplw (M).
Since M is maximal, there exists w € W such that M = anng(w). Hence wR= V.
Thus we obtain a monomorphism 0 — S — W. Clearly W cogenerates any torsion
right R-module in C. O

For a right V(§)-rings, by the preceding corollaries and remarks, we easily obtain a
duality theorem for semisimple right R-modules.

Theorem 2.7. Let § be a nonemply right Gabriel topology and let C = C(F) be the
hereditary torsion class of Mod— R associated with §. Then a ring R is a right V(J)-
ring if and only if there exists a semisimple right R-module E such that E satisfies
the following equivalent condilions, where (=) = Homp(—, E)

(1) N =rgy(s)leg(s)-(N), for any torsion simple right R-module in C and every
submodule N of E(S).

(2) N = raplpar«(N), for any torsion right R-module M in C and every submodule
N of M.

(8) I =rglg(l), for cvery right ideal I in §.

We call this theorem, V' (J)-Ring Theorem.

Let £ be the family of essential right ideals of R, and Fg = {I | there exists J €
& such that I C J and (I : ¢) € £ for all a € J}. Jg is called the Goldie topology.
And G = Z, defined Zo(M)/Z(M) = Z(M/Z(M)) for any right R-module M is
called the Goldie exact radical coresponding to F. In this situation, it is well known
that C(Fg) = {M | rr(z) €Fg forall z € M} = {M | G(M) = M}. Furthermore M
is -injective then M is injective, where M € C(Fg), and that M € §¢ if and only if
Z(M) is an essential right R-module in M. We apply Proposition 1.2 to the family
of right ideals §. Then a V(Fg)-ring is called a V(G)-ring. Recall the V(Fg)-ring
is just GV -ring (see [7]).

Corollary 2.8. Lel g be the Goldie topology. Then a ring R is a right GV -ring
if and only if there exists a semisimple right R-module E such that E salisfies the
following equivalent conditions.

(1) N = rgs)lesy(N), for any singular simple right R-module and every sub-
module N of E(S).

(2) N =ralpg«(N), for every submodule N of M with Z(M) essential submodule
of M.

(3) I =rplg(1), for every right ideal I in §¢.

We call this corollary, GV-Ring Theorem.
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FULLY PRIME RINGS AND RELATED RINGS

HIsAYA TsuTtsul

Introduction

A ring with the property that every ideal is prime is called a fully prime ring and the
structure of such rings and the structures of rings which are related to fully prime rings
were studied in Blair-Tsutsui [2] and Tsutsui [10]. It is well known that a commutative
fully prime ring is a field. Perhaps the most amusing and useful fact in investigating the
structure of fully prime rings is the following necessary and sufficient condition for a ring
to be fully prime: Every ideal is idempotent and the set of ideals is linearly ordered. It
should also be noted at this point that a fully prime ring is, in general, not even
semiprimitive,

Conditions similar to the fully prime condition have received attention in the literature.
R.C. Courter [4] and several other authors have studied those rings in which every ideal is
semiprime; K. Koh [8] studied those rings in which every right ideal is prime; and Y.
Hirano [7] studied rings in which every ideal is completely prime.

My talk at the symposium was solely contrived to introduce some basic structure theory
of fully prime rings, its goal being to find fellow ring theorists of similar interest. In this
proceeding, I shall summarize the essential contents of the two papers noted above with a
few additional examples and corollaries, and provide several open problems. Interested
readers’ success in solving those problems are sincerely hoped.

Throughout, a ring will mean an associative noncommutative ring. However, there are
several occasions where we will find it useful to consider ideals to be subrings and, for this
teason, we will not assume that our rings necessarily have a multiplicative identity
element.

Definitions. A ring in which every ideal is prime will be called a fully prime ring. A
ring all of whose nonzero proper ideals are prime will be called an almost fully prime
ring. A ring with involution (), satisfying the additional condition that every ()-ideal is
(»)-prime will be called a fully (»)-prime ring. A ring in which every ideal is idempotent
is called a fully idempotent ring.

The rcader should be wamed that some authors use the term fully idempotent to mean that
every right ideal is idempotent.

Though this article is in its final form, it is cssentially a summary of two papers, Blair-Tsutsui [2] and Tsutsui[10].
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Theorem 1. ( Theorem 1.2 of Blair-Tsutsui [2] and Theorem 3.1 of Tsutsui [10] )

A ring is fully prime if and only if it is fully idlempotent and the set of (two sided) ideals
is linearly ordered. A ring with an involution () is fully («)-prime if and only if every
(»)-idcal is idempotent and the set of ()-ideals is lincarly ordered.

An almost fully prime ring fails to be fully prime either because the set of ideals is not
linearly ordered or because not every ideal is idempotent. We consider each of these
possibilities in the following two thcorems. As a consequence of those thcorems, we note
that an almost fully prime ring which is not prime has minimal nonzero ideals.

Problem. Does a fully prime ring necessarily have a minimal nonzero ideal ?

Theorem 2. ( Theorem 2.1 of Tsutsui [10] ) Let R be a ring whosc set of ideals is not
linearly ordered. Then R is almost fully prime if and only if R is a fully idempotent ring
with exactly two minimal ideals and the set of ideals is linearly ordered cxcept the
minimal ideals.

Theorem 3. ( Theorem 2.2 of Tsutsui [10] ) Let R be a ring which is not prime and whose
set of ideals is linearly ordered. Then R is almost fully prime if and only if it has a
minimal nonzero ideal and every ideal of R except the minimal one is idempotent.

Remarks.

1. (Theorem 1.6 of Blair-Tsutsui [2]) A ring with identity is a division ring if and
only if it is fully right idempotent (every right ideal is idempotent) and the set of right
ideals is linearly ordered. If the ring is right Noetherian, then the condition ‘fully
right idempotent’ can be replaced by ‘fully idempotent’ since its Jacobson radical,
being an idempotent ideal, must be zero by Nakayama’s lemma.

2. (Hirano [7] ) A ringis completely fully prime (every ideal is completely prime) if
and only if < a? >=<a > for every element a in the ring and the set of ideals is
linearly ordered.

3. (Koh [8] ) A ring R with identity ( or with the property that every element a is in aR )
is simple if and only if every right ideal of R is prime.

4. Itis known that a prime right Goldie fully right idempotent ring is simple. On the
other hand, there is an example of a fully prime Noetherian ring which is not simple.
Thus every right ideal of a fully prime ring is not necessarily idempotent.

5. Every right ideal / of a fully idempotent ring (hence, in particular, a fully prime
ring) with identity has the property that /2 = I3, For any idempotent right

ideals / and J of a fully prime ring, either I/ =/ or JI =J, and every non-
idempotent right ideal is contained in the maximal (two sided) idecal.

Problem. A ring in which every ideal is idempotent have received attention in the
literature, as well as a ring all of whose right ideals are idempotent and a ring whose set of

right ideals is linearly ordered. What can we say about a ring whose set of (two sided)
ideals is linearly ordered ?
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Theorem 4. ( Theorem 1.3 of Blair-Tsutsui [2] ) The center of a fully prime ring is either a
field or zcro. The center is a field if and only if the ring has an identity element.

We now list several examples and constructions of fully prime rings.

1. Let V' be a right vector space over a division ring D. Then End,V is a fully prime

ring whose only nontrivial ideals are of the form {/ € End,|dim(/ (")) < Cj,
where C is any infinite cardinal number such that C < dim(l”). Denote the
cardinality of a denumerable set by N, and for any integer 7> 1, R, will denote
the smallest cardinal greater than R,_,. If dimpl’ =R, _,, then Endyl/ hasexactly
n nonzero proper ideals. This example can be extended to construct examples of
fully prime rings whose sets of ideals have infinite cardinality. For example,

if dimpl =N, , where aj is the first limit ordinal, then Endy} is a fully prime
ring with countably many ideals.

2. Any prime regular right self - injective ring with identity is a fully prime ring. In fact,
an idcal P of a regular right self - injcctive ring R is prime if and only if the set of idcals
of R/P is linearly ordered by Theorem 8.20 and Corollary 9.16 of Goodearl [6]. Thus
for example, if R is a prime nonsingular ring with identity, then its maximal right
quotient ring is a fully prime ring. For each positive intcger n, let F, be a field and
R, = M, (F,), thering of n!by n! matrices over F,,, andsct T = TIR,,. ThenTis a
regular self - injective ring with a prime ideal P such that the set of idcals of 7/P is not
well - ordered by Example 12.25 of Goodearl [6]. Hence T/P is a fully prime ring whose
set of ideals is not well-ordered.

3. Let G be an algebraically closed or universal group and let X be a field. Then K[G] isa
primitive group ring whose only nonzero proper ideal is the augmentation ideal by
Bonvallet, Hartley, Passman, and Smith [3], and hence it is fully prime.

4. ( Example 3.2 of Blair-Tsutsui [2]) Let R be the set of infinite matrices over a field
that have the form
A

(4,a)= a

where A is an arbitrary finite matrix over F and a is any element of F. Then R isa
fully prime ring which is integral over its center but not simple. The only nonzero
proper ideal of R is the subset of all matrices of the form (4,0) and it is idempotent.
By the Cayley-Hamilton Theorem, each square matrix M over F satisfies a monic
polynomial f{x) with coefficients in F. Thus (M,a) satisfies the monic polynomial
g(x) = fx)(fix) - Aa)).
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5. ( Theorem 4.1 and 4.4 of Blair-Tsutsui [2] ) If P is a proper ideal of a fully prime ring
R with identity, and Z(R) is the center of R, then Sp= P + Z(R) is a fully prime ring
whose maximal ideal P is also a maximal right and left ideal.

Further, proper ideals of Sp are preciscly those ideals of R that are contained in P.
If P is a nonzero ideal of R, then R is right primitive if and only if Sp is right primitive.

6. ( Theorem 4.5 and 4.6 of Blair-Tsutsui [2] ) Whenever a simple ring R with identity
has a right ideal / whose left annihilator is zero, a non-simple fully prime ring with
exactly one nonzero proper ideal can be constructed. In fact, let R be a domain with
identity whose center is denoted by Z(R). Then, the following conditions are
equivalent:

(1) Risa simple ring.
(2) S =1+ Z(R)is a fully prime ring for every right ideal / of R.
(3) S =aR + Z(R) is a fully prime ring for every principal right ideal aR.

In particular, if # is a field of characteristic 0 and 4 (k) is the Weyl algebra, the
k-algebra with two generators x, y and the relation xy - yx=/, then x4,(k) + kisa
right Noetherian fully prime ring which is not simple.

Problem. A right Noetherian fully prime ring with identity is semiprimitive, but it is not
necessarily a simple ring by the example above. Is a right Noetherian fully prime ring
primitive ?

7. ( Section 5 of Blair - Tsutsui [2] ) Let R be a simple radical ring (A simple ring,
necessarily without identity, such that R = R? = J(R) # 0, where J(R) denotes the
Jacobson radical of R.), and Ict 7 be the field of rational numbers if R has characteristic
zero; choose the ficld of integer modulo p for Fif R has a nonzero characleristic p.

Set S = R® F where addition is defincd componentwise and multiplication is given

by (n.k)n.ky) = (hry +kyry + ko, kiky), whererr, €R, ki .k, € F. Then S is a fully
prime ring with identity which is not semiprimitive, whosc only nonzero proper ideal
iSR®0.

Problem. Is a semiprimitive fully prime ring primitive?

8. ( Theorem 2.5 of Blair-Tsutsui [2] ) Every ideal of a fully prime ring is fully prime
when it is considered as a ring. Every ideal of an idcal of a fully prime ring is an
idcal of the ring.

9. (Theorem 2.1, 2.3, and Corollary 2.4 of Blair-Tsutsui [2] ) If R is a fully prime ring,
then # by n matrix ring over R is a fully prime ring. If e is an idempotent element in R,
then eRe is also a fully prime ring. Thus fully prime is a Morita invariant property for
rings with identity.
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10. Any ring with at most one nonzero proper ideal is almost fully prime. For example,
the ring Z ,» of integer modulo P*, where p is a prime number, has a unique nonzero

proper ideal / = {pn|n eZp,} and/? =0, If Fand F, are ficlds, then £ ® F, has
exactly two nonzero proper ideals /, ® 0and 0® £, , both of which are prime. By
Theorem 2.3 of Tsutsui [10], a commutative almost fully prime ring is either a field,
isomorphic to a direct sum of two fields, or a ring with exactly onc nonzero proper
ideal whose square is zero.

11. (Example 2.4 of Tsutsui [10] ) Almost fully prime rings can be constructed from a fully
- prime ring with identity having minimal (nonzero) ideal: Let R be a fully prime ring
with nonzero minimal ideal P. For p p, € P, i,r, €R, lct S, be the additive abelian
group P ® R with multiplication defined by (py, 1) - (Py, 1) = (222 + P 1y +1Py, 1i1y).
and S, be the same additive abelian group with multiplication defined by (p;, r) - (py, 13)
= (p,r 1Py, 1iry). Further, let 0, = {(p,0)]p € P}, and @, = {(p,- p)|p € P} Then;

(@) S, is an almost fully prime ring with two minimal ideals O, and Q,.
(b) S, is an almost fully prime ring with unique minimal ideal Q, .

As has been noted, a commutative fully prime ring with identity is a field, and a
commutative fully idempotent ring is a von Neumann regular ring. It turns out that for
several classes of rings which are natural generalizations of commutative rings, fully
prime rings are simple Artinian, and fully idempotent rings arc semisimple Artinian.
Applying the structure theory of fully prime rings, the structure of almost fully prime
rings can also be determined. Hereafier, we will assume that all rings contain a
multiplicative identity element.

Theorem 5. ( Theorem 3.1 of Blair-Tsutsui [2] ) If R is a right Goldic fully prime ring
which is integral over its center, then R is simple Artinian.

Corollary. If R is a right Goldie fully idempotent ring which is integral over its center,
then R is scmisimple Artinian.
Proof. Sincc a minor modification of the proof of Theorem 1.3 of Blair-Tsutsui [2]
yields that the center of a prime fully idempotent ring is a field, a right Goldie prime
fully idempotent ring which is integral over its center is simple Artinian. Thus, the result
follows by the Chinese Remainder Theorem since R has a finite set of prime ideals
whose intersection is zero.

A minor modification of the proof of Theorem 2.3 of Blair-Tsutsui [2] yields the
following structure theorem of almost fully prime rings.

Corollary. Let R be a right Goldie almost fully prime ring which is integral over its center.
Then either

1. Ris a simple Artinian ring,

2. R isisomorphic to a direct sum of two simple Artinian rings, or

3. Ris a ring with exactly one proper nonzero ideal whose square is zero.
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The most natural generalization of commutative rings are rings which satisfy a
polynomial identity. For those, the following results hold.

Theorem 6. ( Theorem 3.3 of Blair-Tsutsui [2] ) A fully prime ring which satisfies a
polynomial identity is a finite dimensional central simple algebra.

. A minor modification of the proof of Theorem 2.3 of Blair-Tsutsui [2] again yields the
following structure theorem of almost fully pnime rings.

Corollary. Let R be an almost fully prime ring which satisfies a polynomial identity.
Then either

l. R is a finite dimensional central simple algebra,

2. R is isomorphic to a direct sum of two finite dimensional central simple algebras, or
3. Ris a ring with cxactly one proper nonzero ideal whose square is zero.

Theorem 7. (Armendariz and Fisher [1]) A fully idempotent ring which satisfies a
polynomial identity is a von Ncumann regular ring.

More general than the class of rings with a polynomial identity is the class of fully
bounded rings. We used the following lemma to prove Theorem 8 below.

Lemma. (P.F. Smith [9]) Lect R be a fully right bounded ring satisfying ascending chain
condition on two sided ideals. Then an R-module M is injective if and only if for every
prme ideal P, each right R - homomorphism f:P — M can be extended to g:R — M.

Theorem 8. (Theorem 1.5 of Tsutsui [10] ) A right FBN fully idempotent ring is
semisimple Artinian,

Corollary. (Theorem 3.4 of Blair-Tsutsui [2] ) A right FBN fully prime ring is simple
Artinian,

Corollary. ( Theorem 2.5 of Tsutsui [10] ) Let R be a right FBN almost fully prime ring .
Then either

1. Risa simple Artinian ring,

2. Ris isomorphic to a direct sum of two simple Artinian rings, or

3. Ris a ring with cxactly onc proper nonzero idcal whose square is zero.,

Theorem 9. (Theorem 3.5 of Tsutsui [10] ) A right FBN fully («)-prime ring is («)-simple
Artinian,

Remark. If R is a prime right bounded ring, then every essential submodule of a finitely
generated faithful right R-module is faithful. Using this fact, one can show that every right
ideal of a fully prime fully right bounded ring is idempotent. As was mentioned, a prime
right Goldie fully right idempotent ring is simple, and a right bounded right Goldie simple
ring is Artinian. Hence, the right Noetherian condition of Corollaries to Theorem 8, as
those can be proved without using the lemma, can be relaxed to the right Goldie condition.
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