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PREFACE

The Second Japan-China International Symposium on Ring Theory was
held jointly with the 28-th Symposium on Ring Theory at Okayama University
of Science on October 24-28, 1995. The aim of the symposium is to exchange
the ideas and results obtained by Japanese and Chinese ring theorists and to
encourage each other.

The Organizing Committee of the symposium consists of H. Li (Shaanxi
Normal Univ.), S. Liu (Beijing Normal Univ.), H. Marubayashi (Naruto Univ.
of Education), T. Nagahara (Okayama Univ.), T. Nakamoto (Kurashiki Univ.
of Science and Arts), M. Sato (Yamanashi Univ.), Y. Tsushima (Osaka City
Univ.), B. Xie (Jilin Univ.), Y. Xu (Fudan Univ.), K. Yamagata (Tsukuba
Univ.) and K. Yokogawa (Okayama Univ. of Science).

We had about one hundred and fifty participants consisting of one hundred
Japanese, 19 Chinese, 12 Korean and ring theorists from western countries.

The proceedings contains the articles submitted by the speakers, without
referees, who have presented their recent interesting results at the symposium.

The symposium and proceedings were financially supported by the fol-
lowing four: the Scientific Research Grants of Educational Ministry of Japan
through the arrangements by professor Masao Koike, Kyushu Univ. and by
professor Yuji Yoshino, Kyoto Univ., Okayama University of Science, IBM
Company, and private contributors whose names are professors M. Harada,
H. Tachikawa, H. Tominaga, T. Nagahara, K. Yamagata, K. Yokogawa and
T. Nakamoto.
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We would like to express our hearty thanks to them for their financial
supports and especially to Okayama University of Science for offering us the
symposium place. We would like to express our thanks to professor T. Akiba,
Kyoto Univ. for his arrangement for funds and to Dr. H. Komatsu for the
publication of the proceedings. Our thanks go to our colleagues for helping us
to run the symposium smoothly, in particular, to those who have invited some
Chinese to their universities.

It is worthy to mention that the symposium will be extended to three
countries, that is, to Japan, China and Korea, and that it will be held at
Taegu, Korea in 1999,

Hidetoshi MARUBAYASHI

Naruto, January, 1996
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A Characterization of Coherent Rings
in terms of Finite Matrix Functors

Goro Azumaya

Let R be a ring. A right R-module M is called finitely presented if there exists a
finitely generated free right module I and a finitely generated submodule A of F such
that M = F/K. The followings are known properties of finitely presented modules: Let
M be a right module and N a submodule of M. Then (a) if M is finitely presented and
N is finitely generated, then M /N is finitely presented, (b) if M is finitely generated and
M/N is finitely presented, then / is finitely generated, (¢} if both A/N and N are finitely
presented, then M is finitely presented too. Of course, every finitely presented wmodule is
finitely generated. But the converse holds, i.e., every finitely generated right R-module is
finitely presented if and only if R is right noetherian. This is because right noetherian rings
can be characterized as those rings over which every submodule of any finitely generated
right module is finitely generated too. Now, R is called right coherent if every linitely
generated right ideal of R is finitely presented. Clearly every right noctherian ring is right
coherent, but the converse is not true.

Let U be a finite, say m X n-matrix over R. We denote by {/(R) the set of those + € R
such that

I
Iy
U .= 0 with .y = 7 and for some 5. ... .. r, € K.

&Iy,
Then U(R) is a right ideal of R. We are now to prove the following.
Theorem The following conditions are equivalent:
(1) R is a right cohercnl,
(2) U(R) is finitely generated for every finite row malrie U over R,
(3) U(R) is finitely generated for every finile matrizr U over R.

Proof. Let ap,us,...,a, be any finite number of elements of K. Let 1) = a; B + a3t +
co.ta,Rand I = ey R+ ... + a,R. Then {; = q, R + [, and so il we associate each
r € R with the coset ayr + I, € I,/Iy we have an epimorphism R — /1, as right R-
module. The kernel of this epimorphisin is clearly U(R). where U is the linite row matrix
[ar,az.. ... a,). Thus we have R/U(R) = I,/1;. Therefore. we know that U(R) is finitely



generated if and only if 1,/ 1, is finitely presented. Assumme that I is right coherent. Then
the finitely generated right ideal [y is finitely presented. Since [y is finitely generated,
I/ 1; is also finitely presented by (a), which implies that U{R) is linitely generated. Thus
(1) = (2) is proved. Conversely assume (2). Then I)/1; is finitely presented. By the
same reason, il we pult Iy = axR+ ...+ e, R..... 0Ly = v, R+ o, R 1T, = ¢, then
L, ..., L/ I, I, are all finitely presented . Thus we know by (¢} that 1y is linitely
presented . This shows the implication (2) = (1).

Now (2) is a particular case of (3), and (3) = (2} is clear. So we need only prove
(1) = (3). For this purpose, we make use of the following proposition without proof:

Proposition Lef R be right coherent, and let M be a finitely presented right R-modulc.
Then every finitely generated submodule of M is finitely presented .

Assume now (1). Let U = [uy,uae...,u,] be a finite m x n-matrix over R, where
Uy ty, ... i, mean the Ist. 2nd, ... n-th colunms respectively. Let 7 denote the set
of all colunmm vectors of length m over R. Then R™ is a linitely generated free right
R-module and so is linitely presented . The n vectors wyu,. .. .. w, are in I8 so il we
put M =R+ ;R4 ...+ 1, B M is finitely presented by the above proposition. Let
N=wu; R+ ...+ u,R. Then M/N is also finitely presented by (a). I we associate cach
r € R with the coset uyr + N € M/N then we have an epimorphism # — M/N. The
kernel of this epimorphism is /(R). so that we have an isomorphisimi B/U°(R) = M/N,
This completes the proof of our theorem.

Now, we assume that R is both right coherent and left perfect. Then for every finite
matrix U over R, U(R) is finitely generated right ideal by preceding theorem. On the
other hand, the left perfect ring R satisfies the descending chain condition on finitely
generated right ideals by Bass-Bjérk theorem. Therefore we know vhat £ satishies the
descending chain condition on right ideals of the form U(R) for all {inite matrices U7 over
R. This descending chain condition implies. according to Zimmermann theorem, that
the left R-module R is ¥-pure-injective, i.c., every direct sum of R, i.c.. every free left
R-module is pure-injective. Since every projective left R-module is a direct swumnand of
a frec left R-module, we have

Theorem If R is both right cohevent and left pevfect then ¢ very projective left 1R-module
15 purc-injective.

However we point out that the following a kind of converse holds:
Theorem If every projective left R-module is pure-injective then R ois Ieft perfrel,

For, that every projective whenee free left R-module is pure-injective implies clearly
every free left R-module is E-pure-injective. Let L be any llat left R-tnodule. Then it
is an epimorphic image of a free lefl R-module F. The fatuess of L then implies that
the kernel K of the epimorphism is purc in /. But since F is E-pure-injective, its pure
submodule K is a direct sununand of F by Zimmermann theorem again. Thus L = F/K
is projective, which shows that R is left perfect due to Bass theorem.
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Specialization
of
Structure Theorems for Q-3 Rings

YosHiroMo BABA

The [ollowing two theorems are ones which we call “Structure Theprems for QF-3 rings”.

THEOREM A ({8, (5.3)Theorem], (7, (2.1)]). A ring R is QF-3 mazimal quotient 1f and
only if it is the endomorphism ring of a module 4 K which 1s ¢ hnearly compact, generutor
and cogenerator. Then A == fRf as rings, where fR 1s a right minimal faithful 1deal of R.
Moreover, if 4K and p K’ are such modules and

End(4K) = End(4 K'),

then there is a categorical equivalence T : the left A-modules category — the left A’-moduies
category such that T(4K) = 4 K'.

THEOREM B ([8, (5.4)Theorem), [7,(2.2)]). The ring R ss a QF-3 ring +f and only sf there
exssts ¢ QF-3 mazvnal gquotient ring Q with mansmal fusthful right and left vdeals fQ and
Qe, respectively, such that
<1,fQ,Qe>C RC Q, where < 1, fQ,Qe > means the smallest subring of Q containing

{1,/Q,Qe} . In this case, @ = Q(R).

There exists the following relations.

left QF-2* ring

serial ring left H-ring left QH ring __—"
- right QF-2 ring
\
QF ring QH ring one-sided artiniai> QF-3 ring
QF-2 ring

The purpose is to specialize Theorems A and B to one-sided artinian QF-2 rings, QH
rings, one-sided H-rings and serial rings.

We denote a complete set of orthogonal primitive idempotents of a ring R by p(R) and
a set of non-negative integer by No.

o



1. DEFINITION OF H- RINGS

Let R be a left artinian ring. We call that R is a left H-ring if one of the following
equivalent conditions (1) and (2) is satisfied.

(1) For any indecomposable injective left R-module I, there exists e € p(R) and k € N,
such that gf = gRe/S:( Re), where S;( Re) means the k-th socle of gRe.

(2) For any indecomposable projective right R-module P, there exists f € p(R) and
! € Ny such that Pg = fJ,, where J means the Jacobson radical of R.

LEMMA 1. Suppose that R s a left H-ring. Then

(i) the minimal injective cogenerator left R-module 1s represented as e,";l:(:'gﬁe,/SJ(Re,),
where m € N,e, € p(R) and n(s) € Ny for anyi=1,---,m, and

(is} the minimal projective generator right R-module 1s represented as $:'_l_'131'°) fiJ?, where
m' € N, f, € p(R) with f,Rg ss snjectsve and n'(i) € Ng for anys=1,---m".

Let R be a left artinian ring. Then a left R-module M is called a module of H-block
(resp. co-H-block) if M = @™\ M, satisfying

(i) aM, is indecomposable projective (resp. injective),

(i) gM,;, = gM, or = g M,[S(M,) (resp. = gJM,)foranyi=1,---,m ~ 1, and

(iii) any gM, (% grM,,) is injective (resp. projective).

By Lemma 1, if R is a left H-ring, then

(i) the minimal injective cogenerator left R-module is represented as a direct sum of left
modules of H-block, and

(ii) right regular module Rp is represented as a direct sumn of right modules of co-H-block.

Let R be a left (resp. right) H-ring. Then there exists a complete set {f,, :’;132{ of

orthogonal primitive idempotents of R such that
(l) S(fuRR) s S(fl')'RR) (resp. S(RRfu) = S(RHfI'J')) iff ¢+ =¢, and
(") le+lRR ~ fuRR or & juJR (resp. Rle.}+l = RRju or = RJ.,IJ) for any ‘IJ

(Then for each i, &;gfj,,RR (resp. e;'_(__'zRRj,J) becomes a right (resp. left) R-module of
co-H-block.)
We call {j.,}:’;,;":" a well-indezed set concerning a left (resp. right) H-ring.

2. DEFINITION OF QH RINGS

A ring R is called a left QH ring if R is left artinian and satisfies one of the following
conditions which are equivalent under the assumption that R is left artinian.



(1) For any f € p(R), there exists e € p(R) such that E(zRf/Jf) = gRefrr.(fR),
where rg.(fR) means the right annihilator of fR in Re.

(2) For any f € p(R), there exists ¢ € p(R) such that (i) S(fRg) = eR/eJ and (ii)
S(”zije) is Simple.

(3) Any indecomposable projective right R-module is quasi-injective.

We call aring R is a QH-ring if R is both left and right QH.

3. SPECIALIZATION OF THEOREM A

Now we specialize Theorem A.

THEOREM 1. A ring R is left artinian, QF-2, mazimal quotient if and only 1f it is the
endomorphism ring of an artinsian module 4 K which is a generator, cogenerator and direct
sum of colocal local modules with a left artinian endomorphism ring.

THEOREM 2. A ring R is QH, mazimal gquotient 1f and only if st is the endomorphism
ring of an artinian module 4K which s a4 generator, coyenerator and direct sum of guasi-
profective quast-injective modules.

THEOREM 3. A ring R is left (resp. right) H- mazimal quotient sof and only sf 1t 15 the
endomorphism ring of an artinian module 4K which is a generator, cogenerator and direct
sum of modules of H- (resp. co-H-) block.

THEOREM 4. A ring R is serial mazimal quotient if and only sf it is the endomorphism
ring of a module 4K over some serial ring A which ts a generator, cogenerator, fintte direct
sum of modules of H-block and finste direct sum of modules of co-H-block.

4. SPECIALIZATION OF THEOREM B

Now we specialize Theorem B.

THEOREM 5. Let R be a semsperfect ring such that Q(R) 1s also semsperfect. Then R 1s
a left QF-2, QF-3 ring if and only if there extsts a left QF-2, QF-3, marsmnal quotient ring
Q with minimal fasthful right and left deals fQ and Qe, respectsvely, such that
<p(Q),fQ,Qe> C RC Q. In this case, Q = Q(R).

THEOREM 6. The ring R is a QH ring tf and only if there exnists a QH, mazrsmal guotient
ring Q with minsmal faithful right and left deals fQ and Qe, respectively, such that <

{9Q9)ser(q), /@, Qe > C RC Q.

THEOREM 7. The ring R is a left H-ring if and only sf there exists a left H. manmal
quotient ring Q such that < {qufu’}:r;i,j:i,;'zg} ,J(Q) > C RC Q, where {flj}:-’;l;‘g =
p(Q) is a well-indezed set concerning a left H-ring.



THEOREM 8. The ring R is a right serial, QF-3 ring if and only if there ezists a
serial mazimal quotient ring Q such that < {f.,Qf.y}:'éllj___w'}(:'} , J(Q) > C RC Q, where

{/, :’;1[,‘;'{ = p(Q) is @ well-indezed set concerning a left H-ring.
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All rings are associative with a unity. All prime ideals are assumed to be proper. A
ring is said to satisfy pm if every prime ideal is mazimal.

For a ring R, we use P(R) to denote the prime radical of R. R is called a 2-primal ring if
P(R) is the set of all nilpotent elements of R. In [10], Hirant used the term N-ring for what
we call a 2-primal ring in his investigation of strongly w-regular rings. Also the 2-primal
condition was considered independently by Sun [15] with the term weakly symmetric. The
name 2-primal rings originally and independently came from the context of left near rings
by Birkenmeier, Heatherly and Lee in [3].

For the case of commutative rings, the first clearly established equivalence between
condition pm and a generalized von Neumann regularity seems to have been made by
Storrer [14] in the following result: For a commutative ring R, the following are equivalent:
(1) R is w-regular; (2) R/P(R) is von Neumann regular; (3) R satisfies pm. This result

* The detailed version will be submitted for publication elsewhere. The second author was supported
in part by KOSEF Research Grant 95-k3-0101 (RCAA) while the third author was partially supported by
KOSEF, RCAA and the Basic Science Research Institute Program, Ministry of Education, Korea in 1995,
Project No. BSRI-95-1401



was generalized to Pl-rings by Fisher and Snider [8], while to duo rings by Chandran [7].
Next, Chandran’s result was generalized by Hirano [10] to right duo rings.

On the other hand, for the case of reduced rings (i.e., rings without nonzero nilpotent
elements), the following generalization of Storrer’s result was shown by Beidar and Wis-
bauer [1], Belluce 2], Birkenmeier, Kim and Park [4], and Camillo and Xiao [6]: For a
reduced ring R, the following statements are equivalent: (1) R is biregular; (2) R is weakly
regular; (3) R is right weakly w-regular; (4) every prime factor ring of R is a simple domain;
(5) R satisfies condition pm.

We introduce some results obtained in {5] which can unify and extend many of the
results of previously mentioned papers.

Recall that a ring R is called right (lefi) weakly regular if I2 = I for each right (left)
ideal I of R. R is called weakly regular if it is both right and left weakly regular [12]. Note
that right (left) weakly regular rings are also called rigkt (left) fully idempotent. A ring
R is called right (left) weakly w-regular if for every a € R there exists a positive integer
n = n(a), depending on a, such that a" € a®Ra"R (a® € Ra"Ra"). R is called weakly
w-regular if it is both right and left weakly w-regular [9].

Definition 1 [13]. A ring R is called almost symmetric if it satisfies the following
conditions:

(SI) the right annihilator of each element is an ideal of R;

(SII) for any a,b,c € R, if a(bc)™ = 0 for a positive integer n, then ab™c™ = 0 for some
positive integer m.

A ring R is called pseudo symmetric if it satisfies the following conditions:

(PSI) the factor ring R/I is 2-primal whenever I = 0 or [ is the right annihilator of aR
for some a € R;

(PSII) for any a, b,c € R, if aR(bc)" = 0 for some positive integer n, then a{ RbR)™c™ =
0 for some positive integer m.

Lambek [11] calls a ring R symmetric provided abc = 0 implies ach = 0 for any a,b,c € R.
Note that commutative rings and reduced rings are symmetric. Symmetric rings are almost
symmetric and almost symmetric rings are pseudo symmetric.

Following [13], for a prime ideal P of a ring R, let

Op = {a € R|ab=0 for some b € R\ P}.

We define _
Op = {a € R| a" € Op for some positive integer n}.

The equivalence of condition pm with generalized von Neumann regularity conditions
has been developed in [5]. Indeed, this equivalence condition holds over a large class of
2-primal rings.
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Theorem 2 [5]. Let R be a 2-primal ring with all idempotents central. Then the
following statements are equivalent:

(1) R is right weakly w-regular;

(2) R/P(R) is right weakly w-regular;

(3) R satisfies condition pm;

(4) R/P(R) is biregular;

(5) R/P(R) is weakly regular;

(6) R/P(R) is right weakly regular;

(7) every prime factor ring of R is a simple domain;

(8) for each a € R there exists a positive integer m such that R = Ra™ R+r(a™), where
r(a™) is the right annihilator of a™ in R;

(9) for each prime ideal P of R, P = Op.

Corollary 3. If R satisfies any of the following conditions, then R is 2-primal with all
idempotents central (hence Theorem 2 holds):

(1) R satisfies condition (SI);

(2) R is 2-primal and satisfies condition (SII);

(3) R satisfies condition (PSII);

(4) every nilpotent element is central;

(5) R is a bounded weakly right duo ring.

Corollary 4. If R is a ring which satisfies conditions (SI) and pm, then for each ¢ € R
there exists a positive integer k (depending on a) such that (RaR)* = (RaR)*+!.

An immediate corollary of Theorem 2 and the fact that in a reduced ring Op = Op for
all prime ideal P is the following result.

Corollary 5 [1, 2, 4 and 6]. Assume that R is a reduced ring. Then the following
conditions are equivalent:

(1) R is weakly n-regular;

(2) R is right weakly w-regular;

(3) R satisfies condition pm;

(4) R is biregular;

(5) R is weakly regular;

(6) R is right weakly regular;

(7) every prime factor ring of R is a simple domain;

(8) R = RaR + r(a) for each a € R;

(9) for each prime ideal P of R, P = Op.

Note that condition (9) of Corollary 5 is the same as condition (3) of Theorem 6 in [6].

Hence Theorem 2 generalizes parts (1), (2), and (3) of Theorem 6 in [6). Furthermore, if
R is reduced, a routine argument shows that condition (8) of Corollary 5 implies that R

11



is right p.p. and that RaR = R for all a such that r{a) = 0 (i.e., part (4) of Theorem 6 in
[6))-
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MORITA CONTEXTS AND RING EXTENSIONS

JIANAI CHEN AND QUAN HU

We study in this paper two extension problems which may be well integrated into a
common scheme by referring to Morita contexts. In §1 we revisit the classical problem
posed by Nakayama in 1933 on the relationship between the Galois extension of rings and
the Frobenius algebras [N], to which Kasch announced in 1960 his celebrated solution for
a broad class of rings [K1,2]. We give a direct proof to a theorem which Zhang proved in
[Zh], using a characterization of Frobenius extension by Onodera [O]. In §2 we consider
the ideal module condition introduced by Wilke ([Wil], [Wis]) for the (A# H, A?)-module
A. agpA is exactly an Af.ideal module if 425 A is an intrinsic projective self-generator
(Theorem 2.4). Hence if A#H is Morita equivalent to A?, i.e. if 44y A is a progenerator,
then 44y A is an A”-ideal module. We show that the conversion is true if (a) A|A¥ is a
Galois extension (Theorem 2.7) or (b) A|A” is an extension with trace-one elements and
A is right Noetherian (Theorem 2.9).

1. Galois and Frobenius extensions

A left H-module algebra for finite dimensional H is also a right H*-comodule algebra
with structure map p: A — A® H*. The covariant A°°#" is defined to be {a € A| p(a) =
a® 1} and it is easy to see that ACH" = AH = B,

(1.1) Definition. Let A be a left H-module algebra with H finite dimensional. Then
A/B is said to be right H*-Galois if the map

v: AQpA— A®H", a®b— (a®1)p(d)
is surjective.

(1.2) Remark. If S is bijective, then v is bijective is equivalent to that ' : A®pA —
A® H*, a®b— p(a)(l ®b) is bijective [KT, Prop 1.2].

(1.3) Theorem. Let A and H be as above. Then the following are equivalent:
1) A is a projective left A# H-module.

2) f: A#H — A, afth — e(h)a is a split A#tH-epimorphism.

3) The trace function: A — B, A — t - a, is surjective.

4) The map ( , ) in the Morita context (see e.g. [CFM, Thm 2.10]) is surjective.
Moreover, if A/B is H*-Galois, then 1)-4) are equivalent to

5) A is a faithfully flat right (left) B-module.

(1.4) Definition [K2]. Let A/B be a ring extension.
(I) A/B is said to be right Frobenius, if
(rl) Ag is f.g. projective,
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(r2) pAs = Hom_g(A, B), which is equivalent to

(r3) there exists a (B, B)-bimodule homomorphism ¢ : A — B such that f :
Ay — Hom_g(A, B), a — (a-) is a (B, A)-bimodule isomorphism.

(IT) A/B is said to be left Frobenius, if

(i1} A is f.g. projective,

(12) 4Ap = Homg_(A, B), which is equivalent to

(13) there exists a (B, B)-bimodule homomorphism %' : A — B such that f' :
4Ap — Homg_(A, B), a — 9/(—a) is an (A, B)-bimodule isomorphism.

It is well known that A/B is right Frobenius iff it is left Frobenius. Any isomorphism
satisfying (r2) or (12) is called a Frobenius isomorphism and any homomorphism satisfying
(r3) or (13) a Frobenius homomorphism. We also say that A/B is ¥-Frobenius if it is a
Frobenius extension with 1 being a Frobenius homomorphism.

(1.5) Theorem. Let H be a finite dimensional Hopf algebra and A a left H-module
algebra. Then the following are equivalent:

1) A/ B is right H*-Galois.

2) A/B is I-Frobenius and A is left A# H-faithful.

3) A/ B is t-Frobenius and A is right A# H-faithful.

(1.6) Corollary (See [CFM], Question 2.15). Let H be a finite-dimensional Hopf
algebra and A a left H-module algebra. If A/B is {-Frobenius, then the following are
equivalent:

1) A is left A# H-faithful.

2) A is right A# H-faithful.

2. Morita equivalence and ideal module condition

between A#H and B

In this section the (A, End( 4 M))-bimodule structure on a left A-module plays a central
role in our study. Because of [CFM, Lemma 0.3] the situation applies to the bimodule
A#HAB with B = EndA#H_(A).

Let L(agnA) denote left A#H-submodule lattice (i.e. H-stable left ideal lattice)
of A, L(B) denote the left ideal lattice of B. Define map 7 : L(sguA) — L(B),
U — Homapy(A,U), and 8 : L(B) — L(spuA), I — A-.I. By [ARS, Prop 1.1],
HOmA#H(A,U) = {/H = NB and End (A#HA) = B.

(2.1) Definition. 44 A is called an ideal module over B if 7 is bijective.

We first characterize the ideal modules by conditions that are weaker than the gen-
erator -property and the projectivity in Mod-A#H respectively. Let R be a ring and
M a left R-module. Define o{M] = {N € R~ Mod| N is a submodule of W, W is an
arbitrary left R-module which is generated by M}. Il M generates every module of o{M]
then we call M a o[M]-generator; if M generates every submodule of M then we call M a
self-gencrator. It is obvious that M is a generator => M is a o[M]-gencrator => M is a
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self-generator, but the inverse implications are not true. If lor every lelt R-exact sequence
0— K—M— N —=0,thesequence 0 = Hom(P, K') — llom(P, M) — Hom(P,N) - 0
is exact, then we call P M-projective; if M can be every module of ¢[P] then P is
called o[P]-projective; if M can be P itself then P is called self-projective; if M can be
P*(k € N) then we call P intrinsic projective. It is easy to see that P is projective == P
is o[ P])-projective => P is self-projective = P is intrinsic projective, but the inverse
implications are not true.

(2.2) Proposition.
7 is injective <= aznA is a self-generator.

(2.3) Proposition.
T is surjective <= 4y A is intrinsic projective.

(2.4) Theorem. 44y A is an ideal module over B <= 4y A is a self-generator and
intrinsic projective.

(2.5) Corollary. If A#H and B are Morita equivalent, then 444 A is an ideal module
over B.

(2.6) Theorem [Wis, 5.9]. Let A be an R-algebra and M be an (A, B)-bimodule with
B = End 4_(M). Then the following are equivalent:

(a) oM is a B-ideal module.

(b) A M is a self-generator and Mg is faithfully flat.

(c) aM is a projective self-generator.

(2.7) Theorem. If A/B is a right H"-Galois extension, then:
agn A is an ideal module over B <= A#H and Barc Morita equivalent.
Proof. Clear from (1.3) and (2.6).

In case that A/B is an H"-extension with trace-one elements, our task is to lift the
self-generator 441 A to a generator in A#H-Mod.

(2.8) Lemma. I 144 Ais an ideal module over B and the trace function ? is surjective,
then A is a o|A]-generator and 444 A is faithful.

(2.9) Theorem. If the trace function is surjective and A is right Noetherian, then:
A#Hand B are Morita equivalent <= 44y A is an ideal module over B.
By Lemma 2.8 and [CFM. Cor 3.10] we have the following result:

(2.10) Corollary. Assume A is a division algebra, and 45 A is an ideal module over
B, then A# H and B are Morita equivalent and A= B#, H.
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ON EXTENDING MODULES

CHEN ZHIZHONG

Throughout this paper R is an associative ring with identity.
Every module M is unitary right R-module.

The module M is called extending, or a CS-modute (for complement
submodules are direct summand), provided that it satisfies following
condition (C1):

(C1) Every submodule of M is essntial in a direct summand of M.
Equivalently, iff every closed submodule is a direct summand.

M is quasi-continuous if and only if it has (C1) and following (C3)

(Cy» If My and M, are direct summands of M with M;NM; = 0,
then M\,© M, is & direct summand of M.

Let there be given & direct decomposition M = Mi® M, ,and let
T ,:M —— M, be the projections.If N is a submodule of M with
NNMz2 = 0. Then

N = lx+yN| X€x, W), y-h €z }
where h: () —— 2 W/U, NNz W/ M NNLT W) is a
homomorphism, and Ker h = M;NN.

Let M and N be R-modules and M'<<M, and i:M"——M be the inclusion.

Then N is called almost M-injective if the following (1) or (2) hoid
for any submodule M" of M and any homomorphism h: M —— N
(1). There exists h’s M —— N, such that h”i = h
or ) ’
(2). There exists a non-zero direct summand My of M and
h’sN —— Mg, such that w’h = xi, where w:M —— Mo is the projection

of M onto Mg . ~
[f we have only (1), N is called M-injective.
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Proposition 1.[6]. The following statements are equivalent for

a module M.
(1). M is quasi-continuous; ‘
(2). Whenever E(M = E\©E, is a direct sum of submodules E,,E,.

then M = E,NNO E-NW, where EM is a injective hull of M.
(3). Whenever N, and N, are submodules of M such thatN,NN; = 0,
there exists submodules M,, M, of M such ihat M = M,®© M, and ¥, < M,,

(i=1,2).
Lemma 2. Let M, and M, be modules, and let N be a submodule of

M =M, ©M, with ¥NM4; = 0. Then

(). W is an essential exiension of N in M iff n,(N") is an essential
extension of n,(N) in M.

(). Nis closed in ¥ iff n,(N) is closed in ¥ .

Theorem 3. Lel M, and M; be indecomposible R-modules with local endomorphism

rings, and let M =M,® M, .For any submodule N of M, if NMIM> = 0,
NNM, # 0. Then the following are equivalent:

(1). Mz is My-injective;

(). My is almost M,-injective;

(3). For a submodule N of M, if NNM, = 0, then N is contained in a

direct summand of M, such that M = M*©M, and N ¥ .
Proposition 4. Let M, and M, be R-modules and let M = M,©N; .

Then M, is M,-injective iff for every submodwle N of M such that NNOM.
= 0, there exists a submodule M" of M such that M = W®OM; and N < ¥°
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Proposition 5. Let M, and M, be R-modules with local endomorphism

rings and let M = M,©® Mz . Then M; is almost M,-injective iff for
every submodule N of W such that NOM; = 0, then ¥ is contained in a
proper direct summand of M.

Proposition 6. [1]. Let M, and M3 be uniform modules with local
endomorphism rings and M = M,® M.. Then M is extending iff M,and M,

are mutually aimost relative injective.

Theorem 7. Let M be an extending module. Then ¥ is quasi-continuous
iff whenever M = M,;© M; is a diect sum of submodules, then M, and
M, are relative injective.

Proposition 8. Let M, be an R-module and M, an indccomposable
module and let M = M,® M, [f M; is almost M,-injeclive but a not
M;-injective. Then there exists a monomorphism f from a submodule
of Mito Mz and M, is embedded in M,.

Theorem 9. Let M, and M, be uniform modules with local endomorpﬁism
rings and M = M;® M,. For any submodule N of M, if N(OM. = 0,
NNM; £ 0, i7#%j. Then M is extending iff M is quasi-continvous.
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[[-Coherent Rings and
FGT-Flat Dimension

Cheng Fuchang

Let R be a ring, II=I1Rr be any product of Rx. We say that R s
g8 right Jl-cohereat ring, if every f.g. submodule of IT is f.p.. The
class of such ring is between the class of Noetherian riogs and the
class of coherent rings. The homological properties and structures of
II-coherent rings have been well studied by many authors [ 1-4 ] .  The
main purpose of this paper is to study the FGT-flat dimension over
[1-coherent ring.

All rings are associative with identity, all modules are unital.
{ )°=Homa (-, R}.

We first give some characterizations for J]-coherent rings.
Theorem 1 The following statements are equivalent for any ring

(1) R is a right II-coherent ring;

() Rr is a right J]-coherent module;

{3) Every f.g. torsionless right R-module is [[-coherent:

i4) BEvery f.g. torsionless right R-module is f.p. .

Proof (1} <=> (2) and (2} =>(3) see [4, theorem 1.1 ].

(3) =>(1) We can finish the proof by [2, theorem 1].

(1}<=>(4) By [2, theoreml] aad [6, lemmad], we can imply the
results.

By theorem 1. the following facte are easy to prove:

Propositoin 2 Let R be a right [[-coherent ring, n(>»2) integer,
then the following statements are equivaleni:

1) wgl dioR<n;

(2) The dual of any f.g torsionless right R-podule has flat
dimension<pn-2.

Corollary 3 Let R be a left. right Noetheriae ring. thee
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l.gl.dimR< 2 if and only if tae dual of any [.g torsionless right
R-module is projective module.

Difinition A right R-zodule M is called right FGT-flat, if
tor®™, AY=0 for aey f.g. trosionless left R-module A. The gumber
inf{o|tor®, , M A=0. for any f.g. torsionless left R-moduie A} s
called FGT-flat aimension of M. denoted iv by r. FGT-fdaM. we call
tae number sup{ r FGT-fdrM. 1or any right R-module M } right FGT-
flat dimeasiva of R. and denoted it by r.FGT-w. dicR.

Theorem 4 Let R be a left J]-cokerent, thec 1. FGT-w dipR=0 if aad
oely if R is left zzmikereditary.

Proof If ). FGT-dimR=D. ther w gl dimR<1, but R is left coherent
ring. so R is left semihereditary .

Converselv. if A is any f.g torsionless right R-module, there
exi1sts an exact sequence 0—>A—>F. where F is f.g. free module. since
w gl. digR< 1. then tor¥(A, M =0, so |.FGT-w. dimR=0.

Theorem 5 Let R be any rirg, then the following statemects are
equivalent:

(1 1. FGT-w dimR=1;

i2) There exiets a left R-module A such that 1. FGT-fdrA=1, and any
closed submodule of f.g free right R-module is a flat module.

Proof (1) =>{2 If 0—>K—>F—>F/K—> 0 is an exact ecequence,
where F is f.g free right R-module, F/K f.g torsionless. Since
l.FGT-w. dimR=1, then fdr(F/K) <1, hence K is flat module.

(2} =>{1} It holds clearly.

Theorem 6 Let R be & left, right [J-coherent ricg. o (>2)
integer Then the following statements are equivalent:

th 5. FGT-w. dimR< n;

2i 5. fdp(M"} <n-2 for apy [.g torsioniess left R-module M;

3) r.pdn M) <n-2 for any f.g. torsionless left R-module M;

i#) 5. fda®*)<n-2 for any left R-module M.

Proof (2} <=> (3) By theorew 1(4), 8o r fdan®}=r.pda®"} for
any f.g. trosionless [eft R-module M.
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[

[3i

(3}

(4]

(6]

(1} =>{2) It bholds elearly by theorem L aad [6, Lemma Jj.
(2 =>{1), (1) =>4} and {4 =>(2) are trivial.
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Modules over a Local Cohen-Macaulay
Ring admitting a Dualizing Module

Edgar E. Enochs
Overtoun M.G. Jenda

Jinzhong Xu

Let R be a (commutative) local Cohen-Macaulay ring admitting a dualizing mod-
ule 2. Foxby (see [4]) then defines two classes of R-modules, namely Go( R) and Jo( R).
The class Go( R) consists of all M such that Tor;(€2, M) = 0 and Ext*(2, Hom(2, M)) =
0 for ¢ 2 1 and such that @ Hom (Q, M) = M is an isomorphism. The class Jo( R)
consists of all N such that Ext'(2, N) = 0 and Tor;(2, Q@ N) = 0 for i > 1 and such
that ;¥ — Hom (Q,Q ® N) is an isomorphism.

Foxby proves

Theorem ([5], Theorem 1). A finitely generated R-module M is in Go(R) if and
only if G-dim M < oo.

Here the G-dimension of a module is as defined in Auslander [2] and in Auslander,
Bridger [3].

Motivated by the notion of G-dimension, Enochs and Jenda (7] defined Gorenstein
injective and projective modules. These notions provide a generalization of the notion
of a G-dimension (namely, the Gorenstein projective dimension) and provide a notion
dual to that of the G-dimension (the Goreustein injective dimension).

We have

Theorem ([8], section 2). A module M is in Go(R) if and only if it has finite
Gorenstein projective dimension and is in Jo( R) if and only if it has finite Gorenstein
injective dimension.

Auslander announced the result

Theorem ([1]). If R is a local Gorenstein ring and M is a finitely generated R-

module, then M has a minimal Cohen-Macaulay approximation ¢: ¢ — M.
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This result means that C is finitely generated and is maximal Cohen-Macaulay,
that Hom (D, C) = Hom (D, M) = 0 is exact whenever D is also a finitely generated
maximal Cohen-Macaulay module and that any f: C = C such that fo¢d =¢ is
an automorphism of C' (so such approximations are unique up to isomorphism).

We can prove

Theorem ([9]). If R is a local Colien-Macaulay ring and has a dualizing mod-
ule, then any finitely generated module of finite G-dimension has a minimal Cohen-
Macaulay approximation.

We note that over a local Gorenstein ring, every finitely generated module has
finite Gorenstein dimension (sce [2]).

To get a non-commutative version of Auslander’s theorem we use Iwanaga’s defi-
nition of a (possibly non-commutative) Gorenstein ring (see [10]). We will call these

Iwanaga Gorenstein rings.

Theorem ([9]). Il R is lwanaga Gorenstein and admits Matlis duality, then every
finitely generated left R-module M has a finitely generated Gorenstein projective
cover (" — M (sec [6] for the general definition of a cover).

If R is commutative and local, the condition “admitting Matlis duality” becomes
“R is complete” and then the C — M of the theorem is just a minimal Cohen-

Macaulay approximation. The uotion “admitting Matlis duality” is defined in [9].

For example, if S is a complete regular local ring, and G is a finite group, the ring
R = SG satisfics the hypotheses of the theorem. In this case the C of the conclusion
will always be a free S-module, i.e. C will be an SG-lattice.
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GORENSTEIN INJECTIVE ENVELOPES AND
ESSENTIAL EXTENSIONS

EDGAR E. ENOCHS and OVERTOUN M. G. JENDA

Throughout this note, R will denote an n-Gorenstein ring, that is, R is left and right noetherian
and has self-injective dimension at most n on either side.
An R-module M is said to be Gorenstein injective if there exists an exact sequence

o E 2 EV' 9 E' E 5 -

of injective R-modules with M = Ker(E® — E') such that the sequence remains exact when
Hom(E, -) is applied to it for any injective R-module E. We note that every injective R-module is
Gorenstein injective. Furthermore, it was shown in Enochs-Jenda [2, Theorem 4.2] that every mth
cosyzygy is Gorenstein injective whenever m > n. In particular, over quasi-Frobenius rings, every
module is Gorenstein injective.

A Gorenstein injective envelope of an R-module M is a linear map ¢ : M = G with G a
Gorenstein injective R-module such that

1) for any Gorenstein injective R-module G, the diagram

7/
7/

4
»

GI
can be completed to a commutative diagram, and

2) the diagram
M2~

/
I
»
G
can only be completed by an automorphism of G.

If ¢ : M — G satisfies (1) and may be not (2), ¢ is called a Gorenstein injective preenvelope.

We note that ¢ is a monomorphism since injective modules are Gorenstein injective, and that
Gorenstein injective envelopes are unique up to isomorphism.

It was shown in Enochs-Jenda [3] and Enochs-Jenda-Xu (4] that Gorenstein injective preen-
velopes and envelopes exist over n-Gorenstein rings. The Gorenstein injective envelope of a module
M will be denoted by G(M).

The following is often useful.
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Lemma. Let M be an R-module. If M C G is a Gorenstein injective preenvelope, then G =
G(M) & G’ for some Gorenstein injective R-module G' where the isomorphism leaves M fized.

Proof: We have the following commutative diagram

0 — M — G(M) >Gf,}}” + 0
I | |

0 — M — G y g » 0
[ | |

0 — M —— G(M) ;g%‘,ﬁ » 0

where G(M) = G = G(M) is an automorphism. So G & G(M) &G’ lor some Gorenstein injective
R-module G". ]

Definition. A submodule N of an R-module M is said to be a Gorenstein essential submodule if
for each submodule L of M with pdL < co, NNL =0implies L = 0. We will say that NC M is a
Gorenstein extension if pd-% < 00. A Gorenstein extension N C M is then said to be a Gorenstein
essential exlension if N is a Gorenstein essential submodule of M, and we will say that it is a
Gorenstein injective ezxtension if M is a Gorenstein injective module.

We have the following interesting properties of Gorenstein injective envelopes.

Proposition. The following properties hold for an R-module M.

1) M C G is a Gorenstein injective eztension if and only if G = G(M) & E for some injective
R-module E where the isomorphism leaves M fized.

2) M C G(M) is a Gorenstein essential extension.

3) If N is a submodule of M, then N C G(M) is a Gorenstein essential extension if and only if
G(N) = G(M) where the isomorphism leaves N fized.

4) M is Gorenstein injective if and only if M = G(M).

Proof: 1) This is Proposition 2.2 of [3] and we provide a proof here for completeness. If M C G
is a Gorenstein injective extension, then Ext'(G/M, H) = 0 for all Gorenstein injective R-modules
H by Enochs-Jenda [2, Corollary 4.4]. Thus M C G is a Gorenstein injective preenvelope and so
G = G(M) & G’ for some Gorenstein injective G’ by the Lemma above. But pdG/M < co and so
pdG' < o0. But then G’ is an injective R-module.

For the converse, we simply note that M C G(M) is a Gorenstein extension by Enochs-Jenda
[3, Proposition 1.8] and E has finite projective dimension by Iwanaga [5].

2) This is part of Theorem 3.3 of [1] and we again provide a proof for completeness. M C G(M)
is a Gorenstein extension as noted above. If N is a submodule of G(M) such that NN M =0 and
pdN < o0, then E(N) is a submodule of G(M) by Proposition 2.4 of [1]. If G’ D M is maximal in
G (M) with respect to G'N E(N) =0, then G(M) = E(N)®G’ and so M C G’ is a Gorenstein
injective extension. But then G’ 2 G(M) @ E for some injective E by part (1). Thus E(N) =0
and so M is a Gorenstein essential submodule of G(M).
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3) If N C G(M) is a Gorenstein extension, then G(M) = G(N) & E for some injective E by
part (1) where the isomorphism leaves N fixed. But ENN =0 and pdE < 00. So E = 0 since N
is a Gorenstein essential submodule of G(M). Thus the result follows.

If G(N) = G(M), then N C G(M) is a Gorenstein essential extension by part (2).

4) If M is Gorenstein injective, then Hom(G(M), M) — Hom(M, M) — 0 is exact and so
G(M) = M & G’ for some Gorenstein injective G'. But then pdG' < o0o. So G’ = 0 since
M C G(M) is Gorenstein essential by (2). The converse is trivial. 0

We are now in a position to state the following

Theorem. The following are equivalent for a submodule M of an R-module G.
1} M C G is the Gorenslein injeclive envelope of M.

2) M C G is a Gorenstein injeclive ezlension and for every Gorenslein injeclive exlension
M C G', there is @ monomorphism g : G = G' that makes the diagram

M—

Ve
Ve
‘9
»

Gl
commutative.
3) G is a minimal Gorenslein injective exiension of M.

4) M C G is a Gorenslein essential eztension and if M is a submodule of an R-module H
suck that M C G(H) is a Gorenslein essential eztension, then there is a monomorphism
g: H — G that makes the diagram

Mc——H

V
V
V
)
»
G

commulative.

Proof: 1 = 2. M C G is a Gorenstein injective extension by the Proposition above. If M C G’
is a Gorenstein injective extension, then it is a Gorenstein injective preenvelope. So there is an
isomorphism ¢' : G @& H = G’ that leaves M fixed by the Lemma above. So we set ¢ = gI’G.

2 = 3 is trivial.

3= 1. G(M) is asummand of G by the Lemma and so G 2¢ G(M) by minimality.

1 = 4. M C G is a Gorenstein essential extension by the Proposition above. Now if M C G(H)
is a Gorenstein essential extension, then there is an isomorphism ¢’ : G(H) — G which leaves M
fixed by part 3 of the Proposition. We now set g = gl’H.
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4= 1. Let H = G(M). Then since M C G(M) is a Gorenstein essential extension, we have
again the following commutative diagram

0 — M — G(M) — M

Il L l

0 —mM — G ——)%—-)0

[ l |

0—)M—>G(M)—>g%ﬂ—->0

— 0

and so G = G(M) @ G’ for some R-module G’ such that pdG’ < oo. But MNG'=0and M CG
is a Gorenstein essential extension. So G’ = 0 and thus G = G(M). ]

Remark. G(M) can also be characterized as the unique maximal Gorenstein essential extension
of M (see Theorem 3.3 of [1]).
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A Commutativity Theorem for Rings

Fu Changlin & Wang Qiurong

In this paper R represents a ring, Z(R) is the center of R, D = {x| JyeR,
syx=00rxy=0} fit,,..., t;) represents a polynomial of n non-commuta-
tive indeterminates with integer coefficients, its coefficients having 1 as
their highest common factor. X, Y represents the set of indeterminates
with XuY={t1,..., ta} and X~Y=0.

Suppose flti,...,ts) is an assigned polynomial, X, Y are above mentioned
sets of indeterminates. We use Ax(Ayb) to denote the sum of coefficients of
all the terms in flt), ..., tn) which begin with an element of X(Y), and Ax
(Aye) to denote the sum coefficients of all the terms in f which are ended
with an element in X(Y).

For the assigned sets X,Y, we use B to denote the set of some terms of f
in which any two neighboring factors of the terms do not belong to the set
X at the same time.

With the similar definition as Axb, Axc, Ayv, Aye, We USe Byb, Bxe, Byn, Bye to
denote the sum of the coefficients of terms in B. B« is the sum of the coe-
fficients of those terms in B with the beginning and the ending indetermi-

nate elements both in the same X. The definitions of the symbols Bxy, By,
Byy are similar.

We use B, to denote the subset of the terms in set B which contains only
one indeterminate element in X with its degree equal to 1; B,, the subset of
the terms in set B; which begin with an element in X; B, the subset of the
terms in set B, which end with an element in X; E, the sum of the coeffici-
ents of all the terms in B;; C, the set of those terms in f in which no two
arbitrary neighboring factors belong to the same set (X or Y); Cx,...,Cye, Cxx
»---» Cyy; the sum of the coefficients of the terms in set C, which are defined
in the similar way as Ax,..., Ax,..., €tC.

o This research was supported by Heilongjiang Foundation of Natural Science
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Let h(t1,..., ta) be a term of {(ty ..., ta). 1s(s=1,2,...,n) is degree of indeter-
minates ts in h(ti,..., ta). If X={tk,..., tka}, and Y= {tqy,...,tqn} then we call
i = r+...+1kp the degree of X in hty,...,ts), and j=rqi+...+rq.., the degree of Y
in h(ty,..., ta). And writing h(t;,..., ta)= h;(t1,..., ta),we call i+j the degree of
h(ts,...,ta).
Suppose polynomial f{t: ,..., tn) has highest degree K. and least degree
Ki. Writing every f{t,,..., tu) in the form:

ka
f(tl . tn]= ¥ > fij (tl,...,tn],
m=k, i+j=m

where f; denotes the sum of all terms of f{t ,..., tn) with i degree in X and j
inY.

Definition

k2
Let f(tl geoey tn]= Z Z flj(tl 3eey tll])
m=k, i+j=m

if there exists an integer K (Kis K<Kj3) and sets X,Y, such that in fi.1,
(fi k1) only one term has coefficients 1, and when m=K, fu.11=0 (fi m-1=0),
then we call f{t,,...,ta) has property Fx for X(Y).

Let R be an arbitray ring. X, Y are above mentioned sets of indetermi-
nates, and polynomial f{t),...,ta)has property Fx for X(Y).

If fity,...,ta)eZ(R) and f{t,,...,tan) has property Fix for X(Y), obveriously, we
can assume that no terms with all indeterminates in Y(X) are contained in

34



f.
We obtain the following results:

Theorem

If for all Xj,...,XneR satisfying [ f(xi,..., Xa), La:Xis ]=0 where every tieX
(tis €Y) Yas= 1, if K=1 then R is commutative; if K>1 but R#D and Z(R}=0,
then R is also commutative.

If Z(R)~D #0 and cofficients of f(t,, ..., t,) satisfying one of the condition
A'1-A'5 (A"1-A"S), then %,.. (fi 1) in therom can be in arbitrary form,
where A'1-A'S and A"1- A"5 denote as follows:

ALl Al =1, A"l | Ap | =1;
A2, | Al =1, A"2, | Ay | =1;
A'3. (Bxb,Bxc)= 1 \ A"3. (Byy-Bxb'Bxu)= 1 5

A'4' (be'cxc.cu)= l" A“4, (Cu'cxb.cxx)= | N
L et e
A'S, | B; | =I; A"l | B, | =1.

where (a,...,an) denotes the greatest common divisor of a; ,..., au.
It is a generalization of the results in references [4]-[10].
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On the Transfer of Torsion Theoretic
Properties in Morita Contexts

A. HAGHANY

This note contains a brief survey of relationship between torsion theories of
context equivalent rings, as well as some new observations.

Rings which are in a Morita context have been investigated from different points of
view. Here we consider the transfer of some torsion theoretic properties for a pair of rings
which are in a Morita context. First recall that a Morita context (R, V, W, S) consists of a
pair of rings R, S, two bimodules pVs, sWg and two bimodule homomorphisms

(==-):V@sW —R; [-,-]:W@rV —S§
satisfying the following relations for all v, v’ € V; w, w' € W:
(v, w)v' = v[w,v]; [w,v]w = w(v,w)

If the functor W®p : R-Mod — S-Mod and V®g : S-Mod — R-Mod are equivalences of
categories then R and S are Morita equivalent rings. In this case Wg, sW are progenerators
and S ~EndWg, R~ EndsW.

Given a Morita context (R,V, W, S) and hereditary torsion theories 7 on R-Mod and
o on S-Mod, one may be interested in the relationship of the localized rings R, and S,.
For example if ¥ and o are the hereditary torsion theories determined by the trace ideals
Tgr (= (V,W), the image of (—, —)) and Ts = [W, V] then Miiller [4] has shown that the
quotient categories Mod (R, 7) and Mod (S, o) are equivalent and the equivalence is induced
by the functors Homp(W, —) and Homs(V, —). Some other full subcategories of Mod-R
and Mod-S, and their equivalences by Hom, Tensor or their appropriate subfunctors and
quotient functors have also been considered. See for example [1], [2], [3], [5], (6]

One may, on the other hand, start with a hereditary torsion theory r on R-Mod and
construct a hereditary torsion theory ¢ on S-Mod. When R is Morita equivalent to S, if
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7 = (T, F), then ar = (a(T),a(F)) is naturally a hereditary torsion theory on S-Mod,
where « is the functor W ® g —. A classical result is then the following: The maximal
rings of quotients of R and S are again Morita equivalent. This is a consequence of the
fact that if 7 is the Lambek torsion theory then so is ar. Recall that the Lambek torsion
theory is cogenerated by the injective envelope of the ring viewed as a (left) module over
itself.

More generally let

0—R—Ey—E —E;,—-- (1)

be the minimal injective resolution of g R. Suppose 7, is the torsion theory cogenerated
by the injective module Ey & - -- & E,,. Then ar, is the torsion theory 7,(S) cogenerated
by Co® :-- & C,, where

0—85—3Co—C, — Cp —> -+

is the minimal injective resolution of §S. The following outlines a proof: By applying «
to (1), we obtain

0 — a(R) — a(Eg) — a(E)) — a(E2) — ---

and this is the minimal injective resolution of a(R) = W ® g R ~ W. Since W is an
S-progenerator the injective modules Co®- - -®C,, and a( Ep) B - - ® a(E,) cogenerate the
same torsion theory. Thus in particular (for n = 0) the Lambek torsion theory is carried
by o to the Lambek torsion theory. In general the localized rings R, (r) and S, (s) are
Morita equivalent. By making use of 7, (R) and 7,(S) one can show that when R is a prime
Goldie ring then an ideal of R is left reflexive if and only if the corresponding ideal in S
is left reflexive. The equivalence o preserves some other torsion theoretic properties such
as stability, faithfulness, boundedness and being prime if the theory is generalization of
Goldie torsion theory. Details will appear elsewhere.

For a general context (R, V, W, S) the functor « is not an equivalence, thus the transfer
of properties is not immediate. In [1] a special procedure is described: Let A, be the set of
right ideals J of S such that WIV C J for some 7-dense right ideal I of R. (In [1] we used
right module categories, right torsion theories, etc.) This set A, affords a fundamental
system of neighbourhoods of zero for a unique right linear topology on S. Let 7 denote
the hereditary torsion theory associated with the weakest Gabriel topology, stronger than
the above linear topology. Then 7 is a generalization of the torsion theory determined by
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the trace ideal Ts. Consequently there is a hereditary torsion theory ¢ on Mod-R such
that Mod (R, ¢) is equivalent to Mod (S, 7) under the restriction of Homs(V, -).

We finish by asking whether there is a unified way of associating torsion theories for
context equivalent ring?
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On direct sums of extending modules
and internal exchange property

KATSUNORI HANADA, JIRO KADO AND KIYOICHI OSHIRO

In this paper, we report several results on direct sums of extending modules, which will
appear in [1] and [2].

An R-module M is said to be an extending module if, for any submodule X of M, there
exists a direct summand X* of M which is an essential extension of X. The concept of
this module seems to be very primitive, but there are several kind of extending modules.
In fact, consider the following conditions for an R-module M:

(A) for any submodule X of M, there is a decomposition M = X* & M’ such that
X C. X*, where X C, X* means that X* is an essential extension of X.
(B) for a given decomposition M = z @ M; and any submodule X of M, there exists

a decomposition M = X* & Z ® M mth X C. X* and M’ C M.
(C) for any decomposxtlon M =" & M; and any submodule X of M, there exists a
1
decomposition M = X* & Y & M such that X C, X* and M] C M.
1
M with the conditin (A) is, of course, a usual extending module. We say that M is an
extending module for M = z ® M; if M satisfies the condition (B). And we say that M

is a normal extending modulle if M satisfies the condition (C), and say that M is a finite
normal extending module if M satisfies the condition (C) for any finite index set .

Finitely generated torsion free abelian groups are extending modules as a Z-module,
but not normal, in general. We emphasize that almost all known extending modules are
normal extending modules.

The final detailed version of this paper will be submitted for publication elsewhere.
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For extending modules, the following is an open problem:

Let M be an R-module with a decomposition M = Z @ M; with each M; an extensding

1
module. Then give a characterization for M to be an extending module.

Our main purpose of this paper is to announce some results on this problem by intro-
ducing generalizing relative injectivity.

Theorem 1 ([1]). For an R-module M with a decomposition M = M, @ --- ® M, the
followings are equivalent:
(1) M is an extending module for M = M, & --- & M,.
(2) (a) each M; is an extending module,
(b) for any M; and any direct summamd M; of M;, M; is a generalized M;-injective,
where generalized relative injectivity is defined as follows:

DEFINITION. Let P and @ are R-modules. @ is said to be a generalized P-injective if,
for any submodule A and any homomorphism f from A to @Q, there exists decompositions
P=PoPand QeQ, and a homomorphism f: P = Q and a monomorphism g : Q - P
such that, fora € A witha =&+% (@€ P and 3 € P), f(a) = (@) + (&), where f = g~1.

Corollary. Let M be an R-module with decomposition M = M, & --- & M,,. If each
M; is an eztending module end Mj-injective for any i # j, then M is an extending module
forM=M@®---®&M,.

REMARK. Let P and @ be extending modules and @ is a generalized P-injective. Then

(1) for any direct summand P* of P, Q is a generalized P*-injective.

(2) But we do not know that, for a direct summand Q" of @, whether Q" is a generalized
P-injective or not, but this holds if @ is a finite normal extending module or a non-singular
module.

For normal extending modules, we improve the theorem above as follows:

Theorem 2 ([1]). For an R-module with a decomposition M = M, & --- ® M, the
followings are equivalent:
(1) M is a finite normal extending module.
(2) (a) each M; is a finite normal extending module,
(b) for each M; and Mj (i # j), M; is a generalized M;-injective.

For the study of infinite direct sums of extending modules, we need the following con-
ditions: Let {M;}; be a family of R-modules.



(Az) For any {M,M,,...,M,,...} C {M;}; and {m; € M; | i = 1,2,...} such that
(0:m,) C (0: m;) for each i > 2, the sequence {N;>n(0: m;) | n = 2,3,...} terminates.

(A3) (A2) holds for NR,Kerp; C. miR, where @; is the canonical homomorphism
:m R — m;R.

Theorem 3 ([2]). Let M be an R-module with a decomposition M = Y_ & M; such

=1
that each M; is finite normal and M;-injective (i # j). Then the following conditions are
equivalent:
>}
(1) M is an eztending module for M =Y & M;.

i=1
(2) (a) each M; is an extending module,
(b) {M;}32, satisfies the condition (Aj}).

Theorem 4 ([2]). Let M be an R-module with a decomposition M =Y & M;, where
T

each M; is a uniform module. Then the following condition are equivalent:
(1) M is a normal extending module.
(2) (a) M; is a generalized M; injective for each i # j,
(b) {M;}; satisfies the condition (Ay),
(c) there does not ezist an infinite squence of non-isomorphic monomorphisms
{fe: My, > M, .} with all i € I distinct.

Theorem 5 ([2]). The following conditions are equivalent for a given ring R:
(1) R is a right co-H-ring.
(2) (a) R is a left or right perfect ring with the ascending chain condition for annihilator
right ideals of R,
(b) R is a generalized R-injective as a right R-module.

We raise the following open problem:

For a family {M;}; of normal extending modules, when is M = Z ® M; a normal
1

eztending module?

This problem seems to be not easy even for a finite index set 1.
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A NOTE ON SEMIPRIME RINGS
WITH DERIVATION

Motoshi HONGAN

Throughout, R will represent a ring, Z the center of R, I a nonzero ideal of R, and
d:R — R aderivation. As usual, for z, y € R, we write [z,y] = zy—yz and zoy = zy+y=2.
Given a subset S of R, we put Vr(S) = {z € R|(z,s] = 0forall s € §}. In [1], Daif
and Bell showed that a semiprime ring R must be commutative if it admits a derivation
d such that (i) d[z,y] = [z,y] for all z, y € R, or (ii) d[z,y] + [z,y] =0 for all =,y € R.

Our present objective is to generalize a theorem of Daif and Bell [1, Theorem 3] as

follows.

Theorem 1. Let R be a 2-torsion free semiprime ring, and I a nonzero ideal of R.
If diz,y] +|z,y) € Z or d|z,y] - [z,y] € Z forall z,y€ I, thenIC Z.

In preparation for proving our theorem, we state the following two lemmas.

Lemma 1. Let R be a semiprime ring, I a nonzero ideal of R, and a € R.

(1) Letbel. If [b,z] =0 forall z € I, thenb € Z. Therefore, if I is commutative,
then I C Z.

(2) If [a,z]) € Z for all z € I, then a € V().

(3) Let R be a 2-torsion free ring. If [a,[a,z]] =0 for all z € I, then a € Va([).

(4) Let R be a 2-torsion free ring. If [a,[a,z]] € Z forall z €1, then a € Vg(I).

(5) Let R be a 2-torsion free ring. If [e,(z,y]] € Z for all z, y € I, then a € Vr(I).

The final version of this paper will be submitted for publication elsewhere.
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Lemma 2. Let R be a semiprime ring, I a nonzero ideal of R, and d:R <+ R a
nonzero derivation such that d[z,y] + [z,y] € Z or d[z,y] — [z,y| € Z forall z,y € I.
If d(I) C Vg(I), then I is commutative, and so I C Z.

The next is a generalization of [1, Theorem 2].

Corollary 1. Let R be a 2-torsion free semiprime ring, Z the center of R ana
d:R = R a derivation. If d[z,y] + [z,y] € Z or d[z,y] — [z,y] € Z for all z, y € R,

then R is commutative.
Now, we will try to replace [z,y| with z o y in [1, Theorem 3].

Proposition 1. Let R be a 2-torsion free ring with identity 1. Then there is no
derivation d: R — R such that d(zoy) =zoy or d(zoy)+(zoy) =0 forall z,y€ R.

Remark. In Theorem 1 and Corollary 1, we can not exclude the condition “2-torsion
free” as below.
Z/2Z Z/2Z 0=
Z2Z Z/2Z ) "
(1 0), and d the inner derivation induced by a, that is, d(z) = [a,z] for all z € R.

Example. We denote by Z the integer system. Let R = (

00
Then R is a non-commutative prime ring with char R = 2, and d|z,y] + [z,y] € Z for all

T,y € R.
Finally, we state two questions.

Let R be a 2-torsion free semiprime ring, d: R -+ R a nonzero derivation, and I a

nonzero ideal of R. And let n be a fixed positive integer.

Question 1. Does the condition that d"[z,y] + [z,y] € Z or d"[z,y] - [z,¥] € Z
forall z, yc I imply that IC Z?
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Question 2. Does the condition that d™[z,y]+dP[z,y] € Z or d™[z,y] —d”[z,y] €
Z for some positive integers m = m(z,y) and p = p(z,y), and for all z, y € I imply that
I1CZ2?
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BOYLE'S CONJECTURE AND RINGS
CHARACTERIZED BY CONTINUOUS MODULES

Dinh Van Huynh and S. Tariq Rizvi

1. Introduction. Rings for which every quasi-injective right module is
injective were introduced as right QI-rings by Boyle ([1], [2]) and were studied by
many authors (see for example, [3], [10], [12], [13]). In Byrd [4], these rings were
called right QII-rings.

A ring R is called right hereditary if every right ideal of R is projective. If
every simple (resp., singular) right R-module is injective, then R is said to be a
right V- (resp., SI-) ring. SI-rings were introduced and investigated by Goodearl
in [11]. In particular, any right SI-ring is right hereditary.

It was shown by Boyle [1] that (two-sided) noetherian hereditary V-rings are
QI-rings. An example of Cozzens [6) shows the existence of a non-artinian QI-ring
which is also an SI-domain. All known examples of QI-rings are hereditary and
two-sided QI. Boyle has conjectured that:

Right QI-rings are right hereditary

(cf. Cozzens-Faith (7, p.116] and Faith [10]). It is also unknown whether or not a
right QI-ring is left QI. This question is unanswered even if we assume, in addition,
that the right QI-ring is right SIL

Our focus, here is to study rings for which all (or some) continuous modules
are injective instead of QI-rings. We show that a ring for which all continuous
modules are injective is semisimple artinian. Moreover, if we require the injectivity
only for (a subfamily of) all singular continuous right R-modules, then R is right
S1, in particular, R is right hereditary. Even though the Boyle’s Conjecture still
remains open, these results may provide an alternative approach to it.

2. The Results. Throughout, we consider associative rings with identity
and all modules are unitary modules. For a module M we denote by Soc(M) and
E(M), the socle and the injective hull of M, respectively. For a given module M
we consider the following conditions:
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(C1) Every submodule of M is essential in a direct summand.

(C3) Every submodule of M isomorphic to a direct summand of M is itself
¢ direct summand.

(C3) If H and K are direct summands of M with HNK =0, then H® K

is a direct summand.

A module is called continuous if it satisfies conditions (C,) and (C-), quasi-
continuous if it satisfies (C1) and (C3), and eztending (or CS) if it satisfies (C))
only. We refer to [8] and [14] for details.

Every quasi-injective module is continuous and the heirarchy is as follows

injective => quasi-injective = continuous = quasi-continuous => eztending.

In general, these classes of modules are distinct. We show that, over a ring R,
these classes of modules coincide if and only if R is semisimple artinian (Corollary
2).

The following useful lemma provides for the existence of continuous submod-
ules in an indecomposable quasi-injective module.

Lemma 1. Let M be a quasi-injective right R-module. If H is an essential
submodule of M such that M/H is noetherian, then every monomorphism of H
into H is an isomorphism. In addition, if M is indecomposable, then H is a

continuous module.

From Lemma 1, it follows for example, that if R is a ring such that E(Rg)/R
is noetherian, then R is the classical right quotient ring of itself.

Corollary 2. A ring R is semisimple artinian if and only if every continuous

right R-module is injective.

It would be interesting to know about the structure of rings whose extending
modules are continuous or whose quasi-continuous modules are quasi-injective.

By [3, Theorem 8] every non-singular quasi-injective module over a semiprime
right Goldie ring is injective. Moreover, by [15, Corollary 5], every continuous
module over a commutative noetherian ring is quasi-injective. Hence, every non-
singular continuous module over a commutative noetherian semiprime ring is in-
jective. From this and Corollary 2, not all singular continuous modules over such
a ring are necessarily injective. The ring of integers is an example which exhibits
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this conclusion.

For a commutative QI-ring R, [15, Corollary 5] provides the fact that every
continuous R-module is injective. Hence, by Corollary 2, R is a direct sum of
finitely many fields. This is also a consequence of [4, Proposition 2], or of the fact
that a commutative V-ring is von Neumann regular.

Further, [3, Theorem 8] together with [11, Theorem 3.11] shows that a right
SI-domain D is right QI. Hence by Corollary 2,if D is not a division ring, then a
non-singular continuous right D-module is not necessarily quasi-injective.

A module M is said to satisfy RSSC (restricted semisimple condition) if for
each essential submodule E of M, M/E is semisimple. Every semisimple module
satisfies RSSC, but the converse is not true in general.

Next, we restrict our consideration to the case when singular continuous mod-
ules are injective, and show in Theorem 3 below that this condition characterizes
precisely the right Sl-rings of Goodearl [11).

Theorem 3. For a ring R the following conditions are equivalent:

(a) R is a right Sl-ring;

(b) Every singular continuous right R-module is injective;

{c) Every singular continuous right R-module satisfying RSSC is injective.
In this case R is right hereditary.

While a right QI-ring is right noetherian, a ring of Theorem 3 may have
infinite right uniform dimension (see (11, Example 3.2]).

A ring R is said to satisfy the restricted right (left) minimum condition if for
each essential right ideal £ of R, R/E is an artinian right (left) R-module. By
Chatters [5], a two-sided noetherian, hereditary ring satisfies the restricted right
(and hence left) minimum condition. Hence, as pointed out by Faith in [10], for a
two-sided QI-ring R, the presence of the restricted right minimum condition in R
is necessary for the truth of Boyle’s Conjecture. In this connection, we note that a
right noetherian right V-ring R is right SI (and hence right hereditary) if and only
if R satisfies the restricted right minimum condition (cf. [11, Propositions 3.1 and
3.3]). Thus, by Theorem 3 and the known fact that a two-sided noetherian right
hereditary ring is left hereditary, it follows that a two-sided QI-ring R is hereditary
if and only if every singular continuous right R-module is injective if and only if
R is a right Sl-ring.
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However, the question whether a right hereditary right QI-ring is right SI,

remains open.

11.

12.

13.

14.

15.
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Units of Integral Group Rings of Finite Groups

E. Jespers®

The integral group ring ZG of a finite group is a Z-order in the semisim-
ple rational group algebra QG. Some of the most important questions on
this topic are:

1. Describe the structure of the unit group #4(ZG) of ZG. In particular,

determine the structure in terms of natural invariants associated with
ZG.

2. Find an effective method for the construction of the full unit group.
In particular, find a presentation of the unit group.

Historically the study of the units was initiated by Gauss, who investi-
gated the unit group of Z[i]. His work culminated in the celebrated Dirichlet
Unit Theorem proved in 1840. The latter result describes the structure of
the unit group of the ring of integers of an algebraic number field. It is,
however, still an open and challenging problem for finding a finite set of
generators for the unit group of such rings R, even in the important special
case that R is the ring of cyclotomic integers.

For the integral group ring ZA of a finite abelian group A, Higman
proved an analogue of the Dirichlet Unit Theorem, that is

U(ZA) = +A X F,

where F is a finitely generated free abelian group whose rank given in terms
of the structure of A. Hence answering question (1) for finite abelian groups.
Bass and Milnor constructed finitely many generators, called the Bass cy-
cleic units, for a subgroup of finite index in U(ZA).

We recall the definition of a Bass cyclic unit. Let g be an element of
order n in a finite group G. Also let { be a number relatively prime to n

*The author is supported in part by NSERC-grant OGP0036631.

53



and such that 1 < ¢ < n. Then the following element in Z{g) is a called a
Bass cyclic unit:

. feln) _ 1
(Ltg+- g™ )~ —— (1t g+ + g™,
where ¢ denotes the Euler p-function.
There is another important construction of a unit in the integral group
ring ZG of a finite group G. Let g,h € G and assume ¢ has order n. Then

1+(1-g)h(l4+g+---+¢™")
is a called a bicyelic unit. Of course also

1+ (1+g+---+g""Yh(l-g)
is a unit in ZG.

For noncommutative finite groups G it is well known that ¥(ZG) is
finitely presented. However very little is known concerning question (1).
Concerning question (2}, in recent years there has been given a lot of at-
tention to subgroups of finite index. Sehgal and Ritter constructed finitely
many generators for a subgroup of finite index in #(ZG) for several classes
of groups G. For details and further information we refer the reader to [7].

In joint work with Leal [1, 2], it is shown that the Bass cyclic units
together with (both types of) bicyclic units, generate a subgroup of finite
index in U(ZG) for all finite groups G, provided that G has no non-abelian
homomorphic image which is fixed point free and provided that the ra-
tional group algebra QG does not contain simple components of an excep-
tional type. The exceptional types are: noncommutative division rings other
than totally definite quaternion algebras, two-by-two matrices over Q or a
quadratic imaginary extension of Q or a noncommutative division ring ( so
this has to do with the 2-torsion in the group G). In case some of these
components appear the above mentioned result is not true in general. The
ultimate reason for this is that the celebrated congruence theorems (due to
Bass, Milnor, Serre, Vaserstein, Bak and Rehman) fail for the general linear
groups defined in the mentioned exceptional components. However, we de-
veloped an algorithm to calculate finitely many generators for a subgroup
of finite index in /(ZG) for any finite nilpotent group (thus even when such
exceptional components occur).
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Furthermore, in (2], for nilpotent finite groups G, we have characterized,
in terms of homomorphic images of the group G, when precisely such excep-
tional components occur. Even more general, we describe which degree one
and two representations occur. In work in preparation [3], we give an upper
bound on the index of the subgroup generated by the Bass cyclic units and
bicyclic units in the full unit group (this for a large class of groups, including
nilpotent groups of odd order).

In [6] finitely many generators for a subgroup of finite index in the cen-
tre of the unit group have been given. These generators are products of
conjugates of Bass cyclic units.

In this lecture | concentrate on some recent joint work with Leal [4],
and Leal and del Rio [5]. We describe when the unit group of the integral
group ring of a finite group has a subgroup of finite index which is either
a free abelian product of frece nonabelian groups or a free product of free
abelian groups (hence investigating when Higman’s structure theorem can
be generalized in an obvious way to the noncommutative case). It follows
that this question is completely determined by the rational group algebra
structure.
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ORTHOGONALITY OF THE IDEMPOTENT ELEMENTS
WITH RANK ONE IN PRIMITIVE RINGS

JIANG ZIMEI

Let R be a primitive ring with nonzero socle, #t a faithful irreducible right R-module,
A the centralizer of M, and ) the complete ring of linear transformations of left vector
space M over division ring A, then R can be considered as a dense subring of Q. If
{Za}aen is a basis for M, a subset {e, }qea of Q is called a corresponding basis of {2, }aea
iff z;e; = 6;;z; for any i € A, where §;; is the Kronecker delta notation. In [1], Jacobson

showed that if L = i @®L; is a direct sum of minimal right (left) ideals L,,L,,---,L, in
i=]
R, then there exists a set {e,,ez,- g e, } of orthogonal idempotent elements e; of rank one

in Rsuch that L = E ®e;R(L = E @ Re;). In [2], Xu Yonghua improved this result and

obtained that e; € L for all 5. Moreover he indicated that let R be a primitive ring with

nonzero socle, and L = 3° @®L; be a direct sum of countably minimal right (left) ideals
i=1,0

L; of R. Then there exists a set {e;}i=,.. of countably orthogonal idempotent elements
e; of R such that L = E ®e,R (- E ®Re.), where e;R (Re;) are minimal right (left)

ideals. Then we conSIder t.wo questlons the first is for the direct sum L = Y @L; of
=1,

countably many minimal right ideals of primitive ring R, how many subsets the ring R has

such that every subset {e;}i=1,.. of R consists of countably many orthogonal idempotent

elements e; of rank one and satisfies L = Y. ®L; = Y. ®e;R? The second is whether
. g=1,000

i=1,

{e;}i=1,.. can be extended to a corresponding basis of some basis {za| o € A} for M.
Let R, 2, A and Q be the same as above, N be the set of all positive integers. In this

paper we show that (1) if L = Y@L, is a direct sum of countably many minimal right
TEN

ideals L; of R, then there exists a family of subsets I, = {e,,| i € N} (a € W, |[W] is

infinite) of R such that L = Y @®e,, R for each a € W, where every I, = {e,, | i € N}
1EN

is a set of countably many orthogonal idempotent elements e,, of rank one in R; (2)
a necessary and sufficient condition of a set {e;| i € N} of countably many orthogonal
idempotent elements e; with rank one in R can be extended to a corresponding basis
{ei| ¢ € A} of some basis {z;| £ € A} of M over A; (3) there exists a primitive ring R
and L = J ®L; in R, where the L; are minimal right ideals of R, but R has no subset
{eil i € ;\{E; of countably many orthogonal idempotent elements of rank one such that
L= E ®e;R and {e;| i € N} can also be extended to a corresponding basis {e;| i € A}

of some basis {z;| i € A} of M over A.

Let m° be the conjugate vector space of M over A. If T is the ring of linear transfor-
mations of right vector space " over A, then M* can be considered as a left 2-module
and T' D Q. If z € M and f € M", we denote by < z, f > the image of  under f. For any
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w € N we write p(w) = dim Pk and call p(w) the rank of w. Let X = {u € 2| u® = u and
p(u) = 1}, then u € X iff uQ (Qu) is a minimal right (left) ideal in Q. It is well known
that for any ¢ € X, eR = € is a minimal right ideal of R iff € € R. It is easy to prove
that if e € X, there are z € M and z* € M* such that ze = z, ex* = =, M = zeld and
o™ = Nez*. The main results of this paper are as follows.

Proposition. (Theorem 3 in [3]) Let A,Q,M* and X be the same as above, and

S be the socle of . Then there exists a lattice isomorphism @ of the lattice of vector

subspaces of 9" onto the lattice of right ideals of 5. If N* is a vector subspace of m~,

then B(N*) = %@e,ﬂ, where e; € X for all j € J, and the set A = {0 # ¢;z] = z} €
ks

N*|j € J} is a basis of N* over A.

Theorem 1. Let R be a primitive ring with nonzero socle, and A, g, m*,Q, X be
the same as above, dim®t is infinite. If L = ¥ @L; is a direct sum of countably many

ieN
minimal right ideals L; of R, then there exists a family of subsets I, = {e,, | i € N}
(o € W, |W]| is infinite) of R such that L = } @e, R for cach a € W, where every
i€N

{es; | i € N} is a set of countably many orthogonal elements e,, in RN X.

A direct sum of countably many minimal left ideals of a primitive ring R has the
similar structure mentioned above.

If L = ¥ ®e;R is a direct sum of countably many minimal right ideals ¢; R of primitive

ieN

ring R, and B = {e;}ien is the set of countably many orthogonal elements of X N L,
generally, B can not always be extended to a corresponding basis of some basis of 2.

Theorem 2. Let R be a primitive ring with nonzero socle, and A, m,m*, Q, X be the

same as above, dim is infinite. If L = ¥~ &e; R, where the ¢; R are minimal right ideals
ien

of R, and B = {¢; | i € N} is a set of countably many orthogonal elements in LN X. Then

B can be extended to a corresponding basis of some basis of M iff for any v € X, there

exists at most finitely many elements e;, (1 < j < k) in B such that Qune; QN X # 0.

Theorem 3. Let R be a primitive ring with nonzero socle, and A,m, ), X be the
same as above, dimM is infinite. If L = 3 ®a.Q, where the ¢;Q are minimal right ideals

of R, a; € R for any i € N. Then a set ‘E‘“= {ei| ¢ € N} of countably many orthogonal
elements of X N L can be extended to a corresponding basis of some basis of M, and
al+talt---+a,.0Q=eR+e+--+e,0 for any n € N iff there exists a basis
A = {Z,}aea of M over A such that for any element a,,, the set B, = {z, € A| zq4a, # 0}

n-—1
contains at most n elements, and |B,,\ ( U B;)' =1 for any n > 2.
=1

By Theorem 2 and Theorem 3, we can construct a left vector space M over a division
ring A, the ring Q of linear translormations of M over A contains a dense subring R

and L = ¥ @®L; in R, where the L; are minimal right ideals of R. If there exists a set
ien
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B = {e;| i € N} of countably many orthogonal idempotent elements ¢; of rank one in R

such that L = 3 &L; = } ®e; R, then B can not be extended to a corresponding basis
i€R €N
of some basis of M.

Example. Let V be a right vector space over division ring A and dimV = R,. Let
oM = Homa (Va, A), then Mis a left vector space over A and dimM is infinite. Il z € V and
f € M, we denote by f(z) the image of z under f, then f(z) € A. Let 9" be the conjugate
space of M, define a map ¥ : V — M" by z — z*, where < f,z" >= f(z) for all f € m.
It is clear that the vector spaces V and (V) are isomorphic Let §? be the ring of linear
transformations of M over A, X = {u € Q| v* = u and p(u) = 1}, then (M, H(V)) is a
pair of dual vector spaces over A. Say y(V) =, R = L‘(sm,tm’) ={we Q| wm' C '}
and S = F(m,m’) = {w € R| p(w) is finite }. By Theorem 2 of [4] R is a dense subring
of Q and has nonzero socle 5. Let @ be the mapping in the Proposition, then by [3] we
have (M) = S = _Z;‘GBL.-, where the L; are minimal right ideals of R, and N is the set of

1€
all positive integers. Let B = {e;}icn be a set of countably many orthogonal idempotent
elements ¢; of rank one in R. If g(m') = E bL; = E ®e; R, choose 0 # z] € M’ such

that e;z] = z] for all ¢ € N, then by the Proposmon {:c }ien is a basis of M over A. For
any t € N choose z; € V such that z] = ¥(z;), then {z;};cx is a basis of V over A, hence
there exists an element g € M such that g(z;) = 1 for all { € N, then < g,z] >=1 for all
t € N. Therefore there exists u € X such that gu = g and ue; # 0 for all i € N, we have
DQune N X # 0 for all i € N. By Theorem 2 we obtain that B can not be extended to
a corresponding basis of some basis of M.
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NOTE ON SEMINORMAL OVERSEMIGROUPS AND
OVERRINGS

Mitsuo KANEMITSU and RyUk1 MATSUDA

All rings considered are commutative with identity, and semigroups are commutative,
cancellative and torsion-free with 0. The operation is written additively.

Let D be an integral domain with quotient field K and let S be a semigroup.

We denote by ¢(S) := {81 — 32 | 81, s2 € §} the quotient group of S. T is called an
oversemigroup of S if T is a subsemigroup of ¢(S) containing S. D is said to be seminormal
if, whenever a € K satisfies @® € D and a®> € D, thena € D.

Also, we say that S is a seminormal semigroup if 2¢,3a € S for a € ¢(S), we have a € S.

An element ¢ is said to be integral over § if nt € S for some positive integer n. Let T be
a semigroup containing §. T is called an integral semigroup over S if each element of T is
an integral element over §S. .

An tdeal of S is a nonempty subset / of § such that ] D s+ J:={s+¢|i € I} for each
8€ S Anideal Tof Sis primeifz+y € [ impliesz € [ ory € [ for z,y € S. Also, set
M = {m € § | m is a non-unit element of S$}. Then M is the unique maximal ideal of §.

A semigroup S is called a valuation semigroup if either « € § or —a € § for each
a € G = q(9).

From now on, D denotes a domain, with integral closure D and quotient field K.
D.F.Anderson, D.E.Dobbs and J.A.Huckaba investigated seminormal overrings in [1].

OPEN PROBLEM([1]). Let D be a subring of a domain T, such that each ring contained
between D and T is seminormal. Is either D is a field or T an overring of D 7

[1, pp.1427-1428] says that we can show the answer is affirmative if D is integrally closed
and has a prime ideal of finite positive height. The question remains open, in general ([1]).
But this open problem is solved affirmatively in |2].

[1I(12]). Let D be a subring of a domain T, such that each ring contained between D and
T is seminormal. Then either D is a field or T is an overring of D.

|A SKETCH OF PROOF]. Suppose the contrary, that is, DgK =¢(D)and T ¢ K. We

may assume that

(1) T is integral over D.

@TnK=D.

(3) (D, M) is a quesi-local domain, where M is the unique maximal ideal of D.

Take w € T — K. Then Ty = D|w] is integral over D. Therefore T is a finite D-module.
Take any non-zero element m of M. Put z := mw. Since Djz?, 1] is seminormal, we have
z € Djz?,23%). Hence we have
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T=rg+rext+ - 4rz” (r;€D,i=0,2,---,n).

We set

tl :=w_r2mw2_..-—1‘nmn-‘wn€ TﬂK = D-

It follows that
w— it =romw? + -+~ +rom™ " € MT).

Thus we see that T} = Dlw| = D + MT\. According to Nakayama’s lemma, T} = D.
Hence w € D, a contradiction.

In the proof, Nakayama's lemma is used.

[II] Let S be a subsemigroup of a semigroup T, such that each semigroup between S and I’
is seminormal. Then either S ts a group or I' i3 an oversemigroup of §.

[A SKETCH OF PROOF|. Suppose the contrary, that is, S g G=¢(S)and T ¢ G.

We may assume that (1) I is integral over § and (2) § =TI'NG.

Select w € I' — G. Take any element m of M, where M is the unique maximal ideal of S.
Put z := m+w. Then 2 € I'=G. Since §[2z, 3z] is seminormal, we have that z € §[2z, 3z|.
Thus z = 38 + 2n,z + 3nyz for ny, ne € Zy, where Zy is the set of non-negative integers, and
s€S. Putp:=2n,+3n2—1. Thenp > 1. Hence 0 = s + pr = s+ pm + pw. Since
s+ pm € S, we have that pw € 'NG = §. Hence m is a unit of S. This is a contradiction.

The proof of [IV] does not use Nakayama’s lemma.

[IO] ([1, Corollary 2.4 and Theorem 2.5]) Let dim(D) = 1. Then: .

(1) Each overring of D is seminormal if and only if both D is seminormal and D is a Priifer
domain.

(2) If D is seminormal and T is an integral overring of D, then T is seminormal.

[IV] is the semigroup version of [III].

[IV] Let S be a semigroup with dim(S) = 1. Then:

(1) Each oversemigroup of S s seminormal if and only if both S is seminormal and S is
a valuation semigroup, where S is the integral closure of S.

(2) If S is seminormal and T is an integral oversemigroup of S, then T is seminormal.

The proof of [I1I] is not easy. But the proof of |IV] is easy.

[V] ([1, Theorem 2.3]) Let L be a field containing D. Then each ring between D and L is
seminormal if and only if

(1) D = K and L is algebraic over K; or

(2) L = K, each integral overring of D is seminormal, and D is a Priifer domain.
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Zariski’s main theorem is used in [V].
We recall that Zariski’s main theorem.

Let D C T be rings and P a prime ideal of T. Then P is said to be isolated over DN P
if P is maximal and minimal with respect to the primes of T' whose intersection with D is

DnP.

ZARISKI'S MAIN THEOREM. Let D C T with D integrally closed in T such that there
exist ¢1,%2, -+, € T with T integral over D[t,:--,t,]. If a prime ideal P of T is isolated
over PN D, then there exists an s € D — DN P such that T, = D,.

[V] holds for a semigroup S. Namely:

[VT] Let S be a subsemigroup of a group L and let G = ¢(5). Then each semigroup between
S and L is seminormal if and only if (1) § = G and L is integral over G; or (2) L = G, each
integral oversemigroup of S is seminormal, and the integral closure S of § is a valuation
semigroup.

In [VI] no special tools are used.
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REGULARITY IN HOM
Friedrich Kasch

1l, Let R be a ring with leR and denote by M and N R-rightmodules.
Then if S:= Endg(N}, T:= Endg(M), Homg(M,N) is a S-T-bimodule .
Denote by U a S-T-submodule of Homg(M,N). Examples for U are
A(M,N) resp. /(M,N) = homomorphisms from M to N with large ker-
nel resp. small image and RAD(M,N) = radical of Homg(M,N). In the
study of regularity properties of a ring, very often one has to
consider a two-sided ideal A of R and the factorring R/A. The
similar procedure as in the ring case, that means, to work with
HomR(M,N)/U, is not usefull, since this is not any more a "Hom".
But we would like to work still with the good properties of homo-
morphisms, that are the kernel, the image and the produkt. There-
fore we use the following definition.

Definition,

f e HomR(M,N) is called U-regular :<==>there exist g e HomR(N,M)
and u e U such that

(1) f = fgf + u .

A subset of HomR(M,N) is called-U-regular, if all of its elements
are U-regular.

We intend to show, that this is a valuable definition for the

study of regularity in Hom.

2. It is well-known, that in a ring R, there exists a largest re-
gular two-sided ideal A and R/A has no nonzero regular two-sided
ideal. This theorem is also true in our general situation and can
even be extendet to the category R-mod. For f € HomR(M,N) we de-
note by <f> the S-T-submodule of HomR(M,N) generated by f. Then
we define (similar to the ring case)

Reg(U):= {f e Hom (M, N) | <£»> is U-regular} .
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Theorem 1.
Reg(U) is the largest U-regular S-T-submodule of HomR(M,N) and
Reg(Reg(U)) = Reg(U) .

3. If U is one of the examples ((M,N), <(M,N) or RAD(M;N), we
would be interested to get informations about Reg(U). We give
the following example. For the conditions (Cl;M) and (C2:M,N) see
the abstract of my talk:"Regular and partially invertible ele-
ments*”.
Theorem 2.
(Cl;M) and (C2;:;M,N) imply

Reg( A(M,N)) = HomR(M,N) .
The dual (discretness) conditions imply

Reg( V(M,N)) = Hom_(M,N) .

4. Now, we consider the special case M = R, Then HomR(M,N) = N
by the isomorphism %: Hom (M,N) 3 f+— f(1)z N . Then N is a
S-R-module and HomR(N,R) = N is the dual module. This situation
was studied by J.Zelmanowitz [1]. He called b € N regular if
there exists g ¢ N* such that b = bgb. Now, if Ug;SNR, then by
applying ¥ on (1) we get

b = bgb + u , ue?dl .,
Then theorem 1 states, that there exists a largest U-regular
S-R-submodule Reg{(U) of N and Reg(Reg(U)) = Reg(U). Also for
U =0 (case of J.Zelmanowitz), this result is new and may be of
some interest. Also theorem 2 can be considered in this special
R is injective, then (Cl;R) and (C2;R,N)
are satisfied for all N and f ¢ A(R,N) means, that the annihila-

case. If for example R
ter of f(1) is large in RR.

5. We extend theorem 1 about Reg(U) to the category R-mod of all
unitary R-rightmodules. For this we assume, that W is an ideal in
R-mod. Examples for ideals are A, Yand RAD. If W is an ideal,
we denote W(M,N):= wf\HomR(M,N). For f ¢ HomR(M,N) we write

< £ for the ideal in R-mod generated by f. We denote f W-regular
if it is W(M,N)-regular (U = W(M,N) in (1)). Now let be
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REG(W)(M,N):= {f & Hom (M, N) | «<£» is w-regular} .
REG(W) is then defined by

REG{W) N HonR(M,N)~= REG(W)(M,N) .
Theorem 3.
REG(W) is the largest W-regular ideal in R-mod and

REG(REG(W)) = REG(W) .

If R is semi-simple, then REG(0) = R-mod. Are there other rings
R such that
(2) REG(W) = R-mod ,
if W is one of the ideals A, ¥ or RAD ? Does there exist rings
R such that

REG(W) = W
for one of the examples ? Does there exist for an arbitrary ring
R a smallest (or minimal) ideal W such that {2) is satisfied ?

These and other guestions can be raised.

It is also possible, to study W-regularity in more general cate-
gories than R-mod. And what are the properties of pi-elements
and the total for U-regqularity resp. W-regularity ? (For this
topic see the abstract of my talk: "Regular and partially inver-
tible elements".).
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REGULAR AND PARTIALLY INVERTIBLE ELEMENTS

Friedrich Kasch

1. We consider the definition of a regular elementr of a ring R
(with 1 e R):

(1) r = rsr . r,s ¢ R .

Since we are also interested in regularity in Hom, we give also
the definition of a regular homomorphism f e HomR(M,N) :

(2) f = fgf ,

where M and N are unitary R-rightmodules and g e HomR(N,M). A
subset of R resp. of HomR(M,N) is called regular, if all of its
elements are regular. In the following I try to convince the
reader, that the elements “in the middle" of (1) and (2) - that
are s and g - are not less interesting then the regular elements,
2. By f and g we denote always homomorphisms in HomR(M,N) resp.
HomR(N,M), even if they do not satisfy (2).

Lemma. The following properties are equivalent for g :

(i) J£ [0 4 £ =£g9f] ,
(ii) 3£ [gf =t e=¢e®> 4 0],
(iii) 3£ [fg =: d =a® $ 07 .

(iv) 3£ [ 0 ¥ gfg is regular ] ,
(v) Jac®m, Bq_@N , A4 0 [ B2 b—g(b) ear is an iso. ]

If g has the properties of the lemma, we denote it as partially
invertible = pi (as abbreviation). We use this notation with re-
spect of (ii) and (iii). If g is not pi, then with respect of
(v) we call it a total nonisomorphism. It means, that g does not

induce an isomorphism on any nonzero direct summands of N and M.

Assume now g = gfg + o , then this implies (ii) in the lemma,
hence : If g is regular, then it is pi. So far we know for homo-

morphisms in HomR(N,M):
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set of nonzero set of
(3} {regular homomorphisms} = {pi—homomorphisms}
Further, we see by (i} - (v} , that the pi-homomorphisms are all
factors of regular homomorphisms $ 0 .(To have an easy example
in the case of a ring, where the inclusion in (3) is proper,

consider the ring Z/pipzz with different primnumbers pl,pz.).

Now, we intend to show, that the right set in {3) is "better"
then the left !
Lemma. If gl e HomR(x,M) R g2 e HomR(N,x) for arbitrary

R-rightmodules M,N,X and if g := 9,9, is pi, then 9,.9, are pi.

This means, that the right set in (3) is closed under taking
factors. Since regular elements $ 0 are pi, the lemma implies,
that the factors of nonzerc regular elements are pi-elements !
Together with the remark following (3) we have the interesting
statement:

The pi-homomorphisms in HomR(N,M) are exactly all the factors
of all nonzero regular homomorphisms in HomR(N,M).

For a ring:

The pi-elements in R are exactly all the factors of all non-

zero regular elements in R.

Now we consider the complements of the sets in (3) in HomR(N,M)
(resp. in the ring case in R). The complement of the left set
has no {valuable ?) structure, but the complement of the right
set has interesting properties. We have for this complement the
notation " total from N to M ",abbreviation

TOT(N,M) := {h e Hom.(N,M) | h is not pi} .

For a ring R we write
TOT(R) := {t e R | t is not pi} .
Hence the total is the set of all total nonisomorphisms. The
total has the following properties :
(1) TOT is a semi-ideal in the categorie R-mod. That means:
1) TOT(N,M) $ @ , since 0 e TOT(N,M) ;
2) If in a product of homomorphisms at least one factor
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is in TOT, then the product is in TOT.

(II) A (N,M):= {h e Hom_ (N, M) | Ke(h) is large in N} ,
V(N,M) := {h & Hom_(N,M) | Im(h) is small in M} ,
Rad(N,M) are all containd in TOT(N,M) .

(I11) If h e TOT{N,M) , u € RAD{(N,M) , then h+u e TOT{(N,M) .

The properties (I) and (IiI) suggest the question: Under which
conditions is TOT(N,M) additively closed ? If it is additively
closed, then it is a T-S-submodule of HomR(N,M), where § :=
EndR(N) , T = EndR(M). In the ring case is TOT(R) then a two-
sided ideal.
3. We give now examples for conditions such that TOT(N,M) is
additively closed. (gee [3]| - |8]).
1.) If N is selfinjektive or selfprojektive and supplemented,
then for arbitrary M both TOT(N,M) and TOT(M,N) are add. closed.
2.) If N is injective or semi-perfekt, then RAD(N,M) = TOT(N,M).
3.) If N is continuous and S:= EndR(N), then RAD(S) = TOT(S).
%.) Example 3.) can be generalised by "splitting"” the continuous
properties on M and N {for cont.prop. see |2]|). We need the
following properties:
(C1;N) : Every submodule of N is large in a direkt summand of N.
(C2°:N): If a submodule of N is isomorphic to N,then it is a
direkt summand of N .
(C2;N,M): If a submodule of M is isomorphic to a direct summand
of N, then it is a direct summand of N .
(C3;N): If B,,B,
Bl + B2 is a direct summand of N.

If all these conditions are satisfied, then

A(N,M) = RAD(N,M) = TOT(N,M) .
The dual (discretness) assumtions imply

V(N,M) = RAD{(N,M) = TOT(N,M) .
5.) Examples for modules with RT- resp. LE-decompositions. A
module A is denoted as RT-module :¢=)> RAD(EndR(A))=T0T(EndR(A)),
If EndR(A) is a local ring, then A is called LE-module. Then
LE-modules are also RT-modules. A decomposition

are dirct summands of N and Bln BZ = 0, then
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M= @ A.
jed J
is called RT- resp. LE-decomposition : ¢=yall Aj are RT- resp.
LE-modules.
We give now some examples for properties of RT- resp. LE-decom-
position, which .show the value of our notions (see |3| and |4]):
(i) If M has a RT-decomposition and T:= EndR(M), then TOT(T) is
an ideal in T.
(ii) If M has a finite RT-decomposition, then M is a RT-module.
(iii) If M has a LE-decompositio, then T/TOT(T) is a product of
endomorphism rings of vector spaces over division rings.
(iv) I1f M has LE-decomposition, then the followingcaonditions (*)
and (%) are equivalent:
(*) Every LE-decomposition of M complements direct summands
(¥) RAD(T) = TOT(T) .

#; For furthes study of the notions "partially invertible" and
"total" , we propose the following

Programm:

1) Extend "all" (definitions and properties) from regular ele-
ments to pi-elements.

2) Extend "all" from rings to Hom.

3) For the study of regularity in Hom use the "relative" regula-
rity: £ = fgf + u , u e Ug;sHomR(M,N)T (see the abstract of my
talk about "Regularity in Hom").

4) Extend the notions "pi-element” and "total" to the relative
regularity (in 3)).

5) Extend results for LE-decomposition to RT-decompositions.

REFERENCES

See references in the abstract of my talk:
"Regularity in Hom "

Méthematisches Institut der Universitat Minchen
Theresienstr. 39 . 80333 Miinchen , Deutschland {Germany)
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ON THE STABLE MODULE CATEGORY OF A SELFINJECTIVE ALGEBRA

O1T0 KERNER

This talk reports on some results from the joint paper [4] with K. Erdmann.

1. Notations A denctes a finite dimensional, associative, connected k-algebra (with identity 1) over
some algebraically closed field ¥ and A-mod denotes the category of finite dimensional left A-modules.

The algebra A is called self-injective, if A is injective as a left (and right) A-module. Important examples
for self-injective algebras are group algebras kG, where G is a finite group.

If A is self-injective, A-mod denotes the stable category of A-mod. Its objects are the A-modules. The
morphism spaces are Hom(X,Y) = Hom4(X,Y)/P(X,Y), where P(X,Y) is the subspace of Hom4( X, Y),
defined by the maps f : X = Y factoring through a projective (= injective) module. Stable module
categories have played in the past years a crucial role for classification problems of self-injective algebras,
see for example [2].

If C is a class of modules, add C denotes the full subcategory of A-mod, consisting of direct summands of
finite direct sums of objects of C.

2. Concepts from Auslander-Reiten theory If A is a finite dimensional algebra, the Auslander-
Reiten quiver I'(A) of A or, more precise of A-mod is defined as follows.

(1) The vertices of ['(A) are the isomorphism classes [X] of the indecomposables X in A-mod.

(2) Let rad(A-mod) denote the Jacobson radical of A-mod. For indecomposables X,Y a morphism f €
rad(X,Y)\rad?(X,Y) is called irreducible and Irr(X, Y) denotes the factor-space rad(X, Y )/ rad?(X,Y).
The number of arrows from [X] to [Y] is dimy Irr( X, Y).

The quiver (= directed graph) ['(4) is locally finite that is at each vertex there are only finitely many
arrows starting and ending. This is proved by the following argument.
If X is indecomposable and not projective (not injective) and 0 = r.X 0} ey (y—')> X=0

0-X 0} ) O (9—'); 7=X — 0) is the Auslander-Reiten sequence ending (starting) in X, where the
Y; are indecomposable and pairwise non-isomorphic, then the r; components of the maps f;, g; define a
basis of the corresponding spaces of irreducible maps, see for example [1]. The modules rX and =X are
indecomposable and uniquely determined by X.

r and 7~ are called the Auslander-Reiten translations. They define an additional structure on ['(A4), also
denoted by r and r~. Hence I'(A) is a translation quiver.

Normally T and = are not endo-functors of A-mod. If A is self-injective, then 7, 7~ induce equivalences
1,7~ : A-mod = A-mod

The Heller functors 2, Q2~! define equivalences on A-mod, too.
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The connected components of the quiver I'(A) of a finite dimensional algebra A are called Auslander-
Reiten components of T'(A) or A. If T'(A) has a finite component C, then C = T'(A) holds, and A is of
finite representation type, see [1]. Hence we restrict to infinite components.

We will not distinguish between indecomposable modules in A-mod and vertices of T'(A).

3. Stably quasi-seriid components A component C in the Auslander-Riiten quiver I'(A) of A is
called regular, il it coniiuns ncitier projective nor injective vertices. Reguiar vomponems of type Z Ag,
or ZAe, f(t™) (i.e. tubes of rank m) are called quasi-serial. The reason for this name is as follows.
a) If A is hereditary and 7 is a tube in '(A), then the category add 7T is an ab=lian serial category.

b) If C is of type Z Ao, Or Z Ay /{7™}), a module X in C is called quasi-simple, if the middle term X (2)
of the Auslander-Reiten sequence 0 = X — X(2) = =X = 0 is indecomposable. If X is quasi-simple
in C, then there exists a unique infinite sectional path of irreducible monomorphisins

X=X(1)=2X(2>---2X(m)—>--

If Y is indecomposable in C there exist unique r > 1 and Z quasi-simple with Y = Z(r). The number
is called the quasi-length of Y and Z is the guasi-socle of Y.

Normally add C is not serial, but for X quasi-simple and 1 < i, j the irreducible maps induce a short exact
sequelnce
()02 X)) = X(i+j) =7 X(G) =0

see for example [5], if A is hereditary.

If A is self-injective and C is an Auslander-Reiten component of A, we get the stable part of C by deleting
the projective-injective vertices of C. The stable part of an Auslander-Reiten component is called a stable
componenl. An Auslander-Reiten component is called stably quasi-serial if its stable part is of type Z Ao
of Z Ao /{t™). This is justified, since a similar result as (*) holds for stably quasi-serial components, see
[4], 2.3, 2.4. 1t seems that most of the components of the Auslander-Reiten quiver T'(A) for a sell-injective
algebra A are stably quasi-serial, see for example [3].

4. Some results Here always A denotes a connected self-injective algebra. The presented results
deal with Hom(.X,Y), where X and Y are in the same stably quasi-serial component of I'{A). An
indecomposable module X is called stable brick if End(X) = k.

One of the basic results is

Proposition 1. Let f: X = X be a chain of irreducible maps in a stably quasi-serial components on a
sectional path. Then f ¢ P(X,Y).

For tubes this result implies
Theorem 2. Let T be a lube of rank m. Then T is a stably standard tube, that is the stable category
k(T is equivalent lo the mesh-category kT of the stable part T of T, if and only if the m quasi-simple

modules X,...,7™VX in T arc pairwise stably orthogonal (i.c. Hom(X,7'X) = 0 for 0 < { < m} stable
bricks.

For the stable endomorhism rings End(M) one gets.



Theorem 3. Let C be a stably quasi-serial component and X quasi-simple in C.

(a) dim End(X(i})) < dimEnd(X (i + 1)) for all i.

(b) IfC is a lube, or if A = kG is a group algbra, then {dimEnd(.X(i)) | i € IV} is unbounded.
(c) ¥ G is a p-group anid A = kG, then dimEnd(X (i)) < dimEnd(X (i + 1)).

A corresponding result. ulso holds for dim Hom(X (i), 7™ X (i)) with m # 0.

It is a central tool for the proofs, that Hom(X, —) behaves well on short exact sequencs, see [4],1.4.

Lemma 4. (a) If0 o {/ = V = W = 0 is a short ezact sequence in A-mod and M is an A-modules,
then the induced sequence
Hom(M,U) = Hom(M, V) = Hom(M, ¥)

18 exact.

(b) f0 = X = E = X = 0 is an Auslander-Reilen sequence and M is indecomposable, not isomorphic
to X and Q' X, then the induced sequence

0 — Hom(A/, 7 X) = Hom(M, E) = Hom(M.X) =0

is exacl.
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GLOBAL DIMENSION OF TWISTED GROUP RINGS

EUN SUP KIM

Let K be a commutative Noetherian domain with identity, K* the group of units
in X, G a finite group acting on K via a homomorphism ¢t : G — Aut(K) and let
[a] € H%(G, K*). We denote by KfG the crossed product.

Let S be a subgroup of G, and let [a] € H%*(G,K*). The restriction of [a] to
H?%*(S,K*) is denoted by Ress([c])-

In (1], E. Aljadeff and S. Rosset showed that gldim K#G < gl dim K(G < gldim KG.

So it is natural to ask for the following Question.

Question (K. A. Brown)
gldim K8 G < oo if and only if for any S < G with Resg([a]) = 1, gldim K,S < oo.

The author gave the answer of the Question.
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QUOTIENT RINGS OF FINITE NORMALIZING
QF-EXTENSIONS®

YOSHIMI KITAMURA

The purpose of this note is to give a relationship between a maximal
quotient ring of a ring A and of its subring B in case A is a finite normalizing
quasi-Frobenius extension of B.

Throughout the paper, all rings are associative with identity, all ring
extensions contain the cominon identity and all modules are unital unless
otherwise stated.

The notation gMs stands for M a left R- right S-bimodule. For a
right R-module Mg, we denote the injective envelope of Mg by E(Mp) or
simply E(M) if there is no ambiguity. We say that Mg has finite Goldie
dimension if there do not exist infinitely many nonzero submodules whose
sum is direct. A ring R is said to have finite right Goldie dimension if R
bhas finite Goldie dimension as a right R-module. A module M is said to be
weakly injective if every finitely generated submodule of its injective envelope
E(M) is contained in a submodule of E(M) isomorphic to M ([3]). Also,
M is said to be tight if every finitely generated submodule of its injective
envelope E(M) can be embedded in M ([2]). A weakly injective module
is obviously tight. Conversely, a tight module is weakly injective if it is a
finitely generated module of finite Goldie dimension. For other unexplained
terminology we refer to [8].

The following extends [1, Theorem 4.1] slightly.

Proposition 1 Let R be a ring with finite right Goldie dimension. If every
right regular element of R is regular and R is weakly injective as a right
R-module, then the mazimal right quotient ring Qn.-(R) of R is a right
self-injective, classical left quotient ring of R, and conversely.

Let A/B be a ring extension. A is called a finite normalizing ezten-
sion of B if Ag has a finite subset of generators {a,,...,2,} each of which

*The detailed version of this paper has been submitted for publication elsewhere.
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normalizes B, that is, a;B = Ba;. Following to Kasch[4], A is a Frobenius
eztension of B if Ap is finitely generated projective and A = A" as (B, A)-
bimodules, where A* = Hoin(Ag, Bg). Also, following to Miiller[7], A is
called a right quasi-Frobenius (qF) eztension of B if Ap is finitely generated
projective and there exists a (B, A)-bimodule X such that A@ X = (A*)"
as (B, A)-bimodules. Similarly, a left ¢F extension is defined, and a right
and left ¢F extension is called a ¢F one.

For a gF extension, we have the following inheritance of finite Goldie
dimension.

Proposition 2 Let A/B be a ¢F extension. Then A has finite right Goldie
dimension if and only if B has finite right Goldie dimension.

The next follows from the proof of Proposition 1.2(2) of [5].

Lemma 3 Let M be an (8, R)-bimodule with a finite subset {m,,...,my,}
such that M = 37, m;R and Sm; = m;R for each i. Let X be a right R-
module and Y its submodule. If Yg is essential in Xp, then Hom(Mg,YR)s
is essential in Hom{Mp, XRr)s.

Using the above lemma, we have

Lemma 4 Let A/ B be a finile normalizing right ¢F ezlension and X a right
B-module. If Y is an essential submodule of X, thenY ®@g A is essential in
X ®B A as a right B, and hence, as a right A-module.

As a consequence of Lemma 4, we have

Proposition 5 Let A/B be a finite normalizing right gF eztension and E
the injective envelope of Bg. Then E ®g A is an essential ezlension of Ap
and is the injective envelope of Ay. Moreover, if Bg is weakly injective
(resp. tight), then so is A4.

As a conseguence of the above proposition, we have

Proposition 68 Let A/B be a finite normalizing gF eztension. If D is a
dense right ideal in A, then D N B is a dense right ideal in B. Conversely,
if K is a dense right ideal in B, then K A is a dense right ideal in A.

We are now in a position to state the main result of the present paper
(cf. [6, Theorem 11]).
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Theorem 7 Let Af/B be a finite normalizing ¢F (resp. Frobenius) erten-
sion. Then the mazimal right quolient ring Qu.-(A) of A is a gF (resp.
Frobenius) extension of the mazimal right quotient ring Qm.-(B) of B such
that

Qmaz(A) &= Qma:(B) ®s A=A ®p Qmaz:(B)

canonically. Moreover, when B is a weakly injective module of finite Goldie
dimension as a right B-module and every right reqular element of B is reg-
ular, then A is so as a right A-module and every right reqular element of A
is regular, and then Q...-(A) is a right self-injective, classical left quotient
ring of A.

As a direct consequence of the above theorem, we have

Corollary 8 Let A/B be a finile normalizing qF eztension. If Qqz(B)
is right (resp. left} self-injective, then Quaz(A) is right (resp. left) self-
injeciive. Moreover, if Ag is a generalor, then the converse is valid.

By Proposition 1 and Theorem 7, we have

Corollary 9 Let A/B be a finite normalizing gF eztension such that B has
finite right Goldie dimension. If the mazimal right quotient ring of B is a
right self-injective, elassical left quotient ring of B, then the mazimal right
quotient ring of A is a right se(f-injegtive, classical left quotient ring of A.

Recall that a ring R is right FPF if every finitely generated, faithful right
R-module is a generator in the category of all right R-modules. By [1], every
right FPF ring R of finite right Goldie dimension is weakly injective as a
right R-module provided that every right regular element of R is regular.
We have the following from the above immediately.

Corollary 10 Let A/ B be a finite normalizing qF eztension. If B is a right
FPF ring of finite right Goldie dimension and every right regular element
of B is reqular, then A is weakly injective with finite Goldie dimension as a
right A-module and every right reqular element of A is regular, and the maz-
imal right quotient ring of A is a right self-injective, classical left quotient
ring of A.
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Algoritiun Method in Ring Theory

Shigeru KOBAYASHI

In this paper K denotes a fixed field and the term K-algebra is used
to denote an associative algebra with unit over K. Given a non-empty set
X = {z,22,--- , 2}, (X) will denote the free monoid with unit, generated
by X and K(X) will denote the free associative algebra generated by X.
We shall consider (X') ordered by the degree-lexicographic order <x. We set

Ty <x r3 <x '+ <x Ip. Forany g = Za,-u,', a; € K\{0}, u; € (X}, we

denote by HM/(g) the highest monomial (l)f g, i.e. HM(g) = v if u; <x u,
for all j # i. We say HM(0) = 0.

Let F be a set of polynomials in K(X)\{0}. The monomial u is normal
(mod F) if it does not contain any of the monomials HM(f), f € Fasa
subword. N(F) will denote the set of all normal (mod F) monomials.

Let I be a nontrivial ideal in K(X) and let A = K{(X)/I. We put
N(I) be the set of all normal (mod I) monomials. There is an equality
K(X) = SpanN(I)®! as vector spaces. Forany f € K(X)onehas f = f+g,
where f € SpanN(/) and g € [ are uniquely determined. Clearly there is an
isomorphism of vector spaces A = SpanN([), N(I) projects to a K-basis of
A

A (finite) set F of polynomials in K'(X)\{0}, generating / as two-sides
ideal is called a (finite) Grobner basis of I if N(F) = N(I).

If A has finite Grobner basis, then we can show whether an element f of
A is zero or not by a finite step. A monomial of the form zf!'z32 ... 2k k; >
0(i=1,2---,n)is called ordered monomial. T will denote the subset of
{X) consisting of all ordered monomials.

Let A = K(X)/I for some ideal /. In general, it is not known that
the relation of N(I) and T. But if  has a finite Grébner basis F, then
N(I) = N(F) CT. Soin this case, A become a noetherian. Conversely if A
is a noetherian, then in general, N(I) is not contained in T. Nevertheless if
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A is a filtered algebra, then we have the following.

Theorem Lct A be a fillered algebra and generated by X os o fillered
algebra, If A is a noetherian, then N(I)C T.
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ON QF-3 MODULES

KAZUTOSHI KOIKE

QF-3 rings (rings with minimal faithful modules) have been investigated by many au-
thors. As generalizations of QF-3 rings, QF-3’ rings (rings with torsionless injective hull)
and QF-3" rings (rings in which every finitely generated submodule of its injective hull is
torsionless) are introduced and investigated. Also these two classes of rings are generalized
to modules. In this note, we introduce the notion of QF-3 modules as a module version of
QF-3 rings and basic results for QF-3 modules, which include several well-known results
for QF-3 rings.

The following definition is the starting point of our work.

Definition. A module Uy is called a QF-3 module in case Uy has a finitely cogenerated

injective submodule that cogenerates Up.

We recall that a module X is finitely cogenerated in case for every index set (X;); of
submodules of X, N; X; = 0 implies N X; = 0 for some finite subset F C I. As is well-
known, X is finitely cogenerated if and only if Soc(X) is finitely generated and essential
in X. Therefore, by using the characterization of minimal faithful modules by Colby-
Rutter ([7, Proposition 4.1]), it follows that our definition of QF-3 modules is consistent
with that of QF-3 rings.

First we note the following lemma, which is a two-sided dual version of the well-known
fact that sU is a generator if and only if Up is finitely generated projective for a faithfully
balanced bimodule sU/. This lemma can be proved by using the similar way of the proof
of [7, Theorem 5.1).

Lemma 1. For a faithfully balanced bimodule sUpg, the following conditions are eguiva-
lent:

(1) U is a cogenerator on both sides.
(2) U is finitely cogenerated injective on both sides.
(3) sUg defines a Morite duality.
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By using this lemma we can prove the following theorem, which is a generalization of
[7, Theorem 5.1].

Theorem 2. Let sUg be a faithfully balanced bimodule with finitely cogenerated injective
submodules fUg and sUe that cogenerate U. where f € S and e € R ere idempotenets.

Then ;57 fUecre defines a Morita duality.

Similar to the case of QF-3 rings, for every faithfully balanced bimodule which is QF-3
on both sides, the right and left localizations coincide and they become faithfully balanced
bimodules which are QF-3 on both sides. To state this results, we use the following
notation. For an injective module E we denote by kg the left exact radical corresponding
to the hereditary tosion theory cogenerated by E and for a left exact radical 7 we denote

by @, the localization functor with respect to 7.

Proposition 3. Let sUp be a faithfully balanced bimodule which is QF-8 on both sides
and let 7 = kgy,) and 0 = kguy. Then

(1) Q+(U) = Q,(U)(= L, say) as (S, R)-bimodules.

(2) L is faithfully balanced as o (Q,(S), Q,(R))-bimodule.

(3) @.(s)Lq.(r) is QF-3 on both sides.

We recall that a module X is rationally complete in case X = Qi ,(X). We note that,
for a ring R, Rp is rationally complete if and only if R is its own maximal right quotient
ring,

Now we can obtain the following characterization of faithfully balanced bimodules which
are QF-3 and rationally complete on both sides. This result is a generalization of [7,

Theorem 5.3] by Ringel and Tachikawa.

Theorem 4. There is a bijective correspondence between the following.

(A) Isomorphism classes of faithfully balanced bimodules sUp which are QF-3 and ra-

tionally complete on both sides.
(B) Morita equivalence classes of pairs of modules (C4, D), where C, is a linearly

compact cogenerator and D, is a linearly compact generator.

Here the correspondence (A) — (B) is given by

SUB (’ll)Ith SUC) — (Ueeﬂm Reeﬂe))
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where sUe is a finitely cogenerated injective submodule of sU that cogenerates sU and e

is an idempotent of R, and the inverse correspondence (B) — (A) is given by
(Ca, Da) ¥ gndsc)Homa(D,C)gna,(n).

We note that the bijection described in [7, Theorem 5.3] is obtained by restricting the
bijection in Theorem 4. In fact, for a pair (C4, D4) in (B), if C = D, it must be a generator
and cogenerator, and (C4,C,) corresponds to the endomorphism ring End,(C).

Theorem 4 asserts that every faithfully balanced bimodule sUx which is QF-3 and

rationally complete on both sides is essentially constructed as the following way.

Example. Let gV, be a bimodule that defines a Morita duality and let X4 and Y,
be linearly compact modules. Now put C4 = V@ X. Dy = A@QY, S = End,(C),
R = End (D) and sUg = Homu(D, C). Then, by Theorem 4, sUpy is a faithfully balanced
bimodule which is QF-3 and rationally complete on both sides. sUp has the following
matrix form:
1% Y-
B X (X Hom, (Y, X)) A Homu(Y,A))’
(HomA(V, X) EndA(.\')) (Y Enda(Y) )

where ( )" denote the V-duals.

The following result asserts that every faithfully balanced bimodule which is QF-3 (but
not necessarily rationally complete) on both sides can be realized as certain subbimodule

of bimodules which was characterized in Theorem 4.

Theorem 5. A faithfully balanced bimodule sUpg is QF-3 on both sides if and only if there
ezists a faithfully balanced bimodule ;L; which is QF-3 and rationally complete on both
sides, with finitely cogenerated injective submodules ¢Le and f L, that cogenerate L, where

e € R and f € § are idempotents. satisfying the following conditions:

(1) R is a ring extension of R such that Re C R.
(2) S is a ring extension of S such that f§$ C §.
(3) sLg is a bimodule extension of sUg such that fL C U and Le C U.

As the last result in this note, we point out a connection of a faithfully balanced

bimodule ¢Ux which is QF-3 and rationally complete on both sides and a Morita duality
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between quotient categories of Mod- R and 5-Mod. For a left exact radical 7 of Mod-R, we
denote by Mod-(R, 7) the quotient category of Mod-R with respect to 7. Similar notation

is used for left module categories.

Theorem 6. Let sUg be a faithfully balanced bimodule which is QF-3 and rationally com-
plete on both sides and let T = kgyp) ond 0 = kg(sy). Then Homp(—,U) and Homg(-,U)
induce a Morita duality between the quotient categories Mod-(R, T) and (S,0)-Mod.

In the theorem above, two quotient categories Mod-(R, 7) and (5, g)-Mod are equivalent
to a full module category. Therefore we can use the terminology “Morita duality” without

the ambiguity.

Concluding this note, we remark on a dual concept of QF-3 modules. The definition
of QF-3 modules is completely categorical. Therefore we can dualize the definition of
QF-3 modules. For this dual concept of QF-3 modules, we can obtain the dual results of

Theorem 2 to Theorem 6.
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Hammocks and the algorithms of Zavadskii

YaNan Lin

Hammocks have been considered by Brenner [1] in order to give a numerical criterion
for a finite translation quiver to be the Auslander-Reiten quiver of some representation-
finite algebra. Ringel and Vossieck [4] gave a combinatorial definition of left hammocks,
which generalizes the concept of hammocks in the sense of Brenner, and shown the re-
lationship between thin left hammocks and representations of partical ordered set (ab-
breviated: poset). An important role in representation theory of poset is played by' two
differentiation algorithms. One of the algorithms, called "differentiation with respect to
maximal element”, is due to Nazarova and Roiter {3]. The second is due to Zavadskii [5]
and reduces a poset S with a suitable pair (a, b) of elements a, b to a new poset S’ = 9(q,4)S
with same representation type. In the paper [2], we disscussed the relationship between
hammocks and the algorithm of Nazarova-Roiter. The main purpose of the present paper
is to construct some new left hammocks from a given one, and to show the relatnonshlp
between these new left hammocks and the algorthm of Zavadskii.

A preprojective component H = (Hg, Hy,7) is said to be a left hammock provided
there exists a function hy : Ho — N such that

(1) H has a unique source w and hy(w) = 1;

(2) hy is an additional function, that is hy(z) + hy(72) = Lyms hu(y);

(3) if g is an injective vertex then hy(q) = ., hu(y)-

When H is a left hammock, the function hy is said to be its hammock function. A
left hammock H is said to be thin provided hy(p) = 1 for any projective vertex p of H.

There is a strong relationship between thin left hammocks and the representation
theory of posets: Let S be a finite poset and ¢(S) the category of representations of
S, then the preprojective component of the Auslander-Reiten quiver of ¢(S5) is a thin
left hammock. Conversely, given a thin left hammock H, there exists a unique poset
S := S(H) such that H & Ps, where Ps is the preprojective component of the Auslander-

Reiten quiver of £(S) (see [4]).
Let H be a left hammock, k( H) the mesh category of H. For a given projective vertex
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p(a) of H, let . M be the class of all objects z with Homy)(p(a),z) = 0. For a given
injective vertex g(b) of H, let M, be the class of all objects z with Homy)(z, ¢(b)) =
Let M be a class of some objects of k(H), we denote by Homg)(z,y)m the subspace of
Homg(yy(z,y) consisting of all morphismes which factor through some object of M.

Theorem 1 Let H be a thin left haramock, p(a) # p(w) a projective vertex and
q(b) # q(«') an injective vertex of H. Assume that Homy)(p(b),p(a)) = 0. Then
«Hy = {z € H | Hompy(p(a), 9(b))(=} # 0} is a hammock with hammock function
h(.yb) = dlm,, Hom,,(y)(p(a), —) - dlm,, Homk(y)(p(a),—)Mb = dlm,, Homk(y)( ,q(b)) -
dimy Homyg)(—, ‘I(b)).M
Remark. Let H be a thin left hammock. According to [2], We can obtain the poset
S(aH,) corresponding to the hammock ,H; from the poset S(H) corresponding to the
hammock H by a finite sequence of application of the algorithms of Nazarova-Roiter [3].

As we know [2], for 2 projective vertex p(a) of thin left hammock H, we can construct
a new left hammock ,H = {z| Homyy)(p(a), z) # 0}. And for an injective vertex-g(b) of
thin left hammock H, we have a new left hammock H, = {z| Homy)(z, q(b)) # 0}.

Theorem 2 Let H be a thin left hammock, p(a) a projective vertex different from
source and q(b) an injective vertex of H different from sink. Assume that Hon,m(Pgb), Pa)=
0. Then H(. H n Hb

Proposition 3 Let H be a thin left hammock, p(a), p(c) projective vertices of H dif-
ferent from source, and ¢(b),¢(d) injective vertices of H different from sink. Assume
that Homg)(p(), p(a)) = 0, Homyuy(p(d),p(a)) = 0, Homyq)(p(b),p(c)) = 0 and
Homy sy (p(c), p(a)) # 0, Homyar)(p(b), p(d)) # 0. Then we have

(1) oHy € oHaand Hy = (oHals;

(2) oHs C Hp and Hy = o(ch);

(3) oHy = a(cHa)s-

Let H be a left hammock with translation T and let u be a projective-injective vertex
of H with p* = {€}. If uy~ = {r€}, then we call the subquiver H \ {u}, together with the
restriction of 7 on it, an "almost” left hammock with respect to €. If L is an "almost” left
hammock obtained from some left hammock H with respect to €, we write H = LU {u}
with u* = {¢}. And we call the vertex x the additional vertex.

Theorem 4 Let H be a thin left hammock with finitely many projective vertices,
let S := S(H) be the poset corresponding to H. Let p(a) be a projective vertex different
from source and ¢(b) an injective vertex of H different from sink. Assume that a and b are
incomparable in S. Then H/.Hy = {z € H | ku(z) ~ h( n,)(z) # 0} is an "almost™ left
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hammock with respect to p(a,b). For convenience, we denote by o Hy the left hammock
(H/aHy) U {} where u* = {p(a,b)}. Then the hammock function of . H is

hu(2) ~ Mamy)(z) = € H/:H,,
h(qH?)(x) = { 1 i z=pu.

We recall the algorithm of Zavadskii. Let us fix some notation. Let & be a poset, we
write § = A, +---+ A, if AU---UA, = S and A; N A; = @ for i # j (note that the
points from different A; can be comparable). Let a pair of points a, b be incomparable,
we put S = @V + b, +J(a,b) and J := J(a,d) = J, + Jo + Js where J, = {z € J| z < a}
and Jy = {z € J| z > b}.

Let S be a poset. A pair of points (a,b) is called suitable (for a stratification) if a and
b are incomparable, and S = @V + b, + J, where J = {z; < --- < z,}. Following [6], we
construct the (a,b)-stratified poset 35S as follows: The points of J(.)S consist of (1)
z,forz € avUba; (2) a+z,forz € JyUJp (3) bNz, for 2 € J, U Jy. The order relation
in O(a,5)S is defined as follows: (1) we keep all relations in S between elements in aV U ba;
(2)weset bNz < a+zforz € Jo; (3) wesetat+z<a+y,if z<yin JyUJo; (4) we
setdbnNz<bny,ifz<yin ,UMp; (§) weseta+z <y, ifz<yforz€ JyUJyand
y>a;(6)weset z < bNy,ifz <yforz € J,UJpand y < b; (7) we add the relation
e<atzforz€ JyUJp, and bNy < bfory € Jo,NJy; (8) If z and y are such z > y and
z < y under the relation above, then we identily z and y.

Theorem 5 Let H be a thin left hammock with finitely many projective vertices,
let S(H) be the poset corresponding to H. Let p(a) be a projective vertex different from
source, and ¢(b) an injective vertex of H different from sink. Assume that a and b are
incomparable in S(H). Denote by S(,H) the poset corresponding to the left hammock
oHY. Then S(,HY) is obtained from S(H) as follows: there is a finite sequence of
pairs of points (¢;,d;), (¢z,dz), -+, (¢, di)=(a,b), and a finite sequenée of posets §; =
S(H), S, -, 8 such that

(1) (i, d;) is a suitable pair of points of S;, fori =1,---,1;

(2) 8 = 0., di_y)Siq for i = 2,--- 1, that is, S; is the (ci-y,d;i-1)-stratified poset of
Si-i

(3) St = S(HY).

In (6], Zavadskii used the two meticulous algorithms, which is called "stratification”
and "replenishment”, instead of "the differentiation with respect to a pair of points™. The
following theorem explained completely the replenishment algorithm.

Theorem 6 Let H be a thin left hammock with finitely many projective vertices.
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Assume that H has a projective-injective vertex g = p(a) = ¢(b) with ug* = {€}. Let
S(H) be the poset corresponding to H. We define {(H) = L by sending H to L = H\ {u}
and omitting the translation 7 on € in L. Then S(L) is just the replenishment poset y(as)S
for the specific pair (a, b).
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PRIME AND PRIMARY IDEALS
OF NON-COMMUTATIVE PRUFER RINGS

Hidetoshi MARUBAYASHI and Akira UEDA

Throughout this note, let @ be a simple Artinian ring with finite dimension over its
center and let R be an order in @, that is, R is a prime Goldie ring. R is called a right
Prifer order in Q if any finitely generated right R-ideal is a progenerator of Mod-R,
that is, projective and a generator of Mod-R. Note that an order R in @ is right Priifer
ifand only if (R: Il =R, I(R: I} =0y(I) and (R:I); =I"" for any finitely generated
right R-ideal I, where (R:I);={g€Q|gICR}and I"''={qe Q| IgICI}. A lefi
Prifer order is defined similarly. But it is proved that an order R in Q is right Priifer
if and only if R is left Priifer and so we call an order R to be a Priifer order if R is
right and left Prifer.

Let R be a ring and let 4 be an ideal of R. We define V4 = [{prime ideal of R|
P D A}. Ais called a right (vA-)primary ideal if zRy C A and y ¢ VA, then z € A.
It is easily to show that an ideal A is right primary if and only if BC C A implies that
B C A or C C VA for ideals B and C of R. Similarly, a left primary ideal is defined
and an ideal which is right and left primary is called a primary ideal. We note that if
R is a Prifer order in Q, then an ideal A of R is right primary if and only if it is left
primary and that /4 is a prime ideal if A is a primary ideal.

Assume that P is a prime ideal of a Priifer order R and A and B are P-primary
ideals of R. Then we have AB = BA and it is a P-primary ideal of R. Further, if
ACB, we have {z€ R| B2 C A} ={z € R| 2B C A} and it is also a P-primary ideal
of R. Hence we denote this primary ideal by A : B.

A prime ideal P of a ring R is said to be branched if there exists a P-primary
ideal different from P. If P is the only P-primary ideal of R, then P is said to be
an unbranched prime ideal. By using these concepts, we have the following which are

concerned with prime and primary ideals.

Theorem 1. Let R be a Priifer order in a simple Artinian ring Q with finite
dimension over its center. Suppose that the center of R is a Priifer domain. Let P be
a prime ideal of R. Then
(1) If P is branched and P # P2, then

(i) {P* | k > 0} is the full set of P-primary ideals of R and
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(i) Po = N,, P" is a prime ideal and there are no prime ideals P; such that
PoC P CP.
(2) If P is branched and P = P?, then
(i) for any P-primary ideal A(# P),

Po =[] A" =[}{Ax | Ax : P-primary ideal },
n=1

(ii) Po is a prime ideal of R and

(iii) there are no prime ideals P, with P, C P, C P.
(3) The following are equivalent:

(i) P is branched.

(ii) There exists an ideal C of R with vVC = P and C # P.

(iii) There exists z € R such that P is a minimal prime ideal over RzR.

(iv) P # U{Pr | P» € Spec(R) with P, C P}.

(v) There is a prime ideal Py of R such that P, C P and there are no prime ideals

P, with BhbC P, CP.

(4) P is unbranched if and only if P = |J{Ps | Py € Spec(R) with P, C P}.

Next we devide P-primary ideals of a Priifer order R into four classes, that is, if A
is & P-primary ideal of R, then obviously one of the following four possibilities occurs:
I. APCACA:P,
II. APCA=A:P,
III. AP=ACA:P,
IV. AP=A=A:P
The class of A is meant one of these four possibilities. We shall use the notation A €
III, for example, to denote that A is in class III. Note that P itself is either in class III
or I, depending on whether P2 = P or P? C P. Furthermore, there exist no P-primary
ideals A; such that AP C A; C A. Similarly, if A # P, then there exist no P-primary
ideals A3 such that AC A2 CA: P.
For P-primary ideals A,B of R, we use the notation ”(a):(d) = (¢)” to mean that
"If A is in class (¢) and B is in class (b), then AB is in class (c)”. We use similar
notation for the operation ":” in Theorem 3. Then we have the following.

Theorem 2. Let R be a Priifer order in a simple Artinian ring @ with finite
dimension over its center and suppose that the center Z(R) of R is a Prifer domain.
Then

O-O=II,0-II=IIILIO-IV=1V,
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OI - I0 =IIL IIT - IV = IV, IV . IV = III or IV.

Theorem 3. Let R be a Prifer order in a simple Artinian ring Q with finite
dimension over its center and suppose that the center Z(R) of R is a Prifer domain.
Assume that A C B. Then

O:O0=ILII: I =ILI:IV =1V,

NI : II=0OLID: Ol =1, Ol : IV = IV,

IV:II=1IV,IV:IIl =1IV,IV: IV =1l or IV.
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MAXIMALITY OF PBW EXTENSIONS

OF ORDERS

Hidetoshi Marubayashi and Yang Zhang
Department of Mathematics

Naruto University of Education, Takashima, Japan 772

In [ 1], Bell and Goodearl defined a PBW extension as follows: An over ring S

of aring Ris called a (finite) Poincare-Birkhoff - Witt extension of R (hereafter

called a PBW extension, for short) if there exist elements z,,2;,:--,2, € §
such that
(1) The ordered monomials z' ---z}* (for nonnegative integers vy,---,v, )

form a basis for S as a free left R-module;

(2) zir ~rz; € Rforeachi=1,..- ,n and any r € R;

(38) zizj —zjzi € R+ Rzy + -+ Rz, forall i,5=1,--- ,n.

We refer the reader to [ 6, 7, 8, 9, 10 ] for the detailed properties of v-ideals
and order theory. '

Throughout this paper, we fix some notation as follows: Let R be an or-
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der in a simple Artinian ring Q(R) and S be the finite PBW extension R <
71,23, , 2, >, T=S-QR)=Q(R) - S=Q(R) < z1,- - ,Tn >.

Lemma 1. (1) S is a prime ring.

(2) If gr S is a Noetherian ring, then so is S.

(3) Let I be a A-invariant ideal of R. Then I is a A-prime ideal of R if and
only if IS is a prime ideal of S.

(4) Let M be a regular Ore set of R. Then M is also a regular Ore set of S
and Spr = Rpr - S =S Ry

Corollary 2. If C = Cpg(0) is the set of all regular elements of R, then
Sc=Q(R)-S=5-Q(R)=T.

Lemma 3. If f € Cs(0), then there ezists an element g € Cs(0) such that
g € fS and the leading coefficient of g belongs to Cg(0).

Theorem 4. If R is @ mazimal order in Q(R), then S= R< 11,29, ,2, >
is a mazimal order in Q(S).

Remark: If S = R < ;,%a,''+,T, > is a maximal order, then R is a A-
maximal order. 1t is still open whether the converse is true or not.

Lemma 5. (1) Let I be a one-sided A-R-ideal, i.e., a A-invariant ideal and
a one-sided R-ideal. Then (R: 1), (R:I),, I, and ,I are A-invariant.

(2) Let I be a A-R-ideal. Then IS is an S-ideal, and O,(I) and O,(I) are also
A-invariant.

(3) Let I be a A-R-ideal. Then (IS), = I,S and ,(IS) = ,IS.
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Lemma 6. (1) Suppose that R is a Noetherian A-mazimal order in Q. Then
a A-v-ideal of R is a maximal A-v-ideal if and only if it is a A-prime v-ideal.
(2) Suppose that R is a Noetherian mazimal order in Q. Then a v-ideal of S
is a mazimal v-ideal if and only if it is a prime v-ideal.

Corollary 7. Let A be any mazimal A-v-ideal of a Noetherian mazimal order
R. Then AS is a mazimal v-ideal of S.

Lemma 8. Let R be a Noetherian marimal order in Q(R) and B' be a mazi-
mal v-ideal of T = Q(R) < z,,22,"--,2, >. Then B = B'NS is a marimal
v-tdeal of S.

Theorem 9. Let R be a Noetherian mazimal order in Q(R). Then {AS, B'N
S = B| A is a mazimal A-v-ideal of R and B' is a mazrimal v-ideal of T} is
the full set of all mazimal v-ideals of S.

Corollary 10. S = N4eASasNBesSBns N S(S) where A is the set of maxi-
mal v-ideals of R and B is the set of mazimal v-ideals of T, and $(S) = U X ™
where X runs over all v-invertible ideals of S. Moreover, each Sis and each
Spas i3 a local Dedekind prime ring and S(S) is v-simple( i.e., has no proper

v-ideals).
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Classification of Semisimple Hopf Algebras

Akira Masuoka ([ &)

Beside the gquantum groups, which form a class of Hopf alge-
bras usually of infinite dimension, Hopf algebras of finite
dimension are also attracting attention from many areas of
research including the index theory in operator algebras and the
knot theory in topology. Recently some significant structure
theorems on finite-dimensional Hopf algebras were proved and
hereby it becomes possible to classify semisimple Hopf alge-
bras of small dimension, which before had seemed far out of
reach. Here we describe some of the classification results,
based on the author's talk at the Japan-China Conference on
Ring Theory, 1995, in Okayama, Japan.

We work over a fixed field k which is always assumed to be
algebraically closed.

1. Given a finite group G, one can construct immediately the
following two kinds of Hopf algebras.

EXAMPLE. 1) the Hopf algebra kG of all functions G — k, where
the product is defined point-wise and the coproduct

where p. p., qie kG, is determined by

i
p(gh) = £ p;(g)g;(h) (g, h €G).
i
2) the group algebra kG, where the coproduct is defined by
Alg) =g8 g (g €G).

Note that these are (linearly) dual to each other. We call
these kinds of Hopf algebras trivial. One classifies easily all
trivial Hopf algebras, noting that, for a finite abelian group

G, kG =~ kG iff the characteristic c¢h k does not divide the
order |G| ('the Maschke condition').

PROPOSITION. Let A be a Hopf algebra of finite dimension.
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1) A is commutative and semisimple iff A is of the form

KC.

2) A 1is cocommutative and cosemisimple (that is, the dual
a* is commutative and semisimple) iff A is of the form kG.

We may regard (co)semisimple Hopf algebras of finite dimen-
sion as non-commutative version (or quantization, in recent
terms) of finite groups.

2. The first classification result was the following:

THEOREM [LR]. A semisimple Hopf algebra of odd dimension < 19
is commutative and cocommutative, and hence it is of the form
kG with G some finite abelian group.

In further results we will make technical assumptions on
ch k, which derive from the following result due to Larson and
Radford:

THEOREM. Let A be a Hopf algebra of finite dimension. If
either i) ch k =0 or ii) dim A < 20 and ch k does not
divide dim A, then A 1is semisimple iff A 1is cosemisimple.

THEOREM [M1]. Suppose ch k # 2, 3. Every semisimple Hopf al-
gebra of dimension 6 is trivial.

In case of characteristic 0, this is generalized in the fol-
lowing result due to the author:

THEOREM. Suppose ch k = 0. Every semisimple Hopf algebra of
dimension 2p with p a prime is trivial.

THEOREM [M1]. Suppose ch k # 2. There exists only one (up to
isomorphisms) non-trivial semisimple Hopf algebra of dimension
8. (We do not construct here this Hopf algebra which had been
discovered previously by G. Kac and is popular among operator
algebraists.)

3. We cannot expect in a simple way a Sylow type theorem for
semisimple Hopf algebras. But we have the useful following:

THEOREM [Z]. Suppose ch k = 0. Let C(A*) be the subspace of
A spanned by all characters of A* (regarding A = (A*)*).
Then C(A*) is a semisimple subalgebra of A and for each
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primitive idempotent e in C(A*), dim eA divides dim A.

If A = kG (resp. A = kG), this means that the order of each
conjugacy class in G (resp. the degree of each irreducible rep-
resentation of G) divides |G].

For the application of the theorem above, we suppose hence-
forth that ch k = 0.

THEOREM [Z]. A Hopf algebra of prime dimension p is the group

algebra ka of the cyclic group Cp.

This asserts in particular that a Hopf algebra of prime di-
mension is semisimple, which had been already known [LR].

In order to classify semisimple Hopf algebras of dimension
of higher power of prime, we need the following:

THEOREM [M2]. Let A be a semisimple Hopf algebra of dimension
pn, where p is a prime and n > 0. There exists a group-like
element g # 1 in A (a non-zero element such that A(g) =

g $§ g) which is contained in the center Z(A) of A. Hence
there exists a sequence of normal Hopf subalgebras in A,

A = AOD AID ce e Ar = k
such that each quotient Hopf algebra Ai_l/Ai is isomorphic
with ka and is included in Z(A/Ai).

Hence the problem is reduced to the calculation of Hopf alge-
bra extensions.

2

THEOREM [M2]. A semisimple Hopf algebra of dimension p with

p a prime is trivial.

There are examples of non-trivial (and hence non-semisimple)

Hopf algebras of dimension pz.
In order to construct non-trivial semisimple Hopf algebras of

dimension p3, let p be an odd prime and write

F.OF
K=kP?P P-5 xe..,

ij
i3

where Fp is the finite field of p elements and eij is the

characteristic function (or the dual basis) of (i,j) € Fper.
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Define an automorphism ¢ : K = K by ¢(eij) = ei—j,j'

DEFINITION [M3]. Let { be a p~th root of 1 in k and g a

group-like element in K such that ¢(g) = g. Let A; g be

a K-ring (an algebra given an algebra map from K) generated by
a symbol x with relations xP = g, x¢c = ¢(c)x (ce K). We
endow Ag g with a unique Hopf algebra structure such that the

canonical map K- A; (which is an injection in fact) is a

g
Hopf algebra map and

Mx) = £ (Te..x9 e_x, e(x) = 1.

= ij rs
ijrs
It is shown that, if { # 1, A; g has a remarkable property
of self-duality which means A =~ (A, _)*.
{.g {.g9
THEOREM [M3]. Apart from seven trivial ones, semisimple Hopf

algebras of dimension p3 with p an odd prime consist of the

following p+l non-trivial ones:

A ’ A [ A ’ A s 0000, A - [}
10 Pt The Te?g P~l,g
where {, g, t are fixed elements such that ¢ # 1, g # 1,
2
t .
€ Fp\ (F))
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INFINITE GALOIS THEORY OF COMMUTATIVE
SEMI-CONNECTED RINGS

TakAst NAGAHARA

Department of Mathematics
Okayama University
Okayama 700, Japan

Throughout this note, A will mean a commutative ring with an identity 1, and B
will mean a ring extension of A with an identity 1 which is the common identity of B and
A. If A has finitely many idempotents (resp. no idempotents other than 0 and 1) then A
is said to be semi-connected (resp. connected). Moreover, by Aut(B) (resp. Aut(B/A)),
we denote the group of all ring automorphisms of B (resp. all A-ring automorphisms of
B). If the fixring of Aut(B/A) in B coincides with A then the extension B/A will be
called to be Galois. For a subgroup H of Aut(B/A), the extension B/A will be called
a Galois extension with a Galois group H if the fixring of H in B coincides with A.
The extension B/A will be called to be separable if B is a projective (B ® 4 B)-module.
If B/A is separable and projective then B/A will be called to be strongly separable.
Moreover, the extension B/A will be called to be locally strongly separable if for any
finite subset F of B, there is an intermediate subring T of B/A containing F' which
is strongly separable over A. Next, we shall introduce a finite topology on Aut(B) in
which the collection of sets of form {7 € Aut(B); 7(z;) = o(z;) } where {z;} is a finite
subset of B and ¢ is a fixed element of Aut(B) is a basis of the open sets. Now, let B

be semi-connected, and H a subgroup of Aut(B). As in [4], by H*, we denote the set
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of elements ¢ in Aut(B) such that for each primitive idempotent e in B, o|Be = 7|Be
for some 7 € H where o|Be denotes the restriction of o to Be. Obviously H* D H.
If H= H* then H will be called to be fat. As is easily seen, the fixring of H* in B

coincides to that of H in B.

In [4], O.E. Villamayor and D. Zelinsky presented a finite Galois theory of semi-
connected rings such that if B is a strongly separable Galois extension of a semi-connected
ring A then there is a 1-1 correspondence between the set of strongly separable A-
subalgebras of B containing A and the set of fat subgroups of Aut(B/A) in the usual
sense of Galois theory.

In [1], one of the authors extended the theory of (4], to some non-commutative Galois
extensions with finite Galois groups.

Now, if B is a locally strongly separable Galois extension of a connected ring A
then, by [2], there exists some Galois correspondence between the set of locally strongly
separable A-subalgebras of B containing A and a set of some groupoids.

In this note, we shall present a generalization of the theory of [4] to that of locally
strongly separable Galois extension of semi-connected rings, which is a joint work of

Nagahara and Narisada [3]. This is the following

Theorem Let A be a semi-connected ring, and B a semi-connected ring which
is a locally strongly separable Galois extension of A. Let T be the set of intermediate
rings of B/A which are locally strongly separable over A, and ® the set of subgroups of
Aut(B/A) which are fat and closed with respect to the finite topology. Then, there is a
1-1 correspondence between ¥ and & in the usual sense of Galois theory. Moreover,

the group Aut(B/A) is Hausdorff and compact.
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REMARKS ON GROUPS AND CENTRAL ALGEBRAS

Young Soo Park and Eun Sup Kim

Let I{ Le a commutative ring with 1 and let K* be the group of units of K.
Suppose N is a central subgroup of a group G and « is a homomorphism of N into
K*. If I(a) is the ideal of the group algebra KG generated by {n — a(n)l|n € N},
then we let KGa denote KG/I(a). In fact, K'Ga is the algebra obtained from KG
by identifying n with a(n) for every n € N, and I(a) = }_{(n — a(r)1)KG|n € N}.

In [5), Iskander showed that KGa is a twisted group algebra of G/N over K
and every twisted group algebra may be obtained in this way. Also, he characterized
a K-basis of the center of XGa of an integral domain K and determined when the
algebras are central.

In [4]), DeMeyer and Janusz obtained characterizations of group rings which are
Azumaya algebras. However, the twisted group ring case does not seem to have an
analogous characterization in general. Hence we have a question : when is a twisted
group algebra an Azumaya algebra ?

The purpose of this note is to recall our results of a characterization of the center
of twisted group algebras over a connected ring and of characterization of such central
algebras. Also, we give a partial solution of the above question, which generalizes the
result of DeMeyer and Janusz [4].

A commutative ring K with 1 is said to be connected if the topological space
Spec K is connected. This is equivalent the requirement that e = e,e € K implies
e =0or e = 1. Local rings and integral domains are connected.

The following three theorems are known from our results in [10].
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Theorem 1. Suppose K is a connected ring, H is a subgroup of G, N is a central
subgroup of G such that NC H,[G: N]< oo and [G: N]€ K*,a: N = K* isan
injective homomorphism. Let D C G and {Nd|d € D} be a transversal for the H/N-
conjugacy classes of G/N. Then the set {3} cly(d)+I(a)|d € D, [d,HINN = {1}}isa
basis for the centralizer of K Ha in KGa as a K-module, where cly(d) = {h~'dh|h €
H} and [d, H] = {d~'h~'dh|h € H}.

Theorem 2. Suppose K is a connected ring, N is a central subgroup of G such
that [G: N] < oo and [G: N] € K* and a : N — K* is an injective homomorphism.
Then KGa is a central separable algebra if and N = Z(G) and G is a completely
central group, where Z(G) denotes the center of G. ‘

Theorem 3. Let K be a connected ring and let G be a group such that [G :
Z(G)] < o0 and [G : Z(G)] € K*. Then the following statements are equivalent :
(1) There is a homomorphism a of Z(G) into I{* such that Z(KGa) = K.
(2) There is a central subgroup M of G such that Z(G/M) = Z(G)/M is embeddable
into X* and G/M is completely central.

Remark. It is known in [10] that the hypothesis of a connected ring in Theorem

1 is essential.

In the following, let F be a field and F*G denote the twisted group algebra of G

over F' with respect to a 2-cocycle a in G.

Theorem 4. Let F and L be fields with F C L and let a € Z%(G, F*). Then
F*G is an Azumaya algebra if and only if L®G is an Azumaya algebra.

Theorem 5. Let G = Z(G)H for some subgroup H of G and let a be a symmetric
cocycle in Z(G). Then F°G is an Azumaya algebra if and only if F*H is an Azumaya
algebra.
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Theorem 6. If [G : Z(G)] < 00,[G : Z(G)]™! € F and «a is a symmetric cocyle
in Z(G), then F®G is an Azumaya algebra.

A group G is said to be hypercentral if every nontrivial factor group of G has

nontrivial center. One example of a hypercentral group is of course a nilpotent group.

Theorem 7. If G is a torsion-free hypercentral group and F°G is an Azumaya
algebra, then the center Z(G) has finite index in G.
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TILTING DECOMPOSITIONS OF
SEMISIMPLE COMPLEX LIE ALGEBRAS

LiaNGANG PENG AND JiE X140

et A be an associative hereditary algebra over some finite field 2 of Dynkin type
A. Let g be the semisimple complex Lie algebra of type A with triangular
decomposition g= n_.@ h @ n,.C. M. Ringel in [1] showed that A, as a directed
algebra, has Hall polynomials. So he could make the free abelian group@qar3Zugarg »
indexed by the set of isomorphism classes [M] of all finitely generated A — modules
M, into an associative ring by defining:

urM LNy = [-E]#m MWugrys

where all #fx are the Hall polynomials; this ring is called the degenerate Hall algebra
of A and denoted by H,(A). Let K(mod A) be the Grothendieck group of mod A,
the category of all finitely generated (right) A — modules, modulo split exact
sequences. Then K (mod A) can be identifed with the subgroup @(x) Zucxy of H,
(A). indexed by the set of isomorphhism classes [X] of all indecomposable modules
in mod A. He showed that K (mod A) is a Lie subalgebra of H, (A), and
furthermore he has proved in [2] that X (mod 4) &); C is isomorphic to n, as Lie
algebras. So we can think the triangular decomposition of g as the hereditary
decomposition.

Let B be a tilted algebra of type A. Similarly, we have the degenerate Hall
algebra H,(B) of B and K (mod B) is a Lie subalgebra of H,(B). In this note, we
show that g has another decomposition g=a-@ b-@ h @ b, @ a, with a; = K
(mod B) ®):C as Lie algebras, where h is the Cartan subalgebra. We can think it as
the tilting decomposition of g.
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GENERALIZED BAER MODULES

Seog Hoon Rim and Mark L. Teply

In 1936, R. Baer [1] raised the question of determining all abelian groups B such
that Extz(B,T) = 0 for all torsion groups T; i.e., all groups B such that, for every

torsion abelian group T, andy exact sequence
0=-T—-X—-B—-0

splits. Baer then showed that if such a B is countable, then B is free. Much later,
P. Griffith [5] removed the hyothesis that B is countable from Baer’s theorem. More
generally, I. Kaplansky [6] proposed characterizing the modules B over a commutative
integral domain R such that Eztg(B,T) = 0 for all torsion R-modules T. Modules
satisfying this condition are called Baer modules.

In [2], Fuchs and Viljoen described the modules B over a valuation domain R such
that Extp(B,X) =0 for all bounded torsion and all divisible modules X. This weak
form of Baer’s splitting problem was considered in [7], 8], [9] for arbitrary torsion
theories over an associative ring. As in the valuation ring case, modules playing the
role of B in the “Ezt condition” above are called B*-modules. (A precise definition
is given later.) Under the hypothesis that 7 is of finite type (i.e., the filter associated
with 7 has a cofinal subset of finitely generated left ideals), results in (7] (and (8]
gave characterizations of torsion theories T whose 7-torsionfree mudules are (flat) B*-
modules. The main purpose of this note is to prove a result (Theorem 2) that allows
us to remove the restrictive overall hypothesis that 7 is of finite type from all the main
results of (7] and (8.

For the basic properties of 7 and other torsion theoretic terms used in this note,
see Golan (3].

Recall that a left R-module E is called 7-injective if Extr(T, E) = 0 for each
7-torsion module T'. As in [9], a module D is called T-divisible if D is a homomorphic

image of a direct sum of 7-injective modules. A module M is called a generalized Baer
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module if Eztg(M,D) = 0 for each 7-divisible module D. A module M is said to
have r-bounded order if M is a submodule of a module N with a set of generators
annihilated by a left ideal I of R such that 7(R/I) = R/I. A module M is called
B*-module if Ex2tp(M,X) = 0 for each 7-divisible X and each X with r-bounded

order.
We use hdp M to denote the homological dimension of a left R-module M.

Before stating our main result, we need the following minor generalization of (9,
Lemma 2.6).

Lemma 1. If a Q,.-module B is ¢ generalized Baer module, then Q). @p B 2 B and

B is a projective Q.-module.

The following is the main Theorem :

Theorem 2. If every 7-torsionfree Q,-module is a generalized Baer module, then 7

is a perfect lorsion theory and Q. is a semisimple arlinian ring.

In [7] the question, “When is every r-torsionfree module a B*-module 7" is
considered. Similarly, in [8] the question, “When is every r-torsionfree module a flat
B*-module?” is studied. These questions are answered under the hypothesis that 7 is
of finite type. The answers to these questions show that r must be closely related to
the Goldie torsion theory 74; the 7,-torsionfree modules are precisely the nonsingular
modules. The finiteness property of T is used to prove the following key lemma of [7]:

[7, Lemma 4]. Let 7 be of finite type. If every r-torsionfree module is a B*-
module, then @, is a semisimple artinian ring and 7 induces the Goldie torsion theory
on R/7(R)-mod.

When @, is semisimple and 7 is perfect, then 7 automatically induces the Goldie
torsion theory on R/7(R)-mod. Hence Theorem 2 shows that [7, Lemma 4] is true
without the hypothesis that 7 is of finite type. Since [7, Lemma 4] is the only source
of the use of the hypothesis that 7 is of finite type throughout [7] and [8], all of the
main results of [7] and [8] are true without the assumption that 7 is of finite type. (In

results on the Goldie theory, such as (7, Proposition 11 and Theorem 7] or [8, Theorem
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10), this means that the overall hypothesis that R has finite left uniform dimension is

not needed.)

Example 3. Let Z denote the integers, Q the rational numbers, and R the real

numbers. Consider the matrix ring

R= (g Rc[;]).

The old versions of the results in [7] and [8] do not apply to Goldie torsion theory for
R, as R does not have finite left uniform dimension. But since R has many properties
similar to the matrix rings in [7, Theorem 18] and [8, Theorem 14], one might have
wondered if every 7,-torsionfree R-module is a B*-module. Our Theorem 2 shows

immediately that this is not the case,

In addition to generalizing results from [7] and 8], we illustrate the use of Theorem

2 with the following application.

Corollary 4. If 7(R) = 0, the following statements are equivalent:
(1) Every 7-torsionfree Q,-module is a generalized Baer module,
(2) Every Q,-module is a generalized Baer module,

(3) hdrQ: <1 and Q, is a semisimple artinian ring.
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GLOBAL DIMENSION OF ENDOMORPHISM RING
MASAHISA SATO

1. PUROPOSE

Let R be a semi primary ring and J its Jacobson radical with nilpotency n. We define
A=Endgr(R/J®R/J*&®---& R/J*' & RIJ")

Then it holds
gl.dim(A4) < n.

We explain this result by giving the projective resolution of simple A-modules.

By V. Dlab and C.M. Ringel [2], it is proved that A is an quasi-hereditary ring, so it
has been known that A has finite global dimension. So our result gives the best upper
bound. In the case that R is an artin algebra, Auslander [1] proved this result.

2. NOTATIONS
We put a decomposition of R into indecomposable projective right modules as R =
NN,
¥ ¥ &dy,R. Here we assume that d,,’s are primitive idenpotents and the lowey length
s=1t=1
of dyR is s for any t. Also we put d, = i "Z' dy(l<i<n), Rj=R/J and J; = J/J/,

1=s =1

then R; Z Z &dy R & Z Z ®dy R;. For any set I and K of R, we denote (/,K) =

a=1t=1 8=y t=1
{x € R | =z C K}, also for a bimodule Mg and a € R, we denote O(Ma; 1) = {x €
Ma | zI = 0}. Further we define for 1 <7 < n, Soc (R) = Rboc(R), Soc(R/ Soc'(R)) =
Soc’*'(R)/ Soc'(R), then we have Soc’(R;) = (JJ : J*)/J" for any j < . For a matrix ring
A= (Ay), Aij(z) (2 € Ajj)isa matnx whose (i, j)-component is = and other components
are 0. For X C A;;, we denote A;;(X) = {Aij(z) | € X}

3. BASIC FORM OF A

The above A is not basic, in fact the matrix form of A is given by the following;

(R R ... .. R R
Az R, ... R, R
A A31 A32 R3 S R3 R;;

An—l.l An—l.2 e An-l,n—Z Rn—l Rn—l
| An,l An,2 oo An.n-2 An,n—l Rn J

Here it is not necessary to specify A;;.
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[Basic formula.r] We may assume R is basic since isomorphic indecomposable pro-
jective R-modules Re, and Re,r make isomorphic indecomopsable projective A-modules

AA;j(en) and AA;j(e,r). The basic ring of A is given by End(i $d;R;). Tts matrix form
=1
is given by

dy Rydy dy Ry dz diRydn_; dy Ryd,

dz(J/J’)th d2Rpd2 . d2Radn ) d2 R2dn

dy SDCl(RJ)dl d:)(J/JJ )d2 d3Rady d3Radn ) dyRydn
dno1 Soc'(Rn=1)d) dnoy Soc?(Rn=3)d2  w.  dne1(J/I"V)dn-2 dn—iRn-1dn-1 dac)Rn_1dn

dn Soc! (Rn)d) dn Soc? (Rn)d; v dnSoc""}(Rp)dn—z dn(JfJ")dn-y dnRndn

4, ELEMENTARY PROPERTIES OF A

In the following we denote A the basic ring given in section 2 For 1 € j € n, we put
e(7,5,t) = Ajj(dyy+d;jJd;)forl £s<n, 1 <t<n,ande; = Z Aji(d,+d;Jd;), ey =
a=j
T Ad, + d; i), ejy = Ajy(dy +d;Jd;) and G, s,t) = Ae(G, s, 1)/ J(A)e(G, s, 1) for
;'=J$.55n, 1<t <n,
The structure of A is given by the following proposition.
Proposition 4.1. It holds the following properties for T = Rad(A).

(1) For1<i<s<nl1<t<n,,

C(i, 3, t)(A/T)e(iys’ l) = dist(R/J)dist

as a division rmg Particularly e;(A/T)e; = d;(R/J)d; as ring.

(2) ea(T/T¥eny = dy(J/(J 2 0))d,._, through the above ring isomorphism.

(3) e;Te, = ey Ae,yAe, foranyj=1,...,n

(4) For 1 £ j <k <n, e(T/T?)e; = Jyj. Here we denote §;; is a Kronecker della
and ka s

. . - k_l . - -
dy ((J" s IRV (Bt = 1)(J7 2 T 6 (U0 TF) + DR CARR AT TOLE J')) d;
i=j+1
(5) en-1(T/T%)e, = dpr(R/J)dn = du(R/J)dy
We make the endomophism ring A = End("il @®d;R;/J""") from R/J""'. We compare
=1
two projective resolutions of simple A-modules and simple A-modules.

Proposition 4.2. Lel 7P, EIR P = Ae(i, s,t) £, 5 — 0 be a minimal presentation of
simple A- module S and A®5S — A ®z S/Rad(A @5 S) = S(i,5,t) — 0 a canonical
map. We put N = Ae, Rad(A @3 Py) and M = Im(A @3 f1). Then

(1) ker(c- A @7 fo) =Rad(A®7 P) =M + N.

(2) N/ Rad(N) is a homomorphic image of Ae,.

(3) Rad(N)C M.

(4) Let h: P — Rad(A @7 P) be a projective cover. Then

(a) ker(h) = ker(A @3 /i) ® E Ae(n = L,n, )% for some h,.
t=1

120



(b) Az A C P.
(c) There is a direct summand P’ of A @< P, such that

P=Pg ﬂZ" ®Ae(n,n,t)k.
t=1

(5) There is M' C ker(e - A ®7 fo) such that ker(e - A &g fo) = M' & 3° @S(n,n, 1)k
=1
and M'C M.

Proposition 4.3. Lef —P2 P, 5P be a minimal cract sequence of projective
A-modules. We put N = Ae, l\el(A &7 fo) and M = lm(A &y f1). Then

(1) ker(A@z fo) =M+ N.

(2) N/Rad(N) is a homomorphic image of Ae,,.

(3) Rad(N)C M.

(4) Let h: P — ker(A @5 fo) be a projective cover. Then

(a) ker(h) = ker(A ®7 f1) &® %'f DAe(n ~ L, n, )™ for some hy.
. =1

(b) Az A CP.
(c) There is a direct summand P’ of A3 Py such that

P=Pg E ®Ae(n,n, t)k.
=1

(5) There is M' C ker(A ®5 fo) such that ker(A &5 fo) = M’ & 3° ®S(n,n, ) and
t=1
McCM.

Corollary 4.4. Let ... — 4Q; 2 BB iQ0 2 S(i,s,t) — 0 be @ minimal
projective resolutions of a simple A-module S(i,s,t). Then it hols that

(1) ker(gi) = ker(A®7 [:)) & E &S(n,n, ) for some py.
=1

(2) ker(A®z i) = Im(A &z fi) & % @dS(n,n, t)r-1e,

(3) AGz P C Q; Jor cachi.

(4) There is a direct summand Q;' of A@7 P, such that Q; = Q;'&h Z bAe(n, n, 1)1,
(5) If radical series of R and socle series of R coincide, then (), = A &g Pi.

5. PROJECTIVE DIMENSION OF SIMPLE MODULES
From the calculation in the former section, we have the following results.

Proposition 5.1. If R is not semi-simple, then p.d.(S(n,n,t)) =1 forany 1 <t <n,.
i.e., there is an ezact sequence 0 — Ae(n — 1,n,t) — Ae(n,n,t) — S(n,n,t) — 0.
Theorem 5.2. It holds that for each 1 <i<n,i<s<n, 1 <t<n,,

p.-d.S(f,s,¢) <n—i+1 and gl.dim(A) < gl. dim(A4) + 1.

Particularlu gl. dim(A) < n.

Corollary 5.3. The following properties are equivalent.

(1) gl. dim(A) = n.
(2) p.d.(S(1,s,t)) = n for some s,1.
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(3) Ext™'(S(1,s,1),S(n,n, 1)) # 0 for some s,1,1'.
(4) Ext(S(1,s,1),5(n - 1,8,2)) # 0 for some s,1,5,1'.
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Enumeration of Finite Rings

Takao SUMIYAMA (Aichi Institute of Technology)
Yasuyuki HIRANO (Okayama University)

By a finite ring we mean an associative ring consisting of only finitely many
elements. For a finite ring S, let |S| denote the number of elements of S, which
is called the order of S . For a ring R, let J(R) denote the Jacobson radical of
R.

As is easily seen, a finite ring is the direct sum of finite rings of prime-power
orders. So, we consider only finite rings of prime-power order.

A ring R is called directly indecomposable if there exists 1o nontrivial ideal
decomposition R=1, @ I, .

In [1), we have proved that, if R is a directly indecomposable finite ring with
identity whose Jacobson radical consists of p™ elements, where p is a prime and
m is a positive integer, then |R| satisfies the inequality

P+ < |R| < pm’+m+l .

Concerning this result, we are interested in the problem what kind of finite
rings actually exist in this range.

When p is a prime, C(p®) denotes the finite cyclic group of order p® . Let
{a) denote the cyclic group generated by @ . An Abelian group A is called of
type (p/t,n1)(»'7,n2)--- (', n¢) , where ny,n2,---,npand f; < foa < --- < fi
are positive integers, if A is isomorphic to the direct sum of n, copies of C(p/1),
ny copies of C(p/?),---, and n; copies of C(p/*).

When R is a ring, Rt denotes the additive group of R , J(R) the Jacobson
radical of R , and (R),,xn the ring of all n x n matrices having entries in R .

Let ¢; < e3 < :+- < e, be a nondecreasing sequence of positive integers. Let
Sp = {(aij) € Zpxn | a;; =0 mod p*~* for i< j} . It is easy to check that
Sn is a subring of (Z),xn.

Let 7 : S, — (Z/pZ)nxn be the natural homomorphism given by (a;;) —
(@:;) . An element (a;;) of S, is called to be non-singular if det 7(a;;) #0 (in
Z/p2).
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Theorem 1. ([3, Satz 2))
Let R be a finite p-ring whose additive group is
R* = (a1) @ (a2) @ @ (an) ,
where (a;} 2 C(p*) (1<i<n)and 1<e; <e2< - < ey . Let us write
(1)  aiar =37, aiea; (1<ik<n),
where a;j; are integers such that
(@ O<ayrspi—1 (1<ijk<n).
Then it holds that
(3) aijxr=0 mod p¥~**for1<k<j<n,
4) aije=0mod p " forl<i<j<n,
and
(8) k=i @rkithjs = gz Giks@rje mod p% (1< 4,j,r8<n).
Conversely, let
(6) A={a)B{a2)®  B{an)
({ai) 2C(p*). 1 <e1<e2<--- < en)
be a finite Abelian p-group. If a;ji (1 < 1,4,k < n) are integers which satisfy (2),
(3), (4) and (5), then we can make A into a ring by defining the multiplication
on A by (1). By this manner we can construct all rings which have the Abelian
group A as their additive group.

By Theorem 1, for a given prime power p°, we can get all rings of order p*,
since a ring of order p° has the additive group

R+ = Cp)DCO=)D - @CHr™) (er+ert - +en=e).

When aje (1 £ 1,7,k < n) are integers which satisfy (2), (3), (4) and (5),
we call {ai;x}7; 1=y a set of structure constants for the Abelian group (6).

Let {aije}?; 4=y and {Bije}}; 1=, be two sets of structure constants for the
Abelian group (6). We shall say that {cje}?; =) and {fije)?; 1o, are equiva-
lent if there exists a non-singular element (4;;) € Sn such that

Z;-l:lﬂ,'jglj, = 2;:1 2::1 Lijlirajee mod p (1 <ik,s<n).

Theorem 2. ([3, Satz 5))

Let {aije}?; k=1 and {Bijk}7; x=1 be two sets of structure constants for the
Abelian group (6). Let R be the ring whose additive group is (6) and whose
multiplication is defined by

aiar = Y 5., aijra; (1<ik<n).

Let R’ be the ring whose additive group is (6) and whose multiplication o is
defined by
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aioar =30, Bira; (1<ik<n).
Then R and R' are isomorphic if and only if {aijx}?; 1=, and
{Bijx}7; k=1 are equivalent.

Let {aiji}}; x=1 be a set of structure constants for the Abelian group (6). We
shall say that {ix}}; =, is decomposable if there exists a partition {1,2,---,n}
J1UJ2 such that (i) J1NJ2 =46, (i) J1 #¢,Ja# ¢, (ili) ili€J1,j€J2
and ¢; = ¢; , then i < j, and (iv) if, i € J and j € J; , 01,7 € J2 and
j€Ji,or,je€Jyand k€ Jp jor, j € J2 and k € J; , then ayjp = 0. By the
following theorem, we can see whether a ring with given structure constants is
indecomposable or not.

Theorem 3. ([2, Theorem 3))

Let {aijk}7; £=1 be a set of structure constants for the Abelian group (6).
Let R be the ring whose additive group is (6) and whose multiplication is defined
by

a;ap = Z,;'lsl aijea; (1<i,k<n).

Then R is indecomposable if and only if there exists no set of structure constants
for the Abelian group (6) which is decomposable and equivalent to {a;x}?; i=)-

Theorem 4. ([2, Theorem 4])

Let {aiji}7;z=) be a set of structure constants for the Abelian group (6).
Let R be the ring whose additive group is (6) and whose muitiplication is defined
by

a;ap = E;l:l aijia; (1<i,k<n).

Then:

(I) R has a left (right) identity if and only if there exist integers
€1,€2,° - ,Cp Such that 0 < ¢; <pf =1 (1<i<n)and

E?:l Ciaijk = 6,'; (resp. }:,;':,c.-ak,-.- = 65 ) mod p%

(1<ik<n).

(I} R has an identity il and only if there exist integers
€1,€2, ++,¢n such that 0 < ¢; < p*~! (1<i<n)and

E?:l Ciaijx = Z?:l Ciakji = 6,'& mod p%

(1<jk<n).
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Theorem 5. ([2, Theorem 5])

Let {oiji}}; k=1 be a set of structure constants for the Abelian group (6).
Let R be the ring whose additive group is (6) and whose multiplication is defined
by

aiax = 35, aijka; (1< ik <n).

Then, b= 37, uia; (0 < u; < p% —1,1 < i< n) belongs to J(R) if and only
if, for any n integers x;,%2,---,2, satisfying 0 < z; <p® -1 (1 <i < n),
there exist n integers y;,y2,---,yn such that 0 < y; < p* —1 (1 <i < n) and

Yo Wi Qirj + Yr — 05 k41 YiZiQikjYearee = 0 mod  ptr

(1<r<n).

By making use of above results, we completed a program which determines,
for a given prime-power p", all finite rings of order p", determines decompos-
ability and existence of identity elements for them, and counts the orders of
Jacobson radicals of them.
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COCYCLE DEFORMATIONS OF BIALGEBRAS AND HOPF ALGEBRAS

Mitsuhiro TAKEUCHI

We work over a field k. Let A be a bialgebra over k
with comultiplication A and counit €. We use the usual sigma
notation: A(a) = Zal ® a,, (A8 I)A(a) = Zal ® a, 8 a;, etc., a
in A,

let o: A x A+ k be a bilinear form. We may consider o
as an element in the dual algebra (A ® A)* of A ® A. It is
called a 2-cocycle on A if

(1) o is invertible in (A ® A)¥,

(2) Zo(xl,yl)o(xzyz,z) = Zo(yl,zl)o(x,yzzz), X, Y, 2 in A,

(3) ofl,x) = e(x) = o(x,1), =x in A.

If this is the case, the following multiplication
-1 .
asb = Zo(al,bl)azbzo (ag,by), a, b in A

makes a new bialgebra a9 together with the original unit and
coalgebra structure. If A has antipode, then so does A%, The
cocycle deformation A® was introduced by Doi [1] and studied in

[2] in detail.

Example 1. Let H be a finite dimensional Hopf algebra and

cop

*
A=HCPg H, where ( ) means to make the coalgebra structure

opposite. Define

cop

*
gla ® x,b ® y) = <a,l><b,x><e,y>, a, b in H , X, ¥ in H.

Then ¢ is a 2-cocycle on A and the cocycle deformation A%
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coincides with Drinfeld's quantum double D(H) [2].

The first example suggests that the idea of cocycle deforma-
tion would possibly play some important role in quantum group
theory. Here is a motivation for our study.

Given a bialgebra or a Hopf algebra, it is interesting to
know whether essentially new bialgebras or Hopf algebras are ob-
tained as its cocycle deformations. In the following two cases,

we have a negative answer in contrast with the previous case.

Example 2. Let H, Dbe Sweedler's 4-dimensional Hopf algebra.
It is defined by two generators x, y and the following relati-

onss:

x2 =1, y2 = 0, xy + yx = 0.

The comultiplication is given by

A(x) = x 0 x, AMy) =10y +y ® x.

We can show that any cocycle deformation H;’ is isomorphic to

itself unless char (k) = 2.

-

Example 3. Let q be a non-zero element in k with q2 #

1. The quantum Hopf algebra Uq(slz) is defined by generators

K, K_l, E, F and the following relations

2 K - K1

-1 = q°F, EF - FE = —
q-q

= q%E, KFK !

KEK
with comultiplication given by

A(K) =K®@K, A(E) =1@E+E®K, A(F) =KLl e@F +Fe1l.
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We can show that Uq(slz) has only two cocycle deformations up
to isomorphisms. One is Uq(slz) itself, and the other is the
Hopf algebra defined quite similarly as above with the third re-
lation modified as follows: EF - FE = 0. The comultiplication

is given similarly.

Note that the Hopf algebras appearing in the two examples
above are pointed. It does not seem that essentially new Hopf
algebras arise from cocycle deformations of pointed Hopf algebras.

We say two bialgebras (or Hopf algebras) A, B are cocycle

deformations of each other if B = a°

for some 2-cocycle ¢ on
A. This is an equivalence relation. In quantum group theory we
often encounter a family of bialgebras or Hopf algebras Aq. It
is interesting to know when two of them Aq and Aq, are co-

cycle deformations of each other.

Example 4. Let Oq(GL(n)) (resp. Oq(M(n))) be the coordinate
algebra of the quantum general linear group GLq(n) (resp. the
quantum matrix semigroup Mq(n)), for g #0 in k. Oq(M(n))
is a quadratic matrix bialgebra, and Oq(GL(n)) is its localiza-
tion at a central group-like element called the quantum determi-
nant. These quantizations are studied by many authors, and see

4] for definitions. We can prove the following results.

Theorem. If q° # 1, then 0, (GL(n)) (resp. O (M(n))) is
never isomorphic to cocycle deformations of commutative Hopf al-

gebras (resp. commutative bialgebras).

Theorem. Let g, q' # 0 in k. oq(M(n)) and Oq.(M(n))
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are cocycle deformations of each other iff q'z = q2 or q'2 =

=2
q .

The second result generalizes to the 2-parameter quantization.

Example 5. Let a, B be non-zero elements in k. We have
introduced 2-parameter matrix semigroup Ma 8(n) and general li-
’
near group GLa 8(n) [3). Let Oa 8(M(n)) be the coordinate al-
(4 14

gebra of M (n). We have:
a,B

Theorem. Oa 8(M(n)) and CL,BJM(n)) are cocycle deforma-
’ 14

tions of each other iff o'B' = aB or a«'B' = (aB) 1.

We conjecture that a similar result holds for o, B(GL(n)).
14
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Finte Injective Dimension

Tang Gaohua
(Guangxi Teachers’ College, P.R.China)

ABSTRACT

It is well known that projective dimension, injective dimension and
weak dimension are very important for inverstigating rings and modules.
In this paper, finite injective dimension will be invoked and discussed.

1, Finite injective dimengion of modules
Definitionl.] Let E be a left R-module. E is said to be finite injective if
for every f:I>E from any finitely generated left ideal I of R, there exists
a map g:R—E such that the following diagram commutes.

0-»I-R
fv &g
E
Definition 1.2 A finite injective resolution of a module M is an exact
sequence 0->M->E;-»E, > >E,»E 3 in which each E; is finite

injective.
Definition 1.8 If M is a left R-module, then 1. fid(M)< n(l . fid abbreviate
left finite injective dimension) if there is a finite injective resolution

0->M->My—E,—» »E.-»0. If no such finite resolution exists, define
1. fid(M)=co. Otherwise, if n is the least such integer, define 1. fid(M)=n.
Lemma 1.1 Let M be a left R-module, then the following statements are
equivalent:

@) M is finite injective module;

(i) ExtZ®R/AI,M)=0 for all finitely generated left ideals I of R;

(ii) Ext XR/I,M)=0 for all finitely generated left ideals I of R and
all k>1,
Lemma 1.2 Let 0->M—»E—->N->0 be a short exact sequence in which E is
finite injective. Then Ext*>g®R/I,M)2LExztZ(R/IN) for all finitely generated
left ideals I of R.
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Lemma 1.3 If 0>M—>E,—»E,—»—»E._,»N—-0 is an exact seqnence with
every E; is finite injective. Then Ext"3®R/IL,M)<2Exti(R/LN) for all finitely
generated left ideals I or R.

Theorem 1.1 Let M be a left R-module, then the following statements are
equivalent.

G 1. fidM)<n;

(ii) Ext=3®R/IM)=0 for all finitely generated left ideals I of R;

(iii) Ext X(R/1,M)=0 for all finitely generated left ideals I of R and all
k>n+l;

(iv) For any exact sequence 0—->M->E,—»E;—» —»E,_;—»>N—->0 in which
every E; is finite injective, then N is also injective.

Proof. (i)=>>(ii) Since 1. fid(M)< n, then there extists a finite injective
resolution; 0—->M—+>E,—E,—» - »E,—»0, then Ext> %R/ M)2Ex&t(R/LE,) for
all finitely generated left ideals I of R by Lemma 1.3. and so Ext=g3(R/ILM)
=0 by Lemma 1.1

(ii)=>(iii) is obvious.

(iii)=>(iv) Let 0—->M->Ey,—»E,—»—»>E_._;»>N—>0 be an exact sequence
in which every E,; is finite injective. Then Exi(R/I,N)2Ext=%(R/I,M)=0 for
every finitely generated left ideal I of R by Lemmal.3. Using Lemmal.l we
get that N is finite injective.

(iv)=>(i) is very clear.

Theoreml.2 Let 0—»>A’->A->A”->( be an exact sequence. Then

i) 1. fid(A”)<max{l. fid(A), 1. fid(A%)};

(i) 1. fid(A’)<1l+tmax{l. fid(A), 1. fid(A")};

(i) 1. fid(A)<max{l. fid(A’), 1. fid(A”")};

@iv) If A is finite injective, then A’ and A” both are finite injective
or 1. fid(A’)=1. fid(A”)+1.

2. Finite injective dimension of rings
Definition2.1 Let R be a ring with identity, The left finite injective dimen-
gsion of R is defined by 1. fid(R)=sup{l . fid(M) | M a left R-module}.
If one considers right R-modules, he may define the right fm.lt.e injec-
tive dimension of R: r. fid(R).
Theorem2.1 Let R be a ring, then
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1. fidR)=sup{l . pdeR/T) i I a finitely generated left ideal of R}.

Where 1. pdr(M) denotes the projective dimension of M.

Proof. First, assume that 1. fid(R)=n<oo, then 1. fid(M)<n for every
left R-module M, Therefore 1. pdr(R/I)<n for every finitely generated
left ideal I of R, hence

sup{l . pde(R/I) | I a finitely generated left ideal of R}<n. that is

1. fidR)>sup{l - pdrR/I) |1 a finitely generated left ideal of R}.

To prove the converse iiaequality, clearly we may assume that
sup{l . pde®R/T) II a finitely generated left ideal of R}=n<co, then
1. pdrR/I)<n for all finitely generated left ideals I of R, and hence
Ext>HR/I,M)=0 for all finitely generated left ideals I of R and every left
R-module M by Theoreml.l, and hence 1. fid(R)<n, that is

1. fid[R)< sup{l - pde(R/D) | I a finitely generated left ideal of R}
For the above reasons, we have the equality.

Theorem2.2 Let R be a ring, then

(i) WDR) <1. fidR)<1. D(R), and there exists a ring R, such that
WDR)<1. fidR)<1. D®R);

(ii) If R is a left noetherian, then WD(R)=Il - fid[R)=1. D(R);

(iii) If R is a left coherent ring, then WD(R)=l . fid(R). Furthmore, if
R is a left and right coherent ring, then 1. fid(R)=r . fid(R)=WD(R).

Where WD(R) denotes the weak dimension of R, 1. D(R) denotes the
left global dimension of R, fdr(M) denotes the flat dimension of the
R-module M.

Proof. (i) Using [6. 0.10 Lemma] and [6. Theoreml.3.8] we have WD(R)
=sup{fdaR/I) | I a finitely generated left ideal of R}<sup{l . pdr®R/)

I a finitely generated left ideal of R}=l. fid(R). by Theorem2.1, The other
inequality 1. fid(R)<1. D(R) is very obvious.

Now we prove that there is a ring R, such that WD(R) < 1. fid(R) <
1. D(R). In[7], L.W.Small gave a ring T which is right hereditary but it is
not left semihereditary with 1. D(T)=3. Then 0 WD(T)<r . fid(T)< 1. Since
T is not left semihereditary. then T is not Von Neumman regular ring, and
80 that WD(T)><0, Thus WID(T)= r - fid(R) =1. Seeing the proof of Theoreml
in [7], there exists a principal left ideal N of T with 1. pdr(N) = 2, then
1. pd(T/N)=8, and hence 1. fid(T)=1. D(T)=8, and WD(D)<I . fid(T). In [8],
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we know, for any integer n(0<n<wc), there exiats a Valuation ring R with
1. DR)=n. Since every Valuation ring must be a left semihereditary ring,
then R is left coherent ring and WD(R)<1. Hence

1. fid(R)=-WD(R)<1 (here we have used the result (iii) of Theorem2.2).
Then we can get a Valuation ring A, such that 1. fid(A)=WD(A)<1 and

1. D(A)=n>3. Now we set R=T ®A then
WD(R)=max {WD(T), WD(A)}-=1.
1. fiDR)=max{l . fiD(T), 1. fiD(A)}=1 . fiD(T)=3.
1. D®)=max{l. D(T), 1- D(A)}=l. D(A)=n>3.

It implis that WD(R)<1 . fiD[R)<1. D(R).

(ii). is clear.

(iil). Since WD(R)=Sup{fda@®R/T) | I a finitely generated left ideal of R]}.
R/l is a finitely related R-module for every finitely generated left ideal I
of R then fdxr(R/D=1. pDr(®R/T) by [9,Theoreml.3], hence WD®R)=1. fiD(R).

If R is a right coherent ring, we can also show that WD(R)= r . fiD(R).

Hence we get the last result.
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Schur algebras and their centers
Yukio TSUSHINA

§1. Background
Let R be a commutative ring.We fix a positive integer n and let E= ER be
the set of column vectors of size n over R. Let Zr be the symmetric group
on r letters, Remember that Zr acts on E®r by place permutations, namely
for o€ Zr we have:
(vl ®- @V )a=v°(l) Do ® Vo)
Now we define the Schur algebra SR = SR (n, r) as follows:

o ) ) ®r
Definition 1. SR = SR (nr) = EndRZr € ).

There is a diagonal action of the general linear group GL(n,R) on E®r

and we have a map:
Yp - GL(n, R)— SR (n, r).

We let K be an infinite field throughout,

a.mn ¥ induces a categorical equivalence between mod S, (n, r) and
the category of homogeneous polynomial representations of GL(n,K) of
degree r.

(1.2) (Weyl, de Concini-Processi) Natural map

) . ®r
¢L. LZr Ends E" )

is surjective for any field L,
Definition 2.
At ()= (as(a

L

LER BN an)ezn:alg”’ga".ZOv

agt eecta o)

1 ’

(1. 3) (Wey!)

: ke/\+ (nr)}

IRR( SK nn)=1{ Fayi
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where F,=hd(v,) and V, CE®" is the Weyl module with the highest
weight A when considered as the rational GL(n, K)-module via Y - in
particular we have:
HRR(S, (1) = 8AT ().
(1. 4) (Weyl) 1f ch K=0, then
Fo=V, =E®s

where SA denotes the dual Specht module over Zr corresponding to the

A

partition A of r.
Remark(James). 1¥ ch K=p>0, the above result holds provided A is column
p-regular, i.e.,OSli - Ai+1 sp-1 for all i(1 Si sn-1).

. _ ®r
Since SR = EndRZr € )

1.9 PR : Z(Rir) — Z(SR ).
(1.6) If ch K=0, then SK

over K, so that we have the fol lowing from (1.2):

. we have a natural map between the centers:

as well as K}Zr is a split semisimple algebra

m Py is surjective,
@ dim 2( S, )= $IRR( S, (n, ) = #AY ().
Furthermore we have

(3)(Weyl)Let A be a partition of r and e, be the central primitive

idempotent of Kzr corresponding to R.The: Pk (ek) #0 if and only
if A e/\+ (n, r) . In particular, Py is an isomorphism, whenever n&r.
From now on,we let (K, R k) be a p-modular system, that is,R is a complete
discrete valuation ring with K as the quotient field of characteristic {
and k is the residue field of R of prime characteristic p.
(1. 1) (Dade) The canonical map SR - Sk induces a bijection between the
and S .

R k

This is generally true for any R-order SR which is free of finite

rank over R So we can speak of the p-block distribution of the simple

central primitive idempotents of S

modules of the semisimple algebra SK .

If n&r, then E®r is projective over SR and we get the following result:
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(1. 8) Suppose that nzr. Then we have the isocmorphisms:
. ~ ®r .
4>R : Rir ~ EndsR E );
CP Z(RIr ) =~ Z(SR ).
(1.9) (Ponkin) Suppose that nzr. We identify Z(Rir )= Z(SR ) and let
RZr =P RZr 3
be the block decomposition of RZr with block idempotents €. Then
SR =P SR e .
is the block decomposition of SR . Also, VR =S gives rise to the
bijection:
IRR(SK £) —=|RR( KIr £).
As ch K=0, we have by 1.6 that:
.10 Z(SK ) is a K-span of {pK (IcD; Cce CL(Ir )}, where[C] denotes
the sum of the elements of C in KZr .If n&r, these form a K-basis of
2GS, ).
As a direct consequence of 1.6(2), we have:
A1) din 26, (.e)z AT (o),

If n=r, we have the equality sign in the above. However we do not know

whether this is true in general.

§2 Description of Z(SK )
We continue to assume that ch K=0,
Let {e1 , ¢ -,en} be a K-basis of EK and let
I=1(n, r)={l=(l1 bt ); 1S i, Sn }.

For iel, we set

e. e, ®+ o+ * ®e,
i i i
1 r
Then { 8; ;iel} forms a K-basis of E
place permutations. Let Q be a set of representatives of the Zr -orbits

r .Also, we let }Ir act on | by

on Ixl.Now, we know from the general theory of permutation modules that SK
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has a basis {€ i : (i, j) € Q}, where gij is defined by
§ ij(ek )= = e

where h runs over | such that (h,k) lies in the same Zr -orbit as (i, j).

We shall here describe Pk ({c]) in terms of Eij's.For jel, let Gj =
{ oezr ;jo=j }.Each Ce CL(Er ) splits into the disjoint union of
G. -orbits C _:

J [+

c

C= U1Su§m a’
For 6. ¢ Ca,let

o0 a .
f(o. ,J)~[Gj n Gj :C Gj(c'.. )]

and

£(j,0)= 2 f(o..j) §

1Sagm jo. .'i ’
Then we have:
Theorem. Pk ([(:])=Zj co £(j,C),where © is a set of representatives
of Zr -orbits on I,
The proof is a bit lengthy but straightforward,
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On Frobenius Algebras
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1 Introduction

Let K be a field which we usually assumed to be algebraically closed for simplicity.
Throuout this note, all algebras and modules are assumed Lo be finite dimensional
over K. The usual duality functor Homy(?, K) is denoted by D.

An algebra A is said to be Frobenius if Ay 2 D(A)s. This condition is left-right
symmetric. [n the previous paper [6], we proved that any Frobenius algebra can be
described as a direct sum AG M @ ,D(A), for an algebra A and a bimodule M 4
and an automorphism 0 € Auty(A), with its multiplication

(a,m, f)-(a’,m', [) = (aa’,am’ + ma' + o(m@ m'),a(a)f + fa +w(me@m))

for suitable maps v : ;M Q M, — Moand ¥ : MO My — D(A)s. So, in
order to get a Frobenius algebras, we have to construct such a system

(O' € Aut;\-(A), AA/I/h ~8 'p)

[u this note, we will give a simple construction of such a system for a graded Frobe-
nius algebra.

2 Frobenius System

Let A be an algebra, 4X,4 a bimodule and o a K-algebra automorphism of A. We
suppose that there is an isomorphism

o A A-’\,A - ,,.'\/a.

We consider a map
@01 A(X®)4 - ,D(A)s

with the property

P21 @2, @ ®z4) = (220 - Q24 ® ¥(21)),
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where @ means @,. we call ® = (g,~, ¢) a Frobenius system, in this case.
Remark For any bimodule 4M,, we have an isomorphism
Homuye(aMy, ,D(A)2) = D(Mf{c™ (a)m—ma|a € A, me M))C D(M).

Therelore, for any map ¢ : ;M4 — D(A),, we have the corresponding map ¢ in
D(M [{g~}(a)m = ma}). Denote by 6§ € D(X®?) the map corresponding to p of the
Frobenins system ®. Then, this satisfies

9(1‘]®$2®"'®IJ)=H(Ig®"'®$d®')’(l'1)).

For each 0 < i < d, we can define a map
@t a(X9)a = oHompog_ a( A(XS9™) 4, 0 D(A) ) a
by vi(y)(2z) = o(y ® ). Since there is an isomorphisim
| o H Mg a(a(XO9) 0, (D(A)a)s %, D(XOE),,

we also have a map ‘ ‘
Hl : A(’Yel)f\ - GD(Xe(d—I))Ay

defined by 8;(y)(z) = oy ® z)(1) = 8(y @ z). Similarly, the map

"P: : A-K,?. - ]10"1A—mnd( A(Xe(d_l))f\a JD(A)A)
is defined by v.(y)(z) = ¢(: ® y) with the corresponding map

6, : A XS — AD(X®UY) .,

where we have the relations v;(y)(z) = ¢,_;(2)(y) and 8i(y)(z) = 6,_,(z)(y). Fur-
ther, it is easy to see that Ker(p,) = Ker(6,) and KNer(p)) = Ker(6)).
Propusition 2.1 For each 0 < i < d, KNer(p)) = Ker(p,) and v induces the
automorphism of KNer(p,) (v2° =a).

We put R, = R,(®) = Ner(p,) for 0 < i < dand R, = X® for d+ 1 <
i. Then R = R(P) = @, i becomes an ideal in the tensor algebra T(®) =
ADX DX P---. We consider the factor algebra

AD)=T(P)/R(P)=A/Ro DX/ D--- D X®YR,.

Let us put B = Af/Ry and Y = X/R;. Then, it is proved that ¢, v and ¢
induce ¢’ € Auty(B), v : sYs = ¥, and ¢ : gY¥! — _.D(B)s. Further,
D' = (a',7", ) becomes again a Frobenius system.

Proposition 2.2 A(P) = A(D).
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By this result, we may assuine that the Frobenius systemn satisfies the conditions
RO = 0, R] =0.

We call such a systemn a reduced Frobenius system. N should be noted that the wap
 is surjective if ¢ satisfies the above conditions and 4(X®4/R;)4 can be identified
with ,D(A})a4.

Theorem 2.3 A(®) is @ Frobenius ulgebra.

3 Frobenius System over K

In the case of A = A", a Frobenius system is given very simply. First, ¢ must be the
identity map and X is just a K'-vector space. v is an element of GL(X). The map
p=0: X% = K satisfies

Pz1®2:@---®xy) = 9(22® - ® 24 ® ¥(2))).

So, a Frobenius system is simply a pair ® = (v, p) satisfying the above condition.
Furthermore, since we consider only reduced system, we may assume that the map
o satisfies the following coundition also:

o(z @ X®4-1) = 0 implies z = 0.
It is easily proved that the map v is nniquely determined by p. Therefore, we denote

the algebra A(®) by A(p), usnally.

Theorem 3.1 Lel I be ulgebreically closed. Then, any (radical-)greded loce! Frobe-
nius (basic) alyera A s isomorphic lo A(p) for a Frobenius system (v, @)

Theorem 3.2 Let (v, p) be a Frobenius system, s € GL(X) and o € K ¢ non-
zero elemenl. Then, (s7' v - 5,00 - s29) is a Frobenius system. Moreover, for two
reduced Frobenius system (v, v) and (v, '), A(®) is isomorphic to A(p') if und only
(v, @)= (s y-5,ap- 5%) for some s and a.

Theorem 3.3 Let (v, 9} be ¢ Frobenius system. Suppose s € GL(X) satisfies ¢ -
899 = . Then, by putting 0, = p-(10s® 5@+ @597}, (s7¢+ v, p,) becomes @
Frobenius system.

4 Examples

Let X be a n-dimensional L-vector space. We fix a K-basis vy, va,+++,vp of X.
Consider the elements in X% of the form 2, ® -+ - ® z4. Asumne that each element
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z; is expressed as vjcy; + vac,; + + -+ + vgcq,. Then, we may identify the element
2, ® - @ xg with the (d, d)-matrix

Ciyp " C1d
M(zy,- -, 24) =

€41 ' Cad

We can define a map det : X® — K by the correspondence z, @ -+ ® z4 —
detM(zy,+++,24). It is easy to see that ((—1)?"}, det) is a Frobenius map with the
exterior algebra A X = A(det). s € GL(X) satisfies det - s®¢ = det if and only if
s € SL(X).

Theorem 4.1 For elements s, t € SL(X), The isomorphism A(det,) = A(det,)
holds if and only if t = wg~"-s-g for some g € GL(X) and w € K such that w? = 1.

Theorem 4.2 A(det,) is always Koszul with the dual algebra
A(det,)' = Exty gor, (K, K),

which is noetherian.
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HOMOLOGICAL DIMENSIONS OF INVARIANTS
FOR HOPF ALGEBRA ACTIONS

ZHIX1 WANG

ABSTRACT. Let H be a Hopf algebra acting on a ring A, and let A¥ denote the invariant
subring of A. It is shown that IdA¥ < pdimgk + 1dA +fdim(A &) in the case that A is
a projective left A# H-module.

Let H be a Hopf algebra over a field £ and A an H —module algebra. We let A7
denote the ring of invariants under the H —action and A#H the smash product. Qur
main interest is to investigate homological dimensions of A”. When A is a projective
left A#H—module, we establish the following estimates for the injective dimension of
AH in terms of that of A and other related data:

1dA¥ < pdimpk +1dA + fdim(A 4n ).

We fix our notation, following the references [M] and [Rot]. In particular, we will
keep the following notations:

- IdR: denotes the injective dimension of R as a left R—module.

- pdimM and fdimM denote the projective dimension and the flat dimension of the
module M, respectively.

- R—mod(resp. mod— R) denotes the category of left R—modules ( right R—modules).

-For M € A#H-mod, M¥  ={me M |[h-m=¢c(h)m, all heH}.
Lemma 1. (1) Idazn(A) < pdimyk + IdA.

(2) If H is semisimple, then 4zyA is a projective module.
Proof. Let aurM be aleft A#H —module. For left A#H —modules M and A, Applying
([LL], Proposition 2.3(a)), there is a spectral sequence

Ext’;{(k, Ext'f‘(M, A) =p> EXt’A#H(M, A),

proving (1).
If H is semisimple, the spectral sequence of ([LL], Proposition 2.3(a)) collapses on
the p—axis, yielding isomorphisms

Homy (k, Ext3(V, W)) = Ext {4y (V, W)

for any left A#H — modules V and W.
Taking V = A, we obtain that Ext},;(A4,W) = 0 for any left A#H— module W
and all » > 1, and so A is a projective left A#H — module. O

Project supported by NNSF of China.
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Lemma 2. If H is semisimple, then

IdA = Id g4 i (A) = Id(A#H).

Proof. If ¢: A — A#H is the ring embedding map, then from ([Rot], Theorem 11.65)

there are isomorphisms

Exthupy(A#H @4 M, A) = Ext3(M, 4)

for any left A—module M. It follows that Id4A < Id(44xA). By Lemma 1 (1)
IdA#H(A) < IdA since H is semisimple. Hence the equality holds. By [S, Corollary
2.7], H must be finite dimensional. Taking W = A#H in the spectral sequence of ([LL],
Proposition 2.3(a)), we obtain a spectral sequence *

Ext}(k, Ext}(V, A#H) = Extlyn(V, A#H),

where V is an arbitrary left A#H —module. Since H is semisimple, this spectral se-
quence collapses on the p—axis, yielding isomorphisms

Homp(k, Ext(V, A#H)) ¥ Ext}up(V, A#H).

Hence Id(A#H) < Ida(A#H). Recall that A#H is a finitely generated free left
A—module. It yields that Id4(A#H) = IdA, and so Id(A#H) < IdA.

On the other hand, Id4 < Id(A#H). Indeed, by Lemma 1(2) 4un 4 is a projective
module and so the exact sequence A#H — 44y A — 0 splits. This implies that
Idapu(A) < Id(A#H) and hence IdA < Id(A#H). O

Theorem 3. If 44 A is projecitve, then
IdAY < pdimpk + IdA + fdim(A 4n ).

Proof. For rings A and A#H, consider the situation (4z M,a45 Aan, agnA). Then
we have the adjoint isomorphism

Homuapn(A ® 42 M, A) = Hom gu (M, End(apnA)).
Note that End(445A4) = A¥ as algebras([CFM]). Hence
Hom sy (A ® 4n M, A) = Hom n (M, AH)

for any left A¥ —module.
Define functors

F: A#H —mod — Ab( the category of Abelian groups), via
F(M) = Homapn(M, A)
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and
G: A" —mod — A#H — mod, via
G(N)=A@®u N.
Then FG is equivalent with the functor Hom s (—, A¥), and so the right derived func-
tors R*(FG) are equivalent with Ext%(—, AH).

Moreover, if P is a projective left AH —module, then we have isomorphisms ([Rot],
Exercise 9.20)

Ext} (A ® an P, A) = Hom gu (P, Ext}y (4, A)).

However, 441 A is projective, so
Extizn(A®an P,A)=0 all n>1,

and so G(P) is right F—acyclic.
Applying the Grothendieck spectral sequence ([Rot], Theorem 11.40), there is a third
quadrant spectral sequence

Ext]pp(Tory'” (4 M), A) = Ext}a (M, 4%).

This directly implies the required estimates for IdA¥. O
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SOME NEW CHARACTERIZATIONS OF V-RINGS
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In this paper, a ring R always means an associative ring which does not necessarily
contain the multiplicative identity. R is called a left V-ring {or a cosemisimple ring)
if every nonzero left ideal of R is the intersection of maximal left ideals. See [1] [2].
In this paper, we will give some new characterizations of this ring. Here we define a
cyclic R-module as following: A left R-module M is called a cyclic module if there
exists a R-module M which contains M as a submodule, and there exists an element
m of M such that M = Rm. M is called a strictly cyclic module if there exists an
element m of M such that A = Rm. A R-module M is called a weak simpie of M
does not contain proper submodule. A ring R is called to have property (V) if for
every left ideal 4 # 1 and a € R\ 4, then every left ideal L of R thar is maximal
with respect to the property that contains 4 but does not contain the element a is
surely a piaximal left ideal of 1. The main result in this paper is:

Theorem. The following statements are equivalent:

{a) R is a left V-ring.

(b} Every nonzero cyclic left R-module alwavs can be embedded in the direct
product of weak simple modules.

(¢) R has property (V).

Proof.

{a)=(b)

Let M be a nonzero cyclic lelt Remodule. then M = Rm. Let § denote the
mapping: r — rm for every r € R, then f is a2 R-homomorphism of R ento V. and
Lhie ker § = L 15 a nouzero leflt ideal of R. By (2) L = NB,., where B, i1s maximai ieft
ideal of R. and R/R, is weak simple R-module. Hence M = Rm can he smbedded
1 ihe direct product of weak simple modules:

0 — Hm = R[ 0 Ba — [[ #/B..
(b)y=(c).

Let 4 be any leit ideai of R and 4 # R. Assuming that L is a leit ideal of R
which contains 4 but does not contain an element a of R, and L is the maximal with
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respect to this property. We will prove that I is surely a maximal left ideal of R. Tt
is suflicient o show that any left ideal of B which contains L and a s R itself.

Tet B = I. + (Ra + 7.a), then B is a left ideal of R which contains I, and a. Tt is
easy (o see that BfL as a R-module is a weak simple module. Let R = R+ Z and
define multiplication in R by

{a,m)b n) = {ab+ na + mb, mn)

for a.b € R and m,n € Z. Then R! is a ring with unit (0, 1).
For r € R, we define

r(a,m) = (r.0)(a.m) = (ra + mr,0)

then R! is a left R-module and it contains L as a submodule. Here we do not
distinguish r and (r,0). Let M = R/L, M = R![L, then there exists T = (0,1) + L
in M such that M = RI, thus M is a cyclic R-module. We denote the weak simple
R-module B/L by S, it is easy to show that the injective hull of § exists, we denote

it by S. Consider the following commutative diagram:

0 —— S=B/L —— M=R{L=RT

L~

here i is the inclusion mapping Next we prove that
f oY = lds
Since f(M) = HRT) = Rf(T)= Rm C S. and f(M)D f(S) = i{S) = S #£ 0.
therefore Rm # 0 and Rm N S # 0. Hence Rm 2 §.
By (b}, Rm can be embedded in the direct preduct of weak simple modules. hence

we have
9 " X

0

Rm [laer So So
here v, are projections of [] S. to S,. We prove that there exists an index a € T
such that ¢, o ¢ is a monomorphism.

Assuming, on the contrary, that for every a € I'. Ker(¢qy 0g) # 0. then K, =
Ker{py 0¢) 1s nouzero subutoduie of S amd K.NS#0=>KR,25= (| K, 23S

o€l

But NKer{z, 0g) = ¢7{Nea) = ¢g~0 =0 = § =0, thisis a corftradiction.
Therefore there exists an index « € T such that Ker{w, 0og) # 6 => Rm = 5,. We
conclude that Rm is a weak simple module => Rm = §. We obtain fo ¢ =ids, so
fis spilt. Therefore RfL = BJL 5 C/L. If C/L # 0, by the maximal property of
L weknowthata € C=a€BNC=>a+ L€ BJ/LNC/L, this is impossible
Hense C/L = 0. thus B = R as ciaimed.

(c)=(a).
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Given any left ideal I. of R and I. # R, there exists an element a € R. a ¢ L
Let A be a maximal lefl ideal which contains L bul does not contain g, then A 15 a
maximal left ideal of R. This is to say that every left ideal . of R can be embedded
i & maximal left ideal of B. Taken all maximal left ideal of B which contains L. we
denote those by {A,} and N4, D L. We prove that NA, = L.

Suppose that NA, # L, then there exists an element ¢ € NA,, ¢ ¢ L. Let B
be a maximal left ideal which contains L but does not contain z, then by (¢), B is
a maximal left ideal of B which contains L, hence B D NAd, and @ € B. This is &
contradiction.
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A filtration problem for algebras of finite global dimension

Kunio Yamagata

In this note we consider a problem to compare global dimensions of two algebras,
an artin algebra A and a factor algebra A/I of A by a specific ideal [ filtered by some
indecomposable modules. The class of those ideals contains heredity ideals, and practically
any artin algebra of finite global dimension seems to have those ideals. In the first section
we introduce a property related to filtrations and minimal projective resolutions of modules.
In the second section we show some facts on the global dimension of factor algebras.

Throughout this paper all algebras are artin algebras and modules are finitely generated
left modules. For an algebra A, mod A denotes the category of finitely generated left A-
modules, S(A) denotes the set of simple left A-modules, and pd 4(X) is the projective
dimension of a left A-module X.

1. Definition

Let A be an algbra and [ an ideal of A, and decompose the ideal I as a left A-module
to a direct sum of two submodules, say Iy and /;, such that

IoCrad Py and I, = P,

where Py, P, are projective modules with A = P, & P;. Since [ is an ideal of A, this is
always possible.

Let A be a finite set of nonisomorphic indecomposable A-modules and let (A} be the
class of A-modules with filtrations in A, that is, 0 € F(A), and a non-zero module M
belongs to F(A) if and only if there is a chain of submodules

M=M>M>..OM,DM,, =0

such that M;/M;,, is isomorphic to a module in A for any i. (We say simply that M;/M;,,
belongs to A and denote it by M;/M;,, € A.) We assume that Iy and I, belong to F(A).
A left A-module M belonging to A is said to be A-simple if any nonzero morphisms
f: X = Mandg: M —Y are isomorphic for any X and Y from A.
Let P.(M) be a minimal projective resolutuion of 2 module M, say

e P, I p o0,



Then P.(M) is said to be A-closed if Ker(f,]r) and Im(fa|s) belong to F(A) for any
n > 0, where fu|; : IP, = IP,_, is a restriction of f,. A A-closed minimal projective
resolution P.(M) is said to be A-splittable if f,|; is splittable for any n > 0.

In [4] it is shown a construction of algebras with two simple modules and with arbitrarily
large global dimension such that minimal projective resolutions of any modules are A-
splittable by some ideals. In fact, for those algebras and ideals contained in the radicals,
say A and I, the restriction f|; : IP — IQ is splittable for any morphism f : P — @
between projective A-modules, and moreover the factor algebra A/! has smaller global
dimension than gldim A.

2. Comparison of global dimensions

In this section, as in the above, I is an ideal of an algebra A and A is a finite set of
nonisomophic indecomposable A-modules. In the case when there are modules X from A
annihilated by 7, we put

pd 4/(A) = max{pd 4,(X) | X € A and IX = 0}

and in the other case, pd ,,,(A) = 1.
The following theorem is proved in [5].

Theorem 2.1 Let A be a finite set of indecomposable modules over an algebra A.
(1) If I be an ideal of A satisying the following two conditions:

(a) Io* =0, and any indecomposable summand of 4 1) is A-simple,

(b) every simple A-module has a A-closed minimal projective resolution,
then

gldimA ~pd ,(I) -2 L gldim A/I and
gldim A/I < max{pd 4(5) | S € S(A) and IP(S) C rad P(5)} + pd 4/4(A) + 1,
where P(S) is a projective cover of an A-module S.

(2) If an ideal I is projective as a left A-module and salisfies the condition (a) above and
Hom (I,rad I) = 0, then

gldimA —2 € gldim A/I < max{pd 4(S) | S € S(A) and IP(S) C rad P(5)}.
This implies a well known inequality for a heredity ideal I, namely, gldimA - 2 <
gldimA/I < gldim A [1].
Proposition 2.2 Let A be an algebre and D a semisimple algebra. Let ;Mp and pN,4

be bimodules such that there is an A-bimodule monomorphism ¢ : M ®p N — A and put
I = Im(yp). Then any A-module has a A-splittable minimal projective resolution, where
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A is the set of nonisomorphic direct summands of the left A-module I. Moreover it holds
that Iy2 = 0 and any indecomposable summand of 41, is A-simple.

Proof. Let P, @ be projective A-modules and f : P — @ an A-homomorphism. For
isomorphisms
0: PSR Aei, f:Q S D}, Aej,

where ¢}, ¢’; are primitive idempotents, let

ﬂfa'l = (fﬁ) H @iAeio_-’l P _f’ Q £’ @JAC.’I

Here each homomorphism f;; : Ae; — Aej is a right multiplication of an element of A, say
a;; = e;a;;¢; € A. Now, take A-homomorphisms g;, kj; such that the following diagram is
commutative:

M®p(®iNe) 2% @M ®pNes) 225 @ide; — IP
(hﬁ)j (9,i)j 1(/,.“) 1::

M@p (§;Ne}) % @;(M®pNe)) =3 a;le, — IQ

Since p is a right A-homomorphism, it is seen that each g;; is induced by right multiplication
of a;;. Let t;; : Ne; — Nef, ze; = za;;. Then it is easily seen that A = 1y ® %, where
h = (hj) and ¢ = (3;;) : BilNe; = ®;Ne!;. This implies that f; is splittable because so is
h.

For example, if A is an algebra with an heredity ideal AeA for an idempotent e, then
eAe is semisimple and the natural morphism f : Ae ®.4. eA — A is monomorphic [1].

Corollary 2.3 Let A be an algebra and D a semisimple algebre. Let ;Mp and pN, be
(A, D)-bimodules such that there is an A-bimodule monomorphism ¢ : M Qp N — A. Let
I=1m(y). Then

gldimA -2 < gldimA/I < gldim A + p(M) + 1,

where p(M) is a mazimal projective dimension of indecomposable summands of 4M anni-
hilated by I.

Proof. 1t follows from the proposition above that the ideal I satisfies the coditions in
Theorem 2.1. Moreover, 4M ®p N € add(4M) because D is semisimple, and hence 47 €
add(4M) and pd 4,,(A) £ p(M), where A is the set of all nonisomorphic indecomposable
summands of 41. The required inequality hence follows from Theorem 2.1.

The existence of nonzero ideals satisfiyng the two conditions in the theorem above is
not known in general for algebras of finite global dimension.



Problem 2.4 Let A be an algebra of finite global dimension. Then, find a chain of
ideals
A=10311 D"‘DI,,.DI,,..H =0

satisfying the following conditions for any i.
a) I;/I;;, satisfies the conditions in Theorem 2.1 (1) for a set A; in mod A/ ;4,,
b) gldim A/Ii4, is finite,
c¢) A/I; is a quasi-hereditary, and
d) m £ gldim A.

A module is said to be homogeneous if it is isomorphic to a direct sum of copies of an
indecomposable module which is called a type of the module. A semihomogeneous module
of rank r is, by definition, a direct sum of r homogeneous modules of orthogonal types.
The following are considered as a special case of the problem above.

Problem 2.5 What algebra A has a module M such that End 4(A @& M) is quasi-
hereditary and M is a direct sum of m semihomogeneous modules with m < gldim A.

Problem 2.6 Find a semihomogeneous module M with End 4 A®M) quasi-hereditary
for a non-quasi-hereditary algebra A of gldim A = 3.

Finally we put a simple remark on global dimensions of factor algebras in the following
where the assumption holds for algebras, over an algebraically closed field, with finite global
dimension [2, 3].

Remark Let A be a basic and connected algebra whose redical is not simple as an
A-module, and assume that Ext}(S,S) = 0 for any simple A-module 5. Then there is a
nonzero ideal I properly contained in rad A such that gldim A/1 is finite.
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ACTIONS OF POINTED HOPF ALGEBRAS ON PRIME RINGS

Tadashi YANAI

In this note, we report some results on the “outer” actions of pointed Hopf
algebras on prime rings and Galois correspondence theory obtained by applying
Milinski’s idea in [M] to the Galois correspondence theory of Kharchenko [K].

Throughout, R represents a prime ring and F the set of all nonzero ideals of R.
Ry = li;)nlef Hom(grl, RR) denotes the left Martindale quotient ring of R and X
the center of Rr. A subring U C R is called rationally complete if for z in R and
a nonzero ideal A of U, Az C U implies = € R.

Let H be a pointed Hopf algebra and we assume that Rx is a left H-module
algebra via H® R D h®z — h-x € Ry. Rr#H represents the smash product
algebra. In this case, Rx is a left Rr#H-module via a#h — =z = a(h - z) for
a,z € Rr and h € H. We say that the action of H on Rr is continuous if for any
h € H and J; € F, there exists J € F with h-J C J;. On the other hand, the action
of H is called outer if (Rx#H)" := {€ € Rr#H|r = ¢r for any r € R} = K.

Henceforth, we assume that H is a finite dimensional pointed Hopf algebra acting
on Rr and the action is continuous and outer. We set R¥ := {r € Rlh-r =
e(h)r for all h € H}. A subalgebra U C R is said to be an intermediate subalgebra
if R¥ C U. Since H is a finite dimensional Hopf algebra, it has a nonzero left
integral t. We write K#H instead of K ® H.

An intermediate subalgebra U is characterized as follows.



Lemma 1. ([M,Y])

(1) U is a prime ring.

(2) {z € Rr|zs =sz forallsc U} =K.

(8) (The bimodule property) For any 0 # pMy C gRy, there ezists I € F such
that I C M.

For an intermediate subalgebra U C R, we set ®(U) := {£ € Rr#H|st =
s for all s € U} (C Rr#H) and for a left K-subspace A C Rx#H, ¥(A):={re
R|ér = r€ for all £ € A} (C R). Then, we have the followings.

Lemma 2.
(1) ®(R) = K end ¥(K) = R.
(2) ®(R") = K#H and Y(K#H) = R".

Lemma 3. ([Y])

(1) For any left K -subspace A C K#H, ¥(A) is a rationally complete subalgebra
of R.

(2) For any intermediate subalgebra U, ¥(U) is a subalgebra of Rx#H contain-
ing K.

So, ® and ¥ give a correspondence between the set of all rationally complete
intermediate subalgebras of R and the set of all subalgebras of Ry#H containing
K.

(8) For any intermediate subalgebra U, U, := {s € Ulh-s € R for allh € H}
satisfies $(U,) = &(U).

Now, we consider the following problems which generalize the “X-outer” Galois

correspondence theory of Kharchenko:

Question.

1. When ¥(®(U)) = U holds for a rationally complete subalgebra U C R?
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2. When ®(¥(A)) = A holds for a subalgebra K -subspace A C K#H containing
K¢

In the remaining, we give the sufficient conditions so that ¥(®(U)) = U holds
and some concrete examples such that those conditions are satisfied. The solution

of the second question is a future problem.

Condition A. There exist some r; € R,3; € U(i = 1,...,n) and §; € ®(U),g; €
Rr(j=1,...m),sothat } ¢t (zr;)s; = ) & — (2g;) for all z € R.
i=1

i=1
Let Rx°P be an algebra opposite to Rr with multiplication @ o ¥ = be for
a,b € Rr° and H °°P the Hopf algebra which is co-opposite to H. In this case,
Rx°P is a left H “°P-module algebra and Rx°P is a left R °P #H °°P-module via
efth =" z = ao(h-z) for a,z € Rr°° and h € H*P. For an intermediate
subalgebra U % C R°P, we set P'(U°P) := {€ € RFP#HP|{s = s forall s €
Uc°r}.
Condition B. There exist some r; € R°,s; € U%(i = 1,...,n') and & €
n' m’
&'(U°P),q; € Rx°P(j = 1,...,m'), so that _th -(zor))osi = lef;. =/ (zodqj)
= =
for all z € R°P.

The following is a partial generalization of Kharchenko’s theorem.
Theorem 4. If the Conditions A. and B. are satisfied, then ¥($®(U)) = U is valid.

Examples.

Let U be a rationally complete subalgebra.

(1) f ®(U) C K#G(H), where G(H) := {g € H|A(g) = g®g}, then Conditions
A. and B. are satisfied and ¥(®(U)) = U. In this case U = RS’ for some subgroup
G' C G(H).

(2) If H = kG, where G is a group of automorphisms, then ¥(®(U)) = U for

any rationally complete subalgebra U and in this case U = RS’ for some subgroup



G' C G ([K: Theorem 3.10.2], [Y]).

(3) If Chark > 0 and H = u(L), the restricted enveloping algebra of L, where L
is a finite dimensional restricted Lie algebra of derivations of R =, then ¥(®(U)) = U
for any rationally complete intermediate subalgebra U ([K: Theorem 4.5.2], [Y]).

In this case, U is a subalgebra consisting of constants of a certain left X-subspace
of K®L.

(4) We define Hy: := k < g,z|¢g" = 1,z" = 0,zg = (92 >, A(g) = 9® g,
A(x) =1®z+z®g, where {, is a root of n-th cyclotomic polynomial of 1 over Z.
(In this case, we assume that k contains ¢,.)

If H = Hy ([Y]) or Hy, then ¥(®(U)) = U holds for any rationally complete
subalgebra U. In both cases, U is one of the following four subalgebras:

(i) R,

(i) Ry = {r € Rlg-7 = 1)

(i) Re={r€R|lz-r=a(r—g-r)} (e € K)

(iv) R
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The Structure of Involutive Rings Which in
the Residue Class Rings

Yang Zixu

let R be an arbitrary associativde ring with a unit element, and let us denote the unit
group of R by WR) which consists of all the units of R, To study the structure of R and to
definite R by @aking use of KR)is one of the most important methods on research of ring
theory, For example, in [3], the author has proved that the ring R is a noncommutative
division ring if and only if KR)=R-(D} and WR) is not a solvable group. The primary
purpose, in this paper, is to study the structure of residue class ring R if WR) is an
involutive group,

Definition |, Let G be a group, and e an identitly of G.If element of G satisfies equation
x%=e¢, that is to say, the inverse elements of every elements of G are itself, then we call G
an Involutive Group,

Ctearly, the involutive groups are coemutalive groups,

Definition 2, Let R be a ring with a unit element,We catl R the Involutive Ring if the
unit group WR) of R is an imvolutive group.

It is clear that the integral ring Z and the ring Z,={(0,1,2) are involutive rings.

Theorem ]. Suppose that R is a ring with a unit eleaent, and RiCi=1, 2, +»-, n)are the ideals
of Roand R=R, @ Ry @ - @ R..Then R is an involutive ring if and only if the every
ideals Ri(i=1, 2 +, n)are both the involutive rings.

Proof Let a€R,and

a=a,tagttavas €Ry, i=1,2 0,
Then

e=e;text-tenper€Ry i=12 0,
where e and e, are the unit elements of R and R, respectively,

Froa this, we may prove that

d:a=a,+agt et an—"(ay 8y, 8n)
is an isomorphic mapping from group WR) to group WCR,IXWRIX =+ XU(Ra).
Therefore
WRY = WRIXWKR;) X+« XIKRA).
It follows that, if every IKR,)are the involuiive groups, then for every
a=a,+8at+a. EWR), 2, EKRY, i=1, 2 o0
we have af=ey, and -
a*=af+ad+ -tai=e,+est--ten=e
thus WR>is an involutive group, and hence that R is an involutive ring.
The necessity of the theorem is obvious.
Theorem 2. The polyncaial ring on an involutive ring is an imvolutive ring,

i59



Since the unit group of ring R coincides with the group of polynocamial ring Rix,, Xg «4 Xa)
on the R, the proof of the theoream is obvicus.

The following is mainly to study the lavolutive ring which in the residue class rings.

Example {, Residue class ring Z,; modulo 12 is an involutlve ring.

In fact, since WRY={1,5,17,11), and since

l'=jp5'=25=l;7'=49=1pll"=121=l;
it follows that (2Z,,) is an involutive group, and hence Z,, 1s an involutive ring.

Example 2. Residue class ring Z,, aodulo 10 is not an involutive ring.

In fact, since W2,0)={1,3,7,9), and since 3®=93], therefore WZ,0) is not an involutive
group, and hence Z,o Is not an lavolutive ring,

Since Z is an involutive ring, and since Z./ {10) =Z,¢ therefore Z/ {10) is not an
involutive ring, It follows that, in general, the quotlent ring of an involutive ring is not
an involutive ring.

The following aim theorem will make it very clear that among residue class rings which
rings are earth involutive rings.

Theorem 3. Asufficient and necessary conditlon that the residue ring Z. modulo n>1 is an

involutive ring is that n are the following integer:
234 6 8 12 24, (4D

Proof Ve may immediate calculate that Z. are the involutlve rings, if n is the anyy
integer in (1),

We prove that, in the following, for every positive integer n which is not emong the( 1),
the rings Z, are not involutive rings. Such posltive integer n has five cases as follaows;

1) n=2* 3%, where s>»4, t=0 or 1.

If t=0, then n=2°, Since 3 € XZ.) s>>4 hence

3892420,
thus 32=91 in the group WZ.). Therefore Z.)is not an involutive group;
If t=|, then n=2".3. Since §€W(Z.) s>4 , heace
58=25<2 IK2* 3
thus 59=257+1. Therefore U(Z.) Is not also an involutlve group,
2) n=2°* 3%, vhere s>0, {>2.
If s=0, then n=3*. Because 2€KZ.)s 1>>2 and so
28=4<39<3Y,
thus 22=4+1, and hence that ¥Z.) is not an involutive group;

If s=1 and t=2 the>n n=2 39 Since 5€WZ ), it follows that 52=25=7#] In the group U
(Z.), and hence that KZ,) is not an inbolutive group;

If s=| and t>2 then n=2 3*. In this case, since 5€WZ,), and

§2=25<2 3°<2 1Y
it follows that 58=25%], and heace that UCZ.) is not also an involutive group.
3) n=p* ,vhere p is a prime nusber which greater than 3,k>1.
Since 2€U(Z)and 29=4<5<p™ it follows that 28=47], and hence that WZ.) is not an

160



involutive group.
4) n=2°* p*,where s>, t>1,and p Is a prime which greater than 3.
Since 3€¢WZ,)and 32=9<2 5<2° pt, it follows that 38=9%], and hence that KZ,)is not
an involutive group,
5) n=2* pi'pseopi®, where s>0,052 and py)ps *+, pm are @ distince odd prime mmbers
each other,and t,>1,i=1,2 +n,
Because of the order of group WZ,)is ®(n)(Euler’s function), it is clear that in order to
prove that (Z,)is not an involutive group, it Is sufficient to show that the nusber of
solutions of the residue class equation
x2 =1 (med n) ¢
Is less that ¢(n),
If s=0 ir s=}, then since the every residue class equations
x*=1 (mod p¥") i=1, 2,0
has two solutions, and hence that the residue class equation (2) has 2™solutions. But since =
>2 this laplies that
2ot pE e pa® (P -1 ) Pa-1)-+(pPu-12= $ (N);
Wher s=2,we have n=2% p}!p§d...p2™, Since
X% = | (aod 4)
has two solutions, and hence that the residue class equation (2) has 2=+! solutlons,
Consequenly, since m>»2, we have
1Pt ip gt e pd™ Py 1 X(Pa-1)++(Pa-1) = $ (R);
When s>>2, then since the residue class equation
x?=1 (aod 2*)
has four soluticns, and hence that equation (2)has 2=+ 9sglutions.Similarly, since n>>2,we have
also
Z0 2o p g A e pa T Py~ X(Pa= 1)+ (a1 ) = (M),
Suppose that C.=<a> is a cyclic group of order n which generated by element a and aut C,
is its automorphism group.Then the group Aut C,and KZ,) are both of order ®(n),and clearly
P16 —n
is an iscmorphism mapping from groups Aut C, to WZ,),where Sa€Aut Crand 6a(a)=a™ but (&
n)=1{,Therefore we have
Theorea 4, Aut C.=WZ,).
In view of Theorem 3 and Theorem 4, we may obtain at once the following
Corollary 1, A sufficient and necessary candition that the autcmorphism group of the cyclic
group of order n>>] is an Involutive group is that n are the following integers:
%3 4 6 12 24,
The author, in [4] gives the concept of cyclic rings, that is the ring R is called a
cyclic ring if the additive group (R, +)> of R is a cycllc group,
Lemma, Let R be a cyclic ring of order n Then R has an unit element if and only If R=Zn,
Proof Let R=<a>={1, 4 2 +-,(n-1)a}, and the order of a, in additive group (R +) in n,
and a®=ka,
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The sufficiency of Lezma is obvious. In the following, we prove ihat the necessity of
Lemaa,
Suppose that R has an unit element. Then, from [4],we have (k,n)=] and it follows that
there exist integers s, t such that
ks+nt=1 . (&})
Let ¢¢rsa—r, If r,sa=rgsa then (ry~ra)sa=0, and hence n| (r,-ra)s.But from (3) we have
(n s)=1, therefore an | Cry-ra), that is ry=r, in ring Z,.Hence the ¢ ls a mapping from the
ring R to ring Z.. Similarly, it is easily verified that ¢ is a one-to-one mapping and holds
add operation, Moreover,we have
¢(r,sa rasa)=¢(r,rys%a®)= ¢p(r,rys%ka)
=¢(rireks sa)=r,reks
=013l - nt)=r,1a
=¢(r53) $(rgsa),
and hence that ¢ is iscaorphic mapping from the ring R onto the ring Z,.Therefore R=Z,.
From this Lezma, we may easy obtain the following
Theorem 5. The cyclic ring R with an unit element Is an involutive ring if and only if R
= 2 or R is finite and |R| is any integer In (1).
Definition 3. A ring R with an unit element is said to be an U-cyclic ring if the wnil
group of R is cyclic group,
By the theory of pramitive root in the theory of number,we have at once the following
Theorea & The residue class ring Z, modulo n is a cyclic ring if and only if n are the
following integers;
2 4 p*% 2%
where p is an arbitrary odd prime number, and k is any positive integer,
By Theoream 3 and Theorem 6, we have at once ihe following
Corollary 2 The involutive ring Z.(n>1)is an U —cyclic ring if and only if n are the
following integers: 2, 3, 4, 6.
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MORITA EQUIVALENCE OF FUNCTOR CATEGORIES

YAO MUSHENG YIN CUI
Department of Mathematics,Fudan University, Shanghai,200433,China

INTRODUCTION

Since K.Morita established the well-known theory of equivalences of categories of
modules, many people have developed this theory. K.R.Fuller extended this theory
to equivalence between full subcategory of the category of modules and the category
of modules. M. Sato extended it to equivalence between module subcategories in
[2]. In [3], Abrams established the theory of Morita equivalence of rings with local
units. P. N.Anh and L. Mérki [4] simplified this theory,covered a wider range of
rings, and transfered more of the classical Morita theory. H. Komatsu[5] developed
the theory of Morita equivalence for the category of S-unital modules. In 1990,
Angel Del Rio gave a description of the equivalence of categories of gr — R and
gr — A, where R and A are graded rings respectively (see [6]).

In this paper, we’ll give further generalizations. Morita equivalence of functor
categories will be developed, and many known results may be regarded as special
cases of the theory.

1.PRELIMINARIES

Let C and C’ be two preadditive categories and let C be small. We denote by [C,C’]
the class of all covariant functors from C to C’. For any S,T € [C,C’], a morphism
from S to T is a functorial morphism u from the functor S to the functor T With
the law of composition of functorial morphisms , [C,C'] is a category.

We denote by (C,C’) the full subcategory of [C,C’], which consists of all additive
functors from C to C’. Also we denote by (C?C') the category of additive con-
travariant functors from C to C’. Paticularly, if C is a small preadditive category,
we denote Mod(C as the category (C, Ab) and Mod(C® as (C°, Ab), where, Ab is
the category of abelian groups. An object of Mod( is called a left module over C,
and an object of ModC? is called a right module over C.

An important contravariant functor h : C - ModC is defined as follows: for
any X € obC, h(X) = hX, such that h*(Y) = Hom¢(X,Y). Similarly, a functor
h% : € —» Mod(? is defined by the equality h°(X) = hyx, such that hx(Y) =
Hom¢(Y, X).

It is well-known that the category of modules over a given ring is a special
functor category. It is not difficult to see that the category of graded modules
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R — gr (gr — R) is also a functor category. In fact, let R = e Ra be a graded

ring, where G is a group. Define a category C as follows: the objects of C are
{9|9 € G} and Hom(g, h) is the additive group Ryg-1. If M € (C, Ab), we denote
M(g) = Mj, for any g € obC. For any a € Ry = Hom(h, gh), the left multiplication
of a defines a map

M(a) My — Mgh-

(From this point of view, it is easy to see that (C, Ab) & R — gr. Similaly, we have
(C°,Ab) = gr - R.

2. BiMobpuLEs, HOM AND TENSOR PRODUCTS

Definition 1. Let C and C’ be preadditive categories, a bimodule is a bifunctor
P:Cx(C°— Ab. Thatis, forany X € C,Y € C°, P(X,Y) is an abelian group,
and for every X € C,P(X, -) is a right module over C'® while P(—,Y) is a left C-
module for every Y € C’,and for f: X - X’inC, ¢:Y’ = Y in C’ the following
diagram is commutative:

P(X, Y) P(x,g)i

P(!-Y)l P(!-Y')l

p(x',y) 259, px v)

P(X,Y")

Definition 2. Given M € Mod(C® and N € Mod(_C, let F = xeécM (X)®z N(X),
where Z is the ring of integers. Let K be the subgroup of F generated by

{mf®n-me® fnjm e M(Y),n € N(X), f € home(X,Y), }

Define the tensor product of M and N as the quotient group M ® N = F/K.

Remark. Assume that N is a C-C’ - bimodule, that is, N € Mod(C x C'), then
for every X € C, N(X) € ModC’. Let F : C'° — Ab, such that F(X') =
X%CM(X) ®z N(X,X') for any X' € C'. F(f') = x%cM(X) ®z N(X, f') for any

J':Y' = X'inC'. K is a submodule of F and restriction of F(f') to K(X') gives
a morphism from K(X') to K(Y’), hence M ® N = F/K is a right C’ - module.
Similarly, if M € Mod(C’ x C°), then M ® N is a left C’ -module.

Proposition 1. Let M be a right module over C, then for any X € C, there ezists
a map
nx : M(X) - M @RrX

which is an isomorphism. Moreover, n = {nx|X € C} : M(-) = MQh™ isa
Sfunctorial isomorphism.
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Proposition 2. If {M,,a € I} are right modules over C and N is a left module
over C, then we have an isomorphism

IN:(® Ma)®N = & (Ma®N)
a€l acl

Moreover, N — 7y is natural.

Proposition 3. Let M € Mod(C®, N € ModC, then the functors M®— : ModC —
Ab ond — ® N : ModC® — Ab are right ezact.

Theorem 1. Let M € Mod(C", then the functor M ® — : ModC — Ab has a
right adjoint
Hom(M, —) = Homz(M(-),-) :Ab — ModC
B — Homz(M(-),B):C — Ab
X = Homz(M(X),B)
To simplify notations,now we write Hom¢(M, N) instead of Hommoac(M, N)
and Homg: (L,N) instead of Hompsoac’ (L,N).
Proposition 4. Let C,C' be preadditive categories and let ¢:L € ModC',M¢ €
Mod(C?, ¢:N¢ € Mod(C’' x C°). Then there is a natural isomorphism

Home: (L, Home(M,N)) = Home(M, Home: (L, N))

3. GENERATORS, PROJECTIVE GENERATORS AND SMALL GENERATORS

Definition 3. A subset {U;};es of objects of C is called a set of generators of
C if for any couple (X,Y) of objects from C and for any two distinct morphisms
f,9 € Hom¢(X,Y), there is ig € I and k € Hom¢(U;,, X) such that fk # gk. An
object U; is called a generator if U; is an element of a set of generators.

Definition 4. An object X of the additive category C is called small if the functor
hX : C - Ab commutes with direct sums. (See [9), Pgo)

Proposition 5. Let C,C' be preadditive categories and let ¢:Pc € Mod(C° x
C'), ¢+ Mc € Mod(C° x C'), ¢cN € ModC. Then there is a natural homomorphism

n: Home (P,M)®c N — Home: (P,M @c N).

Moreover, if ¢ P is projective in Mod(C’, then 5 is an isomorphism.

Proposition 6. Let ¢-Pe € Mod(C° x C’'), ¢:M¢ € Mod(C® x C'), ¢cN € ModC.
Then there is a natural homomorphism

¢: P ®c Home(M,N) — Home(Home: (P, M), N)

Moreover, if Pe is projective in ModC, then 7 is an isomorphism.



4. MAIN THEOREMS

Theorem 2. Let C,C' be two preadditive categories and let
F : ModC — Mod(C’', G:Mod(C' — ModC

be inverse equivalences. Let P(X) = F(hX), for any X € obC and Q(X') = G(hX'),
for any X' € obC'. We denote

P=P(-)=F(7), Q=Q(-)=G(r"),

Where P : C° x C' = Ab such that P(X,X') = F(hX)(X') and Q : C x C' = Ab
such that Q(Y,Y") = G(hY')(Y). Then ¢'Pe and ¢Qc are natural bimodules such
that

(1) { e P(X)} xeocs { cQ(X)}x'conc’ are all small projective generator sets;

(2) F = Homc(Q,-) and G = Home: (P, -);

(3) ¢Pc = Hom¢(Q,h™) and ¢cQc' = Home/(P,h™);

(4) F2EP®c - and G = Q ®¢c —

Definition 5. A C’-C-bimodule ¢P; € Mod(C' x C°) is called balanced, if
Home( ¢ Pe, ¢ Pc) 2 h™, for any h~ € Mod(C' x C'°) and Home: (¢+Pe, ¢t Pe) =
h=, for any h~ € Mod(C x C°).

Theorem 3. Let C,C’ be two preadditive categories and let
F :ModC — Mod(C',G : ModC' — ModC

be additive functors. If there exists a bimodule ¢+ Pe such that
(1) {c'P(X)}xeobc and {P(X')c} xeobc are small projective generator sets;
(2) ¢ Pc is balanced;
(3) F= (P®c —) and G = Homg: (P, ).
Then F and G are inverse equivalences.
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NOTES ON HOMOLOGICAL
DIMENSION OF GROUP GRADED
‘RINGS
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1. TRACES AND GLOBAL DIMENSION

In this section, we would like to study the relationships between the global
dimension and the trace maps for strongly group graded rings and skew group
rings. For the definitions and basic properties about group graded rings and
skew group rings, see [Pa] and [Mo].

Let G be a finite group and let R = @,¢6 R, be a strongly G-graded ring.
For each g€G , since 1€R,-1 Ry = R,, we may fix a decomposition of the
identity

1= z U:'zl “g): (1)
iel,

where [ is a finite set, ug')eRg and vg_]l €R,-1. Thus for each g€G, we can
define a map ()? from R, to R; by
=3 v ruld (2)

po
i€l,

1Supported by China National Education Committee and Guangxi Education
Committee
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for all reR,. we call the following map
tr: z(R))—=z(Ry); r—)zgearg,

for all rez(R,), where ()? is defined as in (2), the trace of G on z(R,); see
[CVV, Section 1] for details. This is a generalization of the usual trace maps
in group actions. Let R be a strongly G-graded ring. Suppose that M is a
right R-module. Using (1) we can define the concept of R—regular modules;
see [Na] for details. By some direct calculations, we have the following

1.1 THEOREM Let G be a finite group and let R be a strongly G-graded
ring with coefficient ring R,. Suppose that there exists an element c€z(R,)
such that tr(c) = 1. Then every right R-module is R-regular. In particular,

we have
(i) for each right R-module M,

pr.dim.g(M) = pr.dim.g (M); inj.dim.g(M) = inj.dim.g (M);

(i1) r.gl.dim.(R) = r.gl.dim.(R,).

Using 1.1 Theorem, we can deduce some results of [NV].
1.2 Proposition. Let G be a finite group and lat R be a strongly G-graded
ring with coefficient ring R,.

(i) If R is right hereditary, then so is Ry. (This part is valid for arbditrary
groups.)

(ii) If R is right semihereditary, then so is R;.

Suppose that there erists an element c€z(R,) such that tr(c) = 1. Then
we have

(1)’ if Ry is right hereditary, then so is R;

(i)’ if R, is right semshereditary, then so is R.

In the specially case of a skew group ring over a commutative coefficient
ring. We obtain
1.3 COROLLARY. Let G be a finite group acting on a commutative ring R
and let S = R« G be the skew group ring. Then the following are equivalent:
(i) r.gl.dim.(R) < o0;
(ii) (a) r.gl.dim.(R) < oo;

(b) R is projective as a principal right R = G-module;
(iii) (a) r.gl.dim.(R) < oo;

(b) there exists an element c€ R such that tr(c) = 1.
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1.4 REMARK. Refer to [Al, Proposition3.4] and [GD] for related re-
sults.

2. FINITISTIC DIMENSIONS OF STRONGLY GROUP GRADED
RINGS

Finitistic dimensions are useful tools to study rings of infinite global di-
mension as shown in the literature. We refer to [Ba] for the basic properties
and definitions of finitistic dimensions. In this section we would like to re-
mark that the finitistic dimensions of a group graded ring and that of its
coefficient ring are always stable.

2.1 DEFINITION. [Ba, Section 5] Let R ba a ring. The right finitistic
dimensions of R are defined as follows;
rFPD(R)=sup{ pr.dim.(A)| A is a right R-module with pr.dim.(A) < o0 }.
rFPWD(R)=sup{ w.dim.(A)| A is a right R-module with w.dim.(A) < oo },
where w.dim.(A) denotes the flat dimension of A.
rFID(R)=sup{ inj.dim.(A) | A is a right R-module with inj.dim.(A)< oo }.
rfPD(R)=sup{ pr.dim.(A) | A is a finitely generated right R-module and
pr.dim.(A)< o0 }.

The following proposition, which is an analogue of [Na, Theorem 2.1], can
be proved by a similar argument as the proof of that result.

2.2 PROPOSITION. Let G be a finite group and let S = R(G) be a
strongly G-graded ring with coefficient ring R. Let M be a right S-module
and let N = @,ecN, be a graded left S-module. Then

(i) for each gEG and each non-zero n,

Tor,'?(M, N)gTo"f(M: Ny),
»s Abelian groups;

(ii) w.dim.g(M)<w.dim.s(M), and the equality holds if w.dim.s(M) is fi-

nite.

Using 2.2 Proposition and [Na, Theorem 2.1], we can obtain the following
theorem, which describes the relationships between the finitistic dimension
of a strongly group graded ring and those of its coefficient ring.

2.3 THEOREM. Let G be a finite group and let S = R(G) be a strongly
G-graded ring with coefficient ring R. Then
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(i) *FPD(R) = rFPD(S);
(ii) rFFWD(R) = rFWD(S);
(iii) rFID(R) = rFID(S);
(iv) fPD(R) = rfPD(S).
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Monoidal Categories and Hecke-like Categories
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l.Introduction. The classical Hecke category related to a group G is the category of permutation
kG-modules. This category has many important properties such as additivity, self-duality and
monoidality, and it has played essential parts not only in representation theory of finite groups
but also in many areas of mathematics, for exmple, automorphic function theory, Galois theory,
algebraic topology, and so on.

There are many categories with properties similar to those of classical Hecke categories. His-
torically speaking, the first Hecke-like catetory is the one of spans which appeared in the theory of
2-categories before 1960’s. This category is related to abstract transfer-induction theory of finite
groups developed by J.A.Green and A.Dress at the begining of 1970’s. In fact, it was not long
befare abstract transfer-induction theory is noticed to be nothing but representation theory of the
category of spans.

On the other hand, the concept of monoidal categories or more generally higher dimensional
categories is very recently recognized to be essential in topological quantum field theory(TQFT).
It is interesting that the monoidal 2-category of cobordisms appeared in TQFT is very like the one
of spans excepting the direction of arrows. Here is the motivation to resume studying of the old
abstract transfer-induction theory.

2.The category of spans. Let £ be a finitely complete category. Then the category of spans,
Sp(€), is defined by Obj(Sp(£)) := Obj(£) and
Hom(Y, X) := {{X <~ 4 -+ Y] | A € Obj(£)}/ =
with composition
[X+— A —Y]o[Y+— B — 2Z]:=[X +— Axy B— Z],

where A xy B is the pullback of A and B along Y.

The category of spans is self-dual and has finite bi-products. Furthermore, it has the structure
of a monoidal 2-category with tensoring by product. A representation of the category of spans
is called a Mackey functor ([Dr 73]). When £ is the category of finite G-sets for a finite group

G, a Mackey functor is nothing but a G-functor ([Gr 71]). The category of spans can be called a
Hecke-like category by the following proposition:

Proposition: Assume that the above category € has a finite set of generators. Then Sp(E) can be
embedded into & product of classical Hecke categories through Yoneda embedding, and both categories
are Morita equivalent each other after tensoring with Q.

We can further develop the theory of the category of spans and its representation theory. For
example, we can define the concept of bilinear maps (pairings) and then the concepts of ring,
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modules over a ring([Yo 87]). As a representation category of such modules, we again obtain a
Hecke-like category.

3.Hecke categories on a monoidal category. After the representation theory of Hecke-like cat-
egories (abstranct transfer-induction theory), we can develop the representation theory of monoidal
categories. Let A = (A, ®,1,a,l,r) be a monoidal category with a tensor product ®, a unit object
I and an associator a, and so on{[Ke 82]).

Let A and V be monoidal categories and let L, M, N : A — V a (non-tensor)functors. The a
pasring p: LOM — N is a family of natural maps

pap:L(A)® M(B) — N(A® B).

A ring R is a functor R : A — V equipped with a pairing 2 : R® R — R satisfying a kind
of associativity. Similarly, a module M over R is defined as a functor equipped with a pairing
a:ReM — M.

Theorem: Let A,V be monoidal categories with A closed. Let R : A — V be a ring. Then
the category of R-modules is represented by a Hecke-like category Hec(A,R). Here an object of
Hec(A, R) is an object of A and a hom-set Hom(A, B) is defined to be R(B4).
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ON A SPECIAL TYPE OF QUASIFROBENIUS RINGS

Yossito YUKIMOTO!?

Fukui University of Technology?®

Throughout this note QuasiFrobenius is abbreviated to QF.

Though generalizations of QF rings are studied by many authors, the class of
QF rings is big from a point of view. For instance, almost nothing is known for
me about the composition series of a projective indecomposable module over o QF
ring. Hence I will study a special type of QF rings.

Let us consider the following condition on a ring R:

(C) eRe is QF for every idempotent ¢ € R.

This condition is due to K.Oshiro & S.H.Rim®, and it is a Morita invariant con-
dition. In this note I will give a partial answer to the question what the ring R
with condition (C) is. If R satisfies the condition (C), then R = 1R1 itself is QF.
Therefore R has the Nakayama permutation v defined by

soc(e;R) = top(e, iy R) (i € 1),

where {e;};cr is the basic set of primitive idempotents for B. The partial answer
is the following factorization theorem:

Theorem. If a basic ring R satisfies the condition (C), {e),ez,...,e,} is the basic
set of primitive idempotents for R, and {1,2,...,n} = [I[", & is the orbit de-
composition by the Nakayama permutation v of R with #I, = 1(1 < k < a) and
#I > 1(a+1 <k <m), then

R= fRf x fa+lR.fn+l X fa+2Rfo+2 X oo X mefm’

where fi = z-’el. e and f = zlngn -

| will prove the above theorem in a very special but essential case of n = 3 and

{1 2 3
Y=l1 3 2)°
Proof for the special case. The Jacobson radical of R is denoted by J here.
v RBA

I IRACY
3 KBRS & AREridl
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First we show

Ext(esR/e;J,eaR/esJ) = 0.

Suppose that Ext{e,R/e,J,e3R/esJ) # 0. Then there exists an extension M
of eyR/esJ by e;R/e;J which is not semisimple. The extension M is uniserial,
soc(M) 2 ey R/esJ and top(M) = e; R/e,J. Since e2R is isomorphic to an injec-
tive hull of ey R/eyJ, there is a submodule N < e2 R which is isomorphic to M. We
have NJ(e; + e;) = Hom((e, + ez)R,NJ} = 0 because NJ = top(ey R), and we
have N(e; +e2) = Ne, because Nea = Hom(es R, N) = Hom(e, R, NJ) = 0. Hence
Ne, is a simple right (e; + ez)R{e; + e3)-submodule of ez R(e; + e2).

By a similar way it is shown that soc(e; R)e, is also a simple right (e; +e2)R(e; +
€2)-submodule of e) R(e; + e3).

Both Ne, and soc(e; R)e, are isomorphic to the right (e; +e2)R(e; + €3)-module
top(e1 R(e1 + ez)), which contradicts to a part of {C) that (e; + e2)R(er + €2) is
QF. Therefore Ext(e; R/eyJ,esR/esJ) = 0.

We can show Ext(e; R/e;J,ezR/e;J) = 0 by the same way.

Second we show that e;J"/e;J"t! is e, R/e,J-homogeneous for every n =
0,1,2,... by induction on n. The statement is evident if n = 0. Suppose the
statement is true for n. Then, if we express e;J" = 2‘::, L; as a sum of local sub-
modules L; of e,J", the top of L; is isomorphic to ey R/e;J by the hypothesis of
induction. Because of Ext(e; R/eyJ,e3 R/eyJ) = 0 and Ext(e; R/eyJ, ez RfeaJ) = 0,
the second top L;J/L;J? is €, R/e;J-homogeneous. Hence e,J"t" /e, J?*? is also
e) R/eyJ-homogeneous. This completes the induction.

The above statement is equivalent to e; R(e2 + e3) = 0. By the duality of QF
ring R, we have also (e2 + e3)Re; = 0. Hence R = e; Re) x {e2 + e3)R{ez + e3).

Remark. The first factor of the factorization in the general statement is not neces-
sarily indecomposable as ring, while the other factors are indecomposable as ring.

Examples. 1. A ring is called weakly symmetric if it is QF and its Nakayama
permutation is an identity permutation. Every weakly symmetirc ring satisfies the
condition (C).

2. If Ris a basic serial ring (indecomposable as ring), {e;,ez,...,e,} is the basic set
of primitive idempotents for R, and [, R| = le3R| = «+- = |[e,R| = mnor mn + 1
for some integer m > 0, then R satisfies the condition {C).

3-6-1 GAKURN Fuxur, 910 Japan
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GENERALIZED PLANAR NEAR—RINGS

Zhang Changming
Hunan Normal University PRC

In this paper, we introduce the concept of generalized planar near—rings and ex- .
tend basic properties of planar near —rings, which provides a way of proving whether
there is a unique solution in the near—ring N to the equation xa=xb-c.

We denote a right near—ring by N= (N, +, ¢+ ). The other concepts and sym-
boles are taken from [1] ~ [4]

1. Basic concepts

Definition 1. 1 Let N be a near—ring, I be a nonzero ideal of N, a, bEN,

a=b+=—=¥ n€Il; na=nb -

Obviously, = is a relation on N and it is an equivalence relation on N, called a
right multiplicative relation of N decided by I.

Definition 1. 2 A near—ring N is said to be a planar near —ring if right multi-
plicative relation=o0f N decided by N satisfies condition |[N/=|=3 and if there is a
unique solution in N to equation xa=xb+4c, ¥ a, b&N, aZb

Definiton 1. 3 Let N be a near—ring, I be a nonzero ideal of N. If the right
multiplicative relation = of N decided by I satisfies condition |N/=]2=23 and if there
is the unique solution in N to equation. xa=xb-+c, V¥ a, b, cEN, aZb, a+b €1,
N is said to be a generalized planar near —ring on 1 (abbreviation by GPNR), 1 is
called a relation ideal of N.

It is clear that any planar near —ring N is a GPNR itself and to any near —ring
N,if right multiplicative relation= of N decided by N ,satisfies condition |[N/=|=3,
N is a GPNR itself, too.

Examplel. 1 Let N=Z,= {0, 1, 2, 3, 4, 5}, then N is a GPNR on the non
zero ideal I= {0, 2, 4} of N.

Proof Z¢/== { {0, 3}, {1, 4}, {2,5}}, |Z¢/=|23. Go through test and verify,
Y a, b, c€Zs, aDb, a+b€&l, equation xa=xb--¢ has a unique solution in Zs, there-
fore, N=2Z;is a GPNR on the 1. But, Z; is not planar near —ring, because there exists
the equation x * 2=x » 4+0 (274) which two solutions x=0. 3.

2 Basic properties of GPNR
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Let N be a GPNR with a relation ideal 1. Let A= {n€ N|n=0or n€1}, denote
N\A by N#, If N#=¢ and N is non planar near—ring, N is called natural GPNR.
Otherwise it is non—natural GPNR, which is discussed below.

Proposition 2. 1 Every generalized planar near —ring is zero—symmetric.

Proof Let N be a GPNR with a relation ideal I. ¥ n€N, let a€N", then a0
and a &I, hence equation xa=x0--0 has a unique solution in N. It is clear 0 is a solu-
tion to xa=x0+40 and

(n0) a=n (0a) =n0, (n0) 0=n (00) =no

= (n0) a= (n0) 0+0, thus n0 is also a solution to xa=x0+40 , then 0 and n0
are both solutions to equation xa=x0+40, hence n0=0.

Proposition 2. 2 Let N be a GPNR with a relation ideal 1.

(i) If a €N is a right zero divisor, that is to say. the existing n€ N, n0, which makes na
=0, a€ A. Conversely, if a€A and a€ I, a is a right zero divisor.

(i) ¥ n€N*", m€EN, then there is a unique x€ N, which makes xn=m.

~ Proof (i) If a¢ A=>a30 and a€ 1, equation xa=x0+0 has a unique solution in N. na=0 and
n0=0, implies n and O are hoth solutions to equation xa=x0+0, a contradiction.

(ii) If n€N"=>n3Z0 and n€ I, equation xn=x0-+m has a unique solution. Thus,3 1 x€N,
which makes xn=m. .

Corollary 2. 1 V¥ n, m€N", 3 1 x€N", which makes xn=m.

Proof By proposition 2. 2 (ii), there is the unique x& N, which makes xn=m. Since
mEN",x& L If x=0=V i€ 1:ix=i0=0=im =i (xn) = (ix)n=0n=0=>m is a right zero divisor,
by proposition 2. 2 (i) m& A, which is a contradiction. Hence x€ N*.

Let N be a GPNR, 1is the relation ideal of N. ¥ a&N", let L. be the unigue solution to
xa=a, B,={x€N"|l,x=x}, then the following proposition and theorem are correct ;

Proposition 2. 3 To any a€N", there is a€B,, 1,EN"and N?=UB,.

seN™

Proof It is clear a€B,.

If LEN"=1,€A=>1,=00r ,€L If 1a=0=V i€l, il,=i0 and l.a=a

=ia=i(l,a) = (il.)a=0a=0=>a € A, a confradiction. If 1,€I=>1,a€ I=>a€ 1, a confradiction,
too. Hence ,€ N¥,

Any a€ N*=a€ B,=a€ UB,, any x€ UBm.=xE B,=x€ N".

seN® sEN

Hence » N*=UB..

e N
Proposition 2. 4 Let a€N"™, 1, be a unique solution to equation xa=a, then 1,E€B,.

Proof By proposition 2. 3=1,€ N*, again 1,1, and 1, are both solutions to xa=x0+a, hence
L.1,=1,, thus 1,EB..

Proposition 2.5 ¥ bEB,,Let b be a unique solution to xb=1,,that is bb=1,,then
bEN", further=b€EB..

Proof Because b, 1,EN™, as a result b€ N", by corollary 2. 1. Again (1,b) b



=1, (bb) =1,1,=1,, hence 1, b is a solution to equation xb=1,, too, so 1, b=b.
Thus b€ B,.

Propostion 2. 6 To any a€ N*, the unique solution 1, to equation xa=a is a right identi-
ty for (N, +, ).

Proof For each n€N, nl, and n are both solutions to x1,=x0+n1,, hence nla=n. Thus 1,
is a right identity for (N, +, - ).

Proposition 2. 7 Let bEB,. if there is bb=1,, there is bb=1,, too.

Proof By corollary 2. 1, b€ N™. Let b’ be a unique solution to x b=1,, that is b’b=1,, then
b’'€ N*, thereupon. A

W'B) (bb) =1, (bb) = (1,b) b=bb, again

(') (bB) =b’ [ (bb) B] =b' (1. B) =b'b=1,,

therefore bb=1,, thatis bb=bb=1..

Theorem 2.1 Toanya €N™,let |, be a unique solution 10 xa=a,then come to conclusions:

(i) For each a€N™, (B,, *) is a group with identity 1.

(ii) A and the Ba's (a€N"™) form a partition of N.

(iii) Y a€N"™, there is BN"=B,.

Gv) f a, bEN", O, ‘_;Bbisa (group) isomorphism.
X—= X

(v) If SCN™and SN*CS, S=L.Ie§.

Proof (i) By proposition 2. 4. there is a€ B,, therefore 1, is a left identity in (B,, + ). By
proposition 2. 5, to any b€ B,, there is b€ B,, which makes bb=1,, that is, bis a left inverse
element of b.

Y b,, b,EB,, we prove b,b,EB,.

First prove bb,€ N*. If b,b,& N*=>b,b,=0or b;b,E]. a) lf bb,=0=>V i€l: i (b)b,)
=i0=0=> (ib,) b,= (ib;) 040, that is ib, is a solution to equation xb,=x0-+0=>ib,=0=
iby=i0-+0, that is i is a solution to xb,=x0+0=>i=0, V i€l, a contradiction. Thus, b,b,Z0.
b)If b,b, € 1,Let b, be a unique solution to equation xb,=1,,that is b;b,=1,,by proposition 2. 7,
b,b,=1,,100,as a result (b;b;)b;=b, (b;b;) =b,1,=b,. But (b,b,)b,EI=>b, €1, a contradiction,
too. Hence b,b, € N¥.

Secondly, 1a (b,b;) = (1.b;) b,=b,b,. Hence b;b,€B,. Thus it is proved that (B,, +)
is a group with identity 1..

(ii) 1t is enough to show that ¥ a, b€ N*™ either B,\By= or B,=B,. In fact, if n€B.N
By=>1,n=n=1yn, hence 1, and 1, are both solutions to equation xn=x0-+n,so0 1,=1, and B,=B,.

(iii) Let a€N*, ¥ b€B., n€N*, then bn€ N¥, once again 1, (bn) = (1.b) n=bn., hence
bn€B,. Conversely, ¥ bEB,. then b=1,b€ B,N*. Thus B,N*=B,.

(iv) ¥V x€B,, there is x€ N", @ (x) =1,x, because 1,x € B, therefore 1,x € B,N" =B, , hence
® (x)=1,xEB; and 1,x is the unique determiner in B,, that is, @ is a mapping of from B, to Bs.

Va', a"€B., if ® (a') =@ ("), 1,2’ =1,a", and by proposition 2. 6, a’=1.a"= (1,1s) 2’
=1 (Iya') =1, (1,a") = (L1,) a"=1,a"=a", that is a’=a", hence ® is a injection.



If b’ €B,, there is 1,b’ €B,, which makes ® (1,b’) =1, (1,b') = (1,1,) b’=1,b'=b’, hence,
® is a surjection.

Va', 2"€B,, © (a'a") =1, (@'a") = [ (Lua") 1] a"= ( (1ya") (La") = (a') ¢ (a").

Therefore @ is an isomorphism.

(v) To any s€S=>s€C B.=>s€UGBS.
Conversely, to any xGU%.='x€B. (a€S) =»x€N" and 1,x=x. Because B,is a group and 1, is
€

an identity, there is € B, which makes aa=1,, of course, a€N", hence ax€N", Thus.
x=1,x= (aa) x=a (ax) GSN"'CS=>xGS Hence S= UB

The further study of generalized planar near —rings can solve the problem; whether, to some
elements pair (a, b) (a, bEN) and ¥ ¢ €N, equation xa=xb-c has a unique solution in the near
—ring N.
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THE REPRESENTATION CATEGORY OF A WILD BOCS

ZHANG YINGBO

This is a joint work with Dr. Lei Tiangang and Professor R. Bautista.

§1. Bocs A and its representation category R(A).

p-4
Let bocs A==z G’Q a

K

over an algebraically closed field with differentials 8(z) =0, §(a) = zv — vz, §(v) = 0.
Roughly speaking, A consists of a free k-algebra A generated by zr and a, z OO a
which is of course infinite dimension. And a free bimodule V generated by dotted dot
u, and dotted arrow v over A. Then we construct a coalgebra structure from this free
bimodule. The counit and comultiplication are uniquely determined by above differentials.

The finitely dimensional representation category R(A) of A is as follows: the object

M in R(A) consists of a f.d. vector space M, and two linear transformations M(z) and
M M(a): M, — M,. Denote it by M = (M, ; M(z), M(a)).
)

M= Mlbx(.. ) Mca) If N = (N,,N(z),N(a)) is also an object in R(A), then
\

a morphism ¢ : M — N in R(A) consists of two linear

?, I? transformations ¢,, ¢, : M, — N,, such that N(z)p,
L —p, M(z) = 0 from §(z) = 0, N(a)p, — ¢, M(a) = N(z)p,
/ —p,M(z) from &(a) = zv—vz. f¢p: N — L is another
} morphism in R(A), then the composition pp : M — L

N.-: O-O consists of (), = ¥, ¢4, and (¥p)y = Y, 0y — P, from
N~ Ng  N@) 5 0.

§2. The matrix expressions of objects and morphisms.

2.1. Lemma. Let M be an object in R(A). f M is indecomposable,then M(z) has
only one unique eigenvalue.

2.2. Proposition. Let M be an indecomposable object. Then M has an expression
M(I) =X+ Ji;gv where d = (dlv"'vd.-), dl <o <L du p= (plv"'7pa)v Pryeyps > 0,
Jap = diag(Ja,;p,, 1 Ju,;p,) @ partitional diagonal matrix with

0 7

0 I

Jap = T .

0o 7
0

the d x d partitioned matrix, [ p x p identity matrix and O p x p zero matrix.
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Jip is similar to diag(J(0,d),---,J(0,d))
eigenvalue 0.
M(a) = (M;;),xs a partitioned matrix with

J(0,d) is a d x d Jordan form with

pxp?

A/[|IJ 0 e
My=|Ms O 0 0

ME 0 0

[

and M, =... = M,-‘ij‘_d’ =0if d; > d;.

2.3. Lemma. Let M, N be two objects in R(A) with M(z) = A + Jy;, and N(z) =
i+ Jeg. 16 A # p, then there exists only zero map from M to N.

2.4. Proposition. Letp: M — N be a morphism in R(A), with M(z) = A+ Jg,
and N(z) = A + Jge. Then ¢, = (Fij)ixs with

1) e (dy)
LA P
0o FY ... F,-Sf!’-')

Fo=| 0 when ¢; > d;
j 0 0 .. F;&l) i
0 o .. 0
0 o0 0 /aa,
0 - 0 Fihmety F}(j‘"““”’ cee Pldy)
(dy—ei+1) d, -
Fy = 0 -0 0 F;? SR A when ¢; < d;.
(dy=e,+1
0 --- 0 0 0 R ) oxd,

where E&k) are ¢; X p;-matrices.
§3. Bocs A has almost split sequences and strong Homogeneous property

3.1. Definition. (1) Let B be a layered bocs. We say that B has almost split
sequences, if for any non-proper injecture M in R(B), there exists a proper almost split
sequence M — E — N in R(B); and for any non proper projective N in R(B), there
exists a proper almost split sequence M — E — N in R(B).

(2) Let B be a layered bocs, we call an indecomposable object M in R(B) homogeneous,
if there exists a proper almost split sequence M L ES Min R(B).

(3) Strong homogeneous property. Let B be a layered bocs having almost split se-
quences. If there exist neither proper-projective nor proper injective in R(B)). And for
every indecomposable M in R(B), M is homogeneous. Then B is called to have strong
homogeneous property.
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3.2. Theorem. Let M be an indecomposable object in R(A), with M(z) = A+ Jy,,
d=(d,++,d;), dy < --- < ds, p=(p1,++,p), p: M — M be a morphism with
¢x = (Fij)sxs- Then F,-,-') has only one unique eigenvalue and when i runs over 1,---,s,
the eigenvalues are all equal. Moreover ¢, has only one unique eigenvalue.

3.3. Main theorem. Bocs A has almost split sequences and strong homogeneou:
property in case ch £ = 0. But A is of wild type.
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