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PREFACE

The 27th Symposium on Ring Theory was held at Yamaguchi University, Japan, on
July 23-25, 1994. Nearly one hundred participants attended the symposium.

This volume consists of the articles presented at the symposium.

The symposium and the proceedings were financially supported by the Scientific Re-
scarch Grants of the Educational Ministry of Japan through the arrangements by Professor
Yasuo Morita, Tohoku University and Professor Yuji Yoshino, Kyoto University.

I wish to express my hearty thanks to Dr. Hiroaki Komatsu of Okayama University for
the publication of the proceedings.

Finally T would like to thank Professor Yukio Tsushima, Osaka City University, and

staffs of the Department of Mathematics, Yamaguchi University, for their close cooperation.

November 1994
Ix. Oshiro
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PROCEEDINGS OF THE 27TH
SYMPOSIUM ON RING THEORY, 1994

SOCLE EQUIVALENCES AND SOCLE DEFORMATIONS
OF SELFINJECTIVE ALGEBRAS

Kunio YAMAGATA

In this note we report two results on structures of scllinjective algebras, which are
proved in the joint papers [1] [2] with Skowronski. These results have an important
application to the selfinjective artin algebras which have Auslander-Reiten components
C with non-periodic generalized standard right stable full translation subquivers closed
under successors in C.

All algebras are artin algebras. A selfinjective artin algebra A is said to be socle
equivalent to a selfinjetive artin algebra B if the factor algebra A/soc(A) is isomorphic
to B/soc(B) as an algebra. Let [ be an ideal and ¢ a residual identity of A//, that is, e
is an idempotent of A such that 1 — e belongs to [ and no proper suinmand of e is in /.
Then the ideal I is called a deforming ideal if the ordinary quiver of A/ has no oriented
cycles and req () = ele and €. 4.(!) = ele, where r.4.(1) is the right annihilator of [ in
eAe, and ¢_, (1) is the left annihilator of [ in eAe.

Theorem 1 [f a selfinjective algebra A has a deforming ideal [ then A is e socle equivalent
lo a split extension algebra of eAefele by I, where ¢ is a residual identity for Af1.

For an algebra B we denote the repetitive algebra by 3. and by mod B the category
of finitely generated right B-mdules.

Theorem 2 Lel A be a selfinjective algebra, 1 en ideel of A, B = A/, and ¢ a residual
identily of B. Assume thal the ordinary quiver of B has no orvicnied cyles, Iel =0, lep
or gel is an injective cogenerator in mod B or in mod B respectively. Then A is socle
equivalent to B/G for some admissible infinite cyclic group G, If R is an algebraically
closed field, then the algebre A is isomorphic to B/G.

References
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dimensional algebra derived cquivalent to a symmetric algebra is itsclf symmetric, and that il
A and B are derived equivalent algebras, then a trivial extension of A by itsclf and a trivial
extension of B by itself are also derived equivalent (see [13] for details). These two cases are
close to Frobenius cxiensions. In case that T is a [initely generated projective generator,
Miyashita showed that if 0 =+ A — A is a Frobenius extension, then 0 — End(T) —
End (T ®,A) is a also Frobenius exiension [7]. In this note, we study extensions of rings and
conditions that make T ‘®% A tilting complexes.

First, in case of split-extensions of rings, we give the necessary and sufficient condition
that T "®% A is atiling complex. Next, in case of a Frobenius cxtension of a ring, we give a
condition that T'®ﬁ A is atilting complex, and show that 0 = End ;.4 (T") —

Endn,aa(7 "®5 A) is a also Frobenius extension .

Throughout this note, we assume that all rings have unity and that all modules are unital.
Foraring A, Mod A (resp., A-Mod, mod A, A-mod) is the category of right (resp., left, finitely
presented right, finitely presented left) A-modules, and Proj-A (resp., A- Proj, &,, .5 is the
category of right (resp., left, finitely generated right, finitely generated left) projective A-

modules.
1. Preliminaries

Let =4 be an additive category, C(<4) the category of complexes of <4, K (<4) a homotopy
category of C(=4), and K *(=4), K (=4) and K *(=4) full subcategories of K (=4) gencraled by
the bounded below complexes, the bounded above complexes, and the bounded complexes,
respectively. For an abelian category <4, a derived category D (<4) (resp., D ‘(4), D “(A),
and D *(=4) of <A is a quotient of K (A) (resp., K *(=A), K (%) and K %=4)) by a multiplicative
sel of quasi-isomorphisms. For a ring A, Rickard defined a tilting complex T “for A as

follows,



)T EK¥P),
(i) Hom goqn(T , T7li D =0foralli =0,
(iii) addT ", the additive category of direct summands of finite direct sums of 7°, generates
K *(P,) as a tnangulated calegory.
_ Rickard also showed that (iii) can be replaced by
(iii)" For each non-zero object X of K “(Proj-A ), there is a some i such that Hom, (7,
X'[li])=0.
Then there is a derived equivalent functor D "(ModB ) =D "(ModA ) which sends B 10T,
where B = Endgy,,,(T") (see [11] for details).

For a tilting complex T *for A, we call H*T " a tilting A-module provided that H'T " = 0 for
all i =0 ([4] and [8]). In this case, we have T* = H°T "in D’(ModA ). Furthcrmore, we call a
tilting moduleT a classical tilting module if projective dimension ofT is less than or equal to 1.
In case that A is a finite dimensional algebra over a ficld k, there exist two-sided tilting
complexes 4 in D *(Mod(B "®,A )) and V * in D *(Mod(A®®B )) such that A'®% V' = B,
and V'®,’;‘ 4 = A, (sec [13] for details).

Lemma 1.1. Let o4, B and C be additive categories, H, .4 — C additive functors,
n:H — L a morphism of functors and G:=4 — B an additive functor which has the right
adjoint F.B — A. Given X', Z' € C(HA), Y '€ C(C) and U '€ C(B), the following results
hold.

(1)-Hom’ (X, Z") — Hom'(HX °, HZ ") induces an End,_,(X *)-End,(Z *)-homomorphism
Homy (X *, Z°[{ ]) = Hom, (HX ", HZ '[i ]) for all i .

(2) Hom’ X, X *) — Hom"(HX , HX ) induces a ring homomorphism Endg_(X *) —>
End,,(HX ") .

(3) Hom'(Y',HZ") = Hom'(Y °, LZ") induces an End,_,(Y )-End,,(Z “)-homomorphism
Homy (¥ *, HZ'[i ]) = Hom, (¥ "LZ [i |) for all i .



(4) Hom'gGX ", U ") = Hom' (X °, FU °) induces an Endy_.(X ")-Endy (U *)-isomorphism
Homyg(GX ", U [i ) = Hom,_(X*, FU °[i ]) for all i .

Furthermore, these correspondences are functorial,
2. Ring Morphisms and Tilting Complexes

In this section, we consider the condition of tensor products which induced by ring morphisms.
In panticular, split extensions of rings induce the necessary and sufficient condition that tensor

product of a complex is a tilting complex.

Lemma 2.1. Let A — A be a ring homomorphism and T a tilting complex for A. If

Hom (T T '®f( AJiD=0forall i =0, then T'®ﬂ' A is atilting complex for A.

Corollary 2.2 (Miyashita [8]). Ler m:A — A be a ring homomorphism and T a tilting
A-module. If Tor(T.A) = Extiy(T,T®,A) =0 forall i >0, then T ®,A is a tilting

A-module .

In case of a finite dimensional algebra A over a ficld 4, there cxist a duality D:D *(modA )
— D% A mod), where D = Homy(-.k ). Then we can define a cotilting complex T * as follows,
(i) T* € K%4,), where g, is the category of finitcly generated injective right A—hodules,
(i) Hom, (T T li])=0foralli =0,
(iii) DA €T (addT "), where 7 (addT ") is the triangulated subcategory of K *(J,) generated

| by objects in add7".

Happel showed that if X ° belongs to K ®(?,), then there exists an Auslander-Reiten

translation t,X * which is isomorphic to vX'[-1], where v, = —®f{ DA, and then there exists an

Auslander-Reiten tianglet, X" — ¥* — X — t,X [1]in D *(mod A) (sec [4]). Then <,T " is
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3. Extensions of Rings and Tilting Complexes

In this scction, we consider the condition that an extension (not nccessary split) of a ring
induces a extension of a ring. Furthermore, we show that a Frobenius extension of a ring
induces a Frobenius extension of a ring. Next thecorem is a generalization of corollary 5.4 in

[13].

Theorem 3.1. Let A be an extension of aring A suchthat 0+A - A ->M—>0is
an exact sequence as A -A -bimodules. Let T  be a tilting complex for A such that
Hom i yoan(T " T ®5 M (i) =0 foralli =0,and B := End T ), T =
EndpounfT ®% A) and N = Hompy oo T", T '®% M).

Then T'® k A is a tilting complex for A, and I" is an extension of a ring B such that 0 — B

— I' = N — Qis an exact sequence as B -B -bimodules.

Remark. In case that A and B are derived equivalent R-algebras which are projective as
R-modules, M is just a A-bimodule which corresponds under the induced equivalence

DY Mod A *®,A } = D’(Mod B *®,B ) to a B-bimodule N (see [13]).

Example. Let A be a finite dimensional algebra over a field & which has the following

quiver with relations,
a

lh—bv

] 2 3

with o« =0, and A be a finitc dimensional algebra over a ficld k' which has the following

quiver with relations,



(8]
W

p

with aff = Ba = 0 and a’= B> Then A is a non split extension of A , and we have the

following exact sequence as A-A-bimodules,
0= A =-A >S(HP®X—0,
where S(1) is simple left A-module corresponding to vertex 1 and X is a right A-module,

0
O,

k —w»k —>§

Let7,.T, and 7, be the following right A-modules, respectively,

J J

E3 . 3 Ej
kilepkd g3 'k3E3>k3F4»k2 and 0—»k —» 0

where J = (" 08) 8(1)‘1’ Then T = T, ®T, ®T, satisfies the condition of Theorem 3.1,
and B has the following quiver with a relation,
[0
1 2 3

b

with &= 0, I has the following quiver with relations,



B

with af = fa = 0 and o= B°, and we get the following cxact sequence as B-B-bimodules,

0+A—=>A—>Y®S()—0,

where S'(1) is a simple right B-module corresponding to vertex 1 and Y is a left B-module,

Let A beasubringof A. A is called a Frobenius cxtension of A provided that A, isa
finitely generated projective right A-module, and that ,A, = Hom,(,A,, ,A,) as A-A- bimodules

[2].

Lemma 3.2. Let A be aring and T a tilting complex for A. Given X € K X)), if
Hom a7, X°[i 1) = Homppuuof X *. T°[i ) =0 for all i =0, then X" is isomorphic to a
direct summand of a finite direct sum of copies of T".

The next theorem is the tilting complex version of the result of Miyashita (7].

Theorem 3.3. Let A be a Frobenius extension of aring A suchthat 0 A — A —

M — 0 is an exact sequence as A -A -bimodules. Let T" be a tilting complex for A such that

HoMpopoan(T - T'®5 M i 1) =0 foralli =0,and B := Endpyoan T ), T :=

10



Endpoan(T ®% A)and N := Hompy (T, T'®L M).
Then T '®ﬁ A is a tiling complex for A,and " is a Frobenius extension of aring B such

that 0 —» B — I' = N— () is an exact sequence as B -B -bimodules.

Remark. For a tilting complex T ° for A, if T "®% A, is a tilting complex for A and
End; 0 (T'® ,'; A) is an extension of End, (T ), then we have Homp, 00 (T ',

T®Mi)=0foralli =0.

Corollary 3.4." In the situation of Theorem 3.3, Endpqi,.(T '®,’; A) is a Frobenius

extension of Endygu (T '®% A .

The next proposition is useful in exhibiting examples of Frobenius extensions of algebras

which satisfy Theorem 3.3,

Proposition 3.5. Let A be a finite dimensional Frobenius algebra over a field k such that
00—k = A = M — 0is an exact sequence in mod k. For a finite dimensional k- algebra A
and a tilting complex T", let B = End oo (T ). T = Endpy o T ®5(A®A)) and N =
Homp, (T ", T ‘®L (A ®M ). Then A ®A is a Frobenius extension of A which satisfy
theorem 3.3 with an exact sequence 0 = A —A A > AOM — 0, and BOA isa
Frobenius extension of B such that an exact sequence 0 - B =-B® A — B®@M — 0 which

is isomorphic to 0 — B —I' =N — 0 as a B-B-bimodule.

Remark. Let A be a subring of A. A is called a quasi-Frobenius extension of A
provided that A, is a finitely gencrated projective right A-module, and that A, is a direct
summand of a finite direct sum of copies of Hom,(,A, ,A,) as A-A- bimodules and Hom (,A,,

A, is a direct summand of a finite direct sum of copies of ,A, as A-A- bimodules [9]. Then

11



"a Frobenius cxiension” in Theorem 3.3 can be replaced by "a quasi-Frobenius extension".

Examples. (1) k|X] /(X") and kG satisfy the condition of Proposition 3.5, where G is a
finite group and k is a licld.
(2) Let A be a finitc dimensional k-algebra which has the quiver 1 -3 <2, A —+A a
k-algebra automorphisin induced by interchanging veriex 1 with vertex 2. For a group G :=
{1, o}, we define a strongly G- graded k-algebra A := @, ¢ A, such that A, has a natural left
action of A and a right action of A which is through g (i.e. a crossed product of A with G
which has a trivial factor sct). Let T = P(1)Y®P(2)®1(3), where P(i ) (resp., I(i )) is a projective
(rep., injective) indecomposable right A-module corresponding to veriex i. Then A is a
Frobenius extension of A, T satisfies Theorem 3.3.
(3) According to [15], we have the following example (Sec also Okuyama's lecture in Proceedings
of the 4th Symposium on Representaion Theory of Algebras (South Izu, 1993)). Given positive
integer n, let A be a finitc dimensional algebra over a field & which has the following quiver

with relations,
1

a1 %\ B
2 3

14

with oy =B,B, = 0and (a,,8,8,)" = (B,8,0,0,)". Leto:A — A be a k-algebra automorphism
induced by interchanging veriex 2 with vertex 3. Let A 1= @,¢ g A, , whereG := {1, o}, and
let T° be the following complex:

P2)*@P3)® X p(1),

where M = (0 a,B, 0). Then A is a Frobenius extension of A, T° satisfies Theorem 3.3.

Then B := End (T )™ is a [inite dimensional algebra over a field k& which has the

12



following quiver with relations,

with vy, = Y)Y, = Y%, = 8,0, =09, =00, = 0, v,0, = dy,, Oy, = (v;9,)"and y,0,= (3,y,)". Let
o:B — B be a k-algebra automorphism induced by interchanging vertex 2 with vertex 3. Then

I is ring-isomorphic to ®,¢ g B, , where G := {1, o}.
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ON THE RELATIVE HOMOLOGICAL ALGEBRA OF FROBENIUS EXTENSIONS

Takeshi Nozawa

Introduction.

The complete relative homology and cohomology groups which we shall treat in this note are the
relativised versions of the complete homology and cohomology groups in [3] and [7] in the sense of [2].
One of the merits of the complete homology and eohomology groups is that there exists an isomorphism
between them, but for the complete relative homology and cohomology groups, there doesn't necessarily
exist such an isomorphism. The first purpose of this note, which is Theorem 2.1, is to introduce the
necessary and sufficient conditions on which a homomorphism between them is isomorphic. By the cup
product, the complete cohomology groups becomes a graded ring. In [7], on some assumption it is proved
that existing an invertible element in the graded ring is equivalent to that the complete cohomology groups
are periodic. The second purpose of this note, which is Theorem 3.1, is to show from the viewpoint of

the complete relative cohomology groups that the equivalence holds on the more general assumption.

1. The complete relative homology and cohomology groups of Frobenius extensions.

Let A be a ring with unit and " a subring. Then it is said that the ring extension A/T is a Frobenius
extension if A is left finitely generated I'-projective and there exists a left A and right I'-isomorphism of
Hom(r A, ¢I') to A. In this note, we shall adopt the equivalent definition, that is, when we say that the ring
extension A/T is a Frobenius extension, we mean that there exist elements Ry, , R, Ly« , Ly in A
and a two-sided [-homomorphism # € Hom(rAr,rl'r)such that x = ¥7_, H(zRi)Li = Y7, RiH(L:x)
for all z € A, The pair (;,L;) and two-sided I'-homomorphism H are called the dual projective pair
and Frobenius homomorphism of A/T’, respectively.

Let A be an algebra over a commutative ring J and denote the enveloping algebra A® A® by P, where
A? is the opposite ring of A. For a subalgebra I" of A let S be the image of the natural homomorphism of
I'®k ™ to P, namely the image of the homomorphism @y y € T®x[° — 2®Kk y € P. S is a subring of

The final and detailed version of section 3 of this note will be submitted for publication elsewhere.



P. Regard A as a left P-module with the usual way. Then by extending the (P, S)-projective resolution

of A in [2] to the negative direction, we have the following P-exact sequence

- rode o d d d. d.,
X 2“'—'4\, —'4\'_[ —'"'—l'Xo—o'X_| = "'—'X..' nd /‘_(,.H)—""

eN /1
A

with a P-epimorphism ¢ : Xo — A and a P-monomorphism 7 : A — X_; such that n-¢ = do,
where X has a contracting $-homotopy and the P-module X, is (P, §)-projective for all r € Z. We
shall call P-exact sequences of this type the complete (P, S)-resolutions of A. For any left P-module
M and r € Z we denote the r-th homology group of the complex X ®p M, namely Ker (d, ®p
1p)/Im (d,=1 ®p 1a1), by H.(A, T, M) and the r-th cohomology group of the complex Hom{p X, p M),
namely Ker Hom(d,41,1a7)/Im Hom({d,, 1), by H (A, T, M), and we shall call them the r-th complete
relative homology and cohomology groups with coefficients in M, respectively. Since X, ® ¢ M and
Hom(pX,, pM) are K-modules, H, (A, ', M) and H"(A, T, M) are K-modules. In this note we shall treat
the case where A/T, as a ring cxtension, is a Frobenius extension since in the case, H,(A,[, M) and
H"(A,T, M) are independent of the choice of complete (P, S)-resolutions of A, that is, they are unique
up to isomorphism. When we choose the standard resolution [4, (2)] as a complete (P, $)-resolutin of A,

the following proposition holds :

Proposition 1.1 (|4, Proposition 1.2] and [5, Proposition 1.1]). Let the pair (R;, Li) be the dual
projective pair of the Froberius extension A[T. For any left P-module M put Cf{F(M) ={(ler1)®p
me(ARrA)p M| (RiorLi®r )@ m=3%,(18r Ri®r Li)®p m in (A®r A ®r A) ®p M},
BY"(M) = (TR ® Li)®@p m € (A ®r A) ®p M|m € M}, M* = {m € Mlzm = mz for all z € A}
and Npyr(M) = (T, RimLilm € M"} where MT = {m € M|zm = mz forall z € ['}. When the
standard resolution [4, (2)] is chosen as a complete (P, §)-resolution of A, we have H_,(A,T, M) =
Mt (M)/BMT (M) and HY(A,T, M) = M* [Nasr(M).

2. The homomorphism V.

As in section 1, let A be an algebra over a commutative ring KX and I' a subalgebra such that A/T, as
a ring extension, is a Frobenius extension with the dual projective pair (R,, L) and Frobenius homomor-
phism H. In this section, let [/ be also a Frobenius extension with the dual projective pair (rj,1;) and
Frobenius homomorphism k. Then since A/l and ['/K are Frobenius extensions, A/K is a Frobenius
extension, that is, A is a Frobenius /{-algebra with the dual projective pair (Hir;, Lil;) and Frobenius
homomorphism A-H. So we have the Nakayama automorphism A, which is an automorphism of A over
the center of A and given by A(z) = I, ; Rirjh-H(zl;Li) for z € A.

Let M be a left P-module. M can be regarded as a two-sided (A, K')-module. Then modifying the

structure of the right A-module as m-z = mA(x) where m € M and z € A, we obtain a left P-
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module M2 from M. We shall denote m € M2 by m®. Let X be a complete (P, S)-resolution of
A. Then so is the sequence Hom(a X, aA), where the r-th module is Hom(sX-,-1,2A). Then for any
left P-module M, the homomorphism ¥ : Hom{s X_,_1,AA) ®p M4 — Hom(pX_,_,, pM), given by
YWf®pmP)=|zr— ¥, f(zRirj)ml; L] for f € Hom(x X_,—1,aA), m® € M® and z € X, .,, induces
the homomorphism

¥y s He(A,T, M4) - H™"!(A,T, M)

for r € Z. For the case I' = K, W;x/r is an isomorphism for any left P-module M and any r € Z, but
in general cases, homomorphisms of H,(A,T', M2) to H-"~!(A, T, M), including \l’;\/r, aren't necessarily
isomorphisms for any left P-module M and any r € Z. For the homomorphism \P;/r. the following

theorm holds :

Theorem 2.1 ([5, Theorem 7.1]). The following conditions are equivalent :

(1) ¥,r s HA(AT, MA) — H™""!(A,T, M) is an isomorphism for any left P-module M and any
r€Z.

(2) ¥y, : He (AT, M4) — H""Y(A,T', M) is an epimorphism for any left P-module M and any
r€2Z.

(3) There are elements ), € € A such that (1®r 1) ®p 32 € Cf{r A), te Al and 1 = Y+

S RikLi, where Cf{r and AT are the same as in Proposition 1.1.

Outline of the proof. By the Proposition 1.1, ‘I'X;r is regarded as a homomorphism of Cﬁ{r(MA)/
BQIP(MA) to M"/NA/I-(M) such that

Vi r((Ter ) @p m8) =) rml,
i

for (19r 1) ®p m2 € Cf{r(MA), where ~ stands for the residue classes. It is clear that (1) implies
(2). Assume that (2) holds. Put M = A. Then since Wx;r is an epimorphism and | € A®, there is an
element A € A such that (1 ®r 1) ®p A2 € C2{T(A%) and ¥ (T®r 1)©p A%) = T. Thus (3) holds.
Assume that (3) holds. For the element A € A in (3), when we define the homomorphism ¢ : M* —
Cf{r(l‘lA) such that ¢(m) = (1 @r 1) ®p (Am)A, it can be shown that ¢ is well-defined, ¢ induces
the homomorphism & : MA/Ny;p(M) — CHMT(M2)/BM (M2) and ¢ is the inverse isomorphism of
W;;r : C_I_‘{F(MA)/B(?/P(RIA) — MA[Np;r(M). So \I'X/'[. is an isomorphism. For any left P-module
M and any r € Z, by the dimension-shifting as in [4, Lemma 3.3], there is a left P-module N such that
H,(A, [, M2) = H_,(A,T,N2) and H-"~}(A,[, M) = H%(A, T, N). Thus (1) holds.

Let G be a finite group and L a subgroup. Then in [2, §4], the relative homology grovp H,(G, L, M)
and cohomology group H'(G, L, M) are defined for any r € Z and any left G-module M. When we put
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A=2G, I = 2L and K = Z, we have H,(G, L, M) ~ H,(A, [, M,) and H'(G,L, M) =~ H"(A, T, M,)
where M, is the module M regarded as a left P-module by using the augmentation map ¢ : ZG — Z such
that (z @k y)-m = zme(y) for z®x y € P and m € M. Then the theorem above means the following

corollary holds :

Corollary 2.2 ([5, Theorem 8.2)). The followirg conditions are equivalent :

(1) "I"a/l., :H,(G,L,M) = H-""}(G, L, M) is an isomorphism for any left G-module M and 2nyr € Z.

(2) "I"a/z. : Hy(G, L, M) = H™"~YG, L, M) is an epimorphism for any left G-module M and any r € Z.

(3) There are i,z € Z such that 1 = |L|t + (G : L)z, where |L| is the order of L and (G : L) is the
index of L in G.

3. The periodicity of the complete relative cohomology groups.

Let C be the center of A. In this section we regard the module H" (A, I, M) as a left and right C-module
for any r € Z by making use of the action of C on M, but since the action of C on H’(A, T, M) satisfies
ca = acforc € Cand a € H'(A, T, M), it is unnecessary to distinguish the left action of C on H" (A, T, M)
from the right action of C on it. In [4] we define a C-homomorphism U : H* (A, T, M) ®¢ H*(A, T, N) —
H+#(A,T, M ®4 N) for every r,s € Z. The C-homomorphism U is called the cup product and U(a ®¢ 8)
is denoted by o U8 for a € H'(A,[, M) and 8 € H*(A, T, N). This cup product has the well-known
properties : For the case r = s = 0, by using Proposition 1.1, the cup product coircides with a map
M“/NA/p(M)ec NA/NA/[‘(N) — (M@ N)A/NA/p(M®A N) (Mm®cT — m @4 n), and for any r, s and
t € Z, the cup product satisfies anti-commutativity, namely aU 8 = (~1)"*8U a for a € H*(A,T',A) and
B € H*(A,T, M), and associativity, namely (e UB)Uv = au(BU7) for a € H' (A, T, M), 8 € H*(A,T, N)
and v € H'(A,T, L), where M, N and L are any left P-modules. By this cup product the direct
sum @,ezH"(A, T, A) is a graded ring whose unit is the image of T € AA{Npsp(A) on the isomorphism
AANx;p(A) = HO(A,T, A) of Proposition 1.1. Then we would like to consider whether the following
conditions are equivalent :

(I) There is an element o € H?(A,T', A) which is invertible in the graded ring ®,e2H" (A, T, A).

(II) For any left P-module M and any r € Z, H" (A, I, M) =~ H"**(A, T, M) as C-modules.

The problem of the equivalence of the conditions (1) and (II) comes from the theory of the complete
cohomology of finite groups. In the theory, it is shown that (I) and (II) are equivalent, for example, as in
[1, Chapter VI, Theorem 9.1]. For the complete relative cohomology, it is shown that (I) implies (II). In
fact, Assume that (I) holds, that is, there is an element 8 € H™®(A,[,A) such that aU B =fUa = 1.
Then the isomorphism H'(A,T, M) S H™*+*(A,T, M) is given by ¥ — vU o for v € H"(A,T, M) and
the inverse isomorphism is given by § — § U 8 for § € H"+*(A,T', M). But we don't know whether the

implication (II) = (I) is true, except the following generalization of {7, Theorem 3.7] :
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Theorem 3.1 ([6, Theorem 3.1]). For the case ' = K, the condition (11) implies (1), that is, (I) and
(I1) are equivalent if there is a P-exact sequence 0 — A — L — N ~ 0 such that the following conditions
holds.

(WH(A\K,L)Y=0forallr € Z.

(2) N2 is the direct summand of Hom(iA, x N2) as P-modules, where N2 is the left P-module
defined from N by the same way as in section 2 and the action of P on Hom(k A, x N2) is given by
(z@x ¥}/ }=J(yl )z) forz @k y € P and f € Hom(x A, x N2).

(3) N2 is injective as a IC-module.

Outline of the proof. When there exists the P-exact sequence in the assumption of this theorem, the

homomorphism

¢ : H*(A, K, A) — Hom(cH™"(A, K, A), c H*(A, K, A)),

given by {(v)(§) = YU § for ¥ € H*(A,K,A) and § € H™?(A, K, A), is an isomorphism. Therefore
by putting M = A and r = —n in the condition (II), there are elements & € H*(A,I(,A) and 0 €
H~"(A, K,A) such that c U8 = 1. Then by the associativity and anti-commutativity of the ::up product,
we have f = fUl = fu(aUB)=(BUa)uf = (-1 (aUB)uB = (-1)*"1UfB = (~1)*'F, and so
Bua =(-1)"Bua =(=-1)""(~1)*aU S = 1. Thus the condition (II) implies (I).
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Remarks on periodic modules for
finite groups”

Akihiko Hida

1 Introduction

Let G be a finite group and let &£ be an algebraically closed feld of characteristic
p > 0. Suppose that M is a finitely generated £G-module. Let ¢ : P — M be
the projective cover of M and let (M) be the kernel of . We define inductively
as Q"H(M) = Q(Q2"(M)) for n > 1. We say that M is periodic if Q"(M) =~ M for
some n > 0. If n is the smallest such integer then n is called the period of M. The
purpose of this note is to determine the periods of some periodic modules.

Let Vg(k) = maz(H"(G,k)) be the maximal ideal spectram of the cohomology
ring H°(G, k). Let Vg(M) be a closed subvariety of Vz(k) determined by the annihi-
later of Eztio(M, M). If {(# 0) € H(G, k) =~ Homc(Q"(k), k)(n > 0), we set L;
(or L(¢)) = Ker(¢ : Q"(k) — k). Then the variety Vg(L,) = Vg({)(the set of max-
imal ideals containing ). Suppose that (i, ..., ( is a homogeneous set of parameters
(h.s.0.p.) for H*(G, k) (namely, ¢y, ..., (, are homogeneous elements in #°(G, k) and
H*(G,k) is a finitely generated k[(;,...,(]-module where » = dim(H"(G,k)) =
prank(G)). Since Vo(®!-, L(G)) = V(... 6) = {0H= {D,50 H*(G,k)}),

-1 L(¢) is projective and so (the non projective part of) &2} L((,) is periodic
and the period divides deg (,. Here & means the tensor product over k. But in
general we can not find a homogeneous element n such that deg n = period of

=1 L(¢) and @y, ...,G—1,n is a hs.o.p. for H*(G, k). In section 2, we study the
relation between the period of ®Z) L((;) and deg (. In section 3, we study the

*The final version of this note will be submitted for publication elsewhere.
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indecomposable summands of @] L(¢;). We shall refer to [1] for the properties of
varieties of modules.

2 Periods of periodic modules

In the rest of this note, we assume that (),...,( is a hs.o.p. for H*(G,k), r =
dim H*(G, k) = p-rank(G) (r > 2). Under the isomorphism

H"(G,k) = Ezt)(Q""'(k),k) for n>0
G:(€ H™(G,k)) corresponds to an extension
0 — k 25 Q7NL(G)) — .Q""“(k) — 0.
In the long exact sequence
=5 H™(G,Q7Y(L(G))) — H™(G, Q™7 (k)
L HY(G k) —

if ¢; is not a zero divisor in H*(G, k) then ¢;. is onto for n > deg ¢;. Inductively we
have the following.

Lemma 2.1 If(,...,{, (1 € s <) is a regular sequence for H*(G, k) then
oM = (@ i) : H™(G, k) — H™(G, Q™ (L(G)))
=1 1=1

is onto for n > ¥!_, deg (..
If o{™ is onto and s = r — 1, we have the following.

Theorem 2.2 Let L be the non projective part of @2} L(;). Suppose that Q™(L) =~
L and o™ is onto for some m > 0. Then there ezists n € H™(G, k) such that

¢ (G- Ga1)-

Example 2.3(cf.[2, Lemma 4.4]) Let G be an elementary abelian p-group of order
p" where pis an odd prime. It is well known that Q*(M) =~ M for every periodic
module M. Let (,,...,{, be a h:s.o.p. for H*(G, k). These elements form a regular
sequence and the period of the non projective part of ®IZ) L((;) is two since every
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element of odd degree is nilpotent.

Example 2.4(p = 2) Let G be an extraspecial 2-group. Hence we have a central
extension
11— N—G—G—1

such that N is a cyclic group of order 2 and G is an elementary abelian 2-group. Let
E be a maximal elementary abelian 2-subgroup of G. Then the period of a periodic
kG-module devides 2* = |G : E|. In [3], Benson and Carlson showed that there
exist periodic'modules of period 2’ for any 0 < i < h using inflated modules and a
result of Andrews. Here we give another example. By a result of Quillen([6]), there

exists a regular sequence (1,...,(—1,n such that H*(G,k)/\/(Gi,---,G-1) = k[n]

and deg n = 2* where r = 2-rank(G). Then by Lemma 2.1 and Theorem 2.2, the
period of (the non projective part of) @72} L((;) is exactly 2. Next we take a

normal subgroup H of G satisfying
(i) G#FHHDN
(i) G= HCg(H)

(iii) if F is a maximal elementary abelian 2-subgroup of H, then |H : F| = 2* or
2h-1,

Suppose that 0 < i < h — 1. By induction there exists an indecomposable periodic
kH-module M of period 2'. Since (M€)y = @ M (by (ii)), the period of M€ is 2’
where MS denotes the induced module.

If p is odd then the cohomology ring of an extraspecial p-group is not necessarily
Cohen-Macaulay and our method does not work. In [8], Tezuka and Yagita showed
that there exist periodic modules of large period using Andrews’ theorem.

Next we state a result on groups of p-rank 2. Examples of the following proposition
are found in [5],[7].

Proposition 2.5 Suppose that r = 2 and deg { = 1 or 2. Let m be a positive

integer such that deg Gi|m. If L(G) = Q™(L(Q)) for any i > 1 then there erists
n € H™(G, k) such thet (;,n is e h.s.o.p. for H*(G, k).
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3 Decompostion of varieties and modules

Let V = Va(®L, L(G)) = Ve((,...,¢) = UiV, (1 € s < r) where each V) is
connected (i.e.if V, = W UW,,W,, W,, closed, W NW, = {0}, then W, or W, = {0})
closed subvariety, V, # {0}, VNV, = {0} for i # j. Then by [4, Theorem 1]

i=1 L(G) = @}y M, ®(proj) where V(M;) = V;,M; has no projective summand.
If s = 1then M, is indecomposable by [4, Lemma 4.1]. Here we state some results on
indcomposable summands of M,. Note that our results dose not contain Carlson's
result.

Theorem 3.1 If V =V, is irreducible then M;is indecomposeable.
Theorem 3.2 If p is odd and V = V) is connected then M, is indecomposable.

Theorem 3.3 Suppose that every mazimal elementary abelian p-subgroup of G has
rank r. Then M, is indecomposable for 1 < j < 1t.
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QUASI-CONTINUOUS MODULES AND THE EXCHANGE PROPERTY

Kiyoichi OSHIRO and S. Tariq RIZVI

1. Introduction. A module M is said to satisfy the exchange property or the
full exchange property, if whenever M is a direct summand of a module A = } @4, i.e.
A=M®N,then A=M@ Z@B;, for some B; C A;, where I is an a.rbit;ii'y index
set. If the index set [ is restric;,gcll to be finite, then M is said to have the finite exchange
property. This useful property introduced in [1], was investigated for various well known
classes of modules by several authors (e.g. [2], [4-6], [8], [10], [13-14], [18-26]). Warfield
[22], showed that injective modules satisfy the full exchange property and Fuchs [2], proved

that the same holds true for quasi-injective modules.

In their fundamental paper [1], Crawley and Jénsson raised an important (and still

an open) question:
Does the finite ezchange properly imply the full exchange property?

Important contributions toward an answer to this question were made by Zimmer-
mann-Huisgen and Zimmermann [25], Harada and Ishii [5], Harada [4], Yamagata [19],
[20], and others. In most cases, affirmative answers were obtained under special situations.
However, the general question remains open.

Continuous and quasi-continuous modules are interesting generalizations of (quasi-)

injective modules (see e.g. [3], [9], [11], [16]). These and their duals, namely the discrete

The final version of this paper will be submitted for publication elsewhere.
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and quasi-discrete modules respectivly ([9], [15]), have been studied in greater detail in
recent years. The fact that discrete modules satisfy the full exchange property, and that
quasi-discrete modules with the finite exchange property have the full exchange property,
can be deduced using the results of Oshiro [15], Harada and Ishii [5], Yamagata [19], [20],

and Zimmermann-Huisgen and Zimmermann [25].

The question, whether a continuous module satisfies the exchange property was
settled in the affirmative by Mohamed and Mueller [8], using a criterion from [25]. It is
clear that the class of quasi-continuous modules does not, in general, satisfy even the finite
exchange property (consider for example, the ring of integers Z as a module over itself).
The following question therefore, was raised in the list of open problems in the monograph
[9], page 105:

Does a quasi-continuous module with the finite ezchange property satisfy the full

ezchange property?

This question is the focus of our present investigations.

As remarked in [10], in the case when a quasi-continuous module M has an indecom-
posable decomposition M = ZQM.-, then the assumption of the finite exchange property
for M, implies that each in&gclomposable M; has a local endomorphism ring ([21], [9])-
This in turn, implies that the Is Tn condition holds ([12], [20]) and hence the full ex-
change property for M holds ([25], [5]). Note that if the ring is right noetherian, such a

decomposition for a quasi-continuous module, always exists.

Recently, it was shown that a non-singular quasi-continuous module with the finite
exchange property has the full exchange property [10, Theorem 6. In the special case that
the underlying ring satisfies the ascending chain condition on essential right ideals, this
question for arbitrary quasi-continuous modules, has also been answered in the affirmative

[24, Theorem 2.11]. The general case is complex and has been open till now.

We give a complete answer to this open question by proving that an arbitrary
quasi-continuous module with the finite exchange property has the full exchange property.

In reference to the long standing open problem posed in [1], our result provides another
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instance, in which the existence of the finite exchange property implies that of the full ex-
change property, for a large class of modules. We also provide a new proof that continuous

modules have the exchange property using alternate techniques.

2. Preliminaries. Throughout, our ring has an identity element and all modules
are unital right modules. Let R be a ring. For any two R-modules X and Y, we denote
X C.Y and X C® Y, to mean that X is an essential submodule of Y and X is a direct

summand of Y, respectively. |I| denotes the cardinality of I, for a set I.

Consider the following conditions for an R-module M.

(C1) Every submodule X of M is essential in a direct summand X* of M.

(C2) Every submodule isomorphic to a direct summand is itself a direct summand
of M.

(Cs) If X and Y are direct summands of M with XNY =0, then X @Y isa

direct summand.

A module M is called continuous if it satisfies conditions (C,) and (Cz), quasi-

continuous if satisfies (C,) and (C3), and extending if it satisfies (C,) only.

It is well known that the hicrarchy is as follows:
Injective = quasi-injective => continuous = quasi-continuous = extending,

We refer to [9], for more details on these concepts, however we include in the

following, some facts to be used later.

Let M be an R-module with a decomposition M = > @&M;. Then consider the
iel
following condition on AM:
(A) For any choice of z;, € M,, (n; € I, i distinct) such that the sequence
(0:24)C(0:x;,) C--- stops after a finitec number of steps, where (0 : z)

denotes the right annihilator of x. (cf. [9], [12])
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Proposition 1 [17], (9]. Let M = Y} ®M; be a quasi-continuous module. Then the
following hold. !
(1) Forany J C I, Y BM; is 3 ®M;-injective.
(2) M=YoM satiiﬁes the :a::dition A
(3) For a1iy direct summand X of M, there ezist N; C® M;, such thet M =
Xo le@Ni.

Recall that a module M is called a square module if M ~ X @ X, for some module

X, and a module is called square free if it does not contain any non-zero square submodules.

Lemma 2 [9, Theorem 2.37]. Every guasi-continuous module is a direct sum of a

quasi-injective module and a square free module.

Proposition 3 ([3], [17]). For an R-module X, the following conditions are equiv-
alent:
(1) X 1is quasi-conlinuous,
(2)  eny decomposition E(X) = > ®M; implies X = Y &(M; N X), where E(X)
is the injective hull of X, ! !
(3) for any R-module Y with X C, Y, any decomposition Y = Y @Y; implies
X= );;ea(yi nX). '

We will need the following useful characterization of the exchange property.

Lemma 4 [25]). A module M salisfies the ezchange property if and only if for any
A=M®N = E®M,~, with each M; ~ M, there exists M] C M; for each i € I, such that
A=Mao ZEBJ{Z'I .

iel

3. The Results. In (7], we introduced the concept of relative continuous modules.
A module M is defined to be continuous relative to a fixed module if the conditions (C,)
and (C;) hold for a special subfamily of submodules of M. Qur study of questions related to

this concept, has led us to an alternate approach to prove that continuous modules satisfy
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the full exchange property. This approach has also been useful for the question mentioned
in relation to the quasi-continuous modules. Our main contribution in this direction is
the following key result (Lemma 5). This lemma also provides useful information about

arbitrary submodules of a direct sum of extending modules.

Lemma 5 [17]. Let P be an R-module with a decomposition P = 5 ®M; such
that each M; i3 extending. We consider the index set I as a well ordereé set: I =
{0, 1, ..., w, w+1, ...}, and let X be a submodule of M. Then there are submodules
T(i) Ce T(1)* C® M;, decompositions M; = T(i)* @ N; and e submodule Y ®X (i) C. X
for which the following properties hold: !

1)  X(0)=T(0) C. T(0)"

2) X(k) S T(k)® 2 _ON;, forallk el

3) a(X(k)) = T(k)'<§ke T(k)*, and X(k) =~ o(X(k)) (vie o|X(k)) for all k € I, where
o i3 the projection 0 : P = Y @T(:)* @ 3 ®N; — Y @T(:)*

4) X ~o(X) (via 0] X). ' ' '

We first use Lemma 5, to show an interesting result: every continuous module which
is a submodule of a direct sum of copies of itself, is in fact a summand of this direct sum

without any additional assumptions. This is the following theorem.

Theorem 6 [17]. Let X be a submodule of an R-module P. If X is continuous and

P has a decomposition P = Y ®M;, with each M; ~ X, then there ezist direct symmands
il
N; C® M; for each i € I such that P = X ® Y ®N;. Therefore, X is a direct summand

i€l
of P.

Proof. By Lemma 5, we obtain submodules T(i) C. T(:)* €% M;, decompositions
M; = T(i)* ® N;, and a submodule } ®X(i) €. X for which the properties listed in
Lemma 5 hold. As X is quasi-continuo;s and X ~ o(X) C, Y ®T(¢)*, then by Proposi-
tion 3 we get a(X) = 3 @(T(:)* Na(X)). !

Setting X(i)* =I o~ (T()* N (X)), it is easy to observe that X = Y@®X(i)¥,
X(i) Co X(i)# for all § € I, and that T() Ce o(X()#) C. T(i) forall i€ .
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Now as X =~ M; is continuous, and X(i)# C® X, we obtain that o(X(:)¥#) C®
T(i)*. Therefore, o(X(i)#) = T(i)* for all i € I. Consequently, X =~ o(X) = 3 ®T(:)"
T
(via 0|X). Hence it follows that P = X & ) @N;. (]
T

As an immediate consequence of Theorem 6 we obtain:

Theorem 7 ([9, Theorem 3.24], [17]). Continuous modules have the ezchange

property.

Remark. We note that our proof of Theorem 7 is independent of the existence of
the exchange property for quasi-injective modules and does not use the criteria for verifying
the exchange property provided in Part 3 of [9, Proposition 3.22]. (Compare our proof to
that of [9, Theorem 3.24].)

Finally, we statc our main result:

Theorem 8 [17]. Any quasi-continuous module with the finite exchange property

satisfies the full exchange property.

The proof of this result heavily depends on the alternate approach provided by

Lemma 5.
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PROCEEDINGS OF THE 27TH
SYMPOSIUM ON RING THEORY, 1994

ON FPF RINGS AND A RESULT
HirosHl YOSHIMURA

Dedicated to the memory of Professor HisaAo TOMINAGA

This note is to give a brief survey concerning FPF rings, including one new result re-
lated to the FPF condition over von Neumann regular rings: the first section makes a rough
sketch of the background of FPF rings proceeding from PF rings; the second is to expose
some of known results on FPF rings to date; and the last is devoted to nonsingular FPF
rings, where we shall present a result determining the structure of von Neumann regular
rings R over which every cyclic (or finitely generated) faithful right R-module contains a
gnerator for Mod-R.

1. From PF rings to FPF rings

The study of quasi-Frobenius (QF) algchras was, as well known, initiated by the pioneer-
ing work of T. Nakayama [21]. About three decades after, one larger class of the rings —
inheriting the relationship between faithful modules and generators, the injectivity and the
cogeneratorness from QF rings — was investigated by G. Azumaya (1], B.L. Osofsky [22],
and Y. Utumi [30]. Every generator for the category Mod-R of all right modules over any
ring R is faithful, while conversely cvery faithful right module over QF rings is a generator;
however, the converse is not necessarily true in general. In the context, Azumaya investi-
gated those rings actually satisfying the converse, and showed that they are precisely the
direct sums of indecomposable injective right ideals, each of which contains a minimal right
ideal, while Utumi called such rings (i.e., rings over which every faithful right module is a
generator) right pseudo-Frobenius (right PF) rings, and obtained much the same result, in-
dependently. On the other hand, Osofsky considered what happens if the chain conditions
are dropped from QF rings, but if some of the other properties are kept, and showed that

The final detailed version of the last part of this note will be submitted for publication
elsewhere.
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if a ring R is an injective cogenerator for Mod-R, then R is a direct sum of right ideals,
each of which is simple modulo its radical, and that if R is a one-sided perfect ring which
is an injective cogenerator on both sides, then R is QF. It thus turned out that the right
PF rings are characterized as follows (c.f. T. Kato [17], [18]):

Theorem (Azumaya [1], Osofsky [22], Utumi [30]). (1) The following conditions on a
ring R are equivalent:
(a) R is right PF;
(b) R is a right self-injective semiperfect ring with essential right socle;
(c) R is an injective cogenerator for Mod-R.
(2) If R is a one-sided perfect and two-sided PF ring, then R is QF.

Now, as noted in H. Tachikawa [29], the faithful injective modules play the key to the
proof of the theorem above, although all such modules are, of course, not necessarily finitely
generated, so that it scems natural to ask what differences it makes to replace the faithful
modules in the PF condition by the finitely generated faithful modules. One might thus
consider the following condition on a ring R:

(C) Every finitely generated faithful right R-module is a generator for Mod-R.

Concerning this, the following two results, from which the study of FPF rings would seem
to stem, were at once given by S. Endo [5] and H. Tachikawa [29)].

On the one hand, Endo systematically investigated some basic properties of QF al-
gebras, and then determined the structure of algebras satisfying the condition (C) over
commutative noetherian rings. 'Especially, he gave a result on commutative noetherian
rings satisfying the condition (C).

Theorem (Endo [5]). The following conditions on e commutative noetherian ring R
are equivalent: ‘

(a) R satisfies the condition (C);

(b) R is isomorphic to a finite direct product of Dedekind domains and e QF ring.

On the other hand, Tachikawa raised a problem whether an artinian ring R is QF if R
satisfies the condition (C), and actually obtained a more general result.

Theorem (Tachikawa [29]). The following conditions on a left perfect ring R are
equivalent:

(a) R satisfies the condition (C);

(b) R is right PF.
Consequently, a one-sided artinian ring is QF if and only if it satisfies the condition (C).
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2. FPF rings — Some of known results to date

C. Faith [6] simplified the long and difficult proof of Tachikawa’s Theorem (for it is ac-
tually a constructive proof) and generalized the theorem over a semiperfect ring. There he
called the rings R satisfying the condition (C) right finitely pseudo-Frobenius (right FPF)
rings, and proved the following,.

Theorem (Faith [6]). (1) Let R be a semiperfect right FPF ring. Then,
(a) Every principal indecomposable right ideal is uniform.
(b) Every nonzero right ideal of the basic ring for R contains a nonzero two-sided
ideal.
(c) If the radical of R is nil, then R is right self-injective.
(This implies Tachikawa’s Theorem)
(2) If R is a one-sided perfect and two-sided FPF ring, then R is QF.
(This generalizes Osofsky’s Theorem)

In 7], Faith also made further investigations of semiperfect or right self-injective right
FPF rings. Once these results had been obtained, Faith and others proceeded to the sys-
tematical study of FPF rings under more general assumptions, or in individual cases. Some
of known results to date are as follows:

Commutative Case.

In this case, Faith gave the decisive result below.

Theorem (Faith [9], [10], [11]) Let R be a commutative ring. Then,

(1) R is FPF if and only if R satisfies (i) the classical ring of quotients of R is self-
injective, and (ii) every finitely generated faithful ideal of R is projective.

One of the other interesting results is:

(2) If R is FPF, then any direct product of R is also FPF.

Faith also noted in [9] that the same assertion as (2) remains true for any basic semiper-
fect (not necessarily commntative) rings. Thus, it follows, as a remarkable result, that for
a (right) FPF ring R which is commutaive or basic semiperfect, any infinite direct product
of R is still (right) FPF, but can be no longer (right) PF.

Noetherian Case.

Endo’s Theorem determining the structure of commutative noetherian FPF rings was
afterwards generalized in non-commutative case by T.G. Faticoni [13] and S. Page (28],
independently.

37



Theorem (Faticoni [13], Page [28]). The following conditions on a ring R are equiva-
lent:

(a) R is two-sided noetherian and two-sided FPF;

(b) R is isomorphic to a finite direct product of bounded Dedekind prime rings and a
QF ring.

Semiperfect or finite Goldie dimensional Case.

After the work of Faith [6], [7], the study of semiperfect (or finite Goldie dimensional)
FPF rings was improved in more detail (Faith [8], Faith and Page [12], Faticoni [14], [15],
Page [26]). One of the recent results is the following.

Theorem (Faticoni [14], [15]). (1) Let R be a semiperfect ring such that every right
regular element of R is two-sided reqular. Then,
(a) R is right FPF if and only if R satisfies (i) every right ideal of the basic ring
for R contains a two-sided ideal, (ii) every finitely generated faithful right ideal of R is a
generator, and (iii) R possesses a right self-injective semiperfect classical ring of quotients.
(b) R is right PF if and only if R is right FPF and right Kasch.
(2) Let R be a right FPF ring. Then,
(a) If R has finite right Goldie dimension, then every finitely generated right
R-submodule of the injective hull of Rp can be embedded in R.
(b) The mazimal right quotient ring of R is right self-injective semiperfect if and
only if R satisfies (i) R has finite right Goldie dimension, and (ii) every right regular ele-
ment of R is two-sided regular.

Other topics.

S. Page [25] presented a left FPF ring which is not right FPF (c.f. F. Dischinger and
W. Miiller [4] constructed a one-sided PF ring).

D. Herbera and P. Menal [16] answered some of questions concerning FPF rings raised
in [12] (e.g. semiprime FPF rings, centres and Galois subrings of FPF rings, and group
rings over FPF rings).

For most of the basic results on FPF rings, one may consult Faith and Page [12], which
includes a list of problems. One of the most interesting problems is:

Are all (right) FPF rings are (right) thin?

where a ring R is right thin if there exists a positive integer n such that R contains no
direct sums of n+1 nonzero pairwise isomorphic right ideals. The problem is settled to be
affirmative for all known classes of right FPF rings: e.g. commutative rings, or semiperfect
rings, or right nonsingular rings, or right self-injective rings (See [12]).
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3. Nonsingular FPF rings and a related result

In this section, we shall consider the FPF condition particularly over nonsingular rings,
and present a related result.

A striking difference between the PF rings and the FPF ones is the fact that the in-
jectivity is dropped in general from FPF rings, so that there actually exist non-artinian
nonsingular FPF rings. This class of the rings was investigated by G.F. Birkenmeier [2],
W.D. Burgess (3], S. Kobayashi [19], [20], S. Page [23], [24], [27], ctc. Amongst others, we
especially note the following results due to Page, and due to Kobayashi.

Theorem (Page [23], [24]). (1) If R is a right nonsingular and right FPF ring, then
the mazimal right quotient ring of R is also right FPF.

(2) A (von Neumann) regular ring R is right FPF if and only if R is right self-injective
of bounded indez of nilpotence. Consequently, the FPF condition is left-right symmetric for
regular rings.

Theorem (Iobayashi [19]). Let R be a ring with Q the mazimal right quotient ring.
Then R is right nonsingular and right FPF if and only if R satisfies (i) R is right bounded,
i.e., every essential right ideal of R contains a two-sided ideal which is essential as a
right ideal, (ii) the multiplication map Q ®r Q — Q is an isomorphism, and Q is flat
as a right R-module, and (iii) for every finitely generated right ideal A of R, it holds that
R =Trp(A) & rr(A), where Trp(A) and rr(A) are the trace ideal and the right annihilator
ideal of A in R, respectively.

In view of the theorems above, we shall consider the FPF condition with our attention
restricted to regular rings. But then, it may arouse our interest to exist a regular ring R
over which, although R fails to be FPF, every cyclic (or finitely generated) faithful right
R-module still * contains™ a generator for Mod-R. For instance, choose a division ring
D, containing a division subring £, for n = 1,2,... , and let & (2 2) be an integer.
Let us now consider the regular ring R which consists of all sequences (z,), where each
z, € Mi(D,), the ring of all & x & matrices over D,, such that =, € M(E,) for all but
finitely many =». Then, R is FPF only when D, = E, for all n, whence in case some E,
is properly contained in D,, the ring R can be no longer FPF. However, it is shown that
every cyclic (finitely generated) faithful right R-module does contain a submodule which
is a generator for Mod-2. Such being the case, we shall be concerned with the following
two conditions on a ring R:

(A) Every cyclic faithful right R-module contains a submodule which is a generator for
Mod-R;

(B) Every finitely generated faithful right R-module contains a submeodule which is a
generator for Mod-R.
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In fact, we obtain the following.

Theorem. Let R be a regular ring. Then,
(1) R satisfies the condition (A) if and only if R = H Mo (Si), where n{(l) =1,

and n(i) > 2 fori=2.3,...,k, and where cach S; is an abelian regular ring such that
fori=23,...,k, every ﬁmtely generated faithful right S;-submodule of the mazimal right
quotient ring Q(S;) of S; contains e unit in Q(S;).

k
(2) R satisfies the condition (B) if and only if R 2 [[ Ma)(S:), where each S; is an

i=1
abelian regqular ring such that every finitely generated faithful right S;-submodule of Q(S;)
contains a unit in Q(S;).

The theorem combined with an observation immediately implies the following.

Corollary. Let R be a requler ring. Then,

(1) (c.f. Kobayashi [20]) Ewvery cyclic faithful right R-module is a generator for Mod-R
if and only if R is isomorphic to e finite direct product of an abelian regular ring and full
matriz rings over self-injective abelian reqular rings.

(2) (Page [23]) R is right FPF if and only if R is isomorphic to a finite direct product
of full matriz rings over self-injective abelian reqular rings.
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PROCEEDINGS OF THE 27TH
SYMPOSIUM ON RING THEORY, 1994

CLASSIFICATION OF PRIMARY ORDERS OF FINITE REPRESENTATION TYPE

Kenji NISHIDA

~ 0. This is a joint work with H. Hijikata.

Let R be a complete discrete valuation ring with the residue field k and the quotient
field K. Let A be an R-order in a finite dimensional semisimple K-algebra. We call A to
be primary if it is a local ring. Let M?° be the category of all R-lattices. Put lat A :=
M°®NmodA, where mod A is the category of all finitely generated left A-modules. We call
M € lat A a (left) A-lattice. We need two definitions:

(0.1) A, FRT(finite representation type) &L, The number of isomorphism classes of ind
lat A is finite.

(0.2) A, WB(well-behaved) &5

0) A:=n{r: T is a maximal order in A containing A} is hereditary;
1) pa(A) < 3, where s (X) denotes the minimal number of generators of
a A-module X.
2) pa(rada(a/A)) £ 1.
Let A be a primary R-order.
The main theorem of [DK] asserts:

Ais of FRT <= A is WB.

Unfortunately, the claim (<=) is not correct. However the proof of [DK] can easily be
repaired to yield a correct answer:

(0.3) A is of FRT <= A is WB, and A(radA) is a principal A-ideal.

Mostly (i.e., unless A = M,(D) with a sfield D having the maximal order O such that
O/radO is not separable aver k), the added principality condition follows automatically
from the other conditions 0) 1) 2). This fact seems to cause some mixed up in the proof of
(«) in [DK].

The final version of this paper will be submitted for publication elsewhere.
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We shall classify (up to a reasonable sense) all primary orders of FRT, as well as all of
their indecomposable lattices. By the elementary part of the method of [DK], together
with a classification of Bass orders [HN], we can describe all well-behaved A. If A(radA)
is principal, we can determine, in a rather unified manner, a connected component of the
Auslander-Reiten quiver of A, which turns out to be finite. Hence we get also a new proof
of (<) (0.3). In this report we state the results very briefly.

1. AHP-pairs. A pair (Ag,A), where A is an order and Aq an over order of A, is called
admissible if (radA)Aq = Ag(radA). Suppose (Ag,A) is admissible. Put
R:= radA, N = RAO = Aon,
Aii=A+N, Ri=R+N' (i21),
s = s(Ao, A) := inf{i : M* C A}.

Then A; is an R-order such that Ag D A; D A;;1 D A and R; = radA;. We call s the rank
of (Ao,A). Further, if A is primary (i.e. A/radA is a sfield), then A/R 2 A;/R;(i 2 1).
Put Ty := O,(Ri) = {z € A: Riz C R:}. We get the following diagram:

o « T, « .. « 'y

T T T
A — A « ..« Ay «~ A, =A
1 1 1

Rl — L. = R,-l L R, =R,
where A; — I;(0 < 1 < 3) is an identity or a proper inclusion, all other —’s are proper
inclusions.
An admissible pair (Ag,A) is called an AHP-pair if A is hereditary and A is primary.

1.1. Remark. i) If A is primary WB then (A,A) is an AHP-pair with pA(A_) <3
i) If A = A, is non-Bass Gorenstein then I',.; = A,_; is not Gorenstein, so we assume
that A is Gorenstein. (The Gorenstein cases will be treated elsewhere.)

2. Let (Ag,A) be an AHP-pair with us(Ag¢) < 3. We shall classify such pairs.
It is easily seen that:

(2.0) ua(Ao) €1 Ag = Ay = A is a maximal order in a sfield.

(2.1) pa(Ao) = 2 & A is a non-hereditary primary Bass order.

Thus there remains the essential case where us(Ao) = 3.



2.1. Let Ag be a hereditary order and NV its two-sided ideal. We say that (Ao, N) ex-
tends to an AHP-pair of rank s if and only if there exists an order A such that (Ag,A) is
an AHP-pair with A’ = R, and s = s(Ao,A).

2.1.0. A pair (Ag,NV) extends to an AHP-pair (Aq,A) of rank one and pa(Ao) = 3 if and
only if Ag/N contains a sfield D as an R-subalgebra with dimpAo/A = 3. Indeed, putting
Ay == ¢~1(D), where @ : Ag = Ag/N is the canonical projection, we see that (Ao,A;) is an
AHP-pair of rank one with gy, (Ag) = 3.

2.1.1. If A is not simple, then (Ag, /) extends to an AHP-pair of rank one if and only
if it is one of the following:

(I) Ao=0@ M(0) N =radAy M;(0/p) contains D with index 2;
(H) A=Qo ( ° g) N= l'adAo 0/pED,
p

(III) Ae=0@(000") N =radAy O/p=O0'/p'xD;

(IVa) Ay = Q@O0 N =radAy O/p contains D with index 2;

(IVb) Ao = Q00 N =1adQ@p? Ofp=XD 0 p/p’— O/p’ = Ofp — 0 splits,

where O(resp. O') is the maximal order in a sfield D(resp. D’), p = radO(resp. p' =
rad0’),  is the maxial order in a sfield, and D := Q/radQ.

2.1.2. If A is simple, then (Ao,V) extends to an AHP-pair of rank one if and only if it
is A*-conjugate to one of the following:
(Va) Ag =0 N =radA; O/p contains D with index 3;
(Vb) Ao=0 N =p* O[p=D 0-p/p’— 0/p>— Ofp— 0splits;
(VI) Ao = M5(0) N =r1adAg M;(0/p) contains D with index 3;
0O 0 0 '
(VIDAo=| p O O | N=radAy OfpD;
p o O
(VII) Ag = ( z g ) N = M;(p) Ofp=D,
where O is the maximal order in a sfield D, p = radO, and D is a sfield.

2.1.3. Remark. The case (VIII) actually occurs. In fact, some A, can satisfy (0.2) 0),
i.e., WB but not of FRT (cf. (0.3)).

3. Let (Ag,A) be an AHP-pair of rank s with us(Ag) = 3. We briefly describe the case
of s> 2.
Suppose that there exists a non-trivial central idempotent e € Ag. Choosing ¢ properly,
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we get up.(Aoe/Are) = 1 and ppg-c)(Ao(1 — €)/A1(1 — ¢€)) = 0. It follows from (2.0) and
(2.1) that Ae is non-hereditary primary Bass and A(1—¢) = Q is a maximal order in a sfield.

3.1. Assume that there exists a nontrivial central idempotent ¢ € I';. Then A is a
pullback of @ — Q/radQ & D X A,fradA, « A,, where A, is a primary Bass order of
rank s. Its indecomposable lattices are given by:

indlat A, =ind lat A, U { A,, A}, A,, 7A,, },

where 7A,_, is the Auslander transform of A,_, in lat A,, and characterized as the unique
(up to isomorphisms) subdirect product such that

Q® x A,y D 74,1 D (radQ)@ x (rada,).

3.2. Otherwise (i.e., A is simple or A is not simple but I’y contains no non-trivial central
idempotent), we can show that s < 2 and can fully describe A, and A,.

4. All orders obtained in 3 except type (VIII) are of FRT. This is shown by constructing
a finite connected component of the Auslander-Reiten quiver of A. Thus we have obtained
the classification of non-Bass primary orders of FRT as well as the classification of its
indecomposable lattices. Together with the classification of Bass orders[HN], we complete
that of primary ones of FRT.
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Introduction.

In view of the work of Bass [1] for commutative Gorenstein rings. which we
will state later, we may consider two different conditions for the definition of non-
commutative Gorenstein rings.

The first : Noetherian rings with finite self-injective dimension. say n.

The second : Noctherian rings R satisfying the property that each term E; of a
minimal injective resolution for pR is of flat dimension at most ¢ for every i < k.
Here & is fixed, and is allowed to be .

The first condition is a direct generalization for non-commutative rings. But in
that case it has not been scttled in general whether or not the left self-injective
dimension coincides with the right one. On the other hand. the second condition
has been shown by Auslander to be left-right symmetric ([4]). The first condition
does not imply the sccond coudition. But it is unknown whether or not the second
condition implies that the ring is of finite sclf-injective dimension even though the
ring considered is an artin algcbra.

If both the left and the right self-injective dimensions are finite. then they co-
incide (Zaks[15]). In this paper, such a ring is called a Gorenstein ring. On the
other hand. a noetherian ring satisfying the second condition is usually called a

The detailed version of this paper has been submitted for publication clsewhere
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k-Gorenstein ving. But. to avoid confusion. we won’t use the combined term ~a
k-Gorenstein and Gorenstein ring™ . We will instead call such a ring a k-Gorenstein
ring of finite self-injective dimension.

Watanabe(K.-i.)says in [14] that in the commmutative case the Gorenstein prop-
erty is computable. Ou the contrary. in the non-commtative case. we cannot
usually compute the Gorenstein property for a given ring. This is why the stndy
of Goreustein rings has teuded to be limited to low-dimensional cases. Since about
twenty years ago. differential operator algebras over algebraic varictics has been
studied and it has been found that many of those rings are x-Gorenstein rings of
finite self-injective dimension. (See Bjork[2] and Levassenr[12]). Of course such ex-
amples are worth studying in themselves and. at the same time. the authors helieve
that they give raison d’étre to the abstract study of higher dimensional Gorenstein
rings. For a more detailed survey of differential operator algebras. refer to Iwanaga
[9].

We are greatly intercsted in the last term of a minimal injective resolution for a
Gorenstein ring and we will consider conditions which imply that the socle of the
last tern is nonzero or essential in the last term. Our purpose in this paper is to

discuss the importance of the last term as well as to state our results,

Finally we should remark that some of onr statements liere are not necessarily in

the most general form to make our subject clear. Refer to our paper [11] for them.

Notation and Setting

Throughout this paper, R stands for a left and right noctherian ring. For a (left
or right) R-module M. we denote the projective dimension of M by pd(M). the
injective dimension by id(M) and the flat dimension by fd(M). When we specify
its side, for example. the projective dimension of the left R-module M. we denote

it by pd(gM). If id(gR) = id(Rp) then we denote it by id(R). Also we denote
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the socle of M by soc(M) and the injective hull of M by E(M). Furthermore we

denote a minimal injective resolution for g R by
05 pgRoEy—FE - - > E, —=Ey41—> -
Wlien id( pR) = n, its resolution is of the form:
0—-pR—~Ey—E,—-.---—-E,_,—>E, -0

and then we will call E,, the last term for a minimal injective resolution for pR. or

the last term for a Gorenstein ring pR in short.

§1. Generalities and Commutative Gorenstein Rings
Let us recall the work of Bass, whicli is onr motive to consider non-commutative

Gorenstein rings.

Theorem [1]. Let R be a commutative noctherian ring such that id(Rp) < x for
any P € Spec(R). Then we have the following

(1) E(R/P) is a dircct summand of E; if and only if the height of P is exactly
j for P € Spec(R).

(2) Any dircct summand of E; has flat dimension exactly j.

(3) R is a Gorenstein ring in our sense. that is. id(R) = n < x if and only if

Krull-dim(R). the Krull dimension of R. is exactly n < x.

Makiug usc of our definitions in the Introduction. we sce the following immedi-

ately.

Corollary. Let R be a commutative Gorenstein ring with id(R) = n < x. Then
we have the following.

(1) fd(E;) = j for any j. in particular. R is x-Gorenstein.

(2) The direct sumW = Ey @ Eyd--- @ E, is a finitely embedding cogencrator.

that is, any finitely generated R-module can he embedded into a finite direct sum of
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copies of W . or equivalently. every injective indecomposable R-module is isomorphic
to a dircet summand of W.
(3) Ei and E; have no isomorphic indecomposable summand fori # j.

(4) soc(E,) is essential in (E,) . in particular soc(E,) # 0.

In the rest of this section. we would like to consider whether the corresponding
statements in the corollary above hold or not for the non-commutative casc.

The statcuent corresponding to (1) in the corollary does uot hold in the non-
commutative case. as mentioned in the Introduction. For the stateinent correspond-

ing to (2), Iwanaga showed the following.

Theorem([8]. Let R be a left noetherian ring with id(Rg) = n < x. Then

W =E,® E, ®---® E, is an injective cogencrator.

Also Colby and Fuller gencralized Iwanaga’s theorem above and gave a quite

uscful formulation for it. as follows.

Theorem([3]. Let R be a left noetherian ring with id(Rg) = n < x and M any
finitely generated left R-module. If Extf(M.R) = 0 for all k > 0 . then we have
M=0.

But, in the non-commutative casc, it is not known yet whether or not W =
Eo® E,&-- - E, is a finitcly embedding injective cogenerator in general. Here we

should mention the fundamental theorcmt due to Auslander for A-Gorenstein rings.

Theorem [4]. The following are equivalent for a (left and right) noctherian ring
R and an integer n > 1:

(1) fd(E;) <iforanyi (0<i<mn).

(2) For any finitely generated right R-module Xp and any j (1 < j < n). we
have Extip(M. R) = 0 if gM is a submodule of Ext}3(X. R) and ifi < j.

(3) The dual of (1).

50



(4) The dual of (2).

The conditons (2) and (4) in the above are nsually called “Auslander's condi-
tion™. and a noetherian ring satisfying Auslander's condition is nsually called “a
k-Gorenstein ring”. Here kB may be oc. and an »c-Gorenstein ring is sometimes
called an Auslander ring.

Now let us return to the problem whether or wot W = Ey @ E & --- & E, is
a finitely embedding injective cogenerator for an n-Gorenstein ring. Hoshino has

shown the following.

Theorem[6]. Let R he an x-Gorenstein ring. Then we have
(1) id(Rp) < o hmplies id(gR) < oc. and so id(pR) = id(Rp).

(2)W =Ey® FE,®---® E, is a finitcly cmbedding cogenerator.

This concludes our discussion of the statement (2) in the Corollary.
Next. the statement (3) in the Corollary above does not hold in general even
under the assumption that the ring considered is x-Gorenstein. Nevertheless we

have shown the following.

Theorem[10]. Let R bhe a Gorenstein ring with id(gpR) = n > 0. Then Ey and
E, have no isomorphic indecomposable summmand. In particular. cvery finitely

gencrated submodnle of the last term E,, cannot be torsionless.

It is to be noted that the first half of our statement in the Theorem just above
does hold without the assumption that R is a noctherian ring. Refer to our paper
[11] for it.

The above is almost all of the facts which hold in the non-commutative case
concerning the corresponding statements in the Corollary except (4). In the rest
of this paper, we will concentrate our consideration on the last term of a minimal

injective resolution for a Gorenstein ring.



§2. The Last Term for a Gorenstein Ring
In this section, R stands for a Gorenstein ring with id(R) = n. As stated in the
Introduction, we will counsider the following guestions all of which Iwanaga took up

in [9] :

Questions

{a) Docs it hold that any wonzero direct summand of E, is of flat dimension
exactly n ?

(b) Does it hold that soc(E,) is essential in E,, ?

(¢) Is it true that soe(E,) is nonzero ?

(As is trivially scen. (b) implies {c)).

The first result follows from Iwanaga’s theorem in §1 and some of the cleimentary
properties of the functors Ext7 and TorR, and it shows that the answer to (a) is
affirmative for any Gorenstein ring. and that the last term E,, reflects the features

of Gorenstein rings.

Theorem A. Let R bhe a Gorenstein ring with id(R) = n. Then we have the
following.

(1) For any nonzero submodule X of E,,. we have Exth(X. R) # 0 and so
pd(X) 2 0.

(2) For any finitely generated submodule U of E,,. there exists a simple right

R-module Sg and finitely generated submodules V). Vo of E(S) satisfying

TorR(E(S). U) #0. Tor®(E(S). E(U)) £ 0

and

Tor®(V,. U) #0. Tor®(Va. E(U)) # 0.

Thus fd{E(S)) = fd(E(U)) = .
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(3) For any nonzero direct summand E of E,,. we have pd(E) = fd{E) = n.
We immediately have the following from Theorem A,

Corollary. Let R be an n-Gorenstein ring with id(R) = n. Then R is oo-
Gorenstein, and hence Eg @ E, @ --- @ E,—, and E,, have no isomorphic inde-

composable summand.

Next. we will investigate the socle of the last term E,, of a minimal injective
resolution for a Gorenstein ring R with id(?) = n. We have not settled in general
the questions (b) and (c) stated in the beginning of this section. So we will impose
some suitable conditions on a Gorenstein ring.

We will consider the folloing three classes of Gorenstein rings:

(a): oo-Gorenstein rings with finite self-injective dimceusion.

(b): Fully bounded noetherian rings with finite sclf-injective dimension.

(c): Noctherian rings with finite global dimension.

Let us recall the definition of a fully bounded noctherian ring.

A prime noetherian ring is said to be bounded in case every one-sided cssential
ideal contains some nonzero two-sided ideal. and a noetherian ring is said to be
fully bounded in casc each of its prime factor rings is hounded.

It is well known that a module-finite algelra over a commutative noctherian
ring is always fully bounded.(CL.[5]) Thercfore any commutative Gorenstein ring
belongs to the class (). and also to the class (a). (See Corollary in §1.)

It is not too hard to show that a noctherian ring with finite global dimension,
say n, is of finite self-injective dimension exactly » and so it is a Gorenstein ring
with id(R) = .

Our main result is the following.

Theorem B. Let R be an n-Gorenstein ring with id(R) = n. Then soc(E,) is

cssential in E,,. Here E,, is the last term of a minimal injective resolution of pR.



Theorem B above is a direct consequence of the proposition helow.

Proposition. Let R be an n-Gorenstein ring with id(R) = n. Then Extp(M. R)

is an artinian right R-module for any finitely generated left R-module M.

The proposition just above can be proved by using the thorem of Colby and
Fuller and Auslander’s condition stated in §1.

Now. as a result of Theorems A'and B. we have the following.

Corollary. Let R be an n-Gorenstein ring with id(R) = n. and E an injective
indecomposable left R-module. Then fd(E) = n if and only if there exists a simple

submodule of E,, such that E = E(S).

We will now turn our attention to fully hounded noetherian rings with finite
self-injective dimension. As mcntioncd before. the class of such rings contains all
commutative Gorenstein rings. But such a ring is not always >-Gorenstein in the
non-commutative case. Next. noctherian rings with finite global dimension » {say)
are of finite self-injective dimension exactly n. and are not always ~c-Gorenstein in

the non-commutative case. Nevertheless we have the following.

Theorem C. Let R be a noetherian ring satisfying onc of the following conditions:
(a) R is a fully bounded ring with id{(R) = n. or,
(b) R has finite global dimension n.

Then the last term E,, for R has the nonzero socle.

Besides the above. we know another sufficient condition so that the last term E,,

has the nonzero socle. which was shown by Hoshino.

Proposition [7]. Let R be a Gorenstein ring with id{R) = n < 2. Then the last

term E,, has nonzero socle.

It has not been scttled in general whether the last term for a Gorenstein ring

has nonzero socle or not.
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§3. Applications and Remarks
Coucerning Iwanaga's theorem in §1. we will take up the following question:

Question. For a Gorenstein ring R of finite self-injective dimension ». when is

E, or E,, a cogenerator?

In this section R stands for a Gorenstein ring of finite self-injective dimension
n. At first. we will consider the case where the first term Ey is a cogenerator. The

following is inumediate by the last theorem in §1.

Proposition. Let R be a ring as above. Assume that Eq is a cogenerator and
O (=]

soc{E,) # 0. Then R is a quasi-Frobenius ring.

Let R be a Goreustein ring with id(R) < 2. Then soo(E,) # 0 by the last
proposition in §2. If Ey is a cogenerator. then it follows from the proposition above
that R is a quasi-Frobenius ring. We see that R is its own maximal quotient ring
if and only if Ey is a cogencrator in case id(R) < 1. Taking account of these facts

as well as Theoran C in §2. we have the following.

Corollary. Let R he a Gorenstein ring of finite self-injective dimension n. Then
the following statements hold.

(1) If R is its own miaximal quotient ring and n < 1. then I is a gqnasi-Frobenins
ring.

(2) If Ey is a cogencrator and n < 2. then R is a quasi-Frobenius ring.

(3) If R is fully bounded and Ey is a cogenerator. then R is a quasi-Frobenius
ring.

(4) If R has finite global dimension and Eqy is a cogenerator. then R is a semi-

simple artinian ring.

For an n-Gorcustein ring. we can slightly weaken the condition in the Corollary

just above. as follows.
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Corollary. Let R be an n-Gorenstein ring with id(R) = n. Assume that Eg &

E\®---® E,_ is a cogencrator. Then R is a quasi-Frobenius ring.

Next. we will consider the case where the last term E,, is a cogenerator. Then we
sce soc(R) = 0 by the last theorem in §1. Moreover. if #d(R) = 1. then the converse

is true by Iwanaga’s theorem in §1. As is the case. we have shown the following.

Theorem|[13]. Let R be a 1-Gorenstein ring with id(R) = 1. and assume soc{R) =
0. Then R has a classical two-sided quotient ring Q which is a quasi-Frobenius ring.

and we have Krull-dim{(R) = 1, that is to say. ' has Krull dimension exactly one.

For the case of general dimension, however. we do not yet have a corresponding
result even though such a ring is >c-Gorenstein.
Finally we will mention a problem coucerning global dimensions for right and

left noctherian rings.(Cf.[5]:p.287)

Problem. Is the global dimension of a noctherian ring 2 equal to the suprennmm

of the projective dimensious of the simple R-modules?

This was established for noctherian rings of finite global dimension by Bhatdekar
and Goodearl. and for fully bounded noctherian rings as well as noctherian rings
of Krull dimension < 1 by Rainwater. We can give another proof for noctherian
rings of finite global dimension.

In fact. assume R is a noetherian ring of finite global dimension ». It follows

from Theorem C in §2 that there exists a simple submodule S in the last term E,,.

By Theorem A in §2. we see pd(S) 2 n, and hence pd(S) = n = gl.diin(R).
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PROCEEDINGS OF THE 2TTH
SYMPOSIUM ON RING THEORY, 1994

On growth properties of algebras *

Shigeru Kobayashi

1 Grobner basis

Let K be a field, X = {z,-:+,z¢} be a set of indeterminates, and X" denote the
free monoid over X. An element z of X" is called a word on X and |z| denotes the
length of z. Let <x be a total order on X. The order <y is extended to a total
order on X* denoted by the same symbol <y as follows;

Let z,y be in X*. First, if |z| < |y|, then z <x y. Next suppose |z| = |y| and
==z, y=yy withz,yy € X and z',yy € X*. Then if z, <x y or both
Ty =y and 2’ <x ¥, then z <x y.

Let K(X) = KX* be the free algebra generated by X over K'. For any

g= Ea;u;, (s € K\ {0},‘u.‘ € X")
i=l

in K(X), we denote by H M(g) the highest monomial of g, i.e. HM(g) = u; if
uj <x u; for all j # i, We say HM(0) = 0.

Let F be a set of polynomials in K(X) \ {0}. The monomial u is normal (modulo
F) if it does not contain any of the monomials HM(f), f € F, as a subword.
N(F) will denote the set of normal (mod F) monomials. Let I be a nontrivial
ideal in K(X), A = K(X)/I. We shall assume, without loss of generality, that
the presentation A = K(X)/I is minimal, this means that / does not contain
polynomials of degree one. Let N(I) be the set of all normal (mod /) monomials.
Then X C N(I) and there is an equality I{(X) = SpanN(I) & I as vector spaces.
For any f € K(X), one has f = f + g where f € SpanN(/) and g € / are uniquely
determined. The polynomial f is called the normal form of f. Obviously, there is
an isomorphism of vector spaces A 2 SpanN(7), so N(I) projects to a K-basis of A.
For a set F of polynomials in K(X), HM(F) denotes the ideal of K(X) generated
by HM(f), f € F. We now give the definition of Grobner basis.

Definition 1 A finite set G of polynomials in K(X) \ {0}, generating I as a two-
sided ideal is a Grobner basis of I if one of the following equivalent conditions holds

*This paper is in final form and no version of it will be submitted for publication elsewhere.
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: (1) HM(G) = HM(I); (2) N(F) = N(I).
A Grobner basis

G={fo=w,—g|pEPw,€ X", g, € K(X}), HM(g,) <x w,}
is reduced if for any p € P the polynomial f, is in normal form modulo F\ {f,}

It is well known that if / is an ideal of K'(X) such that I has a Grobner basis G,
then there exists a uniquely determined reduced Grobner basis. Further it is well
known that any ideal of finitely generated commutative K-algebra has a Grébner ba-
sis. However in non-commutative case, there are many ideals does not have Grobner
basis, so we want to find the condition that I has a Grébner basis. To this end, we
shall use growth properties of algebras.

2 Growth of algebras

Let I be an ideal of I{(X) and assume that / has a Grobner basis G. Then H M(G) =
HM(I). In this section, we compute the growth of A = K(X)/I. Let V be a
generating subspace of A. By assumption of /, we can take V = K+ K #,+- - -+ K7y,
where #; = z; mod I. Set V® = k, and V' is the subspace of A spanned by all the
products of i elements of V. Then we define the growth function with respect to V

) dy(n) = dim (z"j v-’)

=0
for n > 0.

Definition 2 (1) A is said to have polynomial growth if dy(n) ~ O (n®) for some
real number a > 0.

{2) A is said to have intermediate growth if dy(n) ~ O (a"p) for some real number
a>landd<p< 1

(3) A is said to have exponential growth if dy(n) ~ O (a™) for some a > 1.

By the assumption, / has a Grobner basis G, so HM(I) = HM(G) and equiv-
alently, N(I) = N(G). Further since A & SpanN(I) as a vector space, A &
K(X)/HM(I) as a vector space (cf.[B]). Hence we can see that the growth type of
A and K(X)/HM(I) are same. Now we consider the algebra A = K(X)/HM(I).

Since HM(I) = H M(G), A is a finitely presented monomial algebra. Let HM(]) =
HM(G) = (w),wa,---,w) and m = max{|w;| | 1 <1 < {}. We can associate a
labeled directed graph G(A) defined as follows (cf.[U]). The set of vertices of G(A)
isM={weN(I)||w|=m—1}; for u,v € M, there is an edge u 2 v with label
a € X if ua € M and ua = vb for some b € X. The following result is basic.
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Proposition 1 ([KK],{U]) The algebra A has either a polynomial growth or an
ezponential growth. More precisely

(1) A has an exponential growth if G’_(;l) has a multiple vertezx

(2) A has a polynomial growth if G(A) has only simple vertices.

This proposition implies that A has either a polynomial growth or an exponential
growth when [ has a Grébner basis.

3 Growth theoretical properties of algebras

In this section, we consider when an ideal / of K(X) has a Grobner basis. First we
assume that A = K(X)/I is a graded algebra, i.e. | is a homogeneous ideal. Then
the following proposition is useful to measure the growth of A.

Proposition 2 (/GS]) Let d; = *{f € I | deg f = i}. Then if d; < &1 4 is

infinite dimensional.

From the view point of growth, we have the following corollary.

Corollary 1 Ift > 2 and d; < 1%)1, then A has an exzponential growth.
This corollary implies the following,

Theorem 1 Let A = K{X)/I be a graded algebra. Asuume that gl.dimA < 3
and A is a domain, then A has a polynomial growlh or has an ezponential growth.
Further if A has a polynomial growth, then I has a Grébner basis.

In general case, in order to obtain a similar result, we need more assumption.
Finally, we shall give an unsolved problem.

Problem 1 Let A be a finitely generated filtered algebra over K. Assume that A is
a Noetherian domain, then does A have a polynomial growth ?

If we have a stable range theorem on A, then this theorem can be proved. But
we can not yet have a stable range theorem.
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PROCEEDINGS OF THE 27TH
SYMPOSIUM ON RING THEORY, 1994

WEAK HOPF GALOIS EXTENSIONS

AtsusiHi NAKAJIMA

0. Introduction.

The notion of a Hopf algebra action is able to generalize to the notion
of a comodule algebra action and it has an application to the Hopf Galois
theory([N1]). In this note, we define a new type of module algebra and
a weak Hopf Galois extension which is a generalization of a Hopf Galois
extension in the sense of [CS], [KT] and [Y]. After that we give some
fundamental properties of weak Galois extensions without proof.

Throughout this note, we use the following notations: R is a commu-
tative ring with identity and we always work over R. B is an algebra
and a coalgebra with structure maps p, 1 and A, ¢, respectively. We
use the Sweedler’s sigma notation A(b) = 3 ;) b1) ® b(2) and omit the
summation index (b) in case it is clear. For an R-module M, we set
M* = Hom(M, R) and the other notations and terminologies used here,

we refer [CS], [M] and [S].
1. Actions.

Let J be an augmented algebra with augmentation ¢y : J — R and a
left B-comodule with structure map p: J = B® J.

The detailed version of this paper has been submitted for publication
elsewhere.
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Definition 1.1. Let A be an algebra. We say that (B, J) measures
A if the following conditions are satisfied:

(1) A is a left B-module and B measures 4, that is, for any b € B and
z, y € A, there hold

b(zy) =) b-2)(2)b-1(y) and (1) =e(b)1,

where A(b) = Eb(—2) ®b—y) € B® B.
(2) A is a left J-module such that, for any {2 € J,

Nzy) =) Q-1)(2)ey(y) and Q1) =es(Q)1,

where p(2) =3 Q) ® Qo) €EB®J.
Moreover, if A and p are algebra maps, then we say that Ais a (B, J)-
module algebra.

Note that the map J 3 Q@ — 5 e5(0))(-1) € B is an algebra map.
If it is a monomorphism, we see that J is a B-subcomodule of B.

Now, for a (B, J)-module algebra A, we can construct the smash
product algebra AjJ as usual.

Definition 1.2. Let A be a (B, J)-module algebra and C a subalgebra
of A with common identity. A ring extension A/C is called a weak (B, J)-
Galois extension if the following two conditions are satisfied.

(1) The invariant subalgebra A = {a € A | Q(a) = £;(Q)a for any
Q € J}is equal to C.

(2) The map ¢ : AjJ — Hom(Ac, Ac) defined by ¢(afQ)(z) = af)(z)
is an isomorphism.

Moreover if

(3) A is finitely generated projective right C-module,
then A/C is called a finite weak (B, J)-Galois extension.

We give an example of a finite weak Galois extension which is not a
Hopf Galois extension.

Let R be a field with 2 # 0 and let R[z] be a free R-module with basis
{1,z}. For a non-zero fixed element r € R, we set 22 = 2rz —r2. Here we
take B =< 1,0,6,06 >, the Sweedler's 4-dimensional Hopf algebra and
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J =< 1,6 >. Define action of B by o(z) = —z + 2r and é(z) = 1. Since
the 2-dimensional Hopf algebras were completely determined by [K], we
have

Example 1.3. R[z]/R is a finite weak (B, J)-Galois extension which
13 not a Hopf Galois eztension.

In the following, we assume that A is a (B, J)-module algebra and B
has a twisted antipode, that is, there is a map A : B — B such that

Zb(_l)/\(b(_g)) = Z/\(b(_l))b(_g) =¢(b) forany b€ B.

The following lemma is useful in our study.

Lemma 1.4. (1) AfJ = (1§J)(Af1).
(2) If ¢ is an isomorphism and A7 = C, then

#((147)(441)) = Hom(4c, C).

Moreover, C¢ i3 a direct summand of Ac if and only if there exist z,,
2, .y Tk € A and Qy, O, ..., U € J7 such that i, Qi(zi) = 1.

Using this Lemma, we have

Theorem 1.5. Let A7 = C. Then the following statements are equiv-
alent.

(1) A/C is a finite (B, J)-Galois extension.

(2) There ezist finite elements Q;; € J7 and =i, y;; € A such that

> @ifuje-n (i) uj0) = 141 € AfJ.

1,7,(8%;)

(3) A is a finitely generated projective right C-module and the map

B:AQc A— A®J" definedby B(zQy) =ZQ;(:c)y®Q’;



is an isomorphism as right A-modules, where {Q:,2}} 13 a projective
coordinate system of J and the right A-module structures of A®c A and
A® J* are given by

(z®yla=zQya and (z®Q')a=za@N",

respectively.
Moreover, if B is cocommutative and J i3 a subcomodule algebra of B
ma A:J — B®J, then these statements are equivalent to the following.
(4) The map v: A®c A — A®J* defined by v(z®y) = Y zQi(y) @

13 an 1somorphism.

Corollary 1.6. Let A = C. Assume J has a free basis {Q, =
1,Q,...,Q.} and J7 = RQy. for some k (1 < k < n). Then A/C is a
finite (B, J)-Galois eztension if and only if there ezist x,, z3, ..., Tm,
Y1, Y2, -y Ym € A such that

Zx,-wk,.(y,-) =1 and Zzlwkj (vi)=0 (J=2,..,n),
i=1 i=1

where p(Q) =3 7_ wi; ®Q; € BRJ.

{zi,yi} was known as a Galois coordinate system(cf. [CHR]), and we
can get some other results for finite weak Galois extensions([N2]).

2. Coactions.

The notions in section 1 dualize to coactions. Let J be a coalgebra
with algebra map R — J and a left B-module with structure map w :
B® J — J such that w is a coalgebra map.

Definition 2.1. We say that A is a (B, J)-comodule algebra if the

following conditions are satisfied:
(1) A is a right B-comodule with map pg : A — A ® B such that

pB(zy) = zo)yo) ®%(ByYm) and pp(l) =181,
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where pp(r) =) z() ®z(B) € A® B.
(2) A is a right J-comodule with map pj: A — A® J.
(3) The following diagram is commutative:

®
AeA 2% A@BoA®J

ml l(m@w)(l@t@l)
A — A®J,

PJ

where 4 : A® A — A is the multiplicationof Aandt: h®a —-a®h
the twist map.

Definition 2.2. Let A be a (B, J)-comodule algebra and C a subal-
gebra of A with common identity. A ring extension A/C is called a weak
(B, J)-Galois object if the following conditions are satisfied:

(1)C=A° ={a€c A| ps(a) =a®1}.
(2)y: AQ®A - AQ® J defined by v(z ® y) = (z @ 1)py(y) is an

isomorphism.

These are dual notions of actions. As usual, we have the following

Theorem 2.3. Let A/C be a weak (B, J)-Galois object. Assume that
B has an antipode and J 13 a subcoalgebra of B which 1s finitely gener-

ated projective R-module. Then A is a (B*,J*)- module algebra and the
following hold.

(1) AT =C.
(2) A is a finitely generated projective right C-module.

(3) v : AjJ* — Hom(Ac, Ac) defined by p(a2*)(z) = a*(z) is an
isomorphism.

We have some other results which are similar to the results of Hopf
Galois extensions([N2]).
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