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PROCEEDINGS OF THE 26TH
SYMPOSIUM ON RING THEORY, 1093

STRUCTURE OF RINGS SATISFYING CERTAIN CONDITIONS
AND COMMUTATIVITY THEOREMS I

Tsunekazu Nishinaka

In his paper [9], Herstein introduced the concept of the hypercenter of a ring; the
hypercenter, Ty, of the ring R is defined by Ty(R) = {a € R | for each z € R, there
exists n > 0 such that [a,2"] = az"™ — z"a = 0}. He showed that Ty (R) coincides with
the center of R if R has no non-zero nil ideal. Further, by making use of the result, in [10],
he studied the rings R satisfying the following condition: For each z,y € R, there exist
m,n > 0 such that [x™,y"] = 0. Since then, several authors [3, 4, 5, 6, 8, 17 have studied
various center-like subsets for rings and algebras in connection with the hypercenter, and
also have observed rings satisfying certain conditions suggested naturally by those subsets.
To generalize their results in [3, 5, 6, 8], we consider the following subsets of a ring R (
as for the notations without mention see the bellow ):
$* = §*(R)={a € R| for each z € R, there exist ¥ >0 and a comonic f(X) € XZ[X]
such that [a, f(z)]x = 0}.

T*=T*"(R) = {a € R| there exist £ > 0 and n > 0 such that for each z € R, [a,z" -
z"H! f(x)]x = 0 for some f(X) € Z[X]}.

Ty = Tian(R) = {a € R | for each z € R there exists f(X) € Z[X] such that
[a,z" — z"*! f(z)]& = 0}, where n and k are positive integers.

We shall also study structure of semiprime rings satisfying the following conditions:
(H) For each z,y € R, there exist comonic polynomials f(X), ¢(X) € XZ[X]

and & > 0 such that [f(z),g(¥)]x = 0.

The detailed version of this paper has been submitted for publication elsewhere.



(H)m) For each z € R, there exist ¥ > 0 and n > 0 such that for each y € R,
[&™ — 2™+ f(z),y" — y"Hg(y)]k = O for some polynomials £(X),g(X) €
Z[X], where m is a positive integer.
(H){mmnx For each z,y € R, there exist polynomials f(X),9(X) € Z[X] such that
[z™ —z™*! f(z),y" —y™* 1 g(y)]x = 0, where m, n and k are positive integers.
Further, we consider the following condition which is studied coupling with the condition
(H) in semiprime rings:
(S) For each 1,y € R, there exist integers a, 8 and 7 such that zy = ayz + Sz +vy? +
f(z,y) for some f(X,Y) € Z(X,Y) each of whose monomial terms is of length > 3.
In the present paper, we shall prove the following two theorems { §1 and §2 ):

Theorem 1.1 ([15, Theorem 1.1]). If R is a reduced ring satisfying (H), then R is

commutative.
Theorem 2.1 ([15, Theorem 2.1}). If R is a reduced ring, then S* = C.

By making use of the above two theorems, we have obtained some structure theorems
for certain rings. In the preasent paper, we shall also exhibit several theorems which are
especially interesting among those obtained in [15] and [16]. ( §3, §4 and §5 ).

Throughout, R will represent a ring ( not necessarily with 1 ) with center C = C(R).
Let D = D(R) be the commutator ideal of R, and J = J(R) the Jacobson radical
of R. For z,y € R, define extended commutators [z,y]; as follows: let [z,y]o = =z,
and proceed inductively [z,y]x = [[z,y]x—1,y]. Let Z denote the ring of integers, and
Z(X,Y) the polynomial ring over Z in the non-commuting indeterminates X and Y. We
call a polynomial f(X) in XZ{X] comonic if its lowest coefficient is 1 ( i.e., f(X) =
X™ 4+ X™*1g(X) for some m > 0 and ¢(X) € 2{X] ). Finally, for a subset U of R,
we use the following notations: (U) ( resp. (U) ) is the subring ( resp. ideal ) of R
generated by U. Cr(U) = {a € R | [a,U] =0}. C3(U)={a € R | there exists k >
0 such that [a,U]i =0}. Ann(U)={a € R | aU = Ua = 0}.

1. Proof of Theorem 1.1.

Lemma 1.1. Let £ = {f(X) € XZ[X] | f(X) isa primitive polynomial



( ie, the coeflicients of f(X) are relatively prime ) }. Suppose that
for each z,y € R there exist f(X),9(X) € € and k2 > ky > 0 such that
[£(z),9(¥))k, = [f(z),9(¥)|x,- If R is a torsion ring, then D is periodic.

Proof. Let R, := {z € R | p"z = 0 for some n > 0}, p a prime. As is easily seen, R,
is an ideal of Rand R= D, ime
ideal P(R,) of R, such that R, = R,/P(R,) has no non-trivial periodic ideal. Since

R, has no non-zero nil ideal and pR, is a nil ideal, we see that R, is an algebra over

R,. By [2, Lemma 2], there exists a maximal periodic

GF(p), and also it has no non-zero algebraic ideal ( see [2] ). If z,y € R,, then there exist
J(X),9(X) € € and positive integers k and d such that [f(z),9(¥)lk = [f(z), 9(¥)]k+4-
By [2, Lemma 4], we can easily see that there exist a > § > 0 with p* — p? = 0 (
mod d ) such that [f(2),9(y)*"] = [f(2),9(¥)lpe = [f(z),9(¥)],r = [f(2),9(v)"], and
so we get [f(z),9(y)*" - g(y)”’] = 0. Since it is easily seen that g(X )" — g(X)P‘ is
non-zero in X GF(p)[X], we can see that R, is commutative by [4, Theorem 3.6], and
thus D(R,) C P(R;). Since D(R) = @ D(R,), we see that D(R) is periodic.

Lemma 1.2. Let I be an ideal of a ring R which is a division ring or a radical domain,
and the characteristic Ch(I) = 0. Let a € R. If for each = € I there exists k > 0 such
that [z,a]x =0, then [I,a] = 0.

Proof. Suppose that I is a radical domain, and further suppose, to the contrary, that
there exists z € I such that [z,a] # 0. Then, by the hypothesis, [z,a], = 0 for some °
s > 1. Let k be the minimum integer in {¢ > 1 | [z,a]; = 0}. Put y = [z,a]x—2. Then
y € I. Since I is a radical domain, there exists y* € I whicl is the quasi inverse of y.
Embedding R into a ring with 1, we see that 1 +y* is the inverse of 1+y. Put u=1+y.
Since [y,a]; =0 # [y, q],

(1.1) [u,al2 = 0 # [u,a].
Noting that 0 = [uu™!,a] = u[u~?,a] + [u,a]u™!, we get
(1.2) [u,a) = —u"u,aJu"".

By (1.1) and (1.2), we can easily see that [u~},a]; = 2(u™}[y,a])?>u"?, and proceeding by
induction, we get [u~!, a], = (=1)"n!(u"}[u,a])"u"? for all n > 0. Since Ch(I) =0 and



also (u~[u,a])"u~! € I, we see that [u~!,a], # 0 and so [y*,a], # O for all n > 0. On
the other hand, since y* € I, we get that [y*,a],» = 0 for some n’ > 0, a contradiction.

In case that I is a division ring, we can get the conclusion in the same way.

Lemma 1.3. Let R be a ring satisfying (H). If R is torsion free, then every primitive

factorsubring of R is a division ring.

Proof. By (H), for each prime p and each z,y € R, there exist fo(X),g0(X) € Z[X]

and positive integers m,n and k such that

[(pz)™ = (p2)™*" fo(pz), (p¥)" — (Py)"*" 90(P¥)]k = 0.

It follows that

0 = [mem _ pm+lzm+lf(z),pnyn _ pn+1yn+lg(y)]k

=p™H ™ — pr™* f(2) y" — py™ o)k
where f(X) = fo(pX) and g(X) = go(pX). Hence,
(1.3) [z™ — p2™* f(z),y" — py™Hg(¥))k = 0.

Let R’ be a primitive factorsubring of R. Suppose that R' is not a division ring. Then, we
see that there exists a factorsubring of R’ which is of type (GF(p))2 ( p a prime ) by the
structure theorem for primitive rings. In (1.3), putting x = en1 + e22,y = €5, € (GF(p))s,

we get that

0 = [(e21 + e22), en1)x = [e21, en1)i—1 = ez #0,
a contradiction. Therefore, R’ must be a division ring.
Let £* = {f(X) € XZ|X] | f(X) is a comonic polynomial }.

Lemma 1.4. Let R be a domain. If for each z,y € R, there exist f(X),g(X) € &*
such that [f(z),g(y)] =0, then R is commutative.

Proof. f Ch(R) # 0, then D is periodic by Lemma 1.1, and so D is commutative by the

well known Jacobson theorem. As is well known, a domain with a non-zero commutative



ideal must itself be commutative, and thus D = 0. We may assume therefore that
Ch(R) = 0. If R is semiprimitive, then it is a subdirect sum of primitive rings. Since
Ch(R) = 0, R is a subdirect sum of division rings by Lemma 1.3. We may assume
therefore that R is a division ring. Then, by [5, Remark 10], for each z,y € R, there
exists f(X) € £° such that [z, f(y)) = 0. For z,y € R, consider the subring (z,y) of
R generated by z and y. Then, we can easily see that for each a € (z,y), there exists
J(X) € £ such that f(a) € C((z,y}). Since (z,y) is domain, (z,y) is commutative by [7,
Lemma 6], and so [z,y] = 0. We have thus seen that R is commutative in semiprimitive
case. If R is not semiprimitive, then R has the non-zero radical J. Since J is a radical
domain, we have that for each z,y € R, there exists f(X) € £* such that [z, f(y)] =0
again by [5, Remark 10]. Therefore, in the same way as above, we can see that J is

commutative. Hence, R must be commutative.

Lemma 1.5. Let R be a domain satisfying (H), and a,b € R. If there exists k > 0
such that [a,b]x = 0, then [a,b] = 0.

Proof. If Ch(R) = p # 0, then D is a periodic domain by Lemma 1.1, and thus
D is commutative. Hence, R must be commutative. We may assume therefore that
Ch(R) = 0. Obviously, Cx(b) is a subring of R and b € Cy(b). Also, Cy(b) satisfies (H),
and Ccy (1) ()= Cr(b) N C(b) = Cr(b). Therefore, under the hypothesis Cy(b) = R, it
is enough to show b € C(R).

First, we suppose that R is semiprimitive. Since R satisfies (H) and Ch(R) = 0, R
is a subdirect sum of division rings R; (¢ € I ) by Lemma 1.3. Let ¢; be the natural
epimorphism of R onto R;, and put b; = ¢:(b). It suffices to show that b; € C(R;) (
i € I'). Since R; satisfies (H), as we saw at the first of the proof, we may assume that
Ch(R;) = 0. Then, for each z € R;, there exists k > 0 such that [z, bt = 0, and so
[z,bi) = 0 by Lemma 1.2.

Next, suppose that R has the non-zero radical J. Then, J is a radical domain, and for
each z € J, there exists £ > 0 such that [z,b]x = 0. Hence, by Lemma 1.2, we get that
[/,8) = 0. Since R is a domain, as is well known, Cr(J) C C(R), and so b € C(R).

Proof of Theorem 1.1. Since R is a subdirect sum of domains by [1, Theorem 2], we



may assume that R is a domain. By (H), for each 2,y € R, there exist f(X),g(X) € £*
and k > 0 such that [f(z),g(y)]x = 0. Hence, we get that [f(),9(y)] = 0 by Lemma 1.5.

Therefore, R is commutative by Lemma 1.4.
2. Proof of Theorem 2.1.
Lemma 2.1. S* is a subring of R.

Proof. If a € S*, then for each z € R, there exist k; > 0 and p(X) € £* such that
[a,p(z)]k, = 0, and if b € S*, then for p(z), there exist k; > 0 and ¢(X) € £° such that
(6, ¢(p(z))]k, = O. Putting k = maz{k,,k2} and h(X) = q(p(X)),

[a, A(2)]k = [a,q(p(z))e = Z M;(z)[a, p(2)|xNi(z) = 0,
where M;(X), Ni(X) € XZ{X). Hence,
(e, h(z)]x = 0 = [b, h(z)]&.

Furthermore, since [a + bh(z)x = [a,h(z)x + [b,h(z)x and [ab,h(z)]2s
= Y2 (8)la, k(z)):[b, h(2)]2k-i = O, we can easily see that (a,b) C S*, and so S~

is a subring of R.

Lemma 2.2. Let p be a prime integer, R an algebra over GF(p), and A(R) the
algebraic hypercenter of R { see (4] ). Then S*(R) = A(R).

Proof. Obviously, A(R) € S*(R). On the other hand, since [z,y],e = [z,y?"] for all
7,y € R and all a > 0, we can easily see that S*(R) C A(R).

Lemma 2.3. Let R be a prime ring with no non-zero nil ideal. If R has the non-zero
radical J and Ch(R) = p# 0, then S* = C.

Proof. First, we claim that R has no non-zero periodic ideal. Suppose, to the contrary,
that R has a periodic ideal I # 0. Since R is a prime ring, INJ # 0. Foreach zx € INJ,
there exist positive integers n and d such that " = z"*4, and so z" € z"J. We see
that 2™ = 0. This implies a contradiction that I N J is a non-zero nil ideal. Hence, R

has no non-zero periodic ideal as claimed. R is an algebra over GF(p) and it has no



non-zero periodic ideal; thus it has no non-zero algebraic ideal. Then C = the algebraic
hypercenter of R by [4, Theorem 1.6]. On the other hand, we see that S* = the algebraic
hypercenter of R by Lemma 2.2. Therefore, we get that S* = C.

Lemma 2.4. If R is a division ring, then S* = C.

Proof. By Lemma 2.1, S* is a subring of R. Since S* satisfies (H), it is commutative
by Theorem 1.1. Let K be the subfield of R generated by S*. Then, it is clear that K is

preserved re automorphisms of R, and so S* = C by Cartan, Brauer, Hua result.
Lemma 2.5. Let R be a semiprimitive ring. If R is torsion free, then S* = C.

Proof. R is a subdirect sum of primitive rings R; (i € I ). Let ¢; be the natural
epimorphism of R onto R;. It suffices to show that ¢;(S*) C C(R;) for all i € I. In the
same way of the proof of Lemma 1.3, if a € S*, then for each prime p and y € R, there
exist m > 0, k > 0 and f(X) € Z|X] such that

(2.1) [a,y™ — py™ ! f(y)lx = 0.

If R; is a division ring, then S*(R;) = C(R;) by Lemma 2.4, and so ¢;(5*) C S*(R;) =
C(R;). We may assume therefore that R; is not a division ring. Consider the case
that Ch(R;) = p # 0. If a € S*, then for each y € R;, there exists b € R such
that y = ¢;(b) and [¢i(a),y™]x = O for some m > 0 by (2.1). Therefore, we see that
$i(S*) € S'(R;). Hence, we get that ¢;(S*) C C(R;) by Lemma 2.5. Next, consider
the case that Ch(R;) = 0. Since R; is a primitive ring which is not a division ring, by
the density theorem, R; acts densely on a vector space V; over the division ring A; with
dimV; > 1. Suppose that there exist v € V; and = € ¢;(S*) such that v and vz are
linearly independent. By the density action of R;, there exists y € R; such that vy =0
and vzy = vz. Since z € ¢;(S°) and ¢;(R) = R;, there exist m,k > 0 and f(X) € Z[X]
such that [z,y™ — 2y™ ! f(¥)]x = 0 by (2.1). Put g(X) = X™ — 2X™*+! f(X). Then,
g(1) = 1 = 2f(1) # 0. On the other hand, we can easily see that v[z, g(y)|x = g(1)*vz,
and thus 0 = v[z,g(y)]x = g(1)*vz # 0, a contradiction. Hence, for each v € V; and
z € ¢;(S*), there exists A € 4; such that vz = \v, and so z € C(R;) by [5, Remark 13].
We have thus seen that ¢;(S*) C C(R;).



We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. R is a subdirect sum of domains Rx ( A € A ) by [1, Theorem
2]. Let ¢x be the natural epimorphism of R onto Rx. Since ¢A(S*(R)) C S*(R.), it is
enough to show that S*(Ry) = C(Ra) for all A € A. That is to say, we may assume that
R is a domain.

First, we suppose that Ch(R) = p # 0. If there exists a non-zero periodic ideal
I, then the domain I is commutative by the well-known Jacobson theorem. As is well
known, a domain with a non-zero commutative ideal must itself be commutative, and
thus §* = C = R. Therefore, we may assume that R has no non-zero periodic ideal and
thus it has no non-zero algebraic ideal over GF(p). Then, it follows that S* = C by [4,
Theorem 1.6] and Lemma 2.2.

Next, suppose that Ch(R) = 0. Since S* is a domain satisfying (H), it is a commutative
subring of R by Theorem 1.1. Therefore, if R has the non-zero radical J, then $* = C
by [5, Remark 9]. On the other hand, if R is semiprimitive, then $* = C by Lemma 2.5.

3. The subsets $*, T* and T{, ,, in semiprime rings. In section 2, we saw that
S*(R) = C(R) if R is a reduced ring. However, if R is a semiprime ring, ( or a ring with
no non-zero nil ideal ) then S*(R), even if T(;, ,,(R) ( »k > 1), does not coincide with
C(R) in general. In this section, we shall study structure of semiprime rings R in which
S*(R), T*(R) and Ty, ;, ( nk > 1) do not coincide with C(R), respectively.
Throughout this section, for n > 0, R, will denote the ring of n x n-matrices over a
ring R. We call a field F periodic if it is an algebraic extension field over a finite field.

we have obtained the followings:

Theorem 3.1([15, Theorem 3.1]). If R is & semiprime ring satisfying (S)', then R is
a subdirect sum of rings each of which has one of the following types.
(i) a prime ring R’ with S*(R') = C(R').
(ii) a dense ring of linear transformations on a vector space V over F, where F is a

periodic field and dimp V > 1.



Theorem 3.2([15, Theorem 3.2]). If R is a prime ring, then one of the following
properties hold:
(i) T*(R) = C(R).

(ii) R is isomorphic to Fy, where F is a periodic field and t > 1 an integer

Theorem 3.3([15, Theorem 3.3]). Let n and k be positive integers. If R is a prime
ring, then one of the following properties hold:
(i) T (R) = C(R).
(ii) R is isomorphic to Fy, where F is a periodic field and 1 < t < kn.

If R is n-algebraic over a subring A ( see [6] ), then Cr(A) C Tn,1)(R). On account of
this, we can say that Theorem 3.3 improves [6, Theorem 3). Needless to say that Theorem
3.2 and Theorem 3.3 can be extended to the results for semiprime rings, respectively: If

R is a semiprime ring, then R is a subdirect sum of rings each of which is of type (i) or
(ii).
4. Structure of semiprime rings satisfying (H). In section 1, we saw that a reduced

ring satisfying (H) is commutative. However, a ring satisfying (H) with no non-zero nil

ideal need not be commutative. We begin this section by stating the following conjecture:

Conjecture 4.1. Let R be a ring with no non-zero nil ideal. If R satisfies (H), then
R is a subdirect sum of rings each of which has one of the following types.
(i) a commutative domain.
(ii) a dense ring of linear transformations on a vector space V over F, where F is a

periodic field and dimp V > 1.

We claim that if the answer of K&the conjecture ( i.e., a ring which has a non-zero
one-sided nil ideal contains a non-zero two-sided nil ideal ) is positive, then the answer
of our conjecture is also positive { see Theorem 4.2 ). We cannot answer the above
conjecture in the present paper, however, by making use of Theorem 1.1, we have proved
the following theorems with respect to rings satisfying (H), which includes a generalization

of [8, Theorem 3]:



Theorem 4.1([15, Theorem 4.1]). Let R be a ring with no non-zero nil ideal. If R is
a torsion ring satisfying (H), then R is a subdirect sum of rings each of which has one of
the following types.
(i) a commutative domain.
(ii) a dense ring of linear transformations on a vector space V over F, where F is a

periodic field and dimp V > 1.

Theorem 4.2([15, Theorem 4.2]). Let R be a ring with no non-zero nil right ideal. If
R satisfies (H), then R is a subdirect sum of rings each of which has one of the following
types.
(i) a commutative domain.
(ii) a dense ring of linear transformations on a vector space V over F, where F is a

periodic field and dimp V > 1.

Theorem 4.3([15, Theorem 4.3]). Suppose that R satisfies (S)’ and (H). f R is a
semiprime ring, then R is a subdirect sum of rings each of which has one of the foﬂow;ing
types.

(i) a commutative domain.
(ii) a dense ring of linear transformations on a vector space V over F, where F is a

periodic field and dimp V > 1.

Note that Theorem 4.2 generalizes [8, Theorem 3].
Next, we shall introduce the following two theorems with respect to rings satisfying

(H)Em) and (H)’;m'nlk), respectively.

Theorem 4.4([15, Theorem 4.4]). Let R be a semiprime ring, and m a positive integer.
If R satisfies (H);m), then R is a subdirect sum of rings each of which has one of the
following types.
(i) a commutative domain.

(ii) F;, where F is a periodic field and t > 1 an integer

Theorem 4.5([15, Theorem 4.5]). Let R be a prime ring, and m,n and k positive

integers. If R satisfies (H)',, , ), then R is of one of the following forms:

10



(i) 2 commutative domain.

(ii) Fy, where F is a periodic field and 1 < t < maz{kn,m}.
In Theorem 4.5, as k = 1 and m = n, it means [6, Corollary 5.3].

5. Structure of rings satisfying the conditions (H);) and (S). Given a finite field
K with a non-trivial automorphism o, we put M, (K) = {(g agx)) | a, BE K}.

Let f(X) be in XZ[X], and n a positive integer. We consider the following conditions:
(H)sy For each z, y € R, there exists k > 0 such that [f(z), f(y)]x =0.

(S) For each z,y € R, there exists f(X,Y) € Z(X,Y)}[X,Y]Z(X,Y) each of whose
monomial terms is of length > 3 such that [z,y] = f(=,y).
Q(n) Ifz,y€ R, and n[z,y] =0, then [z,y] =0.

In his paper [11], Kobayashi determined the structure of unital rings ( rings with unit
element 1) satisfying the identity [X",Y"] = 0 and Q(n). The condition (S) have been
introduced by Streb [18]. We should note that every unital ring satisfying Q(n) and the
identity [X™,Y™] = 0 satisfies (S). Recently, I{omatsu and Tominaga [14] investigated
the rings satisfying (S) with nil commutator ideals, in which they improved the main

result in [11] as follows:

Theorem A [14, Theorem 3.6]. Let R be a ring, and 0 < n € Z. Then the following
conditions are equivalent:
(1) R satisfies the identity [X — X™ Y — Y™] = 0 for some m > 0, and satisfies the
identity [X™,Y™] = 0.
(2) R satisfies (S) and the identity [X™,Y"] =0
(3) R is a subdirect sum of rings each of which has one of the following types:
(i) a commutative ring.

(ii) Mo (IC), where (|K| - 1)/(|K°| - 1) | n.

( In fact, Theorem A is stated for certain algebras more general than rings. )
In this section, we shall introduce two structure theorems which extend Theorem A to
rings satisfying the conditions (H)(;) and (S). If R contains the unit element 1, then we

can state the next:
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Theorem 5.1([16, Theorem 2.1]). Let f(X) be a comonic polynomial in XZ[X] with
f(1) #£ 0, and R a ring with 1. If R satisfies the conditions (H)(y), (S) and Q(f(1)), then
R is a subdirect sum of rings each of which has one of the following types:

(i) a commutative ring.

(i) Mo (K), where (Ch(K), f(1)) = 1, and |K|/]K°| < deg f(X).

In case that R does not always contain 1, we don’t know whether the above statement

is true or not. But we can state the following:

Theorem 5.2([16, Theorem 2.2]). Let f(X) be a comonic polynomial in X Z[X] such
that all the coefficients of f(X) are non-negative. If R satisfies the conditions (H)(y), (S)
and Q(f(1)!), then R is a subdirect sum of rings each of which has one of the following
types:

(i) a commutative ring.
(ii) Mq(K), where (Ch(K),f(1)}) = 1, (|X| - 1)/(|K°] - 1) f ()
and |K|/|K?| < deg f(X).

Theorem 5.1 and Theorem 5.2 generalize [11, Theorem) and Theorem A, respectively.
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PROCEEDINGS OF THE 26TH
SYMPOSIUM ON RING THEORY, 1993

STRUCTURE OF RINGS SATISFYING
CERTAIN CONDITIONS AND
COMMUTATIVITIY THEOREMS. II

Isao MOGAMI

0. Introduction . In [2], Y. Kobayashi defined the additive map ® of Z(X,Y)
to Z, and indicated that for f(X,Y) € Z(X,Y),®(f(X,Y)) is closely related with
the commutativity of rings with 1 satisfying the polynomial identity f(X,Y) = 0.

In [3], he turned his attention to the fact that &((XY)* — X"Y") = _n(n2— 1
n(nz— 1 -torsion free rings with 1 satisfying
the polynomial identity (XY)® — X"Y" = 0. Coincidentally, he proved the following
([3, Theorem]): Let R bearing with 1. f E(R)={n € Z| n > 0 and (zy)" =
z"y" for all z,y € R } contains integers ny,---,n, > 2 such that (nl(n+l, ,
n.(n, — 1)
T)

for

n > 1, and investigated the structure of

= 1 and some of n;’s is even, then R is commutative. In connection
with the above theorem, Y. Kobayashi and the present author respectively raised the

following conjectures:

Conjecture 0.1 ([4, Conjecture 1]).  Let R be a ring with 1. If E(R) contains
nl(nl - 1) n,.(n,- -

1 .
5 , 5 )-torsion free and

integers ny, --- ,n, > 2 such that R is (

some of n;’s is even, then R is commutative,

This note is derived from [14] .
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Conjecture 0.2 ([13, Conjecture (I)]). Let R be a ring with 1. If for each

. » 1
z,y € R, there exist integers n; > 2 ({ = 1, :-- ,r) such that (n1(n; ) B
n,(n,2 1)) = 1 and some of n;’s is even and such that (zy)™® = z"y" (i=1, --- | 7),

then R is commutative.

In [5] and [6], Y. Kobayashi gave partially affirmative answers to the above conjec-
tures. In §§2 and 4 of the present note, those results will be improved more precisely
and satisfactorily.

Meanwhile, J. Grosen [1] generalized some known commutativity theorems for a
ring with 1 and satisfying certain polynomial identities by assuming that the identities
hold merely for the élements of a certain subset of the ring rather than for all elements
of the ring. Almost all the results obtained in [1] have been improved and sharpened
in [10]. In §3 of the present note, we shall give some commutativity theorems for a ring
with 1 and satisfying polynomial identities of the form (XY)" — X"Y™ = 0 merely for
the elements of a certain subset of the ring, |

Recently, W. Streb [L5] gave a classification of non-commutative rings. H. Komatsu
and H. Tominaga applied the classification to the proof of some commutativity theorems,
in [8], [9], [10] and [11]. Several results obtaind in [9], [11] will play an essential role in

our subsequent study.

1. Preliminaries . Throughout the present note, R will represent a ring with
1. Let ny,ns,---,n, and k& be positive integers, and M a non-empty subset of R.
We use the following notations:

(n1, 2, -+ ,n,) = the greatest common divisor of ny,ny,---, and n,.

|E| = the cardinal number of a set E.

C = C(R) = the center of R .

D = D(R) = the commutator ideal of R.

N = N(R) = the set of all nilpotent elements in R.

J = J(R) = the Jacobson radical of R.

U = U(R) = the set of units in R.
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Q@ = the intersection of the set of non-units in R with the set of quasi-regular
elementsin R=(1+U)\U (2 NUJ).
As usual, for z,y € R, let [z,y] = zy ~ y=.
Z = the set of integers.
Z(X,Y) = the polynomial ring over Z in the non-commuting indeterminates
X and Y.
K=2Z{X,Y)[X,Y]Z(X,Y).
K, = the set of all f(X,Y) € K each of whose monomial terms is of length > &
(together with 0).
W = the set of all words in X and Y, namely products of factors each of which
is X or Y (together with 1).
As is well-known, K = K coincides with the kernel of the natural homomorphism
of Z{X,Y) onto Z[X,Y]. Let f(X,Y) =Y fi;(X,Y) be a polynomial in Z{X,Y),
where f;;(X,Y) is a homogeneous polynomial with degree i in X and degree j in Y.
Then we can easily see that f(X,Y) isin K if and only if for each {,j, the sum of the
coefficients of f;;(X,Y) equals zero.
Following [2], we denote by & the additive map of Z{X,Y) to Z defined as follows:
For each monic monomial X, --- X, (X; is either X or Y), ®(X;--- X;) is the number
of pairs (§,7) suchthat 1 <i<j<rand X; =X, X; =Y. We can easily see that,
for any f(X,Y) € Z{(X,Y), ®(f(X,Y)) equals the coefficient of XY occurring in
f(1+X,14Y). Now, let f(X,Y) € K. Then f(1+X,1+Y) € K, and so there exists
9(X,Y) € K3 such that f(1+ X,1+Y)=®&(f(X,Y))[X,Y]+9(X,Y).

Further, we put
k if k is even,
e(k) =
k-1 if k& is odd.

We consider the following conditions:
(S) For each z,y € R, there exists f(X,Y) € K3 such that [z,y] = f(z,¥).
Q(k) If z,y € R and k[z,y] = 0 then [z,y] =0.



Definition 1.0. A ring is called a faclorsubring of R if it is a factor ring

(homomorphic image) of a subring of R.

By [9, Theorem 1.2, Proposition 1.6 and Proposition 1.7], we obtain the next

theorem which plays an important role in our study.

Theorem 1.1. Let R be a non-commutative ring with 1. Then there exists a

factorsubring of R which is of type a)', b), c), d)! ore)':
a)! (GF(P) GF (p)

0 GF(p) ) , where p a prime number.

b) M,(K)= {(‘[:; agx)) | a,B € K}, where K is a finite field with a non-

trivial automorphism o.

¢) A non-commutative division ring.

d)! A domain which is generated by 1 and a simple radical subring.

e)! Aring B = {l,z,y) with 1 such that D(B) is the heart of B and z,y €
Ann g(D(B)).

By [9, Proposition 1.3 (2), Lemma 1.4 (1) and (4), and Proposition 1.7], we obtain

Lemma 1.2, Let R be aring with 1. If 2y # 0 = yz for some z,y € R, then

there exists a factorsubring of R which is of type a)! or e)'.

2. On Conjecture 0.1 . Given z,y € R, we denote by E(z,y) the set of
integers n > 1 such that (zy)* = z"y"; and E(z, y) = E(z,y)NE(y, z). For a positive
integer n, an element z of a module G is said to be n-torsion free if the order of z is
infinite or relatively prime to n. Obviously, all the elements of G are n-torsion free if
and only if nz =0 implies 2 =0 for any z € G.

The purpose of this section is to give a complete answer to Conjecture 0.1. In [5],

Y. Kobayashi proved the following theorem which is a partial answer to Conjecture 0.1.
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Theorem A. Let R be a ring with 1. If for any z,y € R, E(z,y] contains

(at least one) even integers ny,--- ,n, and odd integers ny4p,--- ,n, (r > 8 > 1)

such that (ny,---,n, , ny4y —1,-++ ,n, — 1) is 2 (or a multiple of 4 ) and [z,y] is
n(ng —1 ,. -1 ) . .

(M n(n,—]) -torsion free, then R is commutative.

2 o 2
In connection with the above theorem, in [6], he determined the structure of
n(n—1)

2
a positive even integer. Recently, this result has been generalized by H. Komatsu and

-torsion free rings with 1 satisfying the identity (zy)* = z"y™, when n is

H. Tominaga (see [11, Theorem 2.12]). The main theorems of this section can be stated

as follows:

Theorem 2.1. Let R be a ring with 1. Suppose that, for each z,y € R,
E(z,y) contains ny,--- ,n, such that (e(n,),-- ve(n,)) =0 (mod 4) and [z,y] is

-1 - )
(%, e M)-torsion free. Then R is commutative.

Theorem 2.2. Let R be a ring with 1, and n a positive integer such that

n =2 (mod 4). Then the following conditions are equivalent:

1) R satisfies Q(M) and the identity (XY)* — X"Y" =0.
2) R satisfies Q(n(nT-l-l)) and the identity (XY )" =Y"X" =0.
3) R satisfies Q(M) and the identity (XY)"+! — Xn+lyn+l =0,

4) For each z,y € R, E(x,y) contains n,,--- ,n, and my,---,m, such that
(e(n1),-+- ,e(ny)) =n and [z,y] is (W, ,M) -torsion free.
5) R is a subdirect sum of rings each of which has one of the following types:
i) A commutative ring.
ii) M,(K), where K is a finite field of characteristic 2 with a non-trivial automor-
n

phism o such that (|K|—-1)/(|K?| - 1) divides 3 Where, K = {a € K|o(a) = a}.

Our theorems are derived by the use of next lemma together with Lemmas 1.2, [9,

Lemma 2.1, Theorem 3.6] and [11, Theorem 2.12(II)].
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Lemma 2.3. Let R be a ring with 1. Suppose that, for each z,y € R, E(z,y)

. -1 (m, — 1 .
contains my,-++ ,m, such that [2,y] is (ml(m21 ), . m (m2 ))-torsxon free.
Then there hold the following:

(1) DCN.

(2) 2[N,R]=0, namely 2N C C.

(3) R satisfies (S).

(4) R is completely reflexive, namely zy = 0 implies yz =0 for any z,y € R.
(5) LeteaeN,andz€R.Ifn¢ EQ1 +a,z) then [a,z5™] = 0.

3. Commutativity theorems for rings satisfying the polynomial identi-
ties of the form (XY)” —X"Y" = 0 on certain subsets. In this section, we shall
generalize some known commutativity theorems for a ring R satisfying the polynomial
identities of the form (XY)* — X"Y™ = 0 by assuming that the identities hold merely
for the elements of a certain subset of R rather than for all elements of R.

Let k£ be a positive integer, and A a subset of R. We consider the following
conditions:
Py(k,A)  (zy)* = z*y* for all z,y € A.
P3(k,A)  (zy)* = y*=* for all z,y € A.

The statements in the following theorem are included in [12, Theorem 2] and [16,

Theorem 4], respectively.

Theorem B. Suppose that a ring R with 1 satisfies Po(k,R) (k = n,
n+2,n+4).
(1). If n is even, then R is commutative.

(2) Ifz* €C forall z in R, then R is commutative.

More recently, H. Komatsu and H. Tominaga proved [10, Theorems 2.4 and 2.7]
which encompass several results of J. Grosen [1]. From [10, Theorems 2.4 and 2.7], we

readily obtain
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Theorem C. (1) Suppose that a ring R with 1 satisfies Po(k, R\ Q) (k=
m,m+ 1,n,n+1). If R satisfies Q((m,n)), then R is commutative.

(2) Suppose that a ring R with 1 satisfies Po(n+ 1, R\ Q) (or P5(n,R\ Q)).
If R satisfies Q(n(n + 1)), then R is commutative.

Obviously, Theorem C (2) includes [7, Theorem 1 (b) and Theorem 2 (b)]. The

first main theorem of this section is stated as follows:

Theorem 3.1. Let R be a ring with 1. Let ny,--- ,n, be positive integers
n(n —1) n.(n, — 1) . )

such that (T, ,T) = 1. If R satisfies Py(n;, R\J) (i=1,---,r),

then R is commutative.

Theorem 3.1 is deduced by the use of following two lemmas together with [9, Lemma
2.1] and [11, Proposition 2.9(2), Lemma 2.10(2)].

Lemma 3.2. Let R bearing with 1. Let k, m, n be non-negative integers, and
J: R— R afunction such that f(z) = f(z+1) forall z € R. If f(z)(z+k)™z" =0
(or z™(z + k)™ f(z) = 0) for all x € R, then (k + 1)™" f(z) = 0. In particular, if
f(z)z"® =0 (or 2" f(z) = 0) for all x € R, then f(z)=0.

Lemma 3.3. Let R be a ring with 1. Suppose that R satisfies Po(n, R\Q@)
(n > 1). Then, for each u € U,u""~Y) € C, and D C N. In particular, if R satisfies
Po(k,R\Q) (k=n (>1),n+2,n+4), then u> € C foreach u€ U.

Corollary 3.4. Let R be aring with 1, and n a positive integer. If R satisfies
Po(k,R\J) (k=n,n+2,n+4), then R is commutative.

Theorem 3.1’. Let R be a ring with 1. Let n,,--- ,n, be positive integers

such that (nl(n;— 1),... ’n,.(n;— 1)) = 1. If R satisfies Py(n;, R\N) (i=1,---,r),
then R is commutative.
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Corollary 3.4'. Let R be a ring with 1, and n a positive integer. If R satisfies
Po(k,R\N) (k=n,n+2,n+4), then R is commutative.

Corollary 3.5. Let R be a ring with 1.

m(m—1) n,.(n,.—l))
2 7 2
=1 such that R satisfies Py(n;,R) (i=1,---,r), then R is commutative.

(1)  If there exist positive integers ny,--- ,n, with (

(2) If there exist positive integers m, n with (m,n) = 1 or 2 such that R
satisfies Po(k,R) (k= m,m + 1,n,n + 1), then R is commutative.
(3) If there exists a positive integer n such that R satisfies Po(k,R) (k=n,n+

2,n+4), then R is commutative .

Needless to say, Theorem B is included in Corollary 3.5 (3).

Now, by making use of Corollary 3.5, we obtain the following two theorems, which

are related with Theorem C.

Theorem 3.6. Let R be a ring with 1. Suppose that R satisfies Py(k, R\Q)
(k=n,n+2,n+4).

(1) If n is even, then R is commutative.

(2) If 2[z,a] = 0 implies [z,a] = 0 for each a € Q and = € R, then R is

commutative.

Theorem 3.7. Let R be a ring with 1. Suppose that R satisfies Py (k, R\Q)
(k=n,n+2,n+4). Then R is commutative.

4. On Conjecture 0.2. In [5, Theorem 2], Y. Kobayashi proved the following

theorem which gives an affirmative answer to Conjecture 0.2 in a somewhat weak form.

Theorem D. Let R be a ring with 1. If for each z,y € R, E(z,y) contains
nn—1)  n.(n, 1)

2 T 2

) = 1 and some of n;’s is

integers ny,--- ,n, such that (

even, then R is commutative.
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In this section, we give a generaliation of Theorem D. We consider the following

conditions:

(*) For each z,y € R, there exist integers k¥ > 0, n > 1 and words w(z,y),
w'(z,y) € W such that

w(z, y){(zy)" - 2"y"}w'(z, y) = 0= y*{(y2)" - y"z"}=*.

(§) For each z,y € R, there exist non-negative integers ry < rp < r3 < ry < 715

A A

rg < r7 < rg with 1 < rg, positive integers n; (1 < 1 < r3), m; (r2 + 1

i<rg), i (ra+1<i<rg), and words wi(z,y), wi(z,y) e W (1 <i<rg)

such that
(#o ("1(";'*' 1)"“ ' "':("; = 1)’mr:+1nr2+1, T M Ry,

1M 10 1, ;lramranra) =1,
M wilz, y){(zy)™ =™z }wi(z,y) =0 (1gign),
t)2 wi(z, 9){(yz)" — =y }wi(z,y) =0 (m+1<isy),
) wi(z, y){@E™y™ )™ - (™™ ) twi(z,y) =0 (r2+1<i<r3),
#)a wilz,y)[z™,y™ |wi(z,y) =0 (ra+1<i <),
(B)s  wi(z,y)l", (™ y™ )" wi(z,y) = 0 (ra+1< i< 5),
(Be  wilz, Ylah, (y™ 2™ )™ wi(z,y) = 0 (rs+1<i< ),
#)7 wi(z, 9", (=™ ™) wi(z,y) =0 (e +1<i< ),
(B)s  wi(z, ", (y™ie™)wi(e,y) =0 (rr+1<i<rg).

Now, the main theorem of this section is stated as follows:

Theorem 4.1. Let R be a ring with 1. If R satisfies (») and ({), then R is

commutative.

According to Theorem 1.1, in order to complete the proof of Theorem 4.1, it suffices

to prove the following two lemmas.

Lemma 4.2. If R is of type a)!, c) ord)!, then R dose not satisfy (x).
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Lemma 4.3. If R isof typeb) ore)!, then R dose not satisfy (§).

Noting that (zy)" — 2"y = z{(yz)"~! — z"~1y"~'}y for any positive integer n,

we obtain the next as an important special case of Theorem 4.1.

Corollary 4.4. Let R be a ring with 1. Suppose that for each z,y € R, there

exist positive integers r < s and n; > 1 (i =1,--+,8) such that
n(ny —1) n,(n, — 1) —
1) ( 2 H ] 2 ) - 1’

2) (3y)"‘ = z"iyﬂi (i = 1) oot 1r)l
3) (yz)* =y™z™ (i=r,---,8).

Then R is commutative.

Needless to say, Corollary 3.5 is a direct consequence of Corollary 4.4.
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REMARKS ON MODULAR GROUP ALGEBRAS
OF FINITE GROUPS IN CHARACTERISTIC 3 *!

Shigeo KOSHITANI

1. Introduction. Here we discuss on modules over the group algebra FG of a
finite group G over a field F of prime characteristic p. We mean finitely generated
right FG-modules just by FG-modules. In modular representation theory of finite
groups, it is of course important to study structure of indecomposable FG-modules,
in particular, projective indecomposable modules (p.i.m.’s) over FG since any
indecomposable FG-module is a factor moudule of a direct sum of finite number
of p.i.m.’s over F'G. So, let’s begin to consider the most important p.i.m., first of
all. That is, the projective cover P = P(Fg) of the trivial #G-module Fg, where

Fg = F( ) g) C FG and this becomes a one-dimensional FG-module on which all
g€G
elements in G act trivially. In this short note we discuss mainly on this particular

p.i.m. P. We need a little bit more notation, say, J and j(M) for an FG-module
M. Namely, J = J(FG) is the Jacobson radical of FG, and the Loewy length
(M) of M is the least positive integer j such that MJ/ = 0.

2. The Loewy length j(P) for P = P(Fg). In this section we discuss on the
Loewy length j(P) of our special p.i.m. P = P(Fg).

(2.1) Fact. If j(P) £ 2, then the structure of G is completely determined by
theorems of Maschke and D.A.R. Wallace.

The next step is of course the case j(P) = 3. Namely,

*The final and detailed version of this note will presumably be submitted for publication
elsewhere.

tA part of this note was announced at the meeting "Darstellungstheorie endlicher Gruppen”
at the Mathematisches Forschungsinstitut, Oberwolfach, during 27 Sept. — 3 Oct. 1992.



(2.2) Fact. There are several nice results on the structure of G under the
condition j(P) = 3. For details, see original beautiful papers of Erdmann [1] and
Okuyama [4]. In particular, Okuyama proved that the condition j{P) = 3 implies
that Sylow 2-subgroups of G are dihedral (can be elementary abelian of order 4) in
the case p = 2 (see Okuyama [4, Theorem 2J).

Because of (2.2) it seems natural to give the following question.

(2.3) Question. For p odd, what can we say on the structure of G under the

condition j(P) = 3?

Now, let’s look at a higher step, that is to say, the case j(P) = 4. In
author’s point of view the condition j(P) = 4 seems stronger (or more mysterious)
than the condition j(P) = 3. The reason for it comes from the next elementary

observations.

(2.4) Observation (Dade-Janusz-Kupisch, see [1, VII]). If G has cyclic Sylow
p-subgroups and if j(P) =4, then p =2 (and G is a 2-nilpotent group with cyclic
Sylow 2-subgroups of order 4).

(2.5) Observation (Ninomiya [3] and Willems [5]). If G is p-solvable and if
J(P) =4, then p =2 (hence the structure of G is almost determined).

The author is afraid of taking readers to a wrong way. It seems, however, natural
(or reasonable) to give the next question (he has no confidence to call it just

a conjecture).

(2.6) Question (Koshitani). Is it true that the condition j(P) = 4 would
imply p=2?

As a matter of fact we have another partial afirmative answer to the question

(2.6). Namely,
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(2.7) Observation (Koshitani) . If p = 3 and if G has elementary abelian
Sylow 3-subgroups of order 9, then j(P) # 4 (actually, it holds even that j(P) 2 5
and this is the best possible).

The author should confess that the above observation (2.7) deeply is due to,
so-called, the classification of finite simple groups which almost nobody has been

able to understand its proof perfectly yet, though.

Acknowledgement. The author would like to thank Professor S. Yoshiara who

kindly taught him how to use the classification of finite simple groups [6].
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PROCEEDINGS OF THE 26TH
SYMPOSIUM ON RING THEORY, 1993

Artinian rings related to almost relative projectivity
Manabu HARADA

This is a summary of the author’s paper [4] and [7]. In this
paper we always assume that R is a (two-sided) artinian ring and
every module is a finitely generated and unitary right R-module.

1. Preliminary We shall recall the definition of almost
relative projectivity.
Let M and N be R-modules. Consider a diagram
M
lh
v
N - N/K->0,
where h is a homomorphism, v is the natural epimorphism and K is
a submodule of N.
We consider the two conditions:1) there exists g: M — N such that
v; = h, 2) there exist a non-zero direct summand N’ of N and
B:N’-» M such that hh = VIN'.
If 1) holds for any h and any K in the above diagram, then we say
that M is N-projective {(1]. If 1) or 2) holds, we say that M is

almost N-projective [3].

The final detailed version of the last part of this paper has

been submitted to Osaka Journal of Mathematics for publication.
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If a module P is always Q-projective for any R-module Q, then
P is projective. Similarly we call a module P’ is almost
projective if P' is always almost Q’-projective for any Q' [6].
Further if the Jacobson radical J of R is projective, we call R
is hereditary. Similarly we call R is almost right hereditary if

J is almost projective as a right R-module [5].
2. Hereditary rings with J2 =0

We have studied the following several conditions in [(4]). Let
M and N be R-mdoules.
(1) If M is N-projective then M' is N-projective for any
submodule M’ of M.
In (1) we put
(1’) M = eR/A and N = fR/B, where e, f are primitive idempotents
in R and A € eR and B C fR.
In (1) we assume A = 0 and B = 0, then
(2) if every submodule C in eR is fR-projective.
We can easily see that (2) is equivalent to R being hereditary.

Relating this fact we have

Theorem 1 ([2] and [4]). Let R be artinian. Then the
following are equivalent:
1) R is a hereditary ring with J2 = 0.

2) (1) holds for any M and N.
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3) (1’) holds for any eR/A and fR/B.
(4) Any submodule of quasi-projective module is

again quasi-projective,

In (1') we assume e = f, i.e.,
(3) Tf eR/A is eR/B-projective, then C/A is always eR/B-
projective.
If (3) holds, then eJe = 0 for any primitive idempotenl e [4].
However the converse is not true. Only in hereditary algebras
over an algebraically closed field we have given the structure
of R with (3) |4]. We do not know a characterization of R with
(3).
Next we study the conditions which are given by replacing
projectivity by almost projectivity.
(4) If M is almost N-projective, then M' is always almost N-
projective,
We note that if (1') holds, i.e., M and N are local in (1),
then (1) holds for any modules M’ and N’. However this fact is

not true in the case (4). We obtain the following results for

{(4).

Theorem 2 ([4]). (4) holds when M and N are local if

and only if J2 = o.

Theorem 3 ([7]1). The following are equivalent:

1) (4) holds when M is local.
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2) (4) holds when M is a direct sum of local modules.
3) R is a right almost hereditary ring with JZ = 0.
We do not know whether 3) in the above implies that (4) holds

for any M and N or not.

3. Almost hereditary rings with J3 =0

We shall study a little stronger condition than (4).
(5) If M is N-projective, then M' is almost N-projective for
any submodule M’ of M.
We can easily see that if (5) holds for local modules M and N,
then every submodule of indecomposable quasi-~projective module
is again quasi-projective, however tLhe converse is not true,
cf. Theorem 1.
We can show that if (5) holds for local modules M and N,
then J3 = 0 and if er # 0, then
(#) eJ=~fR® fRO..-® RO S| 6.0 S,

where the fiR are uniserial and projective and the Sj are

simple.
We put eJ = Pl @& P, $--6 P @ 5, &-- , where Py z.fllR &,
Py > f1oR® -.. , P » f R@®- -, and fin # fppR for i # h.

Then we obtain

Theorem 4 ([7]). Let R be artinian. Then (5) holds for

3

local modules M and N if and only if i) J° = 0 and eJ has the
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decomposition (#), ii) fR/fJ is never isomorphic to any simple
component of Soc(R), iii) if eR O fR and e'R > f'R in (#) and
eR ;£ e'R, then fR # 'R and iv) for simple submodule S in P, &

P2 @...0 P, eRes = 2 @ Soc(ij), where {jj) c {1,2,--,k}.

Theorem 5 ([(7]). Let R be as above. Then {(5) holds for
local modules M and direct sums of local modules N if and only
if i) ~ iv) hold and v) the projective cover of Soc(R) is a

direct sum of uniserial modules.
Finally we obtain

Theorem 6 ([7]). (5) holds for local modules M and any R-
modules N if and only if i) ~ v) hold and vi) for any simple
submodule § in fR C eR in (%) and S’ in gR,if #: S — S’, then 8
is extensible to an element in HomR(fR.gH) or H'I is extensible
to an element in HomR(gR,fR) and R is right almosl hereditary,

where g is any primitive idempotent.

We note that the last condition vi) is very closed to a

fact that R is left QF-2. Hence we obtain

Corollary. Assume that R is left QF-2. Then (5) holds for
local modules M and N if and only if J3 = 0 and eJ has the
decomposition (#) if er # 0. (5) holds for local modules M and

any N if and only if eJ has lLhe above property and R is right
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almost hereditary.

We believe that if the condition in Theorem 6 holds then
{5) holds for any modules M and N.

Let L 2 K be fields and put

K
0
R = 0
0

where e jeq, = egqezy = 0 and P = L, K or 0.

K

COoOR=A

K
K 0
K P
0 K4
[f P =L, Then R satisfies (5) for local modules M and N, but
not when N is a direct sum of local modules. 1f P = K, then (5)
holds for local modules M and direct sums of local modules N,
but not for for any R-module N. If F = 0, (5) holds for local

modules M and any modules N.
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PROCEEDINGS OF THE 26TH
SYMPOSIUM ON RING THEORY, 1993

ON A GENERALIZATION OF FREE
CALCULUS

Shigeru KOBAYASHI and Manabu SANAMI

In (1], R.H.Fox has introduced the derivation over free groups and he calucu-
lated the derivative over free groups. In this paper, we gencralize the notion of
derivation and expand the free caluculus by using our derivation . Farthermore
we examine @ group invariant by using free calculus. The detailed version of
this paper will appear in [2].

1 Generalization of derivation

Let Z be a ring of integer and G be a finitely presented group. We denote
End(G) to the set of endomorphism of G. We can assume End(G) is contained
in Endg(G).

Definition 1.1

For any a, 8 € End(G), we define (o, 8) - derivation D as follows.
(1) D is & Z -linear endomorphism of Z(G).

(2) D(gh) = a(g)D(h) + D(g)B(k) forany g, h€QG.

Remark 1.2

(1) If @ = identity and 8 = 1, then we have the Fox's derivation.

(2) For any a, 8 € End(G), there exists (o, 8) - derivation D. For example, we
can put D(z) = a(z) -~ B(z), for any =z € Z(G).

For free groups of finite rank, we have the following propasition.

Proposition 1.3

Let F be a free group with free basis z1, 2, -+, 4. Then for any a, 8 € End(G),
and for any dy,d;,---,d, € F, there exists unique (e, 8) - derivation D such
that D(=;) = d;.

The final version of this paper will be submitted for publication elsewhere
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We will use the notation L— to denote the derivation which satisfy ga’—(z.)

= §;; (IKronecker’ delta). Let G' be a finitely presented group and H be a group
such that there exist onto homo » from G to H.

Definition 1.4
Let (G, H,7) be as above. If for any a € End(H), there exist &@ € End(G) such
that o 09 = no &, we say & is a pull back of a.

In general, @ may not exist. However if G is a free group, there exists a pull
back.

Proposition 1.5
Let F be a free group of finite rank and H be a group with onto homo ¢ from
F to H. Then for any a € End(H), there exists a pull back &@ € End(F).

Since G is finitely presented, we can write G = {zy,Za,*++, 23 | £1,72,*~, T}y
where £ = {z1,22,---,7a} i3 a set of generator of G and r = {r1,72,**,Tm}
is a set of relation of G. Let F be a free group with free basis £ and = be the
represention map from F to G. Then no 7 is an onto homo from F to H. We
fix a, 8 € End(H). By proposition 1.5, we have a pull back &b e End(F), and

by proposition 1.3, we get (&, J) - derivation %) on Z[F).

Definition 1.6

Jos(G Hymyiz | 1) ¥ (nor a:, ))-=1 S L€ M. w(Z(H]), where
7, % 18 a ring homo extended by 5, x mpect'lvély

Ja,8(+++) does not depend the choice of &, 8.

Let G, H,9,anda, 8 us above. If G has two differnt representation G =
(zlv"‘lzn I fll"‘v'm) = (ylo"')yp I "h"‘l’q)l then by an dementary ma-~
trix transformation (Tietze' transformation), Ja o(G, H,m; 2 | 7) is equivalent
to Ja,g(G, H,niy | s). We denote the equivalence class of J, (G, H, ;x| r) to
Aa.ﬂ(Gn H' 7!)-

D ition 1.8
Aas(G, H) ¥ {A,,4(G, H,n) | n € Hom(G, H)}

Theorem 1.9
If G, is isomorphic to Gy, then A, 5(G1, H) = A, 5(G2, H).
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2 Group Invariant

In this section, by using free calculus, we examine a group invariant. Let M, ((2)
be the set of s x ¢ matrices over Z. Then we define M(Z) = v, (M, ((Z). Note
that M(Z) have a ring structure. Let H be a group and Py be the permu-
tation group. Note that Py is a subset of My(Z) and as a group, Py is
isomorphic to N th symmetric group. We fix a homomorphism ¢ from H to
Py. Note that if R = My(Z), then M, (R) = M,n,n(Z) as a set. Thus
Z{H) = Z|Pn] € Z[Mn(Z)). Now let G be a finitely presented group and
be a group, and assume that there exists an onto homo 7 from G to H. In
section 1, we have defined Jo (G, H, 552 | r). Now §(J,,s(G, H,m;z | ) is in
M(Z), where ¢ ia the ring homo extended by ¢. If G has another representa-
tion, then clearly, 9(Jo 5(G, H,n;:-) are equivalent. We denote A4 4(G, H,7)
to the equivalence class of the matrix. Let A be a s x t(t > s) matrix over Z.
Then we define Ex(A) = the ideal of Z generated by (t — k) minors of A, where
k=1,2---. Note that Ex(A) = 0ilt—-k> s, and Ex(A)=Zift -k < 0.
Since 7 is PID, Ex(A) = (es) for some e; € 2.

Proposition 2.1

Let A be a s x ¢ matrix over Z. Then
(1) ex 20

(2) exs1 ) s

(3) ex =1 for sufficiently large k.

We can apply this to the case A = A, 5(G, H,1).
Let eu,ﬂ¢(G’ Hr 77) = c(Au,ﬂ(Gv I{I 7’))'
Definjtion 2.2
BapelG H) Y {ea,30(G, H) | n € Hom(G, H)}.

Now we have the folowing.

Theorem 2.3
I Gl 2 Ga, then A,,mp(Gl, H) = A,,pqo(Gz, II).

We shall give an examlpe to illustrate our invariant.

Example

Let ¢ a be positive integer and p be a prime number. Consider that G =
Gorg ={z,y]| 27 = y?). Weset H = Z/pZ =< t >, the cyclic group of order
P Let T = (bin15)icy,.. .pij=lp D€ an element of p th permutation group
P, where we assume that p+1 = 1. We define a group homo ¢ from Z/pZ
to Py as ¢(1) = T. Clearly Hom(G, 4,2/pZ) = m |k =0,---,p— 1, where
m(z) = t,m(y) = 1. Assume that a = identity and 8 = 1. Now (a;- Oy) =

(1+z+-+2P = (L+y+---+3Y)). So Jop(Gpg: Z/pZ,miz | 7) =
(T4+t+--+ 1771, —q). Hence ¢(Ja,8(Gpg» 2/PZ, miz | t) = (Bp+ T+ -+ +



p-l'-qu)- Now ea.ﬂP(G.H) = ‘0‘*'"‘+0,qP-quP-2"'°lq'li 1.'") P___“_‘

?
elp. g}, so we have A, 50(G, H) = elp, g]. ‘
Inparticular, if ¢,/ are positive integer, and p is a prime number such that
(r.9) = (p,g?) = 1, then g # gt implies G g ¥ Gp o1
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SYMPOSIUM ON RING THEORY, 1993

Resolutions of determinantal ideals— A
Counterexample on Symmetric Matrices*

Mrtsuyasu HASHIMOTO

Abstract
This note is a survey on the problem of minimal free resolutions of determinantal
ideals of generic symmetric matrices, with emphasis on new counterexamples obtained
by J. Andersen and the author.

1 The problem

Let A be a noetherian ring, I an ideal of A, and M a finitely generated A-module. We
define the I-depth of M to be min{i | Ext,(A/I, M) # 0} and denote it by depth(I, M).
If A is a local ring with the maximal ideal m, then depth(m, M) is sometimes denoted
by depth M. In this case, we have depth M < dim M for M # 0, where dim M is the Kurll
dimension of A/ anng M. We say that M is Cohen-Macaulay when the equality holds, or
M = 0. We say that the local ring A is Cohen-Macaulay when so is A as an A-module.
A noetherian ring (which may not be local) A is said to be Cohen-Macaulay when its
localization at any maximal ideal is Cohen-Macaulay local.
Cohen-Macaulay property is one of the most important notion in the modern commuta-
tive ring theory.
Lemma 1.1 Let A be a d-dimensional graded K -algebra (K a field) generated by finite
degree one elements. Then, the following hold.
1 A is Cohen-Macaulay if and only if depth(A4, A) = d, where Ay is the ideal of A
consisting of all degree positive elements.

2 (K is assumed to be infinite) Let 0y,...,04 be degree one elements such that A is a
finite module over K[0] = K(0,,...,04] C A (such 0,,...,04 do ezist). Then, A is
Cohen-Macaulay if and only if A is a free K[0]-module (hence, this condition does
not depend on the choice of 0,,...,04).

3 Letay,...,a, be the degree one generator of A as a K-algebra so that the map
S =K[zy,...,z,) = Klay,...,a; ] = A (z:~ a;)

is a surjective map of graded K -algebras. Then, A is Cohen-Macaulay if and only if
pdg A = r — d, where pd denoles the projective dimension.

* A detailed version of this paper will be submitted for publication elsewhere.



Gorenstein property is also important homological property. A noetherian local ring A
is said to be Gorenstein when its self-injective dimension is finite. A noetherian ring is said
to be Gorenstein when its localization at any maximal ideal is Gorenstein. Any Gorenstein
ring is Cohen-Macaulay, but the converse is not true in general.

Lemma 1.2 Let A be a d-dimensional Cohen-Macaulay graded K -algebra (K a field) gen-
erated by finite degree one elements. Then, the following hold.

1 A is Gorenstein if and only if Ext%(A/A+, A) = K.

2 Let F4(t) = Liso(dimg At Then, (1 — t)*F4(t) is a polynomial in t, say, ho + kit +
oo hyt* (hy #0). If A is Gorenstein, then hy, = 1. The converse is lrue when A is
an integral domain.

3 Let ay,...,a, be degrec-one generators of A, and consider A as a module over S =
K[z1,...,z.). Then, the following are equivalent.

a A is Gorenstein.
b Ext9(A,S) is cyclic as an S-module.
b’ Ext54(A,S5) = A as an S-module.

For a graded K-algebra A, a graded A-module M is said to be free when M is a direct
sum of modules of the form A(Z), where A(#) is simply A as an A-module, and the grading
is given by A(:); = Ai4;. Clearly, a free module is projective in the category of graded
A-modules. Assume that A is generated by finite elements of positive degree. For a finitely
generated graded A-module M and its subset S = {m,,...,m,}, S generates M if and
only if the image of S generates M/A, M (an analogue of Nakayama's lemma). So, S is a
set of minimal generators if and only if its image in M/ALM is a K-basis.

Let R be a commutative ring with unity. For a matrix (a;;) € Mat,, »(R) with coefficients
in R and a positive integer ¢, we define the determinantal ideal I,((a; ;)) of the matrix (a; ;)
to be the ideal of R generated by all ¢-minors of (a;;).

There has been much interest in determinantal ideals and the varieties defined by them
in commutative ring theory and algebraic geometry.

Especially, the determinantal ideal of the generic matriz (y:;) (y:; are independent vari-
ables) and the determinantal ideal of the generic symmelric matriz (explained below),
which is the central object in this note, have been studied by many authors.

Consider the polynomial ring S = R[z;;li<icj<n Over R, where n is a positive integer.
With letting z;; = z;, we can form a ‘generic symmetric matrix’ (z;;). We set I, =
IL(zi;)(C S). With letting each z;; of degree one, S is a graded R-algebra, and I, is a
homogeneous ideal generated by its degree ¢-component.

Note that S is the coordinate ring of the affine space X = Sym,(R), the space of all
n X n symmetric matrices with coefficients in R. The quotient S/I, corresponds to the set
Y, of all symmetric matrices whose rank is smaller than ¢ (because the rank of a matrix is
smaller than ¢ if and only if all of its -minors vanish).
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When R is a field, it is known that S/I, is a Cohen-Macaulay normal domain of dimension
n(n+1)/2—(n—1+1)(n—1+2)/2[12]. It is Gorenstein if and only if n — ¢ is even (see
e.g., [10, Remark 6.3)).

Our main problem is the following.

Problem 1.3 1 Let R be an arbitrary ring. Construct a graded minimal free resolution
of §/1I; as an S-module.

2 Let R = K be a field. Calculate the i*" Betti number SR = dimg Tor?(S/1,,S/S,) for
each i, where S+ = I] = (I;J) . 8.

Here, a graded S-complex (i.e., a chain complex in the category of graded S-modules)
F:---—Dﬂﬂbﬂ_l—b---—bpo—bo

is said to be a free resolution of a graded S-module M when each F; is free, Hi(F) = 0
(¢ > 0) and Ho(F) = M. It is called minimal when the boundary maps of S/Sy ® F are
all zero. A graded minimal free resolution is unique up to isomorphism. It exists when the
base ring R is a field.

It is known that S/I, is free as an R-module (e.g., [10]) so that Tor?(M, S/I,) = 0 for
{ > 0 and any R-module M. Hence, if F is a projective resolution of S/I; over the base
ring R, and if R' is an R-algebra, then R' ®g F is a projective resolution of R' g S/I,. If
F is graded minimal free, then so is R’ @& S/I;. So, if 1 of the problem is solved for the
ring of integers Z, then 1 is solved for any R, because we can get the resolution by base
change R®z7.

Let F be a graded minimal free resolution of S/I,. Then, H;(S/S+ ®sF) = S/S4 ® F;
is an R-free module, and we have

0o > rankg Tor?(S/Sy, S/1,) = ranks F;.

Note that the right hand side is invariant under the base change. In particular, for any
R-algebra K which is a field, we have ¥ = ranks F;. Thus, the problem 2 is easier than
1 (for example, if 1 is solved for any field, then 2 is completely solved).

Assume that R is a field. Since S/I, is Cohen-Macaulay of dimension dimS — (n — ¢ +
2)(n—t+1)/2, we have pdg S/I; = (n—t+2)(n—1+1)/2. Weset h = (n—t+2)(n—t+1)/2.
Then, we have f} # 0 and 87 = 0 for i > k. The ring S/I, is Gorenstein if and only if
Brn =1 by Lemma 1.2. Let F be a graded minimal free resolution of S/I;. Then, we have

H,(Homg(F,S)) = Ext5'(S/1,,8) =0

unless i = ~k by Lemma 1.1, since S/I; is Cohen-Macaulay of codimension k. So the
complex Homg(F, S)[—A] ([ ] denotes the shift of the degree as a chain complex) is a min-
imal free resolution of the S-module Ext%(S/I,,S). When S/I, is Gorenstein, we have
Ext%(S/1,,S) = S/I,. This shows that Homg(F,S)[—k] is a graded minimal free res-
olution of S/I; (the grading as a graded S-module may be different, so we should say
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Homg(F, S)(a)[h] is a graded minimal free resolution of S/I, for some a € Z). This shows
that

F 2 Homg(F, S)[]i(a) = Homs(Fy_, S)(a),
and we have f; = fr_;.

Why is the problem a problem? First, constructing a graded minimal free resolution of
S/I as an S-module (for a homogeneous polynomial ring § = K[z,,...,2.| over a field
K and its homogeneous ideal I) has been considered as an ultimate aim of homological
study of the algebra S/I—knowing a minimal free resolution yields ample information
on the ring in question. For example, S/I is Cohen-Macaulay if and only if £i(S/I) =
0 for i > dimS — dimS/I. 1t is Gorenstein if and only if it is Cohen-Macaulay and
Baim s-dims/1(S/1) = 1. So the Betti numbers f; of an algebra contain a lot of information of
the algebra (however, nowadays the progress of the theory of commutative algebra provides
us a lot of tools for studying important homological properties (such as Cohen-Macaulay
property) of commutative algebras without constructing a resolution).

Secondly, the theory of the resolution of determinantal ideals is an interaction between
the theory of commutative algebra and the representation theory of algebraic groups, and
is interesting itself.

The number B¥ depends only on the characteristic p of K, so we also write 7.

When there exists a graded minimal free resolution F of S/, over the ring of integers
so that the resolution is obtained by base change for an arbitrary ring? Clearly, if such a
resolution exists over Z, then 87 is independent of p. The converse is true.

Lemma 1.4 ([16, Chapter 4, Proposition 2], [7, Proposition 11.3.4]) Assume that
R is a noetherian reduced ring such that any finilely generated projective R module is free.
Let A = R[z,,...,z,] be a homogeneous polynomial ring over R, and M a finitely generated
graded A-module which is flal as an R-module. Then, the following are equivalent for any
i20.

1 There ezists a graded minimal free complex
0= Fip 2% F B F 0
such that HoF = M and HiF =0 for 1 <k <.
2 For any 0 < k <1 and j € Ny, the numbers
BE (M) dimpym[Tor™®*4(R/M ®p A/A+, R/M ®r M));

is independent of the mazimal ideal M of R, where | |; denoles the degree j component
of a graded A-module.

3 For any 0 < k < ¢, the Betti numbers B (M) = Bi(R/M @r M) (over the field K =
R/9M) is independent of the mazimal ideal M of R.

4 For any 0 < k.<i, Torf(A/Ay, M) is a free R-module.

Thus, there exists a graded minimal free resolution of S/1, over Z if and only if 87(S/I,)
is independent of p for any 1.

Problem 1.5 Are the Betti numbers §7(S/I;) independent of the characteristic?



2 A history

Clearly, the Koszul complex is a graded minimal free resolution of (z;;) = I;. When n = ¢,
we have I, = (det(z;;)) is principal, and the sequence

0 = S(—n) 2, o, 511, 0

is a graded minimal free resolution.
When ¢ = n — 1, a graded minimal free resolution of S/I; was constructed explicitly (5],
[8]. The free resolution is length three (this is because pdg S/I; = (n—t+2)(n—t+1)/2 = 3).
After a progress in the characteristic-free representation theory [2] and its application to
the theory of resolution of determinantal ideals [1], [L1], Kurano proved the following [10,
Theorem 5.1].

Theorem 2.1 The second Betti number §3(S/1,) is independent of the characteristic p of
the base field.

Clearly, we have 8§ = 1. It is not so difficult to show that the set
{det(zaroihigiicn |l S a(1) < -+ < a(n) £n, 1 £ B() < - < B(n), B(i) 2 a(i)},

whose cardinality is (',‘)2 - (‘:,) (,fl), minimally generates ;. It follows that gf = ("‘)2 -

(‘_;_‘l) (‘:‘l) is independent of p.

Consider the case n — ¢ = 2. In this case, we have h = pdgS/f; = 6. As n -1 is even,
G&_; = B for any i. Since A, 5} and S5 are independent of p, so are g5, 5 and f}. Let K
be a field of characteristic p, and F a graded minimal free resolution of S/I, over the base
field K. When we denote the quotient field of S (it is a rational function field) by L, the
sequence L ®s F is a resolution of L ®s S/I; = 0. That is, L @sF is an exact sequence
of finite dimensional L-vector spaces. As we have dim.(L ®sF); = ranks F; = f§;, the
alternating sum ;(—1)'A? is zero. Combining this with the fact A7 is independent of p for

i # 3, we have fj is also independent of p. This proves

Theorem 2.2 ([10, Theorem 6.4]) There ezists a graded minimal free resolution of S/ I,
whenn -t =2.

However, there is no known description of the explicit form of the resolution for this
case. There is no affirmative result on the existence of the graded minimal free resolution
of S/I, for thecase 2 <t <n-3.

When R is a field of characteristic zero, there is a striking result. Let V = R". The
polynomial ring S = R[z;;] is identified with the symmetric algebra S(S,V) by the cor-
respondence z;; — z;z; € S,V, where {z,,...,z,} is a basis of V. The group GL(V)
acts on S,V by g - (vw) = (gv)(gw) for v,w € V, hence it acts on S = S(S;V). It is
easy to check that I, is invariant under this action. Since a polynomial representation of
GL(V) is completely reducible, the minimal free resolution F of S//, has a natural structure
of GL(V)-complex. Thus, Tory(S/1,,5/S4+) has a natural structure of a finite-dimensional



polynomial representatlon of GL(V). Jézefiak-Pragacz-Weyman determined the irreducible
decomposition of Tor}(S/I;,S/S4+) completely (the decomposition is multiplicity-free, as

a result). This is more than complete determination of 37, because dimensions of irre-
ducible polynomial representations are completely known. But it is not as much as the
explicit construction of the resolution— to describe the boundary map is another problem
(and is still open). For the statement and the proof, see [9]. It should be noted that the
condition n — ¢ even for Gorensteinness of S/1, follows directly from their resolution [9,
Corollary 3.27]. We know that Gorenstein property of S/I; depends only on its Poincaré
series 3; dimg(S/I;)it' (Lemma 1.2) which is independent of I, so this criterion is valid
for any field. Their proof of the characteristic-zero resolution depends on Bott’s vanishing
theorem on line bundles over flag varieties and the decomposition formula of the plethysm
AS2E, which are valid only over the field of characteristic zero. And, polynomial represen-
tations of GL in positive characteristic are not completely reducible in general. So their
approach is not translated into the context of positive characteristic directly.

However, after the success of the use of the representation theory in characteristic zero, it
has been tried to develop the characteristic-free representation theory of GL and to apply
to the problem of resolutions of determinantal ideals as we mentioned above. Kurano
generalized the plethysm formula [10, Lemma 3.5] to the characteristic-free case (it is not
a direct-sum decomposition formula any more).

3 Andersen’s counterexample
Recently, a counterexample for Problem 1.5 was found by J. Andersen.

Theorem 3.1 ([3, Theorem 5.4.1]) When n = 7 and t = 2, 8§ > B2. In particular,
there is no minimal free resolution of S/I; over the ring of integers Z in this case.

She used the combinatorial method developed by J. Eagon and J. Roberts [4] for the
application to the resolution of determinantal ideals of generic matrices. Their method
used on determinantal ideals can be formulated in terms of semigroup rings as follows.

Let A = K[M,,...,M,] C K|t,...,1.] be a semigroup ring over a field K, where
M; = £ ...420) is a monomial. Let S = K[zy,...,2,] be a polynomial ring. With
letting z; of degree (a(¢)y,...,a(i).), S is an Nj-graded I -algebra, and the surjective map
S — A given by z; — M; is a homomorphism of Nj-graded K -algebras, where Ny is the
monoid of non-negative mtegers Then, there is a unique Nj-graded minimal free resolution
F of A as as S-module, and Tor{(S/S,, A) is-also Np-graded for any i. This Nj-grading is
also determined by the Nj- graded resolution of $/S,, the Koszul complex. Let K (z) be
the Koszul complex so that we have

Tor{(5/S+, A) = H{ A ®s K .(z)).
We have a direct decomposition

Torf(5/S+,A) = @ Hi((A®s K.(z)))-
AeN;



What is interesting is that the summand in the right-hand side is expressed in terms of
(reduced) homology of certain simplicial complex.

Let A = (A,...,A;) € Nj. We define an abstract simplicial complex £, as follows. The
vertex set is (a subset of) {z,...,z.}. A subset m = {ZTm(),---,Zm(n} (1 € m(1) <
N < T(s) < n)isan (s —1)-face of I, if and only if the monomial My,(1)- - - Myn(s) divides
=t

Proposition 3.2 (see [4, Corollary 3.3], [3, p.6]) We have an isomorphism
Tor}(S/S4+,A) = €D Hili(Ex, K),

AENG
where H.(?, K) denotes the reduced homology with coefficients in K.
Proof. 1t suffices to show that the degree A-component

M\ Y (A®s K(z)

of the Koszul complex, whose i** homology is Tor$(S/S4, A)a, is isomorphic to the complex
C(Z, K)[~1]. By definition, the complex degree s-component M (), of M(A) has a basis

X(’\)l = {N O Zm) A AZp(y) | N. Mm(” o Mm(,) = t'\}.
So there is a map X(A), — (Z1),-1 given by
N@Zmmy A+ AZmie) = {Zm(a)- -2 Tmin b

where £, = Z,U{0}. Since N = t*/Mp() - - M, is determined by A and Tmq1)s - - « s ZTm(s)s
it is clear that this correspondence is bijective. It is also clear that the linear extension
M(A) — C(Z,, K)[-1] is compatible with the boundary map. o

J. Andersen applied this proposition to our problem. Consider our S = K[z; jJi<igjgn,
and the homomorphism ¢ : S — K|t;,...,t,] given by z; ; — #;t; so that the image of & is
the semigroup ring generated by all degree two monomials. It is well-known that Ker® =
L. So the proposition is applicable (only) for the case { = 2. Using a computer-aided
calculation, Andersen found that dimg Hs(E(22.2,2.22,2), /() depends on the characteristic,
and the theorem was proved.

She also proved some combinatorial statement on the simplicial complex . For exam-
ple, she proved

Theorem 3.3 ([3, Theorem 3.4.1]) 5} is independent of the characiteristic p when t =
2.



4 Another example

The third Betti number f5 is independent of p when ¢ = 2. One might ask, what about
the case ¢ > 3, then?

Theorem 4.1 [fn =11 and L = 3, then 3 > 3.

The proof depends heavily on characteristic-free representation theory. As we mentioned,
Kurano generalized the plethysim formula, which is a decomposition formula of 5,5, E, to
the characteristic-free form.

We can generalize it again to the case of maps. When the characteristic is zero, for a map
of finite free modules ¢ : G — F, the complex S,Syy is defined [14], and is decomposed
into a direct sum of Schur complexes. Schur complexes in characteristic zero case is defined
by Nielsen [14], and is a generalization of irreducible representations of GL to the complex
version in some sense. We can generalize the decomposition formula of S,S2¢ to the
characteristic-free version, as the decomposition formula of S,A%p is generalized in [6].
The generalization of Schur complexes (to the characteristic free case) is due to Akin-
Buchsbaum-Weyman (2], and we use it.

Next, we prove that

I, ®s S(Sgldv) C S(Szidv)

is quasi-isomorphic to the complex I; ®s K (z:;) (in the category of GL(V)-complexes),
whose i** homology is isomorphic to Tor;s_,_,(S/S.,., S/L).

Roughly speaking, the generalized decomposition formula applied to S(S;idy) tells us
that there is a filtration of I; ®s S(S2idy), and its factor complexes are reasonably com-
putable.

This is an out-line of the proof of the theorem. Thus, 85 depends on p in general.

Let us end with some open problems on the resolution of determinantal ideals of sym-
metric matrices.

Problem 4.2 1 Find an explicit form of the graded minimal free resolution of S/1; for
the case n — ¢ = 2.

2 Is there any graded minimal free resolution of S/, over Z whenn — ¢t = 3?
3 Construct a graded minimal free resolution (if any) S/J; forr > 2 whenn — ¢t = 1.

4 Describe the boundary maps of the Jézefiak-Pragacz-Weyman resolution explicitly.
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A NOTE ON AUSLANDER-REITEN QUIVERS FOR INTEGRAL GROUP RINGS.

Takayuki Inoue and Yoshimasa Hieda

0.Introduction

Let G bc a finite group and © be a complete discrete valuation ring, with the
maximal ideal (n) and residue field k=0/(r) of characteristic p>0. R will be used to

denote either O or k. Let © be a connected component of the stable Auslander-Reiten
quiver T(RG) of group algebra RG and set V(8) = { vx(M) | M is an indecomposable
RG-module in O}, where vx(M) denotes the vertex of M. Due to Kawata ([4, Proposition
3.2]), we know that there is a minimal element Q in V(©) with respect to the partial
order <; which is uniquely determined up to G-conjugation. We call Q a vertex of ©.

Let N=N,(Q) and f be the Green correspondence with respect to (G,Q,N). Choose an
indecomposable RG-module M, in © with Q as its vertex. Let A be the connected
component of T(RN) containing fM,=L,. In the case R=k, Kawata has shown the following
thcorem which extends the Green correspondence in his paper [4]:

There is a graph monomorphism from © to A which preserves edge-multiplicity
and direction.

The purpose of this note is to ensure that the above result also holds for 0G-lattices

(i.e., finitely generated O-free 0G-modules). The important tools used here can be

The detailed version of this paper will be submitted for publication elsewhere.



found in (4], indeed the whole argument in [4] is also valid for OG-lattices with some
modifications. In this note, we shall provide a slightly simple proof by examining the
middle terms of Auslander-Reiten sequences (see Theorem 1.5 and Corollary 1.6
below). The graph correspondence stated above is not always isomorphic. We shall
give an example of this type for §G-lattices in section 2.

The notation is almost standard. We shall work over the group ring RG. All the
modules considered here are finitely generated free over R. We write W|W' for RG-
modules W and W', if W is a direct summand of W'. For an indecomposable non-projective
RG-module M, we denote by s¢(M) the Auslander-Reiten (abbreviated AR-) sequences
terminating at M. Conccrning some basic facts and terminologies used here, we refer
[1], [6] and [7], for example.

1. The middle terms of AR-sequences

To begin with, we shall exhibit some results on the AR-sequences for RG-modules,
which are well-known or proved in [4] for kG-modules. We can easily seec that they are

also valid for 8G-lattices.

Lemmal.l ([4, Lemma 2,3]). Let M be an indecomposable non-projective
RG-module and H be a subgroup of G. Then the restricted exact sequence (M), does
not split if and only if vx(M) 5;H.

Lemmal.2 ([4, Lemma 24]). Let H be a subgroup of G. Let M and L be
indecomposable non-projective modules for G and H respectively. Assume that L is a
direct summand of LS, with multiplicity one, and that M is a direct summand of L°

such that L|MH. Then (L)%= J(M)DE, where € is a split scquence.



Lemmal.3(see [4, Lemma 2.5]). Let P be a non-trivial p-subgroup of G. Let M
and L be indecomposable non-projective modules for G and Ny(P) respectively. Assume
that A(L)°= A(M)BE, where € is a split sequence and that P Svom VX(L). Then S(L)Cy
= 4(LYPE, where € is a P-split sequence.

Remark. In the above lemma, by making use of Krull-Schmidt theorem for the

category of morphisms, we have that d(M)NG(,,)E S(LYPE", where €" is a P-split sequence.

As we have mentioned in the introduction, ® has a vertex. More precisely, the

following holds.

Lemmal.4([4, Lecmma 3.1]). Let = be a connected subgraph of F(RG). Take any
QeV(S) with the smallest order among those p-subgroups in V(Z). Then for any
indecomposable RG-module Me=, M, has an indecomposable direct summand whose

vertex is Q.

Now we rcturn to the situation in the introduction. Let Q be a vertex of ©, put
N=N,(Q). Let A be a subquiver of A consisting of L, = fM, and all the RN-modules L in A
with the property : There exist RN-modules L, L,, L,,--,L, =L such thatL, and L,,,, are
connected by an irreducible map for all n with 0 sn <m-1 and Q < vx(L,) for all n.

Remark ([4, Lemma 4.1]). For any indecomposable RN-module L in A, Q < vx(L)
holds by Lemma 1.4.

We shall show that ©= A as graphs. Theorem 1.5 below is essential.

(=1}
o



Let Z be the set of all p-subgroups of N whose orders are smaller than 1Ql. Let L be
an indecomposable RN-module in A, and M be an indecomposable RG-module in ©.
Assume that L and M satisfy the following two conditions:

(1) L® = M®W, where W is a X-projective RG-module.
(2) My =L@Z, where Z, is a X-projective RQ-module.

Now we examine the relation of the middle terms of s§(L) and st(M). Let Y be the
set of all indecomposable direct summands of the middle term of s (L) whose vertices
contain (a G-conjugation of) Q. Let X be the set of all indecomposable direct summands
of the middle term of st (M). Then the modules of Y and Xinherit the above conditions

(1) and (2). More precisely, the following holds:

Theoreml.5. With the above notations. For each YeY, (Y)® has a unique
indecomposable direct summand, say X, such that Q 5;vx(X). The correspondence ¥:
Y,—X, is a bijective mapping from Y to X satisfying the following two conditions:

1") (Y)®=X,®U,, where U, is a Z-projective RG-module.

(2) (X)) x=Y, @V, where (V), is a Z-projective RQ-module.

Moreover, X; =X holds if and only if Y,=Y; holds, when ¥(Y)=X; and W(Y|)=X|.

Proof. Let Y, be a element of Y. First, we prove that (Y)% =Y, ®Y',, where (Y is
X-projective. In particular, Yi|(‘{i)°N with multiplicity one by Lemma 2.4. By the
conditions (1) and (2), L°,=L®L', where L")y is X-projective. Let Y be the middle term
of si(L). By Lemma 1.3, Y, =Y®Y', where Y' is the middle term of a Q-split sequence
terminating at L’. Thus, (Y'i)ql(l..' G‘lu(l.'))Q and (Y')q is X-projective, where t denotes
Auslander-Reiten translation.

Next we prove that (Y)® has a unique indecomposable direct summand whose
vertex contains Q. By Lemma 1.2, s(L)°=4(M)®BE, where € is a split sequence terminating
at W. So, Y° =X ® ( X-projective RG-modules), where X is the middle term of sd(M). Let
Y, be an indecomposable direct summand of Y. If (Y')G have an indecomposable direct

summand of X, then Q 5, vx(Y). So, if Y,eY, (Y)%is %-projective. On the other hand, for
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YeY,(Y)® has a unique indecomposable direct summand, say X,, satisfying Y,|(X)
because Yi|(Yi)°N with multiplicity one. Moreover, the condition Y, |(X), implies that Q
S vx(X;) and X;eX. Now we have to show the uniqueness of X;.Let X be an indecomposable
summand of (Y)° such that Q<yvx(X'). Because X'[(Y;)°, we have that (X'),|Y,®Y", and
(X'i)Q|(Yi$Y'i)Q. We know that (Y is X-projective, and that (X'i)Q and (Yi)Q have
indecomposable direct summands whose vertices are Q by Lemma 1.4. This implies
that Y;|(X)y and X, =X,.

Thus, for any Y,eY, we have that (Y)° =X, @ (% -projective RG-modules), where X, e
X, and that QZ(Yi)GsXQ(E-projcctive RG-modules), where the left-side sum runs over
all Y;eY. Moreover, (X),=Y,;® (some direct summands of Y'). Hence, the correspondence
¥: Y,-X, gives a bijective mapping from ¥ to X, and we see that (1") and (2') hold.

The last statement of the theorem is straightforward by (1') and (2').

Remark for Theoreml.5, Assumc that LeA and Me®©satisfy the conditions (1)
and (2). Then the middle terms of s(t'(L)) and s#(t'(M)) have also the same properties
as those of (L) and s{(M) do in the above theorem.

Corollaryl.6 ([4, Theorem 4.6]). For any RN-module LeA, L°® have a unique
indecomposable direct summand M such that Q <; vx(M). The correspondence L—M
gives rise to graph isomorphism from A to ©, which preserves edge-multiplicity and

direction. And the correspondents satisfy the conditions (1) and (2).

Proof. First, we recall that (L,,)G have a unique indecomposable direct summand M,
such that Q <;vx(M,), and that L, and M, satisfy (1) and (2). By successive use of

Theorem 1.5 and its remark, the proof will be done.

2.A n Example
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As we have seen in Corollary 1.6, there is a graph monomorphism from © to A. But
this correspondence is not always isomorphic (i.e., The case AGA may occur ). In this
section, we shall provide an example of this type.

Throughout this section, we assume that p=2, O isof rank one (i.e., (a)=(p) ) and
has all the 3th root of unity, and that P denotes the cyclic group of order 2. Set
G=%U,xP, N=U,xP and Q=VXP, where ¥, and V denote the alternating group of degree
n and a Sylow 2-subgroup of ¥,, respectively. Then G énd N have the common Sylow
2-subgroup Q and N=N,(Q). The desired correspondence happens between the connected
components, ©(2.2) in I(6G) and A (2.1) in T,(ON).

0= PON= OU, has just three isomorphism classes of primitive idempotents, say
e, ¢, and e, where e, corresponds to the trivial ON-lattice. Put Q,=¢,PON. Q, has

period 2. The connccted component which contains Q,in I(GN), say A, is isomorphic to

ZA_/(2) and has the following form ;

Q—L—L,—L,—-
2.1) A AR \
QQ)-QL)-QL ) - -,

where vx(Q,) =P, vx(L)=Q and vx(L)=Q for i=1, 2, ---.
Let M be the Green correspondent of L with respect to (G,Q,N) and © be the
connected component which contains M in T, (6G). M has period 2, so ©=ZA _/(2). And

© has the following form ;

M—M, —M, -
(22) o: VoA
QM) - QM) - -,

where M; is the Green correspondent of L; for i=1, 2, -+, and all the indecomposable

O0G-lattices in © have Q as their vertices.

Example. With the above notations. Put M=M, and L=L,. Let A be the subquiver
of A removed Q, and Q(Q,) from A. Then A =6 holds by Corollary 1.6. That is, Kawata's



correspondence between © (2.2) and A (2.1) is not isomorphic.

Remark. In the casc R=k, a similar example to our one has already given by

Okuyama in [8].

(1]

(2]

(3]

(4]

[5]
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On Auslander-Reiten components
for certain group modules and an additive function

Shigeto KAWATA

Throughout this note G is a finite group and R denotes either a field & of
characteristic p >0, ora complete discrete valuation ring G of characteristic zero with
residue class field of characteristic p. Let I',(RG) be the stable Auslander-Reiten quiver
of the group ring RG and © a connected component of I'(RG) which contains no
loops. In [W] Webb constructs a subadditive function on © using the cohomology
theory, and in the case when R =k is a field Okuyama [O] also constructs a subadditive
function using an inner product on the Green ring a,(G) (see also[Bs] and [E-S]). Then
by the result of Happel, Preiser and Ringel [H-P-R] the tree class of © is eithera
Euclidean diagram, a Dynkin diagram or one of five infinite trees A, Bw, Cuv Do
or A.,. Our aim in this note is to give a simple construction of an additive function on
©, which is a modification of Okuyama's one, when the RG-modules in © are not
periodic. This is shown in Section 2. In Section 3 we consider the case where R=k is
algebraically closed and give some condition which implies that © is isomorphic to
ZA,..

The notation is almost standard. All RG-modules considered here are lattices,
that is modules which are finitely generated free R-modules. An RG-module W is
periodic if W = Q"W for some positive integer n, where Q is the Heller operator and
W is the projective-free part of W. For a non-projective indecomposable RG-module
W, we write s{(W) to denote the Auslander-Reiten sequence (AR-sequence for short)
0= tW - m(W) > W 0 terminating at W, and we write m(W) to denote the
middle term of s{(W). If R =k isafieldthen 1= andif R=0 then 1=Q.
Concerning some basic facts and terminologies used here, we refer to [Bn], [E1] and
[R2).
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1. Preliminaries

In this section we collect some results which will be used to construct an additive
function.

Lemma 1.1([C, Lemma 2.5]). Suppose that H is a normal subgroup of G with
G/H cyclic. If W is an RG-module such that W, is a projective RH-module, then W
is periodic.

The symbol ® denotes the tensor product over the coefficient ring R. For an
RG-module W, we write W* to denote the dual Homg(W, R) of W.

Lemma 1.2([A-C, Proposition 4.8]). Let W be an RG-module. Then
W1 W@W*®W. In particular if W is not projective, then W®W is not projective.

Lemma 1.3. Let W be a non-projective indecomposable RG-module, and
AW): 0> W - m(W) > W 0 be the AR-sequence terminating at W.

(1)X[A-C, Proposition 2.3]) Let X be an indecomposable RG-module. Then the
tensor sequence 0 — TW®X — m(W)®X — W®X — 0 splits if and only if
W14 X@X*®W.

(2)([R1, 2.10 Proposition]) Let H be a subgroup of G. Then s{(W) splits on
restriction to H if and only if W is not H-projective.

Lemma 14. Let © beaconnected component of I',(RG) and suppose that V
and W are indecomposable RG-modulesin ©. Let X be an RG-module and H a
subgroup of G. Then the following hold.

(I1X[O. Lemma 3]) V®X is projective if and only if W®X is projective.

(2) V®X is periodic if and only if W®X is periodic.

(3) V1, is projective (resp. periodic) if and only if W, is projective (resp.
periodic).

Proof. (1) If R=0, using the same argument in the proof of [O, Lemma 3], we
get the result.

(2) We have only to consider the case where all RG-modules in © are not
periodic, and it suffices to show the result in the case when there exists an irreducible
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map from V to W. Assume that V®X is periodic. Then T'V®X is also periodic.
Since 7'V is not periodic, T'V + X®X*®V. Hence the tensor sequence 0 — VX —
m(V)®X = 1"'V®X — 0 splits by Lemma 1.3(1). This implies that W®X is periodic
since W®X is a direct summand of m(t'V)®X. The same argument as above shows
that if W®X is periodic, then V®X is periodic.

(3) Set X =R,T° where R, is the trivial RH-module. Then the result follows
from (1) and (2).

For a connected component © of I',(RG), set V(©)={vx(W) | WE O},
where vx(W) denotes a vertex of W.

Lemma 1.5([K1, Proposition 3.2]). Let @, be an element of V(©) which is
minimal with respect to the partial order <, . Then for any H € V(©) we have
Q, < H. In particular @, is uniquely determined up to conjugation,

Proof. If R =, using the same argument in [K1, Section 3], we get the result.

2. Additive functions

Let © be a connected component of I" (RG). In this section we assume that the
RG-modules in © are not periodic.

Lemma 2.1. There exists a subgroup Q of G which satisfies the following two
conditions for any indecomposable RG-module W in O:

(Al) W is not Q-projective;

(A2) W, is not projective.

Proof. Let Q, be a minimal element of V(©) (see Lemma 1.5). Choose an
indecomposable RG-module W, in © with Q, its vertex. Let S, be a Q,-source of
W, Then S, is not periodic. Let Q be a normal subgroup of Q, with 1Q,: Ol =p. We
show that Q satisfies the conditions (A1) and (A2). Since Q< Q, <; vx(W) for any
indecomposable RG-module W in ©, Q satisfies (A1). By Lemma 1.1, S, is not
projective and hence WOJ«Q is not projective. Thus WJ«Q is not projective for any W in
© by Lemma 1.4(3).
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3. Auslander-Reiten components and certain group modules

In this section we consider a connected component of T',(kG) containing an
indecomposable kG-module whose k-dimension is not divisible by p under the
following hypothesis:

(#) k is an algebraically closed field of characteristic p >0 and a Sylow
p-subgroup P of G is not cyclic, dihedral, semidihedral or generalized quaternion.

The purpose of this section is to show the following theorem.

Theorem 3.1([K2, Theorem 2.1]). Assume (#). Suppose that © is a connected
component of I'(kG) and O contains an indecomposable ¥G-module whose
k-dimension is not divisible by p. Then © is isomorphicto ZA,.

The following lemma is useful.

Lemma 3.2([K2, Lemmas 1.8 and 1.9]). Let © be a connected component of
T (kG).

(1) Suppose that the tree class of © is A,,. Let T: M, M, - « M  ---
beatreein © suchthat © = Z7/T1 for some admissible group of automorphisms
ITC Aut ZT. Then dimM, = n(dimM,) (mod p) forall n=1.

(2) If the tree class of @ is Ag, then dimM = dim M (mod p) for all
indecomposable kG-modules M and M” in O.

(3) Suppose that the tree class of © is D,,. Let
T-MeM, <My« -+ <M, beatreein © with © = ZT.

l
M
Then dimM = dim M (mod p) and dim M, = 2(dim M) (mod p) forall n22,

Proof. Let H be a subgroup of G of order p. Then the group algebra kH has
only p non-isomorphic indecomposable modules, say V,, V,, -V, and V,,
where dim,V, =1 (1<¢<p) and V, is projective. Fora kG-module M, let d, (M) be
the multiplicity of V, in M{, . Theneach dj, (1<t<p-1) is either the function with

constant value O or an additive function on ©. Hence the result follows from [Bn,
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(2) Suppose that p=3 and dimM =3. Then © is isomorphic to ZA,, and M
lies at the end of ©.

Proof. There exists an elements x of P such that x does not act on M
trivially. Let H=<x> and L a non-projective indecomposable direct summand of
M, . Notethat L = L. Since O is isomorphic to ZA., by Theorem 3.1, for any
indecomposable module W in ©, W is not H-projective and L is a direct summand of
wl,.

Let d(W) be the multiplicity of L in W, . Then from the same argument in the
proof of Theorem 2.2, d is an additive functionon ©. Now d(M) = 1. This implies
that M lies at the end of ©.

Remark. In [E2], Erdmann proved that there are infinitely many kP-modules of
dimension 2 or 3 lying at the ends of ZA_ -components under the hypothesis (#) ([E2,
Propositions 4.2 and 4.4]). Consequently she showed that for a block B over an
algebraically closed field, the stable Auslander-Reiten quiver I'{B) has infinitely many
components isomorphic to ZA,, if a defect group of B is not cyclic, dihedral,
semidihedral or generalized quaternion ([E2, Theorem 5.1]).
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PROCEEDINGS OF THE 206TH
SYMPOSIUM ON RING THEOQORY, 1903

RATIONAL REPRESENTATIONS, TYPES
AND EXTENSIONS OF 2-GROUPS

TOSHIHIKO YAMADA AND YouilcH! IIDA

Let G be a finite group and @ a character of G. We do not know,
in general, how to construct a representation © with character 8. The
purpose of the paper is to discuss some recent progress in constructing a
representation with character 8 of G. In particular, we deal with represen-
tation theory of 2-groups, emphasizing the role of generalized quaternion,
dihedral and semidihedral groups.

Notation. A group G means a finite group. The set of irreducible com-
plex characters of G is denoted by Irr(G). Q is the rational numbers. For
a natural number n, (, is a primitive n-th root of unity. The generalized
quaternion, dihedral and semidihedral groups of order 2"*! are denoted
by @n, D, and SD,, respectively:

Qu=1{a, b|a¥" =1, 82 =a?"", bab~! =a~1), (n>2),
Dn={a, b|a® =b?=1, bab~' =a~1), (n>2),
SD, = {(a, b|a®" =b? =1, bab~! = a~1*2"7"), (n > 3).
The cyclic group of order 2" is denoted by Cj,:

Co=(a|a®¥ =1), (n>0).

1. Irreducible complex representations

Let G be a finite group of exponent n and x € Irr(G). Brauer’s the-
orem [2] asserts that there exists a representation X with character x,

This paper is in final form and no version of it will be submitted for publication
elsewhere .
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which is realized in Q(¢,). Of course, Brauer’s proof gives no means of
constructing a representation X with character x. It seems that for few
groups G (except symmetric groups, monomial groups, etc.), irreducible
complex representations of G have been constructed in Q(¢,).

Let mq(x) denote the Schur index of x over Q. Then we have the
following:

Problem 1.1. Find a field K with [K : Q(x)] = mq(x) and find a
representation X with character x, which is realized in K.

The following is an easier version of this problem:

Problem 1.2. Let x € Irr(G) with mq(x) = 1. Find a representation X
with character x, which is realized in Q(x).

Let p be a prime and ¢ = p%, where a is a natural number. All the
irreducible representations of the special linear group SL(2, g) was con-
structed by Kloosterman [13] for the case ¢ = p, and later by Gel’fand-
Graev [5] and Tanaka [17] for ¢ = p®. They constructed representations
of SL(2, q) in sufficiently large cyclotomic fields.

Meanwhile, Janusz [12] showed that mq(x) = 1 or 2 for each x €
Irr(SL(2, q)). In fact, Janusz determined the local indices of each simple
component of the group algebra Q[SL(2, g)]. In particular, mq(x) = 1
for each x € Irr(PSL(2, q)). Recently, Boge [1] settled the Problem 1.2 for
some X € Irr(PSL(2, p)), (p # 2). Namely, for every x € Irr(PSL(2, p))
with x(1) = p—1, Bége constructed a representation X with character y,
which is realized in Q(x).

It is interesting to consider Problems 1.1 and 1.2 for monomial char-
acters x of G. Namely, suppose that there is a subgroup H of G and a
linear character v of H with x = %€. Let Q(%) = Q((,) for some integer
t. Then the induced representation X with character x is realized in Q(¢;).
The problem is : Find an extension K of Q(x) with [K : Q(x)] = mq(X)
and a representation X’ of G such that X’ is realized in K and that X’
is equivalent to X. In particular, if mq(x) = 1, find X’ ~ X, which is
realized in Q(x). Of course, if [Q({:) : Q(x)) = mq(x), then the induced
representation X with character x is a required representation. Such ex-
amples are faithful representations of the generalized quaternion groups
of order 2™*!, (n > 2).

70



2. Irreducible rational representations

Let x € Irr(G) and put

Q(x) =mq(x) )_x°, ¢ € Gal(Q(x)/Q)-

Then Q(x) is the character of an irreducible rational representation X of
G, which corresponds to x. Conversely, if X is an irreducible rational
representation of G, then there exists x € Irr(G) such that Q(x) is the
character of X.

It seems that constructing an irreducible rational representation X with
character (x) is more difficult than constructing an irreducible complex
representation X with character x. Even if X is known, it is not so easy
to get X. For instance, let the exponent of G be n and suppose that one
has obtained an irreducible complex representation X with character ¥,
which is realized in Q(¢.). Let Gal(Q(x)/Q) = {01, 02, ..., 05}, o1 =1
and put m = mq(x). Each o; is extended to an automorphism of Q(¢n),
which is also denoted by o;. For z € G, put

X'(z) =

m m m

P

Y

(X (z), o X(z), X(z), . X()%, ..., X(z)°, ..., X(z)°),

where the right side denotes the matrix of degree msyx(1) whose entries are
all 0 except the above matrices X(z), ..., X(z), X(z)??, ..., X(z)??,
couy X(2)%, ..., X(2)? on the diagonal. It is clear that X’ is a rep-
resentation of G with character §2(x). Hence there exists a non-singular
matrix P of degree msx(1) such that the entries of P are in Q({,) and
that }
X(z) =PI X'(z)P (z€G)

is a rational representation of G with character 2(x). But it seems difficult
to find such a matrix P.

So we ask to what extent we can construct rational representations of a
finite group G. For a linear character ¢ of G, we know well an irreducible
rational representation ¥, whose character is £2(v):

Proposition 2.1 (cf. [24, Proposition 1)). Let v be a linear character of
G. Let N be the kernel of ¢ with t = [G : N). Let G = U!Z) Ny*. Then

Py')=¢, (0<i<t z€N),



where ¢ is a primitive t-th root of unity. Let
fX)=X*—ag1 X' —o.—a1 X —qg

be the irreducible polynomial over Q such that f(¢{) = 0, where s = ©(t),
@ being the Euler’s function. Put

0 1 '
0 1
U(zy') = , (0gi<t z€N).
0 1
Gy @y - o Ga_y

Then U is an irreducible rational representation of G, whose character is

().

Next everyone will think of induced representations. Let H be a sub-
group of G and ¢ € Irr(H) with € € Irr(G). Suppose that we have
constructed an irreducible rational representation & with character (¢p).
If Q(¢%) = Q(p)C, then &€ is an irreducible rational representaion of G
with character Q(¢®). So we ask when Q(¢®) = Q()C happens. For this
problem we have:

Proposition 2.2 ([24, Proposition 3]). Let H be a subgroup of G and
@ € Irr(H) such that ©© € Irr(G). Then mq(¢€) divides mq(v)[Q(y) :
Q(¢®)]. Furthermore, the induced character Q(p)° of G is a character of
an irreducible rational representation of G, if and only if

(2.1) mq(¢°) = ma(#)[Q(p) : A¥°)].
In this case, Q(p)C = Q(¢°).

Corollary 2.3 ([24, Corollary 4]). If Q(p) = Q(¢°), then Q(p)¢ =
().

In the formula (2.1), the computation of Schur index mq(¢®) is not
so easy. For the case that H « G and ¢ is linear, we have the following
theorem:
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Theorem 2.4 (Yamada [24, Theorem 13]). Let H be a normal subgroup
of a finite group G. Let x be a complex irreducible character of G which
is induced from a linear character 1 of H. Set F = {f € G ; ¢/ =
Y™ for some 7(f) € Gal(Q(v)/Q(x))}. Then F/H is isomorphic to
Gal(Q(¥)/Q(x)) and Q(x) = QWF). Let Hf; (i=1, 2, -+, t; fi =
1) be all the distinct cosets of H in F. Set 7(f;) = 7. Let fifi =
nijfu(i, ) N5 € H7 V(ia .7) € {11 2, M t} Put B(Tit TJ') = ¢(nij)'
Then Qx) = Q@) = Q@)C if and only if the cyclotomic algebra
(B8, Q(¥)/QwF)) is a division algebra.

Remark 2.5. The index of a cyclotomic algebra is computed by the
formulas as are given by Yamada [20] and [23].

Remark 2.6. If G is a2 metabelian group, then every irreducible character
x of G is induced from a linear character ¥ of a normal subgroup of G.
(See (19, Theorem 1).)

3. Imprimitive Q[G]-modules

We recall the definition of imprimitive irreducible Q[G]-modules (see
Roquette [16]). As is remarked in [16], the concept of imprimitivity orig-
inates in Witt [18].

Let G be a finite group. Let 9 be an irreducible Q[G]-module. Put
S=Endqi¢)(9M), the skew-field of Q[G]-endomorphisms of M. We re-
gard 9 as the right Q[G]- and left S-module. M is called imprimi-
tive, if there exist left S-modules My, Mo, ..., M. (r = 2) such that
M = N PNP - - - PN, and that Ny, Ny, ..., N, are transitively per-
muted by G. Put 91 = N;. Let H be the group of elements 2 € G such
that Mh=MN. Then |G: H|=r. fG=Hg UHgyU---UHg,, then

M =g, &Ng2® -+ ® Ngy,
M= NQqxn QIG).

If 9N is not imprimitive, then M is called primitive.

Lemma 3.1 (Roquette [16, p.243]). Notation being the same as above,

S= EndQ[G](ﬂﬂ) = EndQ[H](‘.Tt).

73



Lemma 3.2 (Roquette [16, Lemma 1]). If G has a faithful, primitive,
irreducible Q|G)-module 9M, then every abelian normal subgroup of G is
cyclic.

Theorem 3.3 (Roquette [16, Lemma 3]). Let p be a prime. Let G be a p-
group such that every abelian normal subgroup of G is cyclic. Then G itself
is cyclic, except G=Qn, (n>2)orG=D, (n>3)orG= 8D, (n> 3).

From Lemma 3.1, Lemma 3.2 and Theorem 3.3 we have

Theorem 3.4 (Roquette [16]). Let G be a finite group. Let © be an ir-
reducible rational representation of G. Then there exist subgroups Hpo N
of G and an irreducible rational representation = of H with the following
properties (possibly H=G and 2= 0):

(i) Every abelian normal subgroup of H/N is cyclic.

(i1) © = =G, ker= = N and EndQ[(;] (Me) = EIldQ(H](mts),

where Mg (resp. M=) is the irreducible Q[G)-module (resp. Q[H]-
module) affording the representation © (resp. Z).

(iii) If G is a p-group, then

H/N is isomorphic to a cyclic group for p # 2;

HIN2C, (n20), Qn (n>2), D, (n>3) or SD, (n > 3) forp=2.

Next we will refine Corollary 2.3. For x € Irr(G), A(x, Q) denotes the
simple component of the group algebra Q[G], which corresponds to x.

Theorem 3.5 (cf. [8, Theorem 2.4]). Let G’ be a finite group and H a
subgroup ofG Let v € Irr(H) such that ¢© € Irr(G) and Q(¢%)=Q(yp).
Put x = ¢ and KX =Q(x)=Q(p). Let X and & be the irreducible rational
representations of G and H with characters 2(x) and Q(y), respectively.
Let MM and N be the irreducible Q[G]- and Q[H]-modules which afford
the representations X and &, respectively. Then

Qx) = Ap)®, X =8%, M= Neq QlG],
S= EIldQ[G] (Dﬂ) EndQ[H] (D’t) )

m =mq(x) = mq(y) = VIS : K|,
A(Xv Q)E x(l)/m(s) A(‘,O, Q) sp(l)/m(s) and

9N is imprimitively induced from N.



The proof of Theorem 3.5 uses the Brauer-Witt theorem (cf. [21
p-31]).

We now define the concept of imprimitivity for complex irreducible
characters.

Definition 3.6. Let G be a finite group and x € Irr(G). x is called
imprimitive, if there exists a proper subgroup H of G with ¢ € Irr(H)
such that x = ¢® and Q(x)=Q(p). If x is not imprimitive, then x is
called primitive.

Using again the Brauer-Witt theorem, we have

Theorem 3.7 ([8, Theorem 2.6]). Let G be a finite group with x €
Irr(G). Let 91 be an irreducible Q[G]-module which affords the character
x). Then 9M is imprimitive if and only if x is imprimitive.

Corollary 3.8 ([8, Corollary 2.8]). If a finite group G has a faithful,
primitive, irreducible character X, then every abelian normal subgroup of
G is cyclic.

Corollary 3.9 ([8, Corollary 2.9]). Let G be a finite group and x €
Irr(G). Then there exist subgroups H > N of G with the following prop-
erties:

(i) Every abelian normal subgroup of H/N is cyclic.
(ii) There exists ¥ € Irr(H) such that ker = N, x = %€
and Q(x) = Q(¥).
(Possibly, H= G and ¥ = x.)

Finally, we have

Theorem 3.10. Let p be an odd prime and G a p-group. Let x € Irr(G).
Then there exist a subgroup H of G and a linear character 3 of H such

that x = ¥°, Q(x) = Q(%), and so A(x) = Q) = Q).

Theorem 3.11. Let G be a 2-group and x € Irr(G). Then there exist
subgroups Ho N of G and ¢ € Irr(H) such that x = €, Q(x) = Q(¥),
ker¢o = N and

H/NEQH (n>2), Dy (n2> 3), 8D, (n>3) or Cy (n>0).

75



4. Rational representations of p-groups

Recently, Ford [4] obtained a remarkable result about rational repre-
sentations of p-groups:

Theorem 4.1 (Ford [4]). Each irreducible rational representation of a
finite p-group is induced from the faithful irreducible rational representa-
tion of degree p — 1 on a section of order p.

Let G be a p-group. Using Ford’s theorem, let us attempt to determine
all the irreducible rational representations of G. Then we must settle the
following two problems:

1. Determine all the sections of order p of G.

2. For the faithful irreducible rational representation §2 on a section of
order p, determine whether the induced representation Q€ is irreducible
or not.

In order to deal with the above second problem, we probably need to
know all the irreducible complex characters x and the irreducible rational
characters Q(x) of G. Since G is monomial, every irreducible complex
representation X of G is obtained, when its character x is obtained as an
induced character. Hence we may say that determining the irreducible
rational representations of G is more difficult than determining the irre-
ducible complex representations of G.

Here we remark that Ford’'s theorem is essentially contained in the
works of Roquette [16] and Rasmussen [15]. We define the group M,, of
order 2"*! as follows:

My,={(a, b|a® =t2=1, bab~' =a!*?"7"y, n>3.

Proposition 4.2 (Rasmussen (15]). Let p be a prime. Let Cpn denote
the cyclic group of order p" Let € denote the unique faithful irreducible
rational character of G = pn, @n, Dn, SD, or M,,. Then,

(1)5—1(1) 1( pr=ty for G = Cin = {a), a® =1, (n2>1).

(u) £=1§, - ( an-1y for G=Qn = (a, b| a2 =1, B2 =a?""", bab~! =
1), (n>2).

(111)5 = l(b) 1( a1, forG=D, (n2>2), SD, (n23)or M, (n23),

where Dy, = {a, b|a®" =b?> =1, bab~! =a~') and SD,, = {a, b| a?®" =

b2 =1, bab~l = a~1+2"7"),



Observe that for G = Cpn (n 2 1),

-1
- 1G G G
£=1§, 18,00 = w=1{ -1,
where w is the faithful irreducible rational character of the subgroup
(a®” ) of order p. The faithful irreducible rationl representation Q with
character w is explicitly given in Proposition 2.1.
Similarly, for G = Q,, we have

—1G _1C — .G (2"

§=14) = 10m, =w®  w=13 Y= 1ganey,
where w is the faithful irreducible character of the subgroup (azn-l) of
order 2, and the degree of w is 1. So w can be regarded as the faithful

irreducible rational representation £ of the subgroup {(a2"~').
For G = D,,, SD,, or M,, observe that

1b) 1

—1G G —,,G —
5_1(6)_1(117"",6)_“ ) W= - (agn-l'b),

where w is regarded as the faithful irreducible rational character on the
section (a"’"-l, b)/ (b} of order 2. Consequently, w can be regarded as the
faithful irreducible rational representation Q on the above section.

These excellent observation has been made by Ford [4]:

Proposition 4.3. Let G = Cpn, Qn, Dn, SDy, or M,,. Let = denote the
unique faithful irreducible rational representation of G. Then Z is, as is
shown above, induced from the faithful irreducible rational representation
{2 on a certain section of G of order p.

Finally we remark that Theorem 4.1 follows immediately from Theorem
3.4 and Proposition 4.3.

For the rest of this section, we consider determining explicitly all irre-
ducible rational representations of a finite p-group G, where p is an odd
prime. Let x € Irr(G). By Theorem 3.10, there exist a subgroup H and
a linear character % of H such that

x=9¢ and Q(x)=Q(¥).
We call the above H and ¥, a required pair {H, 9} for x € Irr(G). By
Theorem 3.5, (x) = QW) = Q#)¢. And the irreducible rational
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representation ¥ with character (%) is explicitly given by Proposition
2.1. Consequently, ¥C is the irreducible rational representation of G with
character (x).

Thus, in order to obtain the irreducible rational representation X with
character 2(x), it is enough to obtain a required pair {H, ¥} for x €
Irr(G). It dose not seem that obtaining a required pair {H, ¥} for x €
Irr(G) is an easy task.

In lida-Yamada (9], we have carried out this for a metacyclic p-group
G (p # 2). Thus, irreducible rational representations of a metacyclic p-
group have been explicitly obtained. For the details, see Theorems 4.5
and 4.6 of [9].

5. Types of 2-groups

Let G be a finite 2-group and x € Irr(G). By Theorem 3.11 there
exist subgroups H > N of G and p € Irr(H) such that x = ¢%, Q(x) =
Q(y), kerp = N and

(51) H/N=2Q,(n22),D,(n23), SD,(n23)or C, (n20).

According to (5.1), x is defined to be of Q-type, D-type, SD-type or C-type.
We will call the above H and ¢, a required pair {H, ¢} for x € Irr(G).
Note that the definition of a required pair for 2-groups is different from
that for p-groups (p # 2). By the results of the previous section, the
irreducible rational representation with character Q(x) is obtained if a
required pair {H, ¢} for x is explicitly obtained.

We now state the relation between the type of x and the Frobenius-
Schur indicator v(x). Let G be a finite group and x € Irr(G). Then,

i) = — 2y = .
(x) IGI_,ZC:;X(Q) 0, %1

It is well known that the number of characters x with v(x) = £1 is equal to
the number of real classes of G. Consequently, the number of characters
x with v(x) = 0 is equal to the number of non-real classes of G. The
following problem is an old one (cf. [3, Problem 14)):

Problem 5.1. Describe the number of characters x with v(x) = 1 purely
in group theoretic terms.

For 2-groups G, we have:
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Proposition 5.2. Let G be a 2-group and x € Irr(G).

(i) If x is of Q-type, then v(x) = —1. :

(ii) If x is of D-type or x is of C-type with Q(x) = Q, then v(x) = 1.
(iii) If x is of SD-type, then v(x) = 0.

(iv) If x is of C-type with Q(x) # Q, then v(x) = 0.

Thus we have the following problem, which is a refinement of Problem
5.1 for 2-groups G:

Problem 5.3. Let G be a 2-group. Denote by ng, np, ngp and nc
the numbers of irreducible complex characters x such that x is of Q-
type, D-type, SD-type and C-type, respectively. Describe the numbers
nQ, np, nsp and nc purely in group theoretic terms.

The following problem is an easier version of Problems 5.1 and 5.3:

Problem 5.4. Let G be a 2-group with FlIrr(G) # @, where FIrr(G)
is the set of faithful irreducible complex characters of G. Denote by
ng, Np, ngp and ng the numbers of faithful irreducible complex charac-
ters x such that x is of @Q-type, D-type, SD-type and C-type, respectively.
Describe the numbers ng, np, nsp and ng purely in group theoretic
terms. In particular, for what 2-groups G, are all x € FIrr(G) of the same

type?

Let G be a metacyclic 2-group and x € Irr(G). We ask of what type
is x. We may assume that x is faithful. In lida-Yamada [8], we have
completely determined the type of any x € FIrr(G) for a metacyclic 2-
group G:

Theorem 5.5 (lida-Yamada [8§]).

(i) For x € FIrr(Qn), (n > 2), x is of Q-type.

(ii) For x € FIrr(D,,), (n > 3), x is of D-type.
(ii)’ For x € FIrr(Dy), x is of C-type.

(iii) For x € FIrr(SD,,), (n > 3), x is of SD-type.
(iv) For x € FIrr(M,), (n 2 3), x is of C-type.

Theorem 5.6 (lida-Yamada [8]). Let G be a metacyclic 2-group with
FIrr(G) # @. Suppose that G # Q, (n 2 2), D, (n 2 3), SD, (n = 3).
Then every x € FIrr(G) is of C-type except

G={a, b|a® =b* =1, bab~' =a1*?"""), 2t <n~-2).
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For the above groups G, every x € FIrr(G) is of SD-type.

For Problem 5.4, we have

Theorem 5.7 (lida~Yamada [8]). Let G be a metacyclic 2-group with
FIrr(G) # @. Then all x € FIrr(G) are of the same type.

As for irreducible rational representations of a metacyclic 2-group G,
we need to obtain a required pair {H, ¢} for each x € Irr(G). Again we
may assume ¥ is faithful. In lida-Yamada [10] we have explicitly given
a required pair {H, ¢} for each x € FIrr(G) of a metacyclic 2-group
G. Thus we have determined all irreducible rational representations of a
metacyclic 2-group (for the details, see Theorems 16-20 of Iida-Yamada

[10]).
6. Extensions of 2-groups

We have seen that the groups @, (n > 2), D, (n 2 3) and SD, (n 2
3) are most fundamental in the theory of representations of 2-groups.
Besides, they have the following remarkable properties, which characterize
them.

Theorem 6.1. Let G be a nonabelian 2-group of order 2"+, Then the
following conditions are equivalent.

(1) G=Q, or D, or 8D,

(2) The number of involutions of G is = 1 (mod 4). (Thompson)
(See [11, (4.9)] or [14, Theorem 6.2].)

(3) [G:G’] = 4. (Taussky) (See [6, Satz III, 11.9(a)].)
(4) G has class n. (See [6, Satz III, 11.9(b)].)

(5) G has no noncyclic abelian normal subgroup. (Roquette)
(The dihedral group D, of order 8 is the only exception among
@ny Dn,SDy.)

(6) The Artin exponent of G is not equal to 2". (Lam)

We would like to find properties, which characterize the groups @Q,, D
and SD,, in terms of irreducible complex characters. In Iida-Yamada [7],
we have proved:
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Theorem 6.2 (lida-Yamada [7]). Let n > 3. Then there exists one and
only one group G D Qy (resp. G D Dy,) such that [G : Q,] = 2 (resp. [G :
D] = 2) and € € Irr(G), where ¢ € FIrr(Q,) ( resp. p € FIrr(D,)). If
¢ € FIrr(SD,), then there exist only two groups G, and G, (G1 2 G2)
such that G; O SDn, [G;:8Dy] =2 and 9% € Irt(Gy), (i =1, 2).

This result originates from the work of Yamada [22], and might con-
tribute to characterize Qn, Dn, SD, in terms of irreducible complex
characters. In fact, let Go be an arbitary 2-group with FIrr(Go) # @ and
Go # Qn, Dn, SDp. It seems that usually, there are many groups G such
that [G : Go] = 2 and ¢C € Irr(G), where ¢ € Flrr(Go). But this problem
relies very much on future investigation.

Finally we mention that the groups G which satisfy the following con-
ditions are completely determined in lida-Yamada [7):

(i) G is an extension of Gy = Qy, D,, or SD;;;
(ii) [G : Go] = 2 or 4;

(iii) € € Irr(G) for ¢ € FIrr(Gy).

For the details, see Theorems 3-6 of [7].
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PROCEEDINGS OF THE 26TH
SYMPOSIUM ON RING THEORY, 1993

ON FINITELY GENERATED P.I. ALGEBRAS WITHOUT INFINITE SET
OF CENTRAL ORTHOGONAL IDEMPOTENTS

Masayuki OHORI

As was shown by Posner [9], every prime P.I. algebra has a
simple Artinian classical algebra of two-sided quotients, which
turned out to be the algebra of central quotients (e.g. [1l1,
Theorem 3.3]). On the other hand, semiprime P.I. algebras do
not necessarily have classical algebras of right (or left) quot-
ients ([3, Theorem 8], [11, Example 5.7]). A theorem of Rowen
[12, Theorem 1.7.34, p. 58] runs as follows: A semiprime P.I.
algebra R satisfies ACC on annihilator ideals if and only if
the algebra of central quotients of R is semisimple Artinian.
When this is the case, one can easily see that the algebra of
central quotients of R is a classical algebra of two-sided
quotients of R. In this paper we study algebras of central
quotients of finitely generated P.I., algebras without infinite
set of central orthogonal idempotents.

Throughout this paper ''ring' means "associative ring with
identity element" and '"‘algebra" means '"associative algebra over
a commutative ring.'" ‘'Ideal" means 'two-sided ideal.' For a
ring R, J(R) and P(R) denote the Jacobson radical and the
prime radical of R respectively. E(R) denotes the set of all
idempotents in R. For any non-empty subset X of a ring R,
we denote the right (resp. left) annihilator of X in R by

The final version of this paper will be submitted for publicati-
on elsewhere.



T (X) (resp. 2(X)).

Let K be a commutative ring and let R be a K-algebra
with center C. Let S be a multiplicatively closed subset of
C. The localization of R by S 1is denoted by Rg, which is a
K-algebra. If S consists of all non-zero-divisors of C(, RS
is called the algebra of central quotients of R and is written
QC(RJ. For details of localization, see [11, §3] or [12, §1.7].
Let R be a semiprime P.I. algebra with center C. If A 1is a
nonzero ideal of R, then A n C # 0 ([11], Theorem 2.10] or [12,
Theorem 1.6.27, p. 47]). Hence if ¢ 1is a non-zero-divisor of
C, then ¢ 1is a2 non-zero-divisor in R. For any ideal A of a
semiprime ring R, we have &(A) = r(A), which is called an ann-
ihilator ideal in R. As is easily seen, every annihilator ideal
in a semiprime ring is a semiprime ideal.

Let R be a finitely generated semiprime P.I. algebra over
a commutative Noetherian ring K. Then R has a classical alg-
ebra of two-sided quotients Q of R, which is semisimple Arti-
nian [10, Theorem 2.5, p. 108]. Noting that a finitely generat-
ed P.I. algebra over a commutative Noetherian ring satisfies ACC
on semiprime ideals [10, Corollary 2.2, p. 106], we see that Q
is the algebra of central quotients of R.

A ring R 1is called a right (resp. left) p.p. ring if eve-
ry principal right (resp. left) ideal of R is projective. R
is called a generalized right (resp. left) p.p. ring if for any
element a of R, there is a positive integer n such that
a"R (resp. Ra™) is projective.

We begin with the following

Proposition 1. Let R be a semiprime P.I. algebra with
center C and let Q = QC(R), the algebra of central quotients
of R. Suppose that C 1is a p.p. ring without infinite set of
orthogonal idempotents. Then Q 1is semisimple Artinian and
hence Q 1is a classical algebra of two-sided quotients of R.
If moreover R 1is right hereditary, then R 1is right Noetheri-
an.

Proof. By Small [4, Lemma 8.4, p. 112], C satisfies ACC
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on annihilator ideals. Hence by [12, Theorem 1.7.34, p. 58], Q
is semisimple Artinian. The last assertion follows from Sandom-
ierski ([4, Corollary 8.25, p. 124] or [13, Corollary 21).

Next we state and prove our main result.

Theorem 1. Let R be a finitely generated P.I. algebra
over its center C and let Q = QC(R). Suppose that C 1is a
generalized p.p. ring without infinite set of orthogonal idempo-
tents. Then Q/P(Q) has a classical ring of two-sided quotien-
ts which is semisimple Artinian. In particular, Q has no infi-
nite sets of orthogonal idempotents.

Proof. Let K be a classical ring of quotients of C.
Since C 1is a generalized p.p. ring, K is a w-regular ring and
E(K) = E(C) [6, Theorem 2]. Thus K has no infinite sets of
orthogonal idempotents. DBeing a reduced w-regular ring, K/P(K)
is a von Neumann regular ring without infinite set of orthogonal
idempotents. Hence by [8, Theorem 2.1], K/P(K) is Artinian.
(In fact, K/P(K) 1is a finite direct sum of fields.) The center
of Q is K [7, Lemma 1.1] and Q is a finitely generated P.I,
algebra over K. Hence Q/P(Q) 1is a finitely generated semipr-
ime P.I. algebra over K + P(Q)/P(Q), which is isomorphic to
K/P(K). The conclusion now follows from [10, Theorem 2.5,

p. 108].

Remark. As was noted previously, the above classical ring
of two-sided quotients of Q/P(Q) 1is the algebra of central qu-
otients of Q/P(Q).

The following corollary contains [5, Lemma 2].

Corollary 1. Let R be a finitely generated P.I. algebra
over its center C and let Q = QC(R). Suppose that R 1is a
right (or left) p.p. ring such that C has no infinite sets of
orthogonal idempotents. Then Q/P(Q) has a classical ring of
two-sided quotients which is semisimple Artinian. In particular,

85



R has no infinite sets of orthogonal idempotents.

Proof. If R is a right p.p. ring, then C is a p.p.
ring and every non-zero-divisor of C is a non-zero-divisor in
R [2, Corollary 8.2]. Hence R can be embedded in Q and our
assertions are direct consequences of Theorem 1.

As an application we obtain the following

Corollary 2. Let R be a finitely generated P.I. algebra
over its center C and suppose that C has no infinite sets of
orthogonal idempotents. If R 1is right semihereditary, then R
is left semihefeditary.

Proof. For every positive integer n, M(n,R), the ring of
n x n matrices over R, is a right p.p. ring ([4, Theorem 8.17,
p- 120] or [14, Proposition]) which is a finitely generated
algebra over its center C. M(n,R) 1is a P.I. algebra [10,
Chap. III, Theorem 3.2, p. 71] and hence it has no infinite sets
of orthogonal idempotents (Corollary 1). By Small ([4, Corolla-
ry 8.19, p. 121] or [14, Theorem 3]), R is left semihereditary.

Now we consider the special case in which R is a finitely
generated module over its center.

Theorem 2. Let R be a ring which is a finitely generated
module over its center C. Let Q = QC(R). If C 1is a genera-
lized p.p. ring, then J(Q) = P(Q) and Q/J(Q) is a von Neuma-
nn regular ring. In particular, if C is a p.p. ring, then
J(Q) 1is nilpotent.

Proof. Let K be a classical ring of quotienté of C. By
hypothesis K 1is a w-regular ring and Q is a finitely genera-
ted K-module. Hence Q/P(Q) is a module-finite semiprime
algebra over K/P(K), which is a von Neumann regular ring. By
[1, Theorem 1], Q/P(Q) 1is von Neumann regular and hence J(Q) =
P(Q). If C is a p.p. ring, then X is a von Neumann regular
ring [2, Lemma 3.,1]. Hence by [15, Proposition 2.2], J(Q) is
nilpotent.
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Corollary 3. Let R be a ring which is a finitely genera-
ted module over its center C. Let Q = QC(R).

(1) If C 1is a generalized p.p. ring without infinite set
of orthogonal idempotents, then Q/J(Q) is an Artinian ring.

(2) If C is a p.p. ring without infinite set of orthogo-
nal idempotents, then Q is a semiprimary ring.

Proof. (1) follows from Theorem 1 and Theorem 2. (2) fol-
lows from (1) and Theorem 2,

Finally we consider the center of a finitely generated
hereditary P.I. algebra.

Proposition 2. Let R be a right hereditary ring which is
a finitely generated P.I. algebra over its center C. Suppose
that C has no infinite sets of orthogonal idempotents. Then
C is a finite direct sum of Dedekind domains.

Proof. By hypothesis there are orthogonal primitive idemp-
otents €1s---s€) in C such that e, + ... +e_=1. Then we

n
have C = Ce1 ® ,.., © Cen, which is a Dedekind ring [5, §2, Cor-
ollary to Theorem 2]. Each Cei is a hereditary ring which has
no nontrivial idempotents; hence Cei is a Dedekind domain.

This completes the proof.

References

[1] E.P. Armendariz: On semiprime P.I.-algebras over commutati-
ve regular rings, Pacific J. Math. 66 (1976), 23-28.

[2] G.M. Bergman: Hereditary commutative rings and centres of
hereditary rings, Proc. London Math. Soc. (3) 23 (1971), 214
-236.

[3] G.M. Bergman: Some examples in PI ring theory, Israel J.
Math. 18 (1974), 257-277.

[4] A.W. Chatters and C.R. Hajarnavis: Rings with Chain Condit-
ions, Pitman, Boston-London-Melbourne, 1980.

[5] A.W. Chatters and S. Jéndrup: Hereditary finitely generated
P.I. algebras, J. Algebra 82 (1983), 40-52,

[6]1 Y. Hirano: On generalized p.p. rings, Math. J. Okayama Univ.

87



(7]

(8]

(9]

[(10]

f11]

[(12]

[13]

[14]

[15]

25 (1983), 7-11,

S. Jgndrup: Hereditary P.I. algebras, Ring Theory, Antwerp
1980, Lecture Notes in Math. 825, 63-75, Springer-Verlag,
Berlin-Heidelberg-New York, 1980.

1. Kaplansky: Topological representation of algebras II,
Trans. Amer. Math. Soc. 68 (1950), 62-75.

E.C. Posner: Prime rings satisfying a polynomial identity,
Proc. Amer. Math. Soc. 11 (1960), 180-183.

C. Procesi: Polynomial Identities in Ring Theory, Dekker,
New York, 1973.

L.H. Rowen: On rings with central polynomials, J. Algebra
31 (1974), 393-426.

L.H. Rowen: Polynomial Identities in Ring Theory, Academic
Press, New York-London-Toronto-Sydney-San Francisco, 1980.
F.L. Sandomierski: Nonsingular rings, Proc. Amer. Math.
Soc. 19 (1968), 225-230.

L.W. Small: Semihereditary rings, Bull. Amer. HMath. Soc.
73 (1967), 656-658.

J.A. Wehlen: Algebras over absolutely flat commutative
rings, Trans. Amer. Math. Soc. 196 (1974), 149-160.

Department of Mathematics

Faculty of Science

Shinshu University
Matsumoto 390, Japan

88



PROCEEDINGS OF THE 26TH
SYMPOSIUM ON RING THEORY, 1993

ON A GENERALIZATION OF MORITA DUALITY
AND ITS APPLICATION

KoicHiro OHTAKE

1. Introduction

It seems that there are two ways to generalize Morita duality. The one way
is done by defining a Morita duality between categories (especially Grothendieck
categories), for example [1], [3] and [5]. The another way is, by observing that a
Morita dulity is actually a duality between full subcategories of module categories,
to consider a duality between full subcategories of module categories in order that
the original Morita duaity can be obtained as a special case of it. In this report,
first we consider the latter case and then we consider the former case and also the
relation between them.

A full subcategory of an abelian category is called strongly exact if it is closed
under finite products, subobjects and quotient objects. Also a full subcategory of
an abelian category is called Giraud if the inclusion functor has a kernel preserving
left adjoint.

Now let R and S be rings with identity and let R-Mod and Mod-S denote
the categories unitary left R- and right S-modules, respectively. Let A and B be
strongly exact subcategories of R-Mod and Mod-S such that A D gR and B > Ss.
It is obvious that if there exists a duality between .4 and B then we can say that
there exists a Morita duality between R and S. As a generalization of this we say
that there exists a localized Morita duality between A and B if there exists a duality
between Giraud subcategories of A and B. A localized Morita duality is given by a
bimodule. In section 1 we give a necessary and sufficient condition in order that a
bimodule induces a localized Morita duality.

In fact we can say that a localized Morita duality is a special type of Morita
duality between Grothendieck categories. Let 4 and B be Grothendieck categories.

The detailed version of this paper will be submitted for publication elsewhere.
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Suppose there exists a duality C & D, where C and D are strongly exact subcat-
egories of A and B and moreover each of them contains a generator for A and B.
Then we call such a duality a strong Morita duality between A4 and B. In section 2
we will see that a strong Morita duality induces a localized Morita duality.

If R is a QF-3 ring with minimal faithful modules Re and fR then it is well
known that the bimodule y gy f Re g, defines a Morita duality. In section3d we gen-
eralize this fact.

In section 4 we give an application of section 3 and some examples.

2. Localized Morita duality

First we note that if an abelian category A is given then there exists a bijective
correspondence between Giraud subcategories of A and strongly hereditary torsion
theories in A ([14]).

THEOREM 2.1 [11]. Let R and S be rings with identity. Let A and B be strongly
exact subcategories of R-Mod and Mod-S such that A 3 pR and B 3 Ss. Moreover
suppose L and L' are Giraud subcategories of A and B, respectively. Then there
exists a duality £ & L' if and only if there exists a bimodule pUs which satisfies
the following conditions.

(i) Forall X € A andY € B, Homp(X,U) € B and Homs(Y,U) € A hold.

(ii) For all X € A and Y € B, the canonical homomorphisms

nx : X = Homg(Homp(X,U),U) and

7y : Y = Homg(Homs(Y,U),U)

give localizations with respect to the torsion theories corresponding to £ and L',
respectively.

Again let A be an abelian category. An object A € A is said to be QF-3" if for
a monomorphism f : X' — X in A Homx(X’, A) = 0 whenever Hom(f, A) = 0.

LEMMA 2.2. Let A be a strongly exact subcategory of Mod-R and W € A. Let
(X)) =n{Kerf|f € Homp(X,W)} for X € A. Then the following assertions are
equivalent.

(1) W isa QF-3" object in A.

(2) Forany X € A, t(X)=n{Kerf|f € Homg(X, E(Wg))}.

(3) t is a left exact radical of A.

(4) If W QY is an essential extension of Wgr and Y € A then t(Y)=0.

In the preceding lemma, if U is QF-3" then the radical ¢ corresponds to a
hereditary torsion theory in A. This torsion theory is said to be cogenerated by U.
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Definition. A bimodule gpUs defines a localized Morita duality if there exist
strongly exact subcategories A C R-Mod and B C Mod-S which satisfy the follow-
ing conditions.

(i) rRR,RU € A and S5,Us € B.
(ii) Foral X € Aand Y € B, Homg(X,U) € B and Homg(Y,U) € A hold.
(iii) For all X € 4 and Y € B the canonical homomorphisms

nx : X — Homgs(Homp(X,U),U) and

n, : Y — Homp(Homs(Y,U),U)

are localizations with respect to the torsion theories cogenerated by gU in A and
- Us in B, respectively.

rM is said to be a QF-3" module if it cogenerates every finitely r(M & R)-
generated submodule of E(pM). Also a ring R is said to be left QF-3" if pR is a
QF-3" module ([5]).

THEOREM 2.3 [11]. A bimodule gUs defines a localized Morita duality if and only
if the following conditions are satisfied.

(i) rU and Us are QF-3" modules.

(ii) pU and Us are divisible with respect to the hereditary torsion theories cogen-
erated by E(prU) and E(Us), respectively.

(iii) The canonical homomorphisms R ~ Ends(U) and S — Endp(U) are localiza-
tions with respect to the torsion theories described in (ii).

3. Morita duality for Grothendieck categories

ProprosITION 3.1 [12]. Let G be a Grothendieck category with a generator U
and R = Endg(U). Let A be a strongly exact subcategory of G such that
U€A. Then A is category equivalent to a Giraud subcategory of a strongly
exact subcategory of Mod-R which contains R.

Now let G, and G2 be Grothendieck categories. suppose there exists a strong
Morita duality D), @ D; between G, and G,. Let U; € D; be generators for G;
and let R; = Endg (U;). By the preceding proposition there exist strongly exact
subcategories A; C Mod-R; such that R; € A; and Giraud subcategories £; of Ai
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such that L; are category equivalent to D;. Thus we have a diagam

Mod — R, Mod — R»
U U
A G G, A
1l U U 1l
D,
Ly ~ D DT—’ Dy ~ La.

We may identify Mod-R, as R\°’-Mod. Let V = Homg,(Uz, D1(U,)). Then V
is canonically a right R;-module. But since D; is contravariant V is canonically
a left R;°"-module. Thus if we look at the proof of Theorem 2.1 we know that
Rrer VR, defines a localized Morita duality between A4; and As.

Now we just knew that a strong Morita duality between Grothendieck categories
is categorically equivalent to a localized Morita duality. Does the converse hold?
The answer is affirmative. In fact every localized Morita duality is a strong Morita
duality between Grothendieck categories (see [12, section 3]).

4. Duality induced by sU ®g V1

A Morita context is a couple of bimodules < Us,s Vr > together with bilinear
maps (, ): U®sV — Rand [, | : V®gr U — S such that the associativities
(u, v)u' = ufv, '] and [v, u]v’ = v(u, v’) hold.

Throughout this section we fix a 4-tuple of bimodules < gls,s Ug,r V7,
TAr > which satisfies the following conditions.
(i) < Rrls,sUgr > forms a Morita context with trace ideals rlg and sJs,
and UI=U and Judu (Vu€U) hold.
(1Y < RrVr,sAg > forms a Morita context with trace ideals pKgr and L7,
and KV =V and vL>v (Vve V) hold.
(#) Ugis a QF-3’ module with E(Ug)-dom.dim.Ug 2 2.
(#1) RV is a QF-3' module with E(grV)-dom.dim.pV 2 2.
(it]) AnnyK = 0 = Annyl, where AnnyK = {u € U | uK = 0} and
Annyl ={veV|Iv=0}.

Let Gen(sU) be the full subcategory of S-Mod consisting of all sU-generated

modules. Gen(Vr) is defined similarly. Then Gen(sU) = {sX| JX = X} and
Gen(Vr) = {Yr| YL =Y} hold. Moreover they are Grothendieck categories.

LEmMMA 4.1 [12]. U®RV is a QF-3" object in both of Gen(sU) and Gen(V7).

For X € S-Mod and Y € Mod-T let 1;(X) = JX and #3(Y) = YL. Then
by the conditions (i) and (i)’ ¢; and t; are exact radicals. Let D, : Gen(sU) =
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Gen(Vr) : D be functors defined via Dy (X) = t5(Homs(X,U®gV)) and Do(Y) =
L(Homr(Y,U®rV)).

LEMMA 4.2 [12]). Dy : Gen(sU) = Gen(Vr) : D, are (right) adjoint functors to
each other.

Let 5 : 1Ggen(sv)y — D2D1 and o ¢ 1Gen(v) = D1 D2 be adjunctions. Since
U®RrV is QF-3" in Gen(sU) and Gen(Vr) it cogenerates hereditary torsion theories
(7,F) in Gen(sU) and (7', F') in Gen(Vr). The following is the most important
result.

THEOREM 4.3 [12]. Let A = {X € Gen(sU)|n, is a localization with respect
to (T,F)} and B ={Y € Gen(Vr) |7, is a localization with respect to (T', F')}.
Then A and B are strongly exact subcategories of Gen(sU) and Gen(Vr) such
that Ue€e A and V €B.

Next let £ = {X € Gen(sU)|ny is an isomorphism } and L' = {Y €
Gen(Vr)| 7', is an isomorphism }. Then £ and L' are Giraud subcategories of
A and B, respectively. Moreover the duality between £ and L' induced by D,
and D, is a strong Morita duality between Giraud subcategories of Gen(sU)
and Gen(V7).

5. Application and examples

The following is a result of combinations of duality and equivalences.

THEOREM 5.1 [12]. Let <g I's,s Up,r Vr,r Ar > be the same as section 1. Then
rEnds(U)g (= Endr(V)) defines a localized Morita duality.

CoROLLARY 5.2 [12]. Let the situation be the same as Theorem 2.3. Then the
following assertions are equivalent.

(1) Ug is faithful.

(2) Ends(U) is a maximal left quotient ring of R.

(3) Ends(U) is a maximal right quotient ring of R.

(4) Ends(U) is a maximal (left and right) quotient ring of R.

(1) RV is faithful.

(2)) Endr(V) is a maximal right quotient ring of R.

(3)) Endr(V) is a maximal left quotient ring of R.

(4)) Endr(V) is a maximal quotient ring of R.

THEOREM 5.3. Let the situation be the same as Theorem 5.1, Then
rEnds(U)r defines a Morita duality if and only if the following conditions are
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satisfied.

(i)I=K=R.

(ii) sU and Vr contain each of their simple factors.

If these conditions hold then R ~ Endg(U) holds. Hence R is a PF-ring.

Proof. Suppose pEnds(U)g defines a Morita duality. In the diagram after
Lemma 2.2 of [12], gR € H(L) and moreover H(L) is a strongly exact subcategory
of a~'(H(A)) (hence of R-Mod) by assumption. Hence, in particular, R/J € ;L.
This implies I = R. Similarly K = R holds. Since H(L) is a strongly exact
subcategory of H(A), L is also a strongly exact subcategory of A. Hence by [12,
Proposition 2.5] sU contains every simple factor of itself. Similarly Vr also contains
every simple factor of itself.

Conversely suppose the conditions hold. Then we can say that H(L) and
H'(L') are strongly exact subcategories of R-Mod and Mod-R by [12, Proposition
2.5 and Proposition 2.7). We note that Ug is faithful because Ur = 0 implies
0 = (T,Ur) = (T,U)r = Rr. Since gEnds(U) € H(L) and R — Ends(U) is a
monomorphism, R € H(L) holds. Therefore R ~ Ends(U) and gRgp defines a
Morita duality.

For the rest of this section we give several examples. If a module Uy, is given
with § = Endg(U) then < sUg,gr Us > forms canonically a Morita context, where
U® = Hompg(U, R). This context is called the derived context of Ur. From now on
we mean every Morita context is a derived context.

Example 5.1 [12]. Suppose Ur and gV are both faithful projective injective.
Then the 4-tuple < rUg,sUr, rVr,TVgy > satisfies the conditions (i) ~ (iii) of
section 3.

Example 5.2 [12). Let R be left or right artinian and Ug projective injective.
Then there exists a projective injective module gV such that the 4-tuple <
RUS,sUR, RV, TVR > satisfies the conditions (i) ~ (i) of section 3. Thus in
particular p Ends(U)g defines a localized Morita duality.

Example 5.3 [12]. Let K be a field and A be an infinite set. Let R = K be the
direct product of copies of K with index set A. Let Ur = RE. Then Up is injective
but not projective. However < rUS§, sUr, rUr,TU}, > satisfies the conditions of
section J.
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SYMPOSIUM ON RING THEORY, 1993

ON LEFT DUAL-BIMODULES

Yoshiki KURATA

In this talk we shall single out some of results from [6]. [7] and [8] to
explain the notion of left dual-bimodules.
A ring R with identity in which

A= Cm-n(A) and B = PR"R(B)

hold for every left ideal A and every right ideal B of R is called a dual
ring. As is well-known, a QF-ring is nothing but a dual ring, when it is
Artinian. Hence it is interesting to study dunal rings.

From the 1930’s dual rings have been investigated by many authors
including R. Baer(2], M. Hall[3], I. Kaplansky[5] and L. A. Skornjakov|[9].
Recently, C. R. Hajarnavis and N. C.Norton (4] have studied dual rings
and pointed out that certain properties well-known for QF-rings are also
seen to hold without the Artinian assumption. Motivated by the last
paper, we have introduced in [6] the notion of left dual-bimodules and
tried to give a module-theoretic characterization of dual rings.

Let R and S be rings with identity and Qs an (R, S)-bimodule. We
shall call Q a left dual-bimodule if

[qu(A) =4 and TQ[R(Q’) = Q’

for every left ideal A of R and every submodule ¢ of Q5. A right dual-
bimodule is similarly defined. We shall call Q a dual-bimodule if it is a
left dual-bimodule and is a right dual-bimedule as well.

Trivially a dual ring is a (ual-bimodule. A bimodule which defines
a Morita duality is a dual-bimodule. Furthermore. a dual-bimodule is a
quasi-Frobenius bimodule in the sense of G. Azumayall].
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1. We shall begin with a more concrete example of a dual-bimodule.

Example 1. Let p be a prime number and
R={a/be Q] (a.b)=1,ptb},

where @ is the field of rational numbers. Then R is a local ring with the
unique maximal ideal Rp and nonzero proper ideals of R are exhausted
by Rp", n > 0.

Let Q = Q/R. Then @ is an (R, R)-bimodule and the only nonzero
proper submodules of Qg arc those of the form p~"R/R for some n > 0.
Since ro(Rp") = p™"R/R and (g(p™"R/R) = Rp". Q is a left dual-
bimodule. Likewise it is a right dual-bimodule.

For some kind of rings, for example, semisimple rings and simple Ar-
tinian rings, left dual-bimodules have more specific forms. Indeed, if R is
semisimple, for any R-module gQ with S = End(zQ), zQs is a left dual-
bimodule if and only if gQ is a cogenerator. Furthermore, every nonzero
left R-module with its endomorphism ring S is a left dual-bimodule if
and only if R is simple Artinian.

The notion of left dual-bimodules is closed under Morita equivalence,
i.e. if pQs is a left dual-bimodule and if T is a ring equivalent to S via
an equivalence H: mod-S — mod-T, then s H(Q)r is also a left dual-
bimodule. Hence, for any left dual-bimodule Qs and any n > 0. rQ(,,
is also a left dual-bimodule.

2. For an (R, S)-bimodule ;Qgs, consider the full subcategory M of
R-mod of finitely generated (J-torsionless R-modules and the full subcat-
egory N of mod-S whose objects are all the S-modules NV such that there
exists an exact sequence of the form 0 = N — Q" — @/ for some n > 0
and a set I. Let (H', H") be a pair of functors

H' = Homp(-.Q): M — N and H" = Homg(—,Q): N - M
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and let A : R — End(Qs) be the natural homomorphism.

Theorem 2. For an (R, S)-bimodule zQs, consider the following
conditions:

(1) Qs is quasi-injective and A is surjective.

(2) The pair (H', H") defines a duality between M and N.

Then (1) implies (2). If @ is a left dual-bimodule with zQ finitely
generated, then (2) implies (1).

As is seen from the following example, (2) => (1) is not true in general
without the assumption that @ is a left dual-bimodule.

Example 3. Let R be the ring of 2 x 2 upper triangular matrices
over a field and let @ = gRp. Then @ is neither a left dual-bimodule
nor quasi-injective. However, the pair (H', H") defines a duality between
M and N, since M is the full subcategory of R-mod of finitely generated
R-modules and N is the full subcategory of mod-R of finitely generated
R-modules.

Theorem 4. Let zQ@s be a left dual-bimodule. Then the following
conditions are equivalent:

(1) Qs is quasi-injective and A is surjective.

(2) Every cyclic left R-module is Q-reflexive.

(3) Every finitely generated Q-torsionless left R-module is ()-reflexive.

Morecover, if cach one of these conditions holds, then R is semiperfect.

If Q is a dual-bimodule and Qs is Noetherian, then @ satisfies the
equivalent condition of Theorem 4. However, without the assumption
that @ is a left dual-bimodule, (3) = (1) in Theorem 4 is not true in
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general, as is seen form Example 3. In that example R is left and right
Artinian and is hereditary. Hence. every Q-torsionless left R-module is
projective aid thus every finitely generated Q-torsivnless left R-module
is Q-reflexive.

Theorem 5. Let pQg be a left dual-bimodule with Qs quasi-injective
and A surjective. Then

M = {gM | M is finitely generated Q-reflexive},
N = {Ns | N is finitely cogenerated Q-reflexive}.

Moreover, N coincides with

{Ns5 |0 — N — Q" is exact for some n > 0}.

3. The following theorem points out that the linearly compactness of
R is closely related to the existence of some kind of left dual-bimodules.

Theorem 6. A ring R is lincarly compact if and only if there exists a
left dual-bimodule rQs such that s is linearly compact quasi-injective
and X is surjective.

A subcategory of the module category is called finitely closed if it
is closed under submodules, factor modules and finite direct sums. Let
FG be the full subcategory of finitely generated left R-modules and let
FG be the smallest one of the finitely closed subcategory containing FG.
Likewise N denotes the smallest one of the finitely closed subcategory
containing N. Then those left dual-bimodules mentioned in Theorem 6
can be characterized by means of a duality.
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Theorem 7. Let gQs be a left dual-bimodule with @ finitely gen-
erated and X surjective. Then the following conditions are cquivalent:

{1) @s is huearly compact and quasi-injective.

(2) The pair (H'. H") defines a duality between FG and N.

(3) rQ is an injective cogenerator.

4. Finally we shall refer to the endomorphism ring of left dual-
bimodules. First we shall remark the following:

Theorem 8. Let Qs be a left dual-bimodule with Qg quasi-injective
and X surjective. Then (H'. H") defines a duality between the Bnitely
generated left ideals of R and the finitely cogenerated factor modules of

Qs.

Using this theorem. we can give a necessary and sufficient condition
for R to be left semihereditary or left colierent.

Theorem 9. Let ;Qs be a left dual-bimodule with Qs quasi-injective
and ) surjective. Then the following conditions are equivalent:

(1) R is left semihereditary.

(2) Every finitely cogenerated factor module of Qs is @-injective.

(3) For every finitely generated left ideal A of R, A* = Homg(A4,Q)
is Q-injective.

In particular. if R is a dual ring, R is left semihereditary if and only
if It is semisimple.

Theorem 10. Let zQs be a left dual-bimodule with @s quasi-
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injective and A surjective. Then the following conditions are equivalent:
(1) R is left coherent.
(2) For every finitely cogenerated factor module Q/Q' of Qs, there
exist integers n,m > 0 such that

0-Q/@ - Q" -Q"

is exact,
(3) For cvery finitely generated left ideal A of R, there exist integers
n,m > 0 such that

-O—DA'—DQ"—PQ"'

is exact.

(4) For every integer n > 0 and every S-homomorphism f: Q — Q"
there exist an integer m > 0 and an S-homomorphism g : Q" — Q™ such
that

Q- Qe Q

is exact.

(5) For cvery integer n > 0 and every R-homomorphism f: zR" —
rR there exist an integer m > 0 and an R-homomorphism ¢g: zR"™ —
rR" such that

R" R~/ R

is exact.

For example, in Example 1, let @' = p~'R/R. Then QY is a left dual-
bimodule, where R = R/Rp. In this case, R is trivially left semihereditary
and is left coherent.
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