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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

REPRESENTATION THEORY OF q-SCHUR ALGEBRAS AND HECKE ALGEBRAS

Mitsuhiroc TAKEUCHI

The Schur algebra SK(d,n) is associated with polynomial
representations of GLd of degree n. If E 1is a d-dimensional
K-vector space, the symmetric group W = Sn acts naturally on
E®n on the right, Schur's reciprocity law tells that the Schur
algebra SK(d,n) is isomorphic to the endomorphism algebra of the
right KW module Ee? Here, the base field K 1is arbitrary and
KW denotes the group algebra. This gives a direct relationship
between degree n polynomial representations of GLd (for various
d) and representations of the group algebra KW. This classical
theory was reviewed in my talk of the first day and will be omitted
in this report. See Green's book [1].

Throughout the report, we fix the base field K, a non-zero
element q 1in K, and the number n. We put W = Sn the symmet-
ric group on n 1letters. The q-Schur algebra SK’q(d,n), a q-
analogue of SK(d,n), has been introduced by Dipper-James [2] to
study unipotent representations of the finite general linear group
GLn(q) with q a power of a prime. Later, it has been combined
with degree n polynomial representations of some quantum GLd [3]
and its representation theory has been deduced frcm the represen-
tation theory of the Hecke algebra to establish a complete analogue
of the classical theory [4,5].

The purpose of this note 1s to give an elementary introduction

This expository paper is in final form, but there is.some possibi-
1ity for some material to overlap with the author's other papers.



to the representation theory of g-Schur algebras and Hecke algebras.
I will also talk about my own contributions [6,7].

1. Quantum GLd

Various versions of gquantum GLd have appeared. I consider
it is most convenient to use the 2-parameter quantization of the
author [6].

Take two non-zero elements a, B 1In K such that aB =
Define the K-algebra AK,a,B(d) by generators X;j,...>Xyq and

the fcollowing relations:
= ax if J < k,

<3,

Xix*ij i3%1k

e

Xtk = BRanXye i
_ -1 - -1
X5xXig = Ba Xp9%5k0  Xyp¥gp ~ Xyp¥yg = (B-a )xuxJk
if 1< j, k < 2.
This algebra 1s a polynomial algebra in XyqseresXgqe This means
if we give an arbitrary total ordering on these generators, then
the set of all monomials (relative to the given ordering) forms
a basis, This algebra has the following blalgebra structure:

d
A(xy4 ) = zj=1 Xg4 8 Xgps E(xij) = Gij‘

There is a group-like element g called the guantum determinant.
It is defined by

_ -2{0) " - ~-%(0)
g = ZU(—G) xl,a(l)...hd’o(d) = ZU(_B) xo(l)’l...xc(d),d
the sum over all ¢ in Sd' The guantum determinant g satisfies

Xy48 = (Bu_l)i_‘jgxiJ

so that the localization Ay (d)[v ] is defined by Ore's
method. If we extend the bialgebra structure to this localization
by making g'l intc a group-like element, then this becomes 2a
Hopf algebra, i.e., a bialgebra with antipode. The twc-parameter
quantization of GLd relative to (a,B) 1s defined to be the
quantum group associated with the Hopf algebra AK’Q’B(d)[g_ll.

By a polynomial repregentation of the quantum GLd, we mean

a right comodule for Ay o B(d). As an algebra, it 1s graded:
> b



AK,a,B(d) - ®n=OAK,a,B(d’n)

where (d,n) 1is the n-th component which is a subcoalgebra

A

K,a,B
of finite dimension. Right comodules for AK a B(d,n) are iden-

b b
tified with polynomial representations of degree n.
The coalgebra structure of A (d) and A (d,n)
K,a,B Kya,B

depend on the product aB = q. This mecans if we are given another

pair of parameters a', B', then aBf = a'B' implies that
Ao, 800 = Ay ar, (@05 By g g(din) = By g peldsn)

as coalgebras. This property is called the hyperbolic invariance
[8]. This yields we can put

com AK,a,B(d) = ﬂx’q(d)

the category of all (finite dimensional) right AK a B(d) comodules
] b

or the category of all (finite dimensional) polynomial modules for

the gquantum GLd. We can also define the dual algebra

(d,n) = A (d,n)*¥

SK,q K,a,B
which 1is called the g-Schur algebra. The category of all (finite
dimensional) left modules for Sy q(d,n)

’

mod SK,q(d,n) =M, .(d,n)

is identified with the category of (finite dimensional) polyromial
modules of degree n.

The quantization assoclated with a = B i1s the most standard
one , while Dipper-Donkin [3] uses the pair (o,B) = (1,q).

2. The Hecke algebra, a q-analogue of KW
We define the Hecke algebra A¢==ﬁ& q(W) by generators
b

Tl,...,Tn_1 and the followirg defining relations

1) (T4-q)(T4+1) = 0,

ii) T1T1+1Ti = T1+1T1Ti+l’

iii) TiTj = TjTi if |i-3| > 1.
A transposition of the form s, = (a,a+tl) 1s called basic. We

can write any permutation % in W as a product of & = g(m)

number of basic transpositions 1w = Sy ee+Sy Such an expression
1 2



is calle¢ recduced. Then, the product TTT = Ti ...Ti is well-
defined, and the set Tﬂ, 7 in W forms a ba%e of %he Hecke
algebra AL If q = 1, the Hecke algebra reduces to the group
algebra KW, If gq 1s a power of a prime number, then H%’q(W)
colncides with the Iwahori-Hecke algebra HK(G,B) where G =
GLn(q) and B the upper Bcrel subgroup.

3. The reciprocity law, or the double centralizer property
Let E be a d dimensional K vector space with a base

on

€15+005€4" The K space E has a base

e, = eil ® ... ® ein, i= (11,...,1n) in I(d,n)

where 1I(d,n) denotes the set of all sequences 1 with 1 <
i.,+..,1 < d. This space has the following right A (d,n)

1 n — K, x,8
comodule structure

e5 ™ Ly 1n 1(d,n)%1 @ X1y
where

Xys = X, 2 o»0X .
1J i131 injn

Hence it 1is an object in ﬂK’q(d,n) and has a left SK,q(d,n)
module structure.

On the other hand, there 1is a right A module structure
on g®n described as follows: Let 1 be in I(d,n) and let

s = (a,a+l) a basic transposition. We define
qeiS if 1. =1
eiTs = Beis if ia < 1

(q-l)ei +ae, o 1f 1 >4

One checks that thls makes E@n into a right Af module whose

structure also depends only on the product q = aB.
The above structures make E@n into a bimodule (left S

K,q
(d,n), right Af). The canonical algebra map ’
én
Sg,q(dsn) * End (E°™)

is an 1somorphism. This 1s a g-analogue of Schur's reciprocity
law [1,p.28].(See [3,8] for the proof). This characterizes the



g-Schur algebra as Lhe endomorphism algebra of some A module. It
follows immediately that q(d n) is semi-simple if A 1is semi-
simple. This occurs when [nJ[n—l]...[l] # 0, where [1] =

q+ ... + qi-l.

ly, Compositions and partitions

A composition of n means a sequence X = (xl,xz,...) of
integers > 0 whose sum is n. Let ((n) be the set of all
compositions of n which is the union of A(d,n) for 4 > 1,
where A(d,n) denotes the subset of all compositions A with
Aa =0 1if a > d.

A partition of n means a composition A of n such that
Ap 2 A5 2 A5 > ... Let ;P(n) be the set of all partitions of n
which is the union of A" (d,n) = P(n)NA(d,n), d > 1. It coincides
with A+(n,n). Let A, uw be two compositions of n. We write
A vy If there is a permutation o such that lo(i) =y for
all 4i. Obviously, the set FP(n) forms a complete set of
representatives for the eguivalence relation ~.

Each composition A has the dual partition A' defined by
Aé = the number of b with Ab > a.

For example, we have (2,0,1,3,3,0,0,...)" = (4,3,2,0,0,...).
We have A vy if and only if A' = u',

Some ordering, called the dominance ordering, is defined on
P(n). Let A, u be two partitions. We write A 9y 1if

Al + ... + Aa < ul

The largest (resp. smallest) element is (n) (resp. (1,1,...,1)).
We have X 4 u 1if and only if u' 9 A'.

Some standard A-tableau tA is associated with each composi-
tion X as shown by the following example:

toeea by for all a > 1.

1 2

_3
k56
789 10

£251,3,4

(In general, compositions are denoted by finite sequences (Al,...,
A ) for sufficiently large d4.) Let Y, = R(t ) the row stabi-



lizer of tk. This subgroup of W 1is called the Young subgroup.

A permutation d 1is distinguished relative to A 1if the A-tableau
d-l(tk) is row-standard, i.e., if g1
row of tA. Let é} be the set of all permutations distinguished

relative to A. Then we have

is increasing on each

W=y, xJ:A.

(resp. yA) be the sum of all T_ (resp. (—q)-l(")T“) for
These are g-analogues of the Young symmetrizer (resp.

Let Xy
7 1in YA'
anti-symmetrizer).

The right ideal x,A has a K-basis x,T;, d in ’br For
two compositions A, w, A A~ u implies xyﬂ = xuﬁé and ykﬁ+= yu;+
as right A$ modules,

5. Generalization of the g-Schur algebra
Let A be a finite subset of ((n). Let M, be the direct
sum of right Af modules xAH for X in A. We put

S, = EndH(M

on

A)‘
in 3. is isomorphic to MA(d n) [3,8].

A
The right &4 module E
It follows from the g=-Schur reciprocity law that

Sq(d,n) = SA(d,n)'

In this sense, our algebras SA are generalizatlons of the g-
Schur algebras Sq(d,n).

The representation theory of the Hecke algebra k¢ has been
established in [4], and the representation theory of g-Schur
algebras are deduced from it in [5]. We can apply this technigue
to deduce the representation theory of algebras SA quite parallel
to [5] (see [7]). The main results will be reviewed in the follow-
ing.

For each X 1in A, let EA: MA - xﬂ#- be the projection.

We have orthogonal idempotents EA (A in A) 1in SA whose sum
is 1. If V 1is a left SA module, it 1s the direct sum of K sub-
spaces VA = EAV’ the A-weight space. If two compositions i, u
in A are equivalent under ~, there are f, g 1in SA such that

- = - Al u
EA = fg and Eu = gf. This imnlies dimKV = dimKV .



(In case A = A(d,n), this means the formal character

A A
A1 d
dimKV Xl ...Xd

®y = I in A(d,n)
is a symmetric function.)
The algebra SA is the direct sum of subspaces EASAEH, A,u
in A and we can identify

EASAEu = HomHﬁxukngkD
which has the following K basis (independently of q). Let
J(u,A} be the set of all u-tableaux of type A. For example

13
A=31
121
is a (2,2,3)-tableau of type (4,1,2). There is a bijection A
It (u,r) = & , Where dA maps every entry of t¥ which
appears at A'l(a) to an entry of t in row a, preserving the

+«+ d

ocrder. In case of the above example, we have

1457 1234 A
dA: 6 > 5 = t°,
23 6 7

For each u-tableau A of type A, there is a Af homomorphism

Opt xuﬁ4+ X\ bt defined by

opx,) = zBmAxdeB
the sum over all B in J(u,A) which are row-equivalent to A.
The homomorphisms ¢, for all row-standard A in (u,2) form
a K basis of EASAEu'

6. Weyl modules

If X 1is a composition of n, the K space xeyl, is one
dimensional with basis z, = x)‘T,’r Yyrs where the permutation LY
is defined in a manner indicated éy the following example:

15 12
e g 68 E 56 = tx, where X = (2,1,3,2).
B 7 78 '

If A 1is in A, we may think 2, is an element in MA. The sub-



module SAZA = wx of MAyA' is called the Weyl module correspond-
ing to A. If two welights X, uw in A are eguivalent under =,
+

then wx = wu. Let A be the set of partitions a such that

e~ A for some A 1in A. We can well-define wa to be wA.

Let X be a composition in A and u a partition in A+.
The A-welght space (wu)A = EASAEuZu has the following K basis:
¢4z, for all A in J(u,%) which are row-standard and strictly
column standard. (Semi-standard basis theorem). This implies
dimK(wu)A does not depend on K or q. In case A = A(d,n), it
follows that the Weyl module wu has the Schur function éu as
its formal character.

The Weyl modules are highest welght modules in the sense
that (wu)“ 1s one-dimensional and (wu)A # 0 implies X Q

for A, v 1in A+.

7. Irreducible (or simple) S, modules

If [n]! # 0, the Weyl modules wu are irreducible for all
v in A+. In general, there 1s a unique maximal submodule
wﬁax of wu. In fact, wﬁax = wur\w: relative to some symmetric
non-degenerate invariant inner product on MAyu" The quotient
modules Fu = wu/wﬁax are absolute1y+1rreducib1e selfdual and
mutually non-isomorphic for u in A .,

Let A, u be two partitions of n such that X p u. Assume
that if u 1is in A+, then X 1is also in A+. For instance,
A = A(d,n) satisfies this condition. With the above assumption,
the set of modules Fu’ ¥ in A+ makes a complete set of
representatives for the isomorphism classes of all irreducible
5, modules. For A, u 1in AT, let d,, be the multiplicity of
Fu as a composition factor of WA. The decomposition matrix
(dku)l,u in At 1s lower triangular in the sense that 4,, =1

and dMl # 0 implies A ¢ yu.

8. Schur functors
If e 1s an ldempotent of a finite dimensional K algebra S
we have a functor of Schur type [1,6.2]:

f: mod 8 + mod eSe, V » eV,



As in the classical case, there are two applications.
Let Al and A2 be two finite sets of compositions of n

such that AI_C.A2. There is an idempotent e in SA such that

eM =M, , hence eS, e = § so that we have a funcgor of Schur
A Al A2 Al
typg:
f: mod SA2 -+ mod SAl.
Let wii) denote the VWeyl module for SA and Fﬁi) its irredu-

cible quotient. Assume that both A; ana A; satisfy the con-

dition mentioned in 7. For any X 1in A;, we have

f(w§2)) - wil) and f(F§2)) - Fil) if A is in A}

f(w§2)) =0 = f(F§2)) otherwise.

It follows that for any partitions X, w the decomposition number
dku does rniot depend on the choice of labellings A containing

A and u, so that the matrix An = (dlu)k,u in P(n) is well-
defined. This matrix is obtained in [9] for n < 10 and q
prime powers.

As a second application, assume A 1s full in the sense

that At = P(n). There is w in A which has only 0 and 1
as its parts. Then X, = 1l and if we put e = Ew we have
eSAe = A so that we have a functor of Schur tvpe

f: mod S, + mod A.

This 1s a g-analogue of the classical Schur functor. For any
partition A of n, f(wk) =A¢zx, the Specht module, and the
module f(FA) is absolutely irreducible or zero. Dipper-James
[4] has proved the following important criterion. Let e be the
smallest integer 1 > 1 with [i] = 0. We put e = =« if such an
integer does not exist, If q # 1, e equals the order of q.
If q = 1, e equals char(K) (in positive characteristic) or «
(in characteristic zero).

Irreducibility Criterion. For a partition XA of n, f(FA)
is non-zero if and only if Xx_ - A

a a+l
Such a partition is called column e-regular. The set of

< e for all a > 1.

f(FA) for all column e-regular partitions A exhausts all irre-
ducible A modules and mutually non-isomorphic. It follows that

9



the part of the matrix An consisting of all columns v which

are column e-regular can be interpreted as the decomposition matrix
of the Hecke algebra Af. If in particular e > n, then all parti-

tions are column e-regular and we have r(FA) =}4ZA' In this

case Af and S
ry equivalence,

A are semi-simple and the functor f 1s a catego-
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LINEAR ACTIONS OF Ga ON POLYNOMIAL RINGS

NOBUHARU ONODA

1. Introduction. Throughout this paper we fix an algebrai-
cally closed field k of characteristic p 2 0. Let C be a
k-algebra and let S = C[xl,---,xn] be a polynomial ring in n-
variables over C. Then, for an element M of GLn(C), we
denote by wM the C-algebra automorphism of S defined by
wM(f) = f((xl,---,xn)M), where f = f(xl,---,xn) is an element
of S.

Let G be an algebraic group over k and let p : G —
GLn(k) be a rational representation of G. Then we have a lin-
ear action of G on a polynomial ring A = k[xl,---,xn] by
letting o-f = wp(o)(f) for 6 €6 G and f ¢ A. VWe will call it
the action of G on A associated with p. When G acts on A
AG stands for the ring of invariants, namely, AG = {f e Alo-£
= f for every ¢ ¢ G}.

In this paper we are interested in the case where G 1is the
additive group Ga of k. The purpose is to study properties
of R = A,

The paper has three sections. In the second section we show
that R is Gorenstein if ch(k) = 0. 1In the third section we
calculate the Poincaré series of R and we show that R is not
a complete intersection in general.

The detailed version of this paper will be submitted for publi-
cation elsewhere.
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2. Cohen-Macaulay property. We identify Ga with the sub-
1 2
group { (0 1) |x € k} of SL,(k). For a positive integer m,

we denote by Pm the representation SLz(k) —_— GLm(k) defined

a b . . i-1
by Pm ((c d)) = (aij), where aij is the coefficient of X

in the polynomial (a + bX)m_J(c + dX)J_l. The restriction of
Pm to Ga is a representation Ga —_— GLm(k), which is also
denoted by p

m*
Definition 2.1. A representation p : Ga —_— GLn(k) is

said to be standard if p is equivalent to Py ® ¢ B Py for
1 m
some positive integers il,-~-,im with iy, + +++ + 1 = n.

1 m
It is known that if ch(k) = 0, then every representation
p : Ga —_— GLn(k) is standard (cf. [1], [6]1).
Assume that p : Ga —_— GLn(k) is a standard representation.

Then we may assume p = pilﬁ - @ pim for some il,---,im

Let B = A[yo,yll be a polynomial ring in two variables over A
= k[xl,---,xn] and consider the linear action of SL2(k) on B
associated with the representation p' =p @ Py SL2(k) —_—

Yy, 0 1
GL_..(k). Set M = ( 1 ) and let p" : SL,(k[Vn,¥+1,=—1)
n+2 ¥4 1/y1 2 0’71 v

—_— GLn(k[yo,yl,%—]) be the natural extension of p : SL2(k)
1
= At 1 .
—_— GLn(k). Then N = p"(M) belongs to GLn(k[yo,yl,ylj),
and wN : B[l/yl] —_— B[l/y1] is a k-algebra automorphism of
B{1/y,] = klxy,***,% ,¥5,¥1,1/y;]. Hence if we set R = aCa
and T = leR, then Tt 1is an injective k-algebra homomorphism

from R to B[1/y1]. Thus we have a k-algebra isomorphism
R = t(R).

Proposition 2.2. t(R) = BSL2(K)

12



From this proposition we know that if p : Ga e GLn(k) is
a standard representation, then the invariant subring R of A
with respect to the action of G associated with p is isomor-
phic to gSl2(k)

As is noted above, every representation of Ga is standard
if ch(k) = 0. Furthermore, if ch(k) = 0, then SLz(k) is
linearly reductive. Hence, by Proposition 2.2 and [3], we
have the following

Theorem 2.3. Assume that ch(k) = 0. 1If Ga acts linearly
on a polynomial ring A = k[xl,---,xn], then its ring of invari-
ants AGa is Cohen-Macaulay.

Remark 2.4. It is easy to check that A%2 is a unique fac-
torization domain (cf. [5]). Since a Cohen-Macaulay UFD is
Gorenstein, we know that, under the same assumption of Theorem
2.3, AGa is Gorenstein.

We conclude this section by remarking the following

Proposition 2.5. Let the notation and assumption be the
same as above. Then we have AS"2(K) = (¢ ¢ Altr(f) = £}.

3. Poincaré series. In this section we consider a linear

action of Ga on A= k[xo,x1,~°~,xn] associated with the
representation Pn+l : Ga —_ GLn+1(k) under the assugptlon
that ch(k) = 0. In this case, we can determine R = A2 when
n is small.

Theorem 3.1. (1) If n =1, then R = k[X].

(2) If n=2, then R s k{(X,Y].

(3) If n=3, themn R = k(X,Y,2Z2 U]/(X U + Y3 + Z ).

(4) If n =4, then R = k[X,Y,Z,U,V]1/(Xv+y3+22+x%yy).

In view of this result it seems plausible that R has some-
thing better singularity than Gorensteinness. For example, R

13



is a complete intersection when n $ 4, and it is natural to ask
if this is the case in general. The purpose of this section is
to show that R is not a complete intersection when n = 5.

For this purpose we will calculate the Poincaré series of
R. Note that A 1is a graded ring with natural gradation and R
is a graded subring of A. Let Ad (resp. Rd) be the homogene-
ous part of degree d of A (resp. R). Then we have R =@ Rd
and PR(t) = Zdzo (dimde)td is, by definition, the Poincaré
series of R.

Let f be an element of A. Then there exist elements fo,
fl,---,fi,--- of A such that A-f = ZiZO fiAi for every A ¢

Ga' Define a map Di :A——> A by Di(f) = fi and let D =

{DO,Dl,---,Di,--~~}. Then D 1is a locally finite iterative

higher derivation of A and R coincides with the ring of cons-
tants of D (cf. [4]). Moreover, since ch(k) = 0, we have

Di‘= (l/i!)Di for i 2 0 where D = Dl‘ Note that D is a
homogeneous k-derivation of A defined by D(xo) = 0 and

D(x;) = %54
map D:Ad—>A

for i 2 1. Hence D : A ——> A 1induces a k~linear

q and we have R, = {f e Ad|D(f) = 0}.
il 1a . .
TXp we set w(m) = i, + 212

+ ... + nin and call it the weight of m. Let Ad j be the

submodule of Ad spanned by all the monomials m of degree d

i
For a monomial m = Xq 0x1

and weight j. Then we have a direct sum decomposition Ad =

nd

o Ad .. For simplicity we set A = (0). Then, as is
j=0 »J d,-1
easily seen, D induces a k-linear map D : A — A

for j 2 1.

dsj d)j-l

Proposition 3.2. The map D : Ad j —_— Ad j-1 is injective
if j > [nd/2] and is surjective if j £ [nd/2].

It follows from this proposition that dimde = dimkAd,[nd/2]

= #(ig, - raig)|igte - +ip = d, i +2i,4---+ni_ = (nd/2]}.
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Notation 3.3. For f(x) = Zi>0 aix1 € Q[[x]] and a positive

integer j, we set
= - o n a & & s
[f(x)](j) = a, + ajx + + anjx + .

Now we can determine the Poincaré series of R. Let

l-yx
Fi(x,y) = a
(1-y)(1l-yx)-:--(1l-yx )
G (x) = F(x,1/x%)
where i1 =0,1,---,[n/2].

Theorem 3.4.

A m-1
(1) If n=2m then Pp(t) = I [G;(t)]p )
m
(2) If n=2m+l, then Pp(t) = L. [(1+t)Gi(t2)](n_2i)-

If n=5, then PR(t) is equal to

1+t2+3t3+3t 4450448461 T+6t 844t 0456 104+3¢1 1431124113415

(1-t) (1-t2) (1-t?) (1-t8) (1-t8)

and we can show that PR(t) has a root which is not a root of
unity. It is known that if R is a complete intersection, then
every root of PR(t) must be a root of unity (cf. [7]). Thus
we have the following

Corollary 3.5. If n =5, then R = A%  is not a complete
intersection.
Remark 3.6. From Theorem 3.4, we have a(R) = ~(n+l),

where a(R) stands for the a-invariant of R (cf. [2]).
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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

IDEAL THEORY OF SKEW-POLYNOMIAL RINGS
OF FROBENIUS TYPE

Yuji YOSHINO

§1. Introduction and Motivation:

Let R be a commutative Noetherian ring of characteristic p > 0 and let a be
an ideal of R. The tight closure a* of a is defined by Hochster-Huneke, which is
conditioned by the following condition:

DEFINITION (1.1). For an element z € R, z € a* if and only if there is an element
¢ € R and an integer e such that ¢ does not belong to any minimal prime of R
and that

(1.1.1) ez’ € al?’]

forall n > e. (Here a?”‘] denotes the ideal generated by p°-th powers of all elements
of a.)

For the easiest example, consider a subring R = k[z?,z%] of a polynomial ring
k[z] and an ideal a = z2R. Clearly z* ¢ q, but it can be seen z* € a*. In fact,
since (23)" = z%" = (2?)P" 2" € "} if n > 1, (1.1) is fulfilled by taking ¢ = 1
and ¢ = 1. Actually we can see that a* = (z?, z%)R.

The notion of tight closure has certainly a great deal of applications in fields of
commutative ring theory, related to the theory of rational singularities , homolog-
ical conjectures and invariant theory etc. See Hochster-Huneke [1]. However it is
not an easily accessible one, because of the complexity of its definition (1.1). In

The final version of this paper will be submitted for publication elsewhere.
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this note we aim to simplify this notion using the skew-polynomial rings and to
suggest some applications of this simplification. Moreover we shall propose some
open questions in this context. Whole of the contents of this note is taken from
the paper [2].

Now we begin with the definition of the skew-polynomial ring.

DEFINITION (1.2). The skew polynomial ring (of Frobenius type) R[X; f] is de-
fined by:

RX;fl= R(X)/(Xr-r"X|r € R)
That is, R[X; f]is a ring which consists of all the polynomials of (noncommutative)
variable X over R with the relation Xr = rPX (r € R). For simplicity we denote
R[X; f] by A.

Note that A is a direct sum of RX™ (n > 0) as a left R-module. Note also that
Az = Y,50 Rz?" X" for any z € R. More generally, if a is an ideal of R, then
Aa = T,50 a”")X", Therefore the condition (1.1.1) can be written in the form:
cX¢Az C Aa.

§2. Some easy results:

If the ring A is a right and/or left Noetherian, then various phenomena occurring
in the theory of tight closure will be explained by this nature. But unfortunately
we see that A is hardly Noetherian.

THEOREM (2.1).

(a) A is left Noetherian if and only if R is a product of fields.

(6) A is right Noetherian if and only if R is an Artinian ring, all of whose
residue fields are perfect.
DEFINITION (2.2). R is said to have sufficiently many units if, for any n € N,
there is z € R such that z?' — z (f=1,2,...,n) are units in R.

It is easily observed that this condition is satisfied either if R contains an infinite
field or if R is a local ring whose residue field is infinite.

In the rest of this nole we always assume that R has sufficiently many units.

We have mentioned in (2.1) that A never be a Noetherian ring unless R is an
Artinian ring. But we see that A satisfies the ascending chain condition for two-
sided ideals.
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THEOREM (2.3). For a subset I C A, the following two conditions are equivaleni:
(a) I is a two-sided ideal of A,

(6) There is an ascending chain of tdeals of R : L, CI) C I, C--- C R such that
I=TpoliXE.

In parficular, A salisfies the ascending chain condition for two-sided ideals.

Note that we can regard A as a graded ring by attaching degree 1 to X. Then
it follows from the above theorem that every two-sided ideal of A is homogeneous.

Now recall the definition of A-modules: By definition, a set M is a left A-
module if M has a left R~-module structure with left action of X such that Xrm =
" Xm (r € R,m € M). Likewise M is a right A-module if { is a right R-module
with right X-action such that mXr = m#*X (r € R,m € M).

EXAMPLE (2.4). We can define the left A-module structure on R by Xr = 0
for any r € R. We denote this by Ryg. Then it is easily proved that there is an
isomorphism of left A-modules : Ry & A/AX.

Similarly R; is defined as a left A-module R with Xr = r? for any r € R. Then
Ry 2 AJA(X -1).
THEOREM (2.5).
{a) Assume that the Frobenius map R — R is e finite morphism. Then every
injective R-module has a non-irivial structure of right A-module.
(b) Let R be a Gorenstein ring. Then every injective R-module has a non-trivial
siructure of left A-module.

We shall give a brief sketch of the proof of {(a).

We may assume that R is a local ring and that the injective module is the injective
hull Eg(k) of the residue field. Let S denote the ring R which we regard an R-
algebra through the Frobenius map R — R. Then it is easy to see that there is
an isomorphism of S-modules p : Eg(k) £ Homg(S, Er(k)). Since S = R as a
ring, we can identify Es(k) with Eg(k). Then we define the right-action of X on
Ep(k) as the map Eg(k) — Eg(k) which sends z to p(z)(1). It is straightforward
to see that this action is well-defined. For (4} we need the local duality, and we
omit the proof. See [2].

From the above observation we expect the following would be true.

CONIECTURE (2.6). Every injective R-module would have a non-trivial structure
of right and left A-module.
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Now we recall the localization of modules over A.

DEFINITION (2.7). Let S = {X"] n € N} and let N be a right A-module. Then
we define the right localization as follows:

NX=NXS/~I‘1

where (a, X™) ~, (b, X™) <= 3t > n,m; aX'™™ = 6X'~™. We denote the class
of (a, X™) by aX~". '
Similarly we can define the left localization for a left A-module M:

XM =S x M/ ~,

where (X®,a) ~; (X™,b) <= 3t > n,m; X'™"a = X' ™b. As above we denote
the class of (X™,a) by X "a.

Note that S satisfies the left Ore condition, hence x A is a ring, and x M is a
left x A-module. But Ax is not necessarily a ring.

We denote by Rpeq the ring R modulo nilpotent elements and by Q(Req) the
total quotient ring of Rieq. Furthermore Q(R..q) denotes the algebraic closure of
Q(Ryeq), in which the absolutely perfect closure of R defined as follows:

R® = {:J: € Q(Red)| z*° € Rieq for some n > 0} .
THEOREM (2.8). There is an isomorphism of rings:
xA = ROIX, XY f],

which sends X ~"rX™ {o r?~" X—0tm,

As one of the applications of this theorem, we see that the left x A-module x(R;)
is isomorphic to (R™); which is R* having Frobenius endomorphism as the action
of X.

Note that the localization is a functor from the category of left A-modules to the
category of left x A-modules, which is easily seen to be an exact functor. Also note
that x A & R®[X, X~!; f] is a Z-graded ring with natural grading : deg(X) = 1.
We can prove the following as a corollary of the above theorem:
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THEOREM (2.9). There is en ezact equivalence of categories:

left graded x A-modules) — (R*®-modules) .
(

§3. Tightly associated ideals:
For a given left A-module we may consider ideals of R which are, in a sense,
associated with the module.

DEFINITION (3.1). Let M be a left A-module and let z be an element of M. Then
we denote ann(Az) = {c € A| cAz = 0} that is obviously a two-sided ideal of A,
hence, by (2.3), we may write it as ann(Az) = T,5¢ Jn X", where {Ip}n>0 is an
ascending sequence of ideals of R. Now define an ideal a(Az) of R as follows:

a(Az)=JI.=In (N>0).
n20

We call an R-ideal a tightly associated ideal of M if it is either a unit ideal or a
prime ideal of R and if it is of the form a(Az) for a nonzero element z € M. We
denote the set of all tightly associated ideals of M by Asst(M), that is,

Asst(M) = {p € Spec RU{R}| p = a(Az) for some z # 0 € M}.

If we take a maximal element p among R-ideals a{Az) (z # 0 € M), it can be
easily seen that p is either a prime ideal or a unit ideal, hence p € Asst(M). In
particular, M # 0 if and only if Asst(M) # @.

ExXAMPLE (3.2). For the left A-module Rg in (2.4), we can see that Asst(Rp) =
{R}. In fact, since we have Xz = 0 for any z € R,, ann(Az) contains T_,>, RX",
therefore a(Az) = R. On the other hand, if R = Req, then Asst(R)) = Assp(R)
the set of ordinary associated prime ideals of R as an R-module.

The following is almost trivial:

LEMMA (3.3). For a left A-module M, the following two conditions are equivalent:
(¢) R €& Asst(M),

(b) the left action of X on M is injective.

Various other properties of tightly associated ideals are discussed in [2]. We
expect the reader will consult with [2] for this, and we proceed to the next theme.
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§4. Tight closures and primary decompositions:

Let a be an ideal of R. If the tight closure a* is equal to a, we say that a
is tightly closed. The following theorem is straightforward from the definition
of tightly associated ideals, but seems crucial in connecting the theory of tight
closures and the ideal theory of skew-polynomial rings.

THEOREM (4.1). The following two conditions are equivalent for an ideal a of R.
(@) al®) is tightly closed for any n € N,
(b) Asst(A/Aa) C Min(R)

Also this theorem suggests that the condition Asst(M) C Min(R) for a left
A-module M should be considerably important.

Now let T be a graded left ideal of A. Note and recall that a subset I =
La>0/nX"™ C A is a graded left ideal of A if and only if each I, is an R-ideal and
I,[,p] C I,4 for any n > 0. Note also that the ideal Aa in the above theorem is a
graded one.

DEFINITION (4.2).

(a) Let p be a prime ideal of R. A graded left ideal I of A is said to be a
p-primary left ideal if each I, is a p-primary ideal for any n.

(6) Let 1,10, 1) 1) be graded left ideals of A and assume that

*) I=ni, 10,

We say that (*) is a primary decomposition of I if each I () is a p()-primary left
ideal for any i.

It is a fundamental question to ask if every graded left ideal has a primary
decomposition.

ExAMPLE (4.3). Let R be a regular local ring and let a be an ideal of R. Then
the graded left ideal Aa has a primary decomposition.

ProoF: Let a = a)na® n...Nnal® be a primary decomposition of a in the
Noetherian ring R. Note that A is a right flat R-module, because R is regular.
Therefore we have that Aa = Aal) N Aa® n... N Aald). Hence it is enough to
show that if a is a p-primary ideal of R, then Aa is a p-primary graded left ideal
of A. For this, it suffices to prove that if a is a p-primary ideal of R then so is al?].
To show this let ¥ be an associated prime ideal of R/alPl. Since the Frobenius
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map R — R is flat, we have a flat ring homomorphism (R/a)g — (R/all)q. It
follows from this that depth(R/a)p = 0, hence that P associates with R/a. Thus
we have P = p and al”) must be a p-primary ideal. §

THEOREM (4.4). Let I = T2,1n X" be a graded left ideal of A and assume
that all the prime ideals in Un>o Assp(R/1,) have the same height. Then I has a
primary decomposilion.

PRroOF: Since /7] C In41, we have a sequence of R-ideals Io C VI C VI C - -,

which must terminates at some large N: /Ty = VIng1 = VIngz =---. Then by
the assumption we see that

U Ass(R/In) = UILo Min(R/\/I,) = Min(R/\[Ta),

which we denote by {py, p2, ,Pt}. Letting I,(.i) = (In)p; N R, we have a primary
decomposition I¢) = n,‘-=lI,(.') as an ideal of R. Then, since it is easily observed
that I,(.i)[p] C I,.+1('.) for cach i and n, I® = T, I,(.i)X" (i =1,2,...,8 are
graded left ideals of A which are primary and I = N}/ as desired. §

CoROLLARY (4.5). Let R be a Cohen-Macaulay local ving and lel xy,z3,... ,2,
be a system of paramelers of R. Then the graded lefl ideal A{zy,z2,... 25} has
a primary decomposilion.

From these observations we expect that every graded left ideal has a primary
decomposition.

CoNJECTURE (4.6). Let R be a regular local ring. Then any graded left ideal of
A= R[X; f] would have a primary decomposition.

If this conjecture is true, then it will have some applications by combining with
the following theorem, whose proof can be found in [2].

THEOREM (4.7). Let T — R be a ring homomorphism of commulative Noetherian
rings. We denole Ap = R[X; f] and Ar = T[X; f] to make the situation clear.
Let M be a left Agp-module. We can regard M as a left Ap-module, which is
denoted by M. Assume that, for any P € Spec(R), P € Min(R) if and only if
PBNT € Min(T). Then the following lwo conditions are equivalent:

(a) Asst(M) C Min(R),
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(6) Asst(Mr) C Min(T).

We end this note by suggesting that the conjecture (4.6) has a good result as its
application. See [1] for the definition of F-regularity and weak F-regularity.

COROLLARY (4.8). Let S be a commautative Noetherian ring that is finile over a
reqular ring R. Suppose thatl the conjecture (4.6) is correct for R. Then if S is
weakly F-regular then S is F-regular.

Proof of Cor. (4.8) modulo (4.7):

Let a be an ideal of S and let P be a prime ideal of S with a C B. We want to
show that aSg is tightly closed in Sq.

Let M = S[X;f)/S[X;fla. Then, by (4.1), it is sufficient to show that
Asst(Mg) C Min(Sg) for the left graded Sgs[X; f]-module Mp. Because weak
F-regular rings are CM, the assumption in (4.7) is satisfied for the ring exten-
sions : R — S and Rp — Sg, where p = BN R. Hence it suffices to show that
Asst((Mg)r,) C Min(Rp). On the other hand, the weak F-regularity of S gives
that Asst(M) C Min(S), hence that Asst(Mp) C Min(R) by (4.7). Thus the
following lemma will be enough to prove the corollary.

LEMMA (4.9). Let R be a regular ring, for which Conjecture (4.6) is true, and let
M be a graded left A= R[X; f]-module and p € Spec(R). If Asst(M) C Min(R),
then Asst(Mp) C Min(Rp).

Proof of (4.9): Suppose that there is B € Spec(R) U {R} such that PR, €
Asst(Mp). By definition there is ¢ € M whose natural image Z in Mp is nonzero
and PR, = a(ApZ). Here z, hence Z, can be taken as a homogeneous element.
Then consider a graded left submodule N = Az of M, which is isomorphic, as a
left A-module, to A/I for some graded left ideal I of A. Since Asst(N) C Asst(M),
we have Asst(A4/7) C Min(R), while it can be seen that PA, C I 4,.

Now assume that (4.6) is OK for R. Then since [ has a primary decomposition,
we may write ] = J N K where J is the intersection of the primary components
whose prime ideals are contained in p, and K is the intersection of other compo-
nents. Note that J = IAp; N A. Since PA, C TAp, we have PAC JA, N A= J.
Therefore PK C J N K =1, because K is a left ideal. Now taking z € K — I, we
see PAz C PK C I, hence a(AZ) contains P for the image Z € A/ of z. Hence
there is ) € Asst(A/I) with P C 2, but then Q must be a minimal prime ideal
of R. Thus B = £ is also minimal. g
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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

ON LAMBEK TORSION THEORIES, II

Mitsuo HOSHINO and Shinsuke TAKASHIMA

Introduction

In this note, generalizing recent works of Masaike [ 5] and
Hoshino [ 3], we will provide another approach to the theory of
QF-3 rings. We will also provide an explanation to the symmetry
established by Masaike [ 4, Theorem 2].

Recall that a ring R is said to be left (resp. right) QF-3 if
there exists a minimal faithful left (resp. right) R-module, i.e.
a faithful left (resp. right) R-module which appears as a direct
summand in every faithful left (resp. right) R-module (see e.g.
Tachikawa [ 12] for details). In his recent paper [ 5], K. Masaike
showed that a left QF-3 ring R is right QF-3 if and only if it
contains an idempotent £ such that RfR is a minimal dense left
ideal, and every finitely solvable system of congruences {x = fx
mod IA}’ with each I
ing this, we will provide a characterization of left and right

A
A a left ideal of R, is solvable, Generaliz-

QF-3 rings. To do so, we will introduce the notion of 1-abso-
lutely pure rlngs in 81 and that of t-semicompact modules in §2,
where "1- means relatlve to Lambek torsion theory « With those
notions, we will show that a ring R is left and right QF-3 if and
only if it is t-absolutely pure, left and right t-semicompact anc
contains idempotent e, f such that ReR and RfR are minimal dense

right and left ideals, respectively.

The detailed version of this note will be submitted for publica-
tion elsewhere.
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Throughout this note, R stands for an associative ring with
identity and all modules are unitary modules., Sometimes, we use
the notation X (resp. XR) to stress that the module X considered
is a left (resp. right) module. We denote by ModR (resp.

Mod R°P ) the category of left (resp. right) R-modules and by ( )*
both the R-dual functors. For a module X, we denote by E(X) its
injective envelope and by €y t X » X** the usual evaluation map.
Recall that a module X is said to be torsionless if €y is a mono-
morphism, and to be reflexive if €x is an isomorphism. For an
X€éMod R, we denote by t(X) its Lambek torsion submodule. Namely,
1(X) denotes a submodule of X such that HomR(r(X),E(RR)) = 0 and
X/t(X) is cogenerated by E(RR). For also an MeéMod R°P, we denote
by (M) its Lambek torsion submodule.

Let us recall several definitions., A module X is said to be
torsion if 1(X) = X, and to be torsionfree if 7(X) = 0. A non-
zero torsionfree module X is said to be cocritical if X/X’ is
torsion for every nonzero submodule X°., A submodule X’ of a
module X is said to be dense if X/X’ is torsion, and to be closed
if X/X’ is torsionfree. A dense left (resp. right) ideal I is
called a minimal dense left (resp. right) ideal if it is contain-
ed in every dense left (resp. right) ideal. Note that a minimal
dense left ideal, if exists, has to be an idempotent two-sided
ideal, that a minimal dense left ideal exists if and only if the
class of all torsion XéModR is closed under taking direct
products, and that, in case R is left and right perfect, there
always exists an idempotent f with RfR a minimal dense left ideal.

The authors would like to express their gratitude to Prof.

T. Sumioka for his valuable advice.

1. t-absolute purity of rings

In this section, we introduce the notion of t-absolutely pure
rings. With that notion, we formulate the symmetry established
by Masaike [ 4, Theorem 2].

To begin with, we recall several definitions, A module X is
said to be t-finitely generated if it contains a finitely
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generated dense submodule, and to be t-finitely presented if
there exists an exact sequence 0 + Z + ¥ + X + 0 with ¥ finitely
presented and Z torsion. A ring R is said to be left (resp.
right) t-artinian if it satisfies the descending chain condition
on closed left (resp. right) ideals, to be left (resp. right)
7-noetherian if it satisfies the ascending chain condition on
closed left (resp. right) ideals, and to be left (resp. right)
T-coherent if every finitely generated left (resp. right) ideal
is 1-finitely presented.

Remarks. (1) A well known result of Miller and Teply [ 7,
Theorem 1.4]says that a left t-artinian ring R is left
T1-noetherian.

(2) A ring R is left T-noetherian if and only if every
finitely generated left module is t-finitely presented (see e.g.
Sumioka [11]). Thus, a left T-noetherian ring R is left
T-coherent.

(3) A module X is t-finitely presented if and only if it is
finitely generated and for every epimorphism n : F + X, with F
free of finite rank, Kerwn 1s t1-finitely generated.

(4) It follows from a result of Chase [2, Appendix] that a
seniprimary left t-noetherian ring R is left t-artinian.

(5) Assume that R is right t-coherent and left perfect, and
that Ext;(M,R) is torsion for every finitely presented Mée Mod R°P,
Then it follows from a result of Masaike [ 4, Theorem 1] that R is
left T-artinian (cf. Stenstrom [ 10, Theorem 4.4]).

The next lemma will play a key role in our arguments.

Lemma 1.1(Hoshino [ 3, Theorem A]). The following are
equivalent.

(a) 1(X) = Ker ey for every finitely presented X € ModR.

(a)°P (M) = Ker ey for every finitely presented M € Mod R°P,

(b) Every t1-finitely presented torsionfree X € ModR is
torsionless.,

(b)°P Every t-finitely presented torsionfree M € Mod R°P is

torsionless.
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(c) Ext;(X,R) is torsion for every finitely presented X ¢
Mod R.

(e)©P Ext;(M,R) is torsion for every finitely presented M ¢
Mod ROP,

In the following, a ring R will be said to be t-absolutely
pure if it satisfies the equivalent conditions of Lemma 1.1.

Lemma_1.2(Hoshino [ 3, Lemma 5]). The following are
equivalent.

(a) t(X) = Ker ey for every finitely generated X € Mod R.

(b) Every finitely generated torsionfree X € ModR is
torsionless.

(c) Every finitely generated submodule of E(RR) is
torsionless.

The next proposition generalizes results of Morita [ 8,
Theorem 1] and Sumioka [ 11, Lemma 7].

Proposition 1.3(Cf. Hoshino [ 3, Proposition B]). Assume that
R is right t-coherent. The following are equivalent.

(a) R is t-absolutely pure.
(b) E(gR) is flat.

Proposition 1.4(Cf. Hoshino [ 3, Proposition C]). Assume that
R is left t-noetherian. The following are equivalent.

(a) R is T-absolutely pure.

(b) Every finitely generated submodule of E(RR) is
torsionless.

(c¢) E(Rp) is flat.

The next lemma is due essentially to Faith [ 2, Proposition

3.1].

Lemma 1.5. Assume that R is t-absolutely pure. The follow-
ing are equivalent.
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(a) R is left t-noetherian.
(b) R satisfies the ascending chain condition on annihilator
left ideals.

Finally, we formulate the symmetry established by Masaike [ 4,
Theorem 2] as follows.

Theorem 1.6. Assume that R is T-absolutely pure. Then R 1is
left t-artinian if and only if it is right t-artinian.

2, t-semicompactness and reflexivity of modules

In this section, we introduce the notion of tT-semicompact

modules, which is closely related to the notion of reflexive
modules.

Recall that a homomorphism @ : X + Y is called a t~epimorphism
if Cokm is torsion. In the following, a module X will be said
to be 1-semicompact if for every inverse system of t-epimorphisms
{"A 1 X+ YA}' with each ImnA torsionless, the induced homomor-
phism lim LB} is a T-epimorphism. A ring R will be said to be
left (resp. right) tT-semicompact if gR (resp. RR) is 1-semi-

compact,

Remarks. (1) Given a module X, take a direct system of
monomorphisms {jA :MA + x*},*with each MA finitely genergted,
such that lig j, : lip M, ¥ X . Then Cokey = Cok(lim(j, «ey)).

(2) Even if R is commutative, our tT-semicompactness differs
from the semicompactness, in the sense of Matlis [6], relative to
Lambek torsion theory. However, for regular modules RR and RR’
our T-semicompactness coincides with the semicompactness, in the
sense of Stenstrom [10], relative to Lambek torsion theories.

(3) Assume that R satisfies the descending chain condition on
annihilator left ideals, and that R has a minimal dense left
ideal. Then R is left 1-semicompact.
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Lemma 2.1. Assume that every finitely generated submodule of
E(RR) is torsionless. Then €x is tT-epic for every 7T-semicompact
X € ModR.

Lemma 2.2. Assume that R contains an idempotent f such that
fR is an injective right ideal and RfR is a minimal dense left
ideal. Then every X € ModR, with €x T-epic, is t-semicompact,

Combining lemmas above together, we get the following.

Proposition 2.3(Masaike [ 5, Theorem 3]). Assume that every
finitely generated submodule of E(RR) is torsionless, and that R
contains an idempotent f such that fR is an injective right ideal
and RfR is a minimal dense left ideal. Then for an X € Mod R the
following are equivalent.

(a) X is reflexive.

(b) X is t-semicompact and embeds, as a closed submodule, in
a product of copies of RR‘

3. Idempotent generated minimal dense ideals
In this section, we collect several basic results on idem-

potent generated minimal dense ideals which we use in the next
section.

Remark. For an idempotent £ in R, RfR is a dense left ideal
if and only if fR is a faithful right ideal.

Lemma 3.1(Rutter [ 9, Theorem 1.4]). For an idempotent f in R
the following are equivalent.

(a) RfR is a minimal dense left ideal.
(b) fRR is faithful and every simple homomorphic image of gRE
is torsionless.

Corollary 3.2. Let f be an idempotent in R with RfR a
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minimal dense left ideal and fR an injective right ideal, and let
f1 be a lgcal idempotent in R with f1f = f1 = ff1. Then
(Rf1/Jf1) is cocritical and embeds in f R;, where J denotes the
Jacobson radical of R,

Lemma 3.3(Rutter [9, Corollary 1.2]). Assume that R contains
an idempotent f with fR a minimal faithful right module. Then
RfR is a minimal dense left ideeal.

Lemma 3.4. Let £ be an idempotent in R with RfR a minimal
dense left ideal. Then RRfX is simple for every X € ModR with
X/t(X) cocritical.

As pointed out by Stenstrom [ 10, Proposition 2.5], the
argument of Matlis [6, Propositions 2 and 3] yields the following

Proposition 3,5. Let f be an idempotent in R with RfR a
minimal dense left ideal, The following are equivalent.

(a) fR is an injective right ideal.

(b) R is t-absolutely pure and left t-semicompact.

Proposition 3.6. Let f be an idempotent in R with RfR a
minimal dense left ideal. Assume that every finitely generated

submodule of E(RR) is torsionless, and that R is left t-semi-
compact. Then fRf is a semiperfect ring.

4, QF-3 rings
In this section, generalizing a result of Masaike [ 5,

Theorem 5], we provide a characterization of left and right QF-3
rings.

To point out the difference between "one-sided QF~3" and
“two-sided QF-B", we first provide a characterization of right
QF=3 rings.
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Proposition 4.1. The following are equivalent.
(1) R is right QF-3.
(2)(a) R is t-absolutely pure.

(b) R is left T-semicompact.

(¢c) R contains an idempotent f such that RfR is a minimal
dense left ideal and fRf is a semiperfect ring.

(d) Every cocritical right module has a nonzero socle.

Theorem 4.2. The following are equivalent.
(1) R is left and right QF-3.
(2)(a) R is t-absolutely pure.
(b) R is left and right t-semicompact.
(¢) R contains idempotents e, £ such that ReR and RfR are
minimal dense right and left ideals, respectively.

5. Maximal two-sided quotient rings

In this section, we deal with the case where R has a maximal
two-sided quotient ring. Recall that a maximal left (resp.
right) quotient ring Q (resp. Qr) is defined as a biendomorphism
ring of E(RR) (resp. E(Rp)), and that R is said to have a maximal
two-sided quotient ring if Q2 = Q. as ring extensions of R.

In the following, we denote by Mod R /1t the quotient category
af Mod R over the full subcategory consisting of all torsion X ¢
ModR . Also, Mod R°P /1 denotes the quotient category of Mod R°P
over the full subcategory consisting of all torsion M€ Mod R°P,

The next lemma seems to be well known,

Lemma 5.1. Assume that R is left t-artinian. Then

(1) R has a maximal left quotient ring Q which is semi-
primary.

(2) There exists a semiprimary ring A such that ModR /Tt 3
Mod A .
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According to Proposition 1.4, a result of Masaike [ 4, Theorem
2] implies the following

Proposition 5.2. Assume that R is t-absolutely pure and left
T-artinian. Then

(1) R has a maximal two-sided quotient ring Q which is semi-
primary left and right QF-3.
(2) There exist a left artinian ring A and a right artinian

ring B such that ModR/t1 3 Mod A, Mod R°P /1 3 Mod B°P and A is
Morita dual to B.

In case R is commutative, the next proposition is well known
(see Bass [ 1, Proposition 6.1]).

Proposition 5.3(Hoshino [ 3, Proposition F]). Assume that R

is left and right noetherian. The following are equivalent.
(1) E(4R) is flat.
(2)(a) R has a maximal two-sided quotient ring.
(b) X" is reflexive for every finitely generated X & ModR.
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PROCEEDINGS OF THE 25TH
SYMrOSIUM ON RING THEOLY, 1902

ON QF-RINGS WITH CYCLIC
NAKAYAMA PERMUTATIONS

K1YoIicHI OSHIRO AND SEOG HOON Rim

The concept of skew matrix ring was introduced by H.Kuppish
[3] and K.Oshiro [4] independently.

In 1987, Oshiro provided a structure theorem of certain skew
matrix ring over a local ring (Theorem 1).

In this paper we want to show the following :

Theorem. If R is a basic QF-ring such that for any idempotent in
R, eRe is QF-ring with cyclic Nakayama permutation, then there
exists a local QF-ring Q, an element c in the Jacobson radical of
@ and a ring automorphism o of Q for which R is represented as a
skew-matrix ring.

Throughout this paper R will denote always associative ring
with identity and all R-modules are unitary. The notation Mp (resp.
rM) is used to denote that M is a right (resp. left) R-module. For
a given R-module M, J(M) and S(M) denote its Jacobson radical
and socle, respectively. For R-modules M and N, M C_N means
that M is isomorphic to a submodule of N. And, for R-modules M
and N, we put (M,N) = Homp(M,N) and in particular, we put
(e, f) = (eR, fR) = Hompg(eR, fR) for idempotents ¢, f in R.

Let R be a ring which is represented as a matrix form:

The final version of this paper will be submitted for publication elsewhere

Typeset by ApqS-TEX
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All cre Aln
R = cas
Al\] ot Al\l\

Then we use < @ >;; to denote the matrix of R whose (3, j)-
position is a but other positions are zero. Consider another ring
which is also represented as a matrix form :

' By -+ B,
T= e
Bnl Bnn

When we say is a map from R to T, this word means that 7;; is a
map from A;; to Bi; and r(< a >;j) =< 7j(a) >j. In the above
ring R. We put @; = A4;; fori =1,--- ,n. Consider a ring U which
is a isomorphic to Qi; £ : U ~ Q. Then we can exchange Q; by U
and make a new ring R(Q:, U, §) which is canonically isomorphic to
R. We often identify R with R(Q:,U, §).

Let R be an artinian ring and E = {e;, - ,e,} be a complete
set of orthogonal primitive idempotents of R. The following result
due to Fuller ([2]) which is a very basic result: Let f be in E. gRf
is injective iff there exists e in E such that (eR; Rf) is an i-pair, that
is RRe/J(rRe) =~ RS(RRf) and fRr{J(fRR)r =~ S(ERR)R. In this
case, eRp is also injective. We note that if R is a basic artinian ring
and (eR; Rf) is an i-pair, then S(.r.eRf) = S(eRfsrs) and

0
S(eRg) = (o S(eRf) o) = S(rRf)
0

Let R be a basic QF-ring and E = {e;,--- ,e,} be a com-
plete set of orthogonal primitive idempotents. For each e¢; € E,
there exists a unique f; € E such that (¢;R, Rf;) is an i-pair. Then

(e1 €3 " e,.) is a permutation of R. This permutation is
H fa - fa

called a Nakayama permutation. I there exists a ring automor-
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ON QF-RINGS WITH CYCLIC NAKAYAMA PERMUTATIONS
phism ¢ of R satisfying ¢(e;) = fi, = 1,--- ,n, then ¢ is called a
Nakayama automorphism of R.

For a ring R, End(R) and Aut(R) stand for the set of all ring
endomorphisms of R and that of all automorphisms of R, respec-
tively.

1. SKEW MATRIX RING

In this section we consider some structure theorem on skew
matrix ring. After the first named author published the paper [4]
in which these rings are introduced, Kuppish pointed out that he
already introduced these rings in [3]. We note that almost results in
this section were reported in [4].

Let Q be a ring and let ¢ € @ and ¢ € End (Q) such that

o(c)=c, o(gq)c=cqforallg€ Q.

By R we denote the set of all n x n matrices over Q;

o)

We define a multiplication in R which depends on (o, ¢, n) as follows:
For (zi:),(yiz) in R,

(zie) = (zie Mwir)

where z;; is defined as follows:

(1) Hi<kzm= Ez‘.'jo(yjk Ye+ z Tijyi + zt.‘,'yjbc
i<i ii<k  k<y

(2) Hk<izp=) zijolyr)+ D), wijolyip)e+ ) =iyt

J<k k¢jci i<s
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We may understand this operation as follows:

<ao(])>a (F<k<i)
<ao(b)e>ip (k<j<iorj<igk)

<a>ij<b>u=4 <ab>u (1=1J)
< abe >k <k<j)
< ab >k (k<i<jori<j<k)

Note that this operation satisfies associative law, i.e.,

(Kzoij<y>j)<z2>u=<z>ij (KYyY>jia< 2>n)
Therefore R becomes a ring by this multiplication together with the

usual sum of matrices. We call R the skew matrix ring over @ with
respect to (o,c, n), and denote it by

Q Q 0.

(Q Q)
R=
Q -+ @ o

if there are no confusions.

R=

When n = 2, the multiplication is:

£ 3 (y1 yz) _ ( L1y +Taysc  Taya + Tata
Ts T4/ \¥s Vs T30(v1) + T4ys  T3o(ya)c + T4y4
Now, in the skew-matrix ring R above, we put ¢; =< 1 >,i =

1,---,n. Then {ej,--- ,en} is a set of orthogonal idempotents with
l=e; 4+ +e,, and
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0
eR=|Q -+ Q] <
0

Q
Rej=1¢09 @ o] <J
Q

If Q is a local ring, then each e; is a primitive idempotent.

Proposition 1. The mapping r : R — R given by

T T3 -+ Tn Tnn Tny Zn,n-1
n Ty o Zam | | o(zm) oy -+ o(Fyn-1)
ZTny Tpa ... Tnp a(zn—l,n) a(zn—l,l) a(zn-l,n-l)

is a ring homomorphism; in particular if ¢ € Aut (Q), then 7 €
Aut(R).

Proof. Straightforward.

We put
0
Wi=|Q -~ Q Qc Q@ --- Q| <i
0

Then W; is a submodule of ¢;Rg. Fori = 2,--- ,n, let ¢ : ,R —
Wi-1 be a map given by

0 0
(zl e Byqy Xy e zn) <"._) (31 cve ZjarC ZT; - zn) <!.—1
0 0
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and let ¢, : R — Wy, be a map given by

"'3 .1:(;, 0 0
<1—{ 0o ... .. 0 |<n
0 0 o(z,) -+ 0(zn-1) o(zn)e

Then it is easy to check the following

Proposition 2. Foreach ¢;,1 =1,2,-.- ,n, is a homomorphism. In
particular, if o € Aut (Q), then each ¢; is an onto homomorphism
and

0 --- 0 (0:¢)
Ker¢, = 0 - 0 0 <1
o .-+ 0 0

0
Ker¢.~=(0 (0:¢) 0)<ifon'=2,---,n.
0

where (0: ¢) is a right (or left) annihilator ideal of c.

Theorem 1. If Q is a local ring, 0 € Aut (Q) and ¢ € J(Q), then
the skew matrix ring R over Q w.r.to (o,c,n) is a basic indecom-
ea - en
€y -+ €n-1
tation where {e), e3, - ,en} is a set of orthogonal idempotents with
e1+ea+--+e, =1; whence R has a Nakayama automorphism by
Proposition 1. Futhermore, for any idempotent e in R, eRe is repre-
sented as a skew-matrix ring over Q with respect to (g,¢,k < n); so
eRe is a QF-ring with cyclic Nakayama permutation.

posable QF-ring and (:' is a Nakayama permu-
n

Proof. Put X = 5(Qq) (= S( ¢Q)). Nothing cX = Xc =0,
we can easily see that
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S(e,R)=(° P X):S(Re,,)

for i = 1,2,---. Hence it follows that (e;R : Re,),(e2R :
Rey),:-- (enR : Ren—)) are i-pairs. Therefore R is a QF-ring with
a Nakayama authomorphism (cf. Proposition 1). For any subset
{f1, -+, fa} C E, clealy, fRf is represented as a skew matrix ring
over Q with respect to (o, ¢, k), where f = f, +--- + fi; whence so
is represented eRe for any idempotent e in R.

By Theorem 1 and Proposition 2, we obtain

Corollary 1.(cf.[3]). If Q is 8 Nakayama ring, 0 € Aut (Q) and
cQ = J(Q), then the skew matrix ring R over Q w.r.to (o, c,n) isa
basic indecomposable QF-senaI ring such that {e,R,e,_ 1R, - ,e; R}
ey -- €n
en €1 '+ Ep-}
mutation. Futhermore, R has a Nakayama automorphism.

is a Kuppisch series and is 8 Nakayama per-

2. MAIN THEOREM‘

In this section we prove the following main theorem which is
the converse of the above Theorem 1.

Theorem 2. If R is a basic QF-ring such that for any idempotent
e in R, eRe is 8 QF-ring with cyclic Nakayama permutation, then
there exists a local QF-ring Q, an element ¢ in the Jacobson radical
of Q and a ring automorphism o of Q for which R is represented as

a skew-matrix ring:
Q -+ Q
R~ e
Q@ - Q/,on
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Let R be a basic QF-ring such that, for any idempotent e in
R, eRe is a QF-ring with cyclic Nakayama permutation, and let E
be a complete set of orthogonal primitive idempotents of R with
1 = Y {ele € E}. First we consider the cardinal |E| of E is 2; let
E = {e, f}. We represent R as

- (3 3)

where @ = (e,e), A= (f,e), B=(e,f), T = ([, f). Since (; £)

is a Nakayama permutation, we see

sery=san = (7 ), s0m = st = (50, o)

Nothing these facts, we can easily prove the following:

Lemma 1.
1) {a € A|aB = 0} = {a € A|Ba = 0}.
2) {b€ BJbA =0} = {be€ B|Ab=0}.

We denote the sets in 1) and 2) by A* and B*, respectively.
Note that A*, B* are submodules of gAr, 7Bq, respectively.

(s $)(s 3)

o (Q 4 0 0
Now, we denote the factor ring R = (B T) / (B‘ 0) by

(g ;,), and r + (BP‘ g) by 7 for r € R. Then {g, f} is a

complete set of orthogonal primitive idempotents of R and

are ideals of R.
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um=(o sm)

Since eRp is injective and S(fRg)r is simple, we see (g g) o)

( g '_(IJ") as R (and as R)-module. Since S(Az )y is simple, it follows
Ap =Ty

whence aT = A forsome a € A. If Qa € A ~ @, then
5(Q)a = S(Q)Qa = 0; whence S(Q)A = 0, a contradiction. Hence

Qa = aT = A.

If ¢ € Q, then there exists ¢t € T such that ga = at. Then the
mapping ¥ : @ — T given by ¢(¢) = ¢ is a ring isomorphism. We
exchange T by @ with respect to the isomorphism ;

(39

ga=aqforall g€ Q.

Then

Next, considering the factor ring (g 3) / (g ‘% ), we can

obtain 8 € B, ¢ € Aut(Q) such that B = Q8 = BQ and

pg=o(q)f forall g € Q.
We put ¢ = af. Nothing , we see

B(ap) = (Ba)p,

Further a8 = Ba. For, if af — fa # 0, then (af — fa)A # 0; so
0 # (af - Ba)a = afa — faa = afa — afa, contradiction. Thus
afl = Pa and hence

45



KIYOICHI OSHIRO AND SEOG HOON RIM

a(c)=c.

And we can see easily that ¢ € J(Q) and o(g)c = cq for any ¢ € Q.
Now, for

_ [ n T2 - { N Y« _[{ @ Qa
X_(-faﬂ ’4)'Y_(yaﬂ 94)GR_(Qﬂ Q)'

we calculate XY, and see

XY = ( Z1%1 + T1ys¢ (7192 + Tays ) ) )
(z30(31) +2493)B  Z30(v2)c + 2494

Thus we see that R is isomorphic to the skew matrix ring (Q Q )
[ X

I 2 1a g N T Ty

zB  z4 T3 T4
Next, consider the case of |E| = 3; put E = {e;,e3,e3}. We
el e2 . e en

. €h €1 " €Epa)
tion. We represent R as

(er,e1) (eae1) (es er) @1 Az A
R=| (e1,e2) (eae2) (ea,e2) | =| Adax Q2 Az
(e1,e3) (ea,es) (es, es) Aar Asz Qs

by the mapping

may assume that is a Nakayama permuta-

We Put @ = @;. Considering (.‘?211 "3:). (_‘?;1 '31:) and
(Qa Aas

Az Qs ). we can assume that Q@ = Q3 = Qg by the argument

above;
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Q@ Az Ais
R=|A4n @ Aaz].
Aan Az @

and then note that g(A4;;)o = Qg for each ¢j.

Nothing that
5(A13)
0 )
0
0

00
S(e,R) = S(Re,) = (S(An) 0 0) )
0 0

[= =R
(== =)

S(eiR) = S(Re3) = (

0 0 0
S(e;R) = S(Rez) = (0 0 0) ,
0 S(As;) O

we prove the following

Lemma 2.

(1) {1‘ € A33|1‘A33 = 0} = {1‘ € AazlAzat = 0}
= {z € An|rA3 =0}
= {z € A3z =0}

(2) {z € An|zA,3 =0} = {z € Az1|zA;3 =0}

= {z € Aa1|A137 = 0}
= {1‘ € AnlAszl‘ = 0}.
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(3) {I € A];IIA;,I = 0} = {I € A13|A3]I = 0}
= {7 € AyslzAd3; = 0}
= {3 € Au'Anz = 0}

Proof. 1)By Lemma l, {z € A3s3|zA23 =0} = {z € A33]A23z =
0} . Let £ € A3z such that 2423 = 0. fzA43; # 0, then A23zA42; # 0;
whence A3z # 0, a contradiction. If A;3z # 0, then A,;324;; # 0;
whence zAy; # 0, a contradiction. Thus {z € AjjrAds; =0} C
{;-' € Asa|r Az = 0} and {z € Asslrds; = 0} C {z € Ax|d)z =
0}.

Let £ € Asz such that 43, = 0. If zA33 # 0, then we see
from QQ ~ QA31 that zA43343 # 0, s0 242 =0. If 242, # 0,
a contradiction. Hence {z € Asa|zrA3s = 0} = {z € Asz|z42 = 0}.
Let z € Aj; such that A,az =0 If TAg; # 0, then A13$A33 # 0;
50 Ajaz # 0, a contradiction. Hence {z € Aj3|zAd23 =0} = {z €
Aj2|A;3z = 0}. Similarly we can prove 2) and 3).

We put the sets in 1), 2) and 3) above by Aj3,, A3,, A}, re-
spectively. we see g(A33)g,Q (431)q, g(A43:)g are submodules of
o(Aaz2)g,0 (A21)g, o A13)q, respectively. Futher we put

Alq 0 00 0 0 o
X13= 0 ,Xn: A;l 00 ,X32= 0 0 0
0 0 00 0 A3, O

These are ideals of R. Consider the factor rings R = R/X;; where
Xij = X134+ X2 + Xa3,and put ¥ = r+ X;; for r € R. We can easily
see that

(oo B = I =]
(==l

) 0 S(A1) 0
S(é]R)R = S(EIR)R = (0 0 0)
0 0 0

48



ON QF-RINGS WITH CYCLIC NAKAYAMA PERMUTATIONS
0 0
0 S(Aas)
0 0
0 0
0

0
S(éaR)R = S(éaR)R = ( 0 0)
S(A3) 0 0

Therefore there are monomorphism 03 : éaRr — e3Rr, 03 : &2Rp —
eiRrand @, : &,Rp — eaRp. Weputy; = @in; fori = 1,2,3, where
7; is a canonical homomorphism: ¢;Rg — & Rpg.

[ B o B o )

S(égR)R = S(EQR)R = (

Nothing
0 A2 O 0 0 O
mw=(l0 0 O0}])=|0 0 O},
0 0 O 0 As;; O
00 O 0 0 A
Y2 = ( 00 Ag; ) = 00 0 »
00 O 00 O

0 00 0 00
‘13:( 0 00 )= Ag] 00 ’
Ay; 0 O 0 00

and using Lemma 1, we can easily prove the following

Lemma 3.

(1) {1‘ € Aj; IZAn = 0} = {z € A |zA13 = 0}
= {z € An1|A13z = 0}
= {z € A31|A33$ = 0}

(2) {2 € Axs|zA3 = 0} = {2 € Azsz A = 0}

= {1‘ € A:alAa:Z = 0}
= {1‘ € A33|A122 = 0}
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(3) {z € Aj3|z Az = 0} = {z € Aj3|zAy; = 0}
= {r € A1a|A312 = 0}
= {z € Ay3]A21z = 0}

We denote the sets in 1), 2) and 3) by A3,, A3; and A}, re-

spectively, and put

0 00 00 O 0
X;" = 0 00 ,Xga = 00 A;.’S ,X]z = 0
32 00 00 O 0

Then

(4) ¥3(X31) = X2y, 72(X23) = X13andv;:(X;3) = Xaa.

Al
0
0

o oo

|

Lemma 4. There exists a3 € Aiz, 021 € A21, ¢ € J(Q) and o €

Aut(Q) such that

(1) ¢ = ()] = dg) X33
aj2q = qayg forall g€ Q
o(q)az = anqgforall g€ Q

@ (4 )= 3.

by the mapping:
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( m ‘Iualz) - (‘Iu 912)
man 4 21 91

0 0 0
(3) Imé; = (An cQ Aza) )
. 0 0 o
cQ@ 412 A
Imé;=| 0 O 0 |,
0 0 0

0 0 0
ImBl = 0 0 0
A3y Az Qc

4) Im 91, Im 63, Im 63, Im 6263, Im 6162 and Im 9361 are qua.si-
injective (or equivalently, fully invariant) submodules of e3R, e, Rg,
eaRp, e1RR, esRp and eaRp, respectively.

Proof. Considering ( 131 Aé’), we get aiz € A1z, an €

An, ¢ € J(Q) and o € Aut(Q) for which 1) and 2) hold. Further-

more, considering ( AQ‘;” Aéa) and ( Ai Aéa), we get ¢3,C3 €
1

J(Q) and 03,03 € Aut(Q) for which

(q A,a)N(Q Q) (Q A:a)N(Q Q)
Az @ “\Q @ ,hcz, Ay Q “\Q @ tn,ca’

we see that

o(A12)g =g ¢cQq, g(Aan)e = 9cQq, g(413)e = @22Qq,

@(As1)q =g €3Qq, o(4s2)g = ¢2Qq, g(Aan)e = @c2Qq,
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where j.',' = A.','/A,’j.

Further, as
Q An An 6o o o
elR/X13+X13 =] 0 0 0 o~ 0 _0 0 C 83R/X32
0 0 0 A Az @
0 0 0 Qc A A
eaR/Xp+Xas=|An Q Ay |=|[ 0 0 0 |CeR[Xs
0 0 0 0 0 0

Q Q Q 0 0 o0
esR/Xn+Xsa=1 0 0 0} =>| An Qca Az | CeaR/Xy
Ay Ay Q 0 0 0

we see that (A4ij)g = (Asj)g for i # k and cQq ~ c2Qq = c3Qq-
Since cQq,c2Qq and c3Q are fully invariant submodules of Q, it
follows that cQ = c3Q = ¢3Q. Hence 3) is proved. 4) is clear.

Lemma 8. 1) For any ¢ € (e3,e3), Im ¢ C Im 03. Forany ¢ €
(ea,e1), Im ¢ C Im 0. For any ¢ € (ey,e3), Im ¢ C Im 6,.

2) For any ¢ € (es,e3), Im ¢ C Im 0,8;. For any ¢ € (e, e3),
Im ¢ C Im 6,0,. For any ¢ € (e1,€3), Im ¢ C Im 056,.
) i<

Proof. let ¢ € (e;,e2). If £ € A3, and (

ocoo
oo
coo

00 O
z >32) # 0, then ¥(< £ >32) [0 0 Azz | # 0, but < z >33
55 4)
00 O
0 0 Ay | =0, which is impossible. Hence ¢({< z >33 |z €
00 o
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0 0 0
Aj32}) = 0 and there exists an epimorphism from Im 8; = (Ag] cQ Aj, )
0 0 0

0 0 o

to ( 0 0 0 | /Ker% ~Im¢. Since Im 03 is a fully invariant
An An Q

submodule of e;R, we see Im ¢ C Im 6,.

Similarly we can see the rest parts.

0 0 O
Next for ¢ € (es, e1), we see ¢( ( 0 0 ) ) = 0. Hence
43, 43 0

it follows that Im ¢ C Im 6,6;.

Now consider the factor ring R = R/ X3, and denote r + Xj;
by 7 for r € R. We represent R as

R$ égR@ eaR
((31.61) (€2, €1) (es,ex))

(31163) (eﬂleﬁ) (33»32)
(e1,8) (ez &) (&3, ¢&a)

Q A An
A @ Aza
Ay Ay

where A—;;g = ASZIA:.:Q-

Lemma 6. The mapping

Ti1 T2 T3 Q An An
T=|7Ty 722 T3 |:|An Q@ Q@ | —R=
Ty Ta2 T3 An I Q

where I = 8543,, given by

Q Az A
Ay Q@ Az
Ay A @
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q11 Q12 Pia q11 Q12 P1263
qa1 G2z Pz | — 75 922 1‘72293
ta taa Yy 03 tan 03 taz 03 Y2203

is a ring isomorphism.

Proof. By Lemma 5, 7 is well-defined and furthermore it is
a ring monomorphism. Nothing e; Ry is injective, we can see that
a3 is an onto mappping. And nothing e3Rg is injective, we see
* that 723 and 733 are onto mapping. It is easy to see that 73, is an
onto mapping. T3z is a clearly onto mapping. Hence 7 is a ring
isomorphism.

By the lemma above, we see (433)r = Ir and hence we see
that I = cQ. Hence

Q Ay An Q@ Apn Ajp
T:|An Q@ Q@ || An Q@ Aaxn
4 I Q Ay Azm Q

We put < as >a= 7(< azn >31),< a13 >13= 7(< 12 >13) and
a3z = aajagz. Since A3, is a small submodule of A3z, we see that

Q@ a1Q a13Q
a33Q = Aj;. Hence Risrepresentedas R~ | a51Q @ a3Q
anQ a3Q Q@

with relations:

¢ = 2112 = X132
o(c)=c

a12¢ = gaz for allg € Q@
o(q)az = asq for all ¢ € Q.

Putting aj; = 1 for i = 1,2,3, we further obtain the following rela-
tions (*):
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Ifi>j,
o(g)aij = a;jq forallge @
a;i i>k>;
@ik ={ ( .-J.)
aizec (B>iorj>k)
Hi=j,
ga;; = ajjq forall g € @
Xijxjp
Ifi<jy,

qaij = ajjqforall g€ Q
o _{auc (1<k<y)
= air (k<iorj<k)
for1<i,j <3

By these relations, we see that R is isomorphic to the skew-

Q@ Q Q
matrixring | @ @ @ by the mapping
Q Q Q/,.
9 Q12 Qs q11ayy; 12032 Q13013
g421 922 Qa3 | —/ | 921031 G22032 G23Q33
g1 Q32 433 g310321 QGazx3z G33a33

For the mathematical induction, we assume that for any basic
QF-ring R with n — 1 orthogonal primitive idempotents such that
for any idempotent e in R, eRe is a QF-ring with cyclic Nakayama
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permutation, then R is represented as skew matrix ring over a local
QF-ring Q w.r.to (g,¢,n — 1), where ¢ € Aut (Q) and ¢ € J(Q).

Now, consider the case |E| = n; let E = {e;,e3, -- ,en}. We
e, €3 - € .
may assume that { ' °2 n is a Nakayama permuta-
en 81 M en-l

tion. We represent R as

Q1 Az A - A,
R= A Q2 Aas Aap
Anl Anz Ana e Qn

where @; = (ei,¢;) and A;; = (ej,¢;). Considering (n —1) x
(n — 1) minor matrices in R including diagonal line, and applying
induction hypothesis, we can assume that @1 = Q3 =--- = @, and
a(4ij)g g Qq for each ij.

Specially we look at the first minor matrix

Q Az - A1 aaa
Ro=| #n @ v Aan
Ano1r Apa2 - Q

which is isomorphic to skew matrix ring over @ w.r.to (o,¢,n ~ 1)
where ¢ € Aut (Q) and c € J(Q).

Now we consider an extension ring R; of Ry,

Aln—l

R,

"
S
3

|
¥
L

An—11 - An-in-z2 <@ | Q

By the similar argument which is used n = 3 case.

R, is isomorphic to
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Aln
R? = An—2n

An—ln

nn-1 Q

L

Anl

where Anp_1 = Ann-1/45,_;.

Ar,_1={r € App-1|2Apn-1; =05 =1,2,---n—2,n}
= {2 € App-1|4inz=0i=1,2,..- ,n—1}

,which is (@, @)-submodule of Ay n—).
Note that A,n-; is isomorphic to Q.

Let 7 = (7i;) be the ring isomorphism between R, and R,. We
put < ain >in= 1(< Ain—1 >in) a0d < Apj >nj= (< An-1j >n;j)
wherei =1,2,--- ,n—2and j=1,2,--- ,n— 2. We take app-1 =
Qpp-20n_2n-1 € App-y1 80d 7(< 1 >p_1n) = @p_1p. Since A}, _, is
a small submodule of A4,,,,._;, we see that a,,_1Q = A,n—1. Hence

/ a1nQ
N Ry :
R Qp_1n Q
\QnIQ ann—lQ Q
( aan
~ (2ij @)n—-1n—1 . -:m Q (induction hypothesis)
\anIQ ¢'o'rm—lQ | Q

with the relations (x) for 1 <4,5 < n.

We see that R is isomorphic to the skew matrix ring
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e by the mapping
Q Q@ - Q/,cn

(gi) — (@ijij)-
Our argument inductively works. So, we can prove our theorem
for any case n = | E|.

Combining Theorem 1 and 2 we have the following;

Corollary 2. If R is a basic QF-ring such that for any idempotent
ein R, eRe is a QF-ring with cyclic Nakayama permutation, then R
has a Nakayama automorphism.
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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

ON A CLASSIFICATION OF CANONICAL ALGEBRAS

Toshiko Kaita

O0.Introduction

Let K be an algebraically closed field. In his paper
(6], C.M.Ringel has introduced and studied the canonical
K-algebras. In this note, we will introduce canonical
algebras and remark that, by [4] and [6], they are
classifid by checking Coxeter matrix-orbit of some C-
module Wo. And we will consider the component containing
Wo .

l1.Definitions
Let K be an algebraically closed field, and let A be

a finite dimensional K-algebra. Let A-mod be the category
of all finite dimensional left A-modules. In this note,
objects of A-mod is said to be A-modules. Let (P(1),------,
P{(f) }] be the isomorphism classes of indecomposable
projective A-modules. Let K,(A) be the Grothendieck group
of A. We know that K,(A) can identified with 2z?. Let M be
an A-module, and let dimM be the row vector with it's i-
component being (dimM); = dimgHomjz(P(i) M) . We call dimM
the dimension vector of M. Clearly, giEMeKO(A). Let B be
the following matrix;

B = ( dimP(1) .dimP(2) , -+~ -, dinP(2)T)

The detailed version of section4 will be submitted for

publication elsewhere.
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B is called the Cartan matrix of A. If B'Tis defined,
then let § be -B' B. $ is called the Coxeter matrix of A.

For n,,- .n.efN with t22, we denote by A(n,,-.n¢) the
following guiver;

1) en? ¢’
a‘. \aALl' 3 o« e o . 3 \aA"l“
o r ad L 7 T A
o4’ Lo, -t
2 [z
a" ’ el' 3 . *a“"' =t
ar 7T [od ar
Y Kyt
) 2
L .
ot/
& 4 L
L (4 (el e’
a a: S e ... . Qne-
7 7 - - ™~ T3 —re
J.('I' Jn‘-—l

Let ¢ be the pass & &Y 2% and let I be the vector
space with basis &",... ,u*, A subspace J of I is said to
be generic provided dimJ = t-2 and J intersects any 2-
dimensional coordinate subspace <d*',A”7> (where s # s')
in zero. The algebras given by the guiver A(n,,--.ns) with
generic relations J is said to be the canonical algebras
of type (n,,-.ng).

Let C be a canonical algebra of type (n,, ---,ne).
Then we can define the linear form 1:K,(C) —» 2 given by
~Xg+Xw (where x, is a-component of X). Let P . T or & be
.the module class of all indecomposable C-modules M with

1(dimM) <0, =0 or >0, respectively. Aiso, let Ta..-ng be
the quiver obtained from A(n,.--,nt) by deleting the
vertex w, and let R = rad P(w), where P(w) is the
indecomposable projective C-module corresponding to w.
Let Co be the hereditary algebra given by Ta,--n., and let
We be the indecomposable injective Co-module correspond-
ing to the vertex 0. C.M.Ringel has proved in [6] the
following;
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Theorem 1.1 {([6]1 3.7) T is a sincere stable tubular
IBK-family of type (n,., ,n4)., separating P from & (where

IPK is the projective line over K).
In the proof, We and R played important roles.

Theorem 1.2 ([6]1 3.7) For an indecomposable C-module
M, M is given in the form M = (M., 4¥), where a runs
through the vertices and dﬁ' through the arrows of &4(n. ,
--,ng}), thus 1fig€ng, 1$sst. M belongs to b4 if and only if
all T are mono, and nct all &T? are isomorphisms.
Dually M belongs to & if and only if all ¥
not all ¥ are isomorphisms. Finally, M belongs to F if

are epi and

and only if not all A% are mono and also not all &'V are

epi, or all &% are isomorphisms.

Remark Co -module Woe is also C-module. And dimM is
dimM = (1,1,---,1,1,-- = - +~+« =« en 17,--41,0)
= -t = ——

n, -1 ne—1

dimR is the following form;

dimR = (2;1‘1-'- -l.;lll rererT Tt |_1_'----i_/-1'0)

n,-1 n,-1

2.Auslander~-Riten translation and Coxeter matrix

Given a canonical algebra C of type (n,,--,n,), we
can assume n,zZn,;z.-Z2ng. If t23, we can assume, in
addition, that n¢z 2([613.7). Note that we may consider C
as a one-point extension C=Co [R], where R = rad P(w), and
where C; is the algebra given by the quiver Ta.--:ne.

In this section, we are going to study the relation
between Coxeter matrix ¥ of C and the Auslander-Reiten
translationZ . Clearly, $ is of the following form;
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[ VEF SREE P A s =1een=1 =2
1
6K(111) K(llz) - - K(llt) 0
0 0
$ - : ! " i !
' . ‘\ ] t
' ‘ : :
1 1
o|k(t.1) |k(t,2) | __ |k(t,t) |0
0 0
\?—t L(1) L(2) . ... L(t) 3-t /
where
0. 0\
HQ‘N, (n;-1)X(n;-1)matrix (ng>2)
K(i,i) = O 10 ne-1)X ‘
(01 (nc=2)
1001 (n¢-1)Xx(nj-1)matrix (ngs>2)
K(i,j) = O
(1----1) (n¢=2)

(where i#j)

L(i) = (2-t,-~--,2-t,3-t)
—m———

ng —2

Theorem 2.1 suppose that, for an indecomposable C-
module X in ¥ ,z* X is defined for a non-negative integer
m. If ¢ X is non-projective and if I(QiEX)=—1, then

Hom_ (z"X,C)=0, and dim¢™' X=(dimx)3""'.
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3.A classification of canonical algebras

On the proofs of this section, we were advised by
H.Lenzing.

We recall that Wo is the indecomposable injective Cqo-
module corresponding to the vertex O.

By results of [4] and (6], we obtain the following
results immediately.

Theorem 3.1 (1) The following propertis are equiva-
lent;

(a) Ta,...n¢ is of Dynkin type.

(a') There exists a positive integer m such that the w-
component of (gigw.)§" is negative.

(2) The following properties are equivalent;

(b) Tn,ne is of Euclidean type.

(b') For any positive integer m, an w-component of
(gigw.)ﬁM is non-negative, and there exists an positive
integer m such that thew -component of (dimW,)3" is
Zero.

(3) The following properties are equivalent;

(c) Tn..ny is of neither Dynkin type nor Euclidean type.

(c') For any positive integer m, an w-component of
(giﬂw,)Q“ is positive.

Corollary 3.2 (1) Theorem3.1(1)(a) is equivalent to
the following;
(a”) There exists a positive integer m’ and an indecom-
posable projective C-module P such that 915P=(215w,)imf
(2) Theorem3.1(2)(b) is equivalent to the following;
(b") There exists a positive integer m’ such that dimW,
= (dinmW, ) 3™
(3) Theorem3.1(3)(c) is equivalent to following;
() For any positive integer m’ and any indecomposable
projective C-module P, gigp#(gigw.)§":gigwo#(31§W.)§":

Corollary 3.3 (1) Corollary3.2(1)(a”) is equivalent to
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the following;
(a’”’) There exist a positive integer m/ and an indecom-
posable C-module P such that Pe ™ Wo .
(2) Corollary3.2(2)(57) is equivalent to the following;
(H") There exists a positive integer m such that
Wo 2™ Wo .
(3) Corollary3.2(3)(c”) is egquivalent to the following:
14

(c”) For any positive integer m and any indecomposable
U
projective C-module P, P#C"'wa, Wok €™ Wo .

We will consider the component containing the module
Woe . in Auslander-Reiten quiver of C-mod. Combining corol-
lary 3.2 with results in [6], we obtain the following;

Proposition 4.1 The following properties are equiva -
lent. Let Po be o rurrojed.‘ve ¢omponent of A-R guier of C-modd.

(1) Tn,--.ne 1is of Dynkin type.

(2) P=P

(3) W, is contained in f, .

Suppose that T, ,..n, is of Euclidean type. (giﬂw,)§'"is
periodic with minimal period n, ([6]13.5). Therefore Z™W,
~ Wo by corollary 3.3. C.M.Ringel has proved in [6] 5
that there exists a tube containing Wo, ZWo, ==+ , ™'W, .
We obtain the following:

Proposition 4.2 If Tpy..on, is of Euclidean type, then

Wo ,cWo ,~++ ,t"'Wy, form a mouth of some stable tube.

If Ty..n, is of neither Dynkin type nor Euclidean
type, f is strictly wild([6] 3).

Proposition 4.3 Suppose that Tpa,..-ny is of neither
Dynkin type nor Euclidean type. Let d be the lowest
common multiple of n,,--- ,ny. Then the following condi-



tions are equivalent.
(1) (2—{(1-,‘—\))xd = -1,
Sz 3
(2) Wo and R belong to the same £ -orbit.

In this case, wozc‘(R.

Remark (n,,'- ,ng) satisfies the condition (1) of this
proposition if and only if it is one of the following
types:

(2,2,2,2,2) (3.2,2,2) (4.2,2,2) (4,4,4)
(4,3,3) (6.,3,3) (5,5,2) (6.,6,2)
(5.4,2) (6,4,2) (8.4,2) (7.3.2)
(8,3,2) (9.3.2) (12,3,2)
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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

THE MOD 2 COHOMOLOGY ALGEBRAS
OF FINITE GROUPS WITH
SEMIDIHEDRAL SYLOW 2-SUBGROUPS

Hiroki SASAKI

1. Introduction. The following 2-groups are known as noncommutative 2-groups that
have cyclic maximal subgroups:

(1) dihedral 2-group
Do=(zy|z" ==Ly ley=2"1),n23;

(2) generalized quaternion 2-group

Qn={(29]| 2 T =yl= 7,22 =1y tay=2"1), n > 3;
(3) semidihedral 2-group

Sa=(2y|2" =y =1Ly ley=aT ), n2 g

(4)

Ma(d)={2y|e =" =Ly lay=2""" ), n24

The structure theories of finite groups with Sylow 2-subgroups isomorphic with these
2-subgroups have been deeply studied by many authors. Among them we mention the
works [25] by W. J. Wong and [1] by J. Alperin, R. Brauer and D. Gorenstein. In
[25] investigated were finite groups that have S, and M,(2) as Sylow 2-subgroups. A
result showed that a finite group containing M,(2) as Sylow 2-subgroup has a normal
2-complement. Therefore the mod 2 cohomology algebra of such a finite group is iso-
morphic with that of M,(2). In the paper [1] the finite simple groups with semidihedral
Sylow 2-subgroups were classified.

The detailed version of this paper will be submitted for publication elsewhere.
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Recently Martino and Priddy [18] and Martino [17] determined the stable decompo-
sitions of the classification spaces of finite groups with dihedral, generalized quaternion
and semidihedral Sylow 2-subgroups. As a consequence the mod 2 cohomology algebras
of such finite groups were obtained.

On the other hand Asai and Sasaki [3] has determined the cohomology algebras of
finite groups with dihedral Sylow 2-subgroups from a module theoretic point of view.
Main tools there were the theory of cohomology varieties of modules, which was orig-
inated by Quillen and has been developed by Alperin, Benson, Carlson, Evens and
others, and the theory of relatively projective covers of modules with respect to sub-
groups, which was introduced by Knorr [16]. Recently Okuyama [21] has introduced
the notion of relative projectivity of modules with respect to “modules”. This theory
generalizes the theory of relative projectivity with respect to subgroups.

Now the mod 2 cohomology algebras of finite groups with semidihedral Sylow 2-
subgroups are as follows. Let & be a field of characteristic 2.

Theorem 1. (H. Munkholm [19], L. Evens and S. Priddy [13]) It holds that

H*(Sn, k) = k[, 0, %, 7) /(€ — €0, ,6x, (€ +n*)r = 7° = x?)

where deg{ =degn = 1,degx =3 and degt = 4.

Let s .
v=2 |, z=2%V

Then the finite groups with Sylow 2-subgroup S, are classified into the following four
types:
I (y) ~{z), {yz) ~ (v);
I (y) ~ (z), {yz) % (v);
IO (y) # (z), (y=) ~ (v);
IV (y) # (), (yz) # (v).

Theorem 2. (J. Martino [17]) Let G be a finite group with semidihedral Sylow
2-subgroup S,.

(1) If the group G is of type I, then

H*(G, k) = k[B,7,6]/(8%y - 6)
where degB = 3,degy = 4 and deg$ = 5.
(2) If the group G is of type II, then
H*(G, ) = k[, 8,7,8]/(c®,a, ab, By - 6°)

where dega = 1,deg 8 = 3,degy =4 and deg§ = 5.
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(3) If the group G is of type I, then

H*(G,k) = k[a,ﬁ, '/]/(ae - az'/ - ﬂz)
where dega = 1,deg 8 = 3 and degy = 4.
(4) If the group G is of type IV, then

H*(G,k) = H*(S, k).

The purpose of this report is to show that the theorems can be established by using
the theory of relative projectivity with respect to modules and the theory of cohomology
varieties.

As we have mentioned, in Wong [25] and Alperin, Brauer and Gorenstein [1], the
structure of finite groups in question was investigated. But we do not depend on such
structure theory.

In Section 2 we shall recall some facts from cohomology theory of finite groups. In
Section 3, following Okuyama [21], we shall introduce the theory of relative projectivity.
In Section 4 we shall introduce a nice extension

0—k—V— Q) — 0.

As a matter of fact this extension is a relatively injective hull of & with respect to
“the 2G-module V”. The important is that the kG-module V is selfdual and the
tensor product of V' with the extension does split. Let us denote by « the element in
H*(G, k) corresponding to the extension above. The element v is not a zero-divisor in
the cohomology algebra H*(G,k). The extension above will give us much information
on the cohomology algebra. First a dimension formula for the cohomology groups
H"(G, k) will be stated in Section §. Second a homogeneous element 3 of degree 3 that
together with the element v forms a system of parameters for the cohomology algebra
will be detected from the extension above in Section 6. Hence the cohomology algebra
H*(G,k) is generated by homogeneous elements degree up to 5 over the subalgebra
k[B,v] generated by the elements 8 and 4. In the final section we shall sketch our
. arguments that determine generators and relations.

2. Cohomology algebra of finite groups. In this and the next sections let G be an
arbitrary finite group and let k be a field of characteristic p dividing the order of G.

By a kG-module we shall always mean a finitely generated right XG-module. For U
and V kG-modules we denote by (U, V)¢ the set of kG-homomorphisms of U to V.

The nth cohomology group H"(G, k) is isomorphic to the k-space (2"(k),k)s. For
an element p in H"*(G,k) we denote by 7 the 2G-homomorphism of 02"(k) to k that
corresponds to p. If the element p is not the gero element, then we denote by L, the
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kernel of 3 : Q®(k) — k. While if p = 0, then we define L, = 2" (k) ® 2(k). The module
L, is called a Carlson module.

For H < G, M a kG-module and « in H*(G, M) we denote by ag the restriction
Res§(a) of @ to H.

A direct product of r copies of cyclic group of order p is called an elementary abelian
p-group of rank r. The p-rank of a finite group G is defined to be the maximal rank of
elementary abelian p-subgroups of G.

Our aim is to determine generators of H*(G,k) and relations. The following is of
fundamental importance.

Theorem 2.1. (Quillen [23,24]) The p-rank of a finite group G equals to the Krull
dimension of the cohomology algebra H*(G, k).

Hence if the p-rank of a finite group G is r, then there exist » homogeneous elements
(1y---1¢ for which the cohomology algebra H*(G,k) is finitely generated over the
subalgebra k[(1,...,{,] generated by (1,...,{. By works of Carlson this condition is
equivalent to the condition that L;, ® --- ® L, is projective. When the p-rank of G is
2, we can say about bases over k[(1, (3]:

Lemma 2.1. (Okuyama and Sasaki [22]) For (; in H%(G,k) and (3 in H%(G, k), if
the tensor product L¢, ® L, is a projective module, then it holds that forn > dy +d;—1

H™(G, k) = H™4(G, k)¢, + H* (G, k)(3.
Namely

di+da—-2

H.(G,k) = [ @ H“(G, k) ]‘4(11(3]

n=1

The following two facts also show importance of Carlson modules. A kG-module V
with no projective direct summands is said to be periodic if there exists a number n
such that Q*(V) ~ V. Again by works of Carlson a kG-module V is periodic if and
only if there exists a homogeneous element p such that V' @ L, is projective.

Since the nth cohomology group H™(G,k) is isomorphic to Extl;(Q2*~'(k),k) by
dimension shifting, an element p in H™(G, k) represents an extension of 2"~1(k) by k.
Such an extension is of the form

0— k— Q" Y(L,) — Q" Y(k) — 0.

3. Relative projectivity with respect to modules. In this section, following
Okuyama [21], we explain the theory of relatively projective modules with respect to
modules briefly. We quote some results we need from [21]. Refer to [21] for the proofs
and more detailed description of the theory.
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Definition 3.1. For a kG-module V let
P(V)={ R| Ris a direct summand of V ® A for a kG-module A }.

A modaule in this set is said to be P(V)-projective.

A direct sum of kG-modules is P(V)-projective if and only if every direct summand
is P(V)-projective. A tensor product of a P(V')-projective module and an arbitrary kG-
module is P(V)-projective. A kG-module is P(V)-projective if and only if its syzygy is
P(V )-projective. Moreover the set P(V) is closed under dual from the following lemma
of Auslander and Carlson.

Lemma 3.1. (Auslander and Carlson [4]) For V a kG-module, define a k-linear map
ty : V'OV —k; ARvi— Av) (AeV*,veV).
Then the map ty is a8 kG-homomorphism and the induced homomorphism
lvotv:Ve(V'eV)—V

is a splitting epimorphism.

Due to this lemma a kG-module is P(V')-projective if and only if its dual is P(V)-
projective. Owing to this fact a P(V)-projective module is also said to be P(V)-injective.

Definition 3.2. An exact sequence
0—A—B—C—0
is said to be P(V)-split if the tensor product
0—A®R—B®R—C®R—0
splits for all P(V)-projective 2kG-modules R. Note that if the tensor product
0 — AV — BV —CoV —10
splits, then the sequence is P(V)-split.
Definition 3.3. For M a kG-module an exact sequence
0—X—R—M—0

is called a P(V)-projective resolution of M if
(1) R is P(V)-projective;
(2) the sequence is P(V)-split.
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If furthermore
(3) the kernel X has no P(V)-projective direct summands

then we call this resolution a P(V)-projective cover of the module M and we denote by
Q-p(v)(M) the kernel X.

Because of Lemma 3.1 an arbitrary kG-module has a P(V)-projective resolution.
Okuyama showed that P(V)-projective cover does exist for every kG-module.

Theorem 3.1. (Okuyama [21]) Let V be a kG-module. An arbitrary kG-module has
a P(V)-projective cover, which is uniquely determined up to isomorphism of sequences.
Dually we can define a P(V)-injective hull of a kG-module.

A kG-module M is P(V)-projective if and only if Qp(v)(M) = 0. If a kG-module
M is indecomposable and not P(V)-projective, then p(v)(M) is also indecomposable
with the same vertices as M.

Example 3.1. (1) If V is projective, then a P(V)-projective cover is a projective cover
in the usual sense.

(2) Let H be a set of subgroups of G. For V = @ gy kf, & P(V)-projective cover
coincides with a relatively H-projective cover, which was introduced by Knéorr [16)].

The following two propositions are concerned with relations of relative projectivity
and restrictions and inductions of modules.

Proposition 3.1. Let V be a kG-module. The restriction of 2 P(V)-projective cover of
a kG-module M to a subgroup H of G is a P(Vg)-projective resolution of the restriction
Mpyg. In particular

Qpv)(M)g =~ Qp(vy)(Mg) ® R

for some P(Vg)-projective module R.

Proposition 3.2. Let H be a subgroup of G and let W be 8 kH-module. Let M be &
kG-module.

(1) For a P(W)-projective cover
0—X—S-5H Mg—0
of the restriction Mg, we define 8 kG-homomorphism f : S¢ — M by

s@zr—rg(s)z (s€S, z€G).
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Then the kG-homomorphism f is an epimorphism and

0—kerf — S0

is 8 P(W€)-projective resolution of M.

(2) Similarly if
0 - Mg 5T —Y —0

is 8 P(W)-injective hull of My, then the sequence
0— M -1 7% —, cokerf — 0

where f : M — T@ is defined by

ar— Z glez™) @2 (ae M)
esEH\G

is 8 P(W9)-injective resolution of M.

Next we state some results that are concerned with relatively injective hull of the
trivial module.

Proposition 3.3. Let V be an indecomposable kG-module. Then there exists an
indecomposable kG-direct summand R of V* ® V such that

0—kerty NR— RSk 10
is a P(V)-projective cover of k. Dually a P(V)-injective hull of k is of the form
0—k—S—Y—0

where S is an indecomposable kG-direct summand of V* @ V.

An exact sequence
0—A—B—HC—0

represents an element in Ext,g(C, A). We denote by ¢ the element that corresponds
to the extension and by [¢] the extension. The group Extye(C, A) is isomorphic to
(9(C), A)g/(projectives). Let € denote a kG-homomorphism of (C) to A that repre-
sents the class corresponding to ¢. Then, as is easily seen, the tensor product [¢] ® V
of the extension [¢] and a kG-module V splits if and only if the element ¢ ® V in
Extyc(C ® V,A ® V) vanishes. Clearly this is equivalent to that the tensor product
homomorphism €@ 1y : (C)® V — A @V is a projective kG-homomorphism. From
this observation we have
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Lemma 3.2. Let p be an element in H*(G, k). Then the extension
0—k— QYL,)— Q" (k) — 0

of Q"~1(k) by k corresponding to the element p is a P(L,)-injective hull of the trivial
modaule k if and only if the tensor product p® 1, is a projective kG-homomorphism.

Example 3.2. Suppose that the field k has an odd characteristic. Let n be an even
number. Then by Lemma 3.2 and Benson [6] Proposition 5.9.6 for every element p in
H™(G, k) the extension

0—k— Q" YL,) — Q" (k) — 0

corresponding to p is a P(L,)-injective hull of the trivial module k.
The following two examples are also due to Okuyama.

Example 3.3. Suppose that the field k has characteristic 2. We consider a four-group
E = (y,z). Let L be the kE-submodule in kE @ kE generated by the two elements

e=(y-lLa(z-1), db=(z-1y-1)

where a is a nongero scalar. The module L is periodic of period 1.

(1) We have the extension
0—k—L—Qk)—0

where
s:k—L; 1—a(z—1)(=by-1)).
This extension is in fact a P(L)-injective hull of kg.

In Conlon [10] and Benson [5] described are the indecomposable modules and the
representation algebra for the four-group. The results follows from their descriptions.
However this is also verified from the point of view of Lemma 3.2.

Regarding HY(E,k) as Hom(E,k), let A and x in H'(E,k) be the duals of the
elements y and z, respectively. Take the element p = aA? + u? in H?(E, k). It is easily
checked that the Carlson module L, is in fact our kE-module L and our extension
corresponds to the element p.

Since 0%(k)® L ~ L ® (kE)*, to verify that the tensor product p® 1z, is projective
it is enough to show that (® 1.)(L) = 0 under the isomorphism. This can be carried
out by calculation.

(2) The dual L* of L is isomorphic with L. Hence making dual of the P(L)-injective
hull of k above, we obtain a P(L)-projective cover of k :
0— Q' k) —L-LHk—0
The kE-homomorphism q : L — k is defined by

.{a»—vl
"1 b—o.
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Example 3.4. Let
S=(zy|2" =y =1y ey=2"""""), n >4

be a semidihedral 2-group of order 2*. Let z = z*" ~ and let E = (y,2) be a four-
subgroup in S. Take an element p in H?(E, k) as in the preceding example. We write
L for L, and take the same generators a and b of L as the preceding example. The
extension

0 —ks LS —X—0

where the kS-homomorphism g : ks — L° is defined by

1—s a(z—1p"""1

is a P(L°)-injective hull of ks; and the extension

0—Y —IL5S ks —0

where the kS-homomorphism f : L¥ — kg is defined by

a— 1
f'{b'——vﬂ

is a P(L°)-projective cover of ks by Proposition 3.2. Moreover the kernel Y is isomor-
phic with -3(ks) and the cokernel X is isomorphic with 9%(ks). Summarizing, the
extension

0 — ks = L5 — Q%(ks) — 0

is a P(L°)-injective hull of ks; and the extension
0 — Q- 3ks) — LS L ks — 0
is a P(L5)-projective cover of ks.

If the scalar a is a primitive cubic root w of unity, then the module LS is defined

over the prime field F;. Let v = 22" and D = {v,y). The induced module L? is in
fact defined over the prime field F;.

4. A relatively injective hull of the trivial module. Henceforth we let k be a
field of chracteristic 2 with a primitive cubic root of unity, and let G denote a finite
group with semidihedral Sylow 2-subgroup

S=(zy|2" =¥ =1y ley=2"14""), n >4

unless otherwise stated. In this section for such a group G we shall introduce an exten-
sion
0 — kg —V — Q(kg) — 0
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of %(kg) by kg that is a P(V)-injective hull of kg. First we define a kG-module V
and then show that a P(V)-injective hull of kg is of the form above.

We set
,n—i

z=z v E=(yz).

Take an element p = wA? 4 p? in H?(E, k), where w is a primitive cubic root of unity,
and let
L=L, U=ILS

as in Example 3.4. We use the same notations as Example 3.4 for the generators of
the modules and the P(U)-injective hull and the P(U)-projective cover of the trivial
module. We list some properties of the kS-module U.

Lemma 4.1. (1) The module U is an indecomposable module with vertex E and source
L.

(2) For a subgroup T of S that contains no conjugate subgroup to the four-group E
the restriction Ur is projective.

(3) The tensor product U ® U decomposes into a direct sum of two copies of the
kS-module U and a projective kS-module.

(4) The module U is periodic of period 1.
(5) The module U is defined over the prime field F;.

Lemma 4.2. It holds that Cg(E) = E x O3(Cqa(F)).

We regard the k E-module L as a kCg(F)-module by making Oa/(Cg(F)) act triﬁally
on L.

We set

n=3
‘U=2’

Then one has Ng(E) = (E,v) so that the index |Ng(F) : Cg(F)| is 6 or 2. When
|[Ng(E) : Co(E)| = 6, there exists an element u in Ng(E) such that

Y=z "=yz (y2)°=v.

Let
e { (Co(E),u) when |[Ng(FE):Cg(F)| =6,
Co(E) when |Ng(F) : Ca(F)| = 2.
Then it holds that

|Ng(E): H[ =2, 03(Cq(FE)) = 0y(H).
We shall often write N for Ng(F) and C for Cg(FE).
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When |[Ng(E) : Co(F)| = 6, for i, 0 < i < 2, we let k; be the one-dimensional
kH-module on which C acts trivially and u acts as multiplication by w’. Since the
subgroup O;/(H) acts on LT trivially and the factor group H/O,:(H) is isomorphic
with the alternating group A4 in this case, we have

Proposition 4.1. Assume that |[Ng(F) : Co(F)| = 6.

(1) The induced module LY is the direct sum of three indecomposable k H-modules
My, M, and M, that satisfy the following conditions:

(i) M; has vertex E and source L;
(ii) M;/rad M; = k; @ ki, and soc M; = k; @ ki;
(iii) Q(M;) ~ M;_, and M; is periodic of period 3;
(iv) Mo ® Mo = My ®@ My & (projective), Mo ® Mg is projective, and Mg ~ Mg.

where the subscripts are considered modulo 3.

(2) The induced module MY is an indecomposable kN-module with vertex E and
source L, and periodic of period 3.

(3) The induced module MY’ is defined over the prime field F,.
While when |[Ng(E) : Co(F)| = 2, we have

Proposition 4.2. Assume that |Ng(F) : Cq(E)| = 2.

(1) The induced module LY is an indecomposable kN-module with vertex E and
source L, and periodic of period 1.

(2) The induced module LY is defined over the prime field F;.

We let
MY when |[Ng(E):Ce(E) =6

W=
{ LY when |[Ng(E):Co(E)| =2
and let

V be the Green correspondent of W with respect to (G, E, Ng(E)).

The kG-module V has the following properties.
Proposition 4.3. (1) The kG-module V is an indecomposable kG-module with vertex
E and source L lying in the principal block.

(2) The restriction Vs of V to § decomposes into a direct sum of the kS-module U
and a projective kS-module.

(3) The induced module W® of W to G decomposes into a direct sum of the kG-
module V and a projective kG-module.
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(4) The tensor product V ® V decomposes into a direct sum of two copies of the
kG-module V and a projective kG-module.

(5) The kG-module V is isomorphic with its dual V*.

(6) The kG-module V is periodic of period 3 when |[Ng(E) : C¢(F)| = 6, and 1 when
|Ng(E) : Ca(E)| = 2.

(7) The kG-module V is defined over the prime field F;.
The kG-modale V is the very module we want.

Theorem 4.1. (1) A P(V)-injective hull of the trivial module k¢ is of the following
form:
0—-»kal»V——»ﬂa(ka)—-»0.

(2) A P(V)-projective cover of the trivial module kg is of the following form:

0 — O~3kg) — V Lo kg — 0.

(3) The restrictions of the extensions above to S are
0—ks L U0P k)0 P — 0

0—»ﬂ'a(ks)®P—¢+U®P—’bks—'0

where P is a projective kS-module.

Proof. We prove only (1). Let A = Ng(S). Then it holds that 4 = 0;:(4) x S. We
regard the kS-module U as a kA-module by making O,/(A4) act on U trivially. Since
the subgroup O3:(A) acts on 03(k,4) trivially, it follows that

Q3(ka)s = O3(ks).
Thus we see that the extension
0—ky— U — Q(ky) —0
is 8 P(U)-injective hull of k4. By Proposition 3.3 (2) the middle term of a P(V)-
injective hull of kg is an indecomposable direct summand of V* ® V. We have observed

that
V'eV=VeV~VaVe (projective)

in the preceding proposition. Hence a P(V)-injective hull of kg is of the form

0—kg—V—0oX—0.
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The cokernel X is indecomposable with vertex §. We show that the module X is
isomorphic with Q3(kg) by using Green correspondence with respect to (G, S, A). The
restriction of the P(V)-injective hull of kg above to A is of the form

0—":4 —'U@P—bﬂs(kA)QP—'o
where P is a projective kA-module by Propositions 3.1 and 4.3 (2). Namely we have
X4=0(ky) o P.

Thus the module X is the Green correspondent of 1%(kg). On the other hand the
module 23(kg) is also a Green correspondent of Q13(k,), since Q3(kg)a = O*(k4) ®
(projective). Consequently the module X is isomorphic with (23(kg), as desired. O

5. Dimensions of cohomology groups. The P(V)-injective hull

0 — kg - V -2 Q3(kg) — 0

gives us much information about the cohomology algebra. In this section we shall deduce
a formula for the dimensions of cohomology groups H*(G, k).

We denote by v the element in H4(G, k) that corresponds to the extension above.

Lemma 5.1. The indeced homomorphism
7 :(Vik)g — (k. k)
is the gero homomorphism so that
B : (@%(k), K)o = (V; K)o

In particular ( )|
) 1 when |[Ng(E): Co(E)| =6
dim A%(G, k) =
im B(G, k) { 2 when |[Ng(E): Ca(E)| = 2.

Proof. We note that the socle of the module V is contained in the radical of V, since
the module V is indecomposable but not simple. Hence we have §* = 0. Since W€¢ =~
V & (projective) by Proposition 4.3 (3), we can calculate the dimension as follows:

1 when|N:C|=6

dim (V, k)g =
(Vik)a {2 when |N : C| =2.

O

Applying the functor Ext;g(—, k) to the extension we can deduce the following the-
orem.
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Theorem 5.1. (1) The element v is not a zero-divisor in H*(G, k).
(2) When |Ng(E) : Cg(E)| = 6, we have forn > 0

0 if n=0 (mod 3)
dim H**4(G, k) =dim H*(G,k)+¢ 1 if n=1 (mod 3)
1 if n=2 (mod3).
(3) When |[Ng(E) : Cg(E)| = 2, we have

dim H**4(G, k) = diim A™(G,k)+2 for n > 0.

Proof. Let us consider the long exact Ext-sequence

0— (n’(k),k)a = (V.k)a
(k k)a 2, Ext} o(Q%(k), k) Ext,,G(V k)
Ext,,a(k k) —D Exthg(ﬂa(k), k) ExthG(V k)
35, Extl gk, k) -2 ExtDE(Q3(k), k) =X Rty Ext}il (V) — ---.
If the induced homomorphism g, : Extyqo(V,k) — Ext;g(k, k) is the zero homomor-
phism for each n > 0, then we see that the element v in H*(G, k) is not a gero-divisor,
since the connecting homomorphism A can be interpreted as the multiplication by the
element v through the isomorphism of Ext}2'(Q%(k), k) with Ext}}*(k, k); and
dim H**4(G, k)/ dim H*(G, k)y = dimExt}¢}(V,k) for = > 0.

We have already observed in Lemma 5.1 that the induced homomorphism g is the zero
homomorphism.

We first treat the case when |N : C| = 2. Since the syzygy Q(V') is isomorphic with
V, we have by Asai [2] Theorem 3.3 for each n,n > 0

[ 95 : Extiq(V, k) — Extiq(k, k)] = 0.
It follows also from (V) ~ V that
dimExtpt(V, k) =
Hence we obtain the formula for this case.

Next let us assume that |N : C| = 6. Note that the argument above is valid for the
Sylow 2-subgroup S and the kS-module U. Because 23(V) is isomorphic with V, if the
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induced homomorphisms g} and g3 are the gero homomorphisms, then again by Asai
[2] Theorem 3.3 every g}, is the zero homomorphism for each » > 0. To see that g} and
g3 are the zero homomorphisms it is enough to note by Theorem 4.1 that the induced
homomorphisms g}, : Ext}s(U, k) — Ext;¢(k,k) are the zero homomorphisms. As in
the proof of Lemma 5.1 we see that

k n=0
Extyg(V, k) = Extgg(Mo, k) =< 0 n=1
k n=2

by Proposition 4.1, whence we have

0 ifn=0(mod3)
dimExt}'(V,k)=<¢ 1 if n=1 (mod 3)
1 if n=2(mod 3).

This completes the proof of the theorem. 0O

The following lemma is also deduced from our P(V)-injective hull.

Lemma 5.2. The second cohomology group H?(G, k) has the same dimension as the
first cohomology group H(G, k).

6. Homogeneous system of parameters. Since the element 4 in H*(G, k) corre-
sponds to the extension

0—»k—»V—-’Qs(k)—b0

the kG-module V is isomorphic with 2~1(Z,) so that the Carlson module L, is periodic.
Therefore there must be a homogeneous element 3 such that the tensor product Ly ® L,

is projective. Such an element 8 and the element 4 form a system of parameters for the
cohomology algebra H*(G, k).

By Lemma 5.1 we can take a kG-homomorphism
B:¥k) — k

such that

o~

f =Bh.
Theorem 6.1. The tensor product Lg ® L. is projective. In particalar it holds that

H™(G,k) = H™3(G,k)B + H**(G,k)y for n>6
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whence one has

H*(G,k) = éH‘(G: k)l k[B, 7]'
i=1

Proof. Form a pull-back of Lg — Q%(k) and h:V — Q3(k) to obtain the commutative
diagram

0 0
0 > ke » Q" Xk) —— Ly —— 0
0 E—— v . ¥k) — 0
f 1B
k —— &k
0 0
Tensoring the kG-module V to the commutative diagram above we obtain
0 0
0 » V » Q3k)QV —— Lg®V —— 0
0 v 2 vev 22 adkev —— 0
70lvl lﬁelv
|4 — |4
0 0

The middle horizontal sequence splits, because the sequence
0—k—V—Q%k)—0
is P(V)-split. Therefore the upper horizontal sequence also splits, whence we have
Q3k)eV=VeLseV.
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This together with the fact that 2~3(k) ® V =~ V& (projective), which follows from
Lemma 4.3 (6), implies that the tensor product Lg ® L, is projective, since the module
V is isomorphic with 271(L, ). The latter assertion follows from Lemma 2.1. O

We have obtained a dimension formula for the cohomology groups and a homoge-
neous system of parameters for the cohomology algebra. Therefore we must be able to
determine generators and relations by investigating cohomology groups of low homo-
geneous degree closely. Since the kG-module V is defined over the prime field F;, the
elements @ and v are defined over the prime field F;.

7. The cohomology algebra. In this section we shall establish the main theorems.
In order to determine the first cohomology group H'(G,k) we prepare a lemma that
concerns with relatively injective hulls of the trivial module with respect to subgroups.
Before stating the lemma we introduce some more notations. For sets H and X of
subgroups of a finite group X we write H <x K to mean that a conjugate of every
subgroup in 7 is contained in a subgroup that belongs to X. If ¥ <x KX .and X <x H,
then we write H =x K. By a similar argument to Asai and Sasaki [3] Proposition 5.1
we have the following.

Lemma 7.1. Let G be a finite group. If a maximal subgroup T of a Sylow 2-subgroup
S of G satisfies

{TPNS|geq}=s{T}

then for a field k of characteristic 2 a relatively T-injective hull of the trivial kG-module
k is of the form

0 — kg — 5T —kg—0
where ScT is a Scott module with vertex T'.

Recall that v = 22"~ and z = 22" and the finite groups with Sylow 2-subgroup S
are classified into the following four types:

I (y) ~(2), (yz) ~ (v);

I (y) ~ (2), (y2) # (v);

I (y) # (2), (y=) ~ (v);

IV (y) # (2), (y2) # (v).
Let us define two elements ¢ and 5 in H(S, k) by

E=2", n=9¢

regarding H'(S,k) as Hom(S, k). Obviously we have H'(S, k) = (¢, 7).

Using Lemma 7.1 with the maximal subgroups D = (22,y) and Q = (22, yz) we see
the following.
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Lemma 7.2. (1) If the group G is of type I, then HY(G, k) = 0; and |Ng(E) : Co(E)| =
6.

(2) If the group G is of type II, then there exists an element a in H'(G, k) such that
HY(G,k) = {a) and as = §; and |Ng(FE) : Cg(E)| =6.

(3) If the group G is of type III, then there exists an element a in H(G, k) such that
HY(G,k) = {a) and as = £ + n; and |[Ng(E) : Ce(E)| = 2.

(4) If the group G is of type IV, then the group G has a normal 2-complement. In
particular H*(G, k) ~ H*(S,k); and |No(E) : Ce(E)| = 2.

Remark. If a finite group G is of type II, then the kernel of the element « in H(G, k)
is a normal subgroup of index 2 with dihedral Sylow 2-subgroup D. If a finite group
G is of type III, then the kernel of the element « in H(G, k) is a normal subgroup
of index 2 with Sylow 2-subgroup Q. The subgroup Q is a quaternion (when n = 4)
or generalized quaternion (when n > 5§) group. Clearly a finite group of type I has
no normal subgroups of index 4. Of course these have been known as a first step of
structure theory. We also note that the principal block algebra of a finite group of type
IV is Morita equivalent to the group algebra of its Sylow 2-subgroup.

By the results in Section 5 and this lemma we can determine the dimensions of the
cohomology groups H*(G,k),n 2 0.

Before making further steps we state a lemma, which is deduced from our P(V)-
injective hull of kg and the fact that the kG-module V is E-projective.

Lemma 7.3. If an element { in H*(G,k), n > 4, restricts to the gero element in
H™(E, k), then there exists an element p in H*~*(G, k) such that

¢=1p

Every four-subgroup of the group G is conjugate to the four-group E. Hence by
Quillen’s theorem an element { in H™(G, k) restricts to the zero element in H*(E, k) if
and only if { is nilpotent. Thus Lemma 7.3 can be restated as follows.

Lemma 7T.4. Let n > 4 and let » be the residue class of n modulo 4. A nilpotent
element of degree n is a product of a nilpotent element of degree r and a power of the
element ¥.

We first treat the semidihedral group S. The arguments we have done are valid for
S with G = S and V = U. Let r in H*(S,k) be the element corresponding to the
P(U )-injective hull
0— ks — U — Q3(ks) — 0
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of the trivial module ks and let x in H3(S, k) be the element satisfying
f =xh.
Then the element 7 is not a zero-divisor and the elements x and 7 form a system of

parameters for the cohomology algebra H*(S, k).

Using Lemma 7.4, restriction maps and some other results, we obtain

Lemma 7.5. The following hold.
(1) H?(S,k) = (,7%); € =¢n.
(2) H3(S,k) = (7% x); x(p) = 0,63 =0.
(3) H‘(S,k) = (ﬂ"ﬂx’f); €x=0.
(4) H(S,k) = (n*,7°x, 77, €).

Lemma 7.8. It holds that
X' = (€ +9")r+0"

Proof. Step 1. One has 75 = A + A3u? 4 put.

Sketch of the proof of Step 1. This can be shown by considering the restriction of the
P(U)-injective hull
0— ks —U— Q(ks) — 0

to the four-group E.
Step 2. One has xg = Au(A + p).

Skeich of the proof of Step 2. We can verify the equation by considering the restriction
maps to subgroups of order 2.

Step 3. Conelusion.

Proof of Step 3. By Steps 1 and 2 the element x?+5°® 4+ 7?7 restricts to the zero element
in H®(E,k). Then by Lemma 7.4 this element is a scalar multiple of {27. Since the
elements x, 7,7 and ¢ are all defined over the prime field F;, this element is {27 or 0.
To see that this is {7 we consider the cohomology algebra of the maximal subgroup
Q = (2?,yz). The subgroup Q is a quaternion (when n = 4) or generalized quaternion
(when n > 5) group. Both of the elements £ and 7 restrict to the dual (yz)* in H(Q, k)
and the restriction 7q is not a zero-divisor in H*(Q, k). Let 6 in H'(Q, k) be the dual
(2%)* of the element 2?. Then the cohomology algebra H*(Q, k) is generated by the
elements {q,0 and 7g. The relations are as follows:

0 +0¢q + €4 =0, £3=0,6°=0 when n = 4;
6% + 6¢q =0, £%=0 when n > 5.
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(See for example Martino and Priddy [18] or Asai and Sasaki [3].) Hence the square
x? restricts to the zero element in H%(Q, k). Suppose that x? + n® + 5?7 = 0. Then
restricting to @@, we obtain n’qu = 0, a contradiction. Consequently we have x* =
7 + 9?7 + €37, as desired. O

We have established that the cohomology algebra H*(S,k) is generated by the ele-
ments £,7,x and 7; these generators satisfy the following :

£ =¢n88=0,¢6=0x"=0"+7'r+ &
Considering the dimensions of the cohomology groups H®(S, k), n > 0, we see that the
relations above are enough. Namely we have established Theorem 1. We note that the

same result holds for the cohomology algebra H*(S,F;) of S with coefficients in the
prime field Fs.

Let us proceed to the general cases. First of all we note that

ﬂ5=Xv Is =T

by Theorem 4.1. The elements 8, 4 and « (for the groups of types II and III) are defined
over the prime field F;.

Proposition 7.1. Assume that the group G is of type I. Then the following hold:
(1) Hz(Gvk) = O,H’(G,k) = (ﬂ)sH‘(Gvk) = (7)'
(2) There exists an element § in H*(G, k) such that H*(G, k) = (6) and

8 = p*4.

Proof. By Lemmas 5.3, 7.2 (1) and Theorem 5.1 (1) we have
dim HY(G, k) = dim H*(G, k) = 0,
dim H¥(G, k) = dim H*(G, k) = dim H*(G, k) = 1.

Hence the assertion (1) holds. We can take a nongero element § in H%(G, k) that is
defined over the prime field F;. Using Theorems 5.1 (1) and 6.1 we have H'9(G,k) =
{(B8%7). Thus the square §? is A2 or 0. By virtue of Lemma 7.4 the square §? must not
vanish. Therefore it follows that 62 = 8%v. D

The remaining cases are also studied similazly.

Proposition 7.2. Assume that the group G is of type II. Then the following hold:
(1) H*(G,k) = (a®), H}(G, k) = (B), H*(G, k) = (v);
=0, af=0.
(2) There exists an element § in H%(G, k) suchk that H*(G, k) = (a7, 6) and
ad =0, § =p%.
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Proposition 7.3. Assume that the group G is of type III. Then the following hold:

(1) HY(G,F)
(2) H(G,k)

(a’),H’(G, k) = (asoﬂ)o H‘(Go k) = (a‘*,aﬂ.‘r)-
(assa,ﬂsa'f) and

B? = a® + al.

Again considering the dimensions we obtain Theorem 2 as in the case of the semidihe-

dral group S. We note that the same result holds for the cohomology algebra H*(G,F;)
of G with coefficients in the prime field F;.
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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

NON-COMMUTATIVE VALUATION RINGS

Hidetoshi MARUBAYASHI, Haruo MIYAMOTO and Akira UEDA

0. Introduction. In [D1], Dubrovin introduced a notion of non-commutative
valuation rings in simple Artinian rings, and proved some elementary properties of it.
He obtained in [D2] more detailed results concerning orders in finite dimensional central
simple algebras over fields.

In this note, we introduce the non-commutative valuation ring in the sense of [D1],
and investigate prime ideals of it. The key result is Proposition 2.8 which states that, for
any ideal A of a valuation ring R, [ A™ is a prime ideal of R. Using this result, we
characterize branched and unbranched prime ideals.

1. Definition and some properties of non-commutative valuation rings.
First, we shall define the non-commutative valuation ring. Let Q be a simple Artinian
ring, and adjoin a new symbol co to Q. We define a + 00 = 00 +a = oo for any a € Q
and c-00 = 00 +-¢c = oo for any unit ¢ € Q. The operations co + co and oo -a, where a is
not a unit, remains undefined.

Definition 1.1 (Definition 5 of [D1, §1]). A right place of a simple Artinian ring Q
into a simple Artinian ring D is a mapping f of the set (Q, 00) onto (D, c0) such that
f(ab) = f(a)f(b), £(1) =1, f(a +bd) = f(a) + f(b)

for any a, b € (Q,00) whenever the right hand sides are defined, and for any g € Q@ such
that f(g) = oo, there is an element » € Q such that f(») # oo and f(gr) # oo, 0. The

The detailed version of this paper will be submitted for publication elsewhere.
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left place is defined similarly. Right and left place is called place.
Then we have the following.

Proposition 1.2 (Proposition 3 of [D1, §1]). Let Q and D be simple Artinian rings
and let f:Q— D beaplace. Put R={g€ Q| f(q) # oo} and m(R)={g€ Q| f(¢) =0}
Then R is a subring of Q and m(R) is a maximal ideal of R. Further, R is a local ring
(i.e. R/J(R) is a simple Artinian ring, where J(R) denotes the Jacobson radical of R),
and for any g € Q — R, there exist ,,7;3 € R such that r,q,g72 € R—m(R). Conversely,
if R is a subring of Q and m(R) is an ideal of R such that R/m(R) is a simple Artinian
ring, and if, for any ¢ € Q — R, there exist 71,73 € R such that r,g,q7; € R—m(R),
then the mapping

f(a) =a+m(R) if a € R,
f(a) =00 ifa ¢ R,
defines a place of Q into R/m(R).

Theorem 1.3 (Theorem 4 of [D1, §1]). The following are equivalent:
(1) R is a rihgt semi-hereditary, right and left Goldie finite dimensional, prime local
ring.
(2) R is a local Bezout ring (i.e. every finitely generated right or left ideal of R is
principal) and is a prime Goldie ring.
(3) R is the sel of elements of a simple Artinian ring Q at which a place of Q takes
finite values.
(4) R is a right and left n-chain ring in a primitive ring Q, and there is a primitive ideal
M of R such that the Goldie dimension of R/M > n. (R is called a right n-chain ring
if, for any elements ag,ay1,--,a, €Q, there is an i(0 < i < n) such that a; € Tj4ia;R.)

Definition 1.4 (Definition 6 of [D1, §1]). A ring R is called a non-commutative
valuation ring if R satisfies the conditions of Theorem 1.3.

Next we shall give some elementary properties of a non-commutative valuation ring.

Theorem 1.5 (Theorem 4 of [D1, §2]).Let R be a valuation ring in a simple Artinian
ring Q. Then
(1) Two-sided R-ideals are linearly ordered by inclusion.
(2) Any overring S of R is also a valuation ring in Q, and the Jacobson radical J(S)
is a prime ideal of R.
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(3) R/J(S) is a valuation ring in the simple Artinian ring A/J(S).
(4) C(J(S)) = {c € R| [c+J(S)] is regular mod J(S)} is a regular Ore set of R and
S = Ry(s), the localization of R with respect to C(J(S)).

In the case of algebras, we have more results.

Theorem 1.8 (Theorem 1 of [D2, §2]).Let V be a commutative valuation ring with
guotient field K, and let R be a valuation ring in a finite dimensional central simple
K-algebra T with its center V and KR=1X. Then
(1) For any prime ideal P of R, C(P) = {c € R | [c+ P] is regular mod P} is a regular
Ore set of R, and so there ezists the localization of R at P. Then we have Rp = R,,
where p= PNV and R, denotes the localization of R with respect to V —p.

(2) The mapping P — Rp is an inclusion reversing bijection between the set of prime
ideals of R and the set of overrings of R. The inverse mapping is S — J(S).

2. Prime ideals in non-commutative valuation rings. Throughout this sec-
tion, let V be a valuation domain with the quotient field X, and let R be a valuation
ring in the sense of [D1] in a finite dimensional central simple K-algebra X.

For any ideal A of R, we define VA= {P: prime ideal of R | P D A}, the radical
of A. The following is trivial from Theorem 1.5 (1).

Lemma 2.1. If A is an ideal of R, then /A is a prime ideal of R.

For any R-ideal A, let O,(A) = {g € Q | Aq C A}, the right order of A. Similarly
the left order of A is defined. Concerning the right and left orders of a prime ideal of
R, we have following.

Lemma 2.2. Let P be a prime ideal of R. Then Rp = O,(P) = Oi(P).
From Lemma 2.2 and Theorem 1.6, we have

Lemma 2.3. Let P, and P; be prime ideals of R such that P, C P;. Then we
have O,(P,) 2 O,(P;).

An ideal Q of R ia called a primary ideal if 2Ry C Q and z ¢ Q, then y € /Q, and
if 2Ry C Q and z ¢ /@, then y € Q. I /Q = P, then we say that Q is a P-primary
ideal.
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Lemma 2.4. For any ideal A of R, we have 0,(A) C 0,(VA). If A is a primary
ideal, then the equality holds.

We note that the equality in Lemma 2.4 does not hold in general. Next we give
a condition for an ideal of R to be a primary ideal.

Lemma 2.5. Let Q@ C P be ideals of R and assume that P is prime. Then the
Jollowing are equivalent.
(i) Q is a P-primary ideal.
(ii) V@ = P and Q is an ideal of Rp.

Corollary 2.8. If Q, and Q3 are P-primary ideals of R, then Q1Q2 is also a
P-primary ideal (See [G]).

Let P be a prime ideal of R. If T is a ring such that R CT C Rp, then, by Lemma
2.5, a P-primary ideal of R is an ideal of T. Then we have

Lemma 2.7. Let Q be a P-primary ideal of R. Then for any ring T such that
RCTC Rp, Q is P-primary ideal as an ideal of T.

Now we give the key result in this note.
Proposition 2.8. For any ideal A of R, () A™ is a prime ideal.
Next lemma follows from Proposition 2.8.

Lemma 2.9. Let A be an ideal of R.

(1) If A* = A**1 for some k > 0, then A is an idempotent prime ideal.
(2) Let P be a prime ideal of R such that P C A. Then P C ) A™.
(3) If B is an ideal of R and A C VB, then A® C B for some n > 0.

Lemma 2.10. Let S be a set of prime ideals of R and let P =) piesP'. Then

(1) 0.(P) =N 0.(P').
(2) P is a prime ideal.

A prime ideal P is said to be branched if there exists a P-primary ideal @ of R
such that @ # P. In other case, P is called an unbranched prime ideal. Now we have
the following, concerning branched and unbranched prime ideals of non-commutative
valuation rings.
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Theorem 2.11.Let P be a prime ideal of R, and let Po =[] P™.

(1) If P is branched and P # P2, then

(i) {P* | k > 0} is the full set of P-primary ideals of R,

(ii) P = 2T =Tz for some z € P, where T = O,(P),

(iii) there is no prime ideal P' such that P O P' O Py and Py is a prime ideal.
(2) If P is branched and P = P2, then

(i) for any P-primary ideal Q(# P), N Q™ =N{Qxr | Qxr : P-primary ideal },

(i1) Qo: =({Qxr | Qxr: P-primary ideal } is a prime ideal,

(iii) there is no prime ideal P' such that P D P' D Qq.

(iv) P ={Q@x | Qx : P-primary with Q5 # P}.
(8) The following are equivalent:

(i) P is branched.

(ii) P = VA for some ideal A(# P).

(iii) P = VRaR for some a € R.

(iv) P is not the union of prime ideals P' such that P' C P.

(v) There is a prime ideal M such that M C P and there are no prime ideals P' such
aes MCP CP. ‘
(4) If P is unbranched, then P = |J{Ps | PA(C P) : prime ideal }.

Corollary 2.12.Let P be a prime ideal of R and let p= PNV. Then
(1) p is branched if and only if P is branched.
(2) p is idempotent if and only if P is idempotent. In this case, we have P = pR.
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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

THE INJECTIVITY OF QUASI-PROJECTIVE MODULES AND THE PROJECTIVITY
OF QUASI-INJECTIVE MODULES

YosHITOMO BABA

Let R be a semiprimary ring with identity 1 and R-modules unitary. For a left R-module M we denote
the injective hull of M by E(M), the socle of Af by S(M), the Jacobson radical of M by rad(M) and
the top M/rad(M) by T(M). And for subsets S and T of R we write Ig(T) = {z € S| zT = 0} and
rs(T) = {z € S| Tz = 0}. We put J:= rad(Rg).

§1. i-pair.

In the following theorem, K. R. Fuller gave necessary and sufficient conditions for projective left modules
to be injective over a left artinian ring.

Theorem A (4, Theorem 3.1]. [fe is an idempotent element of a left artinian ring R, then the following

statements are equivalent:

(a) rRe is injective.
(b) For each e; in a basic set of idempotents for e, there is a primilive idempotent f; of R such that
S(Re;) = T(RS:) and S(fiR)==T(eiR).

(c) There ezists an idempotent f of R such that

(i) {yr(Re)=0=rr.(fR);

(ii) The functors

Homyg;(—, fRe) and Hom.r.(—,fRe)
define a duality Setween the category of finitely generated left fRf-modules and the category of

finitely generated right e Re-modules.

Moreover, if RRe is injective, then the fiRp of (b) and the fRp of (c) are also injective.

The detailed version of this paper will be submitted for publication elsewhere.

95



With respect to this theorem, we give two theorems in [ 1] which is a joint work with Prof. Oshiro.

For primitive idempotents e and f we call that the pair (f R, Re) is an i-pair if S(fRg) = T(eRg) and
S(rRe) = T(rRf).

Theorem 1. Let e be a primitive idempotent of R. Then the following two conditions ere equivalent.
(1) RRe is injective.
(2) There exists a primitive idempolent f of R such that
(i) (fR, Re) is an i-pair,
(11) {yrTRAX) = X for any left fRf-submodule X of fR.

Theorem 2. Lel e and f be primitive idempotents of R such that (fR, Re) is an i-pair. Then the
following three conditions are equivalent.
(1) Re.g. is artinian.
(2) smryfR is artinian.
(3) Both gRe and fRgr are injective.

Example. Let D and F be division rings with D € F. We denote the factor ring S/T by R, where

D o o 0 0 0
S=| D D o and T= 0o 0 0 |.
F F D F oo

Then R is a semiprimary ring. In R we

put
1 00 0 0 0
e=| 0 0 0 and f=|0 1 0 |.
0 00 0 0 0

Then we see that .g.eR and Rfsp; are artinian and (eR, Rf) is an i-pair. Therefore by Theorem 2 both
eRp and pRf are injective. But if F is infinite dimensional over D, R is neither lelt nor right artinian.

§2. The injectivity of quasi-projective modules and the projectivity of quasi-injective modules.

In 882 and 3, we give the results in [ 2 |. In this section, we generalize Theorem A by giving necessary
and sufficient conditions for quasi-projective modules to be injective and ones for quasi-injective modules to
be projective.

For idempotents e, f and g of R we call that R satisfies the condition D,[f,g.,e] ( resp. Di[f.g,€] ) if
the descending chain condition ( abbreviated DCC ) holds on { rgre(I) | I is a left fRf-submodule of
fRg} ( resp. {lypy(I')| I' is a right eRe-submodule of gRe } ) ( equivalently the ascending chain
condition ( abbreviated ACC ) holds on { Iypy(I') | I' is a right eRe-submodule of gRe } ( resp. {
Tere(I) | I is aleft fRf-submodule of fRg} ) ). And if both conditions D,[f,g,¢] and Di[f, g,¢] are
satisfied, we call that R satisfies the condition D(f,g,e].
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Theorem 3.  Let e and f be primitive idempotents of R. Suppose that R satisfies D,[f,1,e] and
Dilf, f.e]. Then the following four conditions are equivalent.
(1) E(T(rR/f)) is quasi-projective with the projective cover ¢ : Re — E(T(rRf)).
(2) fRp is quasi-injective with S(fRp) = T(eRRr).
(3) (i) S(fRr)=T(eRg),
(ii) S(yrsfRe) is simple.
(4) 3) r(Re)=0,
(ii) fRe defines the Morita duality detween the calegory of finitely generated left fRf -modules and the
calegory of finitely generated right eReferg.(fR)-modules.
Moreover, if (1) is satisfied, Ker¢ = rp.(f R).

The equivalence between (1} and (3) of Theorem 3 are easily generalized to the case that e and f are not
primitive. Concretely, let e =e; +---+ ¢, and f = f, +--- + f, be decompositions to pairwise orthogonal
primitive idempotents of R. And suppose that R satisfies D,[fi, 1,¢;] for any i € {1,.--,n}. Then (1) is
equivalent to the following (3') which is naturally generalized from (3).

(3’) For eachi € {1,---,n} the following two conditions are satisfied.
(i) S(f.'Rn) = T(G;RR),
(1) S(y.ry fiRe;) is simple.
L]
Moreover, if the conditions are satisfied, Keré = 20"&.(!.‘3]-

: 1] |
But the equivalence between (2), (3) and (4) of Theorem 3 are not generalized naturally.

F o F
R=| 0 F F |,
0o 0 F

where F is a field. And let e; be the primitive idempotent of R which corresponds to the vertex i for each
i € {1,2,3}. Then S(e;RR) = T(e3Rg) and S(., ac e Rey) is simple for each i = 1, 2. But (ey + e2)Rp is not
quasi-injective. In fact, since ( I := ) E(eyRp) = E(eaRRr), we can represent Endp( E(eyRr) ® E(eaRR) )

as
( Endgp(I) Endp(l) )
Endgp(I) Endgp(l) }-°

(5 5)(5R)=(5")a(5R):

where 1; denotes the identity map. So we see that (2) of Theorem 3 is not satisfied. Further ,g.,23Res

Example. Put

Then

is simple, but .p.Hom,, g, ( e3Res, eRe3 ) = .peeRes is not simple, where e := ¢; + ¢3. Therefore (4) of
Theorem 3 is not satisfied.

§3. The projective cover of injective modules.
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In the following theorem, Fuller gave a natural one to one correspondence between the homogeneous
components of the k-th upper ( resp. lower ) Loewy factor of an injective right R-module E and the k-th
lower ( resp. upper ) Loewy factorof gRf whenever fR is the projective cover of the socle of E, where
[ is a primitive idempotent in 2 right artinian ring R.

Theorem B [4, Theorem 2.4]. Let E be an indecomposable injective left module over a left artinian
ring R Let f be a primitive idempolent of R with T(Rf) ~ S(E). If e is any primitive idempotent of
R, then T(Re) appears in the k-th upper (lower) Leowy factor of E if and only if T(eR) appears in the k-th
lower (upper) Loewy factor of fR.

Now we shall give a complete correspondence between simple submodules of the 1st upper Loewy factor
of E and the 1st lower Loewy factor of pRf.

Theorem 4. Let ¢, f1,---,fa be primitive idempotents of R. Suppose that R satisfies Di(fi,1,¢€]
a

and both S(fiRe.n.) and S(;ry fiRe) are simple for any i€ {1,---n}. Then S(grRe)= @T(RRJ'.-)
i=1

if and only if @f,-R is the projective cover of E(T(eRg)).
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PROCEEDINGS OF THE 25TH
SYMPOSIUM ON RING THEORY, 1992

The calculation of direct summands of kG-modules
for the modular group algebra kG of a finite group G

KATSUSHI WAKI

Recently we can see a lot of softwares which calculate the finite field, the ring, the group,
the vector space ... And we know computational methods are useful for the representation
theory. In this paper, we will show a new procedure which investigate the socle series
and some information about direct summands of a module over a group algebra.

1. Notation

Let G be a finite group with a set of generators {g;,..., 1} and k a splitting field for
G such that the characteristic of & divides the order of the group G. And kG is a group
algebra.

Let M be a kG-module and g an element of G, then a matrix M(g) represents the
action of g on a k-basis of M from right. So we can consider the vector space M as a
right kG-module. We identify a set {M(g,),..., M(g:)} and a right kG-module M.

Let A, Ag, B, and C be matrices, and M, N, and S denote maps from G to a matrix
ring over k. Then an equation

A (M)-A2 = (N)-B + C-(5)
means AyM(g)A2 = N(g}B+C'S(g) for all g in G. A matrix P represents homomorphism
from a kG-module M to a kG-module N, if and only if, (M)-P = P-(N). So M and

N are isomorphic, if and only if, there is a regular matrix P such that (M)-P = P-(N).
Assume a kG-module M has a submodule N and M/N isomorphic to S. Then we can

represent
N 0
w=(5 )

by suitable basis of M. A series of submodule of M

0=MgCM C..CM, =M, where S; = M;/M;_, is simple

The final version of this paper will be submitted for publication elsewhere.
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is called a composition series of M and each S; is a composition factor of M. Let Soc(M)
denote the socle of M, namely the sum of all simple submodule of M. So we can define

Soc' (M) as following,

0 _ Soc'(M) (_L)
Soc(M) =0, = an = \see T an) )

Then there is a number m such that Soc™(M) = M and Soc™~'(M) is a proper sub-
module of M, and we call this number m the Socle length of M. Moreover a series of
semi-simple modules {Socl(M),Socz(M)/Soc'(M),...,Soc"'(M)/Soc""l(M)} is called
the Socle series of M and Soc’(M)/Soc’~!(M) is the i** Socle layer of M.

2. A simple way to get the Socle series and direct summands

(1) Socle series
Let {S;} be a set of representative of isomorphic classes of composition factors of
M. Solve a matrix equation (S5;)-X = X-(M) then the low vectors of the solution
matrix P; are basis of submodule which is isomorphic to S;. So we can get Soc(M)
by all solutions of above equations of all i.
(2) Direct summands
First we calculate the endomorphism ring of M. 1t is a ring which is generate
from solutions of a matrix equation (M)-X = X-(M). Next find a fitting element
of this ring. Then the fitting element makes a projection map from M to the direct
summand of M. We can see in detail in Schneider([1].
In both ways, a number of variable to solve the equation become huge if the dimension
of M is big. So we will show another way in the section 4.

3. Preparation

We will show 4 lemimas for the section 4. In this section, we fix M and N as a kG-
module and a #G-submodule of M such that S = M/N is simple.

LEMMA 1. A module M is isomorphic to N @ S, if and only if, there is a kG-submodule
S of M such that M = N@ 5.

Proof) Easy.

LEMMA 2. Suppose
N 0
M= (D S)
then M is isomorphic to N @ S, if and only if, there is a matrix Q such that (D) =
(5)Q - Q-(N).
Proof) From Lemma 1, M is isomorphic to N & S, if and only if, there is a regular

matrix P such that
1 0

p=| and P-(M)=(lg g)-P.
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So we can get two equations A-(N) + B-(D) = (S)-A and (S)-B = B-(S). Since the
matrix P is regular, the matrix B also is regular. Thus B~'.A-(N) + (D) = (S)-B~'-A.
From above argument,if M is isomorphic to N @ S, B™!- A satisfy the condition of Q.
On the other side, if there is a matrix @ then a matrix P where A is @ and B is the unit
matrix, salisfy the condition of P.

REMARK: Usually, if we want to know M = N & S, we must find a matrix P such that

P-(M) = (f)’ g) P,

But lemma 2 shows it is enough to find the matrix Q instead of the matrix P if S is
simple. For example, if the dimension of M and V are 100 and 90, then we need 10000
variables for P, but 900 for Q.

LEMMA 3. Suppose N has kG-submodule N\ and Ny = N/N), thus

1V| 0
M=| E N, .
Dy D, S

If M is isomorphic to N @ S, there is a matrix Q such that (Dy) =(S5)-Q — Q-(N3z). In
particular, if N = N, & No, M is isomorphic to N @ S, if and only if, there are Qy and
Q2 where (D;) = (5)-Qi — Qi+ (Vi) (i=1,2).

Proof) From lemma 2, there is a matrix Q' where
_ 0 0. IV] 0
o py=sr@--(p 4)-

Let the matrix Q' be separated @ and Q; where @Q; has the same size of the matrix D;.
Then the matrix Q- satisfy the first equation of this lemma. And if E is a zero matrix,
Q; satisfy the second equation.

Let N, = Soc(N), Ny = Soc?(N)/Soc’(N) and N’ = N/Soc’(N). Since N, is semi-
simple, we can consider N, = T} @& T; where T is isomorphic to a direct sum of S and
T, does not have any composition factors which is isomorphic to S. Then we can get the
following lemma.

LEMMA 4. Suppose M /Soc(N) = N/Soc(N)@ S. So

B T
1‘/[ = Ez 0 Tz
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r
Then M is isomorphic to N & S,if and only if, there is a matrix Q such that
—(ro—olM
0 o=sre-a( 1)

Moreaver if N, does not have S as a composition factor, we can use the equation (D) =
(S)-Q — Q-(N1) instead of above one.

Proof) Let assume M is isomorphic to N @ S. From Lemma 2, there is a2 matrix Q'
such that

M
_ -0, El Tl

R Fy F3 N'
So (D) =(5)-@1—Q1-(N)=-Q2(£1)- Q3 (E2)—Q4-(F1) and

T
(5)(Q2 Q3 Q4) = (Q2 Q3 Qu)- ( 0 T, ) where Q' = (@) Q2 Q3 Q4).
Fy Fs N’

The second equation shows the matrix (Q; @3 @Q4) represents a homomorphism from S
to N/N,. Since S is simple, An image of this map must be in Soc(N/N;) = N, = T) & T>.
This means that the matrix @4 is a zero matrix. And the matrix Q3 also is a zero matrix
because of the definition of T,. From first equation, @ = (@, @) satisfy the condition
of this lemma. If N, does not have S as a composition factor, the matrices @2 and T}
are disappear. The rest of the proof is just a calculation of matrices.

4. The outline of the procedure

In this section, we will show a procedure which calculate the socle series and some
direct summands of a #G-module M.

For convenience, we call this procedure AUSBAU . The input of AUSBA U is a sequence
of matrices which are corresponding to the representation of the generators of the group
G. Then AUSBAU calculates the structure of the socle series and some direct summands.

EXAMPLE: A group G is the alternative group with degree 6. A field & has characteristic
3. Let M’ be a permutation module of G and M = M’ ® M'. So the dimension of M is
36. By this procedure AUSBAU , we can get following information.

1 1 4
M=|4]d|4)®]1 3 3|9
1 1 4

Each number is the dimension of the composition factors of M. So AUSBAU decompose

M to 4 direct summands. And each layer of a direct summand shows the socle series of
M

Let see how AUSBAU calculate the Socle series of kG-module X.

Step 1 Calculate the the composition series { X;} of X by the procedure Meat Aze which
is made by Parker[2]. Let the number i be 2.
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Step2 Let M = X;, N = X;., and S = X;/X;~;. We can say that we have already
known the direct summands {N; }of N, the Socle series of N; and the Socle length
l; of Nj for each number j. Let N; = N/€D,,; N,, then N; can be embedded in
TV; and F/;/NJ- 2 S for each number j.

Step 3 Let the number { be {; — 1.

Step 4 Check whether N;/Soc!(N;) 2 (N;/Soc!(N;)) & S

Step § If the answer of step 4 is true, then the number [ be ! —1 and do step 4 again.
And if the answer is false, S is in the (I + 1)** Socle layer of N; and we can get
the Socle series of N;. So let the number s; be {+ 1. Moreover, if S is in the first
Socle layer, N; = N; ® S and Nj is a direct summand of M.

Step 6 Repeat from step 3 to step 5 for all Nj.

Step 7 Let the number sq be maximum of s;, then S is in the s§* Socle layer of M so we
can get the socle series of M. And step 5 gives some direct summands of M.

Step 8 Let the number ¢ be i + 1 and repeat from step 2 to step 7 until the module X;
become X.

Let see step 4 in detail. To avoid complexity, M = N;/Soc'(N;) and N = N; /Soc'(N;).
So S = M/N and Soc(N) = Soc'*!(N;)/Soc'(N;). Thus M/Soc(N) = N;/Soc'*!(N;)
and N/Soc(N) = N;/Soc'*!(Nj;). From step 5,

M/[Soc(N) = (N/Soc(N))&® S
So we can use Lemma 4 and step 4 is true, if and only il, the following matrix equation

has a solution.
(D 0)=(5)-Q-Q-(V).

The module V is a minimal submodule of Soc?(V) such that Soc(N) C V and Soc?(N)/V
has no composition factor which is isomorphic to S.

In particular, if Soc?(N)/Soc(N) has no composition factors which is isomorphic to S,
it is enough to solve a equation (D) = (5)-Q — Q-(Soc(N)). Moreover we can use Lemma
2 because Soc(N) is semi-simple. So this equation decompose to (J;) = (5)-@Qi — Q;-(W;)
where W; is the composition factor of Soc(N).

Even there is a composition factors which are isomorphic to S in Soc?(N)/Soc(N), we
can expect that V often decompose to some direct summands and the size of the matrix
equation become small by lemma 2.

Now we know that the main calculation of this procedure AUSBAU is to solve the
equation (D) = (5)-Q — Q-(W) and almost W is simple. Thus even the dimension of
the module is big. If simple modules in the composition factors are enough small then
AUSBAU can work very well.

5. The decomposition of the module to direct summands

Unfortunately, we can not say the procedure AUSBAU decompose the module to the
direct sum of indecomposable summands. But we can guaraniee the following low bound-
ary.
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THEOREM. Let X be a kG-module and X = X @ X, such that the set of isomorphism
classes of the composition factors of X; and X4 are disjoint. Then the procedure AUSBAU
decompose X to X, and X».

The proof of theorem) Let {M;} be composition series of X. Because of assumption of
X, M; =(M;NnX,))® (M NX;) for all i. So what we need to do is to prove that if M; is
decompose to (M; N X} and (M; N X3), then AUSBA U decompose M; 4, to (M; 41 NX,)
and (M,'.H N Xz) But

Mg NXy Mg 0 Xe , Miy
M,-r‘lXI M.-an - IW.'

=8; : simple.

So we can assume M4y N Xz = M;N X3, Then My /(M;NnX,)=S; & (M;NX,). And
we can get (M; N X3) as a direct summand of M;,, in step b of AUSBAU .

COROLLARY. Let X be a kG-module and X = X @ X, such that X, and X5 are in the
different blocks. Then the procedure AUSBAU decompose X to X, and X,.

As concrete examples, there is a log-file of the computer system CAYLEY in the ap-
pendix. In this log-file, we can see the calculation about the representations over the
group algebra where the group is the Mathieu group of the degree 22 and the field has
characteristic 3.
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Appendix

CAYLEY Vv3.8.3 (IBH RS6000) Tue Jun 16 1992 16:31:22 STORAGE 8000000

library m22;
Library module found as /lokal3/cayley/caylibs/pergps/m22

M22 - Mathieu group on 22 letters - degree 22
Order 443 520 = 2°7 * 372 * 5 * 7 = 11; Base 1,2,3,4,5
Group : G; Generators: A, B, C.

gp=<c,a>; <===== Make a group gp
print order(gp);

443520
f=field(4,w); <===== f£=GF(4)

vs=vector space(22,f);
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r=permutation module(vs,gp);
library ausbau2;
Library module found as /u/smoopy/waki/caylibs/ausbau2

library dec2;
Library module found as /u/snoopy/waki/caylibs/dec2

cf=composition factors(r);

rr=tensor(r,cf[2]);

socser(rr;rsq,soc);
+++ Construct composition series of rep +++
+44 Change basis of rep +H+
+++ Hake a indsq e+
The dimension of composition factors are
SEQ( 34, 1, 10, 34, 1, 10, 10, 10, 10, 1, 98, 1)

This is some information about relations of composition factors
SEQ( 2 )
SEQ( 3 ) s12[ 1]
87[191\\ /f;}[gsl
1)
s9[10] s5[ 1] \\510[ 1]

S4[34] s6[10]
/

WOTHN B WN =
wn wn
3 3
=] =]
”~~ ”~~
- = =3¢
[=]
~
H
H
1l

SEQ( )
10 SEQ( 11 ) S3[10]
11 SEQ( 12 ) l
12 SEQ(C ) s2[ 1]
print soc; I
SEQ( SEQ( S1[34] sgf10]
SEQ( 8,
SEQ( 2 )

quit;
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