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PREFACE

The 24th Symposium on Ring Theory was held at Osaka City University, Osaka, on
August 2-4, 1991. More than one hundred participants attended the symposium. This
volume is the proceedings of the symposium, which consists of all the twelve articles given
by the speakers.

The symposium and proceedings were financially supported by the Grant-in-Aid for
Scientific Research from the Ministry of Education, Science and Culture through the ar-
rangements by Professor Y. Kitaoka, Nagoya University, whom we would like to thank for
his kind arrangements.

We wish also to express our thanks to Professor H. Tominaga and Dr. H. Komatsu for
the publication of the proceedings.

Osaka City University, Osaka, October 1991

Takeshi Sumioka
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PROCEEDINGS OF THE 24TH
SYMPOSIUM ON RING THEORY, 1981

SELF-INJECTIVITY OF SEMITRIVIAL EXTENSIONS !

Kazutoshi KOIKE

Let R be a ring with identity and M an (R, R)-bimodule. An (R, R)-bimodule ho-
~ momorphism M @p M — R: m®@mj — mym,is called a pairing in case m)(mam;) =
(myma)m, for all my, my,my € M. Then the additive group R@ M becomes a ring
by defining a mulitiplication as (a,m)(b, n) = (ab + mn,an + mb). This ring is called
the semitrivial extension of R by M. Note that in case the pairing is zero, this ring is
the trivial extension. Self-injectivity of trivial extension and semitrivial extension have
been investigated by several authors. These results can be found in [6] and [7]. In this
note, we characterize the self-injectivity of semitrivial extensions completely {Theorem
5).
Throughout this note, R is a ring with identity, M is an (R, R) -bimodule with a
pairing M @ g M — R : m; ® my — mymy and T is the semitrivial extension of R by
M. We denote the injective hull of a module X by E(X).

Let X be a right T -module. Since R is isomorphic to a subring of T naturally,
X becomes a right R -module. We put zm = z(0,m) for all z € X and m € M.
For two right R-submodules X, and X; of X such that X;M < X, there exists a
homomorphism X; — Hom(Mpg, Xig) : z2 — z2—, where (z;—)(m) = zom for all
m € M. We shall call such homomorphisms canonical.

For any right R-module X, we note that Hom(Mp, Xp) and Hom(Tg, X ) become
right R-module and right T-module by usual definitions respectively. We define a right
T-module structure on X & Hom(Mp, Xp) by

(z.f)(a,m) = (za + f(m), fa + zm—),

where zm— is a homomorphism in Hom(Mpg, Xg) such that (zm-)(m') = z(mm’).
Then Hom(Tr, Xg) & X ® Hom(Mg, Xg) as right T-modules.

tThe detailed version of this paper will be submitted for publication elsewhere.



The following proposition is easily verified by flatness of +T'.

Proposition 1 Let X be a right T-module. Then Xt is injective if X has a decom-
position X = X, & X, satisfying the following conditions :

(0) X]M S X2 and XQM S_ X].

(1) X, g is injective.

(2) X; = Hom(Mg, Xr) canonically.

To show the converse of this proposition, we must compute the injective hulls of
T-modules.
Let X be a right T-module. For any subset S of X, put

L(S)={s€ S|sM =0}

If Sis a right R-(or T-)submodule of X, sois L(S). Assume that X has a decomposition
Xan=Y®Zsuchthat YM < Z and ZM <Y. Put

Y'=LY)SYr, Z2'=L(2)< 2p

and choose extensions a : Yg — E(Y}) of the inclusion map Y; — E(Y}) and 8 :
Zp — E(2§) of the inclusion map Z — E(Zgr). Moreover put

Y'={y€eY|aly)=0,8uyM)=0} <Yz

and choose an extension v : Yp — E(YF) of the inclusion map Y{ — E(Yf). We define
a T-homomorphism

Yx: X=Y®Z-—> EY')®dE(Z)®E(Y")
SH(E(Y') © H(E(Z"))® H(E(Y"))
via
z =y + 2 (aly), B(z), 7(y), a(z=), Bly—), v(z-)),
where H = Hom(Mpg, —) and a(z-) is the homomorphism defined by (a(z—))(m) =
a(zm) for all m € M (B(z—) and y(y—) are defined similary).
Next proposition plays very important role in this note.



Proposition 2 Let Xt be a right T-module with a decomposition Xp =Y & Z such
that YM < Z and ZM < Y. Then ¢x is an essential T-monomorphism (i.e. the
injective hull of X1).

Using this proposition, we obtain the following :

Theorem 3 Let X be a right T-module with a decomposition Xp =Y @® Z such that
YM < Z and ZM < Y. Then Xr is injective if and only if Yn and Zn have a
decompositionY = Y@ Y, and Z = Z, @ Z; salisfying the following conditions :

(1) Yig and Z;5 are injective.

(2) Z; 2 Hom(Mpg,Yir) and Y2 & Hom(Mp, Z ) canonically.

Remark 4 Let (A, B,4Up,pV,) be a Morita context. Put R = A x B the product
ring and M = U @ V the direct sum. Then M becomes an (R, R)-bimodule and a
pairing of pMp is induced naturally. In this case, the generalized matrix ring

(¥5)

is isomorphic to the semitrivial extension of R by M. Therefore generalized matrix
rings are paticular semitrivial extensions. In [4], Miiller determined the injective hulls
of modules over generalized matrix rings (See [4, Proposition 2.1]). However it is easy
to see that all modules over generalized matrix ring have the decomposition which
satisfies the assumption in Theorem 3. So we can regard Theorem 3 as a generalization
of Miiller’s result.

Trivially, as a right R-module, semitrivial extension T = R @ M satisfies the as-
sumption in Theorem 3. So we can apply the result of Theorem 3 to 7. But for the
module T, the decompositions of R and M are determined by single idempotent of R.

Theorem 5 Let T be a semitrivial extension of R by M. Then T is right self-injective
if and only if there exisis an idempolent e of R salisfying the following conditions :



(1) eRg and (1 — e)Mp are injective.
(2) eM = Hom(Mg,eRg) and (1 — e)R = Hom(Mg,(1 — e)Mp) canonically.

Now we show the results for injectivity of semitrivial extensions by Sakano. To
prove these results, we need the following lemma :

Lemma 6 Let X be a right T-module with a decomposition Xz = Y @ Z such that
YM < Z and ZM < Y. Assume that L(Z) = 0. Then Xy is injective if and only if
the following conditions hold:

(1) Yk is injective.

(2) Z = Hom(Mg, Yr) canonically.

Recall that a pairing M @ M — R : m; ® mp; — mym; is right nondegenerate in
case mM = 0 implies m = 0.
The next two results follows from Lemma 6 immediately.

Corollary 7 [6, Theorem 3.1] Assume that the pairing is right nondegenerate. Then
T is right self-injective if and only if the following conditions hold:

(1) R is right self-injective.
(2) M = Hom(Mpg, Rp) canonically.

Corollary 8 [6, Theorem 3.2] Assume that RkM is faithful. Then T is right self-
injective if and only if the following conditions hold.

(1) Mg is injective.
(2) R= Hom(Mg, Mp) canonically.

We provide examples which satisfy the conditions in Corollary 7 and 8 respectively.



Example 9 (a) Let p be a prime number and r a positive integer. Let R be the factor
ring Z/p"Z of the ring of integers Z and M = Z/pZ. Then R is a commutative local
QF ring and M is a non-injective R-module. We define a pairing M @z M — R via

(a+pZ)®(b+pZ) — abp"~' + p"Z.

Then we can easily verify the canonical homomorphism M — Hom(Mpg, Rp) is iso-
morphic. So the semitrivial extension T of R by M is self-injective.

(b) Let M be an (R, R)-bimodules which defines a self-duality on R. Then for any
pairing of M (e.g. zero pairing), the semitrivial extension of R by M is sell-injective.

At the end of this note, we remark the injectivity of modules which are generated
by a primitive idempotent. Let T be any ring and e a primitive idempotent of T.
Then (eTe,(1—¢e)T(1—¢),eT(1—¢),(1—e)Te) is a Morita context. So we obtain the
following (See Remark 4).

Corollary 10 Let T be any ring and e a primitive idempotent of T. Then Ty is
injective if and only if one of the following two conditions holds :

(a) eTe is right self-injective and
eT(1 —e) = Hom((1 — €)Te.rc,eTecr:) canonically.

(b) €T (1 — €)(1-e)T(1-¢) is injective and
eTe 2 End(eT(1 — e)1-c)y1(1-c)) canonically.
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ON THE BICOMMUTATORS OF MODULES OVER
H-SEPARABLE EXTENSION RINGS

Kozo SUGANO

1. Throughout this section A will be a ring with the identity 1, B a subring of A
containing 1, C the center of A and D = Vy4(B), the centralizer of B in A. M will be a
left A-module chosen arbitrarily, and A* = Bic(4M), B* = Bic(gM), the bicommutators
of AM and pM, respectively. Moreover C* will be the center of A* and D* = V4.(B*).
There exists a canonical ring homomorphism ¢ of A to A*. We will write @ = ¢(a) for each
ain A and X =¢(X) for any subset X of A.

We can easily see that C* = Vy4.(A) and D* = V4.(D). Furthermore,

LemMMA 1. If A is an H-separable extension of B, then we have B* = V4.(V4.(B*))
and D@cC* = D* viad®c* — t(d)c* ford€ D and ¢* € C*.

THEOREM 1. Let A be an H-separable extension of B. Then we have

(1) If A is left (resp. right) B-fg. projective, A* is an H-separable extension of B*
and left (resp. right) B*-f.g. projective.

(2) If B is a left (resp. right) B-direct summand of A, B* is a lelt (resp. right)
B*-direct summand of A*.

A is an H-separable extension of B if and only if 1® 1 € (A®p A)AD by Proposition
1 [4], where (A®pA)! = {a € AQpA | ac = aaforeachain A}. When we write
191 =Y z;; ®yijd; with £ z;; @ yi; €E(AQp A)4 and d; € D, we call {Z zi; ® yij, di}
an H-system of A over B (See [2]).

This lecture is derived from [5), (6] and [7].



Theorem 1 (1) shows that it is natural for us to consider the case where both A* and
A are H-separable extensions of B* and B, respectively. Under these conditions we have

LeEMMA 2. Let A* and A be H-separable extensions of B* and B, respectively, and
{Z zij ® vij, di} an H-system of A over B. Then we have

(1) {T z; ® 73js 3,-} is an H-system of A* over B*.

(2) A*®p A is isomorphic to A* ®@p. A* viaa* @b+ a* @b for a* € A* and b€ A.
Similarly we have AQp A* = A* @p. A*.

THEOREM 2. Let A* and A be H-separable extensions of B* and B, respectively. Then
if B* is a left (resp. right) B*-direct summand of A*, we have A* = AB* & A®pg B* (resp.
A*'=B*A= B*®pA).

2. We can apply the results in §1 to the H-separable extensions of strongly primitive
rings. For any left (resp. right) A-module 4X (resp. X4) we will denote its socle by s(4X)
(resp. s(X4)). A ring A is called to be strongly primitive if A has a faithful minimal left
ideal. If A is strongly primitive, then A has also a faithful minimal right ideal, and we have
s(4A) = s(A,), and consequently, we can call it simply the socle of A and denote it by
s(A). The socle of a strongly primitive ring A is contained in every non-zero ideal of A.
In this section A and B will always be strongly primitive rings, and M will be a faithful
minimal left ideal of A. For A, B and M we will use the same notation as §1. Therefore
B will always be a subring of A. Moreover, A* = Bic(4M) and B* = Bic(gM). The next
lemma has been shown in [3].

LEMMA 3. Let A and B be strongly primitive. If A is left or right B-projective. Then
we have either s(A)N B =0 or s(A) N B = s(B) and s(A) = As(B)A.

THEOREM 3. Let A and B be strongly primitive and A an H-separable extension of
B. Assume furthermore that A is left B-finitely generated projective. Then we have

(1) s(A)N B = s(B) and s(A) = As(B)A = s(B)A = s(pA).

(2) B* 2 Bic(gl), where I is a faithful minimal left ideal of B.

(3) A* is an H-separable extension of B* such that V4.(V4.(B*)) = B*.

(4) D* is a simple C*-algebra and isomorphic to D®¢C".

(5) A* is both left and right B*-free, having both left and right B-bases consisting of
[D* : C*] elements.

(6) A* = B*A = AB".



{1
[2]
[3]
(4]
[5]
[6]
[7]
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PRIME IDEALS IN POLYNOMIAL RINGS OVER
HEREDITARY PI-RINGS

Hidetoshi MARUBAYASHI, Yang LEE and Jae Keol PARK

A ring is called left (resp. right) hereditary provided every left (resp. right) ideal is
projective. A commutative hereditary domain is called a Dedekind domain.

It is a standard fact that every prime factor ring of a commutative hereditary ring is
hereditary. This fact was extended by Armendariz and Hajarnavis [1] to hereditary
rings, satisfying a polynomial identity, i.e., hereditary PI-rings. On the other hand,
when R is a Dedekind domain, Hillman [6] gave a criterion for R-torsion-free prime
factor rings of R[x] to be Dedekind.

Motivated by these results, in [10] and [11], Marubayashi, Lee and Park
characterized hereditary prime factor rings of the polynomial ring over a hereditary
Pl-ring, thereby they could provide an answer to a question of Armendariz, thatis, a

characterization of prime ideals P of the polynomial ring A[x] over a hereditary Pl-ring

The final version of this paper will be submitted for

publication elsewhere.
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such that A[x]/P is a hereditary ring.

We introduce, in this expository article, some results on hereditary prime factor
rings of the polynomial ring over a hereditary Pl-ring, which were mainly observed in
[10] and [11] related to the question of Armendariz.

First we begin with the following example which is essentially due to Hillman [6].

Example 1. For the ring Z of integers, the prime factor ring Z[x]/(x3 - 4)Z[x]
of Z[x] is not Dedekind. Actually, Z[x]/(x3—4)Z[x] = Z[3/4] and Q(i/3) is the
field of fractions of Z[3/4], where Q is the rational numbers field. In this situation,

Y2 inQ( /7 ) isintegral over Z[3/7], but 3/2 isnotin Z[3/7] and hence Z[3fz] is
not a Dedekind domain.

As we mentioned before, Hillman [6] provided the following criterion for prime
factor rings of the polynomial ring over a Dedekind domain to be Dedekind.

Theorem 2 [6, Hillman]. Assume that R is a Dedekind domain and f(x) in R[x]
such that f(x)R[x] is a non-maximal prime ideal in R[x]. Then R[x]J/f(x)R[x] is a
Dedekind domain if and only if f(x) is not contained in the square of any maximal ideal

of R[x].

Actually in Example 1, the polynomial x3 — 4 is contained in the square of the
maximal ideal 2Z[x] + xZ[x] of Z[x].
Now for the sketch of a generalization of Theorem 2 to PI-ring case, we assume that a

ring A is prime hereditary P



Theorem 3 [14, Robson and Small]. The center R of A is a Dedekind domain
and A is a finitely generated R-module.

In this situation, the ring of quotients Q(A) of A is simple Artinian and Q(A) =
AK, where K is the field of fractions of R. Furthermore, the polynomial ring A[x] is
a tame R[x]-order in the sense of Silver-Fossum [4] and hence it is a v-HC order in the
sense of Marubayashi [8 and 9]. We also have following nice properties:

n = gl.dim A[x] = gl.dim R[x] = cl.k.dim A[x] = cL.k.dim R[x], where n=1 if A=
Q(A) and n=2 if A #Q(A) by [2, Lemma 3.5] and [15, Theorem 1.3].

For a central polynomial f(x) in A[x] with P = f(x)A[x] a prime ideal, if A =
Q(A), then of course A[x]/P is simple Artinian. Also, if P is a maximal ideal, then
A[x]/P is a simple Artinian ring. Therefore to remove the triviality, we assume from
now on that A # Q(A) and P = f(x)A[x] is a non-maximal prime ideal of Al[x].
Observe that P is a minimal non-zero prime ideal of A[x] and p =P N R[x] is alsoa
minimal non-zero prime ideal of R[x]. Moreover A[x]/P is a finite centralizing
extension of R[x]/p. Therefore for any maximal ideal M of A[x] containing properly
P, m =M n R[x] is a maximal ideal of R[x] which contains p properly. Conversely,
for any maximal ideal m of R[x] containing p properly, there is a maximal ideal M

of A[x] which contains P properly and M nR[x] =m,

Now let m be a maximal ideal of R[x] which contains p properly. By localizing
R[x] and A[x] with m, since the ring A[x]m is a finite centralizing extension of
R[x]);,, we have J(A[x]m) N R[x]m = J(R[x]m) =mg, where J(-) denotes the Jacobson

radical. Thus Alx], AAIX],) is also a finite centralizing extension of the field

13
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R["]m/mm and hence we have that A[x]m/J(A[x]m) is a semi-simple Artinian ring.
Therefore there are only finitely many maximal ideals MI" M2', cer Mk' of A[x]m
such that J(A[x]m) = MI‘ N Mz' N.N Mk Also in this case Mi’ N R[x]m =mg, for i
=12,...k

Put Mi = Mi' N Alx] for i=1,2,..,k. Then it may be easily checked that Ml'
M2, e Mk are only maximal ideals of A[x] such that M; N R[x] =m. Also each M;
contains P properly and M; =M, . Furthermore for i= 1,2, ..., k, we have the fact
that f(x) is not contained in the square of Mi if and only if f(x) is not contained in the
square of M; . Alsoeach M; contains Miz properly for each i. Indeed, let M =M,
and mp=M 2 A aprime ideal. By observing that Q(A) = AK, it can be easily verified
that mK[x] is a nonzero proper maximal ideal of K[x] if mg = 0. Thus pK[x] is also
a nonzero proper ideal of K[x] and hence we have mK[x] = pK[x]. So it follows that
m = p, which is a contradiction. Since mg is a non-zero prime ideal of the hereditary
prime Pl-ring A, A/mo is simple Artinian and thus it follows that mO[x] is a minimal
non-zero prime ideal of A[x]. So in the principal ideal ring A[x]/mo[x], the ideal
M/mO[x] contains (Mlmo[x])2 properly and hence M contains M2 properly.

On the other hand, since M; contains P, properly'and gl.dim A[x], is less than
or equal to gldim A[x] = 2, wen;mve that gl.dim Alx], =2. Obviously (A[x]/P)m/p,
which is the localization of A[x)}/P by m/p, is equal to A[x]m/Pm.

Now for our convenience, for a moment, let S = A[x]. Then by previously
mentioned facts we are now in the following situation:

1) S is a prime Noetherian ring with the non-zero Jacobson radical J.

2) S/J is a semi-simple Artinian ring such that the Jacobson radical J is the

intersection of maximal ideals Nl’ N2...., and Nk'



3) gldim S =2 and there is a central element ¢ in J such that P =cS is a prime

ideal of S.

By modifying Kaplansky's method [7, Theorems 3 and 8, Part IlI], we have
following
Lemma A. If ¢ isnotin Ni2 for 1=1,2,..,k, then the ring S/P is a hereditary

ring.

With Lemma A together with all our preparations so far we have done, now we can
introduce following result, which is a generalization of Theorem 2 to Pl-ring case.

Theorem B. Let A be a hereditary prime Pl-ring with the center R and let f(x) be
a central polynomial of A[x] such that P = f(x)A[x] is a non-maximal prime ideal.
Then the ring A[x]/P is hereditary if and only if f(x) is not contained in the square of
any maximal ideal of A[x].

By Lemma A and previously mentioned several facts, if f(x) is not in M2 for any
maximal ideal M of A[x], then we can show that (A[x]/P)m/p = A[x]m/Pm is
hereditary for any maximal ideal m of R[x] containing properly p. Thus we have that
the ring A[x]/P is a hereditary ring. Conversely, assume that A[x]/P is hereditary.
Now for any maximal ideal M of A[x], if f(x) is notin M, then we are done. So we
may assume that f(x) is in M. By [12, claim 4], the center of A[x]/P is R[x}/p and

hence R[x]/p is a Dedekind domain. Thus the localization (R[x]/p), ., is a dicrete rank

m/p

one valuation domain which is the center of the ring (A[x]/P) So in this case, if we

m/p’

assume that f(x) is not in M2, then we have either gl.dim A[x]m £l or M= M2 .
2

which is a contradiction. Therefore f(x) is notin M for any maximal ideal M of

A[x].

15
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Theorem 4 [1, Armendariz and Hajarnavis]. Every prime factor ring of a hereditary
Pl-ring is hereditary.

When A is hereditary PI and P = f(x)A[x] is a prime ideal of A[x], we may reduce
this situation to hereditary prime Pl case. Explicitly, Ag = A/(P N A) is a hereditary
prime P1 by Theorem 4 and A[x)/P is isomorphic to AO[x]/fo(x)AO[x] for some central
polynomial fg(x) in Aglx].

In [11] by adopting v-HC orders and tame orders, we also can prove following result
which is an answer to the question of Armendariz.

Theorem C. Let A be a hereditary Pl-ring and let P be a prime ideal of A[x]. Set
Po=PN A aprimeideal of A. Then we have the following:

DIfP= Po[x], then A[x])/P is hereditary if and only if PO is a maximal ideal of A.

2) If P contains properly Po[x]. then A[x)/P is hereditary if and only if M2 +

Pylx] does not contain P for any prime ideal M of A[x] which contains P properly.
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PRIME IDEALS IN STRONGLY GRADED RINGS
BY POLYCYCLIC-BY-FINITE GROUPS

Hidetoshi MARUBAYASHI and Haruo MIYAMOTO

§ Introduction. Let G be any group with identity ¢ and let R = ¥ ®,eg R, be a
strongly G—graded ring. An ideal I of R, is called G-stable if I* = R,-1[R; = I. I is called
G-prime if I is G-stable and if AB C I implies that either A C I or B C I for any G-stable
ideals A and B of R.. The ring R, is called G-prime if 0 is a G-prime ideal. Lorenz and

Passman proved the following

Proposition 1. [P]  Let G be a finite group and let R be a crossed product of G over
its base ring R, which is G-prime. Then the number of the minimal prime ideals of R and
the nilpotency of the prime radical of R are both less than or equal to |G|, the order of G.

They also obtained, by using Proposition 1, the relationship between the prime ideals of
R and of R, which are the classical properties known as Lying over, Going up, Going down
and Incomparabilily. More precisely,

Proposition 2. [P] Let G be a finite group and let R be a crossed product of G over
its base ring R,. Then
(1) (Cutting down) If P is a prime ideal of R, then there exists a prime ideal p of R.,
unique up to G—conjugation, with p minimal over P N R,.. Indeed, we have P N R, =
N.eq - When this occurs, we say that P lies over p.
(2) (Lying over) If g is a prime ideal of R., then there are primes P,, P,, -+, P,, of R with
n < |G| such that P; lies over p.

The detailed version of this paper has been submitted for publication elsewhere.
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(3) (Incomparability) Suppose that P, D P, are prime ideals of R and g, 2 g, are prime
ideals of R, such that P; lies over p;. If P, # P, then p; # pa.

(4) (Going up) Let p; D g2 are prime ideals of R, and P, is a prime ideal of R lying over
©2- Then there exists a prime ideal P; 2 P, of R with P, lying over p,.

Conversely, suppose that P; D P, are prime ideals of R and g; is a prime ideal of R, such
that P, lies over p2. Then there exists a prime ideal g, D w, of R, such that P, lies over p;.
(5) (Going down) Let g, 2 g, are prime ideals of R, and P, is a prime ideal of R lying
over ;. Then there exists a prime ideal P; C P, of R with P, lying over .

Conversely, suppose that P, D P, are prime ideals of R and g, is a prime ideal of R, such
that P, lies over p;. Then there exists a prime ideal p2 C g; of R, such that P, lies over p..

Let P and g be prime ideals of R and R., respectively. Then we say that P lies over
p if Neege® = PNR, and if ¢ is minimal over Np*. If G is a finite group, then second
condition is superfluous, and this condition is equivalent to “lying over” in [P).

In this paper, we will give the outline of the proofs of

Theorem 1. Let G be a polycyclic-by-finite group and let R = ¥ ®.egR; be a
strongly G—graded ring with R, G-prime and right Noetherian. Then the number of the
minimal prime ideals of R and the nilpotency of the prime radical of R is less than or equal
to |A*(G)|, where A*(G) = { z € G| z has a finite order and |G:Cg(z)| < o0 } is the
unique maximal finite normal subgroup of G.

Theorem 2. Let G be a polycyclic-by-finite group and let R = ¥ @ .eg R: be a
strongly G-graded ring with R, G- prime and right Noetherian. Then
(1) (Cutting down) Let P be a prime ideal of R. Then there exists a prime ideal p of
R., unique up to G—conjugation, such that p is minimal over PN R, and N ¢ = P N R,.
(2) (Lying over) Let p be a prime ideal of R., then there exist prime ideals Py, P, -- -,
P, of R with n < | A*(G)| such that P; lies over p.
(3) (Incomparability) Let g1 C p2 be prime ideals of R, and let P; € P, be prime
ideals lying over p; and g, respectively. If Py # P;, then p; # ..

Theorem 3. Let R be a strongly G-graded ring whose base ring R, is right Noetherian
and let G be a polycyclic-by-finite group. Then
(1) (Going up) Let p, and p be prime ideals of R, with p; D p and let P be a prime
ideal of R lying over p. Then there exists a prime ideal P; of R such that P, lies over g,
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and P; D P.
(2) (Goingdown) Let p, and p be prime ideals of R, with p D ¢ and let P be a prime
ideal of R lying over . Then there exists a prime ideal P, of R such that P, lies over ¢,
and P D P,.

In Theorems 2 and 3, we give the classical properties known as Lying over, Going down,
Going up and Incomparability. If G is a finite group, then Passman and Lorenz proved two
different types of Going up theorem and Going down theorem, respectively. But if G is
infinite, then one of them does not hold, respectively, in general. An easy example will be
offered.

§ Proofs of Theorems. If R, is a semi-prime right Goldie ring, then the set C, =
Cr.(0) is a regular right Ore set of R by Proposition 1.4 of [N. N. V], where Cy (A) =
{ ¢ € R | cis regular mod A } for any ideal A of R,. The right quotient ring Q9 = Q?(R)
with respect to C, is also a strongly G-graded ring and we can write Q? = T & , ¢ ¢ R:Q.,
where Q. is a right quotient ring of R, with respect to C., and Q, is a semi-simple Artinian
ring.

Lemma 1. If R, is G-prime, then R, is semiprime and Q. is G-simple, i.e., G-stable
ideals of Q. are trivial. In particular, Q. is G-prime.

We write

Q?(A*(G)) = T ®.ca+(c) R:Q.
and

5= ®.eat(c)R:

First step of the proof of Theorem 1. Suppose that R, is prime. Then Q. is a sim-

ple Artinian ring and so

Q(A*(G)) = Q, » AH(G).
By Proposition 1 there exist £ (< |A*(G)|) minimal prime ideals Py, - -+, P, of Q?(A*(G))
such that P; N Q, = 0. Further, for the prime radical N of Q?(A*(G)) it holds that Nia*ol
=0.

Lemma 2. There exists a 1-1 correspondence between the minimal prime ideals P
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of Q?(A*(G)) and the minimal prime ideals P of S in such a way that P = PNSand P =
PQ?(A*(G)). Further, N = PQ9(A*(G)) and N = NNS, where N is the prime radical of
S.

Hence there exist € (< |A*(G)|) minimal prime ideals Py, ---, P of S such that P;NR,
=0 and M2*Ol = g,

Lemma 3. There exists a 1-1 correspondence between the minimal prime ideals P
of R and the minimal G-prime ideals P* of S in such a way that P* = PNS and P = PR,
Further, if N is the prime radical of R, then N = AR = RN

Lemma 4. Let P; = N.eq P7 and let Py, ---, P; (k < €) be distinct P}’s, renum-
bered if necessary, then they are the minimal G-prime ideals of S and N = N X, P;.

Thus we get that Theorem 1 is true if R, is prime.

Second step of the proof of Theorem 1. Suppose that R, is G-prime but not prime.
Then
Lemma 5. There exists a minimal prime ideal p of R, such that N.¢c o™ = 0 and

H={z€G|p®=p}isasubgroup of finite index in G.

Lemma 6.  There exists a 1-1 correspondence between the prime ideals P of R with
P N R, = 0 and the prime ideals L of R(H) = ¥ ®eq R: with L N R, = p in such a way
that

P=N,ec {LR}* =L and L = {r € R(H) | Ar C P} =Py,
where A = Ann(gp).

Let R = R(H)/pR(H). Then R, = R./p is prime, and so, there exist & (< |A*(H)|)
minimal prime ideals Ly, -+, Lyof Rwith L, n R. = 0 and it holds for the prime radical
N of R that ﬁlA+(H)I = 0. We denote by L; the canonical inverse image of L;. Ly’s are the
minimal prime ideals of R(H) with L; N R, = p. Thus we get k (< |A*(H)|) minimal prime
ideals Py, ---, Py with P, N R, = 0 by the correspondence in Lemma 6.

Further, put J = L; N --- N L. Then J = N and so J14*I ¢ ,R(H).
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Lemma 7. For any ideals A and B of R{H)
ACBIS C (AB)I° and (ANB)IS = AlS n BIS,
Further,

(pR(H))IS = 0.

Hence it holds for the prime radical N of R that

R
= {(nL.‘)IG}lA+(H)I = (JIG)|A+(H)| = (J|A+(H)I)|G
C (pR(H))C = 0.

Since H is a subgroup of finite index in G A*(H) € A*(G). Thus we complete the proof
of Theorem 1.

Proof of Theorem 2. (1) Since P N R, is G-prime, R, = R./(P N R,) is a G-
prime ring, and so, R, has a minimal prime ideal $ with N ; ¢ ¢ ° = 0, by Lemma 5. Then
o, the ideal of R, whose canonical image in R, equals to $, is a prime ideal which is minimal
over PNR.,and N;¢qg p*=PNR..

(2) Since N; ¢ g 9~ is a G-prime ideal of R,
R=R/(N:eccp")R
satisfies the condition in Theorem 1, hence there exist the minimal prime ideals f’l, eey B,
with £ < | A*(G)] and P; N R, = 0 for all i. Hence P;, the ideal of R whose canonical image
in R equals B;, clearly lies over g for each i.
Furthermore, Py, -+, P, are incomparable since 131, .+, Py, are minimal primes. Hence

(3) follows immediately.

Lemma 8. Let G be a finite group and let R be a ring such that R is the sum ¥
s € 6 Ry of (Re,R.)-bisubmodules R, with R;-R, = R, for all z, y € G. Il ] is an essential
ideal of R, i.e., I intersects nontrivially all nonzero ideals of R, then there exists a non-zero
ideal Jof R with0 #JNR. CI.

Lemma 9. Let P be an ideal of R. Then P is minimal prime if and only if
(1) P =(PNS)R with P N S G-prime,
and
(2) PnR.=0.
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The proof of Theorem 3. (1) LetP=PnNS, G-prime. ThenPNR.=N.¢cg
p*. Let P; be the maximal element of the set { A : ideal of S|AN R, C p; and A D
P }. Then it is easily checked that P, is a prime ideal of S since p, is prime. First, we will

prove that p, is a minimal prime ideal over P, N R.. Let S=S/Pyand #: S — S be
the canonical mapping. Then the set { R, = #(R,) | z € A*(G)} satisfies the condition
of Lemma 8 with R, = R./(P; N R.). If Tis an ideal of S with TN R, C py, then I N R,
C 1 + Pj, where I is the inverse image of Tin S. Let r = z + p be any element in I N R,
where z € p) and p € P;. Thenp=r1—2 € R. NP, C p;. Hence I N R, C g, and so, by
the choice of P), 1 = Py, i.e., ] = 0. Thus, by Lemma 8, B, is not essential. So there exists
a nonzero ideal J of R, with p; N J = 0. Since R, is semi-prime, there exists a minimal
prime ideal & with ' 2 J. Thus ' D E, implies that p' = ;1' Hence g, is a minimal prime
ideal over P; N R, and so N, ¢ a+(c) P} = P1 N R.. Put Py = (N ; ¢ ¢ P])R. Then P, is
a prime ideal of R by Proposition 8.3 of [P] and P; D P, because N P{ 2 P and P = PR.
Furthermore, Py N S = N ; ¢ ¢ P}, G-prime with P; = (P N S)Rand P, N R, = N P
NR. =N (P, NR.) =N (N p})* =N pi. Hence P, is a minimal prime ideal over (N pI)R
by Lemma 9 and therefore P, lies over g, with P; D P.
(2) By Theorem 2 there exist a finite number of prime ideals Py, P;, -, P, of R lying
over ). Then, it is clear from Lemma 9 that P;’s are the full set of minimal prime ideals
over (N T )R. Therefore for some integer n,
(ProP-NP)C(N:eapf)RC(N:ecp*)RCP,
and so P; C P for some 1.

Another types of Going up and Going down Theorems of prime ideals do not hold; for
example, let K be a field, G be an infinite cyclic group < z >, and R be the group ring K[G].
Then consider two prime ideals P = (z — 1) 2 0. Obviously 0 is a prime ideal over the ideal
0 of K = R, but P does not lie over any ideal of R..

To give a counter example for another Going down theorem, let D be a commutative
unique factorization domain and let S = D[x], the polynomial ring over D in an indeterminate
x. For any prime element p of D, put p = pS + xS, a prime ideal of S. Let f(y) = xy + p € S[y],
the polynomial ring over S in an indeterminate y. Then by Eisenstein’s theorem, f(y) is a
prime element in S[y] with {(y)S N'S = 0. Now let G be the infinite cyclic group generated
by y and let R be the group ring S[G] with R, = S. Then P = p[G] and P, = {(y)R are both
prime ideals of R satisfying; P 2 P, PN R. = pand Py N R, = 0. Hence P lies over p but
P; does not lie over 0, because 0 is a prime ideal of R.
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Modular representation of finite solvable groups
(Mp-groups and related topics)

Akihide Hanaki
and
Akihiko Hida

Let (K,R,F) be a splitting p-modular system for all groups considered here,
and let (7) be the maximal ideal of R. It is well known that a finite group
G is called an M-group if any irreducible ordinary character of G is induced
from a linear character of some subgroup of G. In [2], Okuyama generalized
it in characteristic p. Namely, a finite group G is called an M,-group if any
irreducible FG-module is induced from a one-dimensional module of some sub-
group of G. .

It is well known that M-groups are solvable, and also M,-groups are solvable
[2, Corollary 3.8]. So M-groups are M,-groups for any prime p, by Fong-Swan’s
theorem. In this paper, we assume that groups are finite solvable. In general,
a subgroup of M,-groups need not be an M,-group. This fact makes the study
of Mp-groups difficult. We call G an T/f,,-group if all subsections of G are
M,-groups. M-groups are defined similarly in characteristic 0.

In §1, we consider the property of M,-groups, and in §2, we consider what
kind of groups cannot be a normal subgroup of any M,-group.

§1. M,-groups and minimal non M,-groups
In Price [3], M-groups are determined. Namely,

Theorem 1 (Price). Let G be a finite solvable group. Then G is an M-group
if and only if no subsection of G has a ramified chief section.

A chief section A/B of G is called ramified if there exists a G-invariant
irreducible ordinary character x of A such that x, = e for some irreducible
character # of B and €2 =| A: B|. In characteristic p, the next theorem holds.

The detailed version of this paper will be submitted for publication elsewhere.
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Theorem 2. Let G be a finite solvable group. Then G is an My-group if no
subsection of G has a p’-ramified chief section.

In Theorem 2, a p‘ramified chief section means a ramified chief section of
p torder. Now we need the next lemma, since a ramified chief section is defined
in characteristic 0 only.

Lemma 3. Lel A/B be a chief section of G . Assume thal there exisis a
G-tnvariant irreducible FA-module V suck thal Vg 2 eW for some irreducible
trivial source FB-module W ande > 1. Then A/B is a p’-ramified chief seciion
of G.

Proof. Let A/B be not a ramified chief section. Since W is a trivial source
module, there exists a trivial source RB-module Wy such that Wy /xWo = W,
and it is uniquely determined. Now Wy ®p K is a G-invariant irreducible X B-
module. Since A/B is not ramified, there exists an irreducible KA-module
U which is an extension of Wy ®r K. Let Uy be an R-form of U. Then
(Uo/zUo)p = W, and V 2 (Up/xUo) ®F X, for some irreducible F[A/B]-
module X. Since A/Bis abelian, dimg X = 1, and so Vg =2 W. This contradicts
toe> 1. If | A/B | is p-power then clearly e = 1. The proof is completed.

Now we can prove Theorem 2, using the similar argument as the proof of
Theorem 1.

Proof of Theorem 2. By induction on |G|, we can assume that all proper
subsection of G are Mp-groups. Hence we may assume that there exists an
irreducible FG-module V which is faithful and primitive. By primitivity of V,
Vi is homogeneous for any normal subgroup Nof G. If Vy 2 eW and e > 1 for
some normal subgroup N of G, then some chief section satisfies the hypothesis
of Lemma 3. So it cannot occur. Especially V{;; & F(;) and so dimpV = 1.
Now V is monomial. The proof is completed.

We do not know whether the converse of Theorem 2 is true or not. Is there
an M -group which has a p*ramified chief section ?

Next we consider the structure of minimal non Mp-groups. A finite solvable
group G is called a minimal non M,-group if G is not an M,-group and all
proper subsections are Mp-groups. Minimal non M-groups are defined similarly
in characteristic 0. Clearly, G is an M-group if and only if no subsection of
G is isomorphic to any minimal non M,-group. So study of minimal non M,-
groups is strongly related to that of Af,-groups. The structure of minimal non
M-groups is completely determined by Waall [4]. We could not determine the
complete structure of minimal non Af,-groups, but we have the following.



Proposition 4. Let G be @ minimal non M-group. If 0,(G) =1, then G is
a mintmal non My-group.

This is easy since we know the structure of minimal non M-groups. We do
not know the other example of minimal non M,-groups. In general, the next
proposition holds.

Proposition 5. Let G be ¢ minimal non M,-group. Then G = EH, E4G
and,

(2) E is an eztraspecial g-group, for q # p, end ezponent ¢ if ¢ odd, not dihedral
if ¢=2.

(b) H acts trivially on Z(E) and irreduciblly on E/Z(E).

(c) Either,
(1) H is a p™-group, or
(2) g =2, and H/Ox(H) is a cyclic 2-group.

(d) Og(G) = 1.

(e) If H is of odd order then H is of prime order.

This theorem is proved by the similar argument as Price [3, Theorem1.4] and
Theorem 2.

§2. Groups which cannot be normal subgroups of any M,-groups

In this section, we shall consider normal subgroups of M-groups or M-
groups. Normal subgroups of M-groups, M,-groups, need not be M-groups,
M,-groups, respectively. The example of Dade [1] is well known. In general, it
is very difficult to consider that what kind of groups can be normal subgroups
of some M,-groups. So we shall consider what kind of groups cannot be normal
subgroups of any AM,-groups.

First, we note the following.

Remark. (a) Monomial modules are trivial source modules.

(b) Let N be a normal subgroup of G. If all irreducible FG-modules are trivial
source modules, then all irreducible FN-modules have trivial sources.

(c) If there ezisis an irreducible FG-module which is not e irivial source module
then G cannot be @ normal subgroup of any M,-groups.

Now we consider groups which have non trivial source irreducible modules.
The next lemma holds.
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Lemma 6. Lel G be a semi-direct product of Q by P, where P is a p-
group and Q is an eriraspecial g-group of order g***!, p and ¢ are distinct
prime numbers. Assume that Ng(P) = Z(Q)x P and Z(Q) = Z(G). Ifq" £ 1
(mod p) then there exisis an irreducible FG-module whose source is not a trivial
module, and so G cannol be a normal subgroup of any M,-groups.

The hypothesis of this lemma is very strong. Bul if G is a minimal non
M-group and O*(G) = G, then G satisfies the hypothesis for a prime p such
that OP(G) # G.

Proposition 7. Let G be a minimal non M-group. If O*(G) = G and
OP(G) # G then G cannot be a normal subgroup of any M, -group.

We shall consider’more general situation,

If G is a minimal non M-group such that O%(G) = G then G is a semi-direct
product of @ by C,, where Q is an extraspecial g-group and Cj, is a cyclic group
of order p, p # q. Put

Ho=(Qux - xQa)% G,

where Q; = Q, i = 1,...,n and C, acts on each @Q; the same as on Q. Let
z; be a generater of Z(Q;). Assume that all z; are corresponding to each
other by C,-isomorphisms. Let K be a subgroup of H, generated by zz; L
2125, =3,...,n. Put G, = Hy /K. Then we have

Proposition 8. G, is an M-group if n is even and G, cannot be a normal
subgroup of any My-group if n is odd.
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G-extensions and Galois theory of semi-connected rings

Takasi NAGAHARA and Kazuo KISHIMOTO

This is an expository talk on our paper [1], and we will discuss on the number of
idempotents of a commutative G-extension ring and Galois theory of a G-Galois extension
ring over a semi-connected ring.

Throughout this talk, we assume that A is a ring with an identity 1 and B is an
extension ring of A with common identity 1. For a finite group G of automorphisms of B,
B is said to be a G-extension of A (or BfA is a G-extension) if a fixed ring BC ={b €
B|o(b)=0bforall 0 € G}=A. Foraring R> 1, I(R) (resp. PI(R)) denotes the set of
all central idempotents (resp. central primitive idempotents) of R. Further R is said to be
semi-connected (resp. connected) if |[I(R)| < oo (resp. |[I(R)| = 2), where | | denotes the
cardinality of *, a set.

1. Commutative case. In this section, we assume that B/A is a commutative G-

extension. Further, we put
I(B:G) ={e € I(B) | there holds either a(e) = € or ea(e) = 0 for each o € G}.
Since 1 € I(B : G), I(B : G) is non-empty. By m(I(B : G)), we denote EEIR?SG) |G{e}l,
where G{e}={o(e) | o € G}.

Remark: Let B=A®) = A@ A® A, and let ¢ be an automorphism of B such that
o(ai1,a2,a3) = (as,ar,az). Then B ={(a,a,a) | a € A}= A, and so, we may understand
that B/A is a G-extension. For ¢; = (1,0,0) and e2 = (0,1,0), e = ¢; + e2 is a central
idempotent and e is neither o(e) = e nor eo(e) =0. Thus e ¢ I(B : o).

If e € PI(B), we can see that e € I(B : G). More precisely, we have the following
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Lemma 1. Assume A is connected. Then ¢ € PI(B) if and only if e € I(B : G) and
|G{e}| = m(I(B:G)).

In virtue of Lemma 1, we can obtain the following

Theorem 2. (i) |PI(A)| < |PI(B)| < |PI(A)IG].

(i) [1(A)| < |I(B)| < 2IPHANIGI if ejther |I(A)| < oo or |I(B)| < oo.
(iii) PI(B)+# 0 if and only if PI(A) #0.

(iv) B is semi-connected if and only if A is semi-connected.

2. Galois theory. In this section, we assume that B is semi-connected and B/A will
mean a G-extension which is not necessarily commutative.

Let PI(B) ={e1,e2,...,en}, Si= Be; and H; = G({¢;})|S; where G({e;})={o €
G|o(ei) =e;}. Then B=YTL, @S; is clear.

By G*, we denote the set of all automorphisms ¢ of B such that ¢|S; = g;|S; for some
g €G,i=12,...,n. Then G* becomes a group, and G is said to be a fat group if

G=G".
Moreover, if

Hi(S¥) = N for every subgroup N of H; and i=1,2, ... ,n,
then B/A is called a strong G-eztension.
Finally, an intermediate ring T of B/A is said to be G*-subfized if every

e € PI(B), Be(G*(Te)) = Te and Loegr)e} € €T

The following theorem is a fundamental theorem of Galois theory of a strong G-
extension.

Theorem 3. Let B/A be a strong G-extension. Then, there exists a 1-1 dual corre-
spondence between the set of intermediate G*-subfixed subring T of B/A and the set of fat
subgroups K of G* in the usual sense of Galois theory : T «— K with G*(T) = K and
B(K)=T.

For a commutative case, O. E. Villamayor and D. Zelinsky proved the following theorem

[2].

Theorem. Let S be a commutative ring with an identity element 1 which is a G-
extension of a semi-connected ring R such that S is projective and separable over R. Let
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H be the group of all R-algebra homomorphisms of S. Then, S is semi-connected, G* = H
and there exists a 1-1 dual correspondence between the set of separable R-subalgebras of
S and the set of fat subgroups of H in the usual sense of Galois theory.

In the theorem, we can see that

(1) S/R is a strong G-extension, G* = H, and

(2) for an intermediate ring T of S/R, T is separable over R if and only if T is
H -subfixed.
Thus Theorem 3 is a slight generalization of the above Theorem.

Corollary 4. Let B; (i = 1,2,...,t) be semi-connected rings, and each B; a Gi-
Galois extension of a subring A; in the sense of [2]. Let B=Y!_, ®B;, A=T!_, ®A; and
G =G, x G3 x -+ x G, which is an automorphism group of B by the composition

(01,02, ... ,a0)(by + by + -+ + b)) = T} ai(bi)
where 0; € G; and b; € B; (i = 1,2, ... ,t). Then B/A is a strong G-extension to which
Theorem 3 applies.
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PROCEEDINGS OF THE 24TH
SYMPOSIUM ON RING THEORY, 1991

ON THE FINITISTIC DIMENSION CONJECTURE

Mitsuo HOSHINO

Throughout this note, all rings are associative rings with
identity, and all modules are unitary modules. Given a ring A,
we denote by Mod A the category of all left A-modules and by
mod A the category of all coherent left A-modules. We consider
right A-modules as left A°P-modules, where A°P denotes the
opposite ring of A,

There is a long standing open question: Let A be a finite
dimensional algebra over a field. Does there always exist an
integer n > 0 such that proj dimAﬂ < n for all M € mod A with
proj dim ,M < = ? (See e.g. [4], [5], [7] and so on for refer-
ences and recent progress on the question).

Let us consider the same problem as above for various
abelian categories A with enough projectives. Then we have
negative answers in the following two cases:

(1) A = modA with A noetherian., Let A be commutative,
noetherian and Cohen-Macaulay. Then, for each maximal ideal m,
Ext%(A/ﬂ,A) = 0 for 0 < i < ht(m), which implies the existence
of an M € mod A with proj dimAM = ht(m). On the other hand, as
given by Nagata [8, Appendix, Example 1], there exists a regular

ring of infinite dimension.

The final version of this note will be submitted for publication
elsevwhere.
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(2) A = ModA with A semiprimary. (See e.g. an example
given by Kirkman and Kuzmanovich [71).

In case A = mod A or Mod A with A artinian, the question is
still open.

Let A be a left and right artinian ring. We will show that,
for a suitable idempotent e € A, the colocalization

HomA(Ae,-) : mod A — mod ele

reduces the question for mod A to that for mod eAe.

In the first three sections, we will make some general
remarks on the question. In the final section, we will summarigze
the author’s work [6].

1. Localization and injective dimensions. We refer to
Gabriel [3], Popescu [9] and Swan [12] for localization in
abelian categories.

Let A, 3 be abelian categories. Let
Q:A+3 and F:3 + A
be additive covariant functors and let
€ :nA + FQ and n:QF =+ 13
be natural transformations. Suppose the following conditions:
(a) nque = idQ and Fneep = idg.
(b) Q is exact.

(¢) n is an isomorphism.

Then FQ : A + A is called a localization functor. Let us
recall several basic facts: By the condition (a), for M# A and
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X € B, there exists a natural bijection

o :Homﬁ(M,FX) — HomB(QM,X)

M,X

such that ay X(f) = nx-Qf for f‘EHomﬂ(M,FX). Namely F is right
?

adjoint to Q, which implies F left exact. Then by the condition

(¢) for X, Y €3 we get a natural bijection

- =1 .
BX,Y = HomB(nx ,Y)°GFX’Y .HomA(FX,FY) —_— HomB(X,Y) .

Thus F is fully faithful. Let KerQ denote the full subcategory
of A consisting of all N€A4 with QN = 0, Then by the condition
{b) Ker @ makes a Serre class in A and is called the localizing
subcategory. The quotient category A/Ker Q exists and is
equivalent to B. Since by the conditions (a) and (c) Qe is an
isomorphism, we may consider Ker e, Coke as functors from A to
Ker Q. Then Kere is right adjoint to the inclusion KerQ + A4
and thus left exact. Finally, for an M€ A4, €y is monie if and
only if HomA(-,M) vanishes on Ker @, and €y is an isomorphism if
and only if for i = 0, 1 Extz(-,M) vanishes on Ker Q.

Lemma 1.1. Let X3, Let £ :FX + M be monic in A. Then f
1 ¢t X » QM does. In particular, X is
injective if and only if FX is.

splits if and only if Qfeny”

Proof. We have the following commutative square:

M, X
HomA(M,FX) —_— HomB(QM,X)

Hom ,(£ ,FX) l l Homg(Qf+ny ™ ,X)

Bx,x
EndA(FX) —_— EndB(X) .

Since BX,X(idFX) = idy, the assertion follows.

Lemma 1.2. Let £f:X + Y be monic in 3. Suppose that Cok Ff
is injective. Then Cokf is injective and Cok Ff ¥ FCok f.
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Proof. Since F is left exact, we have a monic g : Cok Ff +
FCok f . Also, since Q is exact, we have the following commuta-

tive diagram with exact rows:

0 — QFX — QFY — QCok Ff — 0

[ o

0 > X b § + Cokf — 0 .

Put E = CokFf . Then g = Fheeg. Thus, since h is an isomorphism,
€g is monic and splits. Hence HomA(Cok €g» FQE) = 0 implies
Cok Ep = 0. Therefore € and thus g are isomorphisms. Now,
since FQE is injective, so is QE = Cok f by Lemma 1.1,

In the following, we assume that both A and 8 have enough

injectives. For i 2> 0, we denote by Fi the ith

functor of F. Also, for M€ A, we define

right derived

d(M) = sup(inj dimL|L = Ker €,, Cok e, or F'QM (i 2 1)}.

Lemma 1.3. Let E€A be injective. Suppose that inj dim
Ker € < 1. Then QE is injective.

Proof. Note that Ime
exact sequence 0 + Imep + FQE + Cok € * 0 splits and, as in the

E is injective. Thus the canonical

proof of Lemma 1.2, Cok €Ep = 0. Hence FQE is injective and by
Lemma 1.1 so is QE.

A
-
.

Proposition 1.4. Let X&23. Suppose that inj dimFX <
Then inj dim X = inj dim FX.

Proof. By Lemma 1.1 we may assume that inj dim FX = 1 and
that injdimX > 1. Let £ :X + I be monic in 3 with I injective.

Since by Lemma 1.1 FI is injective, so is CokFf . Thus by Lemma
1.2 Cok f is injective. Namely injdimX < 1.
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Lemma 1.5. Let d > 0 and X €3. Suppose that injdimX < =
and that injdimFiX < d for all i > 1, Then injdimFX < injdimX
+d + 1.

Proof. By Lemma 1.1 we may assume that n = injdimX > 1.
Let

0

0+X+I"+ ... +I%>0

be an injective resolution and put
Bl = Im(F1! » FI*") ana z**' = cox(r1t - FIitl)

for i 2 0. Then for each i > 1 we have exact sequences

i

(ai):o—rpix——>z — gt — 0,

(by) : 0 —+ pi-' — pri— i — o .

We will show by induction that inj dim B"™% < i+d for 1
Note that by Lemma 1.1 the FI'j are injective. Since z"
the exact sequence (b )} yields inj dim B®~ 1 < 1+d. Let
and assume that 1njdiman sl ¢ i-1+d. Then the exact
sequence (an i+1) yields inj dim A -1t ¢ i=-1+d and then the
exact sequence (bn l+1) yields inj dim gh-1 < 1-+d. Now, since
1njd1mB0 < n+d, the exact sequence 0 + FX + FI > Bo + 0

yields injdimFX ¢ n+d+1, as required.

R A
nv. =
N XA

e

Lemma 1.6. Let X €3. Suppose that inj dim F*X < ® for all
i > 0 and that F'X = 0 for i >> 0. Then injdimX < e,

Proof. Let n > 0 and assume that FiX = 0 for i > n. Let
0+x-+1%9+11V4 ..,

be an injective resolution and put xt - Ker(Ii +> Ii+1) for i 2 O,
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Then for each i > 1 we have an exact sequence
0+t arrt-t ot 2 Flx a0,

Note that, since FXO = FOX, inj dimFX0 < © and that by Lemma 1.1
the FIJ are injective. Thus, by induction, we conclude that
injdimFX1 < o for all i > 0. Now, since we have an injective
resolution

0+ FX® » F1 » FI?*1T 4 ..

with FX! = Ker(FI! » FI'*7) for i > n, by Lemma 1.1 inj dim FX® <

© implies inj dim X" < . Therefore inj dimX < o,

Proposition 1.7. Let M €A with d(M) < «, Then the follow-
ing statements hold:

(1) injdimM ¢ inj dimQM + d(M) + 1.

(2) If injdimM < « and if F'QM = 0 for i >> 0, then
inj dim QM < =,

Proof. (1) We may assume that inj dimQM < o, Then by
Lemma 1.5 inj dim FQM < inj dim QM + d(M) + 1. Thus the canonical

exact sequence
0 + Ker ey * M~ FQM + Cok €y * 0

yields the desired inequality.
(2) Note that, by the above exact sequence, injdimM <
implies inj dim FQM < =, Thus by Lemma 1.6 the assertion follows.

Theorem 1.8. Let d, n 2 0. Suppose the following
conditions:

(1) injdimN < d for all N€A with QN = 0.

(2) For each injective E£4, FXQE = 0 for i >> 0,

(3) injdimX < n for all X €3 with injdinX < o,
Then inj dimM ¢ n+d+1 for all M €A with injdimM < =,
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Proof. Note that by the condition (1) d(M) < d for all M ¢
A. Thus by the condition (2) and Proposition 1.7(2) inj dimQE <
o for all injective E#€A, Hence, since Q is exact, inj dim QM <
@ and thus by the condition (3) inj dim QM < n for all M €4 with
injdimM < =, Now by Proposition 1.7(1) the assertion follows.

2. Colocalizatio jective dj i . For later
use, we will dualize the statements of the preceding section,
Let A, 3 be abelian categories. Let

Q:A4+3 and G:8 + A
be additive covariant functors and let
§:GQ + nA and 6 :EB + QG
be natural transformations, Suppose the following conditions:

(a)* Qé+0, = 1d, and 63Ge = id;.
4%

{(b) Q is exact,

(c)* 0 is an isomorphism.

Then GQ : A + A is called a colocalization functor.

Remark., Consider the case A = ModA in the above. Then it
is well known and easily checked that there exists an idempotent
ideal I of A such that Mod A/I ¥ KerQ canonically. Moreover,
the colocalization functor GQ is isomorphic to IGA I@A- and the
counit 8§ is induced by the canonical map I SAI + A (see e.g.
Sato [10]). Suppose further that A is semiprimary. Then I =
AeA for some idempotent e €A, Thus 8 is equivalent to Mod ele
and Q is of the form:

eA 8, - = Hom, (Ae,-) : Mod A — Mod ehe ,

A
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because both I 8A I 8A - and Ae geAe el 8A - are colocalization

functors with the same colocalizing subcategory Mod A/I .

In the following, we assume that both A and 3 have enough

-th

projectives. For i > 0, we denote by G, the i left derived

i
functor of G. Also, for M€ 4, we define

d*(M) = sup{proj dimL|L = Cok 6y, Ker 8y or G,QM (1 > 1)},

Lemma 2.1. Let Xé¢3, Then X is projective if and only if
GX is.

Lemma 2.2, Let f:Y + X be epic in 8. Suppose that Ker Gf
is projective. Then so is Kerf .

Lemma 2.3, Let P£A be projective., Suppose that proj dim
Cok GP < 1. Then QP is projective.

Proposition 2.4. Let Xé23, Suppose that proj dimGX < 1.
Then projdimX = proj dim GX.

Lemma 2.5. Let d > 0 and X 3., Suppose that projdimX < «
and that proj dim GiX < d for all 1 > 1. Then projdimGX < proj
dimX + d + 1,

Lemma 2.6. Let Xé 3, Suppose that proj dim GiX < o for all
i > 0 and that GiX = 0 for 1 >> 0. Then projdimX < o,

Proposition 2.7. Let M€ A with d*(M) < ©, Then the follow-
ing statements hold:
#
(1) projdimM < projdimQM + a (M) + 1,

(2) If projdimM < « and if G,QM = 0 for i >> 0, then proj
dimQM < o,

Theorem 2.8, Let d, n 2 0. Suppose the following
conditions:
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(1) projdimN < d for all N€A with QN = 0.
(2) For each projective P € 4, GiQP = 0 for i »> 0,
(3) projdimX < n for all X €3 with projdimX < =,

Then projdimM < n+d+1 for all M €A with projdimM < =,

3. Idempotent ideals. We will make some other remarks on

colocalization in abelian categories. However, in this section,
we deal only with the case where A = Mod4 .

Let A be a ring and I = AeA with e an idempotent. We assume
that e # 0 or 1. Also, we consider Mod A/I as a full subcategory
of ModA consisting of all N with IN = 0,

Let us observe the following exact sequence:

é
(e):O—*K—*Ae@eAeeA—>A——->A/I—>O

where 8 denotes a bilinear map induced by multiplication. Note
that IK = KI = 0. Also, since both Ae eeAe el 8A- and I@AISA-
are colocalization functors of Mod A with the same colocalizing
subcategory Mod A/I, we have the following

Proposition 3.1. Ae8 , eA 3 I8, I naturally.

Lemma 3.2, For i = 0, 1 Exti(AeeeAeeA,-) vanishes on
Mod A/I and Tori(-,Ae@eAeeA) vanishes on Mod (A/I)°P.

Proof. Since Ae@eAe- : Mod eAe + Mod A is right exact, we
have a projective presentation P1 > P0 + AeeeAeeA + 0 in Mod A
with the Pi direct sums of copies of Ae. Since HomA(Ae,—)
vanishes on Mod A/I, the first assertion follows. Also, since
- SAAe vanishes on Mod (A/I)°P, the last assertion follows.

Lemma 3.3. K = Torg(A/I,A/I) as a left A-module.

Proof. Since IK = 0, applying A/I GA- to the exact sequence
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(e), we conclude by Lemma 3.2 that

=
n

A/I 8, K

n

Torﬁ(A/I,I)

n

Torg(A/1,A/1) .

Proposition 3.4. Suppose that proj dimAA/I < 2. Then
Torg(A/I,A/I) is projective in Mod A/I.

Proof. Let N € ModA/I and apply HomA(-,N) to the exact
sequence {e). Then by Lemma 3.2

HomA/I(K,N) = HomA(K,N)

R

Extl(I,N)

n

Exti(A/I,N) .

3.3 the assertion follows.

Thus projdimAA/I < 2 implies HomA/I(K,-) exact. Now by Lemma

Proposition 3.5. Suppose that proj dimAA/I < 2 and that
TOT%(A/I,A/I) = 0. Then projdim , eA ¢ 1.

Proof. By Lemma 3.3 projdimAAeOeAeeA < 1 and thus by
Proposition 2.4 projdim , eA < 1.

In case A is perfect, the above proposition is generalized
as follows:

Proposition 3.6. Let A be perfect and J denote the Jacobson
radical of A. Suppose that proj dim ,A/I < =, that Torh(A/I,A/I)
= 0 and that Tory((1-e)A/(1-e)J,A/I) = 0 for i 2 3. Then
proj dim eAeeA < o,

Proof. Let



ees * P1 + P0 + AAe@eAeeA + 0
be a minimal projective resolution. It suffices to show that
eAeeA eAPi is projective for all i > 0. 1In the proof of Lemma
3.2, we have seen that cAe®h 8, P, is projective for i = 0, 1.
Let 1 > 2. Note that by Lemma 3.3 phe 8 4o €A is a first syzygy
of AA/I. Thus

A

Tori((1-e)A/t1-e)J,AeeeAeeA)
= Torh, ((1-e)A/(1-e)J,A/1)
=0,

which implies (1 -e)A/(1-¢e)J 8, P; = 0. Hence P, is a direct
summand of a direct sum of copies of AAe, which implies

eeA@ Pi projective.

eA A

Lo Finitistic homological dimension of modules., We will

provide another reduction which is more effective than Theorem
2.8, In this section, we restrict ourselves to the case where
A = mod A with A artinian.
Let A be a left and right artinian ring. We define
findim A = sup{proj dim AMIM € mod A with proj dim M < =},

We evaluate fin dimA at each X € mod A°P. For X ¢ mod A°P and
M £ mod A, we define

t(X,M) = inf{n > -1|Tor§(x.M) = 0 for i > n)
and then for X € mod A°P ve define

p(X,) = sup{t(X,M)|M € mod A with proj dim PLARIE I

45
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Lemma 4.1. Let A be a left and right artinian ring and

X € mod A°?, Then the following statements hold:

(1) p(XA) < proj dimX,.

(2) p(X,) ¢ findimA.

(3) If every simple right module appears as a direct
summand of X, then p(XA) = findimA.

(L) Let vuos = P, Py » Xy * 0 be a minimal projective
resolution and put X, = Cok(Pi+1 > Pi) for i 3 0. Let n 2 0.
Suppose that every indecomposable direct summand of X, appears
as a direct summand of some Xi (i > n). Then, for an M & mod A,

Torg(X,M) = 0 for i >> 0 implies Torg(X,M) =0 for i>n, In

A

particular p(XA) < n.

Theorem 4.2. Let A, A be left and right artinian rings.
Let e A be an idempotent. Let AXA be a A-A-bimodule such that

(1) X, is finitely generated,

(2) pX is finitely generated projective,

(3) X(rad A) € (rad A)X and

(4) AeA c ann(X,) € AeA + rada.
Then the following inequality holds:

findimA < findim A + findim elde + p(XA) + 1,

Remark. Consider the case e = 0 in the above theorenm.
Then we have the following inequality:

findimA ¢ findima + p(X,) ,

which is due essentially to Small [11, Theorem 1].

In the following, A 1is a left and right artinian ring,
J =radA, e A an idempotent and f = 1 - e.

Corollary 4.3. The following inequality holds:

findimA < findimele + p(fA/fJA) + 1.,
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Remark. The above corollary together with Lemma 4.1(2)
yields that the following statements are equivalent:

(1) findimA < = for all artinian rings A.

(2) Every artinian ring A has a simple right module X with
p(X,) < .

Corollary 4.4+ The following inequality holds:

findimA < findimA/AeA + fin dimede + p(A/AeAA) +1 .

Remark. The above corollary generalizes a result of
Auslander, Platzeck and Todorov [1, Theorem 5.4]. Also, since
fAeAf = O implies A/AeA 3 fAf as a ring, we get a generalization
of Fossum, Griffith and Reiten [2, Corollary 4.21].

Corollary 4.5. Let A be an artin algebra and X ¢ mod A°P
nonzero. Then the following inequality holds:

findimA ¢ findimEnd(A, ®X,) + p(X,) .
We end with raising the following

Question. Let A be a left and right artinian ring. For
X ¢ modAoP, let us define

}o.

8

B(X,) = sup{t{X,M)|M ¢ mod A with t(X,M) <

Does it always hold that ﬁ(XA) < » ? Though very strong, this
question seems to be quite natural.
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PROCEEDINGS OF THE 24TH
SYMPOSIUM ON RING THEORY, 1991

An Application of Intersection Theory to
Commutative Algebra

Kazuhiko KuraNO

1 Introduction

In recent years P. Roberts has solved several problems in commutative algebra using in-
tersection theory. Roberts proved the following theorems. (Assume that all rings are
commutative with unit.)

Theorem 1.1 ({3], (6] ) Let M, N be finitely generated modules over a regular local ring A
such that £4(M®4N) < 0o anddim M+dim N < dim A. Then ¥;(—=1)*24(Tor(M, N)) =
0.

Here £,( ) means the length of the given A-module and dim( ) is the Krull dimension.
Theorem 1.2 (New intersection theorem [9]) Let A be a Noetherian local ring and
F. : 0-F,-F_,— . .= F—0

a compler of A-modules satisfying the following three conditions:

o F; is a finilely generated free A-module for each 1.

e F. is not exact.

o £4(H;(F.)) < co for each i.
Then n > dim A holds.

The above theorem has many applications. For instance,

Corollary 1.3 Let A be a Noetherian local ring. Then A is Cohen-Macaulay if and only
if A has a finitely generated module of finite injective dimension.

The detailed version of this paper has been submitted for publication elsewhere.
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Corollary 1.4 Let A be a Noetherian local ring and M, N finitely generated A-modules
such that pdaM < co and £,(M ®4 N) < 0o. Then pdaM > dim N holds.

Roberts succeeded in proving above theorems by using intersection theory. Especially
local Chern characters and the singular Riemann-Roch theorem ([2]) play important roles
in his proofs. The basic tool to define local Chern characters is MacPherson’s graph
construction (see Chapter 18 of [2]). It is a purely geometric argument. But in the case
of characteristic p > 0, we can interpret local Chern characters and the singular Riemann-
Roch theorem in an algebraic method. In the next section we will study local Chern
characters and singular Riemann-Roch theorem in the case of positive characteristic. The
final section is devoted to an application of intersection theory to commutative algebra.

2 Intersection theory of characteristic p > 0

In this section we will construct the singular Riemann-Roch formula and local Chern char-
acters in the case of characteristic p > 0 by using the Frobenius map.

Throughout this section all rings are equi-characteristic complete Noetherian local rings
whose residue class field £ is algebraically closed of characteristic p > 0 unless otherwise
specified. Z (resp. @) denotes the ring of integers (resp. rational numbers).

Definition 2.1 For a Noetherian local ring (A, m) we denote by KoA (resp. K¢Ag) the
Grothendieck group (resp. the rational Grothendieck group) of finitely generated A-modules,
i.e.,

K0A=( (3] Z-[M])/([M]—[N]—[L]|0—>L—>M—>N—*0:exa.ct)
M : . g. A-module
KQAQ = KoA ®z Q

Let f¢: A — A be the e-th iteration of the Frobenius map, i.e., f(z) = z** for any
z € A. Since A is a commutative ring of characteristic p, f is a ring homomorphism. We
sometimes denote it by f¢: A — °A to distiguish A of both sides.

Lemma 2.2 Let f¢: A — ¢A be the Frobenius map.
1. f© is finite, i.e., °A is a finilely generated A-module.
2. If A is an integral domain of dimension d, then rank,°A = p¢ holds.

Proof. Since A is complete, A contains the residue class field k. Hence there exist a
formal power series ring k[[z;, ..., z,]] and its ideal J such that A ~ k[[z,...,z,]]/]. Let



{#1,...,y4} be a system of parameters of A. Then i : k[[y;,...,34]] — A is finite, i.e.,
k[[s1,- .., yd]] is a Noether normalization of A.

It is easy to check that f¢ : K[[yy,...,%]] — k[[v1,---,d)] is finite of rank pc. As
iof® = f%i, the assertions are obvious. Q.E.D.

If g: A — Ris finite, we get the induced homomorphism between rational Grothendieck
groups g* : KoRg — KoAg-

Definition 2.3 For j =0,1,2,... we define the §-vector subspaces of KoAg by
L;KoAg = {c € Kodg | £*(c) = p'c} C KoAq.

The decomposition of the rational Grothendieck group as in the next proposition is the
algebraic interpretation of the singular Riemann-Roch theorem (Theorem 18.3 in [2]).
dim A
Proposition 2.4 Kodg= @ L;KoAq.
=
Proof. First note that Tjg? L;KoAq = ©¥54L,KoAq. Hence we have only to prove
that K(]AQ g E;"‘;&A L; KoAQ
Any finitely generated A-module M has a filtration

M=Mn2Mn—]2"'2MO=(D)

such that M;/M,_, ~ A/q; and q; is a prime ideal withdim A/q; < dimM fori=1,...,n
Therefore we have [M] = T7,[A/q;] in KoAg and KoAg = T qespeca) @:[4/4)-

We will prove [A/q] € }:f:(',‘““ L,KoAg by induction on dim A/q for q € Spec{A).

If dimA/q =0, A/q = k. Then f*([k]) = [k] as k is algebraically closed. Therefore
[k]‘G LOKOAQ.

Suppose dimA = n > 0. Since rank,s;;'(A/q) = p" (see Lemma 2.2), we obtain
[([A/a]) = [M(A/Q)lp"[A/a] + Tzt ci (ci € L-KoAq) by induction on n. Then we have

n=1
|=0
n-1 n=1
= plA/d+ X
=0 i=0 P
n=—1
- |—0
= p"([A/4)+ Z
=0 p
Therefore [A/q] + 1) 4= p,._p =—¢; € L,KoAg. Q.E.D.
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Remark 2.5 Let ¢ : A — R be a finite morphism. Because of fog = gof, it holds
that g*ef* = f=og®. Then it is easy to check that g*(c) € L;jKoAg for any ¢ € KoRg.
Therefore the decomposition KoAg = &35 4L;KoAq is compatible with finite morphisms.
(This corresponds to the fact that the Riemann-Roch map is compatible with proper push-
forwards.)

Definition 2.6 Let A be a Noetherian local ring of dimension d. For i = 0,1,...,d we
denote by 7; the projection KoAq — L;KoAg. (Therefore [M] = ro([M]) + n([M]) +--- +
a([M]).)

Remark 2.7 1. By definition of 7;, we have (f*)¢[M] = n([M]) + p*n([M]) + --- +
p?°74([M]). Therefore

ra([M]) = lim —

Jim, —()*(M)

in KoAQ.

2. (a) Suppose that A is a regular local ring. Then A is isomorphic to a formal power
series ring k[[z1,...,z4]]. It is easy to see that !4 is a free A-module of rank p?.
Hence we have f*([4]) = ['A] = p?[A4] and [4] = nu([A])-
(b) More generally, if A is a complete intersection, we can prove [A] = 74([A]) (by
using Corollary 18.1.2 in [2]).

(c) If A is Gorenstein of dimension d, we have 73-1([A]) = 7a—3([4]) = --- = 0. (See
Example 18.1.2 and Theorem 18.2 in [2].)

(d) If A is Cohen-Macaulay of dimension d, we have [K,] = 74([4]) — T4-1([4]) +
1a-2([4]) - - - + (—1)?75([A]). (See Example 18.1.2 and Theorem 18.2 in [2].)

Definition 2.8 LetF.:0— F, — F,_; — ... = Fy — 0 be a complex of A-modules such
that F; is a finitely generated free A-module and £4(H;(F.)) < oo for each i. We define the
map x(F.) : KoA — Z by x(F.)([M]) = Zi(—1)"La(Hi(F. ®4 M)). Put x(F.)g = x(F.) ®z
Q : KoAg — Q. Then we define the j-th local Chern character of F. as the restriction
X(F')QlL,-K.A : L,KoAg — Q and denoted by ch;(F.). We set ch;(F.) Nnc = ch;(F.)(c)
force L,-KOZQ.

Of course local Chern characters in the above definition coincide with local Chern char-
acters defined by MacPherson’s graph construction in [2]. (In [2] local Chern characters
are defined over an arbitrary scheme.)
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Remark 2.9 Let dimA = d and F. a complex as in the previous definition. By definition
of local Chern characters, we have

S (-1 a(H(F. @4 M))

x(F)a((M))
x(F.)g(ro([M]) + na([M]) - - - + 7a([M]))
= cho(F.) N7([M]) + chy(F.) N 7i([M]) - - - + cha(F.) N ([ M]).

(See Example 18.3.12 in [2].)
Furthermore we have

cha(F.) N 7a([M])
= x(F.)q(ra([M]))

= S(-1eMH(E. @ [lim S (M)

€=+ 00

= lim ,,% Y (—1)a(Hi(F- @4 (f°)([M])) € @

(See [9).)

3 An application of intersection theory to commuta-
tive algebra

In this section we assume that all rings are homomorphic image of a regular local ring (to
use intersection theory). We do not have to assume that given rings contain a fields.
Our first aim is to prove the following theorem:

Theorem 3.1 Let (A, m) be a Noetherian local ring of dimension d and F. : 0 — Fy —
Fy_y = --- — Fy — 0 a complez of finitely generated A-free modules such that £4,(H;(F.)) <
o0 for each i. Suppose that one of the following conditions is salisfied:

(0) (A, m) is a Gorenstein ring.
(1) d €2 and A is equi-dimensional.

(2) (A, m) is normal with d < 4 and the canonical class cl(K ) is torsion in the divisor
class group CI(A).

(3) There exist a regular local ring (T,n) and a complez G. of fnitely generated T-free
modules such that A is a homomorphic image of T and G. @1 A is isomorphic to F..
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Then T4 o(=1)€a(Hi(F.)) = T8 o(=1) L4 (H:(F."[—d])) holds.

Here F." is the dual complex with degree Fy = Homu(F-¢, A) and F."[—d] is the shifted
complex, i.e., (F.*[—d]); = F24,.-
Before proving this theorem we have

Remark 3.2 With notation as above, put M = Ho(F.). When A is Cohen-Macaulay, we

have
d

Y (—1)Ca(Hi(F.)) = £4(M)

1=0
d .
(=1 Ca(Hi(F 7 [—d])) = La(Ext3(M, A)) = La(M @4 K4)
t=0
by the local duality theorem ([4]) and the depth sensitivity for F. (see Remark 2.2 in [5]).

Proof of Theorem 3.1. By Remark 3.2, it is obvious that ©4_,(—1)"¢4(H;(F.)) is equal
to T4 ,(—1)'"¢4(H;(F."[~d])) when A is a Gorenstein ring.

Suppose d < 2.

It is trivial when d = 0.

We can prove £,4(Ho(F.)) — £4(H,(F.)) = €a(Ho(F."[-1])) = £4(H,(F."[-1])) by an ele-
mentary method in the case of d = 1 (for example, see Appendix A in [2]).

Next assume d = 2. Then we have

2 2
Z%(—l)'fa(ﬂa(F-)) - Z%(—l)'fa(ﬂa(':-'[-ﬂ)) = 2-chy(F.) N n([A])
from Example 18.1.2in [2]. By the vanishing theorem of the first local Chern characters([7]),
we get ch;(F.) = 0 since A is equi-dimensional.
When A is normal, it is easy to see that there exists a natural isomorphism Cl(4)®z @ ~
La-1KoAg such that
C](I(A) = 2'1'4_1([/1]) € C](A) Rz Q

Suppose (A, m) is a normal local ring of dimension 3. Then we obtain

3 3 ‘
2 (=1)€a(Hi(F.)) = 3 (1) €a(Hi(F."[=3]) = 2-chy(F.) N 2([A]) + 2-cho(F.) N 7o([A]).
1=0 =0

It is obvious that mo([A]) = O since LoKoAg = (0). Therefore Tio(—1)'¢a(Hi(F.)) =

T4 o(—1) €4 (H;(F."[—d])) if the canonical class cl(K,) is torsion in CI(A). Next suppose

(A, m) is a normal local ring of dimension 4. Then

i(—l)‘fn(ﬂi(F-)) - i(—l)‘fa(ﬂs(F-'[-4])) = 2-chy(F.) N 75([A]) + 2-chy(F.) N o ([A4])

=0 =0



55

holds. By the assumption that 73([A]) = 0 and the vanishing theorem of the first local
Chern character [7], we get T0_o(—1) €4(H;(F.)) = T{_o(—1) 24 (Hi(F."[-4])) immediately.

Finally assume that the condition (3) is satisfied. We define a closed subset of Spec(T) by
supp(6.) = {p | G. ®r T} is not exact}. Since supp(G.) NSpec(A) = {m}, dim Spec(A4) +
dimsupp(6.) < dimSpec(T') holds by [10]. For j < dim Spec(A), we obtain

chy(F.) = Ch)‘(G. ®7A)=0

by [8] since j < dim Spec(T) — dimsupp(G.). Therefore

d d
g(-l)‘fA(Hi(F-)) - ;(—U‘&(H.’(F-'[—d]))

= 2{Chg_1(F.) n Td—l([A]) + Chd_a(F.) n Td_a([A]) +-- '}
=0

is satisfied. Q.E.D.
The following proposition claims that 3¢ ,(—1)*¢,4(H;(F.)) does not always coincide with

T4 o(=1)'24(Hi(F."[~d])) even if (A, m) is a Cohen-Macaulay normal ring.

Proposition 3.3 Let k be a field and put

A= (k[Io, 21, 22, Yo, 1]/ (2022 — 23, 2oy — 2190, 11ty ~ Izyo))(“’zlmvyml) .

Then there exists a finitely generaled A-module M such that pdaM < 0o and 00 > £4(M) #
24(Ext3(M, A)).

Proof. First note that A is a Cohen-Macaulay normal domain of dimension 3.
Put
S = (kle, 8,7, 6}/(ab ~ ﬁ‘Y))(a,p,-,,.s)-

We define a ring homomorphism ¢ : § — A with ¢(a) = zo, ¢(F) = 22, #(7) = ¥ and
#(8) = y3. Then it is easy to check that A is isomorphic to S3(8, §)S as an S-module. Due
to the famous example constructed by Dutta, Hochster and MacLaughlin ([1]), there exists
an S-module N such that ¢5(N) = 15, pdsN = 3 and T3 o(—1)'¢s(Tor (N, S/(8,6)S)) =
—1. Put M = N ®s A and let

F.: 0oFR >Rk —F—0
be the minimal S-free resolution of N. Since A is a maximal Cohen-Macaulay S-module,

H=F.QsA : 0 FRR@;A-FQRsA—+F®sA—-F®sA—0
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is the minimal A-free resolution of M. Hence we have £,(M) < 0o and pda M = 3.
Then we obtain

Exty(M,A) = Exti(N ®sA4,A)
~ Ext}(N,S)®s A
~ (Ex3(¥,S))’ @ (Ext3(N, ) ®s (8,5)S)
M = N@sA

~ N°®(N ®s(B,6)S).

Since S is a Gorenstein ring, £5(N) = £s(Ext3(N, S)) (see Remark 3.2). Therefore we have
only to show that £s(N ®s (8, 6)S) # £s(Exti(N,S) ®s (B, 8)S).
For finitely generated S-modules P and @, put x;(P,Q) = Ti(=1)"¢s(Torf (P, Q)).
Then we obtain

£5(N ®s (,6)5)
ES(EXt%(N: S) ®S (ﬂ,&)S)

xs(N,(8,6)S)
xs(Ext3(N, S),(8,6)S)

because (8,6)S is a maximal Cohen-Macaulay S-module.
By the exact sequence 0 — (8,6)S — S — S/(8,6)S — 0,

XS(N: (ﬂy 6)5) = Xs(Ns S) - Xs(N1 S/(ﬂ,&)S)
xs(Ext3(N,5),(8,8)S) = xg(Ext3(N,S),5) - xs(Ext3(N,5),5/(8,6)S)

are satisfied.
Because of xg(N,S) = €5(N) = £5(Ext3(N,S)) = x;(Exti(N, S),S), it is sufficient to
prove xs(Extg(N,S), 5/(8,6)S) # x5(N,S/(B,6)S). Remember that

Xs(N, 5/(8,6)S) = 3 (~1)'¢s(Tor’(N, S/(,6)S)) = ~1

by [1]. On the other hand, the following lemma guarantees x ((Ext3(N, S), S/(,6)S) = 1.

Lemma 3.4 Let B be a Cohen-Macaulay Noetherian local ring of dimension d and I an
ideal of B such that B/I is a Gorenstein ring of dimension d — i. Then for a finitely
generated B-module L such that £g(L) < 0o and pdgL < oo,

XB(Lv B/I) = (-1)iXB(EXt‘1'3(L: B)) B/I)
holds.



Proof. LetF. : 0 — F; — ... — Fy — 0 be the minimal free B-resolution of L. Then
F.°[~d] is the minimal free B-resolution of Ext%(L, B). Put 6. = F.®p B/I. Then we

have

XB(L’B/I) Z(-l)'eB(Hl(G’)):
xz(Ext3(L, B), B/I) = Z(-l-)‘fs(H;(G-'[—d]))-
Furthermore let

D: 0-D—... D0

be the dualizing complex of B/I, i.e., the minimal injective B/I-resolution of B/I.
Compute the homologies of the double complex Homp;;(G.,B°) by using the argument
on the spectral sequences.

HomB[!(Go,Do) — HomB/,(Go,D') —_ e HomB/[(Go,Dd_i)
! l

| .
HOmB,[(Gl,DO) - HOmB/I(Gl,Dl) - e =) HomB/;(G,,D‘")
! | !

| [} | '
Homg (G4, D°) — Homp (G4, D') — --- — Homp (G4, D*)

Then we will obtain x 5(L, B/I) = (—1)'x g (Ext}(L, B), B/I) immediately. Q.E.D.
We have completed the proof of Proposition 3.3.

Remark 3.5 From Theorem 3.1 we will see that the complex H. = F.®5 A defined in the
proof of Proposition 3.3 never lift to complexes over regular local rings. But it is easy to
check that it lifts to a complex over a hypersurface.
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PROCEEDINGS OF THE 24TH
SYMPOSIUM ON RING THEORY, 1901

THE STABLE CATEGORY OF MODULES
OF FINITE PROJECTIVE DIMENSION

Yuji YOSHINO

§0. Introduction

Let A be a Noetherian (associative) ring with unity. We denote by F(A) the
category of finilely generated right A-modules of finite projective dimension. We show
in the first section of this note that the stable category of F(A) can be embedded into
the derived category of complexes of left A-modules in a certain way. See Theorem 1
in §1. In the previous work we proved the same theorem for commutative Noetherian
rings, but the proof of this can be easily generalized to non-commutative rings.

We develop this embedded theorem for non-commutative case, because it enables us
to classify certain modules over A. In fact, we will define the notion of maximal quasi-
Buchsbaum modules on A and classify these modules on orders of global dimension
two.

To be more precise, let A be an order of Krull dimension and global dimension
two. Then a finitely generated right A-module M is said to be a maximal quasi-
Buchsbaum module if Ext!(M, A) (i = 1,2) are semi-simple. Using Theorem 1, we
can classify all such modules on A. In fact, we show in Theorem 2 that there are only
a finite number of indecomposable maximal quasi-Buchsbaum modules over A. Those
indecomposable modules actually correspond to the indecomposable representations
of a certain quiver.

These results are already known by [3] for commutative case, and the whole dis-
cussion in this note is merely a generalization of that in [3].

The final version of this paper will be submitted for publication elsewhere.
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§1. An equivalence theorem

Let A be a Noetherian associative ring with unity and let mod- A be the category
of finitely generated right A-modules. We denote by F(A) the full subcategory of
mod- A consisting of all right modules of finite projective dimension. Recall the
definition of the stable category F(A) associated with F(A). Objects of F(A) are
the same as those of F(A) and if M and N are iwo objects in F(A), then the set of
morphisms from M to N is defined to be:

Hom(M 4, Na) = Hom(M4, N4)/B(M,N),

where P(M, N) denotes the set of right A-homomorphisms f: M — N which factor
as M — P — N with P projective. Note that, in F(A), projective modules are
isomorphic to the zero module. Furthermore, if F(A) satisfies the Krull-Schmidt
theorem, then that two modules M and N in F(A) are isomorphic in F(A) means
exactly that there are projective right A-modules P and @ so that M @P is isomorphic
to N @& Q in F(A). Our aim in this section is to construct a certain full embedding
of F(A) into the derived category of complexes of left A-modules.

Let us fix some notation for complexes. When we write X, it means the complex
of left A-modules:

-l +1 +2
N xn i_\'ﬂ“ ".L. Xﬂ“i... .

Now we denote by D(A) the derived category of complexes of left A-module, that is,
an object of D(A) is a complex of left A-modules and if X and Y are two complexes,
a morphism ¢ : X — Y" is represenled by a diagram:

where the both f and g are chain homomorphisms and f is a quasi-isomorphism. See
[2] for more detail.

To state the theorem we need the notion of the truncation functor 79 which is
defined in such a way that, for any complex X' € D(A), 19(X") is the complex:

1
0 — Ker(d}) — X0 &, y1 9, x2 &, s



DEFINITION. E(A) is defined to be the full subcategory of D(A) consisting of the
complexes X" satisfying the following conditions:

(@) X' is bounded above, i.e. X* =0 for large i,

(5) HY(X)=0 for anyi <0, and

() H/(RHom(X:, A)) = 0 for any j < 0.

(Here RHom denotes the right derived functor of Hom.)
Now we can state our main theorem in this section.

THEOREM 1. The addilive coniravariant funclor s RHom( , A) induces an equiva-
lence of the categories:

p: F(A)® — E(A).

The proof of this theorem is seen in our previous paper [3], where the ring is
assumed to be commutative but the proof works well even in the non-commutative
case. For the reader’s convenience, we give an outline of the proof below. First of
all it is easily seen that ;y RHom(M, A) € E(A) for any M € F(A), thusit is a well-
defined functor from F(A) to E(A). Secondly we notice that ,y RHom(P,A) = 0
for any projective module P. Hence the functor 7o RHom( , A) : F(A)? — E(A)
yields the functor p : _}ﬂ” — E(A). Thirdly we can show that p gives a surjective
map from the set of isomorphism classes of objects of F(A) to that of E(A). In
fact, for any X- € E(A), taking a complex P of projective left A-modules that is
quasi-isomorphic to X, we define a right A-module M to be the cokernel of the map:

Hom(d%, A) : Hom(P!, A) — Hom(P,, A).

Then it is easy to see that M belongs to F(A) and p(M) =~ X* in E(A). Finally we
have to show that, for any two objects M, N € F(A), p gives an isomorphism:

Hom (M, N) = Homg4)(p(N), p(M)).

But this is quite easy to show using only a definition of p, and we lcave the proof of
this to the reader.

REMARK. (a) From the definition of p, it is clear that, for any M € F(A), H(p(M))
is isomorphic to Ext*(M, A) if i > 0, and 0 otherwise.
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(b) In general, there always exists a natural functor from the category A-mod of left
modules to D(A):

v:A-mod — D(4),

which sends a module Af to acomplex --- =0 —= M —-0—-.-,

In case that A has global dimension one, we can describe the difference of this
natural functor from our functor p. In this case, F(A) is equal to the whole category
mod- A, thus the theorem says the equivalence:

(mod- 4) ~ E(A).

under the functor p. Let {r : (mod- A)°®> — A-mod be the Auslander’s transpose
that is equivalent to the functor Ext!( ,A), because the global dimension of A is
one. Then we can easily see that there is a commutative diagram:

4

(mod- 4)? —— E(A)

g ||

A-mod —— E(A).

For the general cases w_here A may not have global dimension one, p contains all the
information about Ext'( ,A) (i > 1). And we may sometimes regard p as a kind of
generalization of the Auslander’s transpose.

§2. Definition of a maximal quasi- Buchsbhaum module
In this section we always assume that A is a Noetherian ring of finite global dimen-
sion.

DEFINITION. A finitely generated right A-module M is said to be a maximal quasi-
Buchsbaum module if

(*) Ext’(M,A) is a semi-simple left A-module for any i > 0.

Note that the condition (*) is equivalent to saying that all the homologies of the
complex p(M) are semi-simple. (cf. §1, Remark (a).)



REMARK. (a) For commutative rings, the notion of maximal quasi-Buchsbaum
modules is widely used. And we must mention that the above definition is slightly
different from that for commutative rings.

When A is a commutative Gorenstein local ring of positive Krull dimension with
maximal ideal m, a finite A-module Af is usually said to be a maximal quasi-
Buchsbaum module if it satisfies the condition (*) and if M has maximal Krull
dimension (i.e. the Krull dimension of the ring A). Notice that it is an easy exercise
to see that, under the condition (*), that Af has maximal dimension is equivalent to
that M is not an Artinian module. It is also easy to see that any Artinian module
satisfying the condition (*) is a direct sum of copies of A/m. (Note that A/m is the
unique simple A-module). Furthermore, if M satisfies the condition (*), then M is
a direct sum of My with a sum of copies of A/m, where M satisfies (*) and has
maximal dimension. Thus the above definition equals to the usual one up to a direct
summand of a semi-simple module.

(b)) Asin (a), let A be a commutative Gorenstein local ring with maximal ideal m.
In this case, M is called a mazimal Buchsbaum module if p(M) is isomorphic to a
complex of A/m-modules and if M has maximal dimension.

The notion of a maximal Buchsbaum module is, of course, stronger than that of
a maximal quasi-Buchsbaum module. In fact, if A is a complete regular local ring
(i.e. a commutative complete local ring of finite global dimension), then Goto’s
theorem says that any indecomposable Buchsbaum module is isomorphic to one of
the i-th syzygies (1 < i < d) of A/m. On the other hand, there are much more
indecomposable quasi-Buchsbaum modules over A.

To explain this more closely, assume that A is a complete regular local ring of
dimension two (i.e. a commutative complete local ring of global dimension two). Let
Li be the i-th syzygy module of A/m. Note that L° = A/m, L! = m and L? = A.
Then Goto’s theorem says that L! and L? are the all of the indecomposable maximal
Buchsbaum modules over A. For any module M satisfying (*), we denote

h(M) = (dim 4, Ext! (M, A), dim 4/ Ext*(M, 4)) € N?.

Then clearly, A(L!) = (1,0) and h(L?) = (0,0). On the other hand, there are
four indecomposable maximal quasi-Buchsbaum modules over A: L9, L!, L? and
M, where M is the indecomposable module with A(Af) = (1,1). (Notice that L°
is an Artinian module but satisfies the condition (*) and h(L%) = (0,1).) Thus the
set {h(M) € N?| M is an indecomposable maximal quasi-Buclisbaum module} forms
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the set of positive roots of the root system of type Aa. It is observed that similar
phenomena occur even when A has higher dimension than two. (See [3].)
Our aim of the next section is to extend this to the case for non-commutative rings.

$3. Maximal quasi-Buchsbaum modules over orders of Krull dimension
and global dimension two

In this section, R denotes a (commutative) normal complete local domain of di-
mension two with unique maximal ideal m, and A is always an R-order of global
dimension two. Note that, in this case, we have F(A) = mod- A. Note also that such
orders are completely classified by M. Artin [1]. Butl we are interested in maximal
quasi-Buchsbaum modules over A and would like to make a classification of those
modules.

For this purpose, let B denote the full subcategory of mod- A consisting of all
maximal quasi-Buchsbaum right A-modules and let |B| be the set of isomorphism
classes of objects of 8. Recall that an object of B is a right module M satisfying that
Ext!(M, A) and Ext?(M, A) are semi-simple. So, given semi-simple left A-modules
Ti and T3, we can consider the subcategory of B whose objects are the modules M
with Ext’(M, A) = T}, i = 1,2. We denote this category by B(Ti,T;) and likewise
as above, we denote by |B(T}, T3)] the set of classes of objects of B(T1, T3).

By the equivalence theorem in §1, (mod- A)? is equivalent to E(A) that is a full
subcategory of D(A4). Under this equivalence, any M € mod- A corresponds to a
complex X = p(A) which has the property that ]{i(X‘) ~T;, i=1,2 with T; some
semi-simple left modules. Thus there is an exact sequence:

(1) 0 — Ti[-1] — X' — T3[-2) — 0,

in the category E(A) and this extension determines an element of
Ext!(Ty[-2], Ti[-1)) = Ext'~'~(Ty, Th) = Ext*(T3, Th).

On the other hand, if there is an exact sequence (1), then the complex X appearing
in the middle is easily seen to belong to E(A) so that there is a right module M with
p(AM) = X-. Clearly this M is a maximal quasi-Buchsbaum right A-module and
belongs to B(T,T>). We can show:

LEMMA 1. There is a bijective map:

|B(T1, T2)] — Ext*(T3, T1)/ Aut(T3)? x Aut(Ty).



If A is commutative, then the proof of this lemma can be shown in (3], and for
non-commutative case, that proof is still valid. (Only one should become aware of
that modules are one-sided.)

Now let us assume that the residue field ¥ = R/m of the center R is an algebraically
closed field. And let {5y, Ss,...,S;} be all of the classes of simple left A-modules.
Note that Hom(S;, Sj) = k if i = j, and otherwise 0. We can write:

Ti=Sp oS’ -8,
T,=Sheste. . oSk
for some integers a;, §; (i =1,2,...,€). Thus we have:

Aut(Th) = GL(a;) x GL(@2) x --- x GL(a¢),
Aut(T3) = GL(b1) x GL(b2) x - -- x GL(by).
Furthermore, letting
cij = dimg Ext?(S;, S;),
we have an isomorphism of Aut(T})” x Aut(T3)-modules:

Gj
Ext?(T3, T1) = [ ] Hom(k%, k%).
ij

Thus, under the assumption that % is algebraically closed, the above mentioned
lemma becomes:

COROLLARY. There is a bijective map:
Gj
|B(T1, T3)| — ] I Hom(k%, &%)/ ] GL(a;)** x [] GL(3;).
£.J ] J

By the usual argument of the theory of representations of quivers, this corollary
leads to the following:

PROPOSITION. Lel Q be a quiver:
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where there are c;j arrows form ihe i-th verlez of the left side to the j-th one of the
right side. Then there is a bijective map from |B| 1o the sel of classes of represenia-
tions of the quiver Q, which preserves direcl sums.

EXAMPLE. Let R = k[[z, y]] be a formal power series ring over an algebraically closed
field k and let A= R < u,v > [(u" —z,v" —y, uv —(vu), where ( is a primitive n-th
root of unity. This A is known to be the order of type I of global dimension two,
which is one of the orders M. Artin classified. In this case, letting J = (u,v)A be the
Jacobson radical, we see that S = A/J is the unique simple right (and left) module
over A. And an easy computation shows that Ext?(S, S) = k, hence the quiver Q in
the proposition looks like ¢ — o. As a result, there are only three indecomposable
objects in B. They are J, S and M, where M is the module defined by the following
exact sequence of right A-modules:

¥

0 A ., A 2

A? » M 0,

where ¥(a) = (va, —ua) and (b, c) = (=~ 'uvb—(v?c, w?b+uve) for any a,b, ¢ € A.
Actually there is a nonsplit exact sequence

0 —— S[~1] —— p(M) — S[-2] —— 0.

Since all the orders A of global dimension and Krull dimension two are completely
classified by the work of Artin, we can determine the numbers ¢;; from the classifi-
cation table. However we can show directly that they are 1 or 0.

LemMa 2. Let {Sy,S2,...,S51} be the set of simple left A-modules as above. Then
there is a permutation T on the set {1,2,...,¢} such that Ext*(S;,S;) =k if j = 7(i)
and otherwise 0.

This lemma says that the quiver @ is a disjoint union of copies of the quiver of
type Az: ¢ — o. Combining this with the proposition, we finally get the following
theorem.

THEOREM 2. Lel R be a normal complele local domain of dimension lwo and lei A
be an R-order of global dimension two. Then there is a bijective map from |B| to
the sel of classes of representations of a quiver thal is a disjoinl union of £ copies
of ¢« — o, where { is the number of nonisomorphic simple left modules over A. In
parlicular there are only 3¢ indecomposable objecis in B.
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PROCEEDINGS OF THE 24TH
SYMPOSIUM ON RING THEORY, 1991

BLOCKS OF MACKEY FUNCTORS

Fumihito ODA

Recently,in their paper [4],J.Thévenaz and P.Webb described the division
of the simple Mackey functors Sy 1 into blocks,using some general results
giving information about the existence of non-trivial extensions of simple
Mackey functors. The result is that the blocks of Mackey functors biject
with the ordinary blocks of finite group G together with the blocks of certain
sections of G.

Now we define a Mackey functor over a field k of characteristic p > 0. (in
general we work with Mackey functors over a commutative ring.) Let Modyg
be the category of kG-modules and the category of Mackey functors over k
for G denoted by Mack(G).

(1) (Dress [2]) A Mackey functor M consists of a contravariant functor
M-*from the category of finite G-sets to kG-module with M*(X) = M.(X)(=:
M(X)) for any finite G-set X. For any G-map f : X—Y, we pul

=M (f) : M(Y)—M(X)

fo=M(f): M(X)—»M(Y)

The pair (M*, M,) must satisfy the following two axioms:
(M.1) M* maps finite coproducts to finite products.
(M.2) For every pullback diagram,

X, — X,
|
X3 — X,

in G-sets we have M*(8§)M.(vy) = M.(f)M*(a).
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(2)(Yoshida[5])A Mackey functor is a k-additive contravariant functor
from the Mackey category to Mod,. Here the Mackey category M.(G)i of G
over k is constructed as follows: An object is a finite G-sets. The hom-set
Hom(Y, X) from Y to X is £-module generated by the symbols of the form

x &~ aLly,
where A is a finite G-set and f' and f” are G-map, with relations
x Ll aliy)=(x &£ By

whenever there is an isomorphisin h : A— B such that f' = ¢'h, f" =
g"h, and

[Xe—A—Y])+ [X—B—Y]=[X—A+ B—Y]
The composition is defined by
X L AL y)oly & BL 2)= [X—C— 7],

where C is the pullback of f" and g':
C
A B
N N
X — Y

(3)(Yoshida [S] )A Mackeyfunctor is a module over the k-algebra u(G).
Let pi(G) be the k-module generated by the symboles of the form

Z

[H,A =z K]



where H, K < G,A < H(* K, and following relation holds:
[H,A,z,K)=["H" A, hzkg"' ¢ K),9,6' € G,h€ H,k € K.

(Here,9H := gHg™.)Then 1(G) becomes a k-algebra by the multiplica-
tion:

[H,A,z,K]o[K,B,y,L]:= > [H,A,0** B, zky, L].
k€x-'AmNB\K|B

This k-algebra is isomorphic to the path algebra of the subcategory con-
sisting of transitive G-sets in the Mackey category M¢(G),, and it is Morita
equivalent to the path algebra of Mc(G)y.

(4)(Green[3]) Assume that
(a,,0,0)
be a system consisting of k-modules a(H), H < G,and &-linear maps for
H<K<G

and g € G:

K ra(H) — a(K) : a— o 1¥;

pki a(K) — a(H): fr— B Lu;

o :a(H) — a(H): a—%a

which satisfies the following axiom (where D, H, K,L < G,¢,9' € G, €
a(H),p € a(K)):

(Gl)a 1= a, (o %) Te=a 1L i H < K < L;

(G2)B Ly=£,(8 Lu)p =B Lp il D < H < K;

(G3)a? = (a9)9, 0" = aif h € H;

(G4)°(a 1%) = (%) 17% % (a Ln) = (*®) |,

(G5)(Mackey decomposition)lf H, I < L,then

atile= Y (Pa) bomxt® .

KoHEK\L{H
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For our example we set FPy(H):= V# which is the all #-fixed points in
left £G- module V for subgroup H of G.We put the morphisms by

KV — VK v Y by,
heK/H

oK VEQ VA oy,

of : V¥ — V8 .y 0 gu(H < K <G,g€G).

Thus F Py is a Mackey functor which is called fixed point Mackey functor.
The simple Mackey functors Spy were constructed by FPy. (see [4])

We are now prepared to analyze the Burnside algebra B(G) which is free
k- module with basis the G-sets G/H ,for each conjugacy class of subgroups
H < G, and giving the multiplication in terms of Cartesian products. The
identity element of this algebra corresponds to one point set with trivial
action , and the zero element corresponds to the empty set.

PROPOSITION 1 ([4](9.2)PROPOSITION)

There is a central subring of ux(G) isomorphic to the Burnsidealgebra
B(G) and which contains the identity. Specifically,this subalgebra has a
basis consisting of elements

b=, Y TRaenfliaen

K<GzeK\GIH

Thus every idempotent of Burnside algebra gives a central idempotent of
Mackey algebra,and hence a decomposition of the Mackey algebra into ring
direct summands.But in general we do not obtain primitive central idem-
potents of Mackey algebra from it .So we studying the unions of blocks for
using next theorem.

PROPOSITION 2 ([4](9.3)THEOREM)
In the Burnside algebra B(G) over & we have

1= > I

JSG up to conjugacy
Jip = perfect



where the f, are primitive orthogonal idempotents in bijection with the con-
Jugacy classes of p-perfect subgroups of G. For each p-perfect subgroup J let
P < G be such that J<q P and P/J is a Sylow p-subgroup of Ng(J)/J.Then
fs is a linear combination of elements G/K with K < P. If L contains no
conjugate of J then f;-G/L =0,and f; [§=0.

For each p-perfect subgroup J of G we define the M.(G,J)x to the full
subcategory of Mack(G) whose object are the Mackey functors M for which
fi-M=M.

PROPOSITION 3 ([4] (9.6)PROPOSITION )
Let Sk,.w be a simple Mackey functor over k.The simple Mackey functor
s in M(G, J); are precisely the Sk w with J = OP(K).

This propostion and next theorem shows that the determination of the
block of Mackey functors of M(G, J)s: it is enough to answer the question
for the case J = 1.

THEOREM 4 ([4] (10.1) THEOREM )
The categories M(Ng(J)/J,1)x and M(G, J), are equivalent.

We mention that a simple Mackey functor Sxw in M(G,1), iff Kis a
p-subgroup of G. We prepare the definition of the Brauer morphism and the
block of Mackey functors for report the most important theorem.

For every p-subgroup P of G,the Brauer morphism is a ring homomor-
phism.

Brp : 2(kG) — Z(kCo(P))Yo"): Y a,z+— Y a.z

T€G £€CG(P)

where Z(kG) is center of kG and Z(kCs(P))¥e(F) is the subring of Ng(P)-
fixed points in center of kCg(P). If e is a block of Ng(P) then lies in
Z(kCg(P))¥e(P) where it is the sum of conjugate primitive idempotents, and
so there is a unique block b of G such that Brp(b) - e = e. This unique block
will be denoted by b = €.

Let

1 = Z e_y.,,
J:p—perfect,biblock of Ng(J}{7
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be a sum where each e;; is a central primitive idempotent in Mackey
algebra ux(G). If M is a Mackey functor in M(G,J); we denoted by M
belngs to a block corresponding e, when e, acts trivial on M.

THEOREM 5 ([4](17.1) THEOREM )

Let Spy and Sqw be two simple Mackey functors, where P and Q are
p-subgroups of G. Let e be the block of Ng(P) which V belongs to and f
the block of Ng(Q) which W belongs to. Then Spy and Sqw belongs to
the same block of Mackey functors if and only if the corresponding blocks €
and f€ of G are equal. Thus the blocks of M(G, 1), are in bijection with the
blocks of kG, via the map sending the block containing Spy to the block
of kG.

The last remark is a basic for the block theory of Mackey functors. Let B
be a block of M(G, 1), corresponding a block B of G the sense of Theorem
5 . We also let §(B) denote the maximal p-subgroup of G, unique up to
conjugacy in G,such that the simple Mackey functor Spy in B.

REMARK 6
§(B) is equal to the defect group of B.

proof

Let D be a defect group of B. So there is an indecomposable £G-module
U lying in B such that D is a vertex of U. If V is a Green correspondent of
U then there is a block b of Ng(D) such that B is a Brauer correspondent of
b which contains V. Let T be a composition factor of V so T lies in & ,hence
simple Mackey functor Spr belongs to B,by theorem 5. It suffices to show
the maximality of D.

For each simple Mackey functor Spy in B, there is a block ¢ of Ng(P)
such that simple kNg(P)-module V lies in ¢ and ¢ = B is defined, by
theorem 5. Hence the defect group D of B contains in defect group A of
e.Since Ais the largest normal p-subgroup of Ng(P),the remark is proved.
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PROCEEDINGS OF THE 24TH
SYMPOSIUM ON RING THEORY, 1891

ON FINITE INDECOMPOSABLE RINGS
Yasuyuki HIRANO and Takao SUMIYAMA

In what follows, when S is a finite set, |S| denotes the
number of elements of S .

Let R be a finite ring whose order is |R| =
pflpfzo---p:t , where p1 r Py s osere pt are distinct primes.
Then R 1is uniquely decomposable as the direct sum of ideals
I, ,I,, -+, I, of orders pfl , p;2 , e p:t . So, if
R is a finite indecomposable ring, then |R| is a power of a
prime. A ring R is called a finite p-ring if |R| is a power
of a prime p .

Let R be a finite indecomposable ring with identity. Let
R* denote the group of units of R . If |R| is not a power of
2, then |R| s |R*|2 by [3, Lemma 2.3]. If |[R| is a power of
2, then |R| s 2|R*|2 by [1, Proposition]. Let Rad(R) denote
the Jacobson radical of R . As 1 + Rad(R) 1is a subgroup of

R, |Rad(R)| 1is a divisor of IR"]| . The first purpose of this
note is to estimate |R| , |R*| and §(R) = |R*|/|R| using
|Rad(R) | .

First of all, we shall state a lemma, which is easy, but
plays an important role to prove our theorems. In what follows,
a graph means a finite undirected graph without loops. The edge
which joins two vertices x and y is denoted by (x, y)} or
{y, x) .

The detailed version of this paper will be submitted for
publication elsewhere.
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Lemma 1. Let G = (V, E) be a non-trivial connected graph,
where V 1is the set of vertices of G and E is the set of
edges of G . Let u be a vertex in V . Then there exists an
injective mapping ¢ : V\ {u}] — E which satisfies (i) for any
v € V\ {u}] , one of the endpoints of ¢(v) is v , and (ii)
plw) = (w, u) for some w e V\ {u} .

Before stating our theorems, we shall define some rings.
Let eij
matrix ring Mm+1(GF(p)) over GF(p) . The subring GF(p)e11 +
m+l_m+1
Zi=2zj=1 GF(p)eij of Mm+1(GF(p)) will be d:noted by Am+1(p) .
Let ¢ be a fixed automorphism of GF(p ) . The ring

{[g o?a)] | a, b e GF(P™]} will be denoted by Bo(pm) .

denote the (i, j) matrix unit of the (m + 1) x (m + 1)

For a prime p and positive integers n and ¢t , there
exists uniquely a Galois extension of Z/an of degree t (see
[2, p. 307]), which we denote by GR(pn, t) .

Let R be a finite indecomposable ring with identity. Let
= = i
R/Rad(R) = M 1(K1) B oo B MnS(KS) , where Ki = GF(p *) (1 s

n

i ¢ s). Suppose that s 2 2 . Let ey denote the identity of

Mn.(Ki) . Then R contains orthogonal idempotents f1 R f2 '
i

cees fS whose sum is 1 such that n(fi) = ey (1L 51i¢g8 s),
where 1 : R — R/Rad(R) is the natural projection. We shall
define a graph G = (V, E) as follows. Let V = {1, 2, -... ,
s] . Two distinct vertices i , j € V are joined by an edge
(i, j) if either finj £ 0 or ijfi £ 0 . Let E be the set
of such edges (i, j) . Then we get

z(i,j)eE ninj(l.c.m.{ki, kj]) Sm.
This equality together with Lemma 1 yields the following

theorems.

Theorem 2. Let p be a prime, and R a finite
indecomposable p-ring with identity. Suppose |Rad(R)| = pm
{(m 2 1). Then

pm+1 < |R| S pm2+m+1
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The first equality holds if and only if R/Rad(R) = GF(p) . The
second equality holds if and only if R is isomorphic to either

. . op
Am+1(p) or its opposite ring A +1(p) .

m

Theorem 3. Let p be a prime, and R a finite
indecomposable p-ring with identity. Suppose |Rad(R)| = pm
(mz2 1).

(I) If p=2 and m = 2 , then

43 |R*| s 36 .

The first equality holds if and only if R/Rad(R) = GF(2) & .--..
® GF(2) . The second equality holds if and only if R is
isomorphic to [GFé4) gg::;]

(II) If p#2 or m# 2 , then

Pp ~ 1) s R s ™™D (5 - 1) (p - 1)(p2 - 1)eee-(p® - 1) .
When p = 2 , the first equality holds if and only if R/Rad(R) =
GF(2) & ...- ® GF(2) . When p # 2 , the first equality holds if
and only if R/Rad(R) = GF(p) . The second equality holds if and

< s . . op
only if R 1is isomorphic to either Am+1(p) or Am+1(p) .

Theorem 4. Let p be a prime, and R a finite

indecomposable p-ring with identity. Suppose |Rad(R)| = pm
(mz1). Let &(R) = |R'|/|R| . Then
(1 - 1/p™1 s s 51 - 1/p™ .

The first equality holds if and only if R is isomorphic to
either GR(pz, m) or Bo(pm) . The second equality holds if and
only if R is an algebra over GF(p) such that R/Rad(R) =

@ +1 GF({p) .

m+1 m+1

Example 5. The subring Zi=1 GF(p)e1i + Zj=2 GF(p)ej

(GF(p)) satisfies the second equality of Theorem 4.

j of

Mm+1

By Theorem 2, we see that the order of a finite
indecomposable ring R with identity is limited under the
condition |Rad(R)| = p™ (m 2 1). We want to know how many
finite indecomposable rings of order pe there are. In (4],
Wiesenbauer has established the algorism to determine all finite
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rings which have the same abelian group as their additive group.
Let p be a prime, and 1 g e, s e, § ---- 8 e, be a

nondecreasing sequence of positive integers. Let Sn = {(ai ) €

e:.-e. . . ,
Mn(Z) | aij =0 mdpd 1 if i< j} . Clearly Sn is a

subring of Mn(z) . For (aij) ' (bi.) € Sn , we shall write

- : = e i 9 =
(aij) = (bij) if a;. = bij mod pJ (1 s i, 3§ n). Let_ I
{(aij) €es | (aij) 0} , which is an ideal of S . Let § =

Sn/I . Let g1 : Sn-——* §n be the natural projection. An

3
ij

element (aij) € S, is_called non-singular if “((aij)) is an
invertible element of Sn .

Let C(pm) denote the cyclic group of order pm . An
abelian group A will be called of type (pel, pez, ceee pen)
if A = C(pel) ® C(pez) ® ... @ C(pe“) . Let <a> denote the

cyclic group generated by a .

Theorem 6 ([4, Satz 2]). Let R be a finite p~ring whose

additive group is R+ = <a1> ® <a2> ® 00 @ <an> . Where <ai>

= C(pei) (1 $isn) and 15 e Se; 5 ---- 3 e, - Let us

write
n

(1) aja, = zj=1 aiik35
where @54k are integers such that
e .
(2) 0 s aijk spJ-1 (1 s i, j, k s n).
Then it holds that
0 mod pej-ek if 3§ > k ,

3 s .y =

( ) aljk _ ej_ei . ] )
(4) a4k = 0 mod p if i< j
and

n - n e
(5)  ZIyp=y %pki®kgs T Zk=1 %iks®rsk ™4 P
for every 1 i, j, r, s §n

Conversely, let

(6) A= <a1> e <a%i ® -0 B <an>

(<ai> =C(p 1) , 15 e, s e, S ... 8 en)
be an abelian group. If aijk (1 £ i, j, k S n) are integers
which satisfy (2), (3), (4) and (5), then we can make A 1into a
ring by defining the multiplication by (1). By this manner we

can construct all rings which have A as their additive group.
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By Theorem 6 we can get all rings of order pe , since the
e
additive group of any ring of order pe is of type (p 1, pez,

e
ceee n = feee

s P ™M, where e e, + e, + + e, and 1 g e, 5 e, 5
R SN

When aijk (1 s i, j, k $ n) are integers which satisfy (2),

(3), (4) and (5), we call structure constants for

the abelian group (6).

n n
Let {ajjly,j,k=1 @4 {B35kly,5,k=1
structure constants for the abelian group (6). We shall say that

n
{aijk}i,j,k=1

be two sets of

and are equivalent if there exists

n n

leggits, s, k=1 {Bi5kti,q,k=1

a non=-singular element (tij) € Sn such that
n - n n eg

Lj=1 Bijktjs = Zj=1zr=1 tijtkrajsr mod p (1 s i, k, s s n).

Theorem 7 ([4, Satz 5]). Let and

n
n {aijk}i,j,k=1
1
{aijk}i,j,k=1 be two sets of structure constants for (6). Let
R be the ring whose additive group is (6) and whose
multiplication is defined by
_ n
a3k T L= @34k35 -
Let R' be the ring whose additive group is (6) and whose
multiplication is defined by
° = n 1
ajea, zj=1 aijkaj . .
] : 2
Then R and R' are isomorphic if and only if {aijk}i,j,k=1

and are equivalent.

R

ijk’i,j, k=1
Next we shall consider the algorism to see whether a ring
has identity and whether a ring is indecomposable. 1In the

following, Gij is the Kronecker's delta.

n
Theorem 8 (cf. [4, Satz 6]). Let {uijk}i,j,k=1 be

structure constants for (6). Let R be the ring whose additive
group is (6) and whose multiplication is defined by
_ n
232 = Ij=1 %39k?j
Then R has a left identity if and only if there exist integers
Cys €y +++- , ¢ such that 0 S c; S pei -1 (1 $4isn) and

n - ey .
Zi=1 ciuijk = ij mod pJ (15 3, k $n). Also, R has a
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right identity if and only if there exist integers Cqr Cor oo
, c, such that 0sc, spi-1 (154isn) and 1,2

e. “x%ijk
Gij mod pJ (15 i, j sn).

n
Let {“ijk}i,j,k=1 be structure constants for (6). We
shall call f{a ijk}i,j,k=1 decomposable if there exists a
partition {1, 2, «... , n} = I, U I, such that (i} I, n1I, =
é , (ii) I, #6 ., I, # ¢, (iii) if i eI, , j eI, and e
ej , then i < j , and (iv) if i eI, , j € I2

1
1 k e 12 or Jj € I2 . k € I1 , then aijk .

2
or iel

|
O v

11 or jel

Theorem 9. Let be structure constants for

CTI
ijk’i,j,k=1
{(6). Let R be the ring whose additive group is (6) and whose

multiplication is defined by

_ n
a;a, = Zj=1 aijkaj .
Then R is indecomposable if and only if the following condition
. n
is satisfied: if {Bijk}i,j,k=1 are structure constants for (6)

which are equivalent to then are

n n
{agyets, k=1 {853k}, 4, k=1

not decomposable.

Example 10. Theorems 7, 8 and 9 enable us to determine all
rings of order 23 = 8 . By computer, we see that there are 52
mutually nonisomorphic rings of order 8 . Among them 7 rings

are indecomposable and with identity.

Number of rings of order 8.

type of the number of number of number of number of
additive group rings indecomposable rings with | indecomposable
rings rings with |
(p3) 4 4 | 1
( 2
P, P} 20 14 3 2
{p, p»y P) 28 14 7 4




(1]

(2]

(31

(4]
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PROCEEDINGS OF THE 24TH
SYMPOSIUM ON RING THEORY, 1881

Remarks on a family of algebras with the same
number of simple modules*

Kunio YAMAGATA

Dedicated to Professor Manabu Harada on the occasion of his 60th birthday

In [Y] we constructed from a given algebra A a family of algebras A,(n > 0, A4p = A)
with the same number of simple modules as the number of simple A-modules. This
family has the following properties: the Cartan determinant of A, is the same as the
Cartan determinant of A, and gldim A, < gldim A, 4, for all » if gldim A is finite. This
construction generalizes the family of algebras A,(n > 0) with two simple modules given
by Green [G] satisfying the property that gldim A, = n for all n. Happel [H] studied
homological properties of the algebras by Green and proved the property on the global
dimension, and Sikko and Smalg[SS] also gave a simple homological proof. In this note,
we shall show a "splitting property” of morphisms over the algebras, with two simple
modules, constructed by the rule in [Y], and we shall give another simple proof to the
above fact on the global dimensions of algebras by Green.

Throughout this paper, all rings are semi-primary basic rings with identity, and mod-
ules are left modules . By M™ we denote a direct sum of n copies of a module M.

1 Splitting property of morphisms

1.1 We recall from [Y] the construction condition of a family of algebras which implies
a construction of algebras with the properties mentioned in introduction.

Let A,(n > 0) be semi-primary basic rings, 4 := A, and p, : A, — A, ring
homomorphisms such that, for a fixed number m > 2, every A, is the direct sum of
projective modules P,),..., Pym, and pa(Pn;) = Pa-y,i for n > 1 and all i. Let py; :
P,; — P._,; be the restriction of p,,. Note that every P,_;, is considered as an A,-module
by the composite pa_j41'* pn i Ay — An—j. We consider the following two conditions.

*This paper is in final form and no version of it will be submitted for publication elsewhere.
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(C1) For every n > 0, there are exact sequences of A,-modules:

0— P::']':‘j = Pn.m A n=1,m —0
0 — :'-;'.‘m-l qml Pn,m—l Pn,m=1 Pn-l,m-l —0

0— Py &% Py B Py —0

where every a,; is positive integer.

(C2) Every pni: P, — P,-1; is a projective cover in the category of A,-modules,
and the restriction p,; | rad P,; — rad P,_,; is a splittable epimorphism.

Note that it follows from (C2) that
rad P,; S Poii i@ rad Py for1<i<m,
rad Pn,m = P::iTl e rad P,.-]_m.

In the sequel the indecies of the morphisms p,; and ¢,; are omitted for simplicity
unless it implies confusion.

1.2 Let I be the left submodule ¢y,,(P51™) of Pysm. From now on we fix a positive
integer n and consider in the category of left A,-modules.

For a finitely generated projective A,-module P, let I P be the submodule of P gen-
erated by f(I) for all morphisms f from Py, to P. Since g(P5}™) is contained in
Ker(A4, & Ao), note that T4y = 0 and so f(IP,;) = O for f € Hom,u,(P,;, Poj)-
Moreover, I P, ; belongs to add (). Because, let (n,) # (1,m) [ otherwise the assertion
is trivial . Then Im f C rad P, ; for any morphism f : P, ,, — P,; since P, ; has no sum-
mands isomorphic to summands of P, ,,. Hence, in the case when i = m, we have a mor-

phism (1) : Pom L rad Py = PR @ r1ad Pacyyn 50 that TP,y 55 TIPS @ TP,y .

In case i < m, we also have a morphisni (f:,) : P 4, rad Poi = P @rad P, so

that IP,; = I P,: 1@ IP, ). In consequence, by induction we conclude that I F,; €
add (7).

Lemma Let f : F,; — Pa_¢; be ¢ morphism with f(P,;) C rad P,_,;. Then
f(IP.;) =0in the case when (1)t>1 or (2)t=0andi <j.

Proof. (1) It suffices to show that fg(J]) = 0 for ¢ € Hom(Pim, Pas). Since
f(Pa;) C rad P,_., by applying the condition (C2) repeatedly we know that f is a sum of
morphisms through Pox(1 < k < m), say f = T, fi fi where f, € Hom(P,;, Ao) and f, €
Hom(Ao, Py-¢;). Hence, for g € Hom(P, s, Pn;), we have that fg € Hom(Ao, Pa—y;) ©
Hom(Py,m, Ao) so that fg(I) = 0 because, from the above note A(I) = 0 for any & €
Hom(Pl.mlAO)'



(2) This follows from (1) because by (C2) f is a sum of morphisms through some
objects in add4,(An-1).

1.3 For amorphism f: X =Y, let f : X — f(X), f2: f(X) = Y be the canonical
morphisms with f = faf;. Then f is said to be splittable if f, is a splittable epimophism
and f; is a splittable monomorphism.

Lemma  Suppose that every Po;(1 < i < m) is indecomposable and let u,v be
positive integers. Then, for a morphism f : Pp; — Py, with f(Py;) C rad Py;, the
restriction f|IPy; — I Py; is zero or splittable.

Proof. Suppose that f(IPy;) is not zero. In case i < j, f(/P;;) = 0 by Lemma
1.2, so we assume that j < i. By the condition (C2), the morphism f, Fy; — rad F ;
induced from f canonically is isomorphic to a sum of morphisms f, : Pr; — (Py71,)" and
NPy —rad Py

P
Vi 15 !\'
O qnj ®  ®pn,
0 (P) —2 P, —L Pr, =0,

where fi(IP2;) = f(IPy;) # 0 since fi(IF;,) = 0 by Lemma 1.2, and the restriction of
®qn;j » [(Przdy)® — 1Py, is a splittable monomorphism. Let fo = f, then the above
procedure for fo to obtain the morphism f; is valid for f, in the case when Imf; is
contained in the radical of the range. So, by repeating it, we finally have the morphisms
fi 2 PRi = Pfiyoq ¢ Pejsx — Py for some integer o and & < i — j such that
H(IPy) = f(IF;;), the morphism IP;;,, — IP;; induced from ¢' is a splittable
monomorphism and fi(Fy;) @rad P, ,. Then we have that B,; ~ P, 4, because they
are indecomposable projectives. Considering fi as a matrix over the local ring End (P,;),
9 92

0 g

P, @ P, — Q, @ Q2 isomorphic to f such that g, : P, — Q, is an isomorphism, g,(P:) C
rad Q; and gy2(P) C rad Q,. Here note that g2(/P;) = g2(/P;) = 0 by Lemma 1.2.

'
Therefore, we have a restriction g’ of g such that ¢’ = (g”’ 0 :IPRPIP, —

by elementary operations we know the existence of the morphism g :=

0 0
1Q, @ IQ:, where gip, is an isomorphism. Consequently, g’ is splittable and so is f.

1.4 Proposition Assume that m = 2 and Py,, Poa are indecomposable A-modules.
Let f : P — Q be a morphism between finitely generated projective A,-modules. Then
J(IP)=0or f|IP — IQ is splittable.

Proof. Suppose that f(IP) # 0, and let P = P}, @ Py, Q = Q;,® Q;, for some
non-negative integers u,v,s,t. | Here X* stands for the zero module for a module X

and k = 0.] According to this decomposition, put f = ( }." ?2 P\ F, —
n Jn '

w1 D@ 2. Then, since f;i(IP,:) = 0 for i < j by Lemma 1.2, the restriction fi |
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IP?, = IQ , is not zero so that it is splittable by Lemma 1.3. Since IP = IF}, @I F;,
and IQ = 1Q: , B IQY, 5, we therefore conclude that f is splittable.

Note. Let R be a semi-primary ring with a heredity ideal ReR (e? = ¢). Let P(R) be
the category of finitely generated projective R-modules and I = Re. Then IP = ReP
for P € P(R) and, in this case, any morphism in P(R) satisfes the splitting property in
the above Proposition. But, it should be noted that End 4,([) is not in general a division
ring.

2 Global dimensions

In this section we consider the global dimension of A,(n > 0) in the case when m = 2.
The result is contained in [Y], but we give a direct and shorter proof. Now we assume that
m = 2, but not assume that Py,, Py are indecomposable. All modules are considered in
the category of left A,-modules for a fixed integer n > 0.

2.1 Lemma (1) pdPaiy=2i—1, pd Pz =2ifori>1.
(2) For0 < i<n, pd (rad Pn—i.l) = max{2(n - 1)) pd (rad PO,I)}
pd(rad P,—;2) = max{2n — 1, pd(rad P, 3)}.

Proof. (1) For i = 1, the assertion is trivial by (C1). We prove by induction on i. Since
pd Pa—i1 < pd P,—; 3 by induction hypothesis, it follows from the short exact sequence

0— P:_'_".-.;-l 4, =i, -z Po_4ya — 0,

that pd P,_(i41)q = 1+ pd Paia = 2(i + 1) — 1. Moreover, since pd P,_i2 < pd Pa_(i11)1
in particular, by the exact sequence

0 — Prrcine = Pacia 5 Pacgynz — 0,

we have that pd P (i41)2 = 1 4+ pd Poiyryn = 2(i + 1).
(2) 1t follows from (C2) that rad Po_;y = P;2/; @ rad Pa—(i41),1 for i > 1. Hence, by
(1), pd (rad P,—;,1) = max{2i, pd(rad Po—(i+1),1)}. Similarly we have that pd (rad P,—;2) =

max{2i + 1, pd (rad Pa_(i+1),2)}. Thus the assertion is an easy consequence of these equal-
ities.

From this lemma we have the following fact for n > 0.

Corollary pd(topP,;) = max{2n—1, 14 pd(rad Fo)}
pd (top P, 2) = max{2n, 1 + pd(rad Py2)}
gldim A, = max{2n, 1+ pd(rad A)}.

2.2 Proposition (1) If A is semisimple, then gldimA, = 2n forn > 0. (2) If Py is
semisimple and add(rad Pp,1) = add(Py3), then gldim A, = 2n+ 1.



Proof. (1) is trivial. (2) Since rad Py3 = 0, it holds that pd(top Pn2) = 2n. More-
over Py2 = top(Poa) = top(F,2), and pd(rad Py,) = pd(Fp;) since add(rad Fy,) =
add(Pyz). Therefor we have that pd (rad ) = 2n.

2.3 Let A, (n > 1) be the algebra over an algebraic closed field with two vertices {1,2}
and n arrows : ay from 2 to 1, az;—; from 1 to 2 for i > 1. The relations are a;a; = 0 for
7 <1i. Let Aq be the algebra with vertices {1, 2} but without arrows ([G], [H]). Then we
can apply the above Corollary to the algebras A, as follows .

Let fi : Ax — Ax—z (k > 2) be algebra homomorphism such that fi(a;) = fi(az) =0
and fx(ai4+2) = a; for i > 0. Let ¢; be the idempotent corresponding to the vertex
i(= 1,2), then ay; = ejaqey, azi—) = e2a2i—1€1, and Ay = Arer @ Axea. For the restrictions
fri ¢ Axei — Ag_ze; induced from f; naturally, it is easily seen that Ker fr2 >~ Ax_ze;
and Ker fy; = Aj._ze2. In consequence, the families {A, = Azn, Paj = A2n€i,Pn = fan}
and {An = Azn41, Pai = A2n41€i,Pn = fon+1) satisfy the conditions (C1), (C2) with all
@5, = 1. Thus it follows from Proposition 2.2 that gldimA, = n for n > 0.

References

[G] E.L.Green,Remarks in projective resolutions, Springer Lecture Notes 832 (Heidelberg
1980), 259-279.

[H] D.Happel,A family of algebras with two simple modules and Fibonacei numbers,
preprint, Bielefeld.

[SS] S.A.Sikko and S.0.Smalg, A family of algebras with two simple modules and arbitrary
glodal dimension, preprint, Mathematics No.9/1990, Trondheim.

[Y] K.Yamagata, A construction of algebras with large global dimensions, preprint, Uni-
versity of Tsukuba, 1991,

Institute of Mathematics, University of Tsukuba,
Tsukuba, Ibaraki 305, Japan
E-mail: a906025@sakura.cc.tsukuba.ac.jp

89



+ . . N v
i . . . :
N - . e : . C
. - . - a
I : : -7 ’
t ) ’ - k ‘ )
: v ’ '
i .




