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PREFACE

The year, 1990, it has really been so excited for mathematicians, especially in Japan.
We mean, of course, ICM90 Kyoto! Just one month later, the 23rd Symposium on Ring
Theory was held at Chiba University, Chiba, on 23-25 September, 1990. This volume is
the Proceedings of the symposium. It consisted of twelve talks, so that the proceedings
contains twelve articles by the speakers. We would like to thank all of the speakers of the
symposium for their contribution.

The symposium and the proceedings were financially supported by the Grant-in-Aid
for Scientific Research from the Ministry of Education, Science and Cultue through the
arrangements by Professor Y. Kitaoka, Nagoya University (Grant-in-Aid for Co-operative
Research (A) No. 02302002). We would like to express our great gratitude to Professor
Kitaoka for his kind arrangements, and also to Ms. Hayashi, a secretary of the Department
of Mathematics, Nagoya University, for her kind arrangements to the symposium.

Finally, we wish to thank to Professor H. Tominaga for the publication of the pro-
ceedings.

Chiba University, Chiba, November 1990

Shigeo Koshitani
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ON COMMUTATIVITY OF RINGS

Tsunekazu NISHINAKA

Recently, in his paper [10], W. Streb gave a classification
of non-commutative rings. By making use of this result, H. Komatsu,
H. Tominaga-and the present author have obtained a number of com-
mutativity theorems for rings, in (6], (7], [8] and [9]. In the
present paper, we shall exhibit several theorems which are espe-
cially interesting among those obtained in [6), (7] and (8]).

Throughout, R will represent a ring with center C = C(R) (not
necessarily with l). As usual, we write Ix,y] = xy-yx for x, y €
R, and D = D(R) will denote the commutator ideal of R.

In preparation for proving our theorems, we begin with a pre-
liminary section.

1. Streb's theorem and Chacron's condition. 1In (7, Proposi-
tion 2], we have proved the following:

Proposition 1. Let R be a ring generated by two elements such
that D is the heart of R and RD = DR = 0. Then R is nilpotent.

In view of Proposition 1, we see that the theorem of Streb [8,
Theorem S] should be stated as follows:

Theorem S (see [(7]). Let R be a non-commutative ring (R # C).

Then there exists a factorsubring of R which is of type a)z, a)r.
b), c¢), d) or e):



a), (GFép) GFép))' p a prime.
a)r ( g gg{g;)' p a prime.

B) M (K) = {(g o )| a, Be K}, where K is a finite field
with a non-trivial automorphism o¢.

c) A non-commutative division ring.

d) A simple radical ring with no non-zero divisors of zero.

e) A finite nilpotent ring S such that D(S) is the heart of
S and sD(s) = D(S)s = 0.

Further, from the proof of {10, Korollar (1)), we can easily

see

Theorem Sl. Let R be a non-commutative ring with 1. Then
there exists a factorsubring of R which is of type a)l. b), ¢),

d)1 or e)lz
1 GF GF
a) ( ép) GFES;)' p a prime.
b) M, (K).
c) A non-commutative division ring.
1

d) S = <1> + T is an integral domain, where T is a simpie
radical ring.

e)1 S = <1> + T, vhere T is a finite nilpotent ring such that
D(T) is the heart of T and TD(T) = D(T)T = 0.

Now, Theorem S and Theorem S1 give the following Meta Theorem
which plays an important role in our subsequent study.

Meta Theorem. Let P be a ring-property which is inherited by
factorsubrings. If no rings of type a)z, a)r, b), ), 4d) or e)
(resp. a)l, b), ¢c}. d)1 or e)l) satisfy P, then every ring (resp.
every ring with 1) satisfying P is commutative.

We consider here the following conditions:

(H) For each x € R, there exists f(X) e xzzlxl such that x-f(x)
e C.



(H') For each x, y € R, there exists £(X) e xzz[x] such that
(x-£(x) .yl = 0.

(C) For each x, y € R, there exist £(X), g(X) xzz[x] such that
[(x-£(x) ,y=g(y)] = 0.

(S) For each x, y € R, there exists f£(X,Y) e 2<X,¥>(X,Y]Z<X,¥>
each of whose monomial terms is of length 2 3 such that (x,y)
= f(x,y).

The conditions (H) and (H') were introduced by Herstein, and
the conditions (C) and (S) have been introduced by Chacron and
Streb, respectively. By a well-known theorem of Herstein (signified
as Theorem H), every ring satisfying (H) is commutative. Obviously
no rings of type e) satisfy (S). This together with Meta Theorem
enables us to reduce the proof of Theorem H to the case that R is
a division ring. Further, by making use of Theorem H, we can show
that no rings of type c) or d) satisfy (C) (see [4, Corollary 1]).
Thus, in view of Meta Theorem, we readily obtain another theorem
of Herstein [3, Theorem 3): Every ring satisfying (H') is com-
mutative. As was claimed in [4], (4, Corollary 1) reproves [2,
Theorem 2}: Every semiprime ring satisfying (C) is commutative.
Also, note that no rings of type e) or el satisfy the condition
(s).

Now, combining Theorems S and S1 with (2,Theorem 2], we obtain

Proposition SC. Suppose that a ring R (resp. a ring R with 1)
satisfies (C). If R is non-commutative then there exists a factor-
subring of R which is of type a),. a)r or b) (resp. a)1 or b)).

2. Commutativity theorems. We are now ready to state our

theorems.

Theorem 1 ([6, Theorem 1]). A ring R is commutative if (and
only if) R satisfies (C) and if for each x, y € R, there exist
integers £ 2 0, m > 0 and £(X) e X°2[X] with £(1) = ¢ 1 such that
[x,x"y-£(y)x*] = 0.



Proof. We can easily see that each ring of type a)g, a)r or
b) fails to satisfy the latter condition in Theorem 1. Thus, in
view of Proposition SC, R is commutative.

In Theorem 1, we cannot remove the hypothesis that m > 0 or
f(l) = + 1. But, in case R has 1, we have the following:

Theorem 2 (see [9, Theorem 1]). Let R be a ring with 1. Then
R is commutative if (and only if) R satisfies (C) and if for each
X, Yy € R, there exist non-negative integers £, m, n and £(X) e
xzz[xl such that [x,xmy—xnf(y)le = 0.

Proof. Let x, y € R, and yz = 0. Then we can easily see that

xm[x,y] = 0 for some non-negative integer m; so that [x,y] = 0.
Hence y is in C. This shows that each ring of type a)1 or b) fails
to satisfy the latter condition in Theorem 2. Thus, in view of
Proposition SC, R is commutative.

Next, for fixed non-negative integers £, m and n, we consider
the following conditions:

For each X, Yy € R, there exists £(X) € xzz(x] such

that [x,xmy—xnf(y)xl] = 0.

(')(z,m,n) For each x, y € Ré either [x,y) = 0 or xmy = xnf(y)xz
for some f(X) € X“Z(X].

(")(z,m,n) For each x, y € R, gither {x,y}] = 0 or xmy-xnf(y)xl €

C for some f(X) € X"Z(X].

() (2,m,n)

As is easily seen,
does (t)

implies (**)

™) (2,m,n) (2,m,n)’ 204

(.‘)(Z,m,n) (L£,m,n)"°

Theorem 3 (see (9, Theorem 1]). Let R be a ring with 1. If

R satisfies (+)(z m then R is commutative.
’ ’

n)

Proof. 1In view pf .Meta Theorem, it suffices to show that R
cannot be of type a)l, b), c), d)l or e)l.



As is easily seen, R cannot be of type a)1 or b).

If R is of type c) (resp. d)l), then [9, Lemma 2] shows that
for each x, y € R (resp. x, y € T), there exists h(X) e xzz[x] such
that {x,y=-h(y)]) = 0. Hence R (resp. T) is commutative, by [3, The-
orem 3). This is impossible.

Finally, suppose that R is of type e)l. For each s, t € T,
there exists £(X) € X’z(X] such that [s,t] = (s+1)™(s,t] = (s+1)"
[s,£(t)] (s+1)® = 0, a contradiction.

In (5, Theorem), T.P. Kezlan has proved that every ring R with
1 and satisfying (+)(£'1,0) is commutative.

Recently, H.E. Bell {[1]) announced -that every ring R satisfying
(*)(1'1'0) is commutative. Needless to say, if R has 1, this is a
special case of Theorem 3. As an application of Theorem 3, we can

prove the following:

Theorem 4 ([7, Theorem 1)). Let 2 > 0. If R satisfies
(*)(z,l,n)' then it is commutative.

Proof. In view of Meta Theorem, it suffices to show that R
cannot be of type al),, a)_, b), ¢), d) or e).

We can easily see that R cannot be of type a)2 or a)t. Further,
by Theorem 3, no rings of type b) or c) satisfy (*)(2 1,n)°

Now, suppose that R is of type d), and choose x, y € R with
[x,y] # 0. Then thete exists p(X) € X2 (X} such that xy = x p(y)yx.
If lx,y %] # 0 and (x%,y) # 0. there exxst £(X), g(X) < %2z (x] such
that xy = X f(y )xl and yx =y g(x )y . Putting f(y ) = £, (y)y
and g(x ) go(x)x with some f (x), go(X) e XZ[X], we obtain xyl =
x"£ (y)y go(xl)xy . Since R is a radical ring, this forces 3 con-
tradxctxon xyl = 0. Next, if lx .yl = 0, then xy = x p(y)x xy,
which implies a contradiction xy = 0. Similarly, lx,y )] = 0 forces
a contradiction.

Finally, suppose that R is of type e). Then R2 ¢ C. Given x, y
€ R with [x,y] # 0, we can take p(X) € XzZ[X] such that xy =
xMyp (y)x* = xyp (y)x**n-1
But this is impossible.

, whence xy = 0 follows: similarly yx =0,



Corollary 1 ((7, corollary 1l}). Let R > 0. If R satisfies (S)
- co s
and ( )(2,1,n)' then it is commutative.

For a positive integer n, we consider the following condition:
Q(n) If x, y € R and nlx,y]l = 0, then [x,y] = 0.

Finally, we state the following theorem without proof.

Theorem S ((6, Theorem 5])). Let R be a ring with 1. Suppose
that R satisfies the polynomial identity

XTLE(X), Y]+w (X, ¥) [X,g(¥) Jw*(X,¥) = O,
where m is a non-negative integer, w(X,Y) and w*(X,Y) are monic
monomials in Z<X,Y>, f£(X) and g(X) are polynomials in XZ[X] with
£(1) = £ 1 and g(l) = ¢ 1, -and -every- monomial term of w(X,Y¥Y)g(Y)
w*(X,Y) has degree > 2 in Y. Suppose that d = (£'(1),g9'(1l)) is
non-zero, where f'(X) and g'(X) are the usual derivatives of f(X)
and g(X), respectively. If R satisfies the condition Q(d), then
R is commutative.

Corollary 2. Let £, m, n be non-negative integers, k a posi-
tive integer, and f(X) e xzz[x]. tet @ = (k,£'(1)). If a ring R
with 1 and the polynomial identity [X*,x™y]-([xX,x"£(v)x%] = 0 sat-
isfies the condition Q(d), then R is commutative.
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THE COENDOMORPHISM BIALGEBRA OF AN ALGEBRA *

Daisuke TAMBARA

If A, B are algebras over a field k and dim A < o0, we have a k-algebra
a(A, B) with the adjoint property

Homk-nlg(Bt A® C) = Homk-alg(a(Ai B)i C)

for any k-algebra C. The algebra a(A, A) has a natural structure of a
bialgebra and coacts on the algebra A through the adjunction map A —
A®a(A,A).

Though this is a similar construction to hom for graded algebras with
quadratic relations [4], a(A4, B) has some nice properties. This report con-
sists of three parts.

1. The monoidal equivalence between a(A, A)-comodules and chain com-
plexes.

2. Ext of a(4, B)-modules from the viewpoint of the fibre product of
module categories.

3. The algebra structure of a(A, Ma(k)).

1. One of main results of |6] is

Theorem If dimA > 1, then {right a(A, A)-comodules} and {chain
complexes of k-modules} are equivalent as monoidal categories.

This is a consequence of the wellknown equivalence of simplicial com-
plexes and chain complexes. We make the functor as follows. Let C_(resp.

* The detailed version of this paper will be submitted for publication
elsewhere.
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C;) be the category of chain(resp. cochain) complexes of k-modules. Let
0:C_ X C4 — k-Mod be the functor defined as follows.

Xo¥ D Xa@Ys_ DXa®Yaps * (exact).

Let A be a k-algebra. Let =4 = Ker(A® A ™% A) and 6: 4 — Q the
map a +— 1 ®a —a@® 1. The tensor graded algebra T4(f2) has a differential
d of degree 1 defined by

d(agb(a1) ® 6(az) ® -+~ ® &(an)) = é(a0) ® §(a1) ® -~ ® 6(ay).

Then Q := (T4(f2),d) is a differential graded algebra, i.e., a monoid object
of C4. The bialgebra a(A, A) coacts on Q naturally and so the functor

(=)o Q:C_- — k-Mod has values in Comod-a(A, A). The monoid structure

of Q makes (=) 0 Q:C_ — Comod-a(A, A) a monoidal functor. This gives
the equivalence of the theorem.

The equivalence treated in Pareigis [5] is the case A = k[t}/(t?). We
also have

Theorem A bialgebra B such that {right B-comodules} is monoidally
equivalent to {chain complexes of k-modules} is isomorphic to a(A, A) for
an algebra A.

2. Ext-of a(A4, B)-modules were computed in [6]. We take here a different
approach. A functor f: A-Mod — B-Mod is called a restriction functor if
[ & P®4(-) for a (B, A)-bimodule P which is finitely generated projective
as an A-module.

Proposition Let f; : A;-Mod — Ap-Mod, i = 1,2 be restriction func-
tors. Then there are restriction functors g; : A-Mod — A;-Mod such that
the following diagram is a fibre square.

A-Mod Z4% A,-Mod
92| ln

Az-Mod 2% Ap-Mod.

Indeed, let f; & P; ®4; (—) and set P’ = Hom_4,(P;, A:). Then we
can take A to be the quotient ring of

TA,onxA,(Pl &P Pf @ P-;)



[}

by the ideal generated by the graphs of the canonical maps
Ao = Pi®u P, PP Oy Pi— A

Suppose given an arbitrary fibre square diagram as above with f;, g;
restriction functors and set go = f; o g;. Let g} be the left adjoints of g;.

Proposition For any A-module X, the natural sequence of A-modules
0 — gogoX — 9191X © 929, X = X =0

is exact.

This is a generalization of Dicks’ Mayer-Vietoris presentation [3] and
the proof is also based on it.

Proposition Suppose f; = P; ®4, (—) with P; faithfully flat Ao-
modules for 1 =1,2. If X is an A-module such that the Ag-module go X is
flat, then we have natural isomorphisms

Ext(gig;X,Y) & Ext} (9:X,0:Y).

fori =0,1,2

The proof relies on a structure theorem of coproducts [2|. The above
two propositions yield the Mayer-Vietoris sequence connecting Ext4(X,Y’)
with Exta,(g:X,g:Y). Applying it to the fibre square

a(A,B)Mod B k. Mod

(-)e 4] orpet l(-)e4
B® A°"-Mod Z&*  AeP_Mod,

we get
Theorem For a(A, B)-modules X, Y and n > 2, we have

Exty4,5)(X,Y) & Extpgac(X ® 4,Y @ A).

3. We assume that k is algebraically closed and B is a full matrix algebra.
For a B-bimodule M we write Zg(M) = {m € M | bm = mb for all b € B}.
Let A be a finite dimensional algebra and set N = rad(A), S = A/N &
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[[; End(V;), E = End(®;V;). We consider the centralizer of the image of
the composite

B A®a(4,B) > S®a(A,B)— EQ®a(4,B)

where ¢ is the canonical map. Put R =[], k. Then R C S C E. Define an
algebra a(B, R — E) by the pushout diagram

a(B,R) —»  a(B,E)

| |

R - a(B,R - E)

where the left vertical arrow is induced by ¥ — B. Since A S@® N, N is
an S-bimodule. By the matrix-notation of-a bimodule we write

where N' = (N;) is an R-bimodule. Set N'* = (N|s).
Theorem We have an isomorphism of algebras

(B, R+ E)llg Tr(N'"® Z5(Q5)) & Zp(E & a(4, B)).

The isomorphism can be made explicit but not canonical. When A is
local, we have

a(A,B) = T(N* ® Zp(1g))® B=T((A/k1)* ® (B/kl))® B.
as algebras.. When -4 is-a {ull matsix algebra, the theorem says
A®a(A,B)¥ B®a(B, A),

which is also clear from the fact that A® a(A4,B) = A1l B [1].
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A NOTE ON HOPF GALOIS EXTENSIONS
Atsusui NAKAJIMA

Let @ be a commutative ring with identity and let J be a finite
comunutative cocommutative Hopf algebra over R. A commutative
R-algebra S is called a right J-comodule algebra if the right J-
comodule structure morphism pgs : S — S® J is an It-algebra mor-
phism,where the tensor product is taken over R. A right J-comodule
algebra S is called a J-Galois extension of R if the morphism s :
S@S — S®J defined by 75(z®y) = (z®1)ps(y) = 3 () Z¥(0) ®¥(1)
is an isomorphism, where ps(y) = 3 3, ¥(0)®¥(1) in S®J. J is called
a Galois Hopf algebra of S/R. Two J-Galois extensions S and T
are isomorphic if there exists an R-algebra morphism f : S — T
such that prf = (f®1)ps. We denote the set of isomorphisin classes
of J-Galois extensions of R by Gal(R, J).

Now we define a product on Gal(R, J). For J-Galois extensions S
and T, we consider the following

(1®71)(ps®1), 1®pr:SQ@T —SQTQJ,

where 7 is the twist morphism (1 : 2 ® y — y ® ). Then the
difference kernel ker((1 ® 7)(ps ® 1) — 1 @ pr) is an It-subalgebra
of S® T and it is a J-Galois extension of . We denote the above
subalgebra by S+ T. Let (S) be the isomorphism class of J-Galois
extensions of I which are isomorphic to S. Then Gal(RR,J) is an
abelian group with identity element (J) under the product (S)(T)
= (S - T). These were discussed in [1] and there are many related
results for the group Gal(R,J) since [3].

Let k be a field with characteristic p (p # 0). In [4], late Professor
A. Hattori pointed out that a purely inseparable field extension k{z]

This note is derived from [5].
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= k[X]/(XP —r) over a field k has two different type of Galois Hopf
algebra J; and J; as follows.

(1) Jy = k(o) is the group algebra, where (o) is a cyclic group
of order p. Then k[z] is a right J)-comodule algebra with structure
morphism p(z) = = ® o and k[z] is a J;-Galois extension of k.

(2) J2 = k(6) is a free k-module with basis {1,§,...,6°~'} and the
Hopf algebra structure is given by 6” = 0, A(6) =6® 1+ 1® 6,
€(6) = 0 and M) = —4. Then k[z] is a right J2-comodule algebra
with structure morphism p(z) = z®1+1®4 and k[z] is a Jo-Galois
extension of k. ,

It is easy to see that J; and J; are not isomorphic as Hopf algebras
and we also have the following

THEOREM 1. Let S and T be commutative k-algebras. Then
(1) S/k is a k{o)-Galois extension if and only if S is isomorphic
to k[X)/(XP — s) for some s € k.
(2) T/k is a k(6)-Galois extension if and only if T is isomorphic
to k[X]/(X? —t) for some t € k.

It seems that the k(o)-Galois extensions and the k(6)-Galois ex-
tensions are equal. What is the difference of the k({c)-Galois exten-
sions and the k(6)-Galois extensions ? For the question, we have the
following which is proved by Th.1 and the definition of product.

THEOREM 2. Under the above notations,

(1) Gal(k, k(o)) is isomorphic to U(k)/U(k)? as multiplicative
groups, where U(k) is the set of invertible elements of k.
(2) Gal(k, k(b)) is isomorphic to k/kP as additive groups.

COROLLARY 3. k is a perfect fleld if and only if Gal(k, k(o)) = 1,
or equivalently, Gal(k, k(6)) = 0.

Ths.1 and 2 are generalized to a comunutative ring and of course

Gal(k, k(o)) and Gal(k, k(5)) are non-trivial in general.



REMARK. In [2], they showed that the field extension @(%1/2)/Q
has two different type of Galois Hopf algebras, where Q is the field
of rational integers. When this is the case, it is not known that the
two isomorphism class groups are isomorphic or not. But there exists
a separable field extension over k = GF(2) which has two different
type of Galois Hopf algebras H, and H,. And when this is the case,

we can show that groups Gal(GF(2),H;) and Gal(GF(2), H;) are
not isomorphic.
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HINIMAL INJECTIVE RESOLUTION OF A NOETHER RING

Yasuo IWANAGA and llideo SATO

This is an expository article of our papers [1, 2]

their related topics.
Let us start by fixing some notations.
NOTATION In almost cases in our consideration rings
left and right noether rings. Let
R : a left and right noether ring,
(¢2) 0 . R + Eo = E, » - =+ E, >
¢ a fixed minimal injective resolution of grIR.
For an R -module M, we denote

pd(M )= projective dimension of M,
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id(M)=1injective dimension of M,
fd(M)=flat(veak) dimension of M,
and self-injective dimension of R is defined as
l.inj.din R =1id(srR), r.inj.din R = id(R &)
and further, if they coincide, inj.dim R is used.
Our main concern in this article is about a mininmal
injective resolution (%). Hore precisely, we will

discuss on the following conjectures and problens.

(I) Cogeneralor problems

(1) Let R be an artin algebra, then is @® E. a
k0

cogenerator ?

(This is the AUSLANDER-REITEN conjecture [4], which

is a generalized version of the NAKAYAMA conjecture.)

If the Auslander-Reiten conjecture is true, the
direct sum of the terms E.’s nay.be finite since the
nunber of non-isomorphic injective indecomposables is
finite over an artin rings. Thus it’s reasonable to

raise the following problen.



(2) Let R be a noether ring. When is E®E ,® -

@ E ., for some n =0 a cogenerator ¢

A module W is a cogeperator if any module embeds in
a direct product of copies of W. But this notion is

not fittable in considering finitely generated modules
as enbedded modules. Thus ve introduce a slightly
stronger notion of a cogenerator: A module W is called
a fipitely embedding cogenerator if any finitely gener-
ated modulesX is embedded in a direct sum of copies of
W. (In this case, X embeds in a finite direct sum of
w.) These two notions coincide for an artin rings, in
fact, let W be a cogenerator over an artin ring R and
X a finitely generated R -module, then Soc(X) is a
finitely generated essential submodule of X. Hence
Soc(X) is a direct sum of a finite nunber of sinmples
such as Soc(X)=8,® - ®S,, and thus XCE(S,)®

®E(S,), which is contained in W ‘*?, direct sum of
r-copies of W since each E(S ;) enbeds in W. (See
Lenma by 0SOFSKY below.)

For noether rings, however, they are different.
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For example, take R =2Z the ring of integers as a ring
and let Q be the additive group of all rational
nunbers, then Q/Z is a cogenerator but not a finitely
enbedding cogenerator. On the one hand, Z® (Q/Z)
is a finitely enbedding cogenerator.

Now we have a problem concerning the new notion.

(3) When is Ec®E ® - ®E . for some n20 a

finitely embedding cogenerator ?

(I1) Terms E » in a minima] jnjective resoluljon (¢)
Let R be a noether ring with inj.dimn R=n<o.
(1) Characterize indeconmposable summands in E «, at
least, in the last term E ,.

(2) Does the last term E ; have nonzero socle ¢

(I-1) AUSLANDR-REJTEN Conjeclure
Let R be an artin algebra. Nakavama conjecture
says that if each E«x (k=& 0) is projective, then R will

be QF, that is, a quasi-Probenius ring.
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The Auslander-Reilen conjeclure implies the Nakayama
conjeclure:
(Proof) If the Auslander-Reiten conjecture is true,

@ E. 1is a cogenerator and hence any injective inde-

k=0

composable module E(S ) with S simple is a direct sum-
mand of some E x which is projective, and thus E(S) is
projective. That is, it holds that injectivity implies

projectivity over R, which is equivalent to R QF.

Presently the following result is the best one for

the Auslander-Reiten conjecture.

(WILSON [19]) The Auslander-Reilen conjeclure is
true for positively graded finile dimensional algebras

over fields.

As another articles concerning Nakayama conjecture
and Auslander-Reiten conjecture, we refer ASASHIBA £31,

COLBY and FULLER [7].



A useful criterion for a cogenerator is

LEMHA(OSOFSKY [16]1) For a module W over any ring
R, W is a cogeaeralor if and only if W embeds all
indecomposable injeclives E(S) wilth S siample.

Thus @ Ex is a cogeneralor if and oaly if for

k=20 '

k
any sinple module S lhere is a k with Ext (S, R)=#0.
R

Next vwe consider the case when E¢@®E & - @®E,
is a cogenerator or a finitely enmbedding cogenerator.
In order that, we will consider two notions for the

investigation.

(I-2) Gorenslein Ring and Dominanl Dimension

GORENSTEIN RING: A (left and right) noether ring is
called an p-Gorenstein ring for an n =0 provided that
it has self-injective dimension n on both sides.

A 0-Gorenstein ring is just a QP ring, and generally



if R is an n-Gorenstein ring, then the ring of upper

triangular matrices over R is an (n+l)-Gorenstein ring.
Horeover, the group ring Z[(G ] of a finite group G

over the ring of integers Z is a l-Gorenstein ring but

not hereditary.

THEQREM [8]) If R is an n-Gorenslein ring, lhen

Eoc®E ® -« @®E . is a cogeneralor.

Concerning this theorem we expect to strengthen the

conclusion as follows.

PROBLEN Under the assumption same with the theoren
above, does it actually hold E¢®E ® - ®E. is

a finitely embedding cogenerator ?

As for the condition that E®E ® « @®E, is a
cogenerator,. which is on the module itself but not on
the ring, ve refer COLBY-FULLER [7].

The following is well known and mentioned in [16]

without proof.
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THEOREM Lel R be a noelher ring and assume gR is

a cogeneralor, lhenr I is a QF ring.

In the theorem above, we can’t weaken the condition
aRR a cogenerator to E o a cogenerator. In fact, let
R be a local noether r;ng with radical J, which is
not QF and consider the trivial extension ring of R
with the bimodule sR/J &. However, if we assume that
R is a Gorenstein ring, we may raise the following
problem, which will be affirmative if the conjecture

(II-2) is true.

PROBLEM If R is an n-Gorenstein ring and Eo is a

cogenerator, then is R a QF ring ?

For the problem (I-3), YOSHINO informed us the

following comautative case.

THEOREH If R is a commulalive noelher ring witlh
Krull] dimension n, lhen E.®E & --- @E, 1is a

finitely embedding cogeneralor.



(Proof) Any finitely generated module is embedded
in an injective module, which is a direct sum of injec-
tive indecomposables over a noether ring, and we recall
that any injective indecomposable module over a commuta-
tive noether ring R is of the form E(R/P) with P a
prime ideal. (MATLIS [11]) Further, by Bass’s theoren,
E(R/P ) appears in Ex as a direct summand if and only

k
if [Ext (R/P, R)]s#0. On the one hand, it is known
R

i
that depth Rpe=nin{i | Ext (Rs/PRe, Re)#0) is at
- Re
most the Krull dimension of R ». Hence any injective
indeconposable enbeds in W=E ,@E ,® - @ E ., and it

turns out that any finitely generated module embeds in

a direct sum of copies of W, which is actually finite.

Further to investigate our problem (II), we’d like

to introduce the following notion.
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DOMINANT DIMENSION OF A RING: Any ring R has
dominant dimension at least p (denoted by dom.dim R
n) provided that each E is flat for all k (05k<n).
(See [8]) Doninant dimension was first defined by
NAKAYAMA for finite dimensional algebras over fields,
and has been investigated by TACHIKAWA and KULLER. Thus

ve should mention some of their results.

REHARKS Now we assume R is a noelher ring.

(1) For n=1, this is nolhing but R a QF-3 ring
in lhe sense of HORITA aad in lhis case, il is shown
that the definilion of dominanl dimension is lefl-righl
syamelric. (HORITA [14])

(2) If dom.dim R>1, lhen R is ap arlin ring. [1]

(3) It is shown thal dominanl dimensions defined on
the left and right sides are coincidenl for arlin riangs.

(HULLER and TACHIKAWA, See [18].)

(4) Combining these resulls above, dominan!{ dimen-
sions defined on the lefl and right sides are coincidenl
for any noelher riang.

(5) If r.inj.dia R<dom.dim R, R is a QF ring.
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Now we-can answer for the-problem (I-2 and 3) in the
case n =1, that is, Eo® E, is a cogenerator or a

finitely enbedding cogenerator.

IHEQREK [2] Lelt R be a noelher ring.

(1) If every dense maximal lefl ideal is reflexive,
then Eo® E ; is a cogeneralor.

(2) If we assume dom.dim R21, Lhen E.®E, is a
cogeneralor if and only if every mazimal lefl ideal is
reflexive.

(3) Assume dom.dim R=1,.-lhen Eo.®E is a finile-
Iy embedding cogeneralor if and only if anmy finilely
generaled uniform, lorsion lef{ R -module U has a non-
zero submodule V for which there exisls an exacl
sequeace § - L —» F = V -~ (¢ wilh F fiailely
generatled free and L reflexive.

(Here a torsion theory follows the Lambek’s sense.)

EXAMPLE As a ring with E® E , a cogenerator but
of infinite self-injective dimension, we give a serial

ring with the admissible sequence 3, 4.
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(II) Terms E «
For commutative case, we have a fascinating result

by Bass as follows.

THEQREK (BASS [5]) Let R be a comamutlalive
n-Gorenslein ring.

(1) An injeclive indecomposable module E(R/P) rnilh
P a prime ideal appears as a direct summand of E. if
and oaly if hi(P)=k.

(2) fd(E )=k for each k=0. Hence a commutalive
Goreaslein ring has domivanl dimeasion=1].

(3) The mulliplicily of E(R/P) in E is given by

k
dia Ext (R/P., R)e. nvhere K(P)=Rs/PR».
K(p) R

For non-commutative case, we can’t expect such a
beautiful result in a general setting as the following

exanples show.
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EXAMPLES (1) Let R be a path.algebra given by the

quivers: 4 ---.

\'1 ——>~'2:__>_3
S .. 7B
7.

bounded by-@ 8 =8 @ =0 and zero-relations denoted by
dotted lines. Then R is a 2-Gorenstein ring and
pd(E o) =pd(E 1) =pd(E 2) =2, that is, all terms E,,
E, and E ;. -have the possible highest brojective dinmen-
sion. (See Proposition below.)

(2) Let R be a path algebra given by the quiver:

2

& bounded by

apB=rd=ad=rpf=¢caa=0.

3

Then R 1is a quasi-hereditary ring of global dimension
3, and all injective indecomposable R -modules have the
highest projective dimension 3. We will see below that

all of them do not necessarily appear in the last tern.
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(3) Let R be a serial ring with admissible sequence
2, 2, 3, 4 and Re,, Re2, Res, Re, the corre-
sponding Kupisch series, then It is a 3-Gorenstein ring.
The injective indecomposable R e 4 appears both in Eo

and E 2, but neither in E,; nor E 3.

For non-conmutative Gorenstein rings, the following
seens the best information concerning minimal injective

resolution (%) at present, which we can know in general.

THEOREM {1]) Lel R be ar n-Gorensiein ring and
n=21, lhea Eo and E. have no isomorphic indecom-

posable direcl suammand.

Concerning the last ters,

PROPOSITION [10] Lel R be an n-Goreaslein ring.

(1) pd(Ex)=n for all k=20 and every direcl sua-
pand of IE ., has lhe highesl projeclive dimension n;

(2) If S is a siaple left R -module of projeclive
dimension n, S appears ia E .. Coaversely, S is a

simple lefl R -module embedded in E .. pd(S)=n or .
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Now we-can characterize a direct suamand in E¢ or

E, by using reflexivity of irreducible left ideals.

THEOREH [2] Let R be a noether ring with dominant
dimepsion=1, lhen an injective indecomposable lefl
module U 1is -isomorphic -lo -a direcl summand of E.®E ,
if and only if lhere exisls a reflexive lefl ideal I

vith UexE(R/1).

This is considered as a non-commutative version of
Hatlis’s result [13) for commutative. case,. and he
actually shows that every prime ideal of height 1 in a

connutative noetherian domain is reflexive.

The socle of E . Finally we will pmention about the

conjecture which says that for an n-Gorenstein ring, the
socle of E 5 will be nonzero. The cases which are

presently known to -be 'truve are the following.

(1) By Bass’'s theorem, we have Soc(E .)+0 for R a

commutative n-Gorenslein ring.
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(2) Let R be a l-Gorenstein ring, then Soc(E,)+0.

(See Iwanaga [9] and Sato [17].)

(3) Let R be a fully bounded noether ring. IT R
is n-Gorenstein, lhen E ., is an artinian module. Thus,
in particular, Soc(E .)#0.

Proof Recall that a.ring R is bounded if essential
onesided ideals in R contain nonzero twosided ideals,
and R is fully boupnded provided that every prime factor
ring of R is bounded.

The proof depends on the work by Jategaonkar [11].
First of all, we have the folloving for a fully bounded
noether ring R by [Theorems 3.5 and 5.3 in 11] and the
general property of Krull dimension:

“K-die E sz K-dia Exer for any k=0,1, " ,
where K-dim stands for Krull dimension.

Now convtrary to our claim, assume K-din E .>0, then
we have K-din(Eo® E 1® - @E ,)>0 by the fact just
mentioned above. Since R is an n-Gorenstein ring, the
injective nodule Eo@E ® - @E ., 1is a cogenerator
and hence an injective indecomposable left R -module

E(S) with S sinple embeds in some Ex (0Sk=1).
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This therefore -implies K-dim £ ,=0 by Jategaonkar’s
results, which is a contradiction. Thus K-dian E.=0,

that is, E, is artinian.

EXAMPLES For R=2Z a l-Gorenstein ring, E,=Q/Z
is artinian and Soc{E y}=5ve(Q/Z )+ 0.

Similarly R=2[G] a group ring of a finite group
G over Z is a 1-Gorenstein ring and E,.=Q[G1/Z[G]
is artinian and Soc(E ;})=S5S0c(Q[G1/Z[G1)+# 0.

Hore generally lel R be a Goreaslein order over a
local coamulalive n~dimeasienal -Gorenslein-ring (in the
sense of NISHIDA [15]), thes R is an n-Goreaslein ring,
vhich is fully bounded and lhe lasl lera E. is a cogean-
erator. (See Theorem 1.1 in [15].) Thus Soc(E.)#40.

These exanmples are all in the case E , a cogenerator
and obviously Soc(E .)# 0. However in the following
exanple by FUJITA which is mentioned in [15], E . is not
a cogenerator but has'-a-nonzero socle. -‘Lelt R be a
discrete valuation domain with J its radical, and

consider an order over R :



"R J J J J 7
R R J R J
A=l R J R R R
J J J R J
J J J R R

A is a 2-Gorenstein ring but not a Gorenstein order.
In a minimal injective resolution 0 2 A =2 Eo, = E,
-» E2 % 0, ve can see that Soc(E o)=0, four non-

isomorphic simples appear in E; and one simple in E ;.
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ON-LEFT-EXACT RADICALS

Shoji MORIMOTO

In his paper {71, V. S. Ramamurthi has studied the smallest
left exact radical J* larger than the Jacobson radical J.
However if we take # as the class of cosinguiar modules, then J*
coincides with tg. In this note, first we shall study smallest
left exact radical r‘mlarger~than a preradical r-and show that
r* can be described by various methods. Also we shall show that
(ryAces AT =, Ao A Then we shall treat the
largest left exact radlcal L smaller than a preradical r.
Finally, we shall investigate a module M such that (kM)‘(M) = M.
In consequence..we.can prove that.evary direct- preduct HA of
copies of a module M which is non-singular and (kM)*(H) = M has
no nonzero injective submodule for any index set A.

Throughout this note R is a ring with identity and modules

The final version of this paper will be submitted for Math. J.

Okayama Univ.
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are unitary left R-modules unless otherwise stated. We denote
the category of modules by R-mod and the injective hull of a
module M by E(M). As for terminologies and basic properties
concerning torsion thecories and preradicals, we refer to (8]).
For each preradical r, we denote the r-torsion (resp.
r-torsionfree) class by 7(r) (resp. F(r)). Also the left iinear
topology corresponding to a left exact preradical r is denoted
by £(r). Now for two preradicals r and s, we shall say that r
is larger than s if r(M) 2 s(M) for all modules M. For a
preradical r, we put (M) = NN g M | r(M/N) = 01, FUM) =
T(E(M)) N M and F(M) = 3 (N c M | r(N) = N} for each module M.
Then T (resp. 7) is the smallest radical (resp. left exact
preradical) larger than r and 9 is the largest idempotent

preradical smaller than r.

Lemma 1. Let r and 8 be preradicals. Then the following
statements hold.
(1) F(r) = F(F) and Ter) = T(h.

(2) r =38 if and only if F(r) = F(s).

3 » 8 if and only if T(r) T(s).
For a class € of modules, kg denotes the largest one of
those preradicals r such that r(C) = 0 {for all moduies C in 8.

As Is well-known, kg is a radical.

Lemma 2. Let r be a preradical. Then 7 = Kepy -
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Proposition 3. For a preradical r, T is the smallest left

erzact radical larger than r and coincides with r.

Hercafter we denole T simply by r*

We call a class of modules ## a Serre class if it is closed

under homomorphic images, submodules and group extensions.

Example 4. Let © be a Serre class. We define a preradical

t by t(M) =3 ( NCc M| N€ @) for each module M. Then ¢t is a

R
left exact preradical and thus t* = t. For example, the class @

of artinian modules is a Serre class and t‘ is the artinian

radical. Furthermore, t* coincides with Soc, since F(t) =

( pM | Soe(M) = 0 ) [3, Example 8].

For a class ? of preradicals we define a preradical
Mr | re?a (Atr | re?nm = NirM)|r € ) for each

module M.

Leoma 5. Let £, ® and 9 be classes of lefl ezact
preradicals, radicals and left ezact radicals respectively.
Then the follouing statements hold.

(1) Atr | r € £) is a left eract preradical.

(2) Atr | r € ®) is a radical.

3) Alr |l r € §) is a left ezact radical.
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A module M is called QF-3' if kM(E(H)) = 0. As is easily

seen, M is QF-3' if and only if k, = (kM)*.
The r* can be described by various methods as follows.

Proposition 6, Let r be a preradical. Then the follouing

assertions hold.

(1) r* = k9 , Where 9 is the class of all r-torsionfree

injective modules.
(2) r* = k9 , Where 2 (s the class of all r-torsionfree
QF-3' modules.

*

(3) 1 = kg, . where 9 = ( X | ECX) € F(r)).

i}

Now we shall prove one of the main theorems of this note.

In contrast with r*. we now treat the largest left exact
radical T smaller than a preradical r.

Proposition 8. [3, Corollary 3.13]. Let r be a preradical
for R-mod. Ve put ¥ = (E(X) | X € F(r)). Then kg is the largest

left ezact radical smaller than T.
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For a preradicai-», we denole by re the largest lefi exact

radical smaller than r, if it exisls.

Corollary 9. Let r be a preradical for R-mod. Then
(1) If r is a radical, then r, ezists.

(2) r is a left exact radical if and only if there erists

*
r,.and r

. r=r, holds.

The following example shows that if r is not a radical,

then L need not exist in general.

Example 10. Let K be a fleld and let R be the ring of all
2 X 2 upper triangular matrices over K. Let r be the ieft exact

preradical corresponding to the left linear topology having the

68

Also rl and rz mean the left exact radicals corresponding to the

smallest element

left Gabrlel topologles having the smallest elements
K K 0K
-(o 0] and (o K]
respectively. Then r is larger than Ty and Ty properly. If "

exists, then r  is larger than r; and r,. Thus ve obtain

2
0 K 0 K -
(0 O] € Z(r‘) and so (0 O] = 0

which belongs to Z(r‘). Hence Te = !I. This Is a contradiction.

Proposition 11, Let r be a radical for R-mod. [If each

nonzero cyclic module in T(r‘) has a nonzero factor in F(r),
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then r, = 0, In particular, Je =0, wvhere J is the Jacobson

radical.

Proposition 12. Let S be a simple module. Then S is
injective if and only if J(E(S)) = 0. In particular, J is left

eract if and only ¢f R is a left V~ring (S, Proposition 5.3).

Proposition 13. Let (ri)iel be a family of preradicals
for R-mod. We put ¥ = f\(F(ri) | i € IY'. Then tkg), is the

largest one of those left exact radical r for which r(X) = 0 for

all X € . Furthermore (kq), = (Eiri)#' vhere (Ziri)(M)

Eiri(M) for each module M.

Proposition 14. Let (ri)iel be a family of left ezxact
preradicals. We put ¥ = f\(F(ri) | ¢t € IYy. Then kg is a left

ezact radical.

As above, kM is the largest one of those preradical r for
which r(M) = 0. Next we shall study (kM)* for each module M and

characterize those modules M for which (kM)*(M) = M,

Lemma 15. Let o = ("x)xeA be a family of modules. We put

M= zxeA ® M, and M = W M, . Then the following assertions
hold.

(1 A(le | x € A) = kM = kM..

(2) k¥ = k¥ < Ak, ¥l x € A,
A

M M®



*
3 Gkt =k (“)"‘-= ck -l)"‘ for all modules A and all
A A

i{ndez set I.

Corollary 16, ([4, Proposition 2.2]. Let (QA,AGA be a
family of QF-3° modules. We put Q = zxeA ®Q and Q =
nAEA Q1. Then both Q and Q° are QF-3’.
Propesition 17. . A .module.M .is nonsingular, .faithful and
QF-3" if and only (f Z = kE(R) = kM' vhere Z is the singular

torsion functor.

Corollary 18. For a ring R, the following conditions are
equivalent:

1) R is a left nonsingular ring.

2) There exists a faithful nonsingular module.

3 Z = kgepy-
A module M is cailed U-torsionless if kU(M) & 0. Clearly,

M is QF-3' if and only if{ E(M) Is M-tlorsionless.

Proposition 19. -Let N be a Sfaithful -medute. - If -E(M) is

R-torsionless. then M is QF-3'.

However the converse is false. Take for example R = Z and
M =8. Since ZQ is Injectlve, ZO Is QF-3*' and so M is faithful
and QF-3*'. But since Homl(0.1)~= Q, kR(M)-=-M. namely, E(M) = N

45
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is not R-torsionless.
Next we consider those modules M for which (kH)*(H) = M.

Proposition 20. Let M be a module. Then the follouing
assertions hold.
() If (kM)*(M) = M, then M has no mnonzero injective
submodule.
(2) (kM)* = | (f and only <f MA has no nonzero injective

submodule for any indexr set A.

1f R=12Z and M = Z/pl, where p is a prime number, then MA

has no nonzero injective submodule for any index set A.

Corollary 21. Let M be a module. [f (kM)'(H) = M, Lhen

M(A) has no nonzero injective submodiile for all indexr sets A.

Lemma 22. (2, Lemma 0.2) Let E be an injective module and
M a nonsingular module. [f [ € Homn(E.H). then both Im(f) and

Ker(f) are injective.
For a nonsingular module M, we have

Theorem 23. For a nonzero nonsingular module M, the
following conditions are equivalent:
* -
1) (kH) (M) = M.,

2) M has no nonzero injective submodule.
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3) M(A) has no nonzero injective submodule for all indez

sets A.

4) MA has no nonzero injeective submodule for all index

sets A.
*

5) (kM) = /.

Example 24. Let R be the ring of 2 x 2 upper triangular
matrices over a field K. We put

_ Ko
m=(59).

Then M is a simpie projective module and so M is nonsingular.

Clearly M is not injective, namely, (kM)*(M) = M.

Note that if R = Z and M = 2/pZ, as above. Then M is
singular, noninjective and simple, but satisfies the equivalent

condition of Theorem 23.
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On Rings of Finite Buchsbaum-Representation Type.

-*Koji Nishida

1. Introduction.

This note aims to report the joint work with S.Goto (Meiji
Univ.) on commutative Noetherian local rings with only finitely
many isomorphism classes of indecomposable maximal Buchsbaum
modules. The theory on rings of [inite CM-represenLatién type is
not only important as the background but also very helpful for
this research. After clarifying the relation between these
theories we shall state the main results and investigate a
typical example.

Throughout this note ' R-*is'a ‘commutative complete
Noetherian local ring with unit and the maximal ideal m.

The Krull dimension of R (resp. an R-module M ) is denoted by
dim R (resp. dim_M ) and we put d = dim R .

R

2, Definitions.

We first recall some definitions which are fundamental in

commutative algebra.
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Let M be a finitely generated R-module and 8, 8oy con
ag be the elements in m . We say that 8y, 85, +:. , B4 is a
system of parameters (We abbrevjate it to s.o.p..) for M (resp.
regular M-sequence) if s = dimRM and Ln(M /(nl..... as)H)
is finite (resp. a; is a non-zerodivisor on M /(nl.....ai_l)M

for 1 £ i £ s , when this is the case s 1is called the length

of this sequence.) and we define

There exists a regular )
M-sequence of length n .

depthpM = max{ n |

As any regular M-sequence forms a part of a s.0.p. for M , we
have depthRH £ dimRH « In particular if the equality holds,
i.e. depthRH = dimRM , then M 1is called a Cohen-Macaulay
R-module. Furthermore a Cohen-Macasulay R-module M such that
dimRH = d 1is called a maximal Cohen-Macaulay (We abbreviate it
to MCM.) R-module. We say that a system of elements 814-0+y 8

r
€m is a weak M-sequence if the kernel of the R-homomorphism

a,
i
M /(al,..., a; )4 = M /(al,..., a; ;)M

is annihilated by @@ for any 1 £ i g r and M is called a
Buchsbaum R-module if evéry s.0.p. for M is a weak M-sequence.
Maximal Buchsbaum R-module is a Buchsbaum R-module whose Krull
dimension is equal to d .

If M is a Cohen-Macaulay R-module, then every s.o.p. for
M is a regular M-sequence and so it is a weak M-sequence by
definition. Therefore a Cohen-Macaulay R-module is a Buchsbaum

R-module.



Though there are several criterions for M to be
Cohen-Macaulay or Buchsbaum, we state only the followings which

is based on the-local ecohomology module

u;(u) = I%m Ext;(R /m ™, M),

Theorem(1.1)(cf.[6]) A finitely generated R-module M is
a MCM R-module if and only if u:(u) =0 for any i = d .

Theorem¢1.2)(cf.[8]) Let M be a finitely generated
R-module and suppose s := depthnH % dimRH =d. Then M 1is a
maximal Buchsbaum R-module if H:(M) = 0 for any i = s, d and

if u-n:(u)= (0) .

We denote by n{(R) (resp. nB(R) ) the number of the
isomorphism classes of indecomposable MCM (resp. maximal
Buchsbaum) R-modules and we say that R has finite CM-
representation (resp. Buchsbaum-representation) type if n(R)
(resp. nB(R) ) is finite. As we have seen in the above, any MCM
R-module is a maximal Buchsbaum R-module and so we have n{(R) g
nB(R). which means that R has finite CM-representation type if

it.has finite .Buchshaum-representation type.

4. Main Results.

The next theorem due to D. Eisenbud and S. Goto is the
starting-point of the research on rings of finite Buchsbaum-

representation type.
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Theorem(3.1)(cf.(1]), [2]) Let R be a regular local ring
of dim R =d z 1. Then SyzH(R / m) (1 £ ngd) are the
representatives of indecomposable maximal Buchsbaum R-modules.

Hence R has finite Buchsbaum-representation type and nB(R) =d .

The converse of Theorem(3.1) holds if R satisfies certain

conditions as follows.

Theorem(¢3.2)([5])) Let P = k[[xl. cee xn11 be a formal
povwer series ring over an algebraically clo;cd field k with
ch k # 2 and let I be an ideal of P . We put R =P / 1
If R 1is Cohen-Macaulay and dim R 2 2 , then R has finite

Buchsbaum-representation type if and only if R 1is a regular

local ring.

As is shown in [5], Theorem(3.2) doesn't hold if dim R = 1.
In his paper [3] S. Goto determined all one-dimensional complete
local rings R of finite Buchsbaum-representation type and his

result is summarized into the following

Theorem(3.3)({3]) Let R be a complete Noetherian local
ring of dim R =1 . Then the following conditions are
equivalent.

(1) R has finite Buchsbaum-representation type.

(2) e(R) £ 2, viR) £ 2 and R /'ﬂg(R) is reduced, where
e(R) and v(R) respectively denote the multiplicity and the

embedding dimension of R .
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(3) RxP/ f1 , where P is a 2-dimensional complete
regular local ring with the maximal jideal n , fen- u3 and
I is an ideal @f P _sucb..that 5° €1 .far some .s. 3 0 .

Remark. Theorem(3.3) was [irst proved by S. Golo in the
case where R / m is an Infinite fleld. But we can avoid the
restriction on the residue class fiecld by the technique to
construct infinitely many indecomposable maximal Buchsbaum R-

modules stated in the next section.

Corollary(3.4)((3)) Let R be Cohen-Macaulay and dim R =

1. Then R has finite Buchsbaum-representation type if and

only if R 1is reduced and e(R) g 2

Corollary<3.5)([3]) Let P = k[[Xy, ... , X,l] be a formal
povwer series ring over an algebraically closed field k and let
I be an ideal of P . We put R=P /I . If R is Cohen-
Macaulay and dim R =1 , then R has finite Buchsbaum-
representation type if and only if R is a simple curve

singularity of type (An).

Furthermore S. Goto succeeded to determine all
2-dimensional complete local rings R of finite Buchsbaum-

representation type.

Theorem(3.6>([{4])]) Let R be a complete Noetherian local
ring of dim R = 2 and suppose that R / m is algebraically

closed. Then the following conditions are equivalent.



(1) R has finite Buchsbaum-representation type.
(2) e(R) =1 and v(R) g 3.
(3) Rx P/ xI , where P is a 3-dimensional complete

regular local ring with the maximal ideal n , x € a \ n2 and

I is an ideal of P such that ht I 3 2

Corollary<(3.2)([4])) Let dim R =2 and R / m be

algebraically closed. If R is unmixed, then R has finite
Buchsbaum-representation type if and only if R is a regular

local ring.

The next theorem is the generalization of the implication
(3) © (1) of Theorem(3.6), which insists that Theorem(3.2)
doesn't hold if we remove the assumption that R is Cohen-

Macaulay.

Theorem<3.8)([8]) Let P be a (d + 1l)-dimensional (d 3 1)
regular local ring with the maximal ideal n . Let X € n N\ "2
and let I be a proper ideal of P with hth z 2 . We put
R=P/ XI , p=XR and @ = npR . Then R has finite

Buchsbaum-representation type and

Syzn?p(ﬂ /a) (1l gngd), R/ mp

are the representatives of the indecomposable maximal Buchsbaum

R-modules.



4. A construction of indecomposable modules.

In this section we explain a method to construct countably
many indecomposable maximal- Buchsbuam-R-modules and upplying ii,
we shall investigate a concrete example.

Let C be a finitely generated R-module and let
E
g : 0+ L+ F-C=0

be the initial part of a minimal free resolution of C . Ve

define a homomorphism

p EndR(C) - EndR(L / mL)

of algebras by

ple)(z') = ¥(z)'

for any ¢ € EndR(C) and z € L , where -' denotes the
reduction mod mL and ¢ is an R-endomorphism over F with
E*¥ = ¢#+8 . We put Ac = Imp and we regard L / mlL as a left

Ao-module. Then we have the following

Theorem¢4.1)([7]) Let C be indecomposable and depthpC 2
1. Suppose that there exist elements x and y of L such

that x' and y' are linearly independent over Ao . We

, P
denote, for each' integer n'2 1, by -'Nn' ‘the R-submodule o6f 'L

generated by

IR -1-1-1
Iy -1- 1.0
-t )
RELOD s

L] ’



and oL . we put Mn = F" / Nn . Then the following
statements hold.

(1) Mn is indecomposable if Ao is commutative.

(2) M &M if nwem.

(3) M, is a maximal Buchsbaum R-module if C is MCM.

As an application of the above theorem we show the next

4

Example<d.2> Let R := k({t>, t%, 911 ¢ ktIt]] , where K

is a field and t is an indeterminate over k . Then R is not

of finite Buchsbaum-representation type.

Proof. Put S = k[{t])] = R + Rt + th and let

38
o : 0+ LR 50

be the initial part of a minimal free resolution of S with

€(e;) =1, €(ey) =t and gley) = ¢ 2 '

where ey 1 €y and e, are the canonical basis of R3 . Since

S is an indecomposable MCM R-module, by Theorem{(4.1) it is

sufficient to show that Aa is commutative and there exist
elements x and y in L such that x' and y' are linearly
independent over Ay where -' denotes the reduction mod mL

(m = tas). As Endn(s) is a commutative R-algebra which is

generated by ‘S ’ tls and tzls as R-module, so Ao is

commutative and is gencrated by p(ls) = lL/mL ' o(tls) and

p(tzls) over k . We put g; = p(tlls) for i =1,2 . VLet oy



and xy be- the HR-endomorphisms over - Rs defined respectively

by the matrices

0 o 3" o 3 o
1 o0 o and 0o o 3
o 1 o 1 o0 o .
Then g-a; = (t'1glse for i =1, 2 . Hence &; is induced
from a; . Put
4 (] -8 2 (] -¢7
_|_,3 | .4 _ .4 5
X=|-¢t Xy = t Xg= 0 y= ¥y = t Yot 0
0/, -3}, -l Y, o), -t1), t3).
] - ] ] - - ]
Then we have Eix =X and Eiy =¥ Assume

(Boly/mi * 2181 * 8pfp)x" + (bgly pp + b1k + byply' = 0
with a; € k and bj € k . Then we get

] ] L] ] -
agx’ oA Xy’ b oapxy’ 4 bgy' 4 by T 4 by, =20
Since x', xl'. xz'. y', yl' and yz' are linearly independent
over Kk , so

Hence x' and y' are linearly independent over Aa
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On periodicity of the cohoinology of Frobenius algebras !

Katsunori SANADA

Introduction.

The purpuse of this note is to propose some results coucerning the cohomology of
Frobenius algebras, especially its periodicity.

In §1.1, we review some facts about the complete cohomology of Frobenius algebras
after [N]. In §1.2 we define a cup product on the complete cohomology group. and in §1.3
we hiave a result with respect to periodicity of the cohomology which is obtained from the
existence of the cup product, In §1.4, as preliminaries to §2, we provide a restriction map
and a corestriction map, and we give a relation between the restriction map and the cup
product. In §2, as applicatious of §1, we deal with crossed product algebras and twisted
group algebras. More precisely, periodicity of their cohomology groups and existence of an
invertible element in the cohomology ring are studied. In §3, we investigate the structure
of the cohomology group of the quaternion algebra over Z using the spectral sequernce,
which can not be treated in §2. §1 and §2 in this note is a sunmary of [S1], [S2], [S3] aud
[S4]).

§1. General theory of periodic cohomology.

1.1. Complete cohomology theory of Frobenius algebras.

Let A be a finitely generated free Frobenius algebra over a commutative ring R with
identity. Namely there exists a left A-isomorphisin ¢ : A = A® = Hompg(A, ) and there
exists a pair of R-basis of A; {u;},{vi}] (1 £ i £ n) such that wlui(vj) = §;j. We set
p=g(1). Amap (- 72 := Y[, p(u;r)v;} is an automorphism of A over the center Z
of A, which is called the Nakayama automorphism. .

! The detailed version of this paper has been submitted for publication elsewhere.
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First, we construct a complete A?-projective resolution of A. Let

(*) ...—0.\’,5—".\',.-.—o...—O.\’o—(OA—OO

be the standard free resolution of A, where X, = A@p...@rA (p+2 times). We regard
X;_y = Homp(Xg_y,R) (for ¢ 2 1) as a left A%-module by sctting (r ® y° - f)(w) =
flyBwz) for r ®y° € A% w € X,y and f € X;_,, and denote it by X_g. Then. taking
the R-dual of (»), we have the following complete A¢-projective resolution of A;

= X, B Xo B XL, oo X
(++) 1 1
A S N

The scquence (+#) derives the r-th complete cohomolagy group HT(A, A) of A, whicl is a
Z-module, for any left A*-module A and for cvery integer r. In particular, %A, 4) =
AVINA(A), H~Y(A,A) =n, A/IA(A), where AN denotes the commatator of A in A,
Na(a) = T, uiav; for a € A, yy,A = {a € A| Na(a) =0} and Iz(A) = (T, a,‘,\f -
Aeag | Ax € Ayar € A).

Next, we give a sufficicut condition for A such that H7(A, A) vanishes for any r. A left
A¢-module A is called weakly projective if there exists g € Hmnf‘( A, A) (or g € Homg(A, A)
) such that Na(y) = identity. If A is a weakly projoctive module then we have H (A, A) =
0. For example, A @r B(=~ Homp(Aa, Ba)) and B @Qp A(~ Homp(aA,a B)) are weakly
projective for left A¢-modules B. Thus we can take A’ (and A”) such that H7(A, A) is
isomorphic to A +1(A, A’) (and H™=Y(A, A”)). This is quoted as dimension-shifting.

1.2. Cup product.

We define a Z-homomorphism U : ﬁ'(A.A)@zﬁ'(A, B)— I.i""'(l\, AOAB) ;a0 —
aU g Ly giving an explicit diagonal approximation A, : Xc4, — X, @a X, for every r, a.
This map, called @ cup product, has some properties. For example, in case of r = 0, the
cup product coincides with a map A?/Np(A) @z BA/NA(B) — (A @4 B))/NA(A @ B);
@Qzb— {1@7. and satisfics anti-commutativity; aUff = (—1)"*fUa fora € ff"(:\.:‘\),ﬂ €
l?‘(A.A) and associativity; (aUB)Uy=aU(fUv) for a € H7(A,A).# € H(A, B) and
+ € AYA,C). Hence the cohomology ring H*(A,A) = Lrez @H (A, A) is defined.

1.3. Periodicity of the coliomology.

The existence of a cup product gives us the implications (I) = (II) = (I11) with
respect to the following properties;

(1) for some d # 0 there is an element a € H¥(A, A) which is invertible in the ring
H*(AA),



(11) there cxists an integer d # 0 sucli that A"(A, A) ~ (A, A) as Z-modules for
all left Af-modules A and all integers n,
and
(I11) for some d # 0, HY(A,A) ~ Z/Nx(A) as Z-modules.
If A has the property (11), then we say that A has periodic cohomology of period d.
Remark. We can take a comunon integer d in (1), (1) and (111).
I do not know whether the implication (I11) = (I) is, in geueral, true or not. But we

can prove it under a certain strong assuinption.

Theorem. Let R be a Noetherian integrally closed domain and let I be the quotient
field of R. Suppose that A is a fiiite’ dituctisional countative separable I -uigebra and
A is the maximal R-order in A which is a free Frobenins R-algebra. Then (111) implies
(I).

Outline of the proof. By meauns of dimension-shifting, the proof is reduced to the

assertion that a restriction mup

7 : Hoip« (M, A/A)/Nao(Homj (M. A/A)) =
Hompa(n, M/IA(M ), (AJA)IA(ASA))

is an isomorphism for every left A¢-module A.

Example. We put A = Q(y/m1). Let A be the riug of integers of A under the
notations of Theorem. Then we have the isomorphisin H-2(AA) = A/Ny(A) as A-
modules by direct calculations. This implics that H*(A, A) has an invertible element of
degree 2. In [B-F), it is, however, shown that A has periodic cohomology of period 2.

1.4. Restriction and Corestriction.

Let T, A be Frobenius R-algebras such that T/A is a Frobenius extension. Then two
kind of homomorphisins; Res : fi'(r. A)— Hr(A,A) and Cor : H™(A.A) = H™(T, A) are
defined for left I -modules A and for every integer r, which is called a restriction map and
a corestriction map respectively. The niap Ites commutes with a modified cup product U, :
HT(A, A)@za H*(A. B) = H™*(A, A@r B), nancly Res{aUfd) = Res(a U, Res(3). Hence
Res induces a ring homomorphism fl‘([‘,l") — H*(A,T). And Cor-Res = Nra(l)e ZI)
holds.

§2. Applications.
2.1. Cohowology of crossed product algebras.
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Let R Le a commutative ring and A a Frobenius conunutative R-algebn with no
zero-divisor. Let G be a finite group of automorphisis of A over R with AT = R, We
consider a crossed product I' = (A,G.0) =3 ,¢(; BAws with any nonmalize< Zactor set
0: G xG = U(A); wed = 0(A)w,, wet, = 8(a,T)we, for A € A and for 7.7 € G.
Then /A is a Frobenius extension and the center of A coincides with R. £ map 9, :
fi'(A,'A) — HT(A, A) is defined for left T-modules A and for 6 € G, whicz roincides
with a map A*/Ns(A) = AN INA(A); @ — weaws ! in case of r = 0. This ma) = called a
conjugation map. The conjugation wap has the properties that 1,79, = 74,.7: =identity
and y.(a U, B) = v-(a) U, 1.(A3) for the modified cup product U,. It follows 1zat 4, is a
ring automorphisi on H*(A,T).

In the followings, we set R = Z. If Np(I') = 2Z then, since z annihilates H'(T.A),

we have a primary decomposition; (T, 4) = 143 He(T. A)p- Let p be a prizme divisor

rlz -
of 2 which docs not divides [G|. Then the endomorphism Cor - Res = |G| on H(T. A,
is an isomorphism. It follows that Res : f{'(l‘..-l)“., — fi'(a\.A)(,,, is a monomorphism.

Moteover, indeed, we have an isomorphism;
Res: AT(T, A)py = [A7(A A ' {a € B (A A)p) | 20(a) = a for all o € G)

The elements of the right hand side are called G-invariant. This map Res derives a ring
isomorphism Res : H*(T,T)p) = [H*(A,T)()]C.

Theorem. Let p be v primue integer such that p | z and p1|G|. Asswue that the
group of unit clements in (A/Np(T))py is a finite group. Then the graded ring I?'(F.I‘)(,,,
has an invertible element of non-zero degree if and only if so does H*(A,T), p- Hence, in
such a case, H"(T, A)) is periodic.

Example. Let A be the ring of integers of Q(/in) where 1 is a square-free integer.
G denotes the Galois group of Q(v/m)/Q. We set I' = Al @ Aw,;uw? = £1. Note that
Nr([) = 4nZ (if m = 2,3 (mod 4)), = mZ (if m =1 (mmod 4)). Let p be a prime
integer such that p | m and p 3 2. It follows from Example in §1.3 that H*(A, L) has
an invertible element of degree 2. Moreover. it is verified that the element is G-invariant.
This says that H*(T',T),) has an invertible clement of degree 2. In particular, in case
of m =1 (mod 4), so does I.{‘(I',I') itself. It is, however, derived from (B] that these
cohomologies of T are periodic of period 2.

2.2. Cohomology of twisted group algebras.
Let It be a conunutative ring, G a finite group and 6 a normalized factor set; 8 :
G x G = U(R). We consider a twisted group algebra I' = RyG = Z,ea Dltw,; wew, =
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7o = identity for o € N, it follows that H"(A, A) for r 2 0 is a G/N-module. We consider
a double complex;

Mp,o = Homzgyn)(Z,, Homper« ((XT)q, 4)).

In the above, Z, denotes a G/N-projective resolution of Z and (Xr), the standard reso-

lution of I'. Then we obtain the spectral sequence of Hochischild-Serre type;

E}" = HP(G/N,H'(A, A))= HP*9(T, A).

3.2. Quaternion algebra.

Weset G=<z>x <y>and N =< 1> with 22 = y? = 1in §3.1. We consider a
twisted group algebra [ = Z4G with the factor set # given by the following table, which
is the quaternion algebra over Z.

\[1 2 vy xy
1]1 1 1 1
r|1l =1 1 =1
y]11 -1 -1 1

xwljl 1 -1 -1
In the above, for exmmple, the (2,3)-entry represents the value 8(r,y). Then M, is
quasi-isomorphic to a certain double complex which is appropriate to caleulating inceed
the howology of the total complex. In particular, in case of A =T, we have

Z forn =0,
2/2Z®...0Z/2Z (2n+1 times) forn>1.

H(F,[) ~ {
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ON THE INVARIANT SUBRING UNDER THE ACTION
OF A FINITE POSET

Kazuo KISHIMOTO

0. Introduction. The purpose of this note is to introduce the no-
tion of a P-Galois extension of a ring for a finite poset P which we call
a relative sequence of homomorphisms. We can see that a finite group
of automorphisms, some type of semigroup of derivations and of higher
derivations [cf. [1], p.191] are relative sequences of homomorphisms re-
spectively. Hence, a P-Galois extension is a generalized notion of Galois
extensions of separable type [cf. [2]] and of purely inseparable type [cf.

[4]]-

1. A relative sequence of homomorphisms. Let B be a ring
with an identity 1, A a subring of B with common identity 1 of B, and
let P =(P,<) be a finite poset of End(B,).

By P(min) (resp. P(maz)), we denote the set of all 2 € P such
that  is a minimal (resp. maximal) element of P. For an element
Q € P, A € P(min) is said to be a minimal element of 2if Q > A,
and A € P(maz) is said to be a maximal element of Qif A > Q.

Q=0>M0 > > 0n; Wn € P(min)
is said to be a chian of 2 of the length m + 1 if ;_; is a cover of
Q, fori = 1,2,...,m, that'is, Q;_3 > ; and thereis no I' such that
Q-1 >T>1).

Let us consider a finite poset P which satisfies the following condi-
tions (A.1) - (A4) and (B.1) - (B.4).

The detailed version of this note will be submitted for publication
elsewhere.
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(A1) Q#0forall Q€ P and P(min) = {Q € PI|Q is a ring
automorphism }

(A.2) For Q € P, the length of each chain of  is unique. We
denote the length by At(f).

(A3) For Q,T e PAT € P if QU # 0, and if O = 0 then
ra=o.

(A.4) Assume QI; € P and QI'; € P.

(i) ary > Qr; (resp. ' > 2N) if and only if Ty 2 Ta.

(ii) QT > A if and only if A = QLo for some o < fI and
Fo<T.

(B.1) 9(1) =0 for all Q€ P~ P(min).

(B.2) For Q1 € P, there exist ¢g(2,T) € End(B,) forall T <0
such that

0(zy) = Zrgag(0, T)(z)I(y)
for z,y € B, where the sum Xr<q means the sum of all T such that
r<ea.

(B.3) (i) 9(R,A)zy) = Eagcr<ag(R,T)(z)9(T,A)(y) for z,y € B
where the sum Tp<r<q means the sum of all T' such that A <T' < 9.

(ii) For Q,A € P such that T = flgA¢ for some g < 2 and
A <A

Zar,a(Za-9(0, 07 )(z)g(0”, ') (9(A, A)(¥))

= Zar,a(Za-9(0, 07 )(2)g(0” A, 'A')(y))
for z,y € B, where Igq: s means the sum of all Q',A' such that
<A <A and VA’ =T,and Zg- means the sum of all 02” such
that Q' < 0” <N foreach .

(B.4) (i) ¢(N,N) is a ring automorphism for each € P.

(ii) g(N,A) =90 forall A € P(min).

(i) ¢(R,T)1)=0 for T < N.

A finite poset P which satisfies conditions (A.1) - (A.4) and (B.1)
- (B.4) is called a relative sequence of homomorphisms (abbrevi-
ate r.8.h) of B. In this case P(min) forms a multiplicative group of
End(B,4), and hence P contains the identity map 1.
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In what follows, we assume that P is a 1.s.h, and use the following
notations:

T := Zprep(min)A-

Let P(maz)= {A1,A3,...,Ak} and Ay > 1.

A= Ef=lA.'

If we define the relation A; ~ Aj & AA; = A; for some A €
P(min), then the relation ~ is an equivalence relation of P(maz)
and we may understand that P(maz)/ ~, the classification of P(maz),
is {[A1],[A3),...,[Ax), B < k} where [A;] is the coset of A;.

For a system of representatives A), Ay, ...., An, we have TA; # TA;
ifi#7 and

A =Xk TA;.

In the rest, we assume that A = L2, TA; for P(maz) = {A, Ay, ..., Ax}.

For AA;, we put g(AA;,T)=0,if AA; is not a maximal element
of I' and we put

g(TA'" r) = EAEP(rm'n)g(AAt" r)! and

9(a,T) = E?--lg(TA"’ D).

Let BP = By n By where B, = BP(mn) = (b ¢ BJA(b) = b for all
A € P(min)} and By = {b € B|(b) = 0 for all 2 € P — P(min)}.
Then we can easily see that B¥ is a subring of B with an identity 1
of B, and we call that B” is a P-invariant subring of B .

2. Trivial crossed product of P over B. Let D= D(B,P) =
Zaep ® Bug be a free left B-module with a B-basis {uq : @ € P}.
Then D becomes a right B-module via

ug - b := Ir<ag(R, T)(b)ur
Then we have the following

Theorem 2.1. (1) D(B,P) is a free right B-module with a
B-basis {uq|Q € P}.
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(2) D(B, P) forms a ring under the multiplication defined by
(auq)(bua) = Zr<nag(,T)(b)ura where urp =0 if TA=0.
(3) The map j of D(B,P) to End(B,) defined by
i(uab)(z) := (bz)

is a ring homomorphism.

In the rest of this note, we assume following two conditions on P.

(1) P is a pure poset, that is, At(4A;) is same for all A; € P(maz).

(A.6) If A; is a maximal element of I, then there exist I'; and
T‘in P such that A; =I,T =TT%.

Theorem 2. 2. Let B = A and j is an isomorphism. Then
J(Zhy(TA: - B)) = Hom(Ba, Aa) = B,
Moreover, if this is the case,
Bs® > A, if and only if there exist z;,z,,....,z5 € B such that
b TA(z) =1.

3. P-Galois extensions and P-Galois systems.

Definition 3. 1. B/A is said to be a P-Galois extension if
(1) BP=4
(2) B, is af.g. projective module and ;j is an isomorphism.

Theorem 3. 1. If BfA is a P-Galois extension, then there exists
a system {z;,yi;¢ = 1,2,..,sand t= 1,2,..,h} C B such that
E;’:lz.’(E:‘:lg(TAh I‘)(yll)) = 51.!"
forall T € P.
Moreover if this is the case
B0z ) (Bey 9(T A T)(wit)) = bar
forall N € P.



Definition 3. 2, For an element 2 € P, a system {z;,yi;i =
1,2,..,sand t=1,2,..,h} C B such that

12 Bta19(TAL T)(vie)) = bar
is called a (P,2)-system. In particular, the system is called a P -Galois
system when 1 =1.

Theorem 8.2, Let B” = A. Then B/A is a P-Galois extension
if and only if there exists a P-Galois system.

4. A r.s.h satisfying (A.5). In this section we assume that a r.s.h
P satisfies the following condition
(A.5) |P(min)| = |P(maz)|.
In this case P(maz) is obtained by {AA;;A € P(min)}, and hence,
A=TA,.

Corollary 4. 1. Let BP = A. Then B/A is a P-Galois extension
if and only if there exists a P-Galois system {z;,y;;i=1,2,...,3} such
that Zi_;9(A,T) (%) = b1r-

B/A is called a projective Frobenius extension if B, is a {.g.
projective module and 4Bpg =4 By [cf. [3], p.121].

If B/A is a P-Galois extension, then b — uab — j(uabd)
gives an isomorphism 2Bp =4 uaBp =4 By. Thus we have

Theorem 4. 2. A P-Galois extension is a projective Frobenius
extension.

Let P, = {2 € P|Q? < A,}. Since any element © of P is obtained
by AQ; for some A € P(min) and Q) € P, we can see that
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{b € B|f}(b) = 0 for all ? € P, — P(min)} = By.
Further, if the number ma, of minimal elements of A, is 1, then
P, becomes ar. s. h,and BPt = By,

Theorem 4. 3. Assume B/A is a P-Galois extension and ma, =
1. Then

(1) B/By is a P(min)-Galois extension.
Moreover if we added the assumption that g(A;,A;) =1, then

(2) B/B; is a P(min)-Galois extension

(3) B = Bo[By].

Theorem 4. 4. Assume BY = A,mpa, =1 and g(A;, A1) =1. If
By/A is a P(min)-Galois extension and B; /A is a P;-Galois extension,
then B/A is a P-Galois extension.

Theorem 4. 5. Assume B” = A,ma, = 1,9(A1,4;) =1 and
P(min) C the center of P. Then B/A is a P-Galois extension with
Bs® > A4 if and only if By/A is a P(min)-Galois extension with
Bo,® > As and B3 /A is a P)-Galois extension with By, ® > Ag4.

Remark. If B/A is a commutative P-Galois extension, then Bs® >
Ag.

5. Examples. Let A be a commutative ring of characteristic 3,
and let B = A[X]/(X?® - X — a). Then we may write B = A[z] =
A®zAD® 224 with 3=z +a.

Then the map 7 of B defined by

7:28 — (z+1)a
is an A-ring automorphism of B.



(1) Let P, ={1,7,7%} be aclutter (P, is a poset such that distinct
elements are imcomparable). Then P; is a r.s.h with P, = Pi(min) =
Py(maz) and g(r*,7*)=7'for i =0,1,2.

(2) Let D=r—1. Then D is a (r,1)-derivation with D3 = 0.
Then

Ph={1,D, Dz}
becomes a r.s.h by the ordering D? > D > 1, and ¢(D? D?) =
r%,9(D* D) = 21‘D,g(D2,]) = D*¢(D,D) = 1,9(D,1) = D and
9(1,1) =1, and hence Py(min) = {1} and Pz(maz)= {D?}.

(3) Let E=1—17. Then Eis a (1,7)-derivation with E® = 0.

Then

Py = {1,72E, TE?)}
becomes a r.s.h by the ordering 7E? > r2E > 1 and g(TE?,7E?) =
7,9(TE?, 12E) = 27E,g(TE?,1) = TE?,¢(r2E,T2E) = 12,9(r?E,1) =
72E and g¢(1,1) = 1. The Hasse diagram of P; are followings:
P :o(1)---ee- 0Y €2 ERRRRR ® (1-2)
P: @ D? Py : @TE?

®D ® TE

o1 01
We can easily see that BPt = BP» = BPs = A,

Theorem 5. 1. BJA is a P;-Galois extension (of separable type)
foreach1=1,2,3.



Proof. It suffices to show the existence of a P:-Galois system.
(i) The case P;: Since 7(z) =z + 1, we have
~1-7(2?) — zr'(z) + (1 - z¥)r'(1) = 6y,
This shows that B has a P;-Galois system.
(ii) The case P: Since D?*(—z2) = —(7(z)D(z) + D(z)z) =
-D(2z+1)=1,
~19(D?,0)(z?) — z9(D?, A)(z) — (2* ~ 1)g(D?,M)(1) = 61,0
This shows that B has a P>-Galois system.
(ili) The case P;: Since 7E?(—z2) = ~7E(2z + 1) = 1, we have
-1g(TE?,0)(z?) + z9(r E?,Q)(z) + z9( E%,Q)(1) = 61,0
This shows that B has a P3-Galois system.

Let B; = A[X]/(X3 — a). Then we may write B; = A[z] =
A®zA®z2A with 3 =a. Then the map D defined by

D: 3% jzfa; — T2 iz" g
is a derivation of B such that D3 =0.

Then P, = {1,D,D?} becomes a rs.h by the ordering D? >
D >1 and g(D? D3?) = 1,9(D?, D) = 2D, g(D?1) = D g(D,D) =
1,9(D,1) = D and g¢(1,1) = 1. Thus Py(min)= {1} and Py(maz) =
{A =D? and BP = A. Since

-1. g(Dzl Di)(zg) -z g(ng Dl)(z) -z?. g(Dle‘)(l) = 61,D‘
B, /A is a P;-Galois extension.

Next, let B, 2 A[Y]/(Y? - u) for some unit u € A. Then we may
write By = Aly] = A® yA with y® = u. Then the map defined by

0 :yay +ao~ (-y)ay +ao
is an automorphism such that o2 = 1. Then the clutter P; = {1, o} is
ars.hand Bf? = A.

Since A =1+0, —yg(A,0')(y™1) - 19(4,0%)(1) = 61,0i, and hence
B;/A is a P,-Galois extension.

Let B=B1®1B; and P=Pi@P;={D*'®0’;i=0,1,2and j =
0,1}. Then P € End(B,) by (D'®d’)(z*®3') = Di(z*) ® o’ (y")



and P becomes a r.8.h with P(min) = {1©1,1®c} and P(maz) =
{D?*®1,D? ® ¢} by the ordering

D'®od’ > D*@o* ifand only if D' > D* and 07 = o* and
9(D' ® o, D* @ o*) = (D', D) ® 0.

The Hasse diagram of P is the following:

oD’®sc  oD*®1

OD®o oD®l1

Ol®c 011
Further

BPs = B

Theorem 5. 2. (1) B/A is a P-Galois extension.
(2) B/B, is a P»-Galois extension and B;/A is a P,-Galois
extension.
(3) B/B; is a P1-Galois extension and B2/A is a P,-Galois
extension.
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Proof. (1) (-1®)9(4,2)(z?@y™") +(z®¥)9(A,M)(z®@y™")
+(z? @ ¥)g(A, M ©y")+ 10 1)9(4,0)(z* @ 1)
+(z®1)g(A,0)(z®1)+(z2®1)¢(4,0)(101) =6

shows that B/A is a P-Galois extension.
(2) A P,-Galois system for By/A is a P>-Galois system for B/B,.
(3) A P1-Galois system for Ba/A is a Py-Galois system for B/B;.
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Totally real algebras

Teruo Kanzaki

1. Introduction. Let X be a commutative ring with identity 1. We
consider an ordering P on /(, i.e. (/K,P) is a partially ordered ring
which has a positive cone P’ satisfying the conditions 1 €P", P ! P CP"
and PPN-P'=9. As a maximal one of orderings under some condition, the
following notion was defined in {Kaj:

Let F be a comnutative multiplicative semi-group which has zero element 0,
unit element ] and a unique element -1 of order 2, and suppose that F' =
{x€ F| o 20) becomes a group. For a subset X, of K, let o0 : K,—F be
a map satisfying the following conditions:
(1) —1e K, ad o (—1)=-1,
(2) for any a. b€ K,, adbE K, and o (ab)= o (a) o (b),
(3) for a,bE K,, either a (a)=0 or o (a)= o (V) implies a*b& K, and
o (a+h)= o (b)),
{4) if a€ X and a® X,, there exists bE K, witha (b)=0 and ¢ (ab)=1.
Then, P.={(x€E K| 0 (x)=0 or 1} is-an ordering of K with P, =
(x€ K} a(x)=1). If K is a field, (K,,p.,) is a valvation ring of X,
vhere p ,=P,N~P, is Lhe prime ideal of X,.

From now, we cousider a simple case; F=GF(3)={0,1,-1} and K= K,,
then the mapag : S—F=(0,1,-1) satisfies the folloving conditions:
(1) a(—1)=-1, (2) for any 2.bE K. o (ab)= o(a) o (b). and (3) for any
a, bE K, if cither o (a)=0 or a(a)= 0 (b) then a (a4 b)= o (D).

This paper is in final form and no version of it will be submitted for
publication elsewhere.
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Such a subset P={x€ /| 0 (x)=0 or 1} of X satisfies conditions:
(1') P : PSP, (2°) PU-P=K, (3') PN~P=p, is a prime ideal ol /.
If P is a subsel of /¢ satisfying (1°),(2*) and (3°). then (KX/Pp.. P/P.)
is a totally ordered domain, and the quotient lield ol (/A/ P, P/P.) is
a totally ordered field ( £+,P). He denote by R, a real closure of
(&e.P). Then, R¢(¥ ~-1) is an algebraic closure of &,.. The canonical
map J{— //P and inclusion maps K/P .= &, and &£,<> R, induce ring
homomorphisms of Witt rings (signatures) ¢ ,: W(X)— W(R.)=Z and
Cr:W(&p)— W(R,)=1Z.
(1.1) ([Dp], [K.K]) There are bijections
{o:K—F|(1),(2) and (3) hold}>» (PS K|(1°),(2°),(3") hold); o ~—P, and
(PS A1(1°),(2°).(3°) hold}>>» (¢ :W(K)—=Z |ring homomorphism) ;P~— ¢ ..
Definition. Put Sig(/K):={PS J| (1°).(2°) and (3*) hold) and Q(K):
=Nypesiatn P, and elements P of Sig( X) are called orderings of /.
(1.2) ([Ka); Theorem 13) Q( /) is characterized as follows:
Put To=L {x*| x€ /), and inductively, for i=0,1,2, -,
T =Z{(x€ K| 2020, ILET,,; : x(x*"+)ET,,) and
Tecion=L(xE K| 3020, IET2iv:: xt—x¥"ET2.:s,). where L () denotes
the set of all finite sums of elements in (--}. Then, To ST, ST,<++ and
Q(K)Y= U % T, hold.

Let A be a /-algebra such that A is a finitely generated projective
I -module with a projective dual bLasis by, by,.... 0.(E A) and #1.02,.... 0.
(EHonx( A, /X)) satisfying x=L ;21¢:(x)b. for all x& A. The projective
dual basis {b., fi;i=1,2,....n) delines a map t.: A~ K;x~— L ,2,¢.(xb,)
which is called the trace map of A.

(1.3) For any projective dual bases (b,,¢;:i=1.2,...,n) and
(b it s3i=1,2,....m) of A, L.t (xb,)=LC . 24 (xb ;) and t.(xy)=
t.(yx) hold for all x, y& A.

Proof. Let (bis #i:i=1,2,...,0) and (U ., ¢ .:i=1,2.....m) be projective
dual bases of A. Since x=L 5 #.(x)bi=L,5 ¢ .(x)b": for all xE 4,
it is easily checked that L 3. (xb))=L 2t (xL 4504 ,(b)b " )=
Cialunt (b)) (xb D=E: 5,08 ,(0.(xb Db)=E,0¢ ;(xb ;), and
Le(xy)=L 20t (xybi)=L i 2 (xE 520 05(yb) b)) =L 4. ;5i0i(yb) ¢ (xby) =
Lo ssvdi(yti(xb)b)=L ;28:(yxbi)=t.(yx).
Definition. The trace map t, of A delines a symmetric bilinear form
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AX A= K (x, ¥)~—1.(xy), which is called the trace form of A and is
denoted by <A>. The trace form <A induce a quadratic lorm ¢: A — K
x~— 1, (x?).

(1.4) ([Ks]: Proposition 1) <A> is nondegenerate if and only if A is a
strongly separable A-algebra, where the “strongly separable / -algebra A"
neans that there exists a £,2/a:0 b€ A@uA such that L, 5a,e b;=
Eidwbiea;,, E;naibi=1 and L .5 xaiebi=) .5 a;0b;x for all x€E A
hold, (cf.[K.]). (K21).

(1.5) ([K.].[Kz]) If either A is commutaLive or / is a lield of
characteristic 0, then "strongly separable” coincides with “separable”.
(1.6) ([K:]: Lemma 1) For a PESig(X), U,.=(x€ A1 L. (xA)E P.) is a
tvo sided ideal of A, and (A/0 )@Du & (= AR x &/ J(AR &) is a
separable £.-algebra, where J(AM. &) denotes Lhe Jacobson-radical of
AQx & .

(1.7) For PESIg(K)., (A/Q )P« A:v is isomorphic Lo a product of matrix
rings over Re, He and Re(J-1); (Re)o XX (Rp)o X(He)a XX
(He)a X(Re(-1))0 X X (Re(-1))u . where He= RB R.iD R Rk
is a qualernion Ry-algebra with ij=-ji=4k, il=j*=ki=-],

Definition. deg( A/Q ) or deg((A/Q )@k dt ) denote Lhe number ny =4 -4
n., provided (A/0)@uRv(/-1D)2(Re(/-1)). X X(Rv({-1)). . We call

it the degree of A/Q . or (A/Q)Dx &¢. IfT A is commutative, then
deg(A/(l:-)=[(A/(l|-)®xé|-: ﬁr].

2. The commutative case. Let A be a commutative /f-algebra such
that A is a finitely generated and projective A-module. and let
PeESig( /). ¥e put Sige( A/ K):=(QESig(A) | QN K =P): the set of
extensions on A of the ordering P, and Nomy., (A, R¢):=

(f: A= R, | K-algebra homomorphisms}.

(2.1)([K4):Leona 1) Haps Q: Homu-.1.( A, Rv)—> Sige( A/ K) : [~—Q,,
defined by Q,=(x€ A | ()20 in R:¢).

A: Homk-..c( A, Rl-)'—’“Omlr-.lg(A@x&l-. R¢): [~—fol and

2 lomk-sr (A, Ri)—> lomuu-uy { AQ xR, Re) ; [~—+Tal, delined by
fol(xer)=f(x)r for xoer€ A@. & or xo0 r& AQ. R,. arc bijections.
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(2.2) The canonical homomorphism A— A/Q s induces a bijection
V: Homge-01((A/Q )R p, Re)>> lodge- a1 (AQu &, Ry,

Because, (A/0)@uér= AR u &/ I(AQ k&) and g(J(ADx &+))=1(0)
for all g€ENOMse-a1( A@x£u. Ry), since J(AQD£+)-is nilpotent.

The trace map L,: A— /¢ induces a map 1.: A/U+—(/K/P¢)v &, and a
trace map Lo ol 1 A/0, @ekr—> & of A/Q . Dué. (A/0 & Tiol)
=¢A/0@x&:> is a nondegencerate quadratic &£.-module. We denotes the
Witt class of <A/Q . @x &> in the Witt ring W(&,) by [A/0,.®x£..].
Then, the image ¥ +([A/Q @« &:]) by the ring homomorphism ¢, : W( &,)
— 7 means the signature of <A/G ,@x&:> on the ordered field ( &..P).
(2.3) Lemma. For the /(-algebra A. there is a separable polynomial f(X)E
£+[X] of degree n,i.e. f(X)=0 has mutually distinct roots a@,,. @ s,....
a. in Re(f-1), such that A/Q . @Dx &= &,.[X]/(r(X)). Then, the number r
of roots of f(X)=0 contained in R, is equal to the signature of the
trace form <£.[X]/(F(X))>, that is, r=F ([ &1 X1/CLCX))))=
Pe(lA/Q Qs &kir]).

Proof. Since A/U @« £, is a separable &£r-algebra, it follows that
A/Q o @=Ly XLy XX La, where L, is a finite separable extension
field. There are irreducible polynomials £,(X), £2(X),..., f(X) in &.[X]
which are mutvally prime and &£:[X1/(f,(X))=L. (or i=1.2,....m Then,
for £(X)= (X)) (X} f.(X), one has &.[X]/(fCX)) =L, XLy X X L. If
£(X) decomposes to a product f(X)=(X—a ,)(X—a3) (X~ a.)g (X)g:(X)--
g.(X) of irreducible polynomials in Ry[X]., thea R.[XJ/(r(X)is
isomorphic to a direct product of r-copies of R+ and some copies of
R.({-1). Then, the trace form <R.[X1/(r(X))> decomposes a orthogonal
sum of r-copies of <i1> and some copies of <I,-1>. Accordingly, we get
Fell &:[X)7CLCN))=r.

(2.4)([Ke):Llemma 5) ol A/Q . Qx&:])=1Sige( A/ K)]|=|llonk-.,.( A, R,
where | M| denotes the number of elements in #.

From the above statements, the following corollaries are derived:

(2.5) Corollary. For any PESig( /). the following conditions are
equivalent: ’

@ (A/ul')®KRI'E RpX X Ry,

@ |Si8i-(A/K)|=[A/u r®u0€c-: ﬁl'l.
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® there exists a separable polynomial M(X)€ £,.[X] such that r(X)=
(X—a)X-az)(—a.) Tor @), @2...., ®a€ Ry and A/U O udir 2

& [X1/7(1CK)). :

@ Tl-([A/“r@xﬁrl):[(/’/ur)@xép: £el,

® <4/0,.@Q«é&:> is positive definite,

for <A>=(A,¢), s(A)CP.

(2.6) Corollary. For every PESig(K), (A/Q)DaRe™ R XX Ry holds
if and only if s(A)S Q(/X) holds.

(2.7) Corollary, If A is a separable /(-algebra, then < A> is
nondegenerate, and ¢ ([ A])= |Sig.(A/K) | ( [A)EW(K)).

3. The case of commutative (G-Galois extension. Let A2 /X be a
conmutative Galois extension with Galois group G in the sense of [C,Il,R].
(3.1)({K():Theorem) For any PESig( /), ¢ ([A))=1Sigr( A/ K)| is equal
to |Gl or 0. ¢+([A))=1|GI if and only if for every subgroup i of G
with [H1=2, AQxR+=(A'"QxRr)X(A"@«xR:) holds. If | Gl is odd,
then »(A)S Q(K) holds. .

(3.2) Lemma If G=<0> is a cyclic group and | G| is divisible by 4, then
p(A)S Q(K) holds,

Proof. Let A2 K be G-Galois extension with G=<o0> and | Gl=dn.
Suppose for a PESig( k)., Sighv({A/K)=9. that i5, AQxR:v= Rr({-1)e:P
Re({-1)e:D D Rv({-1)ez., where e,....e2. are orthogonal idempotents
in AQ«Rr with Effiei=101. Since {cgel(e). 0 el{e:),...,a el{ecz.)}
={ei, €2,...,€2.), ve may assune 0 © i(e1)=e¢:, 0 6 1(ez)=es,....
gel(e:.)=ei. AQ«xR+2 R+ is alse G-Galois extension, hence the
G-fixed ring is (AQ«x R:v) %= Ry, s0 0 0 1(/-1)=-/-1. For any x=
Eisv(ai+bif-1)e; inAQ xRy with a;, b,E R, 00 1(x)=x il and only if
AT ar= = a3a aNG by=<br=ba=-b¢=bs=---=(=1)7""'by.. Hence, we get
(AR R =(E 2 (a+(-1)*"'bl-1)ei | a, bE Rv) = Ry, this is a
contradiction,

4. The non-commutative casc.
(4.1) ([K.%]) For any P€Sig( KX), signatures of trace forms <( R\).>,
C(Hu)a> and <(Re({-1))s> are equal to n, — 2o and 0, respectively.
(4.2) ([Ks1) For any PESig( X),



80

@ (A/0 )@« Rr=(Re)u XX (Rv) holds if and only if
Fe(lA/0 @k &,])=deg(A/0 ) lolds,

B (A/0)QxRe=(Hw)a XX (Her)a holds il and only if
P [A/0.Qrér) )=—deg(A/Q ) holds,

©© (A/0 )@k Re=(R-1)) X X(R{-1)), implies
7"--((A/0.-®xﬁ.-))=0.

Example 1. Let (M, q) be a nondegenerate, finitely gencrated and
projective quadratic /-module. and PESig( /). He denote the Witt class
of (M. )®u &k in W(&:) by [{M. qQ)@®x &), For the Clifford alpebra
C(M.q) of (M,q), the trace form of &£r-algebra C{(M.q)@« &£, is denoted
by <C(M,q)®«x&£,>, and its Witt class by [C(M.q)®x &L J(EW(&£,)). As
is well known, (M,q)®xé&r is expressed <a,.az.....a.> lor a;*=0€E &£, i
=1,2,....n, using an orthogonal basis of M®x&..

(4.3)(cf. [W1]) If n(=2r) is even, deg(C(M,q))=2". If n(=2r+1) is odd,
deg(C(M,q))=2""".

(4.4)([Ks):Corollary 2)

@ If ¢.([M ql)=0,1,2 (mod 8), then & ,.([C{ M, )@« &:})=deg(C(M, q)),
and C(M, g)®« R is isomorphic 10 (Rv)a* or (Re)a’ B(R.):".

b If ¢+({M, ql1)=4,5.6 (mod 8). then & . ([C(M, q)®«&+])=-deg(C(A, q)).
and C(M,q)®«x Rr is isomorphic to (Hu)z""' or (He)2 " 'D(H)2""".

©) If ¢.([M, q))=3,7 (mod 8), then ¢ ([C(M. )D& ])=0, and

C(M, @ Rr=(Re({-1))2".

Example 2. Let ( be a finite group with order n.

For any PESig( /), we denote by € .. € 2,..., € . the irreducible represen-
tations of G on R.({-1), and by 1 (G) the set of all involutions in ¢.
Using the number k=(1 Gl—=11(G)|—1)/2, the trace formn <&, G> of the
group algebra £.G is expressed by <| GI>-{((L'T 2 1*7¢I>) L (L1, -1>)),
where L'ff®1*1¢1> and L *<1,-1> mean orthogonal sums <I1>L -1 <I1> of
(1X(G)I+1)-copies of <17, and <),-1>L-- L <],-1> of k-copies of <l,-1>.
Furthermore, we know that deg( £, G)=L ;I € ,(e) for the unit clement ¢
of Gand $c( [ £&+G] )=1+]| X (G) .
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(4.9) (cf.(1]):(4.6) and (4.19)) For the Witt class [ &,.G) (EW(&,)) of
trace form < &. 3D, RpGE(RH.QO"X(RH.,H'MdoMyif
EI'( lﬁl-Gl )=deg(d€rG).i.e. 1+ l l(G)l =L‘|:|§l(0).
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Modular representations of Iwaliori-Hecke algebras

KATsuniro UNQO

0. Introduction

Let (I¥,S) be a finite Coxeter system_(see [3]), ¢ an indcterminate, and
(W) a free C[,/g]-module with a basis {T,),ew parametrized by the cleinents of
W. llere C denotes the field of complex numbers. Then I{y(W) has an associative

C[,/g])-algebra structure characterized by the conditions

(15+1)T, —q)=0, if s € S and
LTy = Tuw, il {w) + {u') = {(ww'),

where £ is the length function. This is called an (lwahori)-llecke algebra. Sce [3,
Chap.4, §2, Ex.23],{4] and [11]. The Poincaré polynomial Fy(q) of (1¥,S) is defined
by Piv(g) = Zuew ¢

Now we recall modular representation theory of finite groups. lct G be
a finite group, and R a suitable discrete valuation ring, and let X and &k be the
quotient and the residue fields of R, respectively. We assume that Char/ = 0 and
Chark = p # 0 and take R, IC and k as cocflicicnt rings. Relationship between
representations over fC and k are studied via those over R. For example, we can define
so called decomnposition numbers as follows. Let V be a simple (irreducible) KG-

module. Take an RG-lattice V' such that i @z V' = V and consider a composition

The detailed version of this note is ciled as [12] in References below.
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serics of £ @p V. The multiplicities of simple £G-modules in &k ® V' depend only on
V and not on the choice of V’, and they are called decomposition numbers.

Return to llecke algebras. Fix a complex number a, and, as coellicient rings,
take C(/7), Cl\/Glo and C[\/a] instcad of K, I and k, respectively, where C[,/gla
is the localization of C[,/q] by the ideal (/7 — v/a). Then we can consider "modular
represcntations’ of Iecke algebras which is analogous to those of finite groups. Notice
that Cl\/ﬂ.,@llq(l‘l’), which we denote by o (W) thereafter, is obtained by formally
letting ¢ be a (see p.637 of [5]). The C-algebra /1, (W) is called a specialized algebra
of Ho(W) under the specialization ¢ +— a. ( Note : We actually con.sidcr the special-
ization /g — /a choosing \/a. Ilowever, we indicate it by ¢ — a for convenience.)
In this note, we mention some results in the modular representation theory of Hecke
algebras. Remark that the specialization ¢ — 1 of H (W) gives the group algebra
CW and P (1) = |IV|. By those facts, a Hecke algebra is called a g-analogue of the
group algebra CIV. '

1. Some known facts

llere we list several properties of llecke algebras. (There are many others
which we omit. See, for examnple, [14].) These should be compared with the cor-
responding propertics of the group algebra k. For convenience, we assume that
a # 0. ( The phenomenon when a # 0 is quite different from others.) For the proof,
sce {5],(6],(7],(9] and [12].

1. Ho(W) is a symmetric algebra.

2. C(/q) ® Hy(WV) is a symmetric semisimple algebra over C(,/3).

3. H4(WV) is semisimple if and only il l’w(;x) # 0 ([|9]).

4. If Hq(W) is semisimple, then it is isomorphic to CH ([5, §68])-

. Let §' bea subset of S and 1V =< §' >. Then a trace map can be defined

[4,3

from the center of Ha (1) into that of Ha(1V). Also, the Frobenius reciprocity laws



hold between modules over 11,(W') and Ha(W).

6. Let G(C(/q) @ I1,(W)) and G(I,(W)) be the Grothendieck groups of
the categories of modules over*C( V) ® H (W) and 11,(W), respectively. Then the
decomposition map d from G(C(,/g) ® /,(W)) to G(H15(W)) can be defined. (Sce

Introduction.)
2. Iecke algebras of type A,

In this section, we, assume Lthat a # 0 aud that (W,S) is of type A;. Then

W is isomorphic to the symmetric group Sy on I + 1 letters, and we have
Pw@d=(1+a(l+q+¢")...(1+q+g+---+4").

Thus, H,(W) is not semisimple if and only if a is a primitive r-th root of unity
with2 £ r <1+41. (Sce § 1, 3.) Morcover, Lhere is a onc-to-one correspondence
between the set of isomorphism classes of simple C(,/7) ® /fy(W)-modules and the
sct of Young diagrams with ! 4 1 nods. Also, this correspondence gives the natural
well known correspondence between the set of isomorphism classes of simple CSp4-
modules and the set of Young diagrams under the specialization ¢ +— 1. Morcover,
concerning I1,(1V), the 'Nakayama conjecture’ holds. Namely, if  is a primitive r-th
root of unity, then two simple modules over C(,/g) ® //¢(}V) lie in the same block
under ¢ — a if and only if the corresponding Young diagrams have the same r-core.
Furthermore, the number of isomorphism classes of simple //o()-modules is equal
to that of r-regular Young diagrams (with [ + 1 nods). llere a Young diagram is
r-regular if the corresponding partition (p1,p2,...pm) Withpy 2 p2 2 --- 2 pm > 0
satisfies |{i]pi = n}| < r for all n. It is well known that similar hold if we replace
11,(1V) and r by kSp4+; and p, respectively, in ?.hc above. For the proofs, sce [6] and
[7]. Many other analogous results can also be found loc. cit. If a is a primitive

(I + 1)-th root of unity, then simple Ifo(}V)-modules are obtained explicitly in [13].
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As is seen so far, there are many resemblance between (W) and kS, .
Next, we cousider indecomposable modules. We ask how many isomorphism classes
there are. For kW (or more generally, for an arbitrary finite group algebra) a result

of Higman [10] asserts that :

Theorem. kW is of finite representation type if and only if a p-Sylow sub-

group of W is cyclic.

Ilere, we say that an algebra is of finite representation type if there are only
finitely many isomorphism classes of indecomposable modules. It is casily scen that
the symmetric group Spyy has a nontrivial cyclic p-Sylow subgroup il and only if
(1+1)/2 < p < 1+1, namely, p is the highest power of p that divides the group order

(I + 1)L So, a statement analogous to lliginan's may be the following.

Question. Let a be a non zero complex number. Then is it true (for a
general finite Coxeter system (1, S)) that Hy(W) is of finite representation type if

and only if a is a simple root of Pyw(q)=107?
The above is partially answered as [ollows.

Theorem. If (W,S) is of type A; or |S| < 2, then the above question is

aflirmatively answered.

The proof can be found in [12]. llowever, some words may be in order.
Higman’s theorem is proved by using the notion of relative projectivity and lligman’s
criterion. llecke algebras have also those notion and criterion. llowever, there is
certain difficulty in using these devices in order to p'rovc the above theorem, because
trace maps, which are important to lligman's criterion, scem to have nothing to do
with the Poincaré polynomial. Thus, instead, we use Auslander-RReiten and Gabricl

theories ([2], [8]). 1n those theories, Auslander-Reiten quivers and separated graphs
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give several conditions on finiteness of isomorphism classes of indecomposable modules
([(1] ,|8]). Since simple H{4(Si41)-modules are relatively well known, we can compute

those graphs for Ho(Si4) in critical cases.
3. Problems

Since 'modular representation thicory® of Hecke algebras scems to be in the

beginning stage, there are many problems. llere, we meation two of them.

1. Is there any criterion for tameness of the module category of Ha (W) ?

2. Describe thie decomposition watrix.

Remark. In previous sections, we insist on similarities between Ha (1) and

kW. llowever, Llicre are also some differences between themn:

Decomposition matrices of the principal blocks of £Ss when Chark = 2 and

H_1(Ss) are the transposes of the following, respectively.
11 2 11 1 01 01
and
01110 01110
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ON TIE COHOMOLOGY OF FINITE GROUPS AMD
THE MODULAR REPRESENTATIONS

Hiroaki Kiwal

l. Introduction. Let G be a finite group and k Le a field
of prime characterijstic p. We nlso denote the trivial kG-module
by k. All kG-modules considered here are assumed to be finite
dimensional over 4%, -Fuor ﬂ-kﬂ“madﬁiﬂ'ﬂ.'WF'RCL'“EXL&G(H‘“1=
!nzuﬁxtHG(N.N). The theory of module varicties is based on the

following thecorem.

Theorem 1.1 (Evens). The cohomology ring ,with the cup
product, ExL;G(k.kl is finitely generated as a k-algebra.
Morcover, for any kG-modules M and N, EXLEG(M.N) is a finitely

gencrated ExtKGtk.kl-modulo.

Here, we hope to study some modules and exact scquences
. *
corresponding to homogencous elements of Extkc(k.k).
that is, these are concerned wilh the argument of homological

algebra.

Definition 1.2 (Carlson). Let ¢ be nn clement. in
Extiglk.k) Zllomg(a"tk),kl. we let 1, be the kernel of
¢: 2™k) 9k for ¢#0. If $=0, let L, = ¢"(k)+Z(k).

The following is the fundamental propertices of the above
module L‘. needed in Jater arguments,

- - . S My e o T e = em e e
- am m e e == ———— - == - -

tion clsewhere.
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Proposition 1.3. (1) Let 0f¢, € Ext{ tk,k} and Of¢ €
Extfzctk.kl. Then we have an exact scquence
0o » o™L ) 2L @ {(projecctive kG-module) -+ L
(2) Let ¢ e ExtRG(k.kl and 1l be a subgroup of G. Then
(L')"E Lresq H(', @ ( projective kiH-module).
’

Next, we state the exact scquence with an  interesting
diagram ({8}). Let H be a normal subgroup of a finite group G
of index p. Then there cexists an clement £ in Extﬁﬂtk.k) such
that infg . gUENtE @ itk = ket

Nole that is unigne up to scalar mwmultiples. Followineg
[8), we call £ a Bockstein clement corresponding to H. Then it
is known that £ can he represcented by

0 2> k 2 kHG 3 k"G 2k 0 as a scquence of kG-modules. More-

over, this secquence have the following commutative diagram :
o o] Q

l { l
0 9 La 2> Kerll 2 K(‘rlo 20

l i i

0+°22(k) 3 Py, + Py I+ k4 O
is LA, T W |

0+ k k% + 1% +k 20
l ] il
0 ] o '

where Pg and P, are the projective covers of k and ¢(k),
the rows and columns are exact. Immediately, this diagram gives
the following lcmmn.

Lemma 1.4. Let H be a normal subgroup of G of index p
and 7 be a non zero Bockstein element corresponding to . If a
kG-module M is projeclLive as a kli-module, then L‘Q M is a pro-
jeetive kG-module.

2. Main results. Carlson introduced the following number
in {2].



Definition 2.1. Let E be o maximal clementary abelian
p-subgroup of G. Lot Ag be an abelian p-subgroup of 6
which contains E and uwhich has maximal order among such
subgroups. Define n(E)= IG:AE| and n(G)=L.C.HE€ r {ntE)),
where T is the sct of all maximal clementary abelian

p-subgroups of G.
The next thcorem is the main result.

Thecorem 2.2. Let G Lic a linite group and k be a rield of
characteristic  p>0. Then there cxist R RERERIAY in
Extﬁg(c)(k.k) such that L‘.‘® @llgt is a projecctive
kG-modulc.

For the proof, it sufficcs to show that given an
clementary abelian p-subgroup F of G, there exist
Piveseadyp in E.*:LE&'(G,(k,k) such that (L‘.l ® .- ® L‘r 9
is a projective kF-module. For, if this is shown, then
consider all those Ppoeooaty € Extﬁatc’(k.kl taken over
the elementary abelian p-subgroups of G . Then by
Clhouinard's theorem, we have that Lrl ® -+ © L"t is a
projectlive kG-module.

We prove this asscertion by the iuwduction on [Fl, using
Proposition 1.3, Lemma 1.4 and the next lemma which is  an
analogue of a recsult of Quillen. (for the detail of the proof,

see the final version)

Lemma 2.3. Let “A° be an abelian p-subgroup of G and
F be an clementary abelian subgroup of A . Then there exists
an clement ¢ in Extaéﬁ:h‘(k.k] such that rosG.F(:) is a product

of Bockstein clements.

Next, we give the equivalent conditions to the onc of our

main thcorem.
Let K be an algebralieally closed ficld of characteristic

PX0 . Let H'{G,KI=I o oExtig(K.K) if  p=2  and n*1G,Ki=
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I:Eﬁ'ﬁg(K.K) if p>2, From Thecorem 1.1, 1we know that
“‘%*(G{R) has an associated affine varicty VG(K)=Hux(H‘(G.K)).
which is the set of all maximal ideals of H*(G,K). Let M

be a KG-modulce and Jg(H) be the anuililator in H*(G.K)

of ExtﬁG(H.H). The variety VG(M) of M is defined as the

subvarjety of Vg(K) associated to JgiMl}.

Proposition 2.1. Let " be o positive integer and
¥1.,-..+¢, be clements in ESLER(K.K). Then the folloving
are cquivalent.

(1) For every clementary abelinan p-subgroup F=’x|.....xr
of G and for its cvery cyclic shifted subgroup “u, *,that  is,

v
u, =1 +;§‘3J(XJ-I). a=(aj){05 K( there exists ¢ (lgigL) such

that rcscl<u‘>($i)¥0.
{2) L'l ® -+ ® L't is projective.

L
(3) A VglLg, 1=10}.
it .

(4) J(Fe-eaatd= I 50 ESURGUR,K), where [(3,, ... ¢ 1=

t
(¢ € ExtpglK,K) | ace_z‘sxt;G(R.K):i for some ¢>0}.
iy

3. Applications. Let G be a finite group and k bhe an
arbitrary field of characteristic p>0. Using the main result, we
can extend Carlson's result in [2]. As another application, we
also give a homologicanl critecrion for a kG-module to be projec-

tive.

Corollary 3.1 {(Pecriodicity of periodic modules).

The period of a periodic kG-module divides 2u{(G}.

Corollary 3.2 ( Criterion for a module to be projectlivel.
A kG-module M is projective if ond only if Extﬁg‘c’(M.H)=(0|.
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ON THE NILPOTENCY INDEX OF
THE RADICAL OF A GROUP
ALGEBRA !

Kaoru MOTOSE

We should observe that elementary abeiian groups play important
roles to compute Loewy series or Loewy lengths of group algebras. We
here consider a good basis of the radical N of the modular group algebra
KU of an elementary abelian group U over a field K (see [4]). We may
assume that a field I contains a finite field F of order p* = |U| and an
elementary abelian group U is the permutation group of F defined by

U={u.:z—z+4+a;acrF}

We usually use {u, — 1;a € F} as a basis of the radical N of KU but
it is not so useful for the products of basis elements and aclions on N. [t
is the purpose of this paper to give a much betler basis B of N and to
state some results obtained by using B. The basis B is defined as in the
following. Let A be an element of the characler group f* =
Hom (F*, F*) of the multiplicative group F'* of . Then we set

0 ifA#1

Ry = T.er Ma)u, where A(0) = { L ifAz 1

It is easy to see {Ry;A € F*} is a basis of the radical N of the group
algebra KU. The next will show that this basis is useful.
1. RyR, = J(\ p) Ry, where J(A, ) = Toer Ala)u(1 - a).
2. R{ = R,,-1 for an automorphism ¢ of F.
We can find a much better basis B of N as in the following.
Let n be a generator of I*. Then ¢ : n— n~! is a generator of P,
We set & = Ry It is evident &% = 0. We obtain the next

1The final version of results II[,LIV,V in this paper will be submitted for publication
elsewhere. Another parts of this paper were already published.
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er7Igr1 .. gPzl £ 0,
We can identify an element
Y- 97 (0<in<p)
with a natural number

o+ iyp+--+i,p L

For two natural numbers a =iy +4,p+ «-- 4+ 1,;p""! and
b=jo+sip+ -+ jrm1p""!, we shall define

a+b if i + 52 < plor all &
0 otherwise.

ab= [
It follows from our observations that the set
B={1,2,....p" -1}

is a basis of N.

Moreover we shall use some notations. We set a* = T5Z1i; for a =
ig+up+---+ 110" Let {(G) be the nilpotency index of the radical
of {G. Let F be a finite field of order p* and let S be a subgroup of F”.
Then we consider the next permutation group M, s on F.

Mp,¢,5={:z:—»a:z:”"+b; a€SbeFk=0,1,...,p—1}.

If the order of S is ho = (p*" — 1)/(p* — 1), we sel simply My, = M, s.
Using the basis B, we can obtain the next results I,...,V.

I. The set {b € B ; b* =k} is a basis of N¥/Nk+! (see [4]).

IL If the order of S is a multiple of ho, then we can obtain ¢(M, . s) =
(pt +1)(p—1) + 1 (see [2]) and the formula to compute Loewy series of
the group algebra of M, s over a field I{ (see [4,5]).

III. Recently, in his paper H. Fukushima obtained the group structure
of the next groups G satisfying the {ollowing conditions (see [1]).



. G=UH,UqGandUNH =1.

2. Il = VW is a Frobenius group with kernel V' and complement W.
3. U is a p-subgroup, V is an abelian-p'-group,-and W is a p-group.
4. 1(G) = s(p—1)+1 where p* is Lhe order ol a p-Sylow subgroup of G.

The most diflicult part in his proof is Lo prove that Cg(z) contains a
p-Sylow subgroup of G for every z € U. However, it is easy to prove this
part by using our basis B.

IV. If G is a group of the minimal order satisfying the next condi-
tions, then G is isomorphic to M, (see [3)).

1. G is a p-solvable group with a p-Sylow subgroup P of order p*.

2. P is not elementary abelian.

3. i(G)=s(p—-1)+1.

4. 0,(G/0,(Q)) is abelian.

V. If the order h of S is a proper divisor of hy, then it is not so easy
to compute (M, s). We use the notalion a’~® = o — o” for @ € KU
where a° = ap* mod p** — 1 for a € B such that a® € B. We set

d=Max {Thi ; 8! 57T o™ £ 0)

where k, < p for all s and b),b;,.. ., b, run through the set
{b € B; hlb, ho fb}. Then we have {( My, s) =d+ (pt+1)(p—1) +1.
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