PROCEEDINGS OF THE
22ND SYMPOSIUM ON RING THEORY

HELD AT HOKKAIDO UNIVERSITY, SAPPORO

August 2—4, 1989

EDITED BY
Kozo SUGANO

Hokkaido University

1989

OKAYAMA, JAPAN



PROCEEDINGS OF THE
22ND SYMPOSIUM ON RING THEORY

HELD AT HOKKAIDO UNIVERSITY, SAPPORO
August 2—4, 1989

EDITED BY
Kozo SUGANO

Hokkaido University

1989
OKAYAMA, JAPAN






PREFACE

The 22nd Symposium on Ring Theory was held at Hokkaido University, Sapporo, on
August 24, 1989, immediately after the 35th Symposium on Algebra, which was held at
the same university.

The Proceedings contain twelve articles presented at the Symposium including the
one given by a special guest, Prof. Yao Musheng, China. We desire earnestly that many
more foreign ring-theorists will take part in this Symposium hereafter.

The meeting and the Proceedings were financially supported by the Grant-in-Aid
for Scientific Research from the Ministry of Education through the arrangements by
Prof. H. Hijikata. We appreciate his arrangements.

We wish also to express our thanks to all speakers of the meeting and to staffs and
graduate students of Hokkaido University for their help in the organization of the
meeting.

October 31, 1989
Kozo Sugano
Hokkaido University
Sapporo, Japan
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

ON STRONGLY SEPARABLE EXTENSIONS

Yasukazu YAMASHIRO

E.McMahon and A.C.Mewborn introduced a type of separable
extensions in (4], which is called strongly separable
extension. A ring A is a strongly separable exlension of a
subring I' if and only if the commutor ring A of I' in A is
C-f.g.projective, where C is the center of A, and a map ¢:A@rA
——*Homc(A,A) given by @(a®1')(8)=18A" for A, X'EA and 8€A is
a A-A-split epimorphism. In this paper, we shall study some
properties of strongly separable extensions corresponding to
H-separable extensions. In § 1, we give some equivalent
conditions (1.4) and in § 2, we give the commutor theorem for
strongly separable extensions (2.5).

1. Strongly separable extensions

Let R be a ring and M and N left R-modules. VWe shall
denote M™9N if M is a direct sum of submodules S and K such
that RS<OR(N0---0N) and Hom(RK.RN)=0. 1t is easy to sece that
K coincides with the reject of N in M (cf.[(11), which is
defined by

RejM(N)=n( ker f | fEHom(RM.RN)).
Using this notation, we can state that a ring A is a strongly

separable extension of a subring I' if and only if AOFA’\?A

The final version of this paper will be submitted for Hokkaido
Math. J.



as A-A-modules.

Lemma 1.1. Let R be a ring and M and N left R-modules
such that M~ N. Then for every R-direct summand L; of M,
Li{”N.

Proof. We can write M=L;®L, and M=S5®K with
RS<0R(NO---ON), Hom(RK,RN)=0.

Let w, and m, be projections of M to L, and L,, respectively,
and Py the projection of M to K. By (8.18) in [1], we have
K=1nt, (K)®n,(K). Then the restriction of T Py to Li is the
projection of Li to ni(K) (i=z1,2). Hence we can write
L1=5:®n;(K) and L,=S,®n,(K). Then we have M=S®K=S,8S5,8K and
SxM/Kx~S,8S,. Hence S ;<®S<®(N®:---N). Since i, (K)<(®K,
Hom(Rnl(K),RN)=0. Then L;—~~N.

Let TcBcA be rings. In case the map BorA —A such
that b®x +——bx for bEB and X€EA splits as a B-A-map, we
shall call briefly that BorA —A splits. In this case, by
tensoring on the left with A over B, AOBA<@ AQFA as
A-A-modules. So, from the above lemma, we obtain

Proposition 1.2. Let A be a strongly separable
extension of I'. Then for every subring B of A such that 'cB
and BOFA —A splits, A is strongly separable over B.

Corollary 1.3. Let A be a strongly separable extension
of '. Then for every separable subextension B of A over I', A
is strongly separable over B.
For any A-A-module M, we denote by MA the subset
{m€M!im=mrx for all xX€A} of M, and for any subring A of A, we
denote by VA(A) the commutor ring of A in A.

Let T'cA be arbitrary rings C the center of A and
A=VA(F). Then we always have a A-A-map w:AOrA ——#HomC(A.A)



defined by @(a®r')(3)=a8x' for 2A,2'€A and &€A. we shall
denote its kermel by Rr(A). Since Hom(AAGFAA.AAA)mA by the
map f —£(181) for fEH°m(AA°rAA'AAA)' Rr(A) coincides with
the reject of A in AorA as a A-A-module. 1In particular, if A
is strongly separable over ' then we can write
AerAzHomc(A.A)ORr(A)

as A-A-modules.

The next theorem is a generalization of Theorem 1.2 in
[6].

Theorem 1.4. Let TI'cA be rings, C the center of A and
A=VA(F). Then the following statements are equivalent.
(1) A is a strongly separable extension of T.
(2) For every A-A-module M,
M =amPex

such that the map g:A® A A

CM —AM defined by g(6®m)=8m for
5€A and mEMA is an isomorphism and XCRejM(A).

3) (AOFA)F=A(AOFA)AOX
such that the map g for M=A®A is an isomorphism and XCRr(A).

Proof. Assume (1). By (3.10) in [4],

M =ca8 MM reHOm(\RL(A) 4 4 M) . i
In this case, the injection Hom(ARr(A)A,AMA) —M is given
by f +—f (k) for fEHom(ARr(A)A.AMA). where k is the image of
181 in Rr(A) by the projection p:AerA ——*Rr(A). For any
geHom(AMA.AAA). gefep is a map A®A —A. Since kGRr(A), the
reject of A in A®A, g(f(k))=gef°p(k)=0. Then g(X)=0 and
XcRejM(A). Hence (2) holds. If we put M=A0rA then (2)
implies (3). Assume (3). We can write

101=21j61x110y11+k A
for some aieA, ijijeyije(AQA) and k€X. By the definition of
Rr(A).

6=¢(101)(6)=2”61x“6yiJ for all &8€A.
Hence A is strongly separable over I' by (3.5)(2) in [4]1. This
completes the proof.



2. Commutor theorem

Throughout this section, whenever we denote a ring and
its subring by A and ', respcctively, we denote the center of
A by C and VA<F)=A.

Let ﬂl be the set of subrings B of A such that T[cB,
BQFA —A splils and there exists a B-I'-projection pB:A ——B
such that (IAOpB)(RB(A))=0, where lA is the identity map of A
and 1A®pB is the map of AGBA to A given by (IAOpB)(1®1')
=1pB(l') for x,x'€A, and 91 the set of C-subalgebras D of A
such that DD<$DA and DQCA —A splits. $r and Qr are
defined similarly. Furthermore, let # bec the set of subrings B
of A such that B is a separable extension of ' and there
exists a B-B-projection pB:A —B such that (IAQpB)(Rr(A))=0
and 2 the set of separable C-subalgebras of A.

Firstly, we prove

Proposition 2.1. Let A be a strongly separable extension
of ', D a C-subalgebra of A such that D®CA —A splits, and
B=VA(D). Then there exists a B-T-projection pB:A —B such
that (lAepB)(Rr(A))=0 and the map wB:BerA ——4Hom(DA.DA)
defined by wB(bOA)(6)=b61 for beEB, x€A and 6€A is a split

epimorphism as a B-A-map. If furthermore D<9DA. Lhen

D
B@rA —A splits.

Proof. Let Zidi®6i€(D®CA)D such that Zid16i=l' 1£
we put pB:A —B by pB(1)=Zidixai for X€A, and
nD:HomC(A.A) — Hom(DA,DA) by KD(f)(6)=Zidif(6i6) for 8€A
and IEHomC(F,A) then these maps are split epimorphisms as a
B-I"-map and a B-A-map, respectively. Now, consider the
commutative diagram

® .—"
A rA HUmC(A,A)

pBelAl . ,l,nD
B A)
A.D .

—_—
B@rA Hom<

D



Since ¢ is a split cpimorphism, wB is a split cpimorphism. If
we put n:HomC(D'.A) —A by n(f)=Zf(di)6i for feHomC(D',A).
where D'=VA(B), we have a commutative diagram

]
0 —R_(A) ——A® A —B—Hom

B
A
where the row is exact. Then we have
(IAOpB)(Hr(A))=n°¢B(Hr(A))=O.
Consider the commutative diagram

¥p
B8-A —LB Hom( 4, (A

N

where o is the map given by o(f)=f(1) four f€Hom(

C(D'.A)

DA,DA). If
DD<GDA. then ¢ is a split epimorphism and BerA —A splits.

Proposition 2.2. Let A be a strongly separabie
extension of I'. Then for every Beﬁl, VA(B)GQl.

Proof. Since BGrA —AN splits, we have D<®_A, where

D D
D=VA(B). By (1.2), A is strongly separable over B. Then we

have the following isomorphisms

Hom(BAr.BAr)zHom(AAGBAr.AAr)
zHom(AHomc(D.A)r.AAr)OHom(ARB(A)r.AAr)
z(DGCA)QHom(ARB(A)r.AAr).

In the above direct decomposition, the injection :DGCA e

Hom(BAr,BAr) is given by ¢D(d08)(1)=d18 for de€D, QEA and X€A.
Clearly ¢D is the D-A-homomorphism. In this case, the action
of D and A to Hom(BAr.BAr) is given by (df)(ax)=df(A) and
(£8)Y()=f(x)8 for deD, 8€A, r€EA and fEHom(BAr.BAr). Let
u:Hom(BAr.BAr) ——4Hom(ARB(A)r,AAr) be the projection in the
above decomposition, and M the map AOBA —A given by
M@®x')=ar' for A,x'€A. Then a(f)(x)=M(lA0f)(x) for
fEHom(BAr,BAr) and x€Rr(A). Since a(pp)=0 by the definition
of 31, we have pBE¢D(DOCA). Hence there exists ZdiesiEDecA
such that pB=¢D(2d108i). Then we have

Zdi8i=¢D(2 di®6i)(l)=pB(l)=l



and for any de€D,

$D(dei®6i)=d¢D(d106i)=de=de=$D(Zdioai)d

=¥, (Zd,®8,d)
as the image of Pp is B. Since *D is a monomorphism,
dei06i=2di®6id. Then Id. 06 G(DOCA) and this implies
DOCA —A splits.
As a generalization of Proposition 1.2 in [6], we have

the next lemma.

Lemma 2.3. Let IFcA be rings and there exists a left
F-projection p:A —I such that (lAOp)(Rr(A))=0, then
VA(VA(F))=F.

Proof. Let erA(VA(F)). By definition of Rr(A),
x01-1@xeRr(A). By hypothesis, we have x-p(x)=0 and xe€rl.

Lemma 2.4. .Let A be a strongly separable extension of TI.
Then for every DGQI. VA(VA(D))=D.

Proof. Since DOCA ——A splits and A is

C-f.g.projective, A is left D-f.g.projective. Let B=VA(D)
and D'=VA(B) By (2.1), BHom( A, A)A<0 B@rl\A Then we have

D
D'ODA_Hom( AA BAA)O A-Hom(BHom( A)A BAA
<0Hom(BBOFAA BAA)_Hom(BBr BAr)ﬁA

Hence the map D'ODA —A given by d'®§ —d'é is injective.
Since this map is always surjective, D'ODAzA. Then D'=D,
since DD<0DA.

Now, we can obtain the commutor theorem for strongly
separable extensions, which is a generalization of (1.3) in
[91.

Theorem 2.5. Let A be a strongly separable extension of
', and consider the correspondence V:A'Vw——*VA(A) for a



subring A of A. Then we have

(1) V yields a one to one correspondence between 31 and
9, (resp. 8 and 2.) such that V2zjdentity.

(2) V yields a one to one correspondence between 8 and 2
such that V2=identity.

Proof. (1> For any BESI, VA(B)GQl by (2.2) and
VA(VA(B))=B by (2.3). For any DEQI, VA(D)GQl by (2.1) and
VA(VA(D))=D by (2.4).

(2) Since SCSI, for any B€3, VA(VA(B))=B and VA(B)=DEQI.
Since B@rB —B splits, DDD<0DAD. Hence D is a C-separable
algebra by (1.4) in [9].

By (1.1) in [91, Qcﬁl. Then for any De€9, VAWVAD))=D
and VA(D)=Be$l. Since D&.D —D splits, B <@ A Hence B

B'B" B B’
is separable over I' by (1.4) in [9].
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GROUP RINGS WHICH ARE V-HC ORDERS AND
KRULL ORDERS

K.A.BROWN, H.MARUBAYASHI and P.F.SMITH

Let R be a prime Goldie ring with quotient ring Q and
let G be a polycyclic-by-finite group. In this note, we shall
characterize those group rings R[G] which are Krull orders

and v-HC orders with enough v-invertible ideals

l. A ring R is an order in a quotient ring Q provided
(i) R is a subring of Q,
(ii) every regular element of R is a unit of Q, and
(iii) for every element g of Q there exist elements r;.Cy € R
with c; regular (i=1,2) such that q = cIlr1 = rzcgl.
Orders R,S in Q are called equivalent, written R~ S,
provided there exist q; of Q (1 £ i € 4) such that quq2 c S
and q3Sq4 C R. An order R in Q is maximal if the only order S
in Q such that R~ S and R ¢ S is R = S.

Let F(t)(F' (1)) be a right(left) Gabriel topology on R

The detailed version of this note will appear elsewhere.



10

corresponding to the torsion theory cogenerated by the right
(left) injective hull E(Q/R) (E'(Q/R)) of a right (left)
R-module Q/R. Then F(t) = { H : right ideal of R | (R:r-lli)1
= R for any r€ R }, where rlu = {xeR| rx € H } (see
[{15)). If I is a right ideal of R, then we write cl(I) = { re€
R| rHG I for some H€ F(t1) }, and if I = cl(I), then we

say that I is 1 -closed. Similarly, we can define 1 ~closed

left ideals. R is called r ~Noetherian if R satisfies the a.c.c.

on t-closed right ideals as well ast -closed left ideals.
Following [6], R is called a Krull order if R is a maximal

order in Q and is ¥ ~-Noetherian. In [11, p.181, problem 7],

they pose the following question: Let R be a ring and G a group

such that the group ring R[G] is an order in a quotient ring

Q(R[G]): When is R[G] a maximal order? This problem was first

attacked in [7), [8],[14] and in [1), he obtained the following

result:

Theorem 1.1 ([1]). Let R be a Noetherian commutative domain
and let G be a polycyclic;by-finite group. Then the group ring
R[G] is a prime maximal order if and only if
(i) R is integrally closed,

(1) 4 ¥(e) = 1, and

(iii) G is dihedral-free.

Herea ¥(G) = { x € ¢ | IG:CG(x)|<~ and x has a finite
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order }. Note that R[G] is a prime ring if and only if 4 +(G)

= 1 and R is a prime ring by Theorem 4.2.10 of [13]. A subgroup

H of G is called G-orbital if | G:N,(H)| <= . Let D = < a,b]|

2 -1

a“ =1, aba = b > be an infinite dihedral group. Following

[1], G is dihedral-free provided G does not have any G-orbital

infinite dihedral subgroup.

From now on, let R be an order in a simple Artinian ring

Q and let G be a polycyclic-by-finite group.

Proposition 1.2. The group ring R[G] is a Krull order in a
simple Artinian ring Q(R[G]) if and only if
(i) R is a Krull order in Q,
(ii) 4 ¥(6) = 1, and

(iii) QI[G] is a Krull order.

This is proved by using localization (see [10]). Write
Q= (F)n, the nxn matrix ring over a division ring F, and let
K be the center of F. Then we have QIG] = (F[G])n and F([G)] =
F@K KiG]. Hence Q[G] is a maximal order if and only if FI[G]
is a maximal order. Furthermore we see from the following

lemma that F[G] is a maximal order if and only if K[G] is a

maximal order.

Lemma 1.3. Assume that A+(G) = 1, Then there is a one-to-
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one correspondence between the set of all ideals A of F[G]
and the set of all ideals A of K[G] given by A —» A "\ K[G],

A—> F®a.

From (1.1), (1.2) and (1.3), we have

Theorem 1.4. The Group ring R[G] is a Krull order in a simple
Artinian ring Q(R[G]) if and only if
(1) R is a Krull order in Q,
(ii) a¥(6) =1, and

(iii) G is dihedral-free.

2. In the passing thirty years, the theory of hereditary
rings (especially HNP rings) is one of the most successful
subjects in non-commutative ring theory. But as it is easily
obtained, some important ring extensions of hereditary rings
are not necessary to be hereditary; for examples, polynomial
ring, formal power series ring and graded ring (inc¢luding
group ring) extension of hereditary. But some such extension
rings mostly inherit the ideal theory broadly obtained in HNP
rings. Furthermore, hereditary rings are those rings which
have global dimension one. But, from the point of view of the
ideal theory, there are some important classes of rings which
do not have global dimension one (even not necessary to have

a finite global dimension); for examples, local rings having



finite global dimensions and Krull orders in the sense of
Chamarie. These aspects led us to define the concept of v-HC
orders which was a Krull type generalization of hereditary
rings. Let A be an R-ideal. Then we use the notations;
(R:A)1=(qu|quR}and (R:A) = { g€ Q| agq g R}.

We set Av = (R:(R:A)l)r and VA = (R:(R:A)r) If VA = A =4,

1° v
then we say that A is a v-ideal. If A is a right projective,
then we have from the dual basis theorem that A(R:A)l = Ol(A)
={qeQ |qa ¢ A}l. Now consider the following condition;
(P): V(A(R:A)l) = Ol(A) for any ideal A = VA, and (B(R:B)r)V
= or(B) for any ideal B = Bv'
R is called a v-HC order if R satisfies the condition (P) and
is rt-Noetherian. This concept was first introduced in [9].

A v-ideal A of R is called v-invertible if there exists an
1

R-ideal A"~ with (AA-l)v =R = v(A-IA). We say that R _has enough

v-invertible ideals if any v-ideal of R contains a v-invertible

ideal. In this section, we shall characterize those group rings
R[G] which are v-HC orders with enough v-invertible ideals.

First of all, as in the case of Krull orders, we have

Proposition 2.1. The group ring R[G] is a v-HC order with
enough v-invertible ideals if and only if
(i) R is a v-HC order with enough v-invertible ideals,
(ii) a¥(6) = 1, and

(iii) K[G] is a v-HC order.



A plinth in G is a torsion-free Abelian G-orbital subgroup A of
G such that AGDZQ is an irreducible Q[T]-module for every
subgroup T of a finite index in NG(A), where Z is the ring of
integers and Q is the field of rationals. We denote by P(G) the
subgroup generated by all plinths of G. It is clear that P(G)
is a characteristic subgroup of G. The group S(G) is the
isolator of the plinth socle P(G), i.e., S{G) is the largest
normal subgroup of G containing P(G) as a subgroup of finite
index. By[12]), S(G) is a characteristic Abelian-by-finite

subgroup of G.

Lemma 2.2. Assume that A T(G) = 1 and let P be a prime ideal

of K[G) with ht(P) = 1, Then P = (P N K[S(G)}]1)KIG] (cf.[1]).

The first statement in the following proposition follows

from Lemma 2.2.

Proposition 2.3. Assume that A+(G) = 1, Then
(i) If K[S(G)] is a v-HC order, then so is KI[G].
(ii) If char(K) = 2 and G is dihedral-free, then K[G] is not
a v-HC order.

(iii) If char(K) # 2, then K[G] is a v-HC order.

The second statement essentially follows from the technique

used in [3]. We use some results in [3] and [4] to prove the



third statement. From Propositions 2.1 and 2.3, we have

Theorem 2.4, The group ring R[{G] is a v-HC order with enough
v-invertible ideals in a simple Artinian ring Q(R[G]) if and
only if
(i) R is a v-HC order with enough v-invertible ideals,

(ii) a*(6) = 1, and

(iii) either G is dihedral-free or char(R) # 2.

The applications of Theorems 1.4 and 2.4 will appear in

the forthcoming papers.
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NON-RATIONALITY OF ALGEBRAIC TORI OF NORM [YPE
AND ITS APPLICATION 10 GENERIC DIVISION RINGS

Shizuo ENDO

1. let G be a finite group. A G-module is called a perautation module if
it is isomorphic to ®  1G/G,, where G,, 1 ¢ i < r. are subgroups of G. A G-
module M is called a quasi-permutation module if there exisls an exact sequence
0 > M — S - §' > 0,
where S and $° are pereutation G-nodules. The dval module toa (N, 1) of a G-
module M is denoted by H™.
let k be a field and let F be an extension field of k. F is said to be
rational over k if it is generated by a finite number of algebraically indepen-
dent elements over k. F is said to be stably rational over k if there exists an
extension field F' of F which is rational over each of k and f. Further, | is
said to be retract rational over k if it is the quotient field of an integral
domain B such that B satisfies the following condition: There exist a localized
polynomial ring A = KIx,, X,. .... x,][1/s], where x,, x,, .... X, are variables
and 0 # s € kIx,. X, ..., X,]. and k-algebra homomorphisms ¢ : B — A and
¥ : A ——Bsuch that # - ¢ is the identity on B. It is easy to see that
‘rational ' —= °stably rational’ <= ‘retract rational’.
let G be a finite group and let H be a G-module with a /-free basis u,, u,,
.., U, Define the action of G on the rational function field k(x,, x,, ...,
x,) with variables x,, x,, .... X, over a field k as follows: for each o e G,
o(a) =a, acelk,
o(x)) = Mo x™, 1gign,

when o-u, = 2‘.4';‘:11.‘i u;. b€ I, and denote K(x,, X,. ..., X,) with this action

The detailed version of this note will appear elsewhere.
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of G by k(N).

Further, let K be a Galois extension of k with group G. Define the action

of G on the rational function field K(x,, x,, ..., Xx,) with variables x,, x,,
. X, over K, as an extension of the action of G on K, as follows: for each
o e G
o(x,) =Tl x™, 1<ign,
when o-u, = 2;‘“&1ij u;. a;¢ I, and denote K(x,, X,, ..., X,} with this action
of G by K(H).

As is well known, there is an algebraic torus 1 defined over k and split
over K such that the character group of T is isomorphic to M as G-modules, and
the invariant subfield K(H)° of K(M) can be identified with the function field
of T over k.

Proposition. Llet G be a finite group and let k be a field. Let X be a
Galois extension of k with group G and let M be a Z-free G-module.

(i) (e.q. [4, 1.6]) M is a quasi-persutation G-module if and only if K(Hf;
is stably rational over k.

(ii) (110, 3.14]1) H is a direct summand of a quasi-permutation G-moduie if
and only if K(Hf} is retract rational over k.

2. let p be a prime, and let P be an elementary abelian p-group of order
p", m21. Llet P,. 1<i <r, bedistinct subgroups of index p in P, and let
e, : IP/IPp—1
be the augmentation episorphism. Further, for h,, h,, ..., h, 21, let
O = (e, et ..., eh : @ (PRI —s 1
and put L = Ker O.
Hain result of this note is the following

Theorem 1. (i) In case of p = 2, L“ is a quasi-perautation P-module if
and only if r =1, 2.

(ii) Incase of p#2, L” is a quasi-persutation P-module if and only if
F=1.

In order to prove this, we need to consider a more general situation. Let
P, P, and g. 1 S i <r, be as above, and define the homomorphism & : 7 — 1
by &(1) =p. Forh, h, .... ho21and h 20, let
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F - (eheh ... eet) ol A 0" — 1,
and put T = Ker &. Further, let
O, =(e .6, .... &) : ®L, I/ — ],

and put L, = Ker @, . Then the key lemma is given as follows:

h

lemma. T=L 0 @, [2p/P1"" @1

By this leema we have only to consider the case where h, = h, = .... = h,
= 1, However, in this case, using again the lemma, it suffices to show the
following facts:

(1) " is a quasi-perautation P-module if one of the following conditions
is satisfied: (a) r=1; (b) p=2andr =2

(2) 1" is not a quasi-permutation P-module if one of the following
conditions is satisfied: (a) p-2, m=2andr=3; (b) p=2, b=3andr
=4; (¢) p+2, m=2andr 22

(1) is well known. (2), (a) was shown by T. Miyata in 1974 (unpublished),
and this is also given in [8]. Accordingly, we have only to show (2), (b) and
(c). Using repeatedly the key lemma and the exact sequences of cohomology
groups, they can be shown by direct computations.

By Proposition, Theorem 1 can be restated as follows:

Theorem 1°. let P, L, ... be as above, and let K be a Galois extension of
a field k with group P. Then:

(i) Incase of p = 2, K(l")P is stably rational (retract rational) over k
if and only if r =1, 2.

(ii) In case of p + 2, K(l“)P is stably rational (retract rational) over k
if and only if r = 1.

It is noted that the algebraic torus corresponding to L™, defined over k
and split over K, is of norm type.

The part (i) of Theorem 1° is an answer to the question asked T. Miyata by
A. Herkurjev in 1982. It should be noted that Theorem 1 was obtained in 1982
(unpubl ished).

3. Assume that k is a field of characteristic 0. for m, n 22, let x,”,
1¢€i, Jgn 1<r<n, be variables and consider the nxn matrices
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Xe = Ix§"10 tgrgm,
which are called generic matrices over k, and denote by k{X} the k-algebra
generated by X,. 1 < r < a Then k{X} has the guotient division ring q(k{X})
(S.A. Amitsur, e.g. |9, 1. 1.3]). The quotient ring q(k{X}) is called a
generic division ring over k. [he center of q(k(X}) is denoted by Z (w).
tor generic division rings, the following problem is basic and open.

Problem. 1s 7.(m) rational over k?.

tor this the following fact is known.

(1) ([9, TV, 6.4 and 6.5]) lor m 22, Z (m) is rational over Z,(2), and
1,(2) is rational over k.

By this it suffices to consider the case of m = 2 and n 2 3.

let S, be the syemetric group on n letters, and let §,_, identify with the
subgroup {oc e« S,lo(n) = n} of S, Define Lhe epimorphisa

e : I8,/8,., — !
by £(gS8,..,) =1, o8, and put I = Ker . FHurther, define the
epimorphisa

/2 Is“/s“-.c?ls,/s,_, — 1,
by »(oS..,.® z$,.,) = 6S,..,- ©$S..,, 6, T e §,. and put J_ = Ker ». lhen
we have

(2) (16, Theorem 31) Z,(2) = K(ZS,/5,.® J,)°"

From (1) and (2) 1t follows that

(3) ([6], [71) for each of n = 3, 4, Z.(m) is rational over k.

On the other hand, the following result was obtained by a quite different
vay, '

(4) ([10, 5.31) For any square-free integer n 2 2, Z.(m) is retract ratio-
nal over k.

We easily see Lhat

(5) J, is (a direct sumnand of) a quasi-permutation S.-module if and only
if 1,* is (a direct suomand of) a quasi-pernutation S, -sodule.

Put E, = k(ls“/s“_.)s“. Then, by Proposition, (1) and (2), J, is (a direct
suanand of) a quasi-perautation S_-module if and only if Z_(m) is stably ratio-
nal (retract rational) over L. Note here that the action of S_on 28,/S,., is
standard so that E, is rational over k.

Now, we have
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Iheorem 2. J, is (a direct summand of) a quasi-perautation S,.-medule if
and only if n = 2, 3.

Tquivalently, we have

Theorem 2°. Z.(m) is stably rational (retract rational) over E_ if and
only if n=2, 3.

The if part of Theorem 2 is shown in |9] and [6]. The only if part can be
shown by dividing it into the fol lowing two cases:

(i) n is not square-free; (ii) n is square-free.

For the case (i), this follows directly from (5) and non-rationality of the
Chevalley module ([1. V1. [5. 1.5]). It is noted that this was also shown by
D. J. Saltman (unpublished). 1[It was remarked by R. L. Snider ([7, p.319]) that
J, is not a quasi-permutation $,-module, and a proof of it is given in [3, 9.9].
On the other hand, for the case (ii), this follows from (5) and Theorea 1.
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

RING EPIMORPHISMS AND TORSION THEORIES

YAO MUSHENG

Let R, S be rings (associative and with identity). A ring
homomorphism ¢@: R+ S 1is called an epimorphism iff for any ring
homomorphisms a, B: S+ C, ap =Bp always implies a =8. Sur-
jective homomorphisms are surely epimorphisms but epimorphisms
need not be surjective. If ¢: R+ S is an epimorphism which
makes S to be a flat left R-module, we call ¢ a right perfect
epimorphism (or simply perfect map). Given a ring R, Mod-R will
denote the category of right R-modules. A torsion theory 1 de-
fined on Mod-R 1is a pair (T , F) of classes of modules in Mod-R
such that

i, HomR(T,F) =0 forall T T, F ¢ F;

ii. ir HomR(C,F) =0 for all F ¢ F, then C ¢ T;
iji, if HomR(T,C) =0 forall T T, then C ¢ F.

T is called the torsion class of T, while F 1s called the
torsionfree class of 1. If T 1is closed under taking submodules,
then <t 1is called a hereditary torsion theory. The family of all
torsion theories (resp. hereditary torsion theories) defined on
Mod-R will be denoted by R-Tors (resp. R-tors). Let o and =
be torsion theories on Mod-R. Then o<t 1iff Tog:TT, where

Tb is the torsion class of ¢ and TT is the torsion class of rt.
For further notations and terminologies we refer to Stenstrdm [6].

Let 9 : R -+ S be a ring homomorphism. Then every right S-
module M can be regarded as a right R-module: for any r ¢ R,

X ¢ M, x.r = xp(r). From this, we can define a canonical map Py
from R-Tors to S-Tors (or R-tors to S-tors) as follows: for
each o ¢ R-Tors, ¢#&J) = 1t 1is defined by the condition that a
right S-module N 1is t-torsion iff N 1is g-torsion as a right

This paper is in final form and no version of it will be submitted for publi-
cation elsewhere. 23



24

R-module (see [1]). When ¢ 1is a right perfect epimorphism, Py
is a surjective map and relations between R-Tors and S-Tors have
been extensively studied. But if ¢ 1is only an epimorphism, we
merely know a little. In [2], Golan raised a problem: if ¢ is
surjective, is the map Py surjective? He conjectured that Py
is surjective for every surjective homomorphism from R if and
only if R 1is weakly regular. But this conjecture is false. Mr.
Sen Daching [5] proved that Py is surjective whenever ¢ 1is sur-
jective. A more interesting problem is: if ¢ 1s an epimorphism,
is Py surjective? In this paper, we shall show that under a bit
stronger assumption the answer is yes and the known results can be
regarded as corollaries. We shall also investigate relations
between R-tors and S-tors, and generalize some known results.
(1)

Given a ring homomorphism ¢: R+ S, we can define maps from

S-tors to R-tors or from S-Tors to R-Tors. When ¢ makes S

a flat left R-module, one can define a map ¢#

from S-tors to
R-tors which assigns to each torsion theory Tt on Mod-S the
torsion theory ¢ = ¢#(1) defined by the condition that a right
R-module M 1is g¢g-torsion iff M ®RS is 1t-torsion. Obviously,
¢# preserves orders. When ¢ is a right perfect epimorphism, ¢#¢#
is the identity map of S-tors. Therefore Py is surjective.

This result can be found in [1].

The second mapping ¢g from S-Tors to R-Tors is defined
as follows: for any Tt ¢ S-Tors, ¢g(1) is the torsion theory on
Mod-R generated by the torsion class T,r of 1. It can be shown
that ¢g(1) is hereditary for any 1 ¢ S-tors when ¢ is surjec-
tive. In this case, Sen proved that ¢#¢g(1) =1 for any T ¢
S-tors (see [5]).

The third mapping ¢t from S-tors to R-tors 15 defined as
follows: Let F,r be the Gabriel filter of S which corresponds
to the hereditary torsion theory <t on Mod-S, and let L =
{1 sRy | I2971(J3) for some J e F }. It is not difficult to
verify that [ is a linear topology on R but in general it is
not a Gabriel filter. Let F be the Gabriel filter generated by
L, and let g be the corresponding hereditary torsion theory.

We define ¢%(1) = 0.
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We are now going to define the fourth mapping ¢e from S-tors
to R-tors, which plays an important role in this paper. Let T ¢
S-tors. Then 1t can be cogenerated by an injective S-module Eo.
Let E be the injective hull of Eo regarded as a right R-module.
Then E cogenerates a hereditary torsion theory ¢ on Mod-R. We
put ¢%(1) = o.

Lemma 1. Let ¢: R+ S be a ring epimorphism. Then for any
right S-modules M and N, HomR(M,N) = HomS(M,N).

This is well-known {(see [6]).

Definition. Let ¢: R+ S be a ring homomorphism. If for
any s € S, there exist By4 --- » 8 € R and bl' cee bn €S
such that S¢(ai) ¢ (R) for all i and zg=1 cp(ai)b1 = 1, then

¢ 1is called a strong epimorphism.

Remark 1. Every perfect epimorphism is a strong epimorphism
(see [6]), but the converse is not true. For example, every sur-
jective ring epimorphism is surely a strong epimorphism, but it
need not be flat, so need not be perfect.

Remark 2. Every strong epimorphism is a ring epimorphism (see
[6]).

Remark 3. In the above definition, ay, bi and n may depend

on s.

Lemma 2. Let ¢: R+ S be a strong epimorphism, and M a
right S-module. Let Eo be an injective S-module, and E the
injective hull of Eo as R-module. Then HomR(M.E) = 0 if and
only if HomR(M.EO) = 0, or equivalently HomS(M,Eo) = 0.

Proof. The only if part is obvious. We now assume that
HomR(M.E) # 0. Then there is a non-zero element a € HomR(M.E)
such that Im a n Eo # 0, and so O # a(x) e Eg with some x ¢ M.
Since M is a right S-module, XS 1is an S-submodule as well as an
R-submodule of M. The restriction a' of @ on xS 1s then an
R-homomorphism from xS into E. We want to show that a'(xs) =
a'(x)s for each s ¢ S. Since ¢ 1is a strong epimorphism, there
exist g4 --- 4 8 € R and bl’ ... , b e S such that S¢(ai)

n
e 9(R) and | :p(ai)bi = 1. Therefore, s = sz¢(ai)b1 and a¢'(x)s =
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a(x)sfe(a;)b; = Ja(x)se(a;)b; = Ja(xsela;))b; = Ja(xs)e(a;)b, =
u(xs)2¢(ai)bi = ¢'(xs). This shows that the image of a' belongs
to EO; for Eo is an S-module and «(x) ¢ EO. By Lemma 1, ¢' is

is S-injec-
that

also an S-homomorphism from xS into EO. Since Eo

tive, a¢' can be extended to an S-homomorphism of M into EO'

is, HomS(M,EO) # 0, or equivalently HomR(M,EO) £ 0.

Theorem 3. Let ¢: R+ S be a strong epimorphism. Then
¢#¢e(r) = 1t for any T € S-tors, and therefore Py is surjective.

Proof. Let o = ¢°(t), and t' = ¢#(0). The torsion classes
corresponding to Tt and 1' are denoted by TT and Tr" respec-
tively. We want to show that TT = Tr" Assume that <t 1is cogen-

erated by an S-injective module Eo. If E 1is the R-injective hull
of EO' then ¢ 1s cogenerated by E. Let M be a right S-module
with M e Tr" By the definition of Py M e To as right R-module,
and so HomR(M,E) = 0. Hence HomS(M,EO) = 0 by Lemma 2. This
means that M € TT, so TT. C TT. Conversely, let M ¢ TT. Then
HomS(M,EO) = 0. Obviously, HomR(M,E) = 0, and so M ¢ T, as R-
module. Then M ¢ Tr' as right S-module. This proves that T ¢

TT,,
We are now going to study the relations among the four maps

¢t
UM

maps from S-tors to R-Tors.

and ¢e. For convenience, they are all regarded as

Proposition 4. Let ¢: R+ S be a strong epimorphism. Then
for any 1t € S-tors, ¢°(t) s ¢t(1) s ¢°(1) s ¢#(T). If ¢ 1s sur-
jective then ¢®(1) = ¢t(r); if ¢ is perfect then ¢%(1) = ¢#(T).

Proof. (i) First, we have to verify that ‘T¢g(t) (abbrev.'rg)
< T¢t(1) (abbrev. T.). Since Tg is generated by T_ (as R-
module}, it is enough to show that TT €T,. Let M eTT . Then,
for any x € M, the annihilator (0:x)S of x 1in S 41is in the
Gabriel filter FT of S corresponding to 1. But, as R-module,
the annihilator (O:x)R of x in R contains ¢_1((O:x)s). In
1((0:x)s), i.e., o@lr) ¢ (O:x)S, then xe¢(r) = 0,
SO I € (Ozx)R. By the definition of ¢t(r), (O:x)R belongs to
the Gabriel filter F of R corresponding to ¢t(r). This shows

t
that M is ¢(t)-torsion, and therefore Tg €T,

fact, if r ¢ ¢
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(ii) In order to see that Qt(T) S ¢e(t). it suffices to show
that Ft is contained in the Gabriel filter Fe of R correspond-
ing to Qe(T). Since F,_ 1is generated by L, it is enough to show
that Lc F,. Let I e L. Then I ¢'1(J) for some J ¢ F_.
Since S/J 1is t-torsion, we get HomS(S/J.EO) = 0, which implies
that Homg (S/J,E) = 0 (Lemma 2). But there is an embedding 0 +
R/¢ 1(J) + S/J and E 1is R-injective, so every homomorphism from
R/¢~ (J) to E can be extended to a homomorphism from S/J to E.
Therefore HomR(R/¢'1(J),E) = 0. This shows that ¢-1(J) € Fe'
so Ie Fe.

(i11) Next, we shall show that Te is contained in the torsion
class T, of ¢#(1). Let M e T,. Then Homp(M,E) = 0, so
HomR(M.EO) 0. Hence HomS(M ®S, Eq ) = Homg (M, HomS(S Eq )) =
HomR(M,EO) 0. Therefore M ® S € T . which means that M ¢ T#.

(iv) Now assume that ¢ is surJective (Then QS(T) is
hereditary. See [5].) We want to show that ¢%(1) = [ (T). To
see this, it suffices to show that L & Fg. For any I ¢ L, there
exists a right ideal J of S such that J ¢F_ and I> qa'l(J).
Since ¢ 1is surjective, R/¢'1(J) = §/J, which implies that
R/Q-I(J) is t-torsion. (Obviously, R/Q_I(J) can be regarded as
a right S-module.) Then R/Q-I(J) is Qg(t)—torsion, because T
is generated by T} as R-module. This shows that ¢-1(J) € Fg'
and so 1 € F_.

(v) Finally, assume that ¢ 1is perfect. In order to see that
9%(1) = Q#(T), it suffices to show that T) - Té. Let M ¢ T#.
Then M QRS € T} and Homs(M @RS.EO) = 0. Noting that Eo is
also R-injective and E = E,, we see that HomR(M.E) = HomR(M,EO) =

HomR(M.Homs(S,Eo)) = Homs(M @RS.EO) = 0. This proves that M ¢ Té.

Corollary 5. If ¢: R+ S 1is a right perfect homomorphism,
then Q#Q#(T) = 1t for any 1t € S-tors.

Proposition 6. If ¢: R+ S 1is a strong epimorphism, then
Q#QS(T) =1 for any T € S-Tors. In particular, if ¢ 1is surjec-
tive then ¢ is a map from S-tors to R-tors and Q#Qg(T) =
for any Tt € S-tors. ‘

Proof. By definition, T% < Tég(T), where modules in TT are
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T—
T .e. T -
0 f M € ° ¢g(1), ie., M € ¢g(1) as R-module, and suppose that
M eTT. Thefi we may assume that M is t-torsionfree. But ng(T)

is generated by TT, and HomR(T,M) = 0 (T ¢ TT) yields a contra-

diction that M is ¢g(1)-torsionrree. Therefore T g = T,
Py P (1) T

regarded as R-modules. So, T_<¢ 1# wg(T) as S-module. Now, let

i.e., ¢#¢g(1) = T,
(11)
Let ¢@: R+ S be a ring homomorphism and let ¢ be a torsion
theory on Mod-R with T = ¢#(o). It is not necessarily the case
that a right S-module M 1is rt-torsionfree iff it is g-torsionfree
as right R-module. If this condition happens to hold, we say that
o 1is compatible with ¢.

Proposition 7. If ¢: R+ S 1is a strong epimorphism and 1 ¢
S-tors, then ¢ (1) is compatible with g.

Proof. Let o = ¢%(t). Then 1 = ¢#(o), by Theorem 3. If N
is a t-torsionfree S-module, then N can be embedded in Eg with
some index set A. Now, in view of Lemma 1, this embedding is also
an R-module embedding. Moreover, EO is an R-submodule of E, so
N can be embedded in EA. This shows that N 1is g-torsionfree.
Conversely, if M is a right S-module which is o-torsionfree as
R-module, then HomR(T.M) =0 for any T ¢ To' especially for any
T € TT. This means that M 1is t1-torsionfree. We have thus seen
that ¢ 1s compatible with o.

Proposition 8. Let ¢: R+ S be a strong epimorphism, T ¢
S-tors, ¢ = ¢°(1), and M a right S-module. Then there hold the
following:

(i) An S-submodule N of M is t1-dense iff N 1is g-dense
in M, where M and N are regarded as R-modules.

(ii) If M 1is g-injective, then M 1is 1-injective. 1In
particular, if M is g-closed then it is t-closed.

Proof. Noting that M/N 1is t1-torsion iff M/N 1s o¢-torsion,
we can easily see (i). In order to see (ii), it suffices to recall
that every t-dense right ideal of S 1is o-dense.

Let o € R-tors. A left R-module N is called g-flat if for
each exact sequence 0 + K + M of right R-modules such that K
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is g-dense in M, the sequence 0 + K ®RN - M ®RN is still exact

[3]. The following proposition sharpens a result in [1].

Proposition 9. Let ¢: R+ S be a strong epimorphism, T ¢
S-tors, and o = ¢e(t). Then the following are equivalent:

(i) RS is g-flat.

(ii) A right S-module M is t-injective iff it is o-injective
as R-module.

When this is the case, a right S-module M 1is t-closed iff
it is o-closed.

Proof. (i) = (ii). Suppose that S 1is ¢-flat. In view of
Proposition 8, it remains only to prove the only if part. Let M
be a t-injective S-module, and I a o-dense right ideal of R.
Since RS is g-flat, the sequence 0 + I ®RS isl R ®RS =S 1is
exact. Given an R-homomorphism a: I + M, we define y: I + I ®RS
by vy(a) = a®l, Since R/I is o-torsion and o0 is compatible
with ¢ (Proposition 7), R/I ®S 1s t-torsion (see [1, Prop. U7.21).
Now, it is easy to see that R/I QRS = S/9(I)S. Moreover, gS being
o-flat, o(I)S = I GRS. Thus I ®RS is g-dense as well as t-dense
in 8. Now, recalling that M is t-injective, we can find an S-

homomorphism B: S + M such that a®1 = B(i® 1),

0 — I ____}___5 R
Yl lo
0-—+I®RS il -3 8
ael |
M = M8 S 8

Then (B¢)i = @ and M is g-injective.

(ii1) = (i). Let 0 + K . M be an exact sequence of R-modules
such that K is o-dense in M., Let Q be the t-injective hull of
K GRS. Then Q 1is o-injective as R-module by hypothesis, and there
exists an R-homomorphism ¢: M + Q such that the following diagram

commutes:

0 —2K —%M

T

0—K &S 1.qQ
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where 1i 1is the inclusion map and B8(k) = k®1 (k ¢ K). Apply the
functor -~ GRS to the diagram. Noting that every right S-module
W 1s isomorphic to W ®,S and that ¢ 1is an epimorphism (see [1]),

R
we get the following commutative diagram:

a®1
K@RS —————>M0RS

=l lwl
0—keps —L1 Q
Clearly, a®1 1is monic.
Since ¢ 1is compatible with ¢, the latter assertion is an
easy consequence of (1i1i).

Proposition 10. Let ¢: R+ S be a strong epimorphism, Tt €
S-tors, and ¢ = ¢e(1). Then there hold the following:

(i) If o 1is Noetherian, then so is <.

(ii) If ¢ 1is of finite type, then so is rt.
(iii) If ¢ 1s stable, then so is T.

If, furthermore, RS 1s g-flat, then there hold the following:
(iv) If ¢ 1is exact, then so is 1.

(v) If ¢ 1s perfect, then so is T.

Proof. (1) Let J; € J,¢ ... be an ascending chain of right
ideals of S such that J = U i is t-dense in S. Putting I
= ¢'1(Ji). we get I = ¢'1(J) = U I;. Since ¢ is Noetherian,

Ik is g-dense in R for some k. By [1, Prop. 47.2], Ik is 1~

i

dense in S.

(11) Let J be a t-dense right ideal of S. Then ¢—1(J) is
o~dense in R. Since o 1is of finite type, there is a finitely
generated g-dense right ideal I of R, Then ¢(I)S 1is a fi-
nitely generated right ideal of S contained in J, and it is t-
dense by ¢'1(¢(I)S) > I. Hence 1 1is of finite type.

(iii) Let ™M be a 1-torsion S-module. We want to show that
the S-injective hull Qo of M 1s also t~-torsion. Let Q be thg
R-injective hull of M. Then Q 1s o-torsion, since ¢ 1s stable.
Consider the following diagram: .

0—M——q,

J‘lQ/
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where 1 and J are injections. By the injectivity of the R-
module Q, there is an R-homomorphism a: Qo + Q which makes the
diagram commutative. Obviously, a 1s an embedding, and Qo is
g-torsion as R-module, i.e., Qo is t-torsion as S-module.

Henceforth, we assume further that RS is ¢-flat. Then the
1-localization and o-localization of any right S-module coincide.

(iv) Recall that a hereditary torsion theory 1 1s exact iff
the localizing functor corresponding to 1 1s exact. We denote by
QT and Qa the localizing functors corresponding to 1 and o,
respectively. Since Q0 is exact, 1t suffices to show that QT(M)
= QO(M) for any right S-module M. Since 1t = ¢”(a) and ¢ 1is
compatible with ¢, the set of t-~torsion submodules of M and the
set of g-torsion submodules of M coincide. Hence, by Proposition
9, QT(M) = QO(M).

(v) This is an easy combination of (1ii) and (iv).
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

ON SEPARABLE POLYNOMIALS

Shiichi IKEHATA and Hiroaki OKAMOTO

Throughout this report, B will represent a ring with 1,
p an automorphism of B, and D a p-derivation of B (i.e. an
additive endomorphism of B such that D(ab) = D(a)p(b) + abD(b)
for all a, be B). Let R = B[X;p,D] be the skew polynomial
ring in which the multiplication is given by aX = Xp(a) + D(a)
(a € B). By ’R(O) we denote the set of all monic polynomials g
in R with gR = Rg. We shall use the following conventions:
U(A) = the set of all invertible elements of a ring A; Bp’D =
{aeB | pla) = a, D(a) = 0}. A ring extension A/B is called

a separable extension if the A-A-map A ® A + A defined by
B

x ® yw»xy (x, y e A) splits. A polynomial g in R(O) is
called a separable polynomial if R/fR 1is a separable extension
of B. Moreover, a ring extension A/B 1is called to be
G-Galois if there exists a finite group G of automorphisms of
A such that B = a® (the fixed ring of G in A) and
Zixiw(yi) = 61,6 (0 G) for some finite x;, y; € A.

In the rest of this report, we assume that pD = Dp. Let £
be in R(O) n Bp’D[x] and degree of f is m. As was shown in
[1, Lemma 1.2], £ is in c(BP'P)[x], where c(B°'D) 1is the
center of BP'D. The c(8°’P)-module c(B°'D)[x1/£c(8P'D) [x]
has a free basis {1, x,-- -,xm-l} where x = X + fC(Bp'D)[x].

The detailed version of this paper will be submitted for publication elsewhere.
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Let T, be the projection of c(8P'P) [x1/£c(BP'P) [x] onto the
coefficients of x°. The trace map t is defined by t(z) =
2?;% ni(zxi) (z e C(Bp'D)[x]/fC(Bp'D)[XI). Then the
discriminant 6(f) is defined by &(£f) = det"t(xkxn)" (0 < k, *

g m-1).
Now, we shall introduce here the following definition.

Definition. If a ring extension of B is generated by a
set {a1,~°- ,am} such that azay = ago; and bo; = aip(b) +
D(b) for all i, j and b e B then it will be denoted by
B[al,-- o,am;p,D]. Let £ be a polynomial in R(o):w Bp'D[x]
of degree m. If S = B[al,-°' ,am;p,D] and f = (X - al) ..
(X = ap) in BD'D[al,~¢ » sap][X] then S will be called a
splitting ring of f over B. Moreover, a splitting ring A =
B[xl, LI ,xm;p,D] of f is said to be universal if for any
splitting ring § = B[al, e ,am;p,D] of £, there exists a
B-ring homomorphism of A + S mapping x5 into oy for i =1,

o--'mo

I - S p/D
Now, let £ =X"+ X" ‘a _, + + Xa; + a5 e Reg) n BPUIX]
and Rm = B[xl, - ,xm:p,D] where xl, e ,Xm are
indeterminates which are independent. Moreover, for elementary
symmetric polynomials 8; of Xl,- .. ,Xm (deg s; = i, i=1,¢--

_ _ oy i _ ol
m), we set t; =a . - (<1)7s; and Ng = I, R t.. Then
_ M j- -i_j-(m-i) _
t;b = zj_ -i (m—i) p "D (b)tm_j (b € B) and tixj = xjti

(1L <i, j < m). Hence Ng is an ideal of Rm. By Rf, we
denote the factor ring Rm/Nf.

Under this situation, we have the following

Proposition 1. Let f be a polynomial in R(O) n Bp'D[x]
of degree m. Then Rf is a universal splitting ring of €£.
Moreover, for any universal splitting ring A = B[xl, ---,xm;p,D]
of £, there exists a B-ring isomorphism of A + R, mapping
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X. into X. + N for i=1,---,m.
i i

f

Let f € R(O) N Bp'D[x] and B[ul,-' ',am;p,D] a splitting

ring of f. Then f e C(Bp'D)[x] and C(Bp'D)[al, ---,am] is

a splitting ring of £ over C(Bp'D). Then we obtain the
following

Proposition 2. Let f be a polynomial in R(O) n Bp'D[x]
of degree m, and B[al,- ~-,am;p,D] any splitting ring of ¢£.
Then

_ - 2

(2) bé(£) = 6(£) ™™ ) (b) for all be B. (CE. [2, Lemma
1.1].)

In [3], (4] and [5], T. Nagahara and A. Nakajima presented a
theory of splitting rings of separable polynomials over a
commutative ring, and in [7] T. Nagahara studied splitting rings
of some type of separable polynomials in a skew polynomial ring
of automorphism type B(X;pl ( = B[X;p,0]).

The present report is a study about splitting rings of
separable polynomials in the skew polynomial ring B(X;p,D]
with pD = Dp. We shall generalize the results of T. Nagahara
[7] and obtain some other related results.

Next, we shall state one of our main theorems.

Let f be a polynomial in R(O) n Bp'D[x] of degree m and
A= B[xl,- .. ,xm;D,D] be a universal splitting ring of f£.
Let s be the symmetric group of the set {1,---,m}. Then,
for every o € sm, we have a B-ring automorphism o* of A
mapping x5 into Xg (1) for i =1,--+,m. Obviously, the
mapping (*) : ¢ » ¢* is a group homomorphism of sm into the
group of B-ring automorphisms of A. 1In the following theorem,
the image of (") will be denoted by S, where V = ESWRLTE 0 B
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In case m > 2, we see that (%) is a monomorphism, that is,
Smg SV (CE. [3, Remark 1l.1]).

Theorem (Cf. [7, Theorem 4]). Let f be a polynomial in
Rg N B?'P[X] of degree m, and A = B[Vip,D] (V = {x;,---,x_} )
be a universal splitting ring of £. Then the following
conditions are equivalent.

(1) 6(f) € U(B).

(2) A/BIV\W] is Sw—Galois for every subset W of V.

(3) A/B[V\{xl, x,}] s -Galois.

S
{x;, %,}
(4) x; - x, € U(A).

Remark. Let g be a polynomial in B[x;p](o) n BPIX] of
degree 2. By [6, Theorem 2.5] we know g is Galois if and
only if é6(g) € U(B). Therefore if R = B[X:p], the condition
(3) may be replaced with (3)’

(3)’ A/B[V\{xl, xz}] is Galois.

We obtained some other related results concerning the
splitting rings and the details will be appear in the forthcoming
paper.
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

ON ARTINIAN RINGS OF FINITE GLOBAL DIMENSION

Mitsuo HOSHINO

In this talk, I summarize my joint work with Y. Yukimoto [5]
and raise a question for artinian rings of finite global dimen-

sion,

1. Introduction. Throughout, A stands for any basic left
and right artinian ring, J its Jacobson radical and {e1,...,en}
the complete set of orthogonal primitive idempotents in A, Let
cij denote the composition length of e;Ae, over eiAei for
1 <4, j $n. The matrix C(A) = (ci.) is called the left Cartan
matrix of A. Does gldimA < « imply detC(A) = 1? This has
been partially answered by several authors(e.g., Zacharia [7],
Wilson [6], Burgess et al. [1], Fuller and Zimmermann-Huisgen [4]
and so on), but is still open.

The above problem would be a consequence of the following

Question. Does gldimA < = ensure the existence of a
torsionless left A~-module Q such that

(a) D = EndA(Q) is a division ring,

(b) the evaluation map Q 8y HomA(Q,A) + A is monic and

(e) Torﬁ(TrQ,Q) =0 for k 2 2, where Tr 1is the transpose?

In case projdim,Q ¢ 1, the condition (c) is automatically
satisfied, Thus, this question is affirmative if gldimA < 3,
because gldimA < « ensures the existence of a torsionless left
A-module which satisfies the conditions (a) and (b) and has

39
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projective dimension ¢ gldimA - 2 (if gldimA 2 2).

2., A generalization of heredity ideals. The next theorenm
shows that, if our question is always affirmative, so is the
Cartan determinant problem.

Theorem([5, Theorem]). Let Q be a torsionless left A-
module and I its trace ideal. Suppose the following conditions:

(a) D = EndA(Q) is a division ring,

(b) the evaluation map QGDIkmA(Q,A) + A is monic,

(c) Torﬁ(TrQ,Q) =0 for k 2> 2, where Tr is the transpose,
and

(d) proj dim ,Q < =.
Then we have

(1) gldimA/I < gldimA + proj dim ,Q,

(2) gldimA < gldimA/I + max{(2, proj dim ,Q + 1} and

(3) det C(A/I) = det C(A).

In case AQ is projective, the ideal I is just a heredity
ideal (see Dlab and Ringel [3]), the notion of which was first
introduced by Cline, Parshall and Scott [2], and the statements
(1) and (2) have been known.

Dlab and Ringel [3, Theorem 2] showed that, if gl dimA < 2,
there always exists a projective left A-module which satisfies
the conditions (a) and (b). Thus, one can apply the above theoren
repeatedly to conclude that gldimA ¢ 2 implies detC(4) = 1,
This induction is different from Zacharia’s one [7]. Another
example is the case of A being left serial. In that case,
gldimA < @ ensures the existence of a simple torsionless left
A-module Q with projdim,Q <1 (cf. Burgess et al. [1, Lemma 2]).

The next proposition shows that our question is affirmative
if gldimA g 3.

Proposition 1([5, Proposition 1]). Suppose 2 < inj dim 44 =
m< o, Let Q be minimal with respect to inclusions in the
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class of all non-zero torsionless left A-modules X with
Ext:(X,A) =0 for k 2m- 1. Then Q satisfies the conditions
(a) and (b).

Remark. In case gldimA < =, injdimAA = gldimA and for
any left A-module X projdim,X ¢r if and only if ExtX(X,A) =
0 for k>r,

3, Zacharia’s reduction. There is a way to reduce the size
of the matrix C(A). Namely, we have the following

Proposition 2(e.g. [5, Proposition 4]). Suppose that
proj dim ,Ae,/Je, < = and that ExtK(Ae1/Je1,Ae1/Je1) =0 for
k > 0., Then we have

(1) gldim (1-e,)A(1~e;) < gldimA + projdim ,Je, and

(2) det c((1 -e1)A(1- e1)) = det C(4).

This reduction was first used by Zacharia [7] to show that
gldimA < 2 implies detC(A) = 1 (see also Burgess et al. [1]).
If gldimA > 3, as shown by the next example, this reduction is

not necessarily available.

Example. Let A be a subalgebra of (F)8, the 8 x 8 matrix
algebra over a field F, with basis elements
5 8

eq = L e300 &y = 156 €jj » & T €yg s

336 + e47 + e58. e41 + e52. enq + egos e56 and egg?

where e;; _are matrix units. Then gldimA =3 and for i = 1
and 2 Extﬁ(Aei/Jei.Aei/Jei) # 0. On the other hand, one can
take Ae1/Je1 or Aez/Aa as a torsionless left A-module which
satisfies all the conditions in Theorem. Also, A does not have

any heredity ideal.
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

BLOCKS OF p-SOLVABLE GROUPS
WITH TWO OR THREE SIMPLE MODULES

Yasushi NINOMIYA and Tomoyuki WADA

1. Introduction. Let G be a finite p-solvable group, k
a splitting field for G which has characteristic p and let
B denote a block (ideal) of the group algebra kG. The number
of non-isomorphic simple B-modules will be denoted by &(B). In
the present paper, we consider the Cartan matrix CB of B
with Q(B) = 2. 1f B = By, the principal block, then, as is
well known, By = kC/Op.(G). Therefore &2(By) is the number
of p-regular classes in c/op.p(c). In Section 2, we shall give
the structure of C/Op,p(C) which has exactly two or three
p-regular classes. 1n Section 3, we shall show that if Q(B) =
2, CB can be almost determined by means of the dimensions of
simple B-modules, and in particular we shall show that if 2(Bg)
= 2, CB0 is completely determined. In Section 4, We shall make
a conjecture that if 2(B) = 2 then the dimensions of two
simple B-modules have the identical p -parts, and state that
this is true in certain special cases.

2. p-solvable groups with two or three p-regular classes.
In this section we shall give the structure of p-solvable group
G with Op(C) = <1> which has two or three p-regular classes.
At first assume that G has exactly two p-regular classes. If

The final version of this paper will be submitted for
publication elsewvwhere.
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2. On the
other hand, if |Gl is divisible by p then a Sylow p-subgroup

G is a p’-group then clearly p is odd and |[GI

P of G acts transitively on Op,(G) - {1}). 1In this case the
order of Op,(G) and the structure of P are completely deter-
mined by Passman [8]. Hence we have the following

Theorem 1. Let G be a p-solvable group with Op(G) = <1>,
Suppose that G has exactly two p-regular classes. Then G is
either a p’-group or a p-nilpotent group; and

(1) if G is a p’-group then p 1is odd and G x Z,, and

(2) if G i3 a p-nilpotent group then one of the follouwing
holds:

(a) p=2 and G =~ 532 x Zg.
(b) p=2 and G = E;z X Qs.
() p=2 and G = Egp; X Sye.
(d) p=2 and C = Zq ' Zzn. wvhere q = 2"+ 1 isa

Fermat prime.
(e) p = 2" - 1 (a Hersemne prime) and G =~ Ezn b Zp.
We therefore see that if 2(Bg) = 2 then c/op.p(c) is
isomorphic to one of the groups mentioned in the theorem and
By = kG/Op,(G). The notation used in Theorem 1 will be intro-
duced just after Theorem 2. By making use of this result, we
can give the structure of p-solvable groups which have exactly
three p-regular classes, that is, we have

Theorem 2. Let G be a p-solvable group uith Op(G) = <1,
Suppose that G has eractly three p-regular classes. Then the
p'-length of G 1is at most 2, and one of the following holds:

(1) p=3 and G = Z,.

(2) p=2, 3 and G = Jg.

(3) p=2 and G = H(3) P, where P i3 Iz or S,e.
(4) p=3 and G =~ Qg X Zg (= SL(2,3)).

(6) p=2 and G =~ 532 X P, where P is 1, or Dj.
(6) p=2 and G = Zq p Zzn. where q = ah*l 1 is a

Fermal prime.
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(7) p= 2 and czzqnzn. where q = 2p" + 1 {3 a

prime. p
(8) p® 2, 3 and G =~ E g X YA n’ where 31 = 2p° + 1,
3
(9) p=2 and G =~ 534 X P, where P i8 a 2-group which
contains a normal subgroup R of inder 2 satisfying one of
the following conditions:

(a) IRl = 25 and R = 1 Xgls, Qs XQs or S XgS 16
(b) IRl = 28 and R =125 x Iz, Qs X Qg or S,s XgS16
(c) IRl = 27 and R = 5,5 xSie.
(d) IRl = 2% and R = S5 X S;5.

(10) p=2 and G = Zq2 X P, where q 1is a Fermal prime
greater than 3 and P 1is either
(a) a Sylow 2-gsubgroup of GL(2,q), or
(b) a 2-group defined by
<z, ylz26 =1, zze-l = yze. ¥ = z-1y,
where 2% = q - 1.

(11) p=2 and G = E72 X T, where T is a group generated
by a normal subgroup R isomorphic to Qg and two elements w,
z with the following properties:

wd =1, z2 €R, 2% =1, Wt = wl.

(12) p=2 and G = 552 X 7T, where T 1i8s a group generated
by a normal subgroup R isomorphic to T4(5) and two elements
w, £ with the following properties:

wd =1, z2 €R, z8 =1, W = wl.

We then see that if £(Bg) = 3 then G/Op,p(C) is isomor-
phic to one of the groups mentioned in the theorem and By =
kC/Op,(C). The notation in the above theorems is as follows:

Zn the cyclic group of order =a,

E n the elementary abelian group of order pn.
P

23 the symmetric group of degree 3,

Qs the quaternion group of order 8,

Dg the dihedral group of order 8,

Sis the semi-dihedral group of order 16,
H(3) the nonabelian 3-group which is of order 3°
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and has exponent 3,
that is, M(3) is a group given by
<a,b,e | a® = b% = ¢% = 1, b* = be, c? = e, e = o>,
Further, following [8], p.229, we denote by J,(6) the subgroup
of GL(2,5) consisting of the matrices

a 0 0 a
e . ’ a € GF(5), a # 0.
0 =*a” +*a” 0

Given two groups H and K, H M K denotes a semidirect product
of H by K, namely, H is normal in H x K and (H x K)/H x~ K;
and H xsK denotes a subdirect product of H and K, namely,
H xsK is a subgroup of the direct product H X K vwhich satis-
fies

oy H xK) = H, ¢K(H xgK) = K,
where ¢, and oy are canonical homomorphisms of H x K onto
H and K respectively.

The construction of Theorem 2 is as follows: It is easy to
see that the p"~length of G is at most 2. At first, part (1)
or (2) holds if G 1is a p’-group. Next, if G 1is p-nilpotent
then we can see that op.(c) is a q-group for some prime q.
Part (3) or (4) holds for the case where Op.(c) is nonabelian.
Now suppose Op.(c) is abelian. If a Sylow p-subgroup of G
acts %—transitively on Op.(G)# = Op.(G) - {1), then part (5),
(6),(7) or (8) holds. On the other hand, if a Sylow p-subgroup
of G does not act %-transitlvely on Op,(C)#. then part (9) or
(10) holds. Finally, the case G = Op,pp,(C) does not occur and
part (11) or (12) holds for the case G = Op,pp.p(C).

3. The Cartan matrix of a block with two simple modules.
Suppose £2(B) = 2 and let S;, S; be non-isomorphic simple
B-modules. We denote by Ut a projective cover of St. Then
by [3], the p-part of dimkui is equal to pa. the order of a
Sylow p-subgroup of G, and the p -part of dimkUt coincides
with that of dimksi. Since B has a simple module whose vertex
is equal to a defect group of B, ve may assume that a vertex

of S, is a defect group of B. Now let Vt be a vertex of
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Si' Then by [51, the p-part of I[C : Vi] is equal to that of
dimkst. Set fi = dimksi and u, = dimkUi, and denote by [’
the p’-part of ft' If B is of defect d, then by the
above, we can write as follows:

a-d,. a-d+e,, a,.
fl=p fl. f2=p le ui=pfi=|vilfi’
where pd-e = |val.
Now let ctj(lst.jSZ) be the Cartan invariants of B. By
[61, we have ¢ , < IViI for 1 = 1,2. So we set ¢, = IViI -
q;, 0¢q,; <« |Vi|. Then from the equalities
e fr + er2f2 = IViIfy,  ea1fy + e22f2 = IV2lf2,

we have
c12f2 = a1fy, e21f1 = qa2f2.

But ¢,, = ¢2,. Hence q,f,/f2 = Q2f2/f, and s0 q; = q,(f,/f2)2.

Since |Vil| = pd—e. setting q = q;, we have
pd -q qf\/f2
(*) CB = .
d-e 2
qf/f2 4 - qfy /1)

We are now in a pogsition to state our theorem.

Theorem 3. Let G be a p-solvable group and B a block
of kG. If 28 2, them 2e < d and the Cartan matrix of
B is of the form

pd - pze+rh pe+?hfi/f§
CB ’
e*Yhrists pY (1 + hp®)
where Yy and h are integers with 0 <y <d - 2e, 1 < h
p%°28"Y gnd (h, p) = 1. Further, concerning the integers h
and v, we have
(i) h satisfies the equality
P28 - np® + S/ = 1.
(it) p' is an elementary divisor of CB.
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Proof. By (%), we have ;7 = pd'e - (q/pze)(f;/fi)z,
which shows that q = 0 (mod pze). Suppose now 2e > d. Then
q =0 (mod pd). This contradicts the fact that 0 < q < |V,]| =

p%. Hence 2e < d. Since q = 0 (mod p2®)

, We may write q =

p%€*¥h, where ¥ 20 and (h, p) = 1. Then from the form of
CB in (%), we have 4 deo ’ .
det Cp = p (p - p h(p ; (fF1/7F3)20.
Noting that det Cg > 0, we have p "€ 5 p%*Yh  and hence ¥ <
d-2e-v

d-2¢ and h < p We now claim that f;2 + p2f£32 s
not divisible by p. 1In fact, it is easy to see that

P22 (512 + p%73%) = uf, + uf, = dimB.
But the p-part of dika is pza-d(tzl). Hence fi2 + pef52
is the p'-part of dika. Since

det Cp = Y (08T | hp® s (F1/£3)2)),

and det CB is a power of p, from the above, we see that the
integer h satisfies the equality stated in (i). Combining
this equality and (%), we see immediately ?hat CB is of the
form as required. It is well known that the largest elementary

divisor of CB is pd and det CB is a product of elementary

divisors. But det CB = pd+r. Thus (ii) follows, and we com-

plete the proof of Theorem 3.

Remark 1. 1f p =2 and {¢(B) = 2 then e > 0. 1In fact,
we pointed out, in the proof of Theorem 3, that fj2 + 28f32 s
odd, and so clearly e # 0.

Corollary 1. Let p= 2 and G a semnidirect product of a
p-group P of order pa by a group <z> of order 2. We set
ICP(m)I = pr(r < a). Then the Cartan matriz of kG 1is given by

[:V(p“'r + 1372 p'p?7? - 1)/2]

a-vy

Y2 - 12 pYp +1)/2

From Theorem 3, we see that the possibilities for the
Cartan matrix are remarkably restricted, and, in particular,
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the following corollary suggests that if the order of a defect
group of G is small there is only a small number of possibil-
ities for the Cartan matrix.

Corollary 2. Let p =2 and D a defect group of B.
Suppose ¢(B) = 2. Then the follouwing hold.

(1) If |D| = 22, them <(e,v,h) = (1,0,1), fi = f1 and
_ (4 2
Cp = (2 3]'
(2) If |D| = 24, then (e,v,h) = (1,1,1), f1 = f3 and
_ (8 4
Cg = (4 e]'
(3) If |D| = 25, then either (e,y,h) = (1,0,5), fi = f5,
_ 12 10 _ . e _ (16 8
CB = (10 11) or (e,Y,h) = (1,2,1), fi = f3, CB = ( 8 12).

Example. We give some examples for Corollary 2. Let p =
2, and 24, the symmetric group of degree 4. Then k24 is an
example for (l1). For case (2), we give three examples. One of
them is the group algebra of 24 X Z,. As is well known, 24
has two representation groups. One of them is GL(2,3) and the
other one is the binary octahedral group G4z of order 48 (see
[1]1, 5.6 Definition and {71, I, Definition XI1.8.4). The group
algebras of these groups are also examples for case (2). We note
that G4ug 1is a group T given in Theorem 2(11). If G is a
semidirect product (E22 x E22) X 23, where 23 acts on each
E22 as an automorphism group, then &G is an example for the
first case of (3). For the second case of (3), we give five
examples. Clearly the group algebras of 24 X Z,4, 24 X E22,
GL(2,3) x Z,, Gsg x 2, are examples for this case. Let T be
a group given in Theorem 2(12). Then kT is also an example
for this case.

Remark 2. By the same argument as in the proof of
Corollary 2, we have the following:

(1) 1f |D| = 28, then (e,y,h) = (1,1,5), (1,3,1) or
(2,0,3).
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(2> 1f |D| = 27, then <(e,v,h)
or (1,0,21),

(3) 1£ |DI
or (1,1,21).

Further, in these cases it holds that fi = f3.

(1,2,5>, (1,4,1>, (2,1,3)

28, then <(e,v,h)

(1,3,5>, (1,5,1>, (2,2,3)

We next determine the Cartan matrix of the principal block
By with 2(Bg)= 2. Since By = kG/Op.(G), to accomplish our
end, it will suffice to determine the Cartan matrix of
kG/Op,(G). So we asuume that Op,(G) = <1>. Then G/Op(G) is
one of the groups mentioned in Theorem 1. If p is odd and G
satisfies condition (1) in the theorem, then as stated in
Corollary 1, the Cartan matrix of kG is easily obtained.
Accordingly, in the rest of this section, we concentrate our
concern to obtain the Cartan matrix of kG for cases (a), (b),
(¢), (d) and (e) in Theorem 1(2).

Now let S be a non-trivial simple kG-module. Set #H =
G/Op(G) and V = Op,(H). Then S 1is a non-trivial simple
kH-module. If case (a), (b), (d) or (e) occurs, then H is a
complete Frobenius group with complement 7T, a Sylow p-subgroup
of H. Therefore S = L'H where L is a non-trivial simple
kV-module. On the other hand, if case (c) occurs, then the
inertial group IH(L) of a non-trivial simple kV-module L is
isomorphic to AE32 X Zsy, andﬁ:zere exists a simple kIH(L)-module
L such that le ~ [ and = §, Further we can show that
k}” ~ k” ® S, where kT and k” are the trivial simple kI-
and kH-modules respectively. From this we see that S is real-
izable in the field GF(p). Hence we may assume k = GF(p).
Since S appears in the second Loewy layer of a projective
cover of Kk,, by Gaschiitz’s theorem (L73, 1, Theorem W.15.5), S
is isomorphic to a complemented p-chief factor of G. Thus we
obtain the following

Proposition 1. Let G be a p-solvable group and B, the
principal block of kG. Suppose {(By) =2 and let S bea
non-trivial simple Bg-module. If G has p-length 2, then the
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follouing hold:
8 for case (a), (b) or (c).

(1) dim S = 2™ for case (d).

p Jfor case (e).

(2) GF(p) +is a splitting field for G/Op,(G).

(3) We may regard, by (2), S as a G-module over GF(p).
Therm S is isomorphic to some complemenled p-chief factor of
Op.p(G) in G.

Again, let G be a p-solvable group with Op.(G) = <1>
which satisfies the condition stated in (a), (b)), (¢), (d) or
(e). At first we consider the case where Op(G) is a minimal
normal subgroup. We call such a group a group of type (a), of
type (b),... or of type (e). We set Q = Op(G). We denote by
H a complement of Q in G (see (7], I, Lemma W.15.4), by T
a Sylow p-subgroup of H, and by V the subgroup Op.(H). In
order to determine the Cartan invariants of kG we have to
calculate the number p? in Theorem 3. Since p? is an ele-
mentary divisor of the Cartan matrix of kG, it is the p-part
of ICG(v)I. where v 1is a non-trivial element of V. Hence

IC~A (I if G is of type (a),(b),(d) or (e),
pv={o

2|Cb(v)l if G is of type (c).

Since Q >~ S as kG-modules, the action of H# on @ is induced
from that of H on S. But we already know that k;” & kH ® S,
which implies that S =x !VkT OkrkT. where IV is the augmenta-
tion ideal of kV and T = zteT t. From this we can obtain the

value of pv. Hence we have the following:

Type d e 14

of G D p p

(a), (b) 211 23 22
€)) 212 28 28

2n+n n

(d> 2 2 1
(e) pp+1 p p(P-l)/z
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Combined with Theorem 3, we obtain the following

Theorem 4. The Cartan invariants for the groups G of

type (a)~(e) are as follouws:

ggpg Cyq Ci2 C22
(a), (b) 28 25.7 22.3-19
(e) 29 26.7 29.3-19
T n T
2222 " 4 1) 2"2? - 1) 22 *" 4
(d) -y -y -y
2+ 1 2+ 1 2" + 1
p+t3 p-1 p+l p+l p-1 p+3
ey p?2 p? + 10 p?2@? -1 % p?% + 1)
p+1 p+1 p+1
Let G be a p-solvable group with Op.(G) = <1>. Suppose
20(kG) = 2. Set P = Op(G). In order to determine the Cartan
invariants of kG, we have to calculate the order of Cp(v).
where ¥ is a non-trivial p’-element of G. Since, by a

theorem of Cossey, Fong and Gaschiitz ({7], I, Theorem %.13.9),
any p-chief factor X of G
kG-module, where k = GF(p),
trivial simple module or to a non-trivial simple module S. In
the former case, 1X| = p, while in the latter case, |X| = pl.

where A = dimkS. Assume that in a chief series of P in G,
m factor groups are of’order p

is isomorphic to a simple
it is isomorphic either to a

and n factor groups are of

order p*. Now set p' = ICx(v)l. where X 1is a chief fac-
tor of P in G whose order i§ p*. Then by [4), Theorem 5.
3.15, we obtain lCP(v)I = pn+n?. We already know the value of
pv. Therefore, once we know the numbers ® and n, we can
obtain exactly the Cartan invariants of kG.

4. Dimensions of simple modules, Let B be a block of a
p-solvable group G, and suppose {(B) = 2. As we saw in

Proposition 1,
By .

it holds that
Furthermore,

fi = f2 for the principal block

by Corollary 2 and Remark 2, if p = 2 and



ID] < 28 then f; = f5. Then we are inclined to believe that
the following is true.

Conjecture. I/f G 1is a p-solvable group and B 1is a
block of kG with ¢B) = 2, them f] = [f;.

1f our conjecture is affirmative, then CB is determined
only by the values of e and vy. By making use of Fong reduc-
tion theorem and a result of Higgs (6], we see that the follow-
ing hold:

Proposition 2. Let G be a p-solvable group and B a
block of kG with ¢CB) = 2. [If a defect group of B 1is
abelian, then f, = f,.

Proposition 3. Let G be a p-solvable group and B a
block of kG with (B) = 2. If p i9 odd and |D| < p?®,
then f, = f,.

Remark 3. 1f |D] = 3% and e > 0, then we have f] = f5.
Hence in this case we have (e,y,h) = (1,1,2) and CB =

[27 18]. Since a subgroup of GL(3,3) generated by

18 21
-1 0 0 0 1 0
0 -1 0], o 0
o 0 1 1 0 o

is isomorphic to the alternating group A, of degree 4, we get
a semidirect product G = (Zg x 23 x Zg) X A4. Then kG 1is an
example for this case. We note that this group G is a group
of type (e) in Theorem 1.

—
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

PROJECTIVE MODULES OVER REGULAR RINGS
OF BOUNDED INDEX

Mamoru KUTAMI

In this paper, we shall study directly finite projective
modules over regular rings of bounded index. In [3], we have
shown that a directly finite reqular ring R satisfying the com-
parability axiom has the property that the direct sum of two
directly finite projective R-modules is directly finite. We
shall call this property (DF). It is natural to ask which kind
of reqular rings have (DF). However, we see (Example) that
there exists a commutative regular ring which does not have (DF).
Therefore we shall study the property (DF) for regular rings of
bounded index. First, we give a criterion of the directly
finiteness of projective modules over these rings (Theorem 2),
and, using this criterion, we show that all direct sums of
finite copies of directly finite projective modules over these
rings are directly finite (Theorem 4). In main Theorem 8, we
characterize the property (DF) for regular rings R of bounded
index. v

Throughout this paper, R is a ring with identity and R-modules
are unitary right R-modules.

1. Preliminaries. For two R-modules P and Q, we use P b3

Q (resp. P <9 Q) to mean that P is isomorphic to a submodule
of Q0 (resp. a direct summand of Q). For a submodule P of an R~

This note is a summary of [4].
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module Q, P<® Q means that P is a direct summand of Q. For a
cardinal number o and an R-module P, aP denotes the direct sum
of a-copies of P.

Definition. An R-module P is directly finite provided

that P is not isomorphic to a proper direct summand of itself.

If P is not directly finite, then P is said to be directly in-
finite.

Definition. The index of a nilpotent element x in a ring

R is the least positive integer n such that x" = 0. (In par-
ticular, 0 is nilpotent of index 1l.) The index of a regular
ring R is the supremum of the indices of all nilpotent elements
of R. If this supremum is finite, then R is said to have
bounded index.

Note thet a regular ring R is abelian (i.e. all idempotents
in R are central) if and only if it has index 1.

We shall recall the following basic properties, which need
for section 2.

(1) If P is a projective module over a regular ring, then
all finitely generated submodules of P are direct summands of
P ([1, Theorem 1.11]).

{2) Every projective modules over regular rings have the
exchange property (see [3] and [4]).

(3) If R is a regular ring of bounded index, then it is
unit-regqular, and so all finitely generated projective R-modules
have the cancellation property ([1, Theorem 4,14 and Corollary
7.11]).

(4) Let R be a regular ring, and let n be a positive inte-
ger. Then R has index at most n if and only if R contains no
direct sums of n+l nonzero pairwise isomorphic right ideals
([1, Theorem 7.2]).

{5) Let R be a regular ring of bounded index, and let P



be a finitely generated projective R-module. Then EndR(P) has

bounded index ([1l, Corollary 7.13]).

2. Directly finite projective modules.

Lemma 1. Let R be a regular ring of bounded index at most
n for some positive integer n, and let B, Al' cevs Ak be pro-

jective R-modules such that each Ay is cyclic. Let

A & ... A

11 1k
£ A21 & ... & A2k @ 82
g Askl ® ... & Askk & BSk
3 Al ® ... 9 Ak ® B,
and let
82 e ... ® BSk <@ B and
A;; 8 ... 8 Aski <@ A; for i =1,...,k,
where s, = l+n and s, = 1+nsk_1 for k> 1. Then A;; & ... & A,
X®B,® ... 8B, <@ B.

k

Theorem 2. Let R be a regular ring of bounded index. For
a projective R-module P with a cyclic decomposition P = exeAPA’
the following conditions (a)-(d) are equivalent:

(a) P is directly infinite.

(b) There exists a nonzero cyclic projective R-module X
such that ﬁbx < P.

{c) There exists a nonzero cyclic projective R-module X
such that Xg QAeA—{Al,...,An}PA for all finite subsets {Al,...,

x_ )} of A.
n



(d) There exists a nonzero cyclic projective R-module X

such that ﬁbxg@ P.

Therefore, for a projective R-module P with a cyclic decom-
position as above, the following conditions (e)-(h) are equiva-
lent:

(e) P is directly finite.

(£) P contains no infinite direct sums of nonzero pairwise
isomorphic submodules.

(g) Every submodule of P is directly finite.

{h) For each nonzero cyclic projective R-module X, there
exists a finite subset {Al,...,xn} of A such that x\* QAeA-[Al,

P,.
ceerd 1A

Using the basic property (4), we obtain the following.

Lemma 3. Let R be a regular ring of index at most n, and
... be a sequence of cyclic right ideals of R such

let Il' 12'
that Ii 2 21i+1 for i =1,2,... . Then we have that Ik =0
for all positive integers k satisfying 2k"1 2 n+l.

Theorem 4. Let R be a regular ring which has bounded index,
and let k be a positive integer. If P is a directly finite
projective R-module, then so is kP.

For regular rings R of bounded index, it does not hold that
the direct sum of two directly finite projective R-modules is
directly finite in general, as later Example shows. Therefore
we shall investigate the condition for a regular ring R of
bounded index that the direct sum of two directly finite pro-
jective R-modules is directly finite.

Let R be a regular ring. For a given nonzero finitely
generated projective R-module P, we consider the following
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condition:
(#) For each nonzero finitely generated submodule Q of P
and each family {AI,BI,Az,Bz,...} of submodules of Q with decom-

positions
Q= A1 @ Bl'
Ai = A2i @ B2i and
Bi = A2i+1 ® B2i+1 for i=1,2,...,
there exists a nonzero projective R-module X such that X < e

v l=m

(-4 . . -
Ai or X ei=mBi for each positive integer m.

Remark. 1) We can take above X as a finitely generated
submodule of Q. 2) 1If P is a nonzero finitely generated pro-
jective R-module which satisfies the condition (#), then any
nonzero direct summand of P satisfies (#).

Definition. Let P be a finitely generated projective

module over a regular ring R. We use L(P) to denote the lattice
of all finitely generated submodules of P, partially ordered
by inclusion.

Lemma 5.(cf. [1, Proposition 2.4]). Let P be a finitely
generated projective module over a regular ring R, and set
T = EndR(P).

(a) There is a lattice isomorphism ¢: L(TT) + L(P), given

by the rule ¢(J) JP. For A € L(P), we have ¢-1(A) = {f ¢ T|
£fP s A}.

(b) For J,K ¢ L(TT), we have J

14

K if and only if ¢ (J)

¢ (K) .

(c) For J,K e L(TT), we have J <K if and only if ¢ (J)
¢ (K) .

(d) For J,K ¢ L(TT) such that J & K ¢ L(TT), we have that

A
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¢$(T @& K) = ¢(J) ® ¢(K). For A,B ¢ L(P) such that A & B € L(P),
we have that ¢-1(A @& B) = ¢-1(A)0 ¢-1(B).

The following is immediate from Lemma 5.

Lemma 6. Let P be a nonzero finitely generated projective
module over a regular ring R, and set T = EndR(P). Then the

following are equivalent:
(a) P satisfies the condition (#).
(b) T satisfies the condition (#) as T-module.

Lemma 7. Let R be a regular ring. Then the following are
equivalent:

(a) R satisfies the condition (#) as R-module.

(b) All nonzero finitely generated projective R-modules
satisfy the condition (4).

(c) For any positive integer k, kR satisfies the condition
(#) .

(d) There exists a positive integer k such that kR satis-
fies the condition (#).

Theorem 8. Let R be a regular ring of bounded index. Then
the following are equivalent:

(a) R has the property (DF).

(b) R satisfies the condition (#) as R-module.

(c) For any nonzero finitely generated projective R-module
P, EndR(P) has the property (DF).

(d) For any positive integer k, Mk(R) has the property
(DF) .
(e) There exists a positive integer k such that Mk(R) satis-

fies the property (DF).

Corollary 9. The property (DF) for regular rings of bounded
index is Morita invariant.
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Corollary 10. If R is a regular ring of bounded index with

the nonzero essential socle of R, then R has the property (DF).

Example. There exists a regular ring of bounded index
which does not have the property (DF).

n
Proof. Choose a field F, and set R = e? FP., where P, =
N i=1"1i i

F for each i. Map each R n-1 7 R s given by the rule x -+ (x,x),

2 2
and set R = 1lim R n’ This R is desired one.
> 2
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

THE MAXIMAL QUOTTENT RING OF A LEFT H-RING

Jiro KADO

In [2], M.Harada has introduced two new artinian rings
which are closely related to QF-rings; one is a left
artinian ring whose non-small left module contains a non-
zero injective submodule and the other is a left artinian
ring whose non-cosmall left module contains a non-zero
projective summand. K.Oshiro called the first ring a left
H-ring and the second one a left co-H-ring (|3]). However,
later in [5], he showed that a ring R is a left H-ring if
and only if it is a right co-H~-ring. QF-rings and Nakayama
(artinian serial) rings are left and right H-rings ({3}]).
As the maximal quotient. rings of Nakayama rings are
Nakayama, it is natural to ask whether the maximal quotient
rings of left H-rings are left H-rings. In this note, we
show that. this problem is affirmative, by determining the

structure of the maximal quotient rings of left H-rings.

Preliminaries. Throughout this paper, we assume that all
rings R considered are associative rings with identity and
all R-modules are unitary. Let M be an R-module. We use
J(M) and S(M) to denote its Jacobson radical and its

socle, respectively.

Definition [3]. A module is a small module if it is a

This paper was contributed to Osaka J. Math.
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small submodule of its injective hull and a module is a non-
small module if it is not a small module. We say that a
ring R is a Jeft A-ring if R is a lefl artinian ring
satisfying the condition that cevery non-small left R-module
contains a non-zero injective submodule, DNDually M is a
cosmall module if, for any projective module P and any
epimorphism {:P — M, kerf is an essential submodule of
P, and M is a non-cosmall module if it is not a cosmall
module. We call a ring R a right co-H-ring it R
satisfies the ACC for right annthilator ideals and the
condition tLhat every non-cosmall right R-module contains a
non-zecro projective summand.

Definition [3,4]. A module M is an extending module if,
for any submodule A of M, tLhere exists a direct summand

A* of M such that A¥

is an essential extension of Al
Dually, M is a [ifting module provided that, for any
submodule A of M, there exists a direct summand A* of M
which is a co-essential submodinle of A in M,i.e., A*c: A

and A/A* is small in M/A*.

First we shall refer Lo equivalent conditions for a left H-

ring and a right co-H-ring.

Theorem A[2,3]. The following conditions are equivalent
for a given ring R:

(1) R is a left H-ring.
{(2) Every injective left R-module is a lifting module.
{3) R is a left perfect ring with the property that the
family of all injective left R-module is closed under taking
small covers.
(4) Every Jeft R-module is expressed as a direct sum of an
injective module and a small module.
(5) R is a left artinian ring with the condition: For any
primitive idempotent e in R with Re non-small ,there

exists an inleger t salisfying (a) Re/Sk(Re) is
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injective for all 0 < k

[ FaY

., and (b) Re/SL+‘ { Re ) is a

small module.

Theorem A'|2,3]. The Tflollowing conditions are equivalent

for a given ring R:

(1) R is a right co-H-riny.

{2) Fvery projective right H-module is an extending module.
(3) The family of all projective right R-modules is c¢losed
underr Laking essenltial extensions.

(4) Every right R-module js expressed as a direct sum of a
projective module and & singular module.

{5) R is a left artinian ring with the condition: For a
complete set. { c.

i
idempotent. of R such that cach eiR is non-small and cach

}u | fJ } of orthogonal primitive

ij is small,

(a) each e;R is injective,

i
that. JL(eiR) is projective for all 0 £t £ t; and

{b) for each eiR. there exists an integer t. > 0 such

Jt-+1‘“1“’ is a singular module, and
*
(c) for each fJR. FJR is isomorphic Lo a submodule of

some eiR.

In [5], K.Oshiro has shown that a ring R is a left H-
ring if and only if it is a right co-H-vring. Moreover he
has shown that a left H-ring (right co-H-ring ) is also a
right. artintan ring [7, Th.3). Therefore we have the
following Lheorem ,by using the condition (5) of Theorem A':
aring R is a left H-ring if and only if it is left
artinian and its complete set. E of orthogonal primitive
idempotents is arranged as E =
{ell""'eln(l)""'eml""'emn(m), for which

(1) each eilR is injective,

(2) for each i, e;,_ R T e;kR or Jlej_1R) ?'eikR
for k=2,...,n(i), and

(3) e R Feyr if i # .
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As a left H-ring is a QF-3 ring by 4], the maximal left
quotient ring and the maximal right quotient ring of a left
H-ring coincide by [9,Th.1.4]. From now on, let Q@ he the
maximal quoticnt ring of a left H-ring R. We shall study
the structure of Q . Since maximal quotient rings and left
H-rings are Morita-invariant.[7], in order to investigate the
problem whether Q@ is a left H-ring or not, we may restrict
our al.tention to basic left H-rings. Therefore, herecafter,
we assume that R is a basic left H-ring and E is a
complete set of orthogonal primitive idempotents of R. Then
E 1is arranged as
E = (ell""'eln(l)""'em]""'emn(m)} for which

(1) each eiIR is injective,

(2) for each i, J{e;-1R) ¥ e; xR for k=2,...,nli},

Definition [10,p.153]. A primitive idempotent e |is
called S-primitive if the simple module ecR/eJ{R) is

isomorphic to a minimal right ideal.

We shall use the H.H.Storrer's characterization of the

maximal quotient ring of a perfect ring [10].

Since each e1R {(i=1,...,m) 1is injective, there
exists a unique g in E such that (eilR;Rgi) is an
injective pair ,that is, S{e;R) 4 g;R/J(g;R) and S(Rg;) ¥
Re;,/J{(Re;,) (cf. K.R.Fuller [1,Th.3.1)). Each pair

{eil' gi} (i=1,...,m) is very important for studying left
H-rings.

Now we shall determine all S-primitive idempotents in E.
Let e be an idempotent in E. It is known that e 1is S-
primitive if and only if S(RR)e # 0 [10,Lemma 2.3], Since
S(Rp) = ® T2, "{M) sS(e;pR), S(ejR) #S(ejR) for i #j

and S(e;yR) ¥ S(e;R) , we have S(Rple # 0 if and only
if S(eikR)e 2 0 for a unique 1 . Therefore e 1is an S-
primitive idempotent if and only if e = g; for some 1i.

Then E' = {gy,...18,)} is the set of all S-primitive



idempotents in E. Put g = g1+...+g, and D = RgR.
Storrer has shown that D = RgR is the minimal dense ideal
of R and Q is isomorphic to Homg(DR,Dp) = Homp(Dp,RR)
by (10, Prop.1.2 and Th.2.5]. Since R is a two-sided

artinian ring, Q is a left artinian ring by [10, Prop.3.1].

We shall prove that @ is a left H-ring by showing that E
satisfies the conditions (1),(2) and (3) of left H-rings.
We again note that left H-rings are also right artinian by
{7,Th.3] and the maximal quotient ring @ of R is a left

artinian ring.

Proposition 1. E = {ell"“’eln(l)""’eml""’emn(m)}
is also a complete set of orthogonal primitive idempotents
of the maximal quotient ring Q . In Q, {e;;Q;Qg;) is an
injective pair for i = 1,...,m. Consequently eilQ and

Qgi are injective Q-modules.

Next we shall study isomorphisms among the
indecomposable right ideals e;, Q. Let f,, fo be
idempotents in E and we assume that there exisis a
monomorphism G:fIR — f5R such that Im8@ = J(fZR). Then
by [10, Prop.4], # can be uniquely extended to a Q-
homomorphism 6*:f1Q ~—> f,Q . We have the following result.

Proposition 2. (1) If fy is not S-primitive, then
the extension 6*:f1Q — £,Q is an isomorphism.
(2) If f, is S-primitive, then 6%:f;@ — fy,Q is
a monomorphism such that ImB* =J(f2Q).

Now we shall prove our main theorem.

Theorem 3. Let R be a left H-ring. Then the maximal

quotient ring @ of R is also a left H-ring.

Proof. Let E = {ejj,--«1€1,(1)r- -1€p)s+-1Cpn(m)} be 2

complete set of orthogonal primitive idempotents of R such
that

(1) each eilR is injective,

67
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(2) for each i, J(eik_lR) ?’eikR for k=2,...,n(i).
We have already known that Q is a left artinian ring and
E is also a complete set of orthogonal primitive
idempotents of Q.
By Proposition 1, each eilQ is an injective Q-module and by
Proposition 2, €;,@ T e;;,_1Q@ or e;,@ T J(e;,_1Q) k =
2,...,n{1i) for each 1i. We shall show that ek ?’eJL? if
i#J. If ey, Q 4 eth for some i #j, k, t, then S(e;Q)
S(eth). Since S(e;,Q)= S(eikR)Q and S(eJtQ)= S(eth)Q,
we have S(e;pR) T S(eJtR) as R-modules by [10, Th.4.5].

This contradicts the assumption of E.

n

We recall that g; is the element of E such that
(e;qRiRg;) is an injective pair for i = 1,...,m. Here we
define two mappings

¢ :{1,...,m} — {1,...,m]}

p :{l,cc.,m} —> {1,...,n{1)} V... VU {1l,...,n(m)}
by the rule ¢6(i) = k and p(i) =t if 8; = epe-

We note that {6(1),...,6(m)}cC {1,...,m} and 1€ p(i) ¢

n(c(i)). Here we shall define a special left H-ring.

Definition [7,p.941]. A left H-ring is Type (¥*) if
{6(1),...,6(m)} is a permutation of {1,...,m} and p(i) =
n{c(i)) for all i =1,..,m.

Corollary. Let R be a left H-ring. Then the maximal
quotient ring Q@ of R is a QF-ring if and only if R is
Type (¥).

Example. Let T be a local QF-ring , J = J(T) and S =
S(T).
TTT 0 0S
Put V = (J T) and W = (8 ?) g) . The factor

<3

J T
ring R = V/W is a left H-ring such that e;R is

injective , J(ejR) ¥ egR and J(eyR) T egR, where e; is

the matrix such that its (i,i)-position is 1 and all other
entries are zero. R 1is represented as follows: ( TT E )
]

J T
J J



where T = T/S.

Since (e]R;Rez) is injective pair by [8,82], the minimal
dense ideal is RezR. Therefore the maximal quotient ring
Q of R is a left H-ring such that e1Q 1is an injective
module ,eiQ ¥ e,Q and J(eyQ) 3 e3Q. Since e;Q/J(eQ) T
S{e;Q), we have that Homg(eQ,J(e1Q)) = J(e Qe),

HomQ(J(elQ).elQ) = e,Qe/S(eQe,), Homg(J(e;Q),J(eQ)) =
elQel/S(elQel) . Moreover, since e1Qe; = ejRey = T

by [10, Lemma 4.2], Q is represented as a

matrix ring TT
TT
J J
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SYMPOSIUM ON RING THEORY (1989)

LOCALIZATION OF DERIVED CATEGORIES

Jun-ichi MIYACHI

Introduction.

The notion of quotient and localization of abelian categories
by dense subcategories (i.e. Serre classes) was introduced by
Gabriel, and is useful in the ring theory [5]. [11]. The notion of
triangulated categories was introduced by Grothendieck and developed
by Verdier [8], [14], and is recently useful in the representation
theory [7], (3], [12]. The quotient of triangulated categories by
épaisse subcategories was constructed there. Both constructions
were indicated by Grothendieck, and resemble each other. In this
paper, we will consider triangulated categories and derived
categories from the point of view of localization of abelian
categories. Verdier showed the equivalent condition that a quotient
functor has a right adjoint, and considered the relation between
épaisse subcategories [14]. We show that localization of
triangulated categories is similarly defined, and have a relation
between localizations and épaisse subcategorics. Beilinson-
Bernstein-Deligne introduced the notion of t-structure similar to

The detailed version of this paper has been submitted for
publication clsewhere.
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torsion theory in abelian categories [2]. We, in particular,
consider a stable t-structure, which is an épaisse subcategory, and
deal with a correspondence between localizations of triangulated
categories and stable t-structures. And then recollement, in the
sense of [2], is equivalent to bilocalization. Next, we show that
quotient and localization of abelian categories induce quotient and
localization of its derived categories. Furthermore, we apply it to
derived categories of modules over finite dimensional algebras.

1. Preliminaries.

In this section, we recall standard notations and terminologies
of quotient and localization of abelian categories. Let A be an
abelian category. A collection S of arrows of A is called a
multiplicative system if it satisfies the following conditions:

(FR-1) If f,g € S, and f-g exists, then feg € S. For any X €
A, 1y € S.

(FR-2) In A, any diagram:

~

l-—n

> — =<
2

with s € S, can be completed to a commutative diagram:

ot
N — =
l-—n lm
> — <
n
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with t € S. Ditto with the arrows reversed.
(FR-3) If f and g are morphisms in A, the following
properties are equivalent.
(i) There exists s € S such that s-f
(ii) There exists t € S such that f-t
A full subcategory C of A is called dense if for every exact

S8 .

gt .

sequence 0 > X - Y = Z — 0 in A, the following condition

holds: X,Z € C if and only if Y € C. We denote by ¢( C ) the set
of morphisms f such that Ker f and Coker f are in C . Then ¢( C)
is a multiplicative system. And then C is an abelian category and
the quotient category A/C is defined. In this case, we call it that

0> C->» A— A/C — 0 is exact. A section functor S is the right
adjoint of Q. If there exists a section functor, then { A/C ;Q,S}
is called a localization of A . In this case, C is called a
localizing subcategory of A . Then S is fully faithful. On the
other hand, if T: A —» B is an exact functor between abelian
categories which has the fully faithful right adjoint S: B — A ,
then Ker T is a localizing subcategory of A ,and T induces that
A/KerT is equivalent to B . Colocalization of C is also defined,
and similar results hold [5], [11]. We apply these ideas to
triangulated categories in the next section.

2. lLocalization of Triangulated Categories.

A triangulated category is an additive category D , endued
with:

(a) An autofunctor T: D — D, is called a translation
functor, and
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(b) A family of triangles X = Y - Z % TX , is called a
family of distinguished triangles, satisfies the following
conditions:

(TR1) Every triangle isomorphic to a distinguished triangle is
distinguished. Every morphism u:X — Y is contained in a
distinguished triangle (X,Y,Z,u,v,w). For every object X of D,
(X.X.O.lx.o.o) is distinguished.

(TR2) (X.,Y,Z,u,v,w) is distinguished if and only if
(Y.Z,TX,v,w, -Tu) is distinguished.

(TR3) Given two distinguished triangles (X,Y,Z,u,v,%) and
(X',Y',Z',u",v' %), for every morphism (f,g):u — u', there exists
a morphism h :Z — Z' such that (f,g,h) is a morphism of triangles.

(TR4) Given two morphisms u:X — Y and v:Y — Z, there exists
a following diagram such that the first two rows and the middle two

columns are distinguished:

xS yvLh 7 o
| vl | [
X—> 71— Y - WX
| | ITu
X=X 5 Ty
Jl |
Y - 12
Ti

Given two triangulated categories D and D’ , a grade functor
from D to D' is an additive functor F: D — D’ and an isomorphism
®:FT— T'F. A grade functor (F, ®) is called a & -functor if for
every distinguished triangle (X,Y,Z,u,v,w%) in D, (X,Y,Z,Fu,Fv,
d>X°Fw) is distinguished in D' (we often simply write F unless it
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confounds us) [8], [I14]. If F has a right or left adjoint G, then G
is a 8 -functor, also [9].

A subcategory U of D is called épaisse if U is a full
triangulated subcategory and if U satisfies the following condition:
For any f:X — Y, which factors through an object in U and which has
a mapping cone in C, X and Y are objects in U. We denote by
¢ ( U ) the set of morphisms f which is contained in a distinguished
triangle (X,Y,Z,f,g.h) where Z is an object of U. Then ¢( U ) is
a multiplicative system which satisfies the following conditions:

(FR-4) s ¢ ¢( U) if and only if Ts € ¢( U ), where T is the
translation functor.

(FR-5) Given distinguished triangles (X,Y,Z,u,v,w), (X',Y',Z",
u'.v',w%), if f and g are morphisms in #( U ) such that u’ -f =
geu , then there exists a morphism h in ¢ ( U ) such that (f,g,h) is
a morphism of distinguished triangles.

And the quotient category D/U is defined. In this case, we

will call it that 0 — U K—» D g» D/U —0 is exact (see [2]. [14] for
details). Let 0 - U — D — D/U —0 be an exact sequence of
triangulated categories. A section functor S is the right adjoint
of Q. If there exists a section functor, then we will call
{ D/U ;Q,S} a localization of D .

Let ®:QS — lD/U and ¥:1p — SQ be adjunction arrows.

Proposition 2.1. Let { D/U ;Q,S} be a localization of D .
(a) & is an isomorphism (i.e. S is fully faithful).

(b) For every object X € D, UX belongs to U, where UX - X -
S@X — TUy is the distinguished triangle determined by Yy .

Proposition 2.2. Let D and E be triangulated categories, T: D
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— F a & -functor which has the fully faithful right adjoint S: E —
D . Then T induces that D/KerT is equivalent to E .

Let U and V be full subcategories of D such that: (a) U and V
are stable for translations; (b) HomD( U, V) =20; (c) For every X

€ D, there exists a distinguished triangle (U,X,V) with U € U and
VeV. Then U and V are épaisse subcategories of D, and ( U, V)
is t-structure in the sense of Beilinson-Bernstein-Deligne. We will

call ( U, V) a stable t-structure. Moreover, there exist exact

sequences 0 — U E+ D 9* Y—-0and 0>V E* D q, U — 0 such that
Q is the left adjoint of R and that Q' is the right adjoint of K,
where K and R are natural inclusions (see [2] for details). Namely,
{ V:QR} is a localization of D, and { U ;K,Q" } is a
colocalization of D . By Proposition 2.2 and (14, 6-6 Proposition],
and their duals, D/U is a localization of D if and only if U is a
colocalization of D, and D/U is a colocalization of D if and only
if U is a localization of D . We later see that recollement, in
the sense of [2], is equivalent to bilocalization.

Theorem 2.3. Let D be a triangulated category. If { V ;Q, R}
is a localization of D, then R is fully faithful, and (KU, RV) is a
stable t-structure, where U = Ker Q and K is a natural inclusion.
Conversely, if ( U, V) is a stable t-structure in D, then a
natural inclusion R: V — D has a left adjoint @ such that { V :Q,R}
is a localization.

We have the same result of Cline-Parshall-Scott [4] under the
weak conditions.

Proposition 2.4. Let F: D — E be a & -functor of triangulated
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categories. Assume that F has a fully faithful right adjoint G: E —
D. IfF has a left adjoint H: E — D, then H is a fully faithful
@ -functor. In this case, ( KerF , D, E ) is a recollement.

3. Llocalization of Derived Categories.

Let A be an additive category, K(A) a homotopy category of A ,
and K*(A) , K-(A) and K*(A) full subcategories of K(A) generated by
the bounded below complexes, the bounded above complexes and the
bounded complexes, respectively. For an abelian category A , a
derived category D(A) (resp., D*(A) , D~(A) and D*(A) ) of A is a
quotient of K(A) (resp., K*(A) , K*(A) and K*(A) ) by a
multiplicative set of quasi-isomorphisms. Then K*(A) and D*(A) are
triangulated categories, where * = nothing,+,- or b (8], [14]. In
general, we denote by K*(A) a localizing subcategory of K(A) (i.e.
K*(A) is a full triangulated subcategory of K(A) and D*(A) — D(A)
is a fully faithful & -functor, where D*(A) is a quotient of K*(A)
by a multiplicative set of quasi-isomorphisms) [8], [14]. For a
thick abelian subcategory C of A (i.e. C is extension closed in A ),
we denote by Dé(A) a full subcategory of D*(A) generated by

complexes of which all homologies are in C [8].
Let @( D*(A) , D(B) ) be a category of & -functors from D*(A)
to D(B) and Homa(F}G) the set of morphisms from F to G for F, G €

d( D*(A) , D(B) ). Given a 8 -functor F: K*(A) — K(B) , we obtain
a right derived functor R*F : D*(A) — D(B) when there exists an
object R°*F in &( D*(A) , D(B) ) such that Hom 4 ( R°F ,?) =

Homa(Q‘oF.?°Q). vhere Q;: K*(A) — D*(A) »Qp: K(B) — D(B) are
natural quotients, [8], [14]. When R*F : D*(A) — D(B) exists, we
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say F has right homological dimension £ n on A if RiF(X) = ( for all
X € Aand for all i > n. And an object X in A is called a right F-

acyclic object if RiF(X) =0 for all 1 > 0. We also denote by R°F
a right derived functor of an induced & -functor from F: A — B [8].
Let F: A = B be a left exact additive functor between abelian
categories. If A has enough injectives, and F has finite right
homological dimension on A , then RF , R*F , R°F and R*F exist, and
RFID.(A) =~ R°F , and moreover, R°F has image in D*(B) , where * =

+, —or b [8 1,§5]. We often denote by R* ¥F , R'Fle(A) vhen

D*(A) is a full subcategory of D*(A) . On the other hand, if A and
B have enough injectives and projectives, respectively, and if the
derived functor R* *F : D*(A) — D(B) has image in D*(B) and R* *F :
D*(A) — D®*(B) has a left adjoint, then F has a left adjoint G: B
— A and the derived functor L~ *G : D*(B) — D(A) has image in
D*(A) , and which is the left adjoint of R* *F [3, (3.1) Lemma].

Theorem 3.1. Let 0 - C — A (L A/C — 0 be an exact sequence

of abelian categories. Then 0 — g (A) — D*(A) g* D*(A/C) — 0 is

an exact sequence of triangulated categories, where * = +,- or b.

Corollary 3.2. Let 0 - C —- A - A/C — 0 be a localization
{ A/C :Q.T) of A. Assume that A/C has enough injectives. Then
0 — Di(A) — D*(A) — D*(A/C) — 0 is a localization { D*(A) ;Q*,

R'T ) of D*(A) . In particular, ( Di(A) , R*T(D*(A/C)) ) is a

stable t-structure.

4. Localization of Derived Categories of Modules.
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Equivalences of derived categories of modules was considered in
(71, (3], [12]. For a finite dimensional algebra A, we denote by
mod A the category of finitely presented right A-modules.
According to Theorem 3.1, for a finitely generated projective A-

Q
module P, we have 0 — Dﬁod A(mod A) » D*(mod A) — D*(mod B) —
0 is exact, where B = EndA(P). Q= HomA(P.?). QP'»AA - A-A-0

(exact) and # = +, - or b. Moreover, Q* (resp., Q) is a
localization (resp., a colocalization). In this section, we
consider only case of finite dimensional algebras over a fixed field
k. For a finite dimensional algebra A, we know that Grothendieck
groups of mod A is isomorphic to a free abelian group which has the
complete set of non-isomorphic indecomposable projective A-modules
as basis. We denote by Grot( A ) a Grothendieck group of A , where
A is an abelian category or a triangulated category. Here, we use
Grot(mod A) =~ Grot( D*(mod A) ) and Proposition of Grothendieck
(see [6] for details).

Proposition 4.]1. Let T be a right finitely generated A-module,
B:= EndA(T) and F := ilomA(T. ?):mod A — mod B. Assume that T

satisfies the following conditions:

(a) Ext}(T,T) =0 for all i > 0.

(b) pdim TA < 0o,

Then 0 — Ker R°'F — D~ (mod A) 7 D™ (mod B) — 0 is exact.

Proposition 4.2. Under the conditions of Proposition 4.1, if
pdim TA < 1, then

&

0 = Ker R°F — D*(mod A) — D*(mod B) — 0 is exact.
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Theorem 4.3. let A and B be artin algebras, F:mod A — mod B a
left exact additive functor. Then R* *F has image in D*(mod B) and
R* *F : D*(mwod A) —» D*(mod B) is a colocalization if and only if
there exists a finitely generated B-A-bimodule T such that:

(a) F = Homy(T,?),

(b) B = End,(T),

(c) ExtM(T.1) =0 for all i > 0.

(d) pdim TA , pdimBT < oo,

Corollary 4.4. Under the condition of Theorem 4.3, we have
gl dim B S gl dim A + pdimBT .

For a finitely generated A-module M, Let n(M) be a number of
non-isomorphic indecomposable modules which are direct summands of
M.

Corollary 4.5. Let T be a finitely generated right A-module

such that: a) Ext/'i(T. T) =0 (i 2 1); b) pdim T"1 , pdim BT < oo,
where B = EndA(T). Then we have n(T) £ n(A).

Remarks. (1) Under the conditions of Theorem 4.3, global
dimensions of A or B are not necessarily finite. Indeed, let A be a
finite dimensional algebra over a field k with the following quiver

o ,
& Q &8 7
with relations: a <— b <— ¢ «<— d with §ea = a? = 88 =
Ber =0. Then gl dim A = oo, Let T :=I(c)®(I(c)/S(c)), where
S{c)is a simple right A-module corresponding with a vertex ¢ , and
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I(c) is an injective hull of S(c). Then pdim T, - 2 and Ext,{(T.T) -
0 for all i > 0. Next, B := EndA(T) have a quiver with a relation:

e — £ ¢ with £?* =0. Then we have gl dim B = oo and
pdimgT = 1. Hence R“HomA(T.?) : D*(mod A) — D*(mod B) is a

colocalization functor which has L°(?GBT) as a cosection functor.

(2) Under the conditions of Theorem 4.3, when we know if Ker R®F is
not zero, then Grot( Ker R°F ) is not zero (for example, A is
hereditary), D®*(mod A) is equivalent to D*(mod B) if and only if
n(T) = n(A).
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

STREB’S RESULTS AND COMMUTATIVITY THEOREMS

Hiroaki KOMATSU

Recently, in [8], W. Streb gave a classification of non-
commutative rings. H. Tominaga and the author extended that to
algebras in [S5], and applied those to study algebras with some
commutativity conditions in [3], [4] and [S5]. 1In this paper, we
shall introduce a classification of non-commutative algebras and
pick up the results for algebras A satisfying the following
condition:

(H) For each x, ye€A there exist positive integers m and n
such that xmyn = ynxm.

1. Classification of non-commutative algebras. Throughout
this paper, A will denote an algebra (not necessarily with 1)
over a commutative ring R with 1. If A has the smallest non-
zero algebra ideal, it is called the heart of A. A factor algebra
of a subalgebra of A 1is called a factorsubalgebra of A. As
usual we define the commutator [x,y] = xy-yx for X, ye€A, and
D denotes the ideal of A generated by all commutators. We put
Ann(D) = {aeA | aD = Da = 0}.

Theorem 1l.1. Every non-commutative R-algebra has a factorsub-
algebra of type a)g, a)r, b), ¢), d), e) or f):
a)l (Rém Rém]’ where m is a maximal ideal of R.

0 R/m

a)r (0 R/m)’ where m is a maximal ideal of R.

The detailed version of this paper has been submitted for publication elsewhere.
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b) A non-commutative trivial extension T x M, where T |is
an R-algebra generated by one element without non-zero
zero~divisors, and M 1is an irreducible bimodule over
the R-algebra T and a faithful left and right T-module.
c) A non-commutative division R-algebra.
d) A simple radical R-algebra without non-zero zero-divisors.
e) An R-algebra A generated by two elements such that D is
the heart of A and A = Ann(D).
f) An R-algebra A generated by two elements such that D is
central and is the heart of A and Ann(D) is a commutative
maximal ideal of A.

Theorem 1.2. Every non-commutative R-algebra with 1 has a
factorsubalgebra of type a)l, b)l, c), d)l, e)l or f)l:
a)l (Rém g;ﬂ), where m 1is a maximal ideal of R.
b)1 A non-commutative trivial extension T x M, where T |is
an integral domain which is an R-algebra generated by one
element together with 1, and M 1is an irreducible bimodule
over the R-algebra T and a faithful left and right T-module.
c) A non-commutative division R-algebra.

d)1 A domain which is an R-algebra generated by 1 and a simple
radical subalgebra.

e)l An R-algebra A with 1 generated by two elements x, y
together with 1 such that D is the heart of A and both
x and y belong to Ann(D).

f)l An R-algebra A with 1 generated by two elements x, y

together with 1 such that D is central and is the heart
of A and Ann(D) is a commutative maximal ideal of A.

The proof of Theorems 1.1 and 1.2 can be reduced to the
following two propositions.

Proposition 1.3. Let A be a non-commutative R-algebra.

(1) If D 1is central, then A has a factorsubalgebra of
type e) or f).
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(2) If xy # 0 = yx for some x, y€A, then A has a
factorsubalgebra of type a),., a)r, e) or f). )

(3) If A has a non-central ideal I with I® = 0, then A
has a factorsubalgebra of type a)Q, a)r, b), e) or f).

Proposition 1.4. Let A be an R-algebra with 1.

(1) If A has a factorsubalgebra of type a), or a):, then A
has a factorsubalgebra of type a)l.

(2) If A has a factorsubalgebra of type b), then A has a
factorsubalgebra of type a)l, b)l, e)l or f)l.

(3) If A has a factorsubalgebra of type d), then A has a
factorsubalgebra of type d)l.

(4) If A has a factorsubalgebra of type e), then A has a
factorsubalgebra of type e)l.

(5) If A has a factorsubalgebra of type f), then A has a
factorsubalgebra of type e)1 or f)l.

Let R be a commutative ring with 1. We shall call R an
N-ring if R 1is either a finitely generated ring or a finitely
generated algebra over a commutative ring S such that S/ is
an algebraically closed field for any prime ideal p of S. We
shall call R an S-ring if R 1is a finitely generated algebra
over a commutative ring S such that the quotient field of §/B
is a perfect field for any prime ideal 3 of S. Obviously,
every N-ring is an S-ring. 1In [6], T. Nakayama proved that an
algebra A over an N-ring R 1is commutative if A satisfies the
following condition:

(N) For each xeA there exists f(X)exzn[X] such that x-f(x)
is central.

More generally, in [7], W. Streb studied algebras over an S-ring

R satisfying the following condition:

(S) For each x, yeA there exists f(X,Y) eR{X,Y)[X,Y]JR(X,Y)
such that ([x,y) - £(x,y) = 0 and each monomial term of
£(X,Y) has degree > 3, where R(X,Y) 1is the polynomial ring
over R in the non-commuting indeterminates X and Y.
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As is well-known, R{(X,Y)[X,Y]R{X,Y) consists of £(X,Y)< R{(X,Y)
such that every commutative R-algebra satisfies the identity
£(X,Y) = 0. By this reason, the condition (S) is natural as a
commutativity condition for R-algebras.

Proposition 1.5. (1) Suppose that R is a finitely generated
ring. If an R-algebra A is of type b), then A 1is isomorphic to
= a B . - . .
MO(K) = {(0 o(a)) |a, B(EK}, where K 1is a finite field with a
non-trivial Rel-automorphism o.

(2) If R 1is an N-ring and is not a finitely generated ring,
then no R-algebra is of type b).

Proposition 1l.6. There exists no algebra of type f) over an
S-ring.

Here, we make a remark concerning the proof of a theorem of
Nakayama stated above. Let A be an algebra over an N~ring
satisfying the condition (N). Then it is easy to see that A has
no factorsubalgebra of type a)Q, a)r, b), d) or e). Further, by
Proposition 1.6, A has no factorsubalgebra of type f). Hence, in
order to prove the commutativity of A, it suffices to consider
the case that A is a division algebra.

2. Application 1. The next theorem is an easy application of
Streb’s results. We can prove more general results (see [4]).

Theorem 2.1. Let A be a ring with 1. Suppose that for
each x, yeA there exist positive integers n; (i =1, ... , )
such that (nl,...,nr) = 1 and [xni,yni] =0 for i=1, ... ,
r, where (nl,...,nr) is the greatest common divisor of n. (i =
1, ... , r). Then A 1is commutative.

Proof. 1In view of Theorem 1.1, it suffices to show that A
has no factorsubring of type a)l, a)r, b), ¢}, d), e) or f) as
Z-algebra.
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(1) For any positive integer n, we see that [(% 8)“,(% %)n]
= (g %) # 0, and so A has no factorsubring of type 3)17 and
similarly A has no factorsubring of type a)r.

(2) Since D 1is nil by [1, Theorem], A has no factorsubring
of type ¢) or d).

(3) Proposition 1.6 shows that A has no factorsubring of
type f).

(4) Suppose, to the contrary, that A has a factorsubring B
of type b). By Proposition 1.5 (1), B is isomorphic to some
Mo(K)' where K 1is a finite field with a non-triviai automorphism

) and y =

Y)
Y 0 . sas . -
(0 U(Y))' Then there exist positive integers n; (i 1, ... , r)

0. Choose ye€K with a(y) # vy, and put x = (E o
: n, n,

such that (nl,...,nr) =1 and [x 1,y 1] =0 for i=1, ...,

r. We can see that 0 = [xni,yni] = (O(Yni)-Yni)z(U(Y)‘Y)- 0 0)'

and so o(y'i) = Y"1 for i = 1, ... , r. Hence 0o(Y) =Y, a

contradiction.

(5) Let B be a ring of type e)l. By definition, B contains
non-commuting elements x and y such that x[x,y] = yIx,y] =
[x,y]lx = [x,yly = 0. It is easy to see that [xm,yn] = 0 for any
positive integers m and n with mn > 1. Now, suppose that
there exist positive integers n; (i=1, ... , r) such that
(nyseeeon ) =1 and [(1+x)ni,(l+y)ni] =0 for i=1, ... , r.
Then, we can see that 0 = [(1+x)ni,(l+y)ni] = n?[x,y] for i =
l, ... , £, and hence [x,y] = 0. This contradiction shows that
A has no factorsubring of type e)l. By Proposition 1.4 (4), A
has no factorsubring of type e).

3. Application 2. Y. Kobayashi, in [2], determined the struc-
ture of a ring A with 1 such that A satisfies the identity
[xn,Yn] = 0 and the additive group [A,A] is n-torsion free for
some positive integer n. Such a ring satisfies (S) as Z-algebra.
From this viewpoint, we applied Streb’s results to éeneralize the
proof of [2, Theorem], and obtained some results in [5]. We shall
state those without proof.



Theorem 3.1. Let A be an algebra over an S-ring R, and n
a positive integer. Then the following conditions are equivalent:

1) A satisfies the identity [x-xm,Y-Ym] = 0 for some
integer m > 1, and satisfies the identity [x",¥"™] = 0.

2) A satisfies (S) and the identity [x",¥™) = 0.

3) A 1is a subdirect sum of R-algebras each of which has one
of the following types:

i) A commutative algebra.

ii) MO(K), where K 1is a finite field wigh a non-trivial

Rel-automorphism ¢ and (|K|-1)/(IK |~-1) divides n.

Theorem 3.2. Let A be a ring, and m > 1 an integer. Then
the following conditions are equivalent:
1) A satisfies the identity [X-X",Yy-Y™] = 0 and the
identity [X",Y"] = 0 for some positive integer n.
2) A satisfies the identity [x—xm,Y-Ym] = 0 and satisfies
(H) .
3) A 1is a subdirect sum of rings each of which has one of
the following types:
i) A commutative ring.
ii) MO(K), where K 1is a finite field with a non-trivial
automorphism o such that |[K|-1 divides m-1.
iii) MO(K), where K 1is a finite field of characteristic 2
with an automorphism o of order 2 such that |[|Ki-1
divides m-(K°|.

Corollary 3.3, Let A be a ring, and let m >1 and n > 0
be integers. Then the following conditions are equivalent:
1) A satisfies the identities [X-X",Y-Y"] = 0 and [x",Y"]
= 0.
2) A is a subdirect sum of rings each of which has one of
the following types:
i) A commutative ring.
ii) MO(K), where K is a finite field with a non-trivial
automorphism o such that |IKI-1 divides m-1 and
(IKI1-1)/(1K°(-1) divides n.
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iii) MO(K), where K 1is a finite field of characteristic 2

[1)

(2]

[3]

(4]

[5]

[6]

[7)

(8]

with an automorphism ¢ of order 2 such that |KI[-1
divides m-1K%l and IK%(+1 divides n.
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PROCEEDINGS OF THE 22ND
SYMPOSIUM ON RING THEORY (1989)

GROWTH OF ALGEBRAS AND SUPER GELPAND-KIRILLOV DIMENSION

Shigeru KOBAYASHI

§1 Introduction.

Let S be a set of sequences whose terms are non-negative real
numbers, i.e.

s={S:N_’R0)
where N and R. denote the set of non-negative integers and real
numbers.

Let S: denote a subset of S consisting of elements whose
values are equal to or greater than 1, i.e.

St ={s € 8| s(n) =21

Let Se denote a subset of S consisting of non-decreasing
sequences, i.e.

Se = {s € 8| s(n) € s(m) if n = n)

We consider four types of growth orders for elements of 8.

Definitions

For s € §, the following numbers are defined ;
(1) d.(s8) = lim-sup { log s(n) / log n }
n —+
(2) d-(s) = lim-inf { log s(n) / log n }
n —-
For s € §,
(3) D.(s) = lim-sup { log (log s(n)) / log n }
n —» 0
(4) D-(s) = lim-inf { log (log s(n)) / log n }
n —» 00

The final version of this paper has been submitted for publication
elsewhere.

91



‘SMOT[0] S®B pourjep oxe y Jo (WIpYyh-s) uolsusemlp

AO[[TJIY-pUBI[®) JodnS ©Y3 Pu® (WIPYD) UOTSUSBWIP AOT[TIIY

-pueje) 8Yy3 8Joy “(UlX)V WIp = (X)UP %9s a4 Y = (0:X)V

ejousp pue Y JO juemei® sYy3} ur u 03 [enbs JO uvY} SSO]

y18ue] JOo srelmouow []® Aq pauueds vy Jo ededsqns JO3D9A-Y Y3

(uty)y oq0usp o4 ‘y 3o Y 19sqns 9jruly ® J04 ‘Y PI8IJ oY}
JoA0 BJIQOB[® (OAT1BIDOSS® A[1JESS9O9U j0U) ® @ § 197

"sy[nsey 7§

*(caruq 8qoy)
TURUBg NQBUBY Y31 TM YJ04 jutol oJe Jaded styl jo sj(nsed oy]
*seyqelde
Buido[eAue [BSJIBAIUN J18[} pue selqeB[e ol7 uUdOM]OQ UOTIIB[OJ
B 9A18 puu (seviqaf[e 817 jo seiqald[e Burdo[sause [BSJI8ATUN BY)}
‘dsel) seJsqeBje a1 J0j uolsuamip (AO[[lJII}-puej[en Jedns
*dsaJ) AO[[TJVY-puUBI{3D @18[NO[eO [[eys aa ‘Jaded syl uj

"({(u)dxa})p S (s)D Inq ‘(s)) S ({,U})D ‘P Jequnu [ead
aarqisod Aue J0j Jt A[uo pue ji yiymoirg yetjuauodxeqns sey s (g)
‘(s)d) S ({(u)dxa})p 3! AJuo pue J1 yjmoa® [erjusuodxe sey S (Z)

‘p J8qunu [eaJ 8Aljisod 8wos
103 ({(pu})D S (S)D 3t Apuo pue jyr yimoJ3 [vlwoukjod sey s ()
‘SMO[[OJ S® pautrjep St s Jo adiy
§i14018 8Yy3 puy °S JO uotrsuawIp (AO[[1JIY-puvj[egy Jodns °dsal)
AOTT1JITY-puBI[@) POj[BO SI ((S)+q ‘dsar) (s)*'p 'S > s J04
‘S se .S £q peonput ~ [/ § 18s 8ay3 uo BurIapJyo [uvljJged a8yl
ajousap puw (®)H 4£Aq ®© Jo SS®B[D 9ous[vAINDE 8yl 9j0ulp BY
‘G UO uOrje[BJI BOUB[BAINDO U® SI
~ 4ApJee) e .5 q pue q .S e J1 Aquo pue j1 q ~ ®
pue u sJafejur asAatrjrsod afaej quardIyins 103 (ug)q = (u)e
Jeyl yons < J889qul oarjrsod e SISIXD @I8Y} J1 A[uo puv jJI
q .S ® 198 ‘¢ > q ‘® JOjg ‘g UO JIPJO UE JUIJSP BM 1XON\
()0 S (S)-0@ PUB (S)°P S (S)°P
se yons sarjrienbsut £Jsyies pue 1SIXO SITWI] 9S8yl vyl 8I0H

b



a3

GKdim(A) = sup d.({dn(X)})
X

s-GKdim(A) = sup D.({da(X))})
X

where supremums are taken over all finite subset X of A.
If A is generated by a finite subset X, then GKdim(A) =
do({dn(X)}) and s-GKdim(A) = D'({dn(X))).

Amap &8 : Se — S 1is defined as follows ; for s € Se,
6 (s)(0) = s(0) and &6 (s)(n) = s(n) - s(n-1) for n > O.

Theorem 1. Let g8 be a finitely generated Lie algebra over
K and X be a finite generating subset of g and U(g) be the
universal enveloping algebra of g. We set v . = dimk g(X;n),
a =d-(6§ ({7vn})) and B =de(85({70n})). Then

1 -1/a+l £ D-({dimx U(g)(X:n)}) = D.({dimx U(g)(X;n))}) =

s-GKdim(0(g)) = 1 - 1/8.

Theorem 2. Let g be a Lie algebra over K. If there
exists a finitely generating subspace X of g such that the

" limit v = d({dimx g(X;n)}) = lim ( log (dimk g(X;n)) / log n )

exists, Then s-GKdim(U(g)) =1 - 1/ +1,

§3 Examples.

In the following, we assume that K 1is a algebraically closed
field.
(1) Let g be a finite dimensional Lie algebra over K. Then
GKdim(g) = 0 and GKdim(U(g)) = dimx g. Thus U(g) has
polynomial growth,
(2) Let g be a Lie algebra over K with basis { x,yi1,¥y2,y3,°*")
and satisfies the following relations,
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[x,y:] = yisr, [yiv¥:] =0,
Then GKdim(g) = 2 and s-GKdim(U(g)) = 2/3 by Theorem 2.
Thus U(g) has subexponential growth.

(3) Let g be a finite dimensional semisimple Lie algebra over X
and R be a commutative finitely generated K-algebra. We define
the Lie algebra L(g:R) = g ® R with relation

[x:®r1,x2®r2] = [x1,x2)®rir2 for xi1,x2 € g and ri,r2 € R.
In this case, s-GKdim(U(L(g:R))) =1 - 1/(Krull dim R + 1).

In particular, if g is a affine Kac-Moody Lie algebra, then
s-GKdim(U(g)) =1 - 1/1+1 = 1/2,

(4) Let M be a finitely generated subgroup of K as additive

group. We define the Lie algebra W(M) = E Kxa , [Xa,%n] =
[ XN |

(n-m)xn+a. Then s-GKdim(U(W(M))) = 1 - 1/(rank(M)+1),

(5) Let g be a hyperbolic Kac-Moody Lie algebra, then
GKdim(g) = o and s-GKdim(U(g)) = 1. 1In this case g and U(g)
has exponential growth.
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