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PREFACE

The 21st Symposium on Ring Theory was held at Hirosaki University, Hirosaki,
Japan, on October 20-22, 1988. Nearly seventy participants attended the meeting. The
meeting consisted of twelve talks ineluding reports from Conference on
Representations of Algebras at Warsaw by Dr. H. Asashiba, to whom I would like to give
my gratitude. This volume consists of eleven articles by the speakers.

The meeting and the Proceedings were financially supported by the Scientific
Research Grant of the Educational Ministry of Japan through the arrangements by
Professor H. Hijikata at Kyoto University. We appreciate his arrangements.

We wish also to express our thanks to all speakers of the meeting, to staffs of
Okayama University for the publication of the Proceedings, and to staffs and graduate
students of Hirosaki University for their best help in the organization of the meeting.

Hirosaki University, December 1988
Kaoru Motose
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ENDOMORPHISM RINGS OF SEMICOCRITICAL MODULES

Hiroshi YOSHIMURA

This is a summary of the author's paper [10], in which we
investigate relationships between semicoceritical modules and
their endomorphism rings, and show that the compressibility of
semicocritical modules is closely related to the property that
their endomorphism rings are orders in semisimple rings
(Theorems 2 and 4).

1. Preliminaries

Throughout this note R will always denots a ring with
identity, all R-modules will be unital right R-modules and
homomorphisms will be written as acting on the left. Torsion
theories will always mean hereditary torsion theories for mod-R.

Let t be a torsion theory. A submodule M' of an R-module M
is y-closed in M if M/M' is t-torsionfree. An R-module is t-
artinian if it has DCC on t-closed submodules. An R-module M is
t=full if M/M' is r-torsion for any essential submodule M' of M.
A non-zero R-module M is p-cocritical if it is tr-torsionfree and
M/M' is t-torsion for any non-zero submodule M' of M. It is -
semicocritical if there exists a finite set {M1,..., Mn} of

n
submodules of M such that /M Mi = 0 and M/Mi is t-cocritical for
i=1

This note is a summary of [10].



each i=1,...,n. A non-zero R-module is called cocritical (resp.
semicoeritical) if it is t-coeritical (resp. t-semicocritical)
for some torsion theory t and R is called r-artinian (resp. 1-
full, (t-)cocritical, (t~)semicocritical) if it is t-artinian
(resp. t-full, (t-)cocritical, (t-)semicocritical) as an R-
module. Let M be a non-zero R-module. We will say an R-module

M-torsionless if it can be embedded into a product of copies of
M.

We will denote by E(M) the injective hull of an R-module M
and by x(M) the torsion theory cogenerated by E(M). The
Jacobson radical of a ring S will be denoted by J(S).

The following two results will be used repeatedly in the
next section. The first lemma is immediate from [4, Proposition
18.3] and [9, Proposition 1.1] and the second lemma is an
analogue of a result for cocritical modules (cf. [4,
Proposition 14.25]).

Lemma A. Let T be a torsion theory. Then for a non-zero
R-module M, the following conditions are equivalent:

(1) M is t-semicocritical.

(2) (i) For every indexed set (MA)AEA of t-torsionfree R-

modules and every monomorphism M — Il MA’ there is a finite set
A
A' of A and a monomorphism M — Il MA'
AI
(14)N{N < M | M/N is T-cocritical} = 0.

Lemma B. For a non-zero R-module M, the following
conditions are equivalent:

(1) M is semicocritical.

(2) M has finite Goldie dimension and every homomorphism N
—+ M from a submodule N of M to M with essential kernel is a
zero homomorphism.

(3) M has finite Goldie dimension and a(M) = O for any a ¢
J(Endg (E(M))).

(4) M is y(M)-semicocritical.



2. Endomorphism rings of semicocritical modules

We consider the relationships between the compressibility
of semicocritical modules and the property that their
endomorphism rings are orders in semisimple rings. From this
point of view the following lemma is useful.

Lemma 1. If M is a semicocritical R-module, then Endp(M)
is a subring of a semisimple ring.

Following [6] we call an R-module M compressible if for any
essential submodule N of M there exists a monomorphism M — N.
Now we state our main theorem.

Theorem 2. For a semicocritical R-module M, the following
conditions are equivalent:
(1) M is compressible.
(2) (1) EndR(M) is a right order in a semisimple ring.
(i1) HomR(M,N) z 0 for any non-zero submodule N of M.

In order to give a two-sided version of Theorem 2, we need
the following result.

Lemma 3. (1) Let t be a torsion theory and M a non-zero
R-module. Assume that EndR(M) is a semiprime ring and HomR(M,N)
=z 0 for any non-zero submodule N of M. Then any t-
semicocritical submodule of a direct product of t-cocritical
submodules of M is compressible.

(2) If M is a compressible and semicocritical R-modulse,
then any x(M)-semicocritical and M-torsionless R-module is
compressible.

Theorem 4. Assume that M ie a semlcocritical R-module.
Then the following conditions are equivalent:

(1) Every x(M)-torsionfree homomorphic image of a finite
direct sum of copies of M is compressible.

— 3 -



(2) M + £(M) is compressible for any f ¢ EndR(E(M)).
(3) (1) EndR(M) is a two-sided order in a semisimple ring.
(i1) HomR(M,N) x 0 for any non-zero submodule N of M.
Moreover if M satisfies the above equivalent conditions,
then every x(M)-torsionfree homomorphic image of a finite direct
sum of copies of M is finitely cogenerated by M, and if in
addition, M is compressible, then the converse is also true.

We will denote by G the Goldie torsion theory for mod-R. It
is immediate from [9, Proposition 1.1] and Lemma B that R is
semicocritical if and only if it is G-semicocritical if and only
if it is right non-singular right Goldie ring.

As a consequence of Theorem 4, we obtain the following
result, a part of which has been shown in [6, Theorem 2.2.15]
under the assumption that R is a right order in a semisimple
ring.

Corollary 5. Assume that R is a semicocritical ring. Then
the following conditions are equivalent:

(1) Every finitely generated non-singular R-module is
compressible.

(2) R + xR is compressible for any x ¢ E(RR).

(3) R is a two-sided order in a semisimple ring.

Moreover if R satisfies the above equivalent conditions,
then every finitely generated non-singular R-module is finitely
cogenerated by R, and if in addition, RR is compressible, i.e.,
R is a right order in a semisimple ring, then the converse is
also true.

The following result shows that in some particular
situations the compressibility of semicocritical modules
coincides with the property that their endomorphism rings are
ordera in semisimple rings.

Corollary 6. (1) For a G-semicocritical essential »
submodule M of a direct product of copies of RR, the following

_.4_



conditions are equivalent:

(a) M is compressible (resp. M + f(M) is compressible for
any f € EndR(E(M)).

() EndR(M) is a right (resp. two-sided) order in a
semisimple ring.

(2) Let N be a non-zero R-module such that EndR(N) is a
semiprime ring and HomR(N,K) x 0 for any non-zero N-torsionless
R-module K. Then for a semicocritical and N-torsionless R-
module M, the above conditions (a) and (b) are equivalent.

Assume that R is a semiprime ring. Then it follows from
Corollary 6(2) that for a semicocritical and R-torsionless R-
module M, the conditions (a) and (b) of Corollary 6(1) are
equivalent. :

Lemma 7. Let M be & semicocritical R-module such that M +
f(M) is compressible for any f ¢ EndR(E(M)). If N is a x(M)-
semicocritical and M-torsionless R-module, then N + g(N) is
compressible for any g ¢ EndR(E(N)).

Theorem 8. Let M be a semicocritical R-module such that M
is compressible (resp. M + £(M) is compressible for any f ¢
EndR(E(M))). If N is a x(M)-full and M-torsionless R-module
with finite Goldie dimension, then EndR(N) is a right (resp.
two-sided) order in a semisimple ring.

Corollary 9 (Zelmanowitz [11]). Assume that R is a right
(resp. two-sided) order in a semisimple ring. If M is an R-
torsionless R-module with finite Goldie dimension, then EndR(M)
is a right (resp. two-sided) order in a semisimple ring.

Finally, we give a sufficient condition for R-modules to
satisfy the equivalent conditions of Theorem 4.

Proposition 10. Assume that R is a left noetherian ring
and T is a torsion theory. If M is a finitely generated t-



torsionfree and t-full R-module such that R/AnnR(M) is a 1-
artinian and semiprime ring, then M satisfies the equivalent
conditions of Theorem 4.
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A COUNTEREXAMPLE TO TARSY’S CONJECTURE
ON GLOBAL DIMENSION OF ORDERS*

Hisaaki FUJITA

Let D be a local Dedekind domain with a unique maximal
ideal =#D and the quotient ring K. If a D-order A in the full
n x n matrix ring (K)n contaings n orthogonal idempotents

AL
then A 1is isomorphic to a subring (= iJD) of (D)n where
xij 2 0, Xii = 0 and Xij + Ajk 2 Aik
and so A 1is called a tiled D-order in (K)n {cf. [5]).

In [8], among other things, R. Tarsy posed the following

for any 1 £1i, j, k & n

conjecture:

{T) the maximum finite global dimension of a D~order in
(K), is n - 1.

For some classes of tiled D-orders, this is settled by V. A.
Jategaonkar [4], [5] and Kirkman and Kuzmanovich [6]. As a strat-
egy to prove (T) for tiled D-orders, Jategaonkar [5] conjectured

(J) 1if A 1is a basic tiled D-order of finite global dimen-
sion then there is a vertex i 1in the quiver of A such that

[i*] =1 or [i7]| = 1.

Recently, in [6], Kirkman and Kuzmanovich obtained a counter-

*The results announced here and their related facts can be found in [1] and

(2}.



example to (J) (but not to (T)). In this summary, we announce a
counterexample to (T), which was found in an attempt to obtain
the list of tiled D-orders of finite global dimension.

We now recall some definitions and notation of tiled D-

A,
orders. Let n 2 2 and let A = (= lJD) be a basic tiled D-

order in (K)n, where Aij’s are non-negative integers, Aii =0,
Aij + Ajk 2 Aik and Aij + Aji T 0 (if i #3j) for any 1 5 1,
j, k S n. Put mkij =1 (if 1 =3 = k)mi?é Aij (otherwise) for
any 1 s i, j, k s n and put Mk = (n **Ip) for any 1 £ k £ n,

Then M1, ceey Mn are the maximal ideals of A and J = M1 N
eee N Mn is the Jacobson radical of A. Let ey
in (K)n whose (i,i)-entry is 1 and the others are 0.

be the matrix

Following Wiedemann and Roggenkamp [9], we call @Q(A) = (Q(A)o,
Q(A)1, v) the valued quiver of A provided that Q(A)0 = {1, ..
., n} 1is the set of vertices, Q(A)1 is the set of arrows
defined by 1+ 3 € QUA), if ey (3/3%)e; # 0 and that v is
the mapping from Q(A)1 to non-negative integers such that for
a: i+ j € Q(A)1, via) = A, (if 1 #3) and 1 (if i = j).

ji
%1 %2 “m
Let p: x5 — Xy —> 00— X be a path in 2(A). Then we
m

put vip) = I v(ai) and we call p a vi(p)-path. P(A) denotes
i=1

the set of all Aij-paths from j to i in Q(A) where i, j €
Q(A)0 and i # j. We associate an order with P(A), i.e., for
Py P, € P(A), Py S Py if p, is a subpath of p,. For i €
Qih) g, 1 (resp. 17) denotes the set {x €Q(N, | i+ x €
2(A) 4} (resp. {y € QM) | vy~ i€ 2(A) 4D

We next define an idealizer with respect to a link between
maximal ideals. Let S be an arbitrary ring with identity and
let Ma and Mb be maximal ideals of S. When Mar\ Mb 2 MbMa
and S/Mi is artinian (i = a, b), we say that there is a link
from Ma to Mb and denote it by Maae»Mb. In this case, since
Mb/MbMa is semisimple as a right S-module, there is a right
ideal A of S such that Mb/MbMa = A/MbMa ® (Maf\ Mb)/MbMa.
Let R be the idealizer subring {s € S | sA € A} of S at A.
We call R an idealizer with respect to a link Ma~4'Mb.

_8_



It is analogous to the case when A 1is semimaximal (Robson
[8]) that § and R have closely related structure. An essential
difference of ours from the semimaximal case is that A is not
generative (i.e., SA = S).

The following lemma is an origin of an idealizer w.r.t. a
link between maximal ideals.

S
Lemma 1. Let A = (1 ~’D) be a basic tiled D-order in (K)n.

For 1 $a, bsn with a # b, put Yij = Aij + 1 (if (4,3) =

(b,a)) and Aij (otherwise) and put T = (7 1JD). Then I' is
also a basic tiled D-order if and only if M~ M . In this case,
' is obtained as an idealizer w.r.t. Ma-4 Mb.

a,.
Remarks. (1) In the proof of Lemma 1, we put A = (n iJD)
a4 = Aij + 1 (if (i,j) = (b,a) or (b,b)) and Aij
(otherwise) and show that T is the idealizer of A in A, In
the definition of an idealizer w.r.t. a link, A is not uniquely

where

determined by the link. So, when we consider tiled D-orders, we
suppose that the idealizer w.r.t. a link is taken as above.

(2) For a basic tiled D-order A, M~ M if and only if
a~+be Q(A)1. .

Conversely to Lemma 1, we obtain the following

Y.
Lemma 2. Let T = (v *JD) be a basic tiled D-order in (K)n.

> <
Suppose that Yap * Ypa 2 and Yba 21 for some 1 5 a, b sn

with a # b. Put Aij = Yij ; 1 (if (i,3) = (b,a)) and Yij

{(otherwise) and put A = (7 ijD). Then A 1is also a basic tiled
D-order if and only if any Yba-path form a to b in Q(T) |is
maximal in P(l).

By Lemmas 1 and 2, we obtain the following
Proposition 3, Any tiled D-order is obtained by iterating

the idealizers with respect to links of maximal ideals from a
hereditary order.



By the examples of [4] and [5], we cannot expect to compare
global dimension of an idealizer w.r.t. a link with that of a
given ring without any assumption. Utilizing tame subidealizers
{(Goodearl [3]), we can obtain bounds of global dimension of an
idealizer w.r.t. a certain link.

Theorem 4. Let S be a ring and M, Mb maximal ideals of

S such that M~ M and Mb'*'Ma' and let R be an idealizer
wfr.t. Ma~o Mb' Suppose that there exists a ring T such that
S is contained in T as a subring and that My is a generative
right ideal of T ({or Ma is a generative left ideal of T).
Then

r.gl.dim § - 1 § r.gl.dim R £ r.gl.dim § + 1
and

£.9l.dim S - 1 § 2.g91l.dim R £ 2.g9l.dim S + 1.

When S 1is a noetherian prime ring, the theorem is re-
phrased as follows.

Corollary 5. Let S be a noetherian prime ring and M, M
maximal ideals of S with M,—~ M and Mb-%vna, and let R be
an idealizer w.r.t. Ma""Mb' If Mb is idempotent and left S-
projective (or Ma is idempotent and right S-projective). Then

gl.dim S - 1 $ gl.dim R £ gl.dim S + 1.

According to the corollary, we call a link between maximal
ideals projective if it satisfies the hypotheses of the theorem.

Remarks. (1) In [8], Tarsy also conjectured that if A DT
are successive D-orders of finite global dimension then their
global dimensions differ at most one. A counterexample to this
conjecture is given by Jategaonkar [4]. However, if A and T
are basic tiled D-orders and if the associated link is projective
then this conjecture follows from our theorem.

(2) The hypothesis 'Mb'%»Ma' is necessary.

(3) In the theorem, gl.dim S - 1 and gl.dim S + 1 are



the best bounds of gl.dim R.

Example 6. Let A be the basic tiled D-order

D nD 1D wD 1D
D D 1D nD 1D
D D D nD D
D 1D D D 1D
D DD D D .

Then gl.dim A = 3 and the valued quiver of A 1is given by

[>7)

- __ . .
Note that M, and M, are left A-projective. Let Ugr weey Gy
be the links M3~» Mq, M3~» M1, M5~ﬂ»M1 and Ms—» M4, respec-
tively, and let Fi be the idealizer w.r.t. oy (1 21iz5 4).
Then a.. a, and ay are projective links and gl.dim F1 = 2,
gl.dim F2 =3 and gl.dim F3 = 4, But since M4~4»M5, a4 is

not a projective link, and gl.dim P4 = o,

Theorem 7. Suppose that 2 s n £ 5. Let A be a basic
tiled D-order in (K)n and gl.dim A < », Then there exists a
chain of basic tiled D-orders A = A0 C e At such that At
is hereditary and that A, _, is the idealizer w.r.t. a projective
link in Ai where 1 =1, ..., t. If n 2 6 then there exists a
tiled D-order of finite global dimension in (K)n which does not

have the above property.

Remark. Making use of this theorem, for 2 s n 8 5, a list
of the representatives of isomorphism classes of basic tiled D-
orders of finite global dimension in (K)n is obtained.

The following example is one of the basic tiled D-orders in
(K)n (n 2 6) of finite global dimension those are not obtained
by iterating the idealizers w.r.t. projective links from heredi-



tary orders. This is also a counterexample to Tarsy’s conjecture.

Example 8. Let A be the basic tiled D-order in (K)n
whose valued quiver is given by

where n 2 6. Then gl.dim A = n and (J) does not hold.

Remarks. (1) This example is something like Tarsy'’s [8,
Theorem 11].

(2) It is shown in [5] that for a fixed integer n, there
are only finitely many isomorphism classes of tiled D-orders of
finite global dimension in (K)n. Hence there is the maximum
finite global dimension of a tiled D-order in (K)n. Although, at
present, n is the maximum among known examples, we do not have
enough reason to conjecture that n is the maximum.

Proposition 9. Let A be a basic tiled D-order in (K)n
and gl.dim A = 2. Then there exist a, b € Q(A)0 such that
]a”] = 1 and |b*| = 1. Hence (J) holds. Moreover, there exists
a chain of tiled D-orders A = l‘0 < 1‘1 C e C l‘m such that l‘m
is a maximal order, Fi-1 is obtained as an idealizer in Pi
(1 €£i £ m and that for some 1 £ £ s m, gl.dim Fi =1 (if
£ £1i<m and 2 (if 0 s i 5 2).
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ON PRIMITIVE ELEMENTS OF GALOIS EXTENSIONS
OF COMMUTATIVE RINGS

Isao KIKUMASA and Takasi NAGAHARA

Throughout, all rings will be assumed commutative, and all
Galois extensions will mean Galois extensions in the sense of
[1]. Moreover; A will mean a field, and all ring extensions
of A will be assumed with identity element 1, the identity
element of A. A ring extension B/A will be called to be
simple if B is generated by a single element over A, that
is, B/A has a primitive element,

The purpose of this note is to present some arithmetical
conditions of the simplicity for Galois extensions.

In what follows, given a set. S, an A-module M and a
ring B, we shall use the following conventions:

|S| = the cardinal number of S,

[M:A] = the rank of A-module M, and

2(B) = the length of composition series of B-module B.

The detailed version of this paper will 'be submitted for publication
elsewhere.



First, we shall state the following lemma which 1is

fundamental.

Lemma 1. Let B/A be a Galois extension.
1) Ir |A] = ® then B/A is simple.

2) If A 1is of characteristic 0 then B/A is simple.

By the lemma, we may assume that A is finite, namely
|a] = q =p" (p: a prime, m 2 1),
in the rest of this paper.
Next, we shall present a theorem which plays an important

role on our study.

= pfl, %2 an
Theorem 2. Let a = P °P>%.-.P where n, Upy Upyeens

anEIﬂ and Pys Pos ««-y P are prime integers with Py <Py <

n
IR < Py 'and let bé&N with b 2 a. Moreover, set

r(x) = ) (-1)P-1xPe1Pez: - -Pey
0gign
1§e1<e2<°°°<ei§n
where ‘PejPey--:Pej = 1 when i = 0, and put
glx) = xP1P2--+Pn _ p(x).

Then, the equation
(*) r{x) =b (x >0)
has the unique solution.

furthermore, let xo(a,b) denote the solution of the

equation (*). Then there holds



1 < x45(a,b) < glxy(a,b)) g b.

In particular, if n = 1 then xo(a,b) = g(xo(a,b)).

Now, for the g(x) and xo(a,b) in the above theorem, we

put
e(a,b) = g(xo(a,b))/b.
Then, the € 1s an arithmetic function on the set {(a.b);
a, beN, 2 < a < b} such that
0 < e¢(a,b) g 1.
Moreover
e(a,b;) > e(a,bz) if by < b,.

For examples,

e(2,2) = 1, e(2,10) = 0.370+*+, €(2,100) = 0.105¢+°-,
¢(10,10) = 0.415--«, ¢€{(100,100) = 0.115+++, and
€(1000,1000) = 0.0341+--,

In virtue of this function, we shall state one of our main

theorem.

Theorem 3. Let B/A be a G-Galois extension and b = |G].
1) In case &(B) = b, B/A 1is simple if and only if
%£(B) 2 q.

2) In case &(B) # b, for a:= b/%(B), the following

conditions are equivalent.
i) B/A 1is simple.

ii) &(B) ¢ bm/(logpb + logp(l + e{a,b)))

where m = [A:GF(p)].



If, in particular, the rank of B/A in Theorem 3 is a

power of a single prime then we have the lollowing

Theorem 4. Let B/A be a G-Galois extension and |G| =
rk where r is a prime integer and k € N. Assume that
L(B) £ rk. Then the following conditions are equivalent.

i) B/A is simple.

ii) &(B) g rkm/(k-logpr + logp(l + xo(rk.rk)/rk))-

Combining Theorems 3 1) and 4 with Theorem 2, we readily

obtain

Corollary 5. Let B/A be a G-Galois extension and |G| =
rk where r is a prime integer and k € N. Then
1) If B/A is simple then
L£(B) < mrk/(k-logpr).
2) If  &(B) < mr'k/(k-logpr- + log2) then B/A is

simple.
In case r = p, the following theorem is a main result.

Theorem 6. Let B/A be a G-Galois extension and |G| =
pk (k € N). Then the lollowing conditions are equivalent.
i) B/A is simple.

11) 2(B) < p*(mp* - 1)/(xpX - 1).



Example 1) Let A = GF(5) and B' a rield which is a
Galois extension of A with Galois group G' of order 6.
Moreover, let

B=B"@®@B' ® ... ®B' (12 copies).
Then the ring B 1is a G-Galois extension of A 1in the sense
of [1], and q = 5, |G| = 72 and #(B) = 12. Putting b = |G|
and a = b/%(B), we see that b = 23-32 and a = 2-3. In
this case, the equation (*) in Theorem 2 is

x6 - x3 - x2 + x -T2 =0 (x> 0).
For the solution xo(6.72) of this equation, as is easily seen,
there holds

2.09 < xo(6,72) < 2.1.

Using this fact, we know that the right-hand side in the
inequality of Theorem 3 ii) is more than 26.1 and less than
26.2. Hence B/A 1s simple by Theorem 3.

8 and 2(B) = 37 (of course,

2) Let q =19, |G| =3
as in the above, there exists a Galois extension B/A
satisfying this condition). Then, in Theorem 4, the right-hand
side is 2197.3.... Hence, by the theorem, we see that B/A
is simple in this case because £(B) = 2187. But we find that
there does not hold the inequality of Corollary 5 2). Indeed,

mrn/(n-logpr + logpz)

n

6561/1031913122

2037.3...

2187 = &(B).
3) Let gq =33, |G| =32 and &(B) = 3

A

8

(one can



easily see the existence of such a Galois extension). Then,
the right-hand side in 1i) of Theorem 6 is less than &(B).
In truth,
p"(mp™ - 1)/(np" - 1)
= 6560.9...
< 6561 = (B).
This implies that B/A is not simple, that is B/A has no

primitive element because of Theorem 6.

The following references [1]-[12] are used to the proofs

of the results in this note and other results.
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SOME RESULTS ON ADDITIVE GROUPS OF RINGS

Yasuyuki HIRANO

There are many works on the additive groups of rings.

Many

of the results are found in Chapter 17 of L. Fuchs' book [6] and
S. Feigelstock's books (3] and [4). In this note, we deal with

some problems in [1), [4] and [7].

Notation. R a ring
R* the additive group of R
C(R) the commutator ideal of R
(a) the principal ideal generated by a R
Rt the torsion part of rR*
Rp the p-primary component of R+, p a prime
z the ring of integers
Q the field of rational numbers
Z{n) cyclic group of order n
1. On a problem of Szasz. In Problem 84 in (7], F. A.
Szasz asks: In which rings R has the additive group 2% of the
centre 2, a finite group-theoretic index with respect to rR*?
We begin with the following
Propositiop 1.1, If 2t has finite index in R+, then

C{R) is finite.

The detailed version of this note will appear elsewhere.



Proposition 1.2. Assume that C(R) is finite. Then there
exists a finite nilpotent ideal N of R such that R/N is the

direct sum of a finite semisimple ring and a commutative ring.

As an immediate consegquence of Propositions 1.1 and 1.2, we
have the following

Corollary 1.3.. Let R be a semiprime ring with centre 2.
Then the following statements are equivalent:

(1) 2* has finite index in R'.

(2) C(R) 1is finite.

(3) R 1is the direct sum of a finite ring and a commutative
ring.

The following is our main theorem.

Theorem 1.4. Let R be a ring with centre 2. Then the
following statements are equivalent:

(1) 2% has finite index in R'.

{2) R has an ideal I contained in Z such that R/I is
a finite ring.

2. The additive group of a non-periodic C-ring. Following
H. E. Bell (1], we call a ring R quasi-periodic if for each x
€ R there exist integers k, n, m, all depending on x, such
that n >m > 0 and " = kx". Among the quasi-periodic rings
which have been previously studied are the periodic rings - those
such that for each x & R, there exist distinct positive integers
n, m for which = XM, Others to which less attension has
been paid are the C-rings discussed by S. Feigelstock in [2);
specifically, a ring R 1is a C-ring if for each x € R, there
exists an integer n > 1 and an integer k such that x" = kx.
If in a C-ring we can take n = 2 for all x € R, then R is
called a Cz-ring. Clearly, a ring R 1is a Cz-ring if and only
if every cyclic subgroup of rR* is a subring of R. Clearly

every abelian group G can be provided with a periodic ring



structure in a trivial way by defining all products to be 0.
However the additive groups of non-periodic, quasi-periodic rings
are rather restrictive.

Theorem 2.1. Let G be an abelian group. Then the
following statements are equivalent:

(1) 622" ®H for some abelian group H.

(2) There is a non-periodic Cz-ring R such that R' = G.

(3) There is a non-periodic C-ring R such that R" = G.

(4) There is a non-periodic, quasi-periodic ring R such

that R' = G.

Theorem 2.2. Let G be an abelian group. Then the
following statements are equivalent:

{1) G g'z+ @ H for some torsion abelian group H.

(2) There is a non-periodic, quasi-periodic ring R with
identity such that R = G.

3. Wwhen can a ring be embedded in a direct sum of simple
rings. At the beginning. of this section, we give a counter-
example to. {4, Corollary 1.4.5].

Example 3.1. Let R be the additive abelian group
Z ® 2/2Z and define multiplication by (a,b)(c,d) = (ab,ad +
bc), where a, ¢c € Z and b, d € Z2/2Z. Then R is a non-
fissible ring. However it is easily checked that R can be
embedded in the direct sum Q® M2(Z/2z).

The following is an answer to [4, Question 1.4.6].

Theorem 3.2. The following statements are equivalent:
(1) R can be embedded in a direct sum of simple rings.
{2) R is a subdirect sum of a torsion-free ring F and a

torsion ring T with T square-free.

The following is the correct form of (4, Corollary 1.4.5].



Corollary 3.3. Let R be a ring with identity. Then the
following conditions are equivalent:

(1) R can be embedded in a direct sum of simple rings with
identity.

(2) RY is square-free, or equivalently, R: =p<?P %-? Z(p).

P

with P a finite set of primes, qb an arbitrary cardinal for
each p ¢ P.

4. Fully idempotent rings are strongly p-fissible. A ring
R is said to be fissible if the torsion part Rt is a ring
direct summand of R, and p-fissible if the p-primary component
Rp is a ring direct summand of R. A fissible ring R is
strongly fissible if every group decomposition R = Rt @H is a
ring decomposition. A ring R is said to be strongly p-fissible
if R is p-fissible and every group decomposition R’ = Rp(@ H
is a ring decomposition. A ring R is said to be fully

idempotent if 12 = I for every ideal I of R.

Proposition 4.1. Every biregular ring R is fully
idempotent. Hence R/Rt = @ Q for some cardinal .

Remark 4.2. Let R be a biregular ring. By Proposition
4.1, for every a e€ R/Rt, t{a) = (00, ... , 00, ... ) (cfE. [4,
Question 3.3.15])).

The following theorem generalizes [5, Theorems 7 and 8] (see
also [4, Chapter 3, §21]).

- Theorem 4.3. Let R be a fully idempotent ring. Then
every ring S with s = R is strongly p-fissible for every

prime p. If st - S¢ ® F, then S is strongly fissible.

5. Quotient no-zero-divisor rings. A ring R is called a
(proper) gquotient no-zero-divisor ring if every (proper) quotient



ring of R has no zero-divisor. In this section, we answer to
[4, Question 4.1.13].

Theorem 5.1. The following statements are equivalent:
({l) R 1is a quotient no-zero-divisor ring.
(2) R is a chain ring satisfying (a) = (az) for every

a ¢ R.

Corollary 5.2. Let R be a quotient no-zero-divisor ring.
Then either R' = @ Q+ or R = @n Z(p) where p 1is a prime and
«, @ are cardinals.

We give some examples of quotient no-zero-divisor rings.

We begin with the following

Proposition 5.3. Let R be a quotient no-zero-divisor
ring. Suppose that R satisfies a polynomial identity. Then R

is a division ring.

Obviously, every simple domain is a quotient no-zero-
divisor ring. Let R be a simple domain with identity which is
not a division ring, and let K be the centre of R. Then K
is a field. Take a non-unit x # 0 of R, and consider the
subring S = K + xR of R, Then 0 and xR are the only
proper ideals of S, and these are completely prime. Thus § is
a qoutient no-zero-divisor ring.

More generally, we have the following

Theorem 5.4. Let D be a simple domain with identity which
is not a division ring, and K the centre of D. Suppose
that D QKD EK cee EKD, n times, is a domain for every positive
integer n. Take a non-unit x € D, and let R = R(l) = K + xD.
Define the subalgebra R(n) of D QK  ee QKD {n times) by R(n)
= K + xD B R(n'l), inductively. Then, for any positive integer
n, R(n) is both a quotient no-zero-divisor ring and a (n + 1)-

chain ring.



Let K be a field of characteristic 0, and Al(K) be the
algebra generated by x and y over K with relation xy - yx
= 1, that is, Al(K) be the Weyl algebra on x and y over K.
Then Al(K) satisfies the hypotheses of Theorem 5.4.

6. Proper quotient no-zero-divisor rings. If R has a
completely prime ideal, then R has a minimal completely prime
ideal. Using this fact, we have the following

Theorem 6.1. Let R be a proper quotient no-zero-divisor
ring. Then one of the following holds:

a) R is a quotient no-zero-divisor ring.

b} R has a unique minimal nonzero ideal P and R/P is a
quotient no-zero-divisor ring.

c) R has the only two minimal prime ideals Pl' PZ' R/Pi
is a quotient no-zero-divisor ring for each i = 1, 2, and the
lattice of ideals of R is the following form:

0 “'Plc1=1+1=2 C... ¢R.
[\
P2

Corollary 6.2. Let R be a proper quotient no-zero-divisor
ring. Then one of the following holds:
i) R = @ Q+ where « is a cardinal.
ii) Rr'
iiiy R = @ o' @(g Z(p) where p is a prime and &, § are
cardinals.
iv) RY = Q Z(p) ® @ Z(g) where p, g are two distinct
primes and &, @ are cardinals.
v) R = @ Z(p) @ ? Z(pz) where p is a prime and &, @
are cardinals.

Q Z(p) where p is a prime and « is a cardinal.

Example 6.3. Let K be a field of characteristic 0, and
Al(K) the Weyl algebra on x, y over K. Let R(n) be the
algebra defined in Theorem 5.4 (with R = Al(K)), and P the

r{D)

minimum nonzero ideal of . Then the trivial extension

— 26—



R(n)b< P is a proper guotient no-zero-divisor ring satisfying
the condition b) in Theorem 6.1. The subring S = K + Mn(xAl(K))
of Mn(Al(K)) also satisfies b) in Theorem 6.1. Next, consider
the subring T = K + xAl(K) ©)] yAl(K) of Al(K) @ Al(K). Then T
satisfies the condition c) in Theorem 6.1. The lattice of ideals
o & XA, (K)

of T is the following:
C ya,(K)

¢ xA (K) @ yA (K) C T.

7. Rings whose additive endomorphisms are multiplicative.
A ring R is said to be an AE-ring, (additive endomorphism), if
every f ¢ End(R+) is a ring endomorphism of R. The structure
of the torsion AE-rings was completely described in [4, Theorem
6.3.6). In (4, Question 6.3.7), Feigelstock asked whether (4,
Theorem 6.3.6] remains true for an arbitrary AE-ring or not. Now
we give a partial solution.

Theorem 7.1. The following statements are equivalent:

(1) R is an AE-ring with RtR £ 0.

(2) R=(a)®sS®T with J|a] = 2", n a positive integer,
2lg o 0, T is 2-torsion-free and 2-divisible, and

multiplication in R is defined by (mla + s +

1 2
n-1 .
t2) = 2 m,m,a for all integers m., all S; € S, and all tie

T, i=1, 2.

+ tl)(mza + s
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THE CHARACTER RINGS OF FINITE GROUPS
AND GENERALIZED DEDEKIND SUMS

Yugen TAKEGAHARA

§1. Introduction. In the paper [6], T.Yoshida defined a

function A[A] = AA[A] on a finite abelian group A as

VR (073) N

where A 1is a linear character of A, and for x € R,

1 if x €12,
0 otherwise.

() = x - (x1 - 31 - 80), 800 =

For a positive integer k and an integer h, the Dedekind sum

1s defined by

The detailed vefsion of this paper has been submitted for

publication elsewhere.



o -2 (@) (6):

Yoshida has shown that if the order of A is k, then for any

integer h,
(1) <a,(11.4,[201>, = s(h.k)
A *TA A ’ ’

where < , >A is a usual scalar product on the space of complex
valued functions on A. For the properties of the function

AA[A] and their applications to the group theory, see [6].

The purpose of this report is to state the applications of
the character theory to the properties of Dedekind sums. By
using (1), Yoshida proved some formulas for Dedekind sums,
especially the reciprocity formula for Dedekind sums;

k2 + h% + 1 - 3kh

(2) s(h,k) + s(k,h) = 12kh ,

provided that (k,h) = 1. In §2 we apply the methods used in
[6] to the proof of the reciprocity formula for generalized

Dedekind sums defined as follows(see [1]).

sk <2 () ((#9).

where k 1s a positive integer, h 1s.an integer and r 1is a



real number. If 2 1is a linear character of an abelian‘group
A and the order of A is k, then for any integers h and r,

we have

h r _
(3) <AA[11.AA[1 1-a >, = s(h,k,r)
([4]). In §3 we state some congruences of Dedekind sums proved
by using the function A({S5)). These results are related to

Rademacher's three-term relations for Dedekind sums(§4).

§2. The reciprocity lformula for generalized Dedekind sums.
Let M and N be cyclic groups of order k and h, and put
A =MXxX N. Following to [68], we define the function 6 on A

as
0= AA[AxlN]-AA[Iqu] - AA[AXu](AA[AXIN] + AA[IMXu]).

where A and pn are generators of the linear characters of M

and N respectively. Yoshida proved (2) by calculating

A* We consider <9.1cxud>A where ¢ and d are any

integers such that 1 € ¢ <k, 1 £ d < h, and get the

<9,1A>

reciprocity formula for the generalized Dedekind sums due to

Knuth([1]).

Theorem 1([1]1,(4]). Let k and h be positive integers.
If (k,h) = 1, then for a real number r such that -h < r < k,

we have

— 31—



2 2 [r1(lr] (r))
s(h.k.r) + s(k,h,r) = % . rzﬁrln B

. %[[ﬁ] - [%]] - %(e(r.k) + e(r,h) - 1),

[
-
RN
L3
coo
Mo
m W

0 (mod z),

1
0 0 (mod z).

[
Y

where for z € Z, e(r,z) = {

Note that s(h,k,r) = s(h,k,~-r). We prove the theorem following
to the paper [4]. If we can prove the theorem in the case where
r 1s an integer, then we can extend the result to the general

case. To prove the theorem, we calculate <6.xcxud>A.

Let k' and h' be integers satisfying kk' + hh' = 1.

From (3), we have

<6.xcxud>A = s(hh',kh,hh'c+kk’'d) + s(kk',kh,hh'c+kk’'d)

c..d
+ <AA[Ax1N] AAIIMXH].X Xu>, .

By the character theory of finite groups, we can easily see that

<ty Laxty 1 -8, [ Lpeu] 2%, = {E (E9){E ((229))

- (@) (®)-

n-1
Here we use the formula; ((n-x)) = X [(% + x]) for x € R,
1=0

n € N. Furthermore we have the following.



Lemma 2([4]).
s(hh' Kk’ hh'c+kk'd) = s(h,k.d-¢c) - 3 [G%Eﬂ)[l - 6&9).

On the other hand, following the definition of the product

<, >p. We have
<0.1cxpd>A = (k<9|M,1c>M + h<9|N,ud>N
k-1 h-1 1

+ = 2 omxnd)-am®)-n(nd))/kn,
1=1 j=1

where m and n are the generators of cyclic groups M and N

respectively. Note that 9(1A) = 0. From (3) we get
<0 2% = <A, [a1,a021:2%>, = s(1,k.c)
IM** M R M (R el
Furthermore we have the following.

Lemma 3((4]).

The key result is the following.
Lemma 4([6]). G(mian) = - % for 1 <1 <k, 1<]J <h.

Furthermore we have



= Taehoua®) -+ () - @) - 1),

Combining the above results, we have

2+on2s1, (c-a)?

]+ 5Y) - 2606 -+ o(&Y - 9

Replacing c¢-d with r, we obtain the rcequired reciprocity

k

s(h,k,d-c) + s(k,h,c-d) =

- 5%

formula in the case where r 1is an integer.
8§3. The congruences of Dedekind sums.
Theorem 5([5]). Let p, q and r be positive integers

such that (p,qr) = 1. Let r' be an integer satisfying

rr' =1 (mod p). Then we have

(4) p-s(qr,p) p-s(qr',p) (mod 2).

If neither 2 nor 3 divide (q,r), then we have

2 2
(5) qr-s(qr,p) = qr-s(qr’,p) + (g 'i;;r -1) Emod TE%E?TJ'

We prove this theorem following to [5]. To prove Theorem 5, we

define



o(a,r;p) = <alad) - %-A[xl.burl - %-be
where p, @ and r are positive integers, and A 1is a
generator of the linear characters of the cyclic group A of
order p. If (p,qr) = 1, then we have
(6) o(q,r;p) = s(qr',p) + —i-S(l p) - l's(r p) - -l—-s(q p)
] » L ] qr » q » l.- » .

The above theorem 1s based on the following proposition.

Proposition 6({5)). If (qr,p) =1 and 2 does not

divide (q,r), then we have qr-o(q.r;p) = 0 ['“°d _(22q_ir )

This result is given by the equality;

oy 1Pl gt ret] | (p-1)(g-1)(r-1)
O’(Q.l‘.p) = qr 1'jz=1 [ p] [ p 4qr -

qJj=ri (mod p)
Combining Proposition 6 with (6)., we get

(7) gr-s(qr’,p) + -‘%’—2) = q-s(q,p) + r-s(r,p)

(nos

=)

In this congruence, we can exchange r for r', because we may

suppose that (q,r') 1is not divisible by 2. These two



congruences implies (4)(see [5]).

From (2), (4) and (7), we have

par-s(p,qr) + B& 'li(r'l) = pq-s(p.q) + pr-s(p,r)

(g2-1) (r3-1)
12

+

("’°“ (2??)

This implies the following.

Proposition 7([5]). Under the assumptions of

Proposition 6, we have

3qr-s(p,qr) + 919:1%15311 = 3q-s(p,q) + 3r-s(p,r)

(‘”°d (2.qr)§8(q.r))'

where

1 if q or r 1s not divisible by 3,

€(a.r) = \ 3 otherwise.

Now combining this with (2) and (7), we can conclude (5). We
note that the above result is concerned with the generalized

Gauss' lemma of the Jacobl symbol([5]).

§4. Three-term relations for Dedekind sums. Let p, q
and r be pairwise coprime positive integers. Let p', Q' and

r be integers such that pp’'= 1 (mod qr), qq' = 1 (mod rp)



and rr' =1 (mod pq). Then the Rademacher's three-term

relation, which is a generalization of (2), is the following.

Theorem 8([3]).
s(ar',p) + s(rp',q) + s(pq’',r) = T%{E% + ;% + 55 - %.

As corollary to this theorem, we have the following

three-term relation for o(q,r:p).

Corollary 8([51]).

¢{q,r;p) + o(r,p;q) + o(p,q;r) = - (p-l)ig;i)(r—l)'

There exists one more three-term relation for Dedekind sums

due to Rademacher, as follows.

Theorem 10(([(2]).

(s(qr,p) - Ig%) + (s(rp,q) - T%B + (S(DQ.r) - T%%J

.1 _par, 1

= 2 12 m (mod 2).

This theorem is related to the number of lattice points in a

tetrahedron([zl).

Now, by Theorem 5, we can see that Theorem 10 is deduced

from Theorem 8.
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ON TRACE FORMS OF ALGEBRAS

Yutaka WATANABE

For an algebra A over a field F, we denote by TrA the

trace of the regular representation of A. A bilinear form tA

on A, called the trace form of A, is defined by tA(x, y)

= TrA(xy). tA is symmetric, and is non-degenerate if A is

separable. When an F-linear base { ViresesVy } of A is

fixed, ta is represented by the matrix (tA(vi, vj))
(TrA(vivj)). By our definition, the (i, j)-entry of this

matrix is given by 2{:0;; where (vivj)vm = EZ:c;;vk.
T k

For F-algebras A and B, the trace form ¢t of tensor

A®B
product A®B is isometric to the tensor product of bilinear
forms tAQDtB. So, if A 1is a full matrix algebra Mn(D) over

D, t, is isometric to tMn(F)ﬁth'

When two forms f£ and f£f' over F give rise to the same
element in the Witt ring W(F), we use the notation £ ~f';
i.e., £~ f' if and only if £ LH < f'l H' for some hyperbolic
forms H and H',

Proposition 1. There is an isometry

n-times
N e
1:Mn(F) = <n,n, ceees,n > 1 t(hyperbolic)

The detailed version of this note will be submitted

for publication elsewhere.



i.e., tM (F)A.—(n,n, ..... ,n>

hence, t, (D) ntD_l_ntD_l_... L nty

We denote by Q = (:l*ﬁ—:l-) the quaternion algebra over F,

that is, Q =F@®Fi®Fj@ Fij ( i?2 = j2 = -1, ij = =ji ). By
the standard base { 1, i, j, ij } we get a diagonalization

tg x4, -4, -4, -4 P ~<-4, -4 )
Hence, for A = Mn(Q) we get

2n-times
——lhmmes
t, ~ {-4n, -4n,..., -4n

by Proposition 1.

Let F be a formally real field and P be an ordering
of F. FPor a bilinear form £ over F, the Sylvester
signature of £ according to P is denoted by sgnPf. If F
is real closed, an Azumaya algebra over F is either isomorphic
to Mn(F) or to Mn(Q) for some n. Since the Sylvester
signature is invariant under any coefficient field extention,
we get,

Theorem 2. Let F and P be as above. The real closure

of F according to P is denoted by F For an Azumaya

p*
algebra A with dimFA = n2, sgnPtA is equal to n or =-n.

And sgnpt, = n if and only if A is split by fP’ The case

sgnptA = -n ( in this case FP does not split A ) occurs only

when n 1is even.

Corollary. For any ordering P, an odd dimensional
Azumaya algebra A is split by F,. In this case we have

P
sgnPtA = JdlmFA .

Here we shall show some computations of trace forms of
Azumaya algebras which are written as crossed products. Let
L/F be a Galois extension of degree n with Galois group G
and £ be a 2-cocycle in 23(G, L¥*). The crossed product



= /AN\(f, L/F) is defined by the usual manner. We suppose that
2-cocycle f is normalized. Let { Wyreoes Wy } be a linear
base of L over F. For elements g, h in G, we denote by

- . s sy . g

xg'h an nxX n-matrix whose (i, j)-entry is TrA(f(g, h)wiwj) .

If g=h==e ( the unit of G ), xe e is equal to the matrix
’

(TrA(wiwj)) since f 1is normalized. But TrA = nTrL holds

on L, so the matrix xe e represents the form ntL.
’

In the following proposition, < X > denotes the bilinear
form represented by the matrix X.

Proposition 3. For a crossed product A = ZX(f, L/F),

t ~ | <

ga—e glg>
~nt, | ( (g o)
g:order 2 9.9

Corollary.

tA'\’ntL

if |G| = (L : F) = n is odd. So (if F is formally real)

sgnpt, is necessarily equal to n.

The remainder problem is in the case n is even. For this
sake we shall restrict our situation to the cyclic case.

Let L/F be a cyclic extension of even degree n = 2m with
cyclic Galois group G, and g be a generator of G.

An element a€F, a ¥ 0, defines a cyclic algebra A
= /Nla, L/F) ; that is, A =L@®Lu® n @ Lun-l, u" = a,

us = s%u ( seL ). We put h = gm = gi. h 1is the unique

element of order 2 in G. So the fixed field M of h is
the unique mid-field of (L : M] = 2. We choose and fix an
element b€&L such that L = M(Vb).

To state the following theorem, we have to introduce one
more notation; for a commutative F-algebra C and for bgC(C,
th denotes the form defined by (tcb)(x, y) = Trc(bxy).



th is also symmetric and bilinear.

Theorem 4. Let L/F, a, M, b be as above. For the
trace form tA of a cyclic algebra A = Ala, L/F), we have
ty ~ 2n(tMJ_ atMJ_ tyb L -atyb)

Using this expression of tA

"real splitting" of cyclic algebras.

, Wwe get a theorem about the

Theorem 5. Let L be a cyclic extension of even degree
n =2m of a formally real field F with an ordering P. For
A\la, L/F), ae F*,
1) if sgnpt, =n, A is split by FP '

a cyclic algebra A

2) if sgnpt, %n ( sgnpt; = 0 necessarily holds in
this case), A is split by FP when a:)O and

not split when a<0.
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REPRESENTATIONS OF HECKE ALGEBRAS AND SYMMETRIC SPACES
IN CASE OF ALTERNATING MATRICES

Yumiko HTRONAKA and Fumihiro SATO

§1. Introduction

In the present note we report some results on the
structure of certain function spaces on the set of non-
degenerate alternating matrices over D or r-adic number
fields, as modules of the Hecke algebra of GL(2n). A
similar probhlem has been recently solved for alternating

matrices over Fq by Bannai-Kawanaka-Songf|1]. As an

introduction, we briefly recall their result over Fq.

Let G be a finite group and we identify the group
algebra € with the set of (¢-valued functions on &, with
the element Zaxz €CG corresponding to the function f:0 ———
€ defined by s(z) = a, xec,a$e¢. Then the product in CGC
carries over to the convolution product.:

(f5g)(z) = = f(y)g(y—lx). L€G.
ye€QG

The final version of this paper will be submitted for

publication elsewhere.



For a subgroup K of G, we identify the subalgebra

-1
#{C,K) = o,CCe e, = K| =0y
’ K-4egr 8y yek

with the set {7eCG| f(yzy') = f(z), y,y'€K, z€G}.

It is easily seen that #{(G,K) becomes a subalgebra of G,
and this is called the Hecke algebra of G with respect to K.
It is known(2,(11.25)) that the restriction of representations
of G to those of #(G,K) gives a bijective correspondence
between the set
{seIrric) | <z, Indl(1,)> = 0 }

and the set Irr{(#(G,K)), and #(G,K) is commutative if and
only if 1nd%(1,) is multiplicity-free.

Let G = CL(Zn,Fq) and K = Sp(2n,Fq). Then R(G,K)
is commutative. According to the result of [11, every
irreducible character of #(G,K) can be obtained by replacing
q by q2 in the values of an irreducible character of &
whose degree 1is prime to q. In this way, they have

determined irreducible characters o lstsn(=dimcﬂ(G.K)),

t'
for which

he, = “t(h)et’ l<i<m, heR{(G,K),

: n
where H(G,K) = 3o Cet and

21 3t3j=5tjet'

In the following, we will consider a similar problem for
algebraic groups defined over & or p-adic number fields.
Though the problem can be formulated in a more general
setting of symmetric spaces, we treat here only the case of

alternating matrices to make the exposition simpler.



§2. Hecke algebras over p-adic number field

Let k be a p-adic number field with the ring of

integers 0 and the maximal ideal p=(x). Denote b& q
the cardinality of 0/p. Let G = GL(2n,k) and H =
Sp(2n,k). Then the symmetric spaée X = G/H can be
jdentified with the set {zeGL(2n,k): Lz = -z}, and § acts

on X by g-z = gzlg, g€G, zeX. Let K = GL(2n,0) and let

- . / is compactly supported
(G K) = {/:G €l 7(ygy') = 7(9)) v.y'€K, geG 3

Then ®{G,K) is a commutative algebra (called the Hecke
algebra of G with respect to K) by the convolution
product
- -1
(fl*fz)(\'l}) = IGII(Q)Iz(Q z)dg,
where dg is a normalized Haar measure on . The algebra
#(G,K) acts on the space
8 (KNK) = {o:X ——C| ¢(k-z) = o{z), x€X, k€K }

by (/¥e)(z) = j’cug)wg“-z)ag-

We want to determine #(G,K)-common eigenfunctions in
g”(Kk\X), which are called spherical functions on X, i.e.
functions ¢ in #€"(K\X) satisfying f%¢p = w(f)e with some
algebra homomorphism w:#(G,K)— € (compare with the result
of [1] explained in §l1). To describe our result, it needs to

prepare some notations.

Let A = {A=(Al.---pkn)62n| Alz---zxn}. For A€A, put

"4\ - 0 n).l Leeod 0 nln c X'
_nl| 0 _nln 0

then {n*|xeAn} is a complete set of representatives of K\X.



For xeAn. put
L "tz _. .
(i) o(j)
P ZLyyeesrzil) = = 2t eeegrn n 28] _oiJj)
AT " 0€6n/Gnt azl) a(n)xi>xj Zo(i) zO(j)'
where Gn denotes the symmetric group on n letters and G; =
{OGGnl o(x) = x» } (Hall-Littlewood polynomial);
w () = 1w (L),
X i tt(x) .
= a{i = = (1-t%).
where ¢, (x) = ${jl =i } and welt) i:l(] tt)
Define W¥,_(z) in gY(K\X) by
2

_ w, (g %) _
lllz(ﬂx) = q <D|A> A oy Pl(qzljo-'qun;q 2)1
w,(q
where n* is as above, p=(n-1,n-3,...,1-n) and <p,1> =
n
100t

Theorem{3,Th.2,Th.3}. Every #(G,K)-common eigenfunction

in 2= (KNX) is a constant nuliiplte of Wz(z) for sonme
n
zeC /Gn.

Remark. Recall some facts on the 2zonal spherical
functions of G, = GL(wm,k) with respect to Ky = GL(n,0)
([4,Chap.5] or [5,88]).

A zonal spherical function w(g) is characterized by

1) wiGy——C and wlkgk’)=wlg), g€Gy, k. k’€Ky,

2) w is an x(CO,KO)-common eigenfunction,

3} w(l)=1,

All zonal spherical functions are completely determined as

follows: w = W, for some zecn/Gn, where

0.,

g -(1/2)<p, 2> wta™h) -1
wll o™ An]) - ” w.(q ") P, (a%1,...,q%" ).
q
n



The relation between #{(G,K)-common eigenfunctions in = (KNX)
and zonal spherical functions of Gy with respect to KO is

analogous to the case over Fq explained in §1.

Let ¢(&X)= {peg™(K\X)| ¢ is compactly supported}, this
is an #(G,K)-submodule of @~ (K\X). We define the spherical

transform on ¢(K\X) as follows: for ¢e¥(K\X), let

8(z) = [ ozt (" az (eCla®l,...,q%™),
X .

where dz 1is a normalized G-invariant measure on X. The
Satake transform %(v) for fe#(G,K} is given by

vi-(n-£+1/2)

2n
vy = Icf(g)izllai(g)lp dg
(Eclqtv1'~-0'qtv2n]62n)'
a;(g) %
where g=ka, k€K and gqa= o - . Define Y(z) for
‘azn(g)

JEX(G,K) by
T(z) = 9(2;+%o2;'%.---.Zn+%.2n'%) (eClq*?1,...,q%2M5n,,
and give an #(G,K)-module structure on C[qtz’,....qtz"]G"

through the epimorphism f ——7J(2).

Theorem [3,Th.4]. The spherical transform @ —3(2)

induces an H(G,K)-module isomorphism

(KNX) = Clq*21, ... ,q 20 ]0n,



§3. Hecke algebra over @
Let G

GL(2n,®Q), H = SP(ZTHQ)’ r = gL{2n,2) and

P

g
{[ ;‘._0 ]ecl gtecL(2,Q),ISisn }.
gn

Denote by & the completion of G with respect to {rNI NeN),
where = {ger| g=1(modA)}, and for a subgroup S denote
by § the closure of § in . As in the local case, the
symmetric space X = G/H can be identified with the set

{zeGL(2n,0)| z = -z} and G acts on X by g-z =gzlg,
geG, wx€X. Let Q = {zex] i?lpfi(x) = 0}, where Pfi(z) is
the Pfaffian of the upper left 2i block of =xz. Let X = G/H
and {§ = BP/PAH.

As in the local case we define

I{vgy'Y=f(g), yeG, v,y'€r
#(c,r)= {f:¢ — €| 1 = 0 outside a finite union of },
double Tr-cosets

g”(r~\X) = {9:X — Clo(v-z)=0lz), zeX, ver },

g(P\X) = {wEﬂO(K\X)I {-:rgizgtSIde a finite union of }'

and an #(G,l)-action on #g7(r~X) and ¢(r\X) is given as
follows: for the characteristic function fg of rgr and
petd” (IN\X),

t

U g.r (disjoint).
i=1 ¢

The function gpaces above can be naturally identified with

t
(f *@)(z) = Z w(gfl-z), where rgr=
g f.=1 t

(&, T), ¢°(F\X) and ¢(F\X), respectively.
We define the Eisenstein series on X as follows: for
z€X and g = (81,---,8n)€Cn, put
n ﬂs -
(x) E(z;s) = p plz) m |Pf ()] =7,
yernP \Qn(r-z) i=1

where | | 1is the absolute value and u(z) = vol((TAP)-z)



with respect to a suitable pP-invariant measure on . The

right hand side of (%) is convergent if Re(s£)>0, 1<ign-1.

Transforming the variables 818y into ZyreeorZ, by
{ 8, = -z; * Z;41 " 2, lgign-1 ’
8, % -zn_+ n -1
we obtain the following explicit formula
( ) g(z‘-‘zi-l)
Elziz) = E(Jiz): m ¥, Pl2), EWiz) = c; 1 sziztoyy
P 1<i<j<n J “i
where J = n(O,...,O)' p runs over all prime numbers,

W;p)(z) ‘is wz(z) in §2 for k = Qp. ¢ is a positive
constant and t(z) is the Riemann zeta function. Hence we
may regard E(z;z) as an element of & (r\X), further we can

prove

Theorem. Every R{(GC,K)-common eigenfunction is a constant

aulttiple of E(z,z) for some zeCn/Gn.

Note that E(z,z) has an Euler product expansion. As we

shall see in the theorem below, it reflects the fact that
9(r\X) has a restricted tensor product over prime numbers.

Now we define the . Fourier-Eisenstein transform (an

analogue of the spherical transform) on ¢(r\X) as follows:

for ¢eg(r\x), let

-1,
8(z) = [ o EErdfl agle) (e grata®n. i,

where dﬁ(x) is a P-invariant measure on § and 3' means
the restricted tensor product over prime numbers p. On the

other hand, we obtain



R(G,T) = #(E,T) =~ 8’ #(GL(2n,Q,),GL(2n,2,))

:tv;-_;n]ng
'

x> g’C[p*V‘,...,p by the Satake transform

—_ g'c[p*zl....,p*z“lsn. cf. §2,
and through this epimorphism, we regard g'c[p*zl'.._'p*ZnJGn

as an R(G,)-module.

Theorem. The Fourier-Eisenstein Lransform ¢ —p(2)

induces an H(G,l)-modute isomorphisn

IrsK) = %'Clp*zl..--.p*znlen-

Remark. This investigation is an analogy of the theory
of spherical functions of symmetric spaces over R. It is
interesting to study representations of Hecke algebras of
reductive algebraic groups over @ or p-adic number fields
employing suitable function spaces on symmetric spaces as
representation spaces. In general, Eisenstein series E(z;2z)

has no Euler product, e.g. X = GL({n,Q)/0(n,Q). A general

theory for Eisenstein series and its Euler product will be

developed in a forthcoming paper.
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ON INTERIOR G-ALGEBRAS WITH THE TRIVIAL DEFECT GROUP

Tadashi IKEDA

1. Introduction,

Let G be a finite group, p a prime number, k an
algebraically closed field of characteristic p and k[G] a
group algebra of G over k. Whenever B = k[G]b is a block
of k[G] with trivial defect group ( b is a central primitive
idempotent of k[G] ), then the block B has unique simple
k[G]-module S which also is a projective indecomposable
k[G]-module and the block algebra B 1is isomorphic to the full
matrix algebra over k with degree dim.S. See [1] p.103
Corollary 6. The purpose of this paper is to extend this fact
for interior G-algebras using k[GXG]-modules.

2. General properties of interior G-algebras.

In this paper, a k-algebra is a k-finite dimensional
k-algebra with the unit element 1. and a module over a
k-algebra is a finite k-dimensional left module. For a
k-algebra A the Jacobson radical is denoted by J(A).
Whenever H is a subgroup of G, the set [G/H] is a complete
set of representatives of the left cosets G/H. For k[H]-module

W and k[G]-module V, we denote the induced module by Indy®
(W) and the restricted module Res®,(V). The k-subspace V@

The final version of this paper will be submitted for
publication elsewhere.



is { veEV:gv=yv for any element g € G }.

Let A be a k-algebra. An interior G-algebra is the pair
(A, ¢) where p is a unitary k-algebra homomorphism of k[G]
to A. Then the k-algebra A 1is a G-algebra by the action ga
= p(glap(g~') .where g € G and a € A. Also the k-algebra A

is a k[GXG]-module by the action (g,h)a = p(g)ap(h™') ,where

(g.h) € GXG and a € A. Whenever H is a subgroup of G, the
subalgebra A" is {( a € A : ha =a for any element h € H }
and the k-linear map Try® of A"™ to A°¢ is defined by
Tru®(a) = T cecarmy 82 and Au® is the image Tr,%(A"). Then
Au® is a two-sided ideal of A°. An interior G-algebra (A,)
is indecomposable if the subalgebra A¢ is local. In this
case, the minimal subgroup H of G satisfying A° = A% is
called a defect group of (A,p). The defect group is a
p-subgroup of G and determined under G-conjugate. See [4]
p.138. Whenever B is a block of k[G] and ¢ : kiG] — B
is the projection x —> xb, where x € k[G], then the pair
(B,x) is an indecomposable G-algebra. The defect group of
interior G-algebra (B,1) equals the defect group in Brauer's
sense. Let V be a k[G]-module, Bnd.(V) the k-endomorphism
ring and pv the representation of k[G]. Then the pair

(Endu (V), pv) 1is an interior G-algebra. By Higamann’'s criteria
for relative projectivity, the k[G]-module V is H-projective
if and only if End.(V)y® = Endu(V)® . See [2] Ch.2 Th.3.8. In
particular, if V is an indecomposable k[G]-module, the
interior G-algebra (End«(V),psv) 1is an indecomposable interior
G-algebra and the defect group of (End«(V),pv) equals the
vertex vtxe(V) of V. Whenever (A,p) is an indecomposable
interior G-algebra and W 1is an A-module, then ¥ beconmes
k[G]-module through the k-algebra homomorphism .

Definition. Let (A,p) be an indecomposable interior
G-algebra and V a k[G]-module. Then V belongs to (A,p) if
there exists an indecomposable A-module W such that the
k[G]-module V is a direct summand of the k[G]-module W.



Lemma 1. Let (A,p) be an indecomposable interior G-algebra
and V a k[G]-module belonging to (A,p). Assume that the
defect group of (A,4) is D. Then the k[G]-module V is
D-projective.

Proof. Since V belongs to (A,p) there exists an
indeconposable A-module W such that the k[G]-module V is a
direct summand of the k[G]-module W. Let ¢ be the
representation of A to End.(W) introduced from the A-module

¥ and 1 = #*4. Then the interior G-algebra (End.(W), 1)
equals the interior G-algebra introduced from the k[G]-module
W. Then it is easily checked that ¢(A4“) C Endi(W)y® for a
subgroup H of G. By definition of defect groups and
Higmann's criteria for relative projectivity, the k[G]-module
W is D-projective. Since the k[G]-module V is a direct
summand of the k[G]-module W the k[G]-module V s
D-projective and proved lemma.

Definition. Whenever (A,p) and (A’,p’) are interior
G-algebras, (A,9) and (A’,p’) are isomorphic if there exists

a k-algebra isomorphism ¢ such that p° = 4§+,

3. Interior G-algebras with the trivial defect group.

In this section, we shall characterize indecomposable
interior G-algebras with the trivial defect group <1> wusing
k[G]-modules belonging to the interior G-algebras.

For interior G-algebra (A,s) and the factor algebra A/J(A)
we set 1 : A — A/J(A) the canonical homomorphism and 1t = 1
sg9. Then the pair (A/J(A),:) 1is an interior G-algebra. If the
number of isomorphism classes of simple A-modules is more than
one, the interior G-algebra (A/J(A),:) 1is not indecomposable.

Our purpose is to prove the following theorem.
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a € A° But the equation (*) implies that this embedding is
isomorphism. In particular, the homomorphisn 1A% s
surjective. Since the k-algebra A® is local the factor ring
A°/(J(A))® is local, and therefore the k-algebra (A/J(A))®
is local. Since the interior G-algebra (A/J(A),1) is
isomorphic to the interior G-algebra (Endi«(S).ps), the
locality of (A/J(A))® implies that the k-algebra A has
unique simple A-module U. Of course, the k[G]-module U is
projective k[G]l-module and End.(U)® = Endua(U) is a local ring.
Thus there exists a projective indecomposable k[G]-module U
such that the interior G-algebra (End.(U),sy) introduced
from the k[G]-module U is isomorphic to the interior
G-algebra (A/J(A),:) and we have proved (2)=—> (3).

(3)=> (1). By assumption, there exists a projective
indecomposable k[G]-module U such that the interior
G-algebra (Endu(U),pu) introduced from the k[G]-module U is
isomorphic to the interior G-algebra (A/J(A),1). So we have
(A/J(A))¢1»% = (A/J(A))®. And there exists an element a of
A such that 1, + J(A) = Tr¢»%a) + J(A). This implies that

1o - Tr¢i1>%(a) € J(A)., But 1a and Tr¢,»%(a) € A%, and so
we have 1a - Tr¢in®(a) € J(A)®. Thus 1. € A¢1>¢ + J(A)S,
Because A° is a local ring and the k-subspaces A¢,»¢ and
J(A)® are two sided ideals of A®, the Rosenberg’s lemma (see
[3] p.109) implies that 1. €A¢i»Y or 1. € J(A)?. But since
J(A)® is a nilpotent ideal we have 1. € A¢,»® and so the
defect group of the interior G-algebra (A,p) is trivial.

Corollary 3. There exists infinitely many isomorphism classes
of indecomposable interior G-algebras with the trivial defect
group.

Proof. Under the notation of theorem 2, by the condition of
(3), the interior G-algebra (End.(U),py) has the trivial
defect group. So there exists an indecomposable interior
G-algebra (A,p) such that the defect group of (A,p) is the



trivial defect group. We shall construct a new indecomposable
interior G-algebra with the trivial defect group using (A,»)
and (A,A)-bimodule M. Let Auw = A ® M as k-space. Define
the product on Au by

(a,m)(a',n") = (aa’,an’ + ma')
,where a, a' € A and wm, m" € H. Then the k-space Ay is a
k-algebra with the unit element (1.,0). Define the k-linear
map su of k[G] to Au by

pu 2 x —> (p(x),0)

.where x € k[G]. Then the map pu is a k-algebra homomorphism
of k[G] to Aw, and the pair (Aw,pu) 1is an interior
G-algebra. Since the subset { (0,m) € Ay : m € N} is a
nilpotent ideal of Aw the interior G-algebra (Au,pu) 1is an
indecomposable interior G-algebra and the interior G-algebra
(Au/J(Au),12pu) is isomorphic to the interior G-algebra
(A/J(A),1+9). By the condition (3) of theorem 2, the defect
group of the interior G-algebra (Aw,pu) is trivial. Because
there exists infinitely many finite dimensional (A,A)-bimodule,
we obtain the corollary.

Corollary 4. Let (A,s) be an indecomposable interior
G-algebra with defect group D of order p. Then there exists
an indecomposable k[G]-module V such that the vertex vtxqo(V)
equals D,

Proof. By the condition (2) of theorem 2, there exists an
indecomposable k[G]-module V belonging to (A,p») such that
V is not a projective k[G]-module. But by lemma 1, V is a
D-projective k[G]-module and D is a cyclic group of order p.
Thus the vertex of the indecomposable k[G]-module V equals
D.

Remark 5. The argument of this paper can use for (0-free {

-algebra ,where ( 1is a complete discrete valuation ring of
characteristic 0 with unique maximal ideal J(0) such that



the factor field 0/J(0) is k.Let K is the quotient field of

0. In this case, we do not know the structure of the factor
K-algebra K @,A/J(K @A) ,where (A,p) is an indecomposable
interior G-algebra with the trivial defect group.
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NOTE ON ALMOST M-INJECTIVES

Yoshitomo BABA

Recently, in [2]. Harada and Tozaki defined ‘almost M-projectives’
which are generalized from the concept ‘M-projectives’ due to Azumaya.
In this article we shall define a dual concept ‘almost M-injectives’
and generalize the following Azumaya's theorem concerning to B-injec-
tives:N is M,- and M:-injective if and only if N is H,®M.-injective
for modules N, M and M., to a case of ‘almost M-injectives’ . An easy
exanple shows that the theorea can not be modified as the sane form.

Let R be an associative ring with identity and every module be a
unitary right R-module. Por modules- ¥ and N with NSH, NG H denotes
that M is an essential extension of N. Por nodules M, N and a homo-
norphism f:M—N, H(f) denotes {n+f(a)|n€M}. For a module ¥, [M|
denotes its composition length. If for each simple submodule S of M
there is a direct suamand W' of M such that SQE!'. ve say that M is

extending for simple nodules.

The detailed version will appear elsewhere.



Definition. Let M and N be R-modules. ¥e say that N is
alnost M-injective if at least one of the following conditions holds
for each submodule L of M and each homomorphism f:L—N :

(1) There exists a homomorpnism T:M—N such that T-i=f,

(2) There exists a non-zero direct summand M, of M and a homo-
norphism T:N—M, such that T-f=x -i, where z :M—N, is a projection
of W onto My.

In this definition, for a given diagranm:
0 L § M
(k) fi
N
ve call that the first ( respectively. second ) case occurs in the
diagram(k) if the condition (1) ( respectively, (2) ) holds in the

diagraa.

Lemma A. Let U be a uniform module and X an indecomposable module.

If U is almost X-injective and |U[=XIl, U is X-injective.

Lemma B. Let M and N be R-modules. Consider a diagranm:
0 L i M

ri

N

and put K:=Ker(f). Then if the second case occurs in this diagram,

there is a proper direct sunmand ¥ of M which contains K.

In particular, if quﬂ. then the first case occurs.

Ne prepare for Lemma C below. Let N, M, and M2 be modules, and put



M:=MH,®MH,. Consider a diagranm:

0 L - -— N
) fi
N
From this diagram we induce the following for k=1,2:
0 -1, i B,
2-x) fl,_l '
N

vhere L, :=LNM, . Moreover when the first case occurs in both diagrams
(2-1) and (2-2) C let T, :M,—N be homomorphisms such that fltl='f‘;-i,‘
for k=1,2 ), we shall consider the following for k=1,2:
0 L it M,
G-k fi
N
where, letting z, : ¥ (=M, ®N,) —M, be the projection, L'=ux, (L)

and the homomorphisms f, is defined as follows : Put for= f -
(Zz;.".Tu”‘u ) :L—N. Since fo(L,®Ls)=0 ( from the definition of T, ),
the canonical map To:L/(Li®L:)— N is induced. ¥e let f;:L"—’N be the
conposite map: L'l L'/L, a——— L/(LieLs) —f .y,
Lemma C. Assume that N is almost M,- and M.-injective. Consider a
diagran (1) and induce the above diagrams. If the first case occurs in
both diagrams (2-1) and (2-2) and does in either (8-1) or (3-2), then

so does in the diagram (1).

Corollary 1. [Azumayal] Lel N. M, and N: be modules. If N is M,-

and M;-injective, then N is M ®MH:-injective.



Corollary 2. Let N, M, and M. be modules, and let N be almost M,-
and M:-injective. Consider a diagran:
0 L ¢ =Y, ®N,
(k) fi
N
and put K:=Ker(f). Then if KGM, the first case occurs in the diagram

k).

Theorem. Let U, be a uniform module of finite composition length
for k=0,1,2,« ¢ «,n. Then the following two conditions
are equivalent:

(1) Ug is almost g%uk-injective.

(2) Uo is almost U,-injective for every k=1,2, ¢ « «.n and if
Soc(Uo)=Soc (U, )=Soc(U,) ( any k.1 €(1,2,« + «,n}. k#( ) then
(i) Uo is U,- and U -injective or (ii) U, @V, is extending for simple

modules.

Definition. Let R be an artinian ring. ¥e say that R is
right Co-Nakayapa if every indecomposable injective right R-module E

is uniserial ( i.e. E has a unique composition series.).

Corollary. The following two conditions are equivalent:
(1) R is right Co-Nakayana.
(2) For any unifora modules U’ and U GGi=1,+ + - ,@;j=1,+ « +,n)
of finite composition length, §IU; is almost %U,'—injective if U' is
almost U;-injective for all i and j. (i.e.The almost injectivity among
uniforn modules which have finite composition length is closed under

finite direct sums.)



Example. There is an exanple which shows that the Azumaya's
Theorem is nol able to be extended without an additional condition.
Let K be a field and
K 0K
R = KK
0 K
Then, essR is almost e, R-and e:.R-injective, but not almost

e 1R®e.eR-injective, where e,, are matrix units.
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AUSLANDER-REITEN QUIVERS AND GREEN CORRESPONDENCE

Shigeto KAWATA

1. Introduction

Let G be a finite group and k be a field of
characteristic p>0. Let © be a connected component of the
stable Auslander-Reiten quiver I's (kG) of the group algebra
kG and set Vie) = { vx{M) | M is an indecomposable kG-module
in © }, where vx{M) denotes the vertex of M. As we shall
see in Proposition 2 below, if Q is a minimal element in
V(©®). then Q §G H for all H € v(©). In particular Q
is uniquely determined up to conjugation in G.

Let N = NG(Q) and let f be the Green correspondence
with respect to (G,Q,N). Choose an indecomposable kG-module Mo
in ® with Q its vertex. Let A be the connected
component of s (kN) containing fMp . The purpose is to show
that there is a subquiver A of A and a graph isomorphism
¢ : A>© such that 1 Dbehaves like the Green
correspondence f as a bijective map between modules in A
and those in .

The notation is almost standard. All the modules considered
here are finite dimensional over k. We write wWiw for
kG-modules W and W, if W is isomorphic to a direct
summand of wo. (W, W')G denotes the k-space HomkG(W,W').

The final version of this note has been submitted for
publication elsewhere.



For a set 3 of subgroups of G, write (W, W')g =

(¢ € (W, w)F | p factors through a Q-projective module} and
(W, W')G'G = (W, W')G/(W. W')g . For an indecomposable non-
projective kG-module M, we write A(M) to denote the

Auslander-Reiten sequence terminating at M. A sequence

M - M - - - M of indecomposable kG-modules M (0=1iz<t)
is said to be a walk if there exists either an irreducible map
from M; to M or an irreducible map from My, to

M; for 0<ig t-1. Concerning some basic facts and

terminologies used here, we refer to [1),[3] and [5].

2. Minimal element in V(©)

Let = be a subgraph of the stable Auslander-Reiten
quiver s (kG) and set VIZ) = { vxIiM) | M€ = }. Note that
every element in V(Z) is a non-trivial p-subgroup of G
since every M is non-projective.

Lemma 1. Let = be a subgraph of F's{kG). Assume that
= is connected. Take any Q € V(=Z) with the smallest order
among those p—subgroups in V{(Z). Then for any indecomposable
module N € =, NQ

vertex is Q. i

has an indecomposable direct summand whose

Lemma 1 implies that the minimal element with respect to the
partial order §b are those that have the smallest order.
Thus the following holds.

Proposition 2. Let O be a connected component of
F's(kG). Let Q be an element of V{(©) which is minimal
with respect to the partial order 5 Then for any H € V(9),

we have Q gb H. In particular Q is uniquely determined

up to conjugation in G. ]
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3. Module correspondence

Now returning the situation of the introduction, let Q
be a minimal element in V{(®) throughout this section. Let
A be the subgquiver of A consisting of those kN-modules L
in A such that there exists a walk fMg=lg - Ly — - - Lo =L
with Q gG vx(L;) (i =0,1,-,1t).

The following fact is immediate from Lemma 1.

Lemma 3. Let L be an indecomposable kN-module in A.
Then Q = vx(L). |

Let % be the set of all p-subgroups of N of order
smaller than iQl- Also let 9= {NNnQ® | g€G\N]J.

Lemma 4. Let W be an indecomposable kG-module in o.
Then there exists a kN-module T satisfying the following
two conditions:

(i) (TG)N ~T® T ., where T is OQ-projective.

(1) ( Wy %N 2 o,

Proof. By Lemma 1, Wb has an indecomposable direct
summand S whose vertex is Q. Let T = N, Then T
satisfies the above two conditions. ]

Lemma 5. Let T be a kN-module satisfying the condition
(i) of Lemma 4. Let L be an indecomposable kN-module in A
Then the following k-isomorphism holds:

« Wy . %N (L, N |

Proof. It follows *hat ( (LG)N . T)x'N ~ (L. (fG)N )%.N

G

from [5,Cor.5.4]1. Let (T )N ~T® (?X;). It is enough to show

that (L. Xi)x'N =0 for all X; . By the condition (i) of
Lemnma 4, each X is Y-projective. This implies that any o
€ (L, xi)N is ¥-projective, i.e., a € (L. X; )g . ]



Lemma 6. Let L be an indecomposable kN-module in A
Then Lg has a unique indecomposable direct summand M
whose vertex contains (Q, and we have

(1) L is a direct summand of MN ., and

(2) M lies in @o.

Moreover letting T be a kN-module satisfying the conditions
(i) and (ii) in Lemma 4 for M, we have;

(S IN 2 g, DEN 2w, 1IN 2o

N

In particular L is a direct summand of (Lg with

N
multiplicity one.

Proof. Since L|(LG)N ' LG has an indecomposable direct
summ&nd M such that LIMN . Therefore the vertex of M

contains Q and ﬂs

has at least one indecomposable direct
summand whose vertex contains Q.

Let fM=ly - Ly -~ =~ - Le=L be a walk with Q 5, vx(L;)
(i=0,1,.,t). We prove the assertion by induction on the
"distance” t.

If t =0,i.e., L ~ fMy., then the assertion follows since
f is the Green correspondence.

Suppose the assertion holds for Lt~y - We shall derive a

contradiction assuming that ﬂG

has two indecomposable direct
summand M and W whose vertices contain Q. Let
Lq ~MO®WOW . We may assume that L|MN . By [2,Lemma 1.5],
A(Leq)G ~ AV ) ® &, where M, is the unique
indecomposable direct summand of quG whose vertex contains
Q and § is a split sequence. Let Y (resp. Y ) be the
middle term of A(M-y ) (resp. A(X2m4 ) ). Since L is a
direct summand of the middle term of AlLe-y ) or A2 44 ) .
it follows that MOW|Y or M®W |]Y. In particular
both M and W lie in ©.

Let T and U be kN-modules satisfying the conditions
(i) and (ii) for M and w respectively in Lemma 4 and

put T =T@U. Then (%), , T)&N
. . %N . %N . . %N
=g TN . T)ENe w . T)
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~ (L. T)%Ng (z,7)%N g Wy o T TN g Wy o T y%:N
where My = L ® Z. But by Lemma 5, ((LG)N , %N o

(L, T )% N . This implies that ( wy . ndN ¢ Wy 1) %N

= 0, which is a desired contradiction. Thus LG

has a unique
indecomposable direct summand M whose vertex contains Q.
and the statements (1) and (2) hold. Moreover we obtain that

G %N _ %N _ %.N
(g - TPV = (Mg T ~ (L. T) #£0

since Mng and L|MN . Hence L is a direct summand of
(LQ)N with multiplicity one; for otherwise

w ¥Ne w, m¥Nc ( Gy, DN, n¥Nao,
a contradiction. 0

For an indecomposable kN-module L in A, let yL. be

a unigque indecomposable direct summand of LG

whose vertex
contains Q. It follows that (L)C =~ 4(4L) ® &, where §&
is a split sequence by Lemma 6 and [2,Lemma 1.5]. As the’
Auslander-Reiten quiver is the graph which is constructed by
joining Auslander-Reiten sequences, ¥ induces a graph

homomorphism from A to ©. Also we have the following fact.

Lemma 7. Let L and L’ be indecomposable kN-modules
in A. Then YL =~ YL’ if and only if L~L". 1]

It is a direct consequence of Lemmas 6 and 7 that ¥ is
a graph monomorphism. Moreover we have

Lemma 8. ¥ is an epimorphism.
Proof. Let M be an arbitrary element of () and let
Mpb -~ My — « = Mg=M be a walk. If t=20,i.e., M= M. then

My = f1(fMy) = ylo . Now suppose then that there exists an
element Li-y in A such that M-+ = ¥li~ - By Lemma 6

we have. A(Lit)C = A4(Mo) ® & and A2 )€ = 4(2My )

® & . where & and &° are split sequences. Recall that M,



is a direct summand of the middle term of A(M- ) or
A(Q2Mi-y ). Therefore there exists some direct summand [ of
the middle term of  4(l4,) or Al ) such that

MILS. since Q 5. vx(M) . vx(L). L lies in A. Hence

=G =G
M=3y%. and is an epimorphism. ]

We are now ready to state the main theoren.

Theorem. & induces a graph isomorphism from A onto
© which preserves edge-multiplicity and direction. Also ¥
gives rise to a one-to-one correspondence between indecomposable
modules in © and those in A and the following hold:

(1) Let M be an indecomposable kG-module in ©. Then
MN ~ qu ® (? W; ) . where WiQ

(2) Let L be an indecomposable kN-module in A. Then
~ 3L @ (? V; ), where Vi is ¥-projective for all i. ]

is ¥-projective for all i.

LG
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A REMARK ON MODULAR REPRESENTATION THEORY

Shigeo KOSHITANI

Here I just add one remark to my previous result
[1,Theorem]. 1In order to describe it, we fix an algebraically
closed field F of nonzero characteristic p, a finite group '
G and a p-block B of G with its block idempotent eps
that is, B is a block ideal of the group algebra FG such
that B = FGeB = eBFG. We write J(R) for the Jacobson
radical for a ring R. Other notation is the same as in [1].

Proposition (see [1,p.152 Theorem]). With the same
notation as the above the following conditions are equivalent
to (1)-(7) in [1, Theorem].

(8) The correspondence b -+ B given by x - xep (x € b)
is an F-algebra-isomorphism.

(9) J(FD)B ¢ J(B).

%
(10} G = N-Ng = N-Ngp.

(11) Every simple FG-module in B has D as its vertex,

and the FG-module FDTG-eB is semi~simple (completely

1G

reducible), where FD is the induced FG-module from the

trivial FD-module FD.

- - — — "  — —  — — ————  —_ ——— D G " - — ———— D - ——— - - - — -

The final detailed version of this note may perhaps be
submitted for publication elsewhere.
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