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PREFACE

The 20th Symposium on Ring Theory was held at Okayama University, Okayama, on
August 27-29, 1987. More than one hundred participants attended the symposium. This
volume is dedicated to Professor H. Tominaga for his 60th birthday, who is one of the
founders and the greatest contributor to the development of the symposium.

The proceedings contain fifteen articles presented at the symposium including the
ones given by two special guests, Professor J.5. Golan, Israel and Professor A. Haghany,
Iran.

We should like to acknowledge the financial assistance from the Grant-in-Aid for
Scientific Research from the Ministry of Education through the arrangements by
Professor K. Shiratani. We appreciate his arrangements.

We are most grateful to the participants and, in particular, the speakers who
contributed to suceess of the symposium. Our best thanks are due to Professor H.
Tominaga for his help with the organizational work. Finally we should like to thank
Professor T. Nagahara and Dr. H. Komatsu for their kind hospitality and compilation of
the proceedings.

September 1987 Hidetoshi Marubayashi
Naruto University of Education
Naruto, 772 Japan
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

THE SKEW FORMAL POWER SERIES RINGS OVER TAME ORDERS
IN A SIMPLE ARTINIAN RING

Hidetoshi MARUBAYASHI and Akira UEDA

Introduction. It is well-known that if D is a commutative
Krull domain, then so is D[[x]]), the formal power series ring
over D in an indeterminate x. The purpose of this paper is to
investigate this problem in non-commutative situation. However,
there are several obstructions in non-commutative case, for
example, if R is a prime Goldie ring, then R[[x]] is not
necessary to be a prime Goldie ring (see [11]). So, in this
paper, we restrict ourself to the rings which are noetherian
prime rings. Let R be a noetherian prime ring and let o be an
automorphism of R. We introduce, in Section 1, a notion of o-
maximal orders, and it is established that R[[x,0]], the skew
formal power series ring over R in an indeterminate x, is a
maximal order (then it is a Krull order in the sense of [2]) if
and only if R is a o-maximal order. This is an affirmative
answer to Ramras's conjecture ([21]) in the case R is a regular
local ring and ¢ is of finite order. Let D be a noetherian
integrally closed domain and let A be a tame D-order in the
sense of (6] with an automorphism 6. In Section 2, we show that
Al(x,0)) is a v-HC order with enough v-invertible ideals. This
is proved by using the result in Section 1 and the idealizers

This paper is in final form and no version of it will be
submitted for publication elsewhere.



defined in [8]. 1In the case of orders over a Krull domain, v-HC
orders are nothing else than tame orders (see [14]). When o

is of infinite order, then A[[x,0]] is not a tame order over its
center. Section 3 is concerned with v-invertible ideals of
Allx,0]]. This paper is a continuation of [12] and (14] ™ [18],
and the authors assume that the reader is familiar with [14].

1. Throughout this paper, R will be an order in a simple
artinian ring Q, otherwise stated, i.e., R is a prime Goldie
ring and all rings are assumed to have an identity element. Let
o be an automorphism of R. Then it is extended to an auto-

) = sta)(oten™!
regular element in R. Let R[[x,0]] be a skew formal power series

morphism o of Q by o(ac” , where ae¢R and ¢ is a
ring over R in an indeterminate x, i.e., R[I[x,0]] = { f({x) =
) i=; rixi| rie R } and the multiplication is defined by xr =
o(r)x for every reR. It is well-known that R[[x,0]) is a prime
ring (furthermore R[[x%,0]) is semi-prime if R is semi-prime).
But it is not necessary to be an order in a simple artinian ring
as it has been shown in [11]. If R is a noetherian prime ring,
then R[[x,0]] is a prime Goldie ring, because R[[x,0]] is also a
noetherian ring which follows as in commutative algebras (see,
Theorem 4 of (25, p. 138]). So, in this case, R[[x,0]] has a
simple artinian quotient ring Q(R[[X,0])]). We always denote by
Q(T) the (classical two-sided) quotient ring of a ring T.

In the remainder of this section, R is a noetherian order in
Q with an automorphism o¢. To give a necessary and sufficient
condition for R[([x,0]] to be a maximal order in Q(R([x,0]]), we
shall introduce a notion of a o-maximal order as follows; an order
R in Q is said to be og-maximal if, for any over-ring T of R, R§

T<Q such that aTb ¢R for some regular elements a, b in Q and
o(T) = T, then R = T follows. A one-sided R-ideal I is called

o-invariant if o(I) = I. Note that R is a o-maximal order if
and only if Ol(A) =R = Or(A) for any o-invariant ideal A of R
(see, the proof of Proposition 3.1 of (19, Chap. I]), where Ol(A)
= {qeQ |[gASA }, the left order of A and 0.(A) = {qgeQ|AaqgAl},
the right order of A. For any right R-ideal I, let I(([x,0]] =



{a(x) = £, “a,x [a;eI} Then it is a right R[[x,0]]-ideal.
Similarly we define [[x,0]]J for any left R-ideal J. 1In the

case of noetherian rings, we have

Lemma 1.1. Let I be any right R-ideal. Then I[[x,0]}] =
I.R[[x,0]].

Proof. It is clear that I*R[[x,0]]1 SI[[x,0]]. To prove the
converse inclusion, let ¢ be a regular element of R such that
cISR. Since R is noetherian, there are elements ape®®e, ay of
R such that cI = a1R 4000y anR. Let f(x) = £ i=; fixl be any
element of I[[x,0l]. Then cf; =1 n
Hence cf(x) = i=:(2 j=? ajrij)x1 - i=: rijx ) €
cI*R([x,0]], and so f(x) € I*R[(x,0]l]. Thus I[[x,0]] = I*R[[x,0]l

a.r.. for some r.jeR.

1

We can extend ¢ to an automorphism of R[[x,0]] by o(f({x)) =
X i=: o(ai)xi for every f(x) = L i=: aixie R[[x,0]]. Then O is
an inner automorphism given by o(f(x)) = xf(x)x'1. We require
some notation. If X, Y are subsets of Q, we write (X:Y)l =
laeQ gy gx Jand (X:¥) = {qeQ |Y¥gcX) Let I be a right R-
ideal. Then we write Iv (R:(R:I)l)r, a right R-ideal and if

I = Iv' then it is called a right v-R-ideal (a right v-ideal if

]

there are no confusions). Similarly we define vJ = (R:(R:J)r)l
for any left R-ideal J, and J is called a left v-ideal if J = vJ.
An R-ideal A is said to be a v-ideal if Av = A = vA.

Lemma 1.2, Let A be an ideal of R[[x,0]] such that A = Av.

Then it is o-invariant.
Proof. This is proved in the same way as in Lemma 2.5 of (15l

The following lemma is very useful to compute the left and
right order of an ideal.

Lemma 1.3. Let g be an element in Q(R[[x,0]]). Then q =



x'nq(x) for some non-negative integer n and some g(x)e& Q([x,0]].

Proof. By the same way as Lemma 2' of [24], we can find a
ne1* n+1 + 20 €R([%,0]] such that
c(x)g = r(x)€RI[[x,0]] and <, is regular in R. Then we have
c(x)”! = x Ra(x) for some d(x)€ Ql(x,0]] (see (10, p. 71). Hence
q = c(x)” r(x) = x Md(x)r(x) and d(x)r(x)e Q[[x,0]], as desired.

regular element c(x) = ¢ x + C

Theorem 1.4. Let R be a noetherian order in Q and let ¢ be
an automorphism of R. Then R is a o-maximal order in Q if and
only if R((x,0]] is a maximal order in Q(R([[x,0]]).

Proof. To prove the necessity, let A be any non-zero ideal
of R((x,0]] and let g be any element in 0 ({A). Then q = x'nq(x)
by Lemma 1. 3, where g(x) = q0+q1x + ---eQ[[x,o]]. Put Ai =
i, eeeec A} {0} for all non-negative
;- 0 A;. First assume that A = A,, then Ay
is a o-invariant ideal of R, because A is ¢g-invariant by Lemma

(a;€R [a; xt o+ ay q%
integers i and A* =

1.2, and so is A*., Assume that A0 = A, =eses A, _ 7 = 0 and A £
0. Then we can take a regular element a, e A by Goldie's theorem
and a(x) = a;x i +ag X “1 +eee €A, It follows that ga(x) =

Pq(x)a(x)€ A and q(x)a(x)ex A. Hence q; = q, =ese=q_ 4 = 0,

because (an)0 =eee = (X A)n+i-1 = 0 and a; is regular. Thus we
X +ee ., To prove that gq&RI[[x,0]], let bk be
k+1xk+1 +eeeg A, Then
gb(x)e A entails that q bke A* and so q, eo (A*) = R as noted

before Lemma 1.1. Assume that q ,---,qn+JeR and set q.(x) =

have g = q_ + g
n n+1 K
any element in A* and let b(x) = bkx + b

q - (qn + Qg% #eeed g J 3. Then, since qJ(x)AC.qA - (qn +
QX *+ooe+ qn+jx JASA, it follows that qn+j+1 €R by the same
way as the above (note that g(A*) = A*) and that gqe¢R((x,0]] by
an induction. Hence Ol(A) = R{[x,0])]. Now, let A be arbitrary
ideal of R[(x,0]]. Then we have R[[x,o]]gol(A)gol(Av) =
R[[x,c]] and so R[[x,0]] = 0,(a). similarly, O_(A) = R[[x,0]]
and therefore, R([x,5]] is a maximal order in Q(R([x,g]]) by
Proposition 3.1 of [19, Chap. I]J. To prove the sufficiency, let



B be a ¢g-invariant ideal of R, then R[[x,q]] = 0,(Bl[x,0]1]) =
Ol(B)[[x,o]] (the last equality follows from the g-invariantness
of Ol(B)). Thus R = Ol(B) and R = or(B) by the right version of
it. Hence R is a g-maximal order in Q.

Corollary 1.5. "R is a maximal order in Q if and only if
RIIx,0]) is a maximal order in Q(R[[x,g]]) for all automorphism
o of R.

Remark. The theorem gives an affirmative answer to Ramras's
conjecture in more general setting (see (21, p.255]), and the
theorem will be used in section 2 to study the skew formal power
series rings over tame orders.

2. Let D be a noetherian, integrally closed domain with
field of quotients K, I be a central simple K-algebra with finite
dimension over K and A be a (classical) D-order in I, i.e., A is
a subring of I which is finitely generated as D-modules, D & j
and AK = I. Recall the definition of D-tame orders ([6]1), A is
called a tame D-order in I if A is D-reflexive, namely, A =(\Ap
and Ap is a hereditary noetherian ring, where p runs over all
minimal prime ideals of D. In non-commutative situation, there
is a nice generalization of tame D-orders as will be given below;
let C be a right Gabriel topology corresponding to the torsion
theory cogenerated by E(Q/R), the right R-injective hull of Q/R.
Then C = {C:right ideal of R | (R:r'1C)l = R for all r &R}, where
rlc = {xeR |rxeC )} Similarly we can define the left Gabriel
topology C' on R. If I is a right ideal of R, then we write T =
{reR |rCgI for some CeC}. Note that I1¢T ¢I,. If I =T, then
we say that I is C-closed. Similarly, we can define the concept
of C'-closed left ideals of R. An order R (not necessary to be
noetherian) is called a v-HC order if it satisfies the following
two conditions:

(X) : v(A(R:A)l)
((R:B)rB)v

ol(A) for any ideal A of R with A = vA, and
Or(B) for any ideal B of R with B = Bv'



(C) : R satisfies the maximum condition on C-closed right

ideals as well as C'-closed left ideals.
A v-ideal A of R is said to be v-invertible if (A(R:A)r)v =
= v((R:A)lA). Note that if A is v-invertible, then (R:A)r

(R:A), and we denote it by 271, we say that R has enough v-

invertible ideals if any v-ideal of R contains a v-invertible
ideal of R. Note that "VHC orders" in the sense of [14] are
eguivalent to "v-HC orders" if the orders have enough v-invertible
ideals (see Proposition 1.1 of [17]). In this section, we shall
prove that A[{x,0])] is a v-HC order with enough v-invertible
ideals if A is a tame D-order with an automorphism g. To prove
this, we use g-invariant idealizers, localizations and some
properties of formal power series rings. We begin with a property
of a hereditary noetherian prime ring (an HNP ring for short)
which is concerned with Jacobson radical. So let R be an HNP
ring with non-zero Jacobson radical J(R) (we always denote by
J(T) the Jacobson radical of a ring T). Then R is a bounded and
J = J(R) = M1r\~~or\Mn by Theorem 4.13 of [5]), where Myseeoe, Mn
is the full set of all maximal ideals of R. Let K = Kinesen K
be a semimaximal right ideal such that RK = R, where K, is a

i1’ 'R/Kll 1+1
=esex R/K.. (1 g i1 Seees i1 = m) and we may assume that, without

loss of g;%erality, that MJ = annp (R/K . )={reR |(R/K )r = 0)
(3 = 1,0+,1). Set C = I (k) = (reR |rKCK}, the idealizer of K
in R and UJ = R/K . Then C is an HNP ring by Theorem 4.3 of [22].
It follows from 1. 3 of [22]) that UJ is a right C-module of length
2 and that 0-—>Sj——>Uj-—>Tj——>0 is a non-split exact sequence,

where sj = (C + 1(ij)/xij and Tj = R/(C. + Kij).

maximal right ideal. Assume that R/K1 zeeez R/K,

Lemma 2.1. Under the same notation as above, we have
J(R)ACEJI(C) and J(C)%¢ J(R)NC.

Proof. Set Nj = annc(Sj) and Lj = annc(Tj). Then, by
Proposition 2.2 of [9], (Nyroeo, Ny L1,---, Ll’ and M1+1r\c,...,
MNC } is the full set of maximal ideals of C. Since C is bounded,



by Proposition 4.2 of [19, Chap. I], we have J(C) = (\j_% Nj(\
A47 B30 O (5,0 C). Hence J(R)INCSJI(C) and J(TI2 ¢

J(R)N C, because Lijg Man, M ﬁchj and MjncgNj.

b

Lemma 2.2. Let R be a noetherian order in Q with an auto-
morphism ¢ and let I be a right R-ideal. Then (Rl[x, 0l1:Il(x,011),
= [[x,o]l(R:I)1 and (I[[x,o]])v = I,llx,0]].

Proof. As in Lemma 3.1.5 of [3].

A v-ideal A of R is called v-idempotent if v(AZ) = A = (Az)v.
The following lemma shows that some important properties in R

are inherited to RI[[x,col].

Lemma 2.3. Let R be a noetherian order in Q with an auto-
morphism ¢. Then, for any g-invariant v-R-ideal A, we have
(1) If A is v-invertible, then so is Allx,01].

(2) If A is v-idempotent, then so is A[[x,0]].

Proof. (1) R[(x,0l]l2 (Al[x,0]l](RI[[x,0]]: A[[x,o]l) )y
(A[[x,o]](R:A)r[[x,o]])v__. (A(R: A)r[[x,o]])v = (A(R: A)r)v[[x.o]]
= R[[x,0]] by Lemma 2.2. Hence R[[X,0]] = (M[x.oll(R[[x,c;l]ul’u[[x,o]])r)v
and similarly, A[[x,0]] has a left inverse as v-ideals. Hence
A[[x,0]] is v-invertible.

(2) By Lemmas 1.1 and 2.2, we have ((A[[x,o]]) )
((A R{[x,0)))(A. R[[x,o]])) = (A *R[[x,01]), = (A [[x, 0]])
(A ) [{x,0)) = Al[x,0]]. Hence Allx,0]] is v-idempotent.

Let R and T be orders in Q. Then R is said to be right
equivalent to T if aT¢R and bR ¢ T for some units a, b in Q.

Lemma 2.4. Let R be a v-HC order and let o be an automorphism
of R. Then there is a one-to-one correspondence between O-
invariant v-idempotent ideals A of R and O-invariant over-rings

T of R which are right equivalent to R and T = Tyr given by ;



Proof. If A (T) is g-invariant, then so is Or(A) ( (R:T)l ).
Hence the lemma is proved by similar way as in Lemma 1.6 of (14]
(see, Corollary 4.5 of [22]).

A subset C of R is called a reguler Ore set of R if any
element in C is regular and R satisfies the Ore condition with
respect to C. We denote by RC the ring of quotients of R with
respect to C. Let P be a semi-prime ideal of R and C(P) = {ceRl
¢ is reqular mod P}. If C(P) is a regular Ore set of R, then we
denote by RP the ring of quotients of R with respect to C(P).
Similarly, let 4 be a finite intersection of minimal prime ideals
of D. Then'C(4) = {deD |d is regular mod 4) is a regular Ore set
of a D-order A and we just write Aa for the ring of quotients of
A with respect to C(4). Following [8], a finite intersection of
maximal right v-ideals of R is said to be a semi-maximal right
v-ideal of R ("maximal right v-ideals" means maximal amongst
right v-ideals of R).

In the remainder of this paper, let A be a tame D-order in a
central simple K-algebra I with finite dimension over K and let
0 be any automorphism of A, where D is a noetherian, integrally
closed domain with its quotient field K. Then A =(1AP, where AP
is an HNP ring whose Jacobson radical is the unique maximal
invertible ideal and P runs over all maximal v-invertible ideals
of A. Furthermore there is a one-to-one correspondence between
the set of all maximal v-invertible ideals P of A and the set of
all minimal prime ideals p of D, given by P—p = PN D and Ap =
Ap (see the proof of Proposition 3.1 of [(14]). It is implicitly
known that a right p-ideal is a right v-ideal if and only if it
is D-reflexive. This follows from the fact that I, =rﬁIAp = nIp
(see the proof of Proposition 2.11 of [{14] and Lemma 5.1 of [20]).
Note that if A and ' are D-orders, then they are right equivalent.

Lemma 2.5. Let TI' be a D-reflexive order in I containing j



such that o(I') = T and there is no D-orders between I' and A which
are og-invariant and D-reflexive. Then A = II.(K) = {yel |YKEgK]},
the idealizer of K in I', for some g-invariant, semi-maximal right
v-ideal K of ' such that y{TK) =T and K is a semi-prime v-
idempotent ideal of A.

Proof. First of all, note that ' is a tame D-order by
Proposition 3.2 of [8] and Proposition 3.1 of [14]. By Lemma 2.4
there is a o-invariant v-idempotent ideal K of A such that T =
0,.(K). Put r' = II‘(K)' Then I'' is a ¢g-invariant D-order such
that Ag¢Tl''gTI'. Since ''K$S K, we have r:')Kp = (I"K)pg Kp for any
minimal prime ideal p of D and so (np I‘é)Kg nKp = K, showing
the reflexiveness of I''. Thus T'' =T or T'' = A. IfT' =T, then
K is an ideal of T' and so K = T[K = Or(K)K = (A:K)rx. It follows
that K = K_ = ((I\:K)rK)v

Or(K)= [,a contradiction. Hence we

v
have I'' = A. Since Ap is an HNP ring for every minimal prime

= = H = K =
ideal p of D, we have I‘p Or(Kp) (l\p Kp)er Or(Kp) b I‘pr,

because Kp is an idempotent ideal of Ap. This entails that v(I‘K)
= ', To prove that K is a semi-maximal right v-ideal of TI', let
{p1,---, pn} be the full set of minimal prime ideals of D such
that Kpig Api and put 4 = p1n cee hpn, a semi-prime ideal. Then
K& is an idempotent ideal of an HNP ring AK = AB' where B = Q1n
---non and Q; is the maximal v-invertible ideal of A such that
Py = QinD (see Lemma 2.1 of [15]). Furthermore, I‘K = (Or(x))g
= Or(KK) and All = II‘g(K&)' Hence:, by Theorem 5.3 of [22], Kg is
a semi-maximal right ideal of l"a, and so K is a semi-maximal
right v-ideal of I' by Lemma 2.4 of [8] (note that K is D-reflexive).
It follows from Theorem 5.2 of {22] that AK/KK is a semi-simple
artinian ring. Furthermore A/K is embedded in A,/K; and each
element in C(4) is regular in A/K, because K = nKp =Ky 0 nKp
(p # Py) = Kgn A, Hence AK/KK is the semi-simple artinian
quotient ring of A/K and so K is a semi-prime ideal of A by
Goldie's theorem. This completes the proof.

With the same notation and assumptions as in Lemma 2.5, let
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p be any minimal prime ideal of D other than Py (1sisn), then
Kp = Ap entails that Kp = I‘p, since K is a right ideal of T,
Hence {p1,°“, P, } is also the full set of minimal prime ideals
of D such that K g I‘ . Since A and T are both tame D-orders,
there are maxlmal V- 1nvertible ideals P1 e, Pn of I and Q1,-u R
Q of A, respectively, satisfying I‘ =T pi’ and AQ = A_ . For
any maximal v-invertible ideal P of I‘ we have O(C(P)) = C(o(P))

and so o(I‘P) =T Thus we have A = P1n'" f\Pn is o-invariant,

semi-prime and vc-,J{.i\)rertible ideal of I'. Similarly, B = Q1r\"°r\Ql_l
is also a g-invariant, semi-prime and v-invertible ideal of A(see
Theorem 1.13 of [14 Hence I'' =T nu-nl‘ = T _NAeeeT =T

I. (Ky) = A, = A[ nfi.n[\ = A An...,l:}\ = A Fn Fusz:hermorgn AT 4’
g™ 4 P1 Q4 On ' A

= J(I‘ ) and BA = J(A ) by Theorem 3 of [1]. By Lemma 2.1,

AT, N A&, Bi, and (BA&) AT,N Ap. So it follows that ANA¢B and

Bzg ANnhA, which are used in Lemma 2.8.

Lemma 2.6. Under the same notation and assumptions as
before, we have
(1) Allx,01] = Ir[[x,o]](K[[x’O]]) and Or(K[[x,Ol]) = I'[[x,01].
(2) K[[x,0]] is a semi-prime and v-idempotent ideal of A[lx,o]l].
(3) KI[[x,0]] is a semi-maximal right v-ideal of T'[[x,c]] and
Kl[x,0]] 2A[[%,0]].
(4) v(I‘[[x,o]]°KHX,o]]) = T[[x,0]].

Proof. (1) follows from Lemma 2.5.
(2) follows from Lemmas 2.3 and 2.5.
(3) Write K = K1nu°nKk, where K, is a maximal right v-ideal of T
(1 sisk). Since K, is a semi-maximal right ideal of Ty it
follows that K, 2J(l'y,) = Al,. Hence K;,2K2arynT = A and so
K,[[x,0]1] 2A[[x,0]], a v-invertible ideal of T'[[x,0]] by Lemma
2.3. So, by the same way as in Lemma 2.2 of [18], we have
Ki[[x,o]] is a maximal right v-ideal of TI'[[x,0]]. Therefore
Kl[x,0]1] = K,[[x,0]]neenK [[x,0]] is a semi-maximal right v-
ideal of TI'[[x,0]1] and KlI[x,0]] 2 Allx,0l].
(4) easily follows, because I'[[x,0]] 2 ,(T'lIx,0]1]1°K[{x,0]1]) 2
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v([[x,ol]l"-l() = v([[x,oll(l"l()) = [{x,0]]T by Lemmas 1.1,2.2 and
2.5.

Since A[[x,0]] = IF[[x,o]](K[[x'O]l)' and K[[x,0]] is a
bounded, semi-maximal right v-ideal, we are in a position to
apply Theorem 2.9 of (8] to prove that A[[x,0]] is a v-HC order
with enough v-invertible ideals if I'((x,0]] is a v-HC order with
enough v-invertible ideals. But it seems to us that there is a
logical gap in his proof (see [8, p. 1381]1). 8o, we shall prove
this by using some properties of algebras and skew formal power
series rings. The following lemma is maybe known. But we give
the proof of it, because we can not find any paper which
mentioned it.

Lemma 2.7. Let R be an order in Q satisfying the condition
(C) and let A be a semi-prime v-invertible ideal of R. If K is
a right v-ideal of R containing a power of A, then K = KRAr\R.

Proof. By Lemma 2.1 of [15], RA
Assume that l(1 = KRAn R2 K. Then we can choose a regular element
1 ??t not in K by Robson:? theorem (see Theorem 1.21_?f[4]L
Then c(c K)€ K implies that ¢ K is a right v-ideal and ¢ Kg%R.
Hence (c'1K)RAg=_RA by Lemma 2.3 of [8]. On the other hand, R
c_1(K1RA) = c'1(KRA) = (c'1K)RA, because K
contradiction and so K1 = K, as desired.

exists and it is an HNP ring.
c in K

A

1RA = KRA. This is a

Lemma 2.8. Under the same notation and assumptions as
before, we have
(1) Bl[x,0]] and A[[x,0]] are v-invertible ideals of A[[x,0]] and
Fl[x,0]], respectively, and C(B[[x,0)]) < C(A[[x,0]1]).
(2) Af[x,011€B[[x,0]] and (B[[x,0)])%¢ A[(x,0]].

Proof. (1) By Lemma 2.3, B[[x,0]] and A[[x,c]] are v-
invertible ideals of Al[x,0]] and T{[x,0]] respectively. To
prove C(B[[x,0]]) ¢ C(A[[x,0]]), first of all, we shall prove that
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Al[x,0]]1/A[[x,0]] has an artinian quotient ring. To prove this,
let K = A/A and D = D/é4. Then D is a semi-prime noetherian ring
and A is a D-algebra. It is easily seen that A is D-torsion-
free, i.e., Add = 0 = X = 0, where A el and d is regular in D.

So i is embedded in A ®j Q(B) = {x¢"1 | Ae A and ¢ : regular in D} °
and K®5 Q(D) is artinian, because Q(D) is a finite direct sum of
fields. Hence K ®j Q(D) is the artinian quotient ring of R&.

Then it is proved by the same way as in Theorem 2 of [14] A[[x,0]l]
(= A{{x,011/A{{x,0]]) has an artinian quotient ring. Since Bzgr
A and A/B = A/B is semi-simple, it follows that B{(x,0])/Al[[x,0]]
is nilpotent by Lemma 1.1 and so it is the nilpotent radical of
Al[x,0)1/Al({%x,0]1], because Al[x,0]11/Bl[x,0]l] (= A/B[[x,0]]) is a
semi-prime ring. Hence, by the regularity condition (see Theorem
2.3 of [4]), for an element ¢ of A[{x,0]), ¢ is regular

mod A[[x%x,0]) if and only if it is regular mod Bl(x,c]l]l. Now let
c be any element of C(B[[x,0]]) and assume that cy e€A[[x,0]],
where YE€T[{x,0)]. By the left version of Lemma 2.5, there is a
o-invariant, semi-maximal left v-ideal L of T such that j = II‘(L)
= {yel |LysL}) and T = (LT),. The last property implies that

Iy = (LI)T, = LT,. Thus we have YL ¢ ([x,0]llL€((x,011A = Allx,0]]
and cyL §A[{x,0)). It follows that yL¢ Allx,c]l] and so YeyL]‘Ag
A[[x,o]]-I‘AgA[[x,o]]-l‘[[x,o]]A[[x'o]], because C(A) ¢ C(A[[x,0]])
Hence yeA[[x,o]]ol‘[[x,o]]A[[x'o]]n rilx,oll = Allx,0]] and so
ceC(A{[x,0]1)).

(2) follows from A = Anp ¢B and Bzg A (see the proof of Lemma
2.6).

As it has been pointed out in Lemma 2.8, there is a o¢-
invariant, semi-maximal left v-ideal L of T such that A = Ip(L)
and Ol(L) = ', Furthermore, L is a semi-prime, v-idempotent
ideal of A and (Ll‘)v = T'. Let p be any minimal prime ideal of D
different from 1 (1 s1isn). Then Kp = Ap implies that rp =
Ol(Kp) = Ap. So Lp is an ideal of r_ and Lp = l‘p follows,
because (LI'), = I'. Hence we have L2A by the same way as in
Lemma 2.6 and so L[[x,0]]l 2A[[x,0)]. Furthermore, since A is a
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g-invariant, semi-prime v-invertible ideal of ', we have A =

A1n "°l\Am, where Ai is a maximal o-invariant v-invertible ideal

(maximal amongst O-invariant v-invertible ideals of T'). 1In fact,

DO(F), the set of all o-invariant, v-invertible ideals, is a free

abelian group generated by maximal o-invariant v-invertible ideals

of T (see Theorem 1.13 of [14) and Lemmas 2.6, 2.7 of [15])).

Furthermore, if I'[[x,0])) is a v-HC order with enough v-invertible

ideals, then Ai[[x,o]] is a maximal v-invertible ideal of T[[x,0])

by the same way as in Lemma 2.10 of [15] and by Lemma 1.12 of [14)

Hence K[[x,c]]'F[[x,o]]A. = F[[x,o]]A_ and I‘[[x,c]]A ‘Li[x,01] =

I‘[[x,o]]Aj for any maximal v—invertibie ideals Aj of T[[x,0l]

different” from Ai[[x,o]] (1 s1ism).

Now we can summarize the properties of A[[x,0]] and T[[x,0]]
what we have obtained in more general situation as follows:
Let R be a v-HC order with enough v-invertible ideals and

let C be a subring of R satisfying the following;

(1) C satisfies the condition (C).

(2) There are v-idempotent, semi-prime ideals K and L of C such
that IR(K) =C = IR(L), Or(K) = R = Ol(L) and v(RK) =R =
(LR)V.

(3) There are finite numbers P, ,¢°°, Pm of maximal v-invertible

1
ideals of R such that KR, = RP and RPL = R, for all maximal

v-invertible ideals P ofPR different from ii (1 sism).

(4) Put A = P, 0o NP . Then K2A, L2A and there is a semi-
prime v-invertible ideal B of C such that C(B)g C(A), ANCESB
and B%s AncC.

Following [14], we denote by S(R) the Asanoc overring of R,

i.e., S(R) =(jx_1, where X ranges over all v-invertible ideals

of R, We can now prove the theorem due to Fujita under the

conditions above (Theorem 2.9 of [8]).

Lemma 2.9. Under the same notation and assumptions as in the
above, C is a v-HC order with enough v-invertible ideals and S(C)
= S(R).
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Proof. By Theorem 2.23 of [14], we have R = RAr\r\RPf\S(R)
and Ry = ﬂi=T Rpi, where P runs over all maximal v-invertible
ideals of R different from P, (1 i s m). Furthermore, (IS(R))v
= s(R)==v(S(R)I) for any R-ideal I by Proposition 2.10 of [14].
The conditions KR, = R, and K2 A imply that K = KRAnn Rpﬂ S(R).
So it follows that C = IR(K) = IRA(KRA)r\f\RPf\S(R). We shall
prove that R, = Cy4 for some semi-prime ideal H of C. To do this,
write P' = PRP = M.]' Noeve an"
ideals of Rp, and put H = P'n C and M, Min C. By Lemma 2.7 of
[8], C = C(P')NC is a regular Ore set of C and CC = Rp- Then
each My is a prime ideal of C and CH = RP by the same way as in

 a finite intersection of maximal

Proposition 1.1 of [13]. By Lemma 2.1 of [15], CB exists and is
an HNP ring. To prove IR (KRA) _2_CB, first note that KCBnC = K
by Lemma 2.7 and the condition (4). So KCB is also a semi-prime
ideal of CB and is idempotent by the conditions (the fact that
KCB is an ideal follows from the proof of Theorem 1.31 of [4]).
Thus, by Theorem 5.2 of [22), we have IR*(KCB) = CB' where R* =
Or(KCB). Since R* = Or(KCB) = Or(K)CB = RCBg_RA, we have CB =
Ipx(KCg) € Ip (KRp). Hence we have C = CoNN C NS(R). This
means that C is a ring of type II' in the sense of [8]. To prove
that C has enough v-invertible ideals, let X be any ideal of C,
then LXK is an ideal of R contained in X and so S(R) 2 (XS(R))vg
(LXKS(R))v = S(R). Hence (XS(R))v = S(R) and similarly, S(R) =
v(S(R)x). This implies that C has enough v-invertible ideals by
Lemma 1.3 of [8]. To prove that S(R) = S(C), let Y be any
v-invertible ideal of C, then we have Y™'s Y™'S(R) = ¥~ (LYKS(R)),
£ (Y"'LYKS(R)), S (Y"'¥S(R)), = S(R) by Lemma 2.3 of [12]. Hence
S{C)g S(R). To prove the converse inclusion, let Z be any v-
invertible ideal of R, then Kzz_1 and KZ are both ideals of C.
Hence z'1§ s(c)z”! = V(S(C)KZ)z‘1g V(S(C)Kzz'1) = S(C), because
C has enough v-invertible ideals and so S(R)< S(C). Therefore
S(R) = S{(C). Thus C is a v-HC order with enough v-invertible
ideals by Lemma 1.1 of (8].

From Lemmas 2.6, 2.8, 2.9 and the notes before Lemma 2.9,
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we have

Lemma 2.10. Under the same notation and assumptions as in
Lemma 2.5, if I[(x,0)]] is a v-HC order with enough v-invertible
ideals, then so is Allx,0ll].

We are now in a position to show the main theorem of this

paper.

Theorem 2.11. Let D be a noetherian integrally closed domain
with quotient field K and let A be a tame D-order in a central
simple K-algebra f with finite dimension over K. If g is an auto-
morphism of A, then Allx,0)) is a v-HC order with enough v-
invertible ideals.

Proof. There is a maximal D-order which contains A& (see
Theorem 1.4 of [6)). So, we can easily see that A has only
finite many v-idempotent ideals by the similar way as in Theorem
6.3 of [22] (see, also Lemma 2,4). Thus we have a chain of o¢-
invariant, v-idempotent ideals of A ; A = 1021130-- g_In such
that there is no g-invariant, v-idempotent ideals between Ii and
Ii+1
ideal of A. Let Ay = Or(Ii). Then Ay is a tame D-order by
Proposition 3.1 of [14]) and Proposition 3.2 of [8). Furthermore,

(0 s i s n-1) and In is a minimal g-invariant, v-idempotent

there are no D-reflexive, ¢g-invariant D-orders between Ai and

A,
i+l

Hence it follows, by Theorem 1.4, that An[[x.0]] is a maximal

order and so it is a Krull order in the sense of [(2]. Hence

by Lemma 2.4. In particular, An is a o-maximal D-order.

Allx,0]] is a v-HC order with enough v-invertible ideals by using
Lemma 2.10, successively. This completes the proof.

Remark. (1) A([x]] is, of course, a tame D[[x]]-order.
However, if g is of an infinite order, then Al[x,0)]) is not a
tame C(A[(x,0]))-order, where C(Al[x,0]1]1) is the center of
Allx,0]), because C(Al[x,0]]) = {de€D |o(d) = d}.
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(2) Concerning polynomial rings over v-HC orders (tame D-orders),
see Theorem 2.16 of [15) (Theorem 1.11 of [6]).

3. In this section, we shall investigate v-invertible ideals
of A[[x,0])]. By Theorem 1.13 of [14] and Theorem 2.11, D(A[[x,0)]}
the set of all v-invertible ideals, is a free abelian group
generated by the maximal v-invertible ideals of A[lx,0]). So it
suffices to study the maximal v-invertible ideals of A[[x,0]].
Let us begin with the lemma in more general case.

Lemma 3.1. Let R be a v-HC order in a simple artinian ring
Q. Let S be a set consistiﬁg of v-invertible ideals of R which
is closed under v-multiplication ; XeY = (xy)v for X, Y&S. Put
T =Ug.g X'- IfIisan ideal of R, then (IT), is an ideal of

T.

Proof. First we shall prove that (IT)V=(X_1IT)v for any
element X in S. Since I'rgx"rrex'zrrg eee T, there is a
natural number n such that (x—nIT)v = (x'(““ )IT)V by Lemma 2.4
of [14) and Lemma 2.2 of [12). Then (IT)_ = (X"xP1T) =
(PP ) = (P (0 )y ) o (e gy o
CxPxm Y oy D L (kT = ot

vi'lv v v vi'lv v
by using Lemma 2.3 of [12] (see, also the proof of Proposition
1.1 of [17])). To prove that (IT)v is a left ideal of T, let
YE&T and x € (IT) , then we have er-1 for some YE€S and so yxé&

-1 e (v-1 _ . ,
Y (IT)v S(Y IT)v = (IT)V. Hence (IT)v is an ideal of T.

Let R be a v-HC order in Q. We denote by M(R) the set of
all maximal v-invertible ideals of R. Set M(S) = (P&€M(R) | P2X
for some X€S }and set M*(S) = {A€M(R) | AgX for all Xes.
Then M(R) = M(S)UM*(S) and M{(S)NM*(S) = #. Note that T is also
a v-HC order by Proposition 4.1 of [7].

Lemma 3.2. Under the same notation and assumptions as in

Lemma 3.1, there is a one-to-one correspondence between M*(S)
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and M(T), which is given by ; A—-)(AT)V =A', A'>A = A'NR,
where A eM*(S) and A'e M(T).

Proof. By the same way as in Proposition 2.11 of [14], we
have R =('\RP(\ T, where Pe M(S) and I, = (\IRPr\(IT)V for any
right R-ideal I. Let M' be any maximal v-ideal of T. Then we
shall prove that M = M'N R is also a maximal v-ideal of R. Since
M' is a prime ideal of T by Lemma 1.4 of [14], it follows from
Lemma 3.1 that M is also a prime ideal of R. Assume that M is
not a maximal v-ideal of R and let N be a maximal v-ideal
containing M. 1If (NT)ng, then (NT)V = (MT)V = M' and so Ng M,
a contradiction. Hence (NT)V = T. This implies that N contains
an element in S. But, since N is a prime ideal, N contains an
element Poe M(S), because any v-invertible ideal of R is a finite
product of maximal v-invertible ideals as v-ideals (see the proof
of Proposition 2.1 of [5]). Then NRPog RPo by Lemma 2.3 of [8]
and N = NRPon R. Since M is a prime v-ideal and R satisfies the
maximum condition on one-sided v-ideals of R, we also have
MRPon R = M. Hence NRPO and MRPO
ring RP and so NRPo = MRPO. This entails that N = M, a
contradiction. Hence M is a maximal v-ideal. Assume that MRPg
R, for some P€M(S), then (P“)vg MR,
we have T = (PnT)V_S_(MT)V = M', a contradiction. Hence MR, = R
for all P in M(S). Now, let A' be an element in M(T) and write
A' = M1' l'\---l'\l\"l"1 as an intersection of a cycle (see Lemma 1.12
of [14] and also see Theorem 1.11 of [7]). Put A = A'NR and My
= M{NR. Then O_(M;) = NO_(M;R) NO_(M]) = N Rp NO_(M;)

are both prime ideals of an HNP

NAR = M for some n. Hence

P

i
' _ . . _ F i =
f\RPnol(Mi+1) = Ol(Mi+1) for all i, where i+1 = 1 if i 2n
( gr(MiRP)2= RP follows from MiRP = RP). Furthermore, (Mi)v =
' - v .
f'\MiRPf\(Mi )V = NARpN M, = Mi and so A is an element of M(R) by

Lemma 1.12 of [14] (also, see Lemmas 1.8 and 1.9 of [7]). 1t is
clear that AeM*(S) and A' = (AT)V. Conversely, let A be any
element in M*(S). Then it follows from the same way as in the
above that (AT)V is an element in M(T) and (AT)vnR = A. This
completes the proof.
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Let R be a v-HC order with an automorphism ¢. A finite set
of distinct maximal o-invariant v-ideals Myyeee, My of R which
are v-idempotents is called a g-v-cycle if or(M1) = °1‘M2)""'
or(Mn) = 01(M1). A maximal g-invariant v-ideal M which is
v-invertible is also considered as a 0-v-cycle, because Or(M) =
Ol(M).

Lemma 3.3. Let R be a v-HC order with an automorphism o and
let P be an ideal of R. Then P is a maximal g-invariant v-
invertible ideal of R if and only if it is an intersection of a
J-v-cycle.

Proof. As in Lemma 1.12 of [14] (also, see Lemmas 1.8, 1.9
of [7] and Proposition 1.6 of (12]).

Lemma 3.4. Let A be a tame D-order with an automorphism ¢
and let P' be an ideal of A[[x,0]] with P'n A # 0. Then P' is
a maximal v-invertible ideal of A[(x,0])] if and only if P' =

P[[x,0]] for a maximal o-invariant v-invertible ideal P of A.

Proof. By Theorem 2.11, Af[x,0]] is a v-HC order with
enough v-invertible ideals. Before proving the necessity, we
note the following; let M be a v-ideal of A with g(M) = M. Then
it is not hard to prove that M is a g-prime ideal if and only if
M{[x,0]] is a prime ideal, where M is said to be g-prime if ABg&
M, where A and B are ideals of A such that ¢g(A)g A and o(B) & B,
implies that either ASM or BgM. Furthermore, in this case,
M[[x,0]] is a maximal v-ideal of Al{x,5]] by Lemma 1.2 of [16].
To prove the necessity, let P' be a maximal v-invertible ideal of
Allx,0]] with P = P'N A £ 0. Write P' = M'r\---r\M; as an

1

intersection of a cycle and put Mi = Mi(\A, a v-ideal of A by

Lemmas 1.1 and 2.2. It is clear that Mi is g-invariant by Lemma
1.2 and is a o-prime ideal. Hence Mi[[x,o]] = Mi, and Mi is a

maximal o-invariant v-ideal of A and is v-idempotent if n 3 2

(if n =1, M1 is a maximal o-invariant v-invertible ideal of A\).
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1
maximal O-invariant v-invertible ideal of A. Since Mi[[x,o]] =

Mi, we have P' = P[[x,0]). To prove the sufficiency, let P =
M1n '°°r\Mn be an intersection of a o-v-cycle. Then it follows
that O _(M;[[x,0]1]) = O (M;)[[x,0]] = 0,(M; ,)MlIx,0]] =
Ol(Mi+1[[x,a]]) and so P[[x,0]] is a maximal v-invertible ideal
by Lemma 1.12 of [14].

Hence Miseee, Mn is a o-v-cycle and so P = M r1°°-r1Mn is a

From Lemmas 3.2 and 3.4, we have

Proposition 3.5. Let A be a tame D-order with an automorphism
0 and let T = L}B'1[[x,o]], where B runs over all o-invariant,
v-invertible ideals of A. Then
(1) There is a one-to-one correspondence between the set of all
maximal v-invertible ideals P' of A[[x,0])] such that P = P'N A
# 0 and the set of all maximal o-invariant, v-invertible ideals
P of A, which is given by P'—P = P'NA ; P—>P' = P[I[x,0]].
(2) There is a one-to-one correspondence between the set of all
maximal v-invertible ideals A of A[[x,0]] such that AnA = 0 and
the set of all maximal v-invertible ideals A' of T, which is
given by A—3A' = (AT), and A'—> A = A'NAlIx,0]].

Let R be a v-HC order with enough v-invertible ideals. Then,
D(R), the set of all v-invertible ideal, is a free abelian group
generated by the maximal v-invertible ideals of R by Theorem 1.13
of [14]).

Remark. (1) We have obtained in the forthcoming paper that
T is also a v-HC order with enough v-invertible ideals, where T
is one in the proposition. So we can restate the proposition as
follows;

D(A[[x,0]]) = Do(A) @ D(T),
where DO(A) is the free subgroup of D(A) generated by the maximal
O-invariant, v-invertible ideals of A.
(2) As it will be seen in the following example, D(T) is usually
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not trivial. Let 2 be the ring of integers. Then 2 + x, 2 + x +
x2, eee 2 + X + x2 + ¢ are all prime elements in Z[[x]] and

so the principal ideals generated by these elements are all
maximal v-ideals, respectively (see Theorems 5.3 and 2.1 of

[23, p. 16 and p. 501]).
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

HOPF-GALOIS EXTENSIONS OF ALGEBRAS, THE MIYASHITA-
ULBRICH ACTION, AND AZUMAYA ALGEBRAS

Mitsuhiro TAKEUCHI and Yukio DOI

We work over a commutative ring R. Let X = Spec B be
an affine R-scheme and let G = Spec A be an affine R-group.
A scheme map

p: Xx G - X
is represented by an R-algebra map
p: B -~ B®A

where @ = ®g. To say G acts on the right on X via ¢

peans that B 1is a right A-comodule with structure p. In
this case we say B 1is a right A-comedule R-algebra. The

quotient affine R-scheme Y = X/G is given by Y = Spec C,

This note is derived from the introduction of [0] .
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with
C={beBi1 p(b) = b®1 }
called the invariants in B. The most important condition
in order for X/Y to be a principal homogeneous space for G
is that ¢ and the projection pr: X x 6 - ¥ give rise to
an isomorphism of affine R-schemes
(pr,»): $ x 6 - X xv X
[3, 1.7, p.362), [2, p.154], [18, 18.3, p.142] . 1In the
tontext of the A-comodule algebra B, this is equivalent to
saying that the map
B: B®:B - B®A, B ®b) = (b ®@1) p (b)
is bijective. If this is the case, we call B/C a right

A-Galois extension of R-algebras.

Such a concept has been studied under the name "Galois
A-objects” [1, 7.3, p.56) , or 'PPHS for G' [2, p.158] with
some additional conditions including C = R.

The concept is meaningful without any cowmutativity of B
or A, and such a non-commutative Hopf-Galois extension has
been studied in [9] , [16) with some finiteness assumption
of A. We review the main results in §1.

In a series of papers [5, 6, 7] the first author Doi
introduces two important concepts, (total) integrals and the
category M3B3, to study the right A-Galois extension B/C.

In §2 we study the structure of MZ%. We show (2.11),(a) if
the left C-module B is flat, then we have the structure
theoren

A
¥ No®oB, M e M;p
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where Mo denotes the invariants in M. This covers the case
A is finitely generated projective. Further we show (2.11),
(b) if there is a total integral ¢: A - B® with B® the
centralizer of C in B, then the category M5 is
equivalent to the category of right C-modules. This
strengthens our previous result [8, Theorem 9] , where we
assert the same conclusion when there is an invertible
integral ¢: A - B,

When B/C is a right A-Galois extension, there is a
canonical action B°®A > B°® which makes B® into a right
A-podule algebra with the invariants Z(B), the center of B

[16, II'] . We call this the Miyashita-Ulbrich action since

this gives rise to the so-called Miyashita automorphisms [15] ,
[17] in case A = R[G], a group algebra. We give a
different approach based on the = -method to this action
in §3. We show for an algebra E and an algebra pap
a: B - E, there is an action E°®A - E° such that E°®
is a right A-module algebra with the invariants E°. In 86,
for a given extension of R-algebras E/C, we ask whether
every measuring action E°®A - E° comes from a right
A-Galois extension B/C and an algebra map a: B - E
over C. This question is solved affirmatively when E is
an Azumaya algebra and the right C-pmodule E is a
progenerator (6.20). In fact, the pair (B/C, a) is determined
uniquely up to isomorphisms from the action E°®A-> E°.

In §4 and §5, we assume the Hopf R-algebra A is

finitely generated projective. We denote by A* the dual
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Hopf R-algebra of A. Then, with the above notation, E° is
a left A*-comodule algebra with the invariants E®. We say

ES/E® is a left A*-extension (not necessarily Galois). In

§4, we define the concept of (weak) Galois contexts

(B/C,C"/B ", a,a”) in E for A from the viewpoint of
generalized #-products [14, §8] . Here B/C (resp. ¢”/B")
is a right A- (resp. left A*-) extension, and a: B - E,
a’: ¢ > E are R-algebra maps. When B/C and C°/B" are
both Galois extensions, we say we have a Galois context. The
construction of §3 can be rephrased so that if we have a
right A-Galois extension B/C and an algebra map a: B - E,
then we have a weak Galois context (B/C,E®/E®, ¢ ,incl.)
in E. We have a similar construction from a left A*-Galois
extension C”/B” and an algebra map a”: C° - E. Our
concept of Galois contexts has a similar property as the
context studied in [11] . We show (4.5) if we have a Galois
context (B/C,C”/B”) in E, then the weak Galois contexts
(B/C,ES/E®) and (E® /E® ,C’/B”) are Galois contexts, too,
and we have the double centralizer property
E®*” ¥ E® ®B and E° ¥ C @®n EV.

The structure theorem of MZJ (§2) are used to prove this.

Let B/C be a right A-Galois extension. Since Z(B)
equals the invariants of the left A*-comodule algebra B°®, if
we have a Galois context of the form (B/C,B°/R), then B is
obviously central. We ask whether this implies, or is implied

from, that B 1is separable. Central separable algebras are

called Azumaya algebras. W¥e prove (5.2) that if there is a
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total integral ¢: A - B° then B is an Azumaya algebra
if and only if C is a separable algebra and B®°/R is a
left A*-Galois extension. If C€ is commutative, C is
contained in B®, and € 1is a subcomodule of the A®-comodule
B® if in addition A is cocommutative. In such a case, we
prove a nore clear result (5.8): if we have a Galois context
for A of the form (B/C,C/R), then C is commutative and B
is an Azumaya algebra containing C as a maximal commutative

subalgebra.
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PROCEEDINGS OF THE 20TH
SYMPOSTUM ON RING THEORY (1987)

MORITA CONTEXTS AND EQUIVALENCES IT

Toyonori KATO

Throughout this summary, # and S are assoclative rings
(not necessarily with identity), I an ideal of R, J an ideal
of S, and <RUS’ SVR; I, J> a Morita context consisting of bi-
modules RUS and SVR together with bimodule epimorphisms

U @b V—1TI (u ® v — uv)
and

Ve, U —J (v ® u — vu)

satisfying (uv)u’ =u(ve') and (vu)v' =v(uv') for u, ¥ €U

and v, Vv € V.

Definition 1. Let M be a left R-module. For each
v eV and m e M, define <v, m> ¢ HomR(U, M) (= (U, M] for
short) via

u<v, m> = {(uv)m for u e U,

and <V, M> the submodule of [U, M] generated by the homo~
morphisms <v, m>, v eV, me M, Similarly for a left S-
module ¥, n e N, and u € ¥, define <u, n> ¢ HomS(V, N) (=
[V, #] for short) via

v <u, n> = {(vu)n for velV,

The detailed version of this summary will be submitted for

publication elsewhere.
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and <U, N> the submodule of [V, ¥] generated by the homo-
morphisms <u, n>, u e U, n e N.

Let R-Mod denote the category of all left R-modules and
S-Mod the category of all left S-modules. Then one obtains

Proposition 1. <V, -> : R-Mod — S-Mod naturally turns
out to be a subfunctor of the Hom-functor [U,-] as well as a
quotient functor of the tensor functor (V ®p -). Similar state-
ment holds also for <U, -> : 5-Mod — R-Mod.

Remark. The functors <V, «> and <U, -> have already
appeared in Nicholson and Watters [7] or in Kyuno [4] in slightly
different forms.

Definition 2. Let

M= (M e R-Mod | TM=¥4 and Ann,(I) = 0)

be the full subcategory of R-Mod, where AnnM(I) denotes the
annihilator of I 1in M. Similarly define JM the full sub-
category of S-Mod.

Theorem 1. Let <RUS’ SVR; I, J> be a Morita context.
Then the functors

<V, => : IM r— JM T <U, =

induce inverse equivalences.

Remark. Theorem 1 above has been proved in slightly differ-
ent forms by many authors under some additional conditions; e.g.,
by Morita [5] under the condition that 1l e€ I and 1 e J, by
Nobusawa [8] under I?® = 8 and J% = 5, by Kyuno [4] under I
= R and J = S, and by Nicholson and Watters [7] under 1 & R
and 1 € S.

Definition 3. Let



IC={MeR-Mod|I®RM’V,M via a®m v+ am (aecl, meM)}

be the full subcategory of R-Mod. Similarly define JC the
full subcategory of S-Mod.

Theorem 2. Let
Then the functors

<RUS’ SVR; I, J> be a Morita context.

(V@ =) :+ [C=2,C: (VB ~)
induce inverse equivalences.

Remark. Theorem 2 has been obtained in a slightly differ-
ent form by Kato and Ohtake [3] over unital rings R and S.

Definition 4. Let

L= (e Rr-Mod | ¥, [I, ¥] via m — m (meM))

be the full subcategory of R-Mod, where m denotes the right
multiplication by m ¢ M. Similarly define JL the full sub-
category of S-Mod.

Theorem 3. Let < U |2 I, J> be a Morita context.

rR’s* s'R?
Then the functors
(v, -3 : IL::1JL= (v, -1

induce inverse equivalences.

Remark. Theorem 3 has been proved in slightly different
forms by several authors under some additional conditions; e.g.,
by Kato [1] for a derived Morita context over unital rings R
and S, by Miller [6] over unital rings R and S, and by
Nobusawa [9] for I = R and J = S.

Definition 5. Let
I(U®; =) = {¥ e R-Mod | M =U® N for N =JN}

and
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M' = {~ e sS-Mod | J¥=N and A, (V) = 0}

J
respectively be the full subcategories of R-Mod and S-Mod,
where
Ay(U) = {neW | v®n =0 in U ® #}.
Theorem 4. Let <plg, gVps I, I> be a Morita context.
Then

(1) € C 1(t® -) and M C N'.
(2) The funectors
<V, => : I(U ®S —):JL(' : (U ®S -)

induce inverse equivalences.

Definition 6. Let
(v, -1 = {¥ ¢ R-Mod | ¥ = [v, ¥] for Ann,(J) = 0}
and
" = (# e 5-Mod | Tp(V) = # and Anny(J) = 0}

respectively be the full subcategories of R-Mod and S-Mod,
where TN(V) denotes the trace of ¥V in &.

Theorem 5. Let < U SVR; I, J> be a Morita context.

RS’
Then
M
(1) 7L ¢ 1[(v, -] and JM C JM .
(2) The functors
v, -> : 1I[v, —]:JM" : [v, =1

induce inverse equivalences.

We end off this summary with the following examples (cf.
Kato [2]).

Examples. Let <RUS’ SVR; I, J> be a Morita context.
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(1) If a ¢ Ia for each g4 ¢ I, then we have

M= C=1{Me r-Mod | T¥4= n},

as well as
(U ® -) 2 <V, => on (N e S-Mod | J¥= N},
(2) If I =FRe with e = e? ¢ R, then we obtain

M= L= (4 e R-Mod | Ann,(I) = 0},

as well as
U, =>a [V, -] on {N e S-Mod | Anng(J) = 0}.

(3) If UJ=1U, then IC=I(U®S -) and M= _M'. It
thus follows from Theorem 4 that the functors

<V, => : IC¢—JM : (U®S ')
induce inverse equivalences in case UJ = U.

() If JV=V, then IL = J[v, -] and JM = JM". It
follows from Theorem 5 above that the functors

Wy, => L= M [y, -]

induce 1inverse equlvalences 1n case J V=V,
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

PRIMITIVE ELEMENTS OF CYCLIC EXTENSIONS
OF COMMUTATIVE RINGS

Isao KIKUMASA, Kazuo KISHIMOTO and Takasi NAGAHARA

Throughout this paper, A will mean a commutative ring
with identity element 1 which is an algebra over a finite
prime field GF(p), and all ring extensions of A will be
assumed with identity element 1, the identity element of A.
Moreover, B will mean a Galois extension of A with a cyclic
Galois group G = <0> denerated by o of order pn, which
will be called a cyclic pn—extension of A (with a Galois group
G).. If B is generated by a single element 2z over A then
B (resp. 2z) will be called a simple extension of A (resp. a
primitive element of B over A).

One of the present authors made a study on primitive
elements for cyclic 22-extensions in [2]. 1In this paper, we
shall present a sharpening of [2] and some generalizations to
cyclic pn-extensions with p>2 and n 2> 1.

In what follows, given a Galois extension S/R with a
Galois group G, we shall use the following conventions: For
any subring T of S and any subgroup H of G,

1) @O(T) = {M ; M is a maximal ideal of T},

2) G(T) = {0 € G; og(a) = a for all a €T},

3) S(H) = {a €S ; ola) = a for all o € H},

4) tyla) = IoeHo(d) for each a ¢ T, which will be

The detailed version of this paper will be submitted for
publication elsewhere.
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called the H-trace of a. Moreover, for any set V and its

subset W,
5) |v]|
6) Vv\w
Now, we shall here consider a cyclic pn-extension B/A

the cardinal number of V.

the complement of W in V.

with a Galois group G = <0g> . Then, there exists an element
a in B whose G-trace is 1 ([1, Lemma 1.6]). If, in
particular, |G| = p then there exists an element b in B
such that o(b) = b + 1. When this is the case, there holds
that tG(b) =0 if p > 2 and B = Al[b] ([7, Theorem 1.2]).
Such an element b will be called a og-generator of B/A (cf.
[2)). In case |G| = 2, an element ¢ in B is a o-generator
of B/A if and only if tG(c) = 1.

All the facts in this paper are contained in I. Kikumasa
and T. Nagahara [#] and [##].

1. On primitive elements of cyclic Zz-extensions. In this
section, we shall discuss the case p =2 and n = 2.

Throughout this section, H will mean a subgroup of G
generated by 02, i.e., H = <02>. Moreover, we put T = B(H)
and ¢|T = o.

First, we shall prove the following theorem which contains
the result of K. Kishimoto [2, Lemma 1].

Theorem 1. The following conditions are equivalent.

(a) There exists a primitive element for B/A whose
G-trace is zero.

(b) There exists an invertible element of T whose
<g>~-trace is 1.

Proof. (a) =>» (b). Let B = A[z] and tG(z) = 0, and
set b =2 + o(z). Then, we have oz(b) b, and so, b€ T.
By [4, Theorem 3.3], b and b + a(b) = z + ¢2(z) are
invertible in B. Hence x = b(b + g(b)) !

element of T and t<5>(X) 1.

is an invertible
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(b) => (a). Let x be an invertible element of T whose
<o>-trace is 1. Then, o(x) = x + 1. Hence we have T = A[x]
by [7. Theorem 1.2]. Since B is a Galois extension of A,
there exists an element y in B such that tG(y) = 1. Put

b= x2 +x and z = xy + xo(y) + o(xy + xoly)).

Then, since x is invertible, o(x) = x + 1 is also invertible
agd so is b = xo0(x). Moreover, since tG(y) = 1, we have
6°(z) =z + 1. Hence B = T[z]. Further,

z + 0(z) = xy + xoly) + oz(xy + xo(y))

= xtG(y) = X. R

Hence we have 0(z) = z + x. Then we obtain o¢(z" + z + xb) =
22 + z + xb. Therefore, it follows that c¢ = 22 + 2 + xb € A,
(z2 + 2z + c)b"l € Afz). This implies that A[z] =
T[z] = B. Moreover, noting o¢(z) = z + x and o(x) =

]

and x
Alz,x]
X + 1, we have tG(z) = 0.

Corollary 2. Let x be an invertible element of T with

(x) =1 and y an element of B w1th ts (y) = 1. Then,
z = Xy + x0 (y) + a(y) + o (y)

is a primitive element for B/A whose G-trace is zero and so

is z + a for any a ¢ A. 1In particular,

R 4 + x oz(y) + oly) + oz(yz) +y +y

is also an element which has the property.

<0>

2
z

Proof. The first part is .shown in the proof of Theorem 1.
Moreover, it is clear that A[z + a] = A[z] = B and tG(z + a)
= tG(z) =1 for any a € A. Slnce t (y) = ; and

z + z, =y +g (y) + y + 02(y ), R
a(z + z;) (o (y) ;o (y)) + (o(g ) +20 2(y ))
(y +o7(y) +1) + (y" + a"(y") + 1)
z + 2

I}

1°
Hence, 2z + z, is in A and z, =2 + b for some b € A.
This shows the last part.

Remark 1. Assume that there is an invertible element x
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in T whose <g>-trace is 1. Then, for any element y of B
whose <g>-~trace is 1, we set

b = x2 + x, 2 =12y + xa(y) + olxy + xa(y)), c = 2% + 2 + xb
and f=(X-2)(X-0(2))(X - 02(2))(x - 03(2)).
Then, noting o¢(z) = z + x, we have

fE=xV+ b+ 1)%x%° +bX + (b2 + bc + c?)

and B = Alz] = A[X]/(f) by [4, Theorem 3.3, 3.4]. Clearly
{1, 2z, 22,23] is a linearly independent A-basis for B.
Next, for the =z + 2
( € aA), and
£, = (X - 2)) (X - o(z))) (X - 02(2))) (X = 0> (z))).

1 in Corollary 2, we set a = z,

Then

f£=x*+ brnxPepx+ P rbicra’ra)tcrala?
and B = A[zll < A[x]/(fl). This primitive element z, for
B/A and the polynomial fl are in (2, Lemma 1].

Next, we shall present an alternative proof of [2, Lemma 2]
which is simple.

Lemma 3. Assume that B has a primitive element. Then,
for any M € 2(A), if A/M = GF{(2) then T/TM = GF(4).

Proof. Let M € M(A) and A/M = GF(2). Moreover, let x
and z be primitive elements for T/A and B/A, respectively.
Then, B/BM is a cyclic 22-extension of A/M with a Galois
group <p> where p 1is an automorphism of B/BM induced by
0. Weset s =2z +BM and r = x + BM in B/BM. Then, B/BM
= GF(2)[s] and (B/BM) (p?) = T/TM = GF(2) [r]. We shall here
assume that r2 - r = 0. Then, noting (GF(2)(r]l:GF(2)] = 2,
we have T/TM = GF(2)r ® GF(2) (1 - r). Hence the units of T/TM
are only 1l. Clearly s + pz(s) € T/TM. By [4, Theorem 3.3],

s + pz(s) is a unit in B/BM, and so is in T/TM. Hence

s + pz(s) = 1, which implies that t<p>(s) = 0. Thus, by
Theorem 1, there exists a unit t in T/TM such that t + p(t)
=1, For t =1, we have t + p(t) = 0, and this is a
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contradiction. Hence 2 - r # 0, and so, r? - r = 1. Since

£ = x2 + X + 1 is irreducible over GF(2),
GF(4) = GF(2) [X]/(£) ¥ GF(2)[r].
Now, we define here the set mo as follows:
M, = (M €m(a); T™M € M(T)}.
In the rest of this note, we will often use this set and,
moreover, will omit the proofs of our results. The precise

descriptions of these results are contained in [#].

Theorem 4. Assume that |m(A)\mO| is finite and T/TM =
GF(4) for any M € (A) such that A/M = GF(2). Then, there
exists an invertible element y in T with t<a>(y) = 1.
Therefore B has a primitive element for B/A.

Corollary 5. Assume that |[m(AN\n is finite. Then the
following are equivalent.

(a}) B/A has a primitive element.

(b} B/A has a primitive element whose trace is zero.

ol

The following theorem contains the result of (2, Theorem 3].

Theorem 6. Assume that |{(M € Mm(A); A/M X GF(2)}]| is
finite. Then, the following conditions are equivalent.

(a) B has a primitive element for B/A.

(b) T/TM = GF(4) for any M € m(A)} such that
A/M = GF(2).

2. On primitive elements of cyclic pn-extensions. Set
i
B, =BlP) (G=0,1,2, ..., n and
m, = (M € m(B;); B, M € m(Bi+l)} (i=090,1, 2, ..., n~-1).
Then, obviously B = B, and A = B,. Moreover, B, is a

cyclic pl-j-extension of Bj with a Galois group <gP IBi>'
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Theorem 7. Assume that p =2 and |m(Bof\mo| is finite.
Then, the following conditions are equivalent.

(a) 82/30 has a primitive element.

(b) Bk+2/Bk has a primitive element for any k (0<k<n-2).

Theorem 8. Assume that p = 2 and |{M € n(A); A/M %
GF(2)}| 4is finite. Then, the following conditions are
equivalent.

(a) BZ/B0 has a primitive element.

(b) Bk+2/Bk has a primitive element for any k (0<k<n-2).

Corollary 9. When B/A is the situation of Theorem 7 or
8, this has a system of generating elements consisting of m
elements where m = n/2 if n is an even number and m =
(n + 1)/2 if n is an odd number. '

Theorem 10. Assume that p > 2 and Mm(A) = mo. Then,
B/A has a primitive element. Moreover, if x € B with tG(x)
= 1 then x is a primitive element for B/A and is invertible.

3. On primitive elements of cyclic pn-extensions over
fields. Let A be a field of characteristic p # 0. For any
A-algebra S which is a finitely generated A-module, £(S)
will denote the length of the composition series of S. Then,
we have

Theorem 11. Let B/A be a cyclic pn-extension. Then, the
following conditions are equivalent.

(a) B/A has a primitive element.

(b) 2(B) > p"([A:GF(p)]p" - 1)/(np" - 1).

Remark 2. The result of Theorem 11 can be generalized to
any Galois extension B/A where A is a field (cf. [#xx]).
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

AUTOMORPHISMS OF A CERTAIN SKEW POLYNOMIAL RING OF
DERIVATION TYPE

Isao KIKUMASA

Throughout, p will represent a prime integer and F a
field of characteristic p. For an element o ¢ F, we set
A = F[x1/(xP - o)F[x]. Moreover, D and A[X;D] ~will denote
the derivation of A induced by the ordinary derivation of
F[x] and the skew polynomial ring with aX = Xa + D{(a) where
a € A (that is called "derivation type"), respectively.

In 1968, R. W. Gilmer [3] determined the B-automorphisms
of the ordinary polynomial ring B[X] for any commutative ring
B. As to algebra automorphisms of the polynomial ring over any
{(not necessary commutative) ring, D. B. Coleman and E. E. Enochs
[1] established a thorough result three years later. Since
then, characterization of automorphisms of skew polynomial rings
has come into question.

The answer to this question for the case of automorphism
type was completely given by M. Rimmer [5]. Furthermore, in
case of derivation type, M. Ferrero and K. Kishimoto got results
in (2].

However, (2] is studied on B-automorphisms of BI[X:;6] in
case that B is a ring with a derivation ¢§ satisfying the
condition 6(N) € N where N is the union of all nilpotent

The detailed version of this paper will be submitted for
publication elsewhere.
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ideals of B. Hence there are rings with derivations to which
the results cannot be applied. 1In fact, the ring F[x]/(xp)F[x]
with the derivation D does not fulfill the condition and so
we can never apply the results to the ring with the derivation,
though it plays an important role in studies of algebras.

On the other hand, for the algebra A, N. Jacobson [4]
mentions a certain kind of A-automorphisms of A[X;D] in case
that xP - a is irreducible in FI[x]. However, if xF - a is
not irreducible then A is isomorphic to F[m]/(xp)F[x] and
hence the problem to determine all the A-automorphisms of
A[X;D] has never been solved except the case that A is a
field.

In this note, we will solve the problem and, as a result,
we will obtain an automorphism whose type is quite different

from ones in [1], [2], [3] and [5].

First, we shall state the following lemma which can
characterize the A-endomorphisms of A[X;D].

Lemma. Let B be a commutative algebra over the prime
field GF(p) and & a derivation of B such that &P = 0.

Moreover, let B[X;§] be the skew polynomial ring over B

where DbX = Xb + 6(b) (b € B). Assume that 6(z) = 1 for some
z € B, Then the map X — 2n=0xibi (b; € B, n 21, b #0)
induces a B-endomorphism of BI[X;§] if and only if

(i) b, =1 and
(1) b, = 0 for all i € {j: 2 < j <n and pfil.
When this is the case, the image of X takes the form

Sy pPi
X+ J7loX% boi
where s, is an integer such that psy

if n 2, and

]
e}
v

sgo =0 if n = 1.

To determine all the A-automorphisms of A[X;D], we shall
consider the following conditions for the A-linear map ¢ of
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A[X;D] to itself defined by
n i k

(#) X > ([I_xtapk, k=0,1,2 ... (nz2 a #o0.
(In case n =1, see Remark 2).

(1) a; = 1.

(ii) a; =0 for all i € {j: 2 <3j <n and p}tjl.
Assume that (ii) is fulfilled. Then, we have p|n because
n22 and a # 0. Hence there exist integers s and t

which satisfy ps = n and pt £ s < p(t + l)f Thus, the
following conditions can be considered.

(1ii) pP"l@ ) + 1 # 0.

P
i p-1 P - : .. . ,
(iv) D (apzi) +ag; 0 for all i € {j: 1 < j < t}.
(v) agi =0 for all i € {j: t+ 1< 3 <s).

(vi) Dp—l(api) =0 forall i €{j: 2 <3< s and pfil.
Now, using the above conditions, we state our main theorem.
Theorem. The map ¢ is an A-automorphism of A[X;D] if

and only if there hold (i) - (vi). Furthermore, in this case,
the inverse map ¢_l of ¢ is induced by

k ’ s L PJ k -
X — (X + zj=°x byy)"r k=0,1,2 ...
where
_ ©v8 _qyi-3+1(iy P-1 pP,i-j -1 -i
by = 5oy -1 (j)(o Hagh+af) I 0P @ 4 e

for each J.

In the rest of this note, let y be the image of x in
A by the canonical homomorphism from F[x] to A,

Remark 1. For api € A= F[x]/(xp - a)F[x], put

_ vp-1_k
8pi zk=oY Ypi,k (Ypi,k € F).

P . vP-l Kk Pp : )
Then, ag; zk=0° Ypi, k and, by Wilson's Theorem,
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p-1 = - _ = -y . .
D (api) (P - L IYpi,p-1 Ypi,p-1
Hence, we can replace the conditions (iii) - (vi) with the
following:
i ! 1.
(iii) Yp,p-1 # .
i = yP~ P ; . X
(iv)’ Yp2 1 p_ Zk~0a Ypi,k for all i € {j: 1 < j < t}.
(v)* Zk—o“ Ypl k=0 forall i €{j: t+1<73Jg sl
(vi)' Ypi,p-1 = O for all i € {j: 2 <tj < s and ptil.

Obviously, in case a = 0, these relations show that
whether or not the A-endomorphism ¢ of A[X;D] is an
A-automorphism depends only on the coefficients Ypi,p—l of
yp-l and constant terms y,. of a; (L <ic<s).
Therefore, the coefficients ,Ypi,k of intermediate terms yk
(1L <k <p-2) can be taken freely, and hence, if p # 2
then we can easily make different A-automorphisms of A([X;D]
from any given A-automorphism of A[X;D].

This also means that there exist at least |F|(p-"2)s
A-automorphisms of A[X;D] whose image of X 1is of degree

n = ps, where |F| is the cardinal number of the field F.

Remark 2. In case n = 1, M. Ferrero and K. Kishimoto
(2, Lemma 2] have shown that if B is a ring and § 1is a
derivation of B, then the map X — bo + xbl induces a
B-automorphism of B[X;6] if and only if bl is a cgntral
unit and bgb - bby = §(b)(b; - 1) for all b € B. Noting
D(y) = 1, we can easily see that the map X —» a, + Xal induces
an A-automorphism of A([X;D] if and only if a, = 1. Thus,

1
we can consider our theorem to contain the case n = 1.

Finally, we shall present some interesting results which
can be obtained by our theorem.

Examples. Let a =0 i.e. A = F[x]/(xp)F[x].
1. Suppose that p = 2. Let maps ¢l and ¢2 be
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A-endomorphisms of A[X;D] induced by

X —=> X + xzy and X — X + XZyB (B#1€Fr),

respectively. Then, ¢l is not an A-automorphism by the
condition (iii) (or (iii)'). But ¢2 is an A~automorphism
of AI[X:;D] by our theorem. When this is the case,

¢1(x2) =0 and ¢; ) =x-x%ys+ 17T

2. It is easily seen from the condition’ (iv) that ani
don't have to be nilpotent for all i > 2, though the map is
an A-automorphism of A[X;D]. Actually, by our theorem, we see
that the map

2 oo
X — X+ xP 4+ xP yP1

induces an A-automorphism of A[X;D], though ap = 1 is not
nilpotent. This shows that there exists an automorphism whose
form is quite different from ones known by now, because all
results in [1] - [3] and [5] show that a; (i 2 2) must be

nilpotent in case the map X — Z?=0xlai induces a B-auto-
morphism of a commutative or skew polynomial ring over a ring B.
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

COMMUTATIVE SEMIGROUP RINGS

Ryliki MATSUDA

l. Introduction. The commutative semigroup ring A[S] 1is
a ring which reflects properties of the semigroup S and the
ring of coefficients A. These,rings may be studied for their
own sake or as a tool for tackling other problems. There are
many results by many people in the theory of commutative semi-
group rings. We will choose two topics among them. One is the
divisor class groups of commutative semigroup rings and the
other is the Kronecker function rings of semigroups. The
former is mainly by R. Gilmer, T. Parker, D.F. Anderson and
L. Chouinard.

Let S be a torsion-free cancellative commutative semi-
group 2 {0} . The semigroup operation is denoted by "+", If

ns, = ns, where sl, 8, ¢ S and ne N implies 8, % Sy,

1
then S 1s called torsion-free. The group { 8, ~ 8,55 8y € S)

is denoted by q(S), and is called the quotient group of S.
q(S) 1s a torsion-free abelian group. Let A be a
(commutative) integral domain 3 1. We set A[X;S] = A[S] =

P 8.
a_ ¢ A, 8 & S} .

finite asx ’

2, The divisor class groups of commutative semigroup rings.

Theorem 1([9, Gilmer-Parker]). A[X;S] 1s a UFD( {i.e.
unique factorization domain) 1if and only 1f A 1s a UFD, S
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is a UFS( i.e. unique factorization semigroup) and q(S)
satisfies a.c.c.c. ( i.e. ascending chain condition for cyclic

subgroups).

If each element of S {s expressed as a sum of irreducible
elements uniquely up to associates, then S 1is called a UFS.
q(S) satisfies a.c.c.c. 1f and only if each nonzero element
has the type (0,0,0,...).( For the definition we refer to (7,
§ 85]1.)

Corollary 2([8, Gilmer]). Let p be a prime number or
zero, and d a natural number with d & 2. Then there exists
a non-Noetherian UFD of characteristic p and of (Krull)

dimension d.

This 1s the answer for David's conjecture([6]). Cor. 2 is
proved by Th. 1 and by a result on torsion-free abelian groups
by L. Pontryagin([1l4] or (7, & 88]). A UFD of dimension 1
is a PID( i.e. principal ideal domain), and hence a Noetherian
ring.

Let K be the quotient field q(A) of A. 1If there exists
a family { Va3 re N } of DVR's( 1i.e. discrete valuation
rings) of K such that (1) A = ~C}VL , and (2) each non-
zero element of A 1is a unit of V, for almost all A ,
then A 1s called a Krull ring. A UFD is a Krull ring.

Corollary 3. Suppose that S is a group G. Then
A[X;G6] 1s a Krull ring if and only i{f A {1s a Krull ring and

G satisfies a.c.c.c.

Proof of the sufficiency. Set q(A) = K. Then K[X;G] 1is a
UFD by Th, 1. Let {"r s s e } be a family of discrete
valuations of q(K[X;G]) under which KI[X;G] 1is a Krull ring.
Let { Vo i AE N } be a set of discrete vaiuations of K
under which A 1is a Krull ring. If we set vh(ZE:asxs) =

1gf va (as), then v{ is a discrete valuation of q(K[X;G]).

( Y: is8 called the natural extension of Va .) Then Af[X;G]

%

is a Krull ring under { Ve s Yy 3 0, x.} .



Let F(A) be the set of fractional ideals # (0) of A.
Set q(A) = K. We set A:(A:I) = I' for each I € F(A),where

A:I denotes {x.é K; xICA} . If I‘]'. = 1‘2' for I:I. € F(a),

we set I}Auflz. We set F(A)/~ = D(A). The equivalence

class containing I 1is denoted by div(I), and is called a
divisor of A. If we set div(Il) + div(Iz) = div(IIIZ), then

D(A) 1is a semigroup. D(A) 1is a group if and only 1if A 1is

completely integrally closed, If A 1is a Krull ring, then A
is completely integrally closed. We set D(A)/{ div (x); 0 #

x € K } = C(A), and is called the semigroup of divisor classes
of A.

Proposition 4. Suppose that S 1s a group G and
A[X;G] 1s a Krull ring. Then we have C(A[X;G]) = C(A)
canonically.

Set q(A) = K. Prop. 4 1s proved by Nagata's Theorem
([13]) and by the fact that K[X;G] 1s a UFD.

Serre's Conjecture([(1l8]). Let k be a field. Then each
finitely generated projective module over k[xl,..., xn] is

free.

This has been solved affirmatively by D. Quillen({15]) and
A. Suslin([19]). Relating to the conjecture we have

Proposition 5([l, Anderson]). Let A be a Krull subring
of k[xl, x2] generated by monomials. Then each projective

module over A 1is free.

The statement of [l] is seemingly different from Prop. 5.
But they are essentially the same. Subrings of k[xl,..., Xn]

generated by monomials has been studied besides by various

authors; for example [10].
Problem( Murthy). Let A be a Krull subring of k[Xl,...,

xn] generated by monomials, Calculate C(A) explicitly.
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e e
Let { xli(l) .”xni(n); 1 €1 } be the set of monomials

of k[X xn] which generates A. Then {(ei(l)”"’

120
n

ei(n)); i} generates a subsemigroup S of ZO' And A is

the semigroup ring k[X;S] of S over k.

Anderson([2])) and Chouinard([3]) solved the above problem
by studying,so to speak)'the Krull ring theory of a semigroup S".
They also solved a Fossum's problem (which will be mentioned
later). Their Krull ring theory of semigroups is as follows.

Let G be the quotient group of S. A non-empty subset I
of G 1s called a fractional ideal of S 1if (1) § + I C 1I
and (2) s +I £ S for some s € S. Let F(S) be the set of
fractional ideals of S. We set S:(S:I) = I' for each I €
F(S), where §S: I denotes {o{ €6; o0+ I C S} . If I‘l’ = I;

1 2
equivalence class containing I is denoted by div(I). D(S)

for Iié F(S), we set I, ~-I_., We set F(S)/~ = D(S). The

is an additive semigroup. Then D(S) is a group if and only
if § 1is completely integrally closed. If each element o ]
G belongs to S whenever there exists s &€ § such that

s +nd € S for each n &€ N, then S 1is called completely
integrally closed. We set D(S)/ {'div (0); « € G} = C(S).
€C(S) 1is called the semigroup of divisor classes. Next, an
additive homomorphism v of G into Z 1is called a discrete
valuation of G. And the subsemigroup {o( € G; v(ax)Z 0 }
of G 1is called a DVS (i.e. discrete valuation semigroup). 1If
there exists a family { Vi A€ /\} of DVS's such that

(1) s=/ Vv, , and (2) each s €S isa unit of V, for

almost all A , then § 1is called a Krull semigroup. If S
is a Krull semigroup, then S 1is completely integrally closed.
For example, let F = %A Ze, be a free abelian group

A
with a basis {e,\ ; 1} . Set ? Zoe7L = F+. Then F+ is a
Krull semigroup. In fact the projection mapping pr, F —>

Z 1is a discrete valuation of F. And F+ is a Krull semi-
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group under the family { PT, 3 A } of discrete valuations.

Theorem 6. (1) A([X;S] 4is a Krull ring if and only if A
is a Krull ring, S is a Krull semigroup and q(S) satisfies
a.c.c.c.

(2) Assume that A[X;S] 4is a Krull ring. Then we have
c(AlS]) = c(a) @ c(s) canonically.

Proof. Set q(A) = K and q(S) = G. (1) The sufficiency.
Let { LA } be the family of discrete valuations

of q(A[X;G]) wunder which A[X;G] is a Krull ring. Let
{ v, 5 AaeA } be the family of discrete valuations of G

under which S 1is a Krull semigroup. If we set v;(j:_asxs) =
*
igf va (s), then v, 1s a discrete valuation of q(A[X;S]).

Then A[X;S]

*
(VL is called the natural extension of vy .)

_ *
is a Krull ring under { Voo Yy b 0’.A_} . (2) We have

canonical homomorphisms : C(A)—> Cc(A[S])—> c(K[s)]).

We may consider an analogy: A<> S and Ke&—> G. Then we have
a canonical isomorphism: C(K[S]) = C(S) analogously to Prop.
4. Moreover, there exist canonical homomorphisms: C(S) —>
c(A[S]) —> c(A[G)) corresponding to the sequence C(A) —>
C(A[S])—> C(K[S]). The proof is complete.

Proposition 7. Let S be a Krull semigroup only unit of
which is 0. Set q(S) = G. Then S 1is embedded in a free

abelian group F = ;?A Ze, such that (1) G f\F+ a § (F+

denotes % Zge ), (2) each projection pr : G—>2Z 1is a

A

surjection, (3) 1if A ¥ A', we have PT, (s) =0 <:prx (s)
for some 8 &€ S. Moreover, if a free abelian group F
satisfies these conditions, then C(S) 1s canonically 1iso-

morphic with F/G.
Proof. 1In fact, let { P, ;A.e/\} be the set of minimal

prime ideals of S. Then D(S) 1is a free abelian group F
with a basis { div (P, ); A } as the case of rings. We may
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identify o € G with div (X ). Moreover we have C(S) = F/G
for this F by the definition of C(S).
Each Krull semigroup S 1s of the form H & Sl’ where H

is a group and only units of S1 is 0. In fact, let { \SU
r e /\} be a family of discrete valuations of G under which
S 1s a Krull semigroup. Let F = ? Ze, be a free abelian
group with basis { e, 1} . Set ¢ (x) = 37 v (o )eA

for each o & G. Then ¢ is a homomorphism of G into F,
and induces the decomposition CT¥He® ¢(G).

Example 8([16, Samuel])). Let k be a field of character-
istic p. A

(1) Assume that n is a natural number such that (p, n)
=1 41f p > 0, and assume that k contains a primitive n-th
root of 1. Then c(k[x“, XY, Y?)) ¥ z2/n2;

(2) Assume that p > 0, then C(k[XP, Xy, YP)]) T z/pz.

The cohomology of finite groups is used for the proof, (1)
relies on Galois descent. (2) relies on a radical descent of a
derivation and its logarithmic derivative.

Assume that the characteristic p > 0 and n 4is a power of
p. Then W, Waterhouse([20]) wused the cohomology theory of
Hopf algebras to prove C(k[Xn, XY, 1) T z/nz.

But, if we use Th.6 and Prop. 7, simple calculations show
the following,

Example 9. Let A be a Krull ring. Then we have C(A[Xn,
XY, Y®1) ¥ c(A) ® z/nZ.

Proof. Set (1, 0) = e (0, 1) = ey Z2e, + Ze, = F and

1’ 1 2
nZoe1 + Zo(e1 + e2) + nZoe2 = S, Let q(S) = G. We have G =
nZe1 + Z(e1 + ez) and G f\F+ = §. Then we have C(S) = F/¢ =
Z/nZ by Prop. 7. We have C(A[X;S]) T c(a) @ z/n2 by Th.6.

Fossum's Problem. Is every abelian group H is isomorphic

with the divisor class group C(R) of a quasi-local Krull ring
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R?
L. Claborn([5]) proved that every abelian group is iso-
morphic with the divisor class group of a Krull ring.

To solve the problem, set 2/2Z ® H= /\. Let F be a
free abelian group with a basis { (e .h)} (€ ,h)e A } . If
E]

we set ¢(e(£ ,h)) = h, then ¢ is a homomorphism of F
onto H. We set Ker( $ )N F_ = S. Then we see q(S) = Ker(ﬁ).

We have C(S) ¥ F/Rer( § ) T H by Prop. 7. Let k be a field
and let k[X;S] = A. We set {}:nA e, € S; Zn, = n} = s_

8.
and {Zasx ; 5 € Sn} A for each n € 2,; A4 = k.
Then A 1is a graded Krull ring : A =n%0 A If we set n%lAn

= M, then we have C(AM) = c(A) by [17, Prop. 7. 4]. It
follows C(Ay) = c(k[X;81) = H.

Chouinard([4]) proved that if S 1is a Krull semigroup
with C€(S) torsion, then each finitely generated projective

module over k[X;S] 1is free.

3. Kronecker function rings of semigroups. Details of
this section appear on [12]. Let K be the quotient field of
an integral domain A, A mapping I+=> I* of F(A) 1into
F(A) 1s called a *-operation on A 1if the following conditions
hold for each x € K =~ {0} and all I, J in F(A): (1)
(x)* = (x); (xI)* = xI*; (2) I L I*; 41f 1< J, then I*
J*; (3) (I*)* = I*, For example the mapping I+> I V' in
Section 2 1is a *-operation. If (IJ)* C;(IK)* implies J*
< K* for each finitely generated I, J, K of F(A), then *
is called an e.a.b. *-operation. For an e.a.b. *-operation *
ve set  { f/g; £, g € AlXx] - {0} , c(B)'c ('} U {0}
= A, ; where c(f) denotes the ideal of A generated by the

coefficients of f. Then A, 1is a subring of gq(A[X]), and is

called the Kronecker function ring of A with respect to *.

The ring A, has various interesting properties,
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We found that we are able to define Kronecker function
rings of semigroups and that the analogous results with those
for Kronecker function rings of integral domains hold for
Kronecker function rings of semigroups.

First, a mapping I H-?I* of F(S) 1into F(S) 1s called
a *-operation on S 1if the following conditions hold for each
& &€ G and all I, J of F(S): (1) ()" = (x); (x+ D" =
« +1% (2 1<1’; 1f 1cCI, then T 1™y (3 1N =
I*. We define an e.a.b. *-operation on S similarly. Let k
be a field. For an e.a.b. *-operation * on S we set

{ t/e: £, ge kix;s] - {0} , e’ e} U {0} = 8§ ;

where e(f) denotes the ideal of S generated by the exponents
appearing in f. We call St the Kronecker function ring of §

*

with respect to *(and k). We set { I ; I 1is a finitely
* *

generated fractional ideal of § } = Df(S). If Df(S) is a

group under the natural addition, we call S a Prufer *-
*
multiplication semigroup. We set { f € k[X;S]; e(f) =S }
* *
=U. U is a multiplicative subset of k[X;S]. We have

s Ck[X;s8] k[x;s]u* rall SE. The following result is one of

semigroup versions of results on Kronecker function rings of

integral domains.

Theorem 10, Let * be an e.a.,b., *-operation on S, and k
a field. Then the following conditions are equivalent:

(1) s 1is a Prufer *-multiplication semigroup;

(2) k[X;S1y, = Sy

(3) k[X;S]U* is a Prufer ring;

(4) SE is a quotient ring of k[X;S];

(5) Each prime ideal of k[X;S]U* is the contraction of a
prime ideal of S: H

(6) Each prime ideal of k[X;S]U* is the extension of a

prime ideal of S;
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(7) Each valuation ring of q(Sk) containing S& is the

natural extension of an essential valuation semigroup of §S;
k

(8) s, is a flat k[X;S]-module.

An additive homomorphism v of q(S) into a totally
ordered abelian group is called a valuation of q(S). If we set
* x
v (E:;asxs) = igf v(s), then v is a valuation of q(k[X;S])

(which 13 called the natural extension of v). On [11] we
stated that conditioms (1), (2), (3), (4), (7) and (8) of
Th. are equivalent, and posed a question if 8 conditions of

Th., are equivalent or not.
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

ON LOEWY SERIES OF GROUP ALGEBRAS OF SOME SOLVABLE GROUPS

Kaoru MOTOSE

Loewy series of projective indecomposable modules of group
algebras of some solvable groups have been studied by several
authors (see [1,2,4,5,6]). The purpose of this paper is to
calculate Loewy series of projective indecomposable modules of
the following group G (see [3]).

Let p be a fixed prime, let X ={ 0,1, ... , p~- 11,

let F be a finite field of order qp where q = pr and let

a be an element in F of order h = (aP - 1)/(q - 1). We
consider the permutation group G on F such that

8
G={x+p8x% +y | Bec<a>, yeF, seX}

and the group algebra KG of G over a field K containing F.
For integers s and t, we define s v t 1if and only if

s = tqk mod h for some k € X. Since the subgroup { x -+ qus
| 8 £ <a>, s € X} 1s a Frobenius group and the full set of
irreducible K<a>-modules is equal to the set A = { 0,1, ... ,
h-11, the set A~ of representativés of classes with respect
to the equivalence relation ~ in A 1is Just equal to the set
of irreducible KG-modules and of these projective covers.

The final version of this paper will be submitted for publication elsewhere.
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(k) € B

For seB=1{0,1, ... , 9 =11}, let s such

that s(k) H sqk mod qp - 1. Set s = 10 + 11p + ... +
- rp-1
i 1P and t = JO + le + ... + ] P

€ X for all k. Then we define

1p where 1k’ Jk

rp-

s+t 1if 1k + Jk < p for all k
s #t = {

0 otherwlse

and s* = JyPol g .

In the remainder of this paper, we shall fix the numberes
m and n such that me A~ and 0 <n < (rp +1)(p - 1). Ve
shall use some notatlons for our main theorem.

C={jeB| Jj=-m mod h}.
Tyy = (1 # 3,1 # J(l), e 5 108 J(p—l) ) for 1 € B and
J eC.

(=
|

= { Ty | 1# + j* = t and all T,y are distinct } where

{seB| s¥=t} where 0 <t < rp(p-1).

E
H={s+m|seB,s*=n,s#1#]J forall T,, €D, }.

iJ
I={s+m)|seB, s* =n,s=1#]J for some Tij e D
and TiJ has no zero components }.
Je = (1] Tyy € Dpy and Tyy has at most k zero

components } where 0 < k < p and k < n.

Let aiq, bs> Cg and dks be the numbers of elements in

the classes of s € A~ 1in the sets E¢, Hy, I and Jy,
respectively. We replace ai0> bs’ ¢y and deg by Pagg, Pbg,
p¢y and pdp,, respectively. Of course these numbers may be
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often zero. Let 8y be the multiplicities of irreducible
components Ms (s € A”) of the Loewy factor Nan/Nn"'lPm of

the projective indecomposable module Pm where N 1s the
radical of KG.

We can now state our main theorem which contains [1, p.214
» 15.10 Examples] and [4, Theorem] (see also [6, p.65, (4.3)
Bemerkungen]).

1]

Theorem. 1In case m = 0, g4
0<n-k<rp(p-1).
In case m# 0, g, = (bg + cg Zk 1 dys)/P-

(Zk 0 2n-kx g)/P where

-+

In virtue of this theorem and a computer, we can calculate
Loewy series of projective indecomposable KG-modules. This
theorem has been proved by using Jacobl sums and a nice basis of
the radical of KXG. We shall have the analogous results on the
group obtained by replacing <a> by a subgroup of F*
containing <a> (see [5]).
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

EMBEDDING THE FRAME OF TORSION THEORIES IN A
LARGER CONTEXT--SOME CONSTRUCTIONS

Jonathan S. GOLAN

0, Introduction. One of major means of studying the structure of the ring R is to
make use of the set of all ideals of R. This set has the order structure of a complete
modular lattice and also a related algebraic structure of a semiring. The corresponding
means for studying the structure of the category R-mod of left modules over R is to
make use of the frame (= complete brouwerian lattice)] R-tors of all torsion theoriss on
R-mod. This lattice does not have a corresponding semiring structure but, as we will
show, can be embedded in a canonical way into the set of idempotent slements of at least
two different semirings, each of which can be used to provide information on the structure
of R-mod. In what follows, all rings R are associalive with multiplicative identity and
all modules are unilal. Notalion and terminology concerning torsion theories will always
follow [Golan, 1986].

1, Torsion theories and linear topologies. One method of embedding R-tors in a
semiring has been discussed in detail in [Golan, 1987). A topology on R which turns R
into a topological ring is uniquely determined by the family of neighborhoods of 0 in it.
Such a topology is /inear if this family of neighborhoods of 0 has a base consisting of
left ideals of R. The family & of all left ideals which are neighborhoods of 0 in a

given linear topology satisfies the following three conditions:

An expanded version of this paper will appear elsewhers.
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(1) If I €x then any left ideal of R containing I slso belongs to «x;

2 f LHEK then INH Ex;

(3) If I€Ex andif r€R then (Lr) Ex.

Conversely, any family K of left ideals of R satisfying these three conditions is a

base for the family of neighborhoods of 0 in a linear topology of R. Such a family is
called a (fopologizing) filter of left ideals of R. We will denote the set of all
topologising filter of left ideals of R by R-fil. If T is a lorsion theory on R-mod

then the set ¥y of all left ideals I of R such that R/I is T-lorsion is a
topologising Filter of left ideals which, in fact, uniquely determines 7. Thus the map T
+ ¥y defines an embedding of R-tors into R-fil.

The set R-fil has the structure of a complete lattice the meet in which is defined
by intersection. The unique minimal element of R-fii is B[R] = (R} and the unique

maximal element of R-fil is the set 7[0] of all left ideals of R. This latlice is not

distributive in general, as has been pointed out by Katayama [1986] However, it does
have other nice properties. See [Golan, 1987] for delails. More importantly, there is
another operation on R-fil with which we can work, namely that of multiplication,
Following [Gabriel, 1962), we define the product £K' of fillers £ and &' to be the set

of all left ideals I of R salisfying the condition that there exists a left ideal H of «'
such that 1 C H; and (Ia) €Ex for all a in H. This operation is associative but is
not, in general, commutative, The filter 7{R] acts as a multiplicative identity while the
filter 7){0] acts ss a sero—element: K7{0] = }{0] = N{0)c for sll & in R-fi. No

nontrivial element of R-fil has a multiplicative inverse,
Multiplication distributes over intersection differently on the left and on the right. If
K€ R-fil andif Y is a nonempty subset of R-fil then K(NY) = N{xx’'| X' € Y}

snd (NYlk CN{x'c | £ € Y}, with equality holding when Y is finite (and in certain
infinite cases as well). In particular, this shows us that (R-fil, N, -) has the struoture

of a semiring with zero element. Semirings were first studied implicitly by Dedekind and
explicitly by Vandiver [1934} they are described in detail in [Almeida Costa, 1963; 1974].
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They have in recent years been used considerably in automata theory, optimisation, and
theoretical computer science and so the interest in them has revived.

How does the image of R-tors fit into this structure? If & is an arbitrary
element of R-fil then &?2 K. Such a filter is idempotent if and only if &? = k.
As Gabriel already noted, the idempotent elements of R-fil are precisely those which
come from R-tors under the above—mentioned embedding. Thus we see that the frame
R-tors can be considered as the set of idempotent elements of the semiring R-fil. This
set is not, in general, closed under multiplication in R-fil and, indeed, the product of
two idempotent filters is again idempotent if and only if they commute. If K€ R-fil

then there is a unique minimal idempotent filter £* containing «. This is the unique
minimal solution of the equation X = £X and of the equation X = Xk in R-fil
The map & = K* is a closure operator on R-fil satisfying (&N &'} = x* N&™* for
all x and XK' in R-fil. Such a closure operator on a lattice is called a nuc/eus or a

modal operator. In [Fuchs, 1963] such operators are called /inear c/osure operators.

2 Nuoclei on R-tors. We now turn to a different way of embedding the frame
R-tors into a larger structure, which was developed by Simmons in a series of papers
{1978, 1980, 1982, 1986a, 1986b, 1986c, 1986d], building on work of Beaszer and Macnab
[1979] and Isbell [1972, 1975]. Their work was done for arbitrary frames, but here we will
concentrate on the special case of the frame R-tors.

As defined above, a nucleus on R-~lors is a closure operator f:R-tors < R-tors

satisfying the additional condition that f(T A 0) = f(T) A f(0). Let us denote the set of

all nuclei on R-tors by IN(R-tors). We note several examples of such operators:

(A) It T€ R-tors let P(T) be the set of all prime torsion theories greater than or
equal to 7. Then the map T+~ AP{T) is a nucleus on R~tors. More generally, if
M is a left R-module and if pinve(M) is the set of T-pseudoinvariants of M

relative to a torsion theory 7 then the map py:T » Apinvy(M) is a nucleus on
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R-tors for each left R—module M.

(B) A left R-module M is decisive if and only if, for each torsion theory T on
R-mod, M is either T-torsion or T-torsionfree. Each such module M defines a
nucleus qy on R-tors defined by qu{T) = x if M is T-torsion and qu{T) = X(M)

if M is T-torsionfree. If M is simple then qy = pu.

(C) An arbitrary torsion theory T on R-tors defines three nuclei in N(R-tors):
(1) wyorovT;
(2) vyo+(0:.T), and

(8) wrior(T{T:0)).

In particular, wg:om 0t is a nucleus on R-tors.

If U is a set of nuclei on R-tors then the function AU:o » A{f(c)|f € U} is
again a nucleus on R-tors. Thus N(R-tors) has the structure of a complete lattice, in
which f =g if and only if f(7) £ g{7) for all T in R-tors. Indeed, N(R-tors) is a
frame in which, for nuclei f and g, (gf) = A{vyrjgur | T € R-tors}. The map T+ uy

is a natural embedding of R-tors into IN(R-tors) in the category of frames, It is an
isomorphism precisely when IN(R-tors) is boolean,

8. Derivatives and filtrations on R-tors. A derivative on R-tors is a function

d from R-tors to itself satisfying the following conditions:

(1) T=d(T) forall T in R-tors;

@ If o=T in R-tors then d{o) = d(T).

Thus, for example, any nucleus on R-tors is a derivative. Many of the most important
examples of derivatives are not, however, nuclei. For example:
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(A) We have the well-known Gaérie/ derivative on R-tors defined by d(T) = TVv
[v(é(M) | M is T-cooritical})] This is the same as V{§(M) | M is T-artinian}. A
related derivative on R-tors is given by dn(T) = V{¢(M) | M is T-noetherian}.

(B) If T£0 in R-tors then we write T << 0 if and only if 0 A0’ > T whenever
o' >T in R-tors. The Cantor-Bendisson-Simmons derivative on R-tors is
defined by dy, = A{(0 | T << ). Note that it is not necessarily the case that T <<

d(7) for all torsion theories 7.

(C) The Boyle derivative on R-tors is defined by dy(T) = Tv [V(EM) | M is
T-full}}, where a left R~module M is T-/u// if and only if it is T—torsionfree and a

submodule of M is T-densein M when and only when it is large there,

(D) The socle derivative on R-tors is defined by d(7) = Tv{(0 € R-tors | 0 is

an atom over T}.

(B) The _sansian hull derivative on R-lors is defined by djy(T) = A0 2T |0
jansian}. Similarly, the stable Aull derivative is defined by dy(T) = AM{C 2T | O

stable}. Note that both of these functions are closure operators on R-tors, but do not,

in general, satisfy the linearity condition.

Derivatives can be transfinitely iterated. If d is a derivative on R-tors and if i
is an ordinal then we define the derivaltive d' inductively as follows:
W dem) ="
(2) If i>0 is not a limit ordinal then dY(7) = d(d""'(7));
(3) If i>0 is a limit ordinal then di(7T)= v{d®(7) | h <i}.
The transfinite ascending chain 7 < d(T) £ d*(7) £ _ is called the fi/¢ration of the

torsion theory T with respect to the given derivative. There must be a least ordinal i
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such that di(‘r) = d¥7) for all k 2 i This ordinal i is called the d-/ength of T.

Since R-tors is a set, there is a least ordinal h greater than or equal to the d-length

of every torsion theory. We denote the derivative d® by d.

Let D(R-tors) be the set of all derivatives on R-tors. If W is a nonempty
subset of D(R-tors) then we set AW be the function T+ A{d(T) | d € W}. This is
again a derivative on R-tors and so D(R-tors) is a complete lattice, containing
N(R-tors) as a subset (but not a sublattice since the joins are different). In particular,
D(R-tors) is a partially—ordered set.

Simmons and I have spent considerable time looking at the structure of the lattice
D{R-tors). For example, it is always true that do, = dy 2 d; and that df° 2 d, 2 d,.

If R is a left semistable ring (ie, if every indecomposable injective left R~module is
deoisive),,,then d,2d;. If R is left semistable and left seminoetherian then d, = d; =

dy = dop. One of Simmons' msjor results is that dg = d¢> A dep, from which we can
conclude that d; = dy A dgp.

The main use of derivatives is for defining dimension functions on R-mod. Indeed,
if d € DR-tors) and if T € R-tors then a left R-module M is said to have
(Td)-dimension i if and only if M is di{T)-torsion but not d“(T)-torsion for all h
< i. Such dimension functions are studied in detail in [Golan, 1977], and we will go into

them no further here, except to note thal every ‘“reasonable” notion of dimension in

module calegories seems to indeed arise in this manner.

4, Prenuclei on R-tors. If d is a derivative on R-tors satisfying the condition
that d(T A o) = d(T) A d(o) for all torsion theories T and o then d is not

necessarily a nucleus, since it still may not be a closure operator. We will call such
derivatives prenuc/ei on R-—tors, and denote the set of all prenuclei on R-tors by
P(R-tors). This is a subset of D{R-tors) containing N(R-tors} which is closed under
taking arbitrary meels and, more importantly, closed under composition as well. The
derivatives d), d;, and d, are all prenuclei. The Cantor-Bendixson derivative is not,
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nor are the derivatives dj, and dy,.

Since P{R-tors) is closed under composition, it is easily verified that P(R-tors)
is a semiring, addition in which is A and multiplication in which is composition. This

semiring has a gero element as well, namely the prenucleus d; defined by dy 7+~ x for
all 7 in R-tors. The nuclei on R-tors are precisely the idempotent elements of this
semiring. Moreover, as we have already seen, there is a canonical embedding T+~ uy

of R-tors into P(R-tors) This map can be extended to a map from R-fil to
P(R-tors) in the following manner: for each & € R-fil, let ug be the map from

R-tors to itself given by ue:T+ (K7T)*. (Here we are identifying R-tors with the set
of all idempotent elements of R-filll If T € R~tors then TCxT C (kT)* in R-fil
by Proposition 36 of [Golan, 1987] and so T £ u (7). Moreover,if TS0 in R-tors
then &7 C &0 in R-fil by Corollary 314 of [Golan, 1987] and so ux(T) £ uk(o).
Therefore ug € D(R-tors). Finally, if o, T € R-tors then [x(ocNT)}* = (ko NKT)*
= (ko}* N (kT)* in R-fil by Propositions 313 and 520 of [Golan, 1987] and so u{o
AT) = u{0) A u(T), showing that u, € P(R-tors).

If x and X' are elements of R-fil and if T € R—tors then, by Propositions
313 and 520 of [Golan, 1987] we have [(£x N K)T]* = (kT N KT = (KT)* N (K'T}*
and 80 (Uene)(T) = ue(T) A ue{T). This shows that ugne = ux A ue in P(R-tors).
Moreover, by Propositions 39 and 525 of [Golan, 1987] we have [(kx')T]* = [&(K'T)]* =
[e('T)*]* = [KuedT)]* = ugue{T) and 50 uge = ucux in P{R-tors), Finally, it is
clear that wuy = d,, and so we have shown that the function &+ uy is a

homomorphism in the category of semirings with zero element. It is not monic, however,
since, by Corollary 5.24 of [Golan, 1987], we have ug(T) = uxs(T) for all torsion theories

T on R-mod and so ug = uxs. Indeed, the kernel of this homomorphism is precisely

{x € R-fil | £* = x).
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

ALMOST M-PROJECTIVES AND NAKAYAMA RINGS

Anri TOZAKI

Throughout this note, R is a ring with identity, and J is
the Jacobson radical of R. Further we assume that every module
is a unitary right R-module. Consider the following condition
(Dl) on a module M which is in Oshiro's definition of quasi-

semiperfect modules [3].

(Dl) For any submodule N of M, there exists a

decomposition M = M.e M2 such that M., ( N, and N n M

1 1 = 2 is

small in M2.

Note that if a module M satisfies (Dl), then so does every
direct summand of M. Further a module is indecomposable and
satisfies (Dl) if and only if M is hollow. Hence if a module
satisfying (Dl) has an indecomposable decomposition, then it is
decomposed as a direct sum of hollow modules. On the other hand
as shown by Oshiro, every quasi-semiperfect module is decomposed
as a direct sum of hollow modules. Therefore we consider (Dl)
for a direct sum of hollow modules. In particular, we deal with

a finite direct sum of hollow modules which are LE(= with local
n
endomorphism ring). Then for such a module M = @ Mi with
i=1
each Mi hollow and LE, (Dl) is equivalent both to (Dl') and to
(1—D1) stated below which are more useful to treat than (Dl)'

The final version of this note has been submitted for
publication elsewhere.
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(Dl'): If N é M, and nj(N)= Mj for some j (1 < J < n)
where nj is the canonical projection from M to Mj’ then
there exists some direct summand N1 (# 0) of M with Nl £ N.
We remark that the validity of (Dl') does not depend on the

choice of a hollow and LE decomposition.

(l-Dl): For every non-small submodule N of M, there

(# 0) of M with M < N.

exists some direct summand M 1

1
Note that for an infinite direct sum of hollow modules, (1—D1)
(or (Dl')) does not imply (Dl) in general. We can characterize
the condition (Dl) by a new concept of "an almost M-projective

module"” (which is a homomorphic notion).

Definition. Let M and M' be modules. We say that M is
almost M'-projective in case given a diagram below, either (i)
or (ii) holds.

M2 H— 0 (exact)

Ih

(i) There exists some HK: M — M' such that ¢RK = h.
(ii) There exists some direct summand Mo‘ (2 0) of M
which is not contained in ker ¢ and some homomorphism h: M_.'

0
— M such that hh = ¢ .
lmy)

We usually make use of this definition when M' 1is a direct sum
of hollow and LE modules and M is an indecomposable module.

We remark that M is said to be M'-projective when (i) always
holds for any diagram above [l1]. This implies that an
M!'-projective module is an almost M'-projective module. The
condition (Dl) is related to the concept of an almost
M-projective module as follows.
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Theorem 1. Assume that each Mi (1 $ig¢n)is a hollow and

LE module. Then the following are equivalent.
n
(1) M= e Mi satisfies the condition (Dl').
i=1
(2) For each i (1 $1ig¢n), Mi is almost jgiMJ-proaect1ve.

Now we study the almost M-projectivity. As for the M-
projectivity, the following holds: if M is both Ml— and Mz-
projective, then M is (Mle Mz)-projective [1). Does the
gsimilar assertion hold as to the almost M-projectivity? The
almost M-projectivity is difficult to examine in general even
for a hollow module. 8So we study this property for a uniserial
module of finite length to get the following result.

Proposition 2. Let e be a primitive idempotent with eiR
a uniserial module, and Mim eiR/Ai be of finite length with
Ai 4 eiR for each i (1 < i < n). Then the following are

equivalent.
(1) Ml is almost Mj—projective for all j (2 $J ¢ n).
n
(2) Ml is almost @ Mj—projective.
Jj=2

Over a semiperfect ring R, the following result about the
M-projectivity is known: Ml is M,-projective for any two hollow
R-modules M

we examine what condition on a ring is necessary and sufficient

2
1 and MZ if and only if R 1is semisimple. Here

for the corresponding assertion about the almost projectivity to
hold. As easily seen, if Ml (resp. Mz) is almost Mz— (resp.
Ml-) projective, then (Ml ) MZ) has the lifting property of
simple modules. In addition, Harada [2] has shown that if every
direct sum of two hollow modules satisfies this lifting
property, then any projective indecomposable module is
uniserial. Therefore one of the necessary condition required
above is that R is a right Nakayama ring. Thus the result for
uniserial modules (in Proposition 2) is not too special.

Consequently, we have an answer to the problem as follows.
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Theorem 3. Let R be a semiperfect ring. A necessary and
sufficient condition for any hollow module Ml to be almost
Mz—projective for any hollow module M2 is that R is a right

Nakayama ring with J2= 0. When this is the case, any hollow

n

module Ml is almost & Mi—projective for any finitely many
i=2

hollow modules M see M .

2 n
In Theorem 3, suppose that Ml/MlJ ~ MZ/MZJ' then we have
the following theorem.

Theorem 4. Suppose that a ring R is semiperfect. Then
the following four statements are equivalent.

(1) For each primitive idempotent‘ e in R, eR/A1 is
almost (eR/Az)-projective, where Al and A2 are any submodules
of eR.

(2) R 1is a right Nakayama ring. Further for each
primitive idempotent e in R, eR/eJ = edi/ed?*! (j 1) implies

that er+1= 0.

(3) R is a right Nakayama ring. Further for each
primitive idempotent e in R, eR/eJ is almost
{eR/A)-projective, where A is any submodule of eR.

({4) For each primitive idempotent e in R and for any
n
natural number n, eR/A1 is almost ( @ eR/Ai)-proJective, where

Ai are any submodule of eR. i=2

Suppose that R 1is a ring with the conditions in Theorem 4.
Then the socle Soc{(eR) of a projective indecomposable module
eR can be isomorphic to only one composition factor (= Soc(eR))
of eR.

n
We say that a submodule Y of a direct sum X = @ xi is
i=1
n
standard in case Y is described as Y = @ Yi for some
i=1

submodules Yi of xi (1 ¢ig n). Suppose that for a
primitive idempotent e in R, any submodule of eR ® eR is a
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standard submodule of some isomorphic decomposition of eR @ eR.
Then clearly eR satisfies the condition (A) defined in [4].
Further for hollow modules Mi (1 é i é n), assume that any

n
submodule of M = @ Mi is standard with respect to some

i=]l
decomposition isomorphic to the given one. Then an easy

consideration shows that M satisfies the condition (Dl).
These facts are included in the following theorem.

Theorem 5. Let R be a semiperfect ring. Then the
following statements are equivalent.

(1) For each primitive idempotent e in R, the following
holds : any submodule of eR/Ale eR/A2 (Al and A2 are any
submodules of eR) is standard with respect to some isomorphic
decomposition of eR/Als eR/AZ.

(1') For each primitive idempotent e in R and any
natural number, the following holds : any submodule of
i:l(eR/Ai) (each Ai is any submodule of eR) is standard with

n
respect to some isomorphic decomposition of ) (eR/Ai).
i=1
(2)(i) For each primitive idempotent e in R, eR/A1 ®

eR/A2 satisfies the condition (Dl) for any submodules Ai (i =
1, 2).

(ii) For each primitive idempotent e in R, any
submodule of eR ® eR is standard with respect to some
isomorphic decomposition of eR ® eR.

(2')(i) = (2)(i).

(ii) For each primitive idempotent e in R and any
natural number n, any submodule of eR(n) is standard with
respect to some isomorphic decomposition of eR(n).

(3)(i)=(2) (i)

(ii) For each primitive idempotent e in R, the
following holds. Suppose that L and K be submodules of eR
with eR 2 L>K. Any automorphism h of L/K is extended

-1

and lifted to some endomorphism of eR (or h "is extended and
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lifted to some endomorphism of eR).
(4)(i)=(2) (1)
(ii) If a module satisfies that M/MJ = (eR/eJ)n for

some primitive idempotent e and some natural number n, then
n
Max @

(eR/Bi) for some submodules Bi of eR.
i=1

Remark. By Theorem 1, the condition (2){(i) in Theorem 5 is
equivalent to each of the conditions in Theorem 4 in particular
to Theorem 4(2) which is useful to verify.

Theorem 6. Assume that R is a finite dimensional algebra
over a field k. In case .R satisfies the condition (2)(i) in
Theorem 5, the following two conditions are necessary and
sufficient for R to satisfy the condition (2)(ii).

(1) If primitive idempotents e and f in R satisfy
eJf # 0, then we have [eRe : k] = [fRf : k], where eRe =
eRe/elde.

(2) If a primitive idempotent e satisfies that ed? =
Soc(eR) = eJi/eJ;+1 for some i # n, then 1 = 0.

Remark., When R 1is a finite dimensional algebra, Remark
and Theorem above show that each of the conditions in Theorem §
holds if and only if Theorem 4(2) and Theorem 6(1),(2) hold.
Note that the latter is useful to verify, and that the second
half of Theorem 4(2) and the condition Theorem 6(2) are

symmetric in a sense.

Example 1. Let R be an algebra defined by the following
quiver with a relation:

1—“*205. 82 0.

Then R satisfies the condition (2)(i) in Theorem 5§, but not

the condition (2)(ii) in Theorem 5 because Soc(ela) ~ eznlezJ x

2 2
elJ/elJ and elJ = 0.
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Example 2. Let R be an algebra defined by the following
quiver with relations:

1— 2. '3 y all paths of length 3 are zero.

P —
Then R satisfies both the condition (2)(i) and (2)(ii) in

Theorem 5.
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

ENVELOPING ALGEBRAS

Fujio KUBO

l.Introduction. There are many vorks on the enveloping alge-
bras of Lie algebras.Some of them are concerned vith the represen-
tations of semisimple Lie algebras,the ring theoretic structures
on the enveloping algebras. These vorks are found in.the Dixnmier’s
book[7],the Borho’s article[B] and other many books. In this talk
ve present the other works,which are on the Poisson Lie structures

and the finiteness conditions on the enveloping algebras,given by
Anayo[2],Bakhturin[4],Kubo & Miourall10].

2. A Lie structure on S(6),5 *(S(G)). Let G be a Lie algebra
over a field k of characteristic zero with a basis {x;,**,%xa}. Let
U(G) be the universal enveloping algebra of G,U,(G) the vector
space spanned by products y,*y,,vhere y;, ,y-.€ G and pSn. Let
S(G) be the syometric algebra of the vector space G and S$S"(G) the
set of elements of S(G) which are homogeneous of degree n. The

Poisson Lie structure on S(G) is given by

[f,e1=2 . s[xisx:13f/0x:28/8 x5 (f,gES(G)).

This Lie structure is the same as one on S(G) given ,by use of the

Author is partially supported by Grant-in-Aid for Encouragement of
Young Scientist of Ministry of Education of Japan.
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Lie structure on U(G),as follows ([7;p97]): Let = . be a canonical
map of Un(G) onto S"(G). Let pES™(G) and qES"(G),and take the
elements p” €U.(G) and 9" € U, (G) such that = .(p")=p, = n(qa”)=q.
Then the Lie product of p and q is given by

% a.n-1([P",97]).

The concept of this Lie structure is extended to that of the
Lie structure on some copnutative associative algebras ([10]). Ve
here present one of the results in [10] about the localization of
Lie algebras.

Let A be a comnutative associative algebra over k vith an
identity 1. Assume that A is integral and has a Lie structure
vhose product [,] satisfies the condition [ab,c]=[a,c]b+a[b,c]
(a,b,cE€A). Consider A as an associative algebra,take a multipli-
catively closed subset S of A containing l,and denote the locali-
zation of A by S-'A. Then ve can extend the Lie structure on A
to S-'A as follows.

THEOREM. Let A,S be given above, Then the localization S-'4

is a Lie algebra with the product

[f/s,e/t)1=([f,glst+[g,s]1ft+[s,t]fg+[t,f]lgs)/s2t2

(f,g€A,s,tES).

EXAHPLE. Let A be the polynomial algebra k[xi,- ,xn] and [,]
the Poisson Lie product given above. Let S be the set of all mono-
mials of A. Then ve can construct a Lie algebra $S-'A. This Lie al-
gebra is the same as the Poisson Lie algebra k<x,,: ,x,?> of the

Laurent polynomial algebras.

3. Finiteness conditions on U(G). Let G be a Lie algebra over
a field k of characteristic zero and U(G) the universal enveloping
algebra of G. In this section ,according to Amayo[l] and Bakhturin
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[4], wve present the properties of Lie algebras G such that U(G) is
finitely generated over a finitely generated polynomial algebra in
the centre of U(G),and such that U(G) satisfies the polynomial
identity,.

We first state some examples and results which are used in
proving the theorems given later,and found in Apmayo & Stewart[3]
and Herstein[8].

EXAMPLE 1. Let A=<x,y> with [x,y]=x be the 2-dinmensional non-
abelian Lie algebra over k. Then the centre Z(U(A)) of U(A) is k.
Let H be the polynomial algebra k[t] and regard M as an A-module
by f(t)x=tf(t),f(t)y=f(t+l) for each f(t)EH.Then M is an infinite

-dimensional simple A-module.

EXAMPLE 2. Let M{(n) be the polynomial algebra k[t.,:,ta.] and
let the Heisenberg Lie algebra B{(n)=<xy,* yXn,¥1,"" »¥njz> act on
H(n) by fxi=t.f, fy.=d f/9 ts, fz=f,for each f=f(t,,,t.)EN(n).
Then H(n) is an infinite-dimensional simple B(n)-module.

LEMMA A ([3;pp.225-232]).Every simple module of a Curtis al-
gebra is finite-dinensional (The definition of the Curtis algebras

is given later).

LEMMA B ([8;Chap.6]). Let R be a primitive algebra over k
satisfying an identity of degree d. Then dimz(a)RS[d/2])2, vhere
Z(R) is the centre of R.

3-1. Chain conditions on U(G). Let us first recall the defi-
nitions of several classes of Lie algebras over k.

GE Max-cu ; There exists a finitely generated polynomial sub-
ring R of the centre of U(G) such that U(G) is finitely generated
R-module.

GE Max-u 3 U(G) is right noetherian,

GE Max ; Every subalgebra of G is finitely generated.

GEA ; G is an abelian Lie algebra.
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GEF ; G is a finite~-dimensional Lie algebra.

Then we have the following inclusions among these classes.

Max-cu Max-u Hax
{c)

Ucer Uer U

FN A < F = F

It has been shown that the inclusion (a) is strict in Amayo[l] and
Kubo[9]. Let G=<w(i);iE N> be the Witt algebra whose Lie product
is given by [w(i),w(j)])=(i-j)w(i+j) for each ¥W(i),w(j)EG. Then G
€ Hax\F. To knov the strictness of (b) and (c),it is one way to
see wvhether the enveloping algebra of this Witt algebra is right
noetherian or not.

Lie algebra G is called a Curtis algebra if GE Hax-cu. Amayo
proved that the inclusion (%) is not strict in [2].

THEOREM. Max-cu C FNA.

Sketch of the proof. Let GE Max-cu. The proof may be reduced
to the case that G is a finite-dimensional Lie algebra over an al-
gebraically closed field of characteristic zero. Assume that G is
finite-dinmensional and nonabelian. Let I be a maximal abelian
ideal of G. Then the Lie algebra 6°=G/I is sinple of dimension at
least 3 ,A or B(n) for some n (see Example 1,2).If G"=A,then U(G")
is infinite-dimensional over the centre of U(G"). This shows that
G* can not be a Curtis algebra,and 6 is not in Max-cu. If G"=B(n),
then G* has an infinite~dimensional simple G"-module M(n). It is
vell known that a simple Lie algebra has an infinite-dimensional
representation. Vhence in these cases G" can not be a Curtis alge-

bra by Lemma A,and G is not in Max-cu.

REMARK. In [2] ,Amayo gives a class Y containing Max-cu such
that Y C FNA.
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3-2.Pl~algebras., An associative algebra R over k is called a
Pl-algebra if there exists a polynomial f(x;,"-,%xa.) vithout con-
stant term such that f(r.,* ,r.)=0 for any r,,,r.€R.

The following theorem is due to Latyshev[11].

THEOREM. Let G be a Lie algebra over k. Then U(G) is a PI-al-

gebra if and only if G is finite-dimensional and abelian.

Sketch of the proof. llere ve sketch the proof according to
Bakhturinf4]. The proof may be reduced to the case that G is
finite-dimensional and k is algebraically closed. Assume that G is
finite-dinensional and nonabelian. Then G contains A or B(l) (see
Exanples 1,2). Let us denote B(1),H(1) in Exanmple 2 by B8,N
respectively. Assume that U(G) is a PI-algebra. Then U(A) and U(B)
are PI-algebras. Let I=Annu(a>{(N) and J=Annu(s)(N). Then M(resp.N)
is a faithful sionple U(A)/I( resp.U(B)/J)-module of infinite
dimension. By Lemma B, U(A)/I and U(B)/J are finite-dimensional
over their centres. But since Endu(a)(M)=Endu(s) (N)=kD the centres
of U(A)/I and U(B)/J, U(A)/I and U(B)/J are finite-dimensional.
This shows that M and N are finite-dimensional,vhich is a

contradiction.

LIE SUPERALGEBRAS. A Z:-graded k-algebra G=Go&P G, is called
a Lie superalgebra if the folloving conditions hold in G ; x.:x;
+('1)"'X.|X1=0nxl(XJY)=((XIX.|)Y)"'("1)“(X:(XIY))nX:EGA yX3E€ Gy,
yEG, For Lie superalgebras,Bakhturin proved ,in [5],the following

THEOREM. Let G=GoP G, be a Lie superalgebra, and U(G) be its
universal enveloping algebra.Then U(G) is a PI-algebra if and only
if Go is an abelian Lie algebra,G: contains a Go-submodule M of
finite codimension such that [M,M]=0,and din[Go,H]< o,
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

STRONG ALGEBRA DIAGRAMS AND FROBENIUS
DIAGRAM ALGEBRAS

Koichiro OHTAKE

In [2] Fuller defined a module diagram, an algebra diagram
and a diagram algebra. We were interested in characterizing
algebra diagrams which define Frobenius algebras. To do that we
had a useful tool [2, Proposition 4.6]. To use this result we
had to exploit a tool to check that the given algebra diagram is
strong. By using matrices we managed to. give a necessary and
sufficient condition in order that the given algebra diagram is
strong. Moreover from the idea of this result we got a neces-
sary and sufficient condition that the algebra diagram defines
a Frobenius algebra. For example let 3{={el, e,, a, b, ¢, d, e,
£, 9, ¥y, 2, 0} be a semigroup with the following multiplication
table. '

This is a joint work with Prof. K.R. Fuller of the University of
Iowa. The detailed version of this paper has been submitted for
publication elsewhere.
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e e, a b c¢c d e £ g y =z
elelo 0 b 04 0 0 g y 0
e20 e, a 0 c 0 e £ 0 0 =z
ala 0 0 e 0 £ 0 0 z 0 O
b|0 b d 0 g 0 g y 0 0 0
c|0 ¢ £ 0 0 0 z 0 0 O O
d|j|d 0 0 g 0 y 0 0 0 O0 O
e|l0 e £ 0 2z 0 z 0 0 0 O
£f|£ 0 0 z 0 0 O O O O O
gl0 g y 0 00 0 0 0 0 0 O
yly 0 0o 0 0 0 0 0 O O O
z|0 z 0 0 0 0 0 O O O O.

Let K be any field. Then we shall show how to check that the
semigroup algebra KR is Frobenius.

1. Module diagrams. A module diagram # is a finite direct-
ed graph with distinguishednode 0 such that:
(1) There is at most one arrow between two nodes.

(2) The only oriented cycle in % is an arrow beginning and
ending at 0.

(3) x+0 in %t iff there is no arrow x +y # 0 in M,

(4) ¢ entails a function A:W\{0} + {1,2,..,n} which we call
labels of PtL.

A subdiagram 9 of a module diagram ®{ is a subgraph such
that if x£9 and x +y in WM then x-+y in U. A quo-
tient diagram of M by U , denoted by MNC/U, consists of the
nodes in Y\U together with all arrows of 9t between them and
artows x + 0 for each xE&E ‘Jr(\‘u such that every arrow in 9
begins at x and ends in WU. If ajs-.,a_gmwe then Yla;,..,
ar) denotes the smallest subdiagram of %¢ which contains Agreey
a,. L. (W) denotes the set of all subdiagrams of MW¢. Then
L£(M) is a complete lattice under union and intersection, i.e.
every subset of £ (W) has both an inf and a sup. Rad® is the
intersection of all maximal subdiagrams of W¢ and socPl is the
union of all minimal subdiagrams of W€ . More explicitly the
following hold.
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x £ RaAM<=> Jue€ M such that u + x in L.
x £ socM<=>x + 0 in Yt
Let W and T be both module diagrams with label functions
A and A' respectively. Then a homomorphism ¢:%+ 9€ is a
function on nodes satisfying
(a) If ¢(x) - v in P then there exists a yg W such that
X +y in W and ¢(y) = v.
(b) If x+y in ¥ and ¢(y) # 0 then ¢(x) + ¢(y) in TC.
(c) If ¢(x) # 0 then A'(¢(x))= A(x).
To illustrate a module diagram we usually omit the arrows
from nodes to 0.

Example. (1) A module diagram %e. W( can be illustrated as
follows.

/ \ AN
2¢ 39 18 3f 9
| \y/

where headless arrows go down and left index numbers of nodes
indicate their labels, for example A(a) = 1, A(b) = 2, etc.
(2) Subdiagrams of Y.

a
WUla) = / N ¢ Wae = a e
c d

| y
X
(3) Quotient diagrams of WX.
a

1 2P
W/ Ulc,e) = ‘ / \
d 3f 19

3
(4) Rad ™M and Ssoc W
RadM™M= c 4 e /f g
X Yy
Soc™ = {4,9,%x,y,0}
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(5) A diagram homomorphism ¢: 9+ M. Let ¢ be a function
such that ¢(a) = e, ¢(c) =y and ¢(t) =0 for all t # a, c.
Then ¢ is a diagram homomorphism.

2. Diagram algebras. Let R be a module diagram which sat-
isfies the following conditions.
(1) R =RU--vR with ‘Pif'\'boj = {0} if i # j.
(2) ‘fﬁ =‘1L(ei) for each i.
(3) 1If e; ~ a0 then there is no other arrow x -+ a, and there
is an epimorphism ¢a=ﬂ(a) + Wa) .
¢a's are naturally considered as endomorphisms of R . Let ¢e :
R~ Pi be the natural projections. 1
2
(4) If a;,..,a_; by,..,b € R\Rad“R and ¢ar..¢al(e“al))

# 0 then ¢a ) holds.

b .9, (e ) = ¢, .0
bg"* by "TA(a,) r @y bgittby

In this case R is called an algebra diagram. Suppose R

is an algebra diagram. If 0 # x = ¢_ ..¢_ (e ) then we can
a, a; A(al)
define ¢x = ¢ar..¢a by (4). Then for any ye {R , define
yx= ¢ (y).

By this definition, (®,:) is a semigroup. Let 3— = rad R.
Then the diagram QR can be characterized as follows.
(a) R = {el,..,en} v % , where e,,..,e  ~are orthogonal idem-
potents and § is a nilpotent ideal of R.
(b) x + y#0 if and only if aaeg\g}’1 such that y = ax.
(¢) X+ 0 if and only if §}x = 0.
Conversely if a semigroup {R satisfies the condition (a) then
we can construct a module diagram ‘DRL whose nodes are elements of
R and arrows are defined in terms of (b) and (c). Moreover the
associated semigroup of "RL coincides with R®. We call R an
algebra semigroup. We can say that ‘RL is the associated algebra
diagram for R.
Let K be any field and R = KR the semigroup algebra.
Then R is called a diagram algebra.
Let §,: (R ~ i(RR) be an injective lattice homomorphism
defined by §, (U) = KW. Then &, (RadWU) = Rad § (W) holds for




93

any 9L € L(W). For U € L(R,) ., the Cosoc U is defined by
Cosoc /Y = Soc(Ry ).
I1f §, preserves cosocles then R; is said to be strong for rR*

We should define another diagram R, as the following way.

(a) The nodes of R, are the elements of R. '

(b) x +y#0 in R, if and only if Ja e 9_\9_2 such that y =xa.
(¢) x + 0 in R, if and only if x9-= 0.

The lattice homomorphism GT:X(R,) ad jC(RR) is defined similarly
as in the case of ;.

R, is said to have cancellation (or R is left cancellable)
provided ax=ay#0 for some a € 9\39' implies x = y. Fuller
(2] proved that if R, has cancellation then R, is strong for rR
for any field K. R is said to be cancellable if both of R,
and Rr have cancellation. We are interested in the case of

Frobenius algebras. We have the following criterion.

Proposition 2.1. (See (2, Proposition 4.6]). Let R be an
algebra semigroup and K any field. Let R = {el,..,en} Y} g'be
the decomposition such that e s..,€, are orthogonal idempotents
and 3 = RadR. Then R = KR is Frobenius if and only if the
following conditions are satisfied.

(1) 6, and 6, preserve socles.

(2) Let 'R,_=‘Plu..\}33 with ¥ =U(ei). Then Socﬁ ={x;,0}
for some x, € ‘Pi and Soc‘ﬁ_ = Socw(xi) holds for each i,
where 5:)}" (xi) denotes the subdiagram of ‘f\’r generated by 'el(xi)'

Proof. Suppose R is Frobenius. Since Re; is indecom-
posable, Soc Re; is simple. Thus we may assume Soc Pi= {x,,0}
since 076 (Soc¥,) S soc Re;. Let j = A(x;), i.e. eyx; = x,.
Then we have to show that Soc‘Pi = Soc’P:'i. Suppose Socf; # Soc‘ﬂ):'i.
Since Soc e.R is simple, we may assume Soc‘}):'j = {y,0} for some
y. Since x, ¢ ‘P;, there exists geg, such that y = x.q.
Since (Re;)* £ ejR ( )* denotes the K-dual of a module), we
have XA(g) = A'(g) = i. Thus y € ‘Pi and there exists h € 9-
such that hx.;g = x;. This is impossible since 9— is nilpotent.

The converse has been proved in [2,Proposition 4.6].
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By this result if we know that R, and R, are strong for R
then it is easy to check that whether R is Frobenius. Our
first result is the following.

Theorem 2.2. Let R be an algebra semigroup with R = KR
Frobenius. Then R is left cancellable if and only if R is
right cancellable. Moreover if R 1is cancellable then the
Nakayama automorphism of R is induced by a semigroup auto-
morphism of R.

3. Strong algebra diagrams. In this section we will intro-
duce a matrix test for strength of an algebra diagram. Let R be
an algebra semigroup. Let 9\9—2 = {a;,..,a }. For each 0 # ye}
let {xl""xw(y)] denote the set of x in Ry such that x +y
and R, contains no other path from x to y. Then we define a
mxw(y) matrix B(y) = (bi.), where

1, if a.,x. =y
b, = 3

1] 0, otherwise.
Then we obtain

Theorem 3.1. Let R be an algebra semigroup with R = KR.
Then @R, is strong for rR if and only if rank B(y) = w({y) in
K foreach 0 #ye R.

Example. Let R be an algebra semigroup with the following
multiplication table.

l|la b ¢ x
ale x x 0
bl|x x 0 0
c|lx 0 0 O
x|]0 0 0 O

Then R is commutative and
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VAN

R

2 a b
X .
For example w(x) = 2 and B{(x) =|l1 1|. Thus rank B(x) = 2 =
10
w(x). It is clear that rank B(a)=rank B(b) = rank B(c) =1 (it

is convenient to define B(l) = (0) since w(l) = 0). Thus Ry
= ‘Rr are strong. Moreover in this case the algebra KR is
Frobenius.

We conclude this section by proposing a problem. Suppose KR
is Frobenius and R, is strong for KR . Then is R, strong too?

4. Frobenius algebras. 1In this section we modify Theorem 3.1
in order to determine that §, preserves socles. 1In this case
the matrix will have very big size.

Proposition 4.1. Let R be an algebra semigroup, 3-\99' = {a;,
cera}, Y\soc} = {x;,..,x 1 and ¥\ 10} = {y;,..,y.}, where
SocS— denotes the socle of the subdiagram 3' of R,. Then §
preserves socles if and only if rank B = s, where B = Bl

By

is the mtxs matrix with B, = (b;_j) and

b’“ ={l, if aixj =¥,

1] 0, otherwise.

Now by combining Propositions 2.1 and 4.1 we got a test to
check that a diagram algebra KR is Frobenius.

Example. KR is Frobenius and R’.' T'?,. are not strong. Let
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R be the algebra semigroup in the introduction of this paper.

Then
) /\ \ /2\
.
Y
|

Thus the condltlon (2) in Propos:l.t:l.on 2,1 is satisfied. Since
rank B{g)=1 < wi(g) = 2, R, is not strong. Thus we need to use
Proposition 4.1. }\}2 = {a,b,c}, }\Soc} = {a,b,c,d,e,f,g} and
3.2\{0} = {d,e,f,9,y,2}. We always omit zero rows because there
appear a lot of such rows. By =[10 00 0 0 0], B, =[0100000],
Bf=[0001000],Bg=[0010100] ,Bx=[0000010],
1000000
B =[0000001]. Thus

y
0000100

(100000 0)
0100000
0001000

g =|1000000
0010100
0000010
0000001
00002100 .

It is easy to see that rank B = 7. Therefore ¢ preserves
socles. Similarly 6, preserves socles. Thus the diagram alge-
bra KR is Frobenius for any field K.

Suppose an algebra semigroup R satisfies the condition (2)
of Proposition 2.1. Then is it true that ¢ preserves socles if
and only if 6y preserves socles? This is open. But it is easy
to see that if 33 = 0 then the problem is affirmative.
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

ON F;—TOPOLOGY OF KRULL-TYPE RINGS

Ahmad HAGHANY

1. Introduction. Rings are assumed associative with unit
elements. Let R be an order in a simple Artinian quotient ring
Q. We say R is a Krull-type ring if there exists a family of
two-sided hereditary partial quotient rings Rk satisfying the
following three conditions:

i) R = NR, (The intersection property).

ii) Each non-zero non-unit element x of R survives in only
finitely many Ry, that is, Ryx = xRy = R) for almost all X (The
finite character property).

iii) For any two distinct members of the family, R,\‘zal?.u = Q.
Bounded Krull rings [8], certain UFR [2], some bounded v-HC
orders [9], simple Ore extensions of commutative Noetherian
domains by derivations, and the Weyl algebras An are some
examples of rings satisfying i) and ii). In fact most of these
are both Noetherian and Krull-type. Denoting the canonical
topology of a ring R by F; (see [11l] and [5]). We show that
when R is Noetherian Krull-type F; is completely determined by
the injective module Q @ XQ/RA. Next we consider a Noetherian
ring R with only the intersection property and prove that if P
is a two-sided ideal maximal with respect to p* # R then P is
completely prime, and if R_ exists, it is a bounded right and

P
left principal ideal ring.

This paper is in final form and no version of it will be submitted for
publication elsewhere.
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2, We begin with a lemma:

2.1. Lemma. Let T be a hereditary torsion theory over an
arbitrary ring R, and let
‘ 0-—->AaA—>8B —29 cC—>0
be an exact sequence of left R-modules. If B is T-torsionfree
and C is T-torsion then f is an essential extension of A.

Proof. We shall identify A with a submodule of B. Consider
a non-zero element b of B in order to show that AnRb # 0. Let
I and J be the left annihilators of b and bg respectively.
Clearly J contains I. Since R/I is isomorphic to a non-zero
submodule of B, it is T-torsionfree. But R/J, being isomorphic
to a submodule of C, is T-torsion. Therefore J properly
contains I which means that AanRb # 0.

For the rest of this section R will denote a Noetherian
Krull-type ring. If M is a left R-module there is a canonical
map of left R-modules M — aneM given by m + (...,1@®m,...).
Notice that if M is a torsion R-module (in the sense that any
element is annihilated by a regular member of R) then by the
finite character property of R this maps M into the direct sum
) Ry ®M. In the following Tt will denote the torsion theory
cogenerated by Q @ E(Q/R).

2.2, Proposition. Let the torsion R-module M be t-torsion-
free. Then the canonical map M — ] R, ®M defines an essential
extension of M and its cokernel is t-torsion.

Proof. First note that the canonical map is a monomorphism.
For, let m be in the kernel; then quaRm = 0 for all \A. Hence
by [5, Proposition 2] Rm is t-torsion. But M is assumed
T-torsionfree, so Rm = 0. Next, let N be the cokernel of the
canonical map; so there is an exact sequence

0 —>M—>] R OM—>N—0. (1)
Each RA<3M is rk-torsionfree where T, is the torsion theory
corresponding to the perfect topology FA consisting of left
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ideals I in R such that RyI = Ry. It is immediate from [5,
Proposition 2] that the canonical topology F% = {1: RyI = R, for
all 2}. Hence F% ¢ F, for each X\. But then by [4, (7.1)
Proposition] any TA—torsionfree module is t-torsionfree. Since
the class of t-torsionfree modules is closed under direct
product we deduce that | R, ®M is T-torsionfree. Thus if we
show that in (1), N is t-torsion then the proof will be complete
by Lemma. Now upon tensoring with RA' we obtain from (l) the
following exact sequence.

0—>R)‘®M—>R/\®ZRMQM—>R>‘®N—>O (2)
We have the isomorphisms

R, ®] R, &M = 121 Ry® (R ®M) = E(Rlanu) oM

If R, # Ru' by assumption Rx‘”Ru = Q, the total quotient ring of
R. Hence in this case (R, ®Ru) ®M = Q®M = 0 since M is assumed
to be a torsion R-module. On the other hand Ry ®R, = Ry as R,
is a partial quotient ring of R. It follows that E(Rx @Ru) ®M =

RI\QM., and now from (2) it is thus clear that RAQN = 0. This
being true for all A, we get N to be a T-torsion module.

2.3. Theorem. E(Q/R) = ZQ/RA, that is, the injective
envelope of Q/R is isomorphic to the direct sum of all Q/RA.

Proof. The torsion R-module Q/R is certainly t-torsionfree,
so by the Proposition, the canonical map Q/R — ]} RAQDQ/R is an
essential extension. But } RA<®Q/R = JQ/R,; and Q/RA is RA_
injective, hence it is R-injective. Thus iQ/Rx is an injective

R-module (R is Noetherian). Therefore E{Q/R) = ZQ/RX.

2.4, Corollary. If further R is of finite global dimension
then R is hereditary if and only if Q/R = ZQ/RX.

Proof. If R is hereditary then Q/R being the factor module
of an injective module is itself injective. Thus Q/R = E(Q/R) =
ZQ/RA. Conversely assume that Q/R = ZQ/RA. Then Q/R is an
injective R-module, hence the exact sequence

0—-R—>Q0—Q/R—0
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shows that the injective dimension of R is at most 1. As R is a
Noetherian prime ring of finite global dimension we deduce that
R is hereditary.

3. Throughout this section R is assumed Noetherian with
intersection property, that is, R = r\Rx where R, are hereditary
partial quotient rings of R. As before T is the hereditary
torsion theory corresponding to Fi.

3.1. Lemma. A finite direct sum of finitely generated R-
modules is reflexive if and only if each direct summand is
reflexive.

Proof. Let Ai' i=1l, ..., n be finitely generated R-
modules. Then for any (t-torsion) module N we have
Exty(N, JA;) = [ ExtZ(N,A)).
Hence ZAi is T-injective if and only if each Ai is T-injective.
Also ZAi is torsionless if and only if each Ai is torsionless.
The lemma is now clear by [5, Proposition 7].

If S is a Noetherian prime ring with unique maximal ideal J
such that S/J is Artinian then S is called local and it is
hereditary if and only if J is invertible [6, Proposition 1.3].
Adopting the proof of this result, we can prove the following.

3.2. Proposition. Assume that S is a partial quotient ring
of R. Suppose further that S is local. Then S is hereditary if
and only if the Jacobson radical J of S is a reflexive left
ideal.

Proof. We only need to prove that if J is reflexive then S
is hereditary. Let M be a maximal left ideal of S. Then since
S/J is simple Artinian, there is a left ideal N of S with Ma N =
Jand M+ N =8, The map M@® N — S sending (m,n) tom - n is a
homomorphism with kernel MnN = J. Hence

0 —>J —>M@N—>S8S —0
is a split exact sequence. That is, M® N = J @& S, hence since J
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is assumed reflexive M @ N is reflexive by 3.1 (note that S is
also an intersection of hereditary localizations). Thus M is
reflexive.

We now assume that S is not hereditary. Since every non-
essential left ideal is a direct summand of an essential left
ideal we can choose an essential left ideal K which is maximal
in the set of non-reflexive left ideals. Let 5 2 I; 2 I, 2 ...
2 K be a strictly descending chain of left ideals. Then either
K = In for some n or the chain is infinite. Let ¢ be a regular
element of K. Then S ¢ I; €...cct

Noetherian S-module I; = I;+1 for some m. By the maximality of

S, and since ¢ ls is a

K in the set of non-reflexive left ideals, Im and I are

m+l
m+l’ not allowed. Thus K = In is the

only possibility, and we can suppose that In_l/K is a simple

reflexive. Hence Im =1

module. Hence there exists a maximal left ideal Ml such that
In_l/K = S/Ml. By the first part of the proof Ml
so S/M1 by [5, Proposition 4] is g-torsionfree, where ¢ is the
torsion theory cogenerated by Q @ E(Q/S). Thus In_l/K is also
o-torsionfree. Consider the exact sequence

0 — In_l/K — S/K —> S/In—l — 0
in which I__,/K and S/I _, are both o-tosionfree. Since the

is reflexive,

class of o-torsionfree modules is closed under extension we
deduce that S/K is o~torsionfree. This means that K is a
reflexive left ideal of S. This contradiction establishes the
result.

3.3 Theorem. Let I be a left ideal of R maximal in the set
of non-t-dense left ideals. Then I is proper, reflexive and
irreducible. If further I is two-sided then I is completely

prime and in case R, exists it is a bounded left and right

principal ideal rin;.

Proof. By assumption 1* # R, and if J is a left ideal which
properly contains I then J* = R. Now I is clearly proper and
reflexive, for otherwise I*** = R that is I* = R. Thus R/I is
T-torsionfree but any proper homomorphic image of it is T-
torsion.
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This implies that I is irreducible.

We now assume further, that I is two-sided. Let a, b¢R
with abe¢I and a¢{I. Then J = Ra + I properly contains I, and as
such R/J is 1-torsion. Hom(R/J, R/I) is thus zero, so in
particular the map defined by r + J > rb + I must be the zero
map. This implies that be I. Thus I is completely prime. By
previous result if S = Ry exists then it is hereditary, hence a
bounded principal left and right ideal ring.

3.4. Remark. If we assume that R is also a maximal order in
Q then R is a Krull ring in the sense of Chamarie, hence by [1,
Proposition 2.5] Ry exists whenever I is an ideal maximal in the
set of non-t-dense regular left ideals.

Let A = {I: I is a regular non-t-dense left ideal} and
B = {I: I is a regular proper reflexive left ideal}l.

3.5. Proposition. B ¢ A, and these sets have the same
maximal elements.

Proof. That B is a subset of A is evident. By 3.3, any
maximal element of A belongs to B. Now let P be a maximal
member of B. Then P = p** # R, giving P* # R. Let I be a
proper left ideal of R which properly contains P. Then I # I**
by maximality of P in B, If I** is proper then P ¢ I**, and 1**
¢ B, not possible. Thus I** = R, hence I* = R, that is I {A.
This proves that P is a maximal element of A.

3.6. Remark. If R is hereditary then A = B. But B in
general is a proper subset of A. For example if R = k[X,Y) the
commutative polynomial ring over a field k then the ideal I =
RX2 + RXY has the property that I* = X"1R # R, while I** = RX
properly contains I. It would be interesting to characterize

rings for which A = B,
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It is well-known that torsionless modules are torsionfree,
and in fact commutative Noetherian rings over which torsionfree
finitely generated modules are torsionless have been
characterized by Vasconcelos as rings without embedded primes
which are Gorenstein at minimal primes. 1In the non-commutative
theory the question of when "torsionfree implies torsionless"
seems to have received little attention. Malliavin has proved
this implication for enveloping algebras of solvable Lie
algebras finite dimensional over fields of characteristic zero
[7, Theorem 1,1].

3.7. Proposition. Let M be a finitely generated left R-
module. Then M is torsionless if and only if M is torsionfree.

Proof. Let N be the kernel of the natural map of M into its
double dual, and suppose that M is torsionfree. Since Rxehlis
a finitely generated torsionfree Rx-module and RA is hereditary
by [3, Theorem 2.1]) RAtSM is projective, hence reflexive as an
Ry-module. But the double dual of R, ®M is R,-isomorphic to
Ry ®M"* since R, is a partial quotient ring of R. It follows
that R, ®N = 0 for all 2, hence N is T1-torsion. Because the
singular submodule of M is zero, M is 1-torsionfree, hence N =

0. This means that M is torsionless.

3.8. Proposition. If R is a domain and B any hereditary
two-sided partial quotient ring of R then Q/B is t-torsionfree.

Proof. Let q = ac"1 €Q, and I a t1-dense left ideal of R with
Ig < B. Then Ia ¢ Bc, so Bla c Bc. Since Bla is a left ideal
in B we have BIa = (BIa)**. But (BIa)* = a 'I"B = a 'RB. Hence

(BIa)** = Ba, so Ba c Bc that is q = ac L ¢B.

Finally we specialize R, and let R = An the n-th Weyl
algebra over a field of characteristic zero. As is well-known
An has two-sided hereditary partial quotient rings Bi with An =
r\Bi; see [10, Corollary 3.4]. In fact An is a Noetherian
Krull-type domain.
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3.9. Proposition. Let E be a non-zero T-torsionfree
indecomposable injective An-module. Then E is isomorphic either
to Q(An) or to a submodule of Q/B for some hereditary partial
quotient ring B of An.

Proof. There is an irreducible proper left ideal I such
that E = E(An/I). If I =0 then E = Q, so assume that I # 0.
Since An/I is t-torsionfree 1 is reflexive, thus by [10, Theorem
3.2] there exists a (hereditary) partial quotient ring B and an
element c ¢ I such that I = B¢ nNAL. Now

An/I = An/Bc nA, = Bc + An/Bc ¢ B/Bc
and B/Bc is isomorphic to a submodule of Q/B. By 3.8, Q/B is
1-torsionfree, and it is B-injective, hence R-injective. It
follows that E embedds into Q/B.

3.10. Remark. In [10] Stafford shows that one can take B to
be Bn defined in termes of new generators. If we knew that Q/Bn
were indecomposable then E = Q/Bn or E = Q hence Q and Q/Bi were
~ the only indecomposable T-torsionfree A -modules.
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PROCEEDINGS OF THE 20TH
SYMPOSIUM ON RING THEORY (1987)

STRUCTURE OF NAKAYAMA RINGS

Kiyoichi OSHIRO

0. Introduction. 1In 1940, Nakayama ([11]) introduced gener-
alizd uniserial rings which are today called (artinian) serial
or Nakayama rings. Since then, many authors studied these rings.

‘ Kuppisch series’ due to Kuppisch ([6]) is one of important
tools for the study of these rings. Using the Kuppisch series,
Murase ([8] - [10]) showed that a certain type of serial rings may
be represented as a quasi-matrix ring over a division ring.

Fuller ([3]) completely determined the global dimension of serial
rings using the Kuppisch series. Even now, serial rings are well
studied. The self-duality of serial rings was recently studied by
Haack ([5]1), Mano ([7]) and Dischinger and Milller ([2]). However,
Waschbiisch ([15]) pointed out an interesting fact that the self-
duality of these rings are already shown by Amdal and Ringdal ([1])
in 1968, and he himself gave a proof.

Now, recently, Harada rings appeared as those artinian rings
which contains gerial rings and also quasi-Frobenius {QF) rings.
So, results on these rings are applied to QP-rings or serial rings,
as the following show for examples:

Theorem A ([13])). We can construct all left Harada rings from
QF-rings by taking their suitable extensions and factors of the

The final version of this paper will be submitted for publication
elsewhere.
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extensions. 1In particular, we can construct all serial rings by
QF serial rings.

Theorem B ([13]),[14]). Left Harada rings have the self-
duality iff basic indecomposable QF serial rings have the Nakayama
automorphisms. 1In particular, serial rings have the self-duality
iff basic indecomposable OF serial rings have Nakayama automor-
phisms.

Here, the word ’Nakayama automorphism7 is due to Yamagata
{[16]):

PDefinition. Let R be a basic indecomposable OF ring and E =
{el, oot en} a complete set of orthogonal primitive idempotents.
For each € there exists unique fiin E such that S(eiR) nst
fiR/J(fiR), where S{ ) and J( ) denote the socle and the Jacobson
radical. The permutation {fl, e fn}is called the Nakayama
permutation of {el, ey en}. If there exists a ring automorphism
T such that t(ei) = fi for all i, then t is called a Nakayama
automorphism of R. If the Nakayama permutation is identity, then
the identity map of R is a Nakayama .automorphism of R.

Now, in the present paper, we further study the structures of
serial rings as applications of Harada rings. Before we start, we
again look at Theorem B. As serial rings have the self-duality,
this theorem says that basic indecomposable OF serial rings have
Nakayama automorphisms. Although Haack did not succeed to give
a proof of the self-duality of serial rings, his [5, Proposition
3.2] is just that basic indecomposable OF serial rings have
Nakayama automorphisms (cf. (3.1) later). Therefore, combining
Theorem B with the Haack’s result, we can confirm the self-duality
of serial rings as an affirmative answer of a subproblem of the
problem whether left Harada rings have the self-duality or not.

In view of Theorems A and B, in order to study serial rings,
we may restrict our attention to basic indecomposable QF serial
rings, and then Nakayama automorphisms are deeply concerned in
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the structure of these rings. We develop our study along this
line and completely determine the structure of serial rings.
Roughly speaking, we can construct all serial rings from skew-
matrix rings over uniserial (i.e., local serial) rings by taking
suitable extensions of these rings and factors of the extensions.
Though we only give sketch,detail will appear elsewhere.

Notation. Throughout this paper all rings considered are
associative rings with identity and all R-modules are unitary. The
notation MR (resp. RM) is used to denote that M is a right (resp.
left) R-module. For an R-module M, J(M) and S(}) mean its Jacob-
son radical and socle, respectively, and {Si(M)} denotes its
ascending Loewy chain, For R-modules M and N, we put

(M,N) Homp (#,N)
and in particular,

(e,f) (eR,fR) = Homp (eR,fR)
for idempotents e, £ in R.

Let R be a ring which is represented as a matrix form;

All ... A

R = o

1n

Anl e Ann

Then we use <a>ij to denote the matrix of R whose (i,j)-position
is a but other positions zero. Consider another ring which is
also represented as a matrix form;

Byy --- Byp

‘ 11°°T1in | | ’
In this paper, when we say =t = is a map from R to T

‘l’nl. . ‘l’nn

this word means that T34 is a map from Aij to Bij and r(<a>ij) =
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<-rij(a)>ij for all ij.

Let R be an artinian ring and E = {el, ey en) a complete set

of orthogonal primitive idempotents of R. The following basic

result due to Fuller ([3]) is very useful: Let f be in E. RRf is

injective iff there exists e in E such that (eR;Rf) is an injec-

tive pair, that is
.RRe/J(RRe)

RS(RRf) and fRR/J(fRR) 8 S(eRR)R

When this is so, eRR is also injective.
We note that if R is basic and (eR;Rf) is an injective pair,
then S(eReeRf) = S(eRffRf) and '

]

S(eRR) = 0 S (eRf) 0 S(RRf)

0

For a ring R, End(R) and Aut(R) stand for the set of all ring
endomorphisms of R and one of all automorphisms of R, respective-
ly.

1. Skew matrix ring. Let Q be a ring and let c &€ Q and o &
End(Q) such that
o(c) =c and od(glc =cg VYqeQ
We put -

Q... Q

We define a multiplication in R which depends on ¢ and ¢ as fol-
lows: For (xik)’ (yik) in R,

where Zik is defined as follows:
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(1) If i <. k,
z2;, = I X..0(y. )c + I X,.Y., + [ X..Y.:.C
ik jei ij jk isjsk ij*jk k<3 ij* ik
(2) I1f k < 1,

Z;x = L x.-o(Y-k) + L xi.o(yjk)c + I X

R
jsk +3° 73 k<j<i 13 isj 1373k

We may understand this multiplication as follows:

f<ao(b)>ik' (jsk<i)
<ag(b)e>4 ) (k<j<i or j<isk)
<a>ij<b>jk = ‘ <ab>ik (i=3)
<abc>ik (isk<j)
\<ab> (k<i<j or i<jsk)

Now, it is straightforward to check the associative law:

(<x>ij<y>jk)<z>kl = <xif(<y>jk<z>kl)' V ij, jk, kl

Therefore R becomes a ring by this multiplication together with
the usual sum of matrix. We call R the skew matrix ring of
degree n over Q, and denote it by

Q... Q
L 2...Q g,C

When n = 2, the multiplication is that

Xp ¥ | Y1 ¥a | _ | X¥1TXR¥3® X1¥ptXo¥y

X3 *4] [ Y3 ¥4 X30 (yy)+x,y3 Xj0lyyletxyy,
Wwhen n = 3,

¥11 *12 ¥13 Y11 Y12 Y13

%21 %22 *23 Y21 Y22 Y23 =

X31 X33 ¥33 Y31 Y35 Y33
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- .
11122103 ¢ *Yiet Y 133 *Y13t*oY23 133 T

X1 0(¥y9 #Xo0¥ 51 #5033y oy 0(¥ 50 Xo0Y potXa¥30C  Xpy0(yg )Xo ooty ag

%39 (¥ 1+%300 (¥ Jeg v X300y 504350y 0 ) +X35y5, "31"("13""*"32"("23)”‘33’%}

o8

Now, we put e, = <l>ii’
orthogonal idempotents, 1

=1, ..., n. Then €y, ..., €, are

+ ...+
el en and

_ 0 _
e,R = n...0 |G
| 0 -
_ 0
Rey = |0 T 0
L o |
£

Mote that each e is a primitive idempotent if O is a local ring.

We put — —
0
W, = |e...0aec0..0|G )'1=1,...,n.
0
R
Then Wi is a right submodule of eiRR' For i = 2, ..., n, let ¢

: eiR — Wi—-l be a map given by

Xy -+ X4 1€ Xy .. Xg

and let $,: &R _—_ W, be a map given by
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xl ces xn 0
B
olx;) .. olx 1) olx )c

Then each ¢4 is a homomorphism. In particular, if ¢ & Aut(Q),
then each ¢4 is an onto homomorphism and

[0 ... 0 (0:c)]
Kerg, =
0
- . =
Keres = o (0:e) o (1, i= 2, ..., n
0
_ 2 ;
i-1

where (0:c) is a right ( or left ) annihilator ideal of c.

(1.1). The mapping 1: R — R given by

- - —

*11 *12 *°* *in ¥an *nl crttrr Fpopa

Xy) Xgg - x2vn o(xln) o(xll) °(x1,n-l)
.o —_— ceseeenans

xnl Xn2 *°* *nn o("‘n-l,l'b)o(xn—l,l) - o(xn-l,n-l)

is a ring homomorphism; so if o € Aut(Q), then 1 & Aut(R).
(1.2). If Q is a local QF-ring, o ¢ Aut(Q) and ¢ &€ J(Q),
then R is a basic indecomposable QF-ring and {en, €17 oey en—l}

is the Nakayama permutation of {el, €y vney en}.

Proof (sketch). We can see that
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0 ...0X%
S(elR) = = S(Ren)
0
0
0. 0
S(eyR) = T = S(Re; ,)
" @
X 0 i
0.
0 "0 0

for i = 2, ..., n, where X = S(QQ) = S(OQ). Hence it follows
that (elR;Ren), (ezR;Rel), vees (enR;Ren_l) are injective pairs;
So, (1.2) is proved.

(1.3). If 0 is a local QF-ring, o &€ Aut(Q) and ¢ € J(Q),
then R is a basic indecomposable QF-ring which has a Nakayama
automorphism.

(1.4). If Q is a uniserial ring, o € Aut(Q) and cQ = J(Q),
then R is a basic indecomposable serial ring such that {enR,

e R, «ses elR} is a Kuppisch series and {en, €)1 €5/ uey €

n-1 n—l}

is the Nakayama permutation of {el, €or sees en}.

2, We shall consider those basic indecomposable (QF serial
rings which satisfy the condition

(*) If {enR, en-lR' ey elR} is a Xuppisch series, then
{en, €1 €51 ceuy en-l} is the Nakayama permutation of {el, e,
ceer en}.
where {ei} is a complete set of orthogonal primitive idempotents
of R.
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Now our purpose of this section is to show the following:

(2.1). If R is a basic indecomposable QF serial ring with
the condition (*), then R is represented as a skew matrix ring

Q ... Q Jo,c

where Q is a uniserial ring and ¢ ¢ Aut (Q) and cQ = J(Q).

Proof (sketch). Putting Aij
we shall represent R as

eiRej (i # j) and Qi = eiRei,

(o)
¥ Byp eeeee Bgp
2n

>

Ay) 23 Ays ..

e An,n-l Qn

L Anl

We put Q = Ql. Q is a uniserial ring.
First we shall consider the case n = 2. Put A = Alz’ B = A21

and T = Qz, and put e = e, and f = e,. Then

1

0 A
R =

B T

Since {f, e} is the Nakayama permutation of {e, f}, we see

[0 s(a)
S(eR) = S(Rf) =
0 0
o 0
S(fR) = S(Re) =
S(B) O

B T
T. Then R is a serial ring and e, f are orthogonal primitive

L. - 0 A
wWe denote the factor ring R/S(fR) by R = [ jland r + S(fR) by
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idempotents. We see that eRp is injective and J(eR) ~ fﬁi. So,
here, using the matrix representation of left Harada rings ( cf.

[13], [14]), we can get an isomorphism

i 111 T12 ] Q A Q 0
—

To1 Ta2 B T J() Q

= -4 = = ~ ~
Put <a>12 = 1 (<l>12). Then A = Qo = aT, QQa_.QQ, uTT___TT and

ge = arzz(q) for all q in Q.

=1
Now, by Q™ T, we exchange T by Q in g g] ; so

Q A’
B Q

R =

and then ga = ag for all q in 0.

By the same argument, we can get g¢ B such that B = Q8 = gQ,
QQB ~ QQ and BQQ'_::; QQ. Vle define a mapping o3 Q 5 Q by the rule:
o{q) = q if qa = ag. Then ¢ is an automorphism. Putting c = a8,
we see the following

(1) ¢ = aB = Bo

(2) olglc =cqg, VY qeo
(3) olc) = ¢

(4} cQ = J(Q)

Q 0 X;  X,a
Thus the skew matrix is considered. For and
Q 0 o,C X,B X
3 4
yl Y2a
& R,their multiplication is
Y38 ¥4

X)¥)+X,¥4C (x)y,+x5y,) &

(x3a(y1)+x4y3)8 X30(y,)c+x,v,
Therefore, R is isomorphic to the skew matrix ring

as desired.
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Next, we shall consider the case n = 3. We may denote the factor
ring R/S(e5R) by

Q Ay A,

w |
n

Byp 2y Ry,

Ayy B3y Q3

and the element r + S(e3R) by T. We see that R is a serial ring,

El, 32, 33 are orthogonal primitive idempotents.and

Eiﬁi is injective for i = 1,2,
e Rl— 7~ & R-
J(ezR)R > e3RR.
Hence, by using the matrix representation of left Harada rings,
we can obtain an isomorphism

TaaTqaT
11°'12'13 0 A12 Al3 0 A12 AlZ
T | Ta1T22%a3 | ¢ | P21 Q2 Rz [——[R21 %2 O
731732733 A3 B3 Ay I O
TaaT 0 A ,] 0 A
where J = J(QZ) 11712 A éz —|a éz is the identity map.
721722 2172 21%2
Q 2,
Here, applying the result above of the case n = 2 to A0 ywe
212

can exchange Q2 by Q0 and get P c Ay, 0gp & Ayqe
6 € Aut(0) and c € J(0) such that

R1a = 21292 = Q50 Byy = 010 = Qeyyo

2129 Y Qp 93104, Q%15 Y o2 v RO,

€Q = J(Q), © = ayj0a95 = G390y

o(c) = c, alqle = cq,¥qeQ
- _ -t _

We put <a;y>3 = tl<ayy>13)s <agy>3y = tlcayy>gy)s <0p3753 =
-1
r(<1>23) and Gyy = G307, Then we see that

Aij =aijQ = Qaij' QQ-:fQQaij' QQ :faijQQ
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for ije {13, 31, 23, 32}. And we obtain the following:

(a) if 3 < i,
c(q)mij = o559 VaeQ
ag  ( 3ske<i)
%i3%3k :
a; S ( k<j or isk)
(b) if i = j,
qaij = uijq' VYaea
*i3%k = %ik
(c) if i < j,
qaij = uijq’ Vq e Q
a..c ( isk<j)
uijujk - ik
' ®ix { k<i or jsk )
Comparing these (a), (b), (c) with the definition of the multipli-

cation of the skew matrix ring of degree 3 over Q with respect to

¢ and ¢, we see that the mapping

p—

11 *12%12 *13%13 X311 *12 *13
X a X X a
21%21 *22 *23%23 | — Xy, Xpp Xog
X a X a X
31%31 *32%32 ¥*33 Xy X35 X33
Q0QQ
gives an isomorphism from R to Q0QQ
Q QQlo,c

Our argument works on all n; so (2.1) is proved.



121

3. In this section, we shall show that every basic indecom-
posable QF serial ring with non-identity Nakayama permutation can
be constructed by a basic indecomposable OF serial ring with (%)
mentioned in the section 2.

Henceforth R is a basic indecomposable (OF serial ring with
non-identity Nakayama permutation, and let E = {el, ceer en} a
complete set of orthogonal primitive idempotents. Ve put J = J(R)

J
Now, we may assume that

and Ai. = eiRej for all i, j.

enR' en_,le ceoy elR
is a Kuppilsch series. So, there exists an onto homomorphisms:
ei'i"’l: ei+lR _+ eiJ' i = ll LI I n"'l
Gnl: elR ——? enJ ( # 0)

We put
935 = 83,341% 41,142 = 83-1,3 (i <3
eii = the identity map of eiR
Then we note that
Ker 6,5 = Sy_;(e;R), Imo, = eiJj”i (3% Rr) .
So, eij induces an isomorphism'Fij: ejR/Sj~i(ejR) A% eiJj-i.

If o eleR, ejR/Sk(ejR)), then there exists 8 € (e.R, ejR)
satisfying a = nB, where n is the canonical homomorphism of ejR
to ejR/Sk(ejR). If (etR, Sk(ejR)) = 0, we see that such B is

unique; we denote it by

[a]

The following (A) and (B) play important roles for calcula-
tion of this section:
j-1 C e
(n) If vy ¢ f?FR’ eiJ ) (i£j) and (etR’Sj—i(ejR))
then eij[eijy] = v.

0,

(B) Let a, B €& (etR, ejR) and let (etR, S 0. If

eija = eije, then a = B.

j_i(ejR))
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We need the following (perhaps well known):

(3.1). There exists s # 8 such that {e ., e _g,00s0sr €y

er ey ..., e} is the Nakayama permutation of fe), ..., e .

We observe the structure of R for each case of the following:

(I) s >n--=s
(II) sq
(II1I) n=sq+r, O<rc<s

Case (I). Put f.=n - s + i, w=2-1land t=n-w+ 1.
R is represented as

hll e oo e Alwp.ll oooooooooooooooooo R Aln
AN
Bl weee o B Byg eeesdeeeei. A
a A S et ereeaes .
p 1 Riw Py . Agn
N\
N\
A Y
N\
ceee i PR PRTRE
N\
N\
Apo11 e Bee1,e ... Pe-1,n
Aoy e rereeneas S A,
o\\
Ay .- T P R
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Wle put
P11 Byp
A1 App
and define a multiplication in P as follows:
[ *11 *12] [Y11 Y12

Xt1 22| (Ye1 Y22

X11¥11%%12% 1% X11Y14% %1 1Y 92

-]
Xe1¥114 00040209 741710041, Y01 O2eXe1Y12 %2420

- —
[qitxizpiviil] is well defined since (€£+1R’St1£(etR)) = 0. Put

_[xo o x _foo _foo
R § [o o] , 12 7o o-l P X7l T [x o] S 3 M [o x]

Using (A) and (B), we can calculate that

(<x>ij<y>jk) <Z>k2 =<x>ij (<y>jk<2>k<ﬂ)

for ij, jk, k2 € {11, 14, t1, Z4}. So, by this multiplication
together with the usual matrix sum, P becomes a ring. Put fl =
<1>1l and f2 = <1>12; Then {fl, f2} are orthogonal primitive idem-
potents and 1 = fl + f2‘ We obtain

(3.2). P is a basic indecomposable QF serial ring such that

{fz, fl} is the Nakayama permutation of {fl, f2}.

Now, we put

All e Alw Alf/ ..... . o Aln
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™ 7
Ap--e By
Ry1 = R
Ay
Anl cec Anw
so,
R.. R
R < 11 Ri2
Ry1 Rao

Corresponding to each Rij' we make P

follows:
By --- Ag
P11 < ' : Py =
IR ) Ay
| S
Py = Py
Ay
251 -0 Ay

22

Ant

ij

A12 ..... cees Alﬂf

-Alﬂ, .......... ALi/

'Aier ceerereaes Qie
TRy R ‘

B AL ]

the same type as
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Then
P P
0 11 "12
P P
21 "22
11 ** "in
is an extension ring of P. We define a map 1 =
T be T
0 —R as follows: I nl nn
a,.0 (i=1)
., cisus _11713
(a) laisg 1ijsw; [e]‘.iallel] (1<is5)
T35(11) - .
J [e'llull]elJ (1sj<i)
(b) 1lsisw<jsn;
—¢|
Tijleag)= (850,410,
(c) tsisn, lajsw;
- v
Teglogy) = [0g 0,00,
(@) Asisn, Lsjsn; 292995 (i=1)
g .
_ ) URieperg, 20000, Hetsd)
T..(aypg) = o Li . .
iy I [0 aep]o sj<i)
101%82'°0;5
Of course 1 is well defined. And we have
(3.3). 1t is an onto ring homomorphism and its kernel is
i 0 L
0 . 5
w) =
S1 = S(All)
R s -
0 2 S, = S(Agq)
N\
. Sy = S(A,)
0
t)
0
~.53 0
| % ol 1
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Thus R is indeed constructed by the basic indecomposable QF serial
ring P with (%).

Case (II): n = sq, 2 s gq. In this case, we shall consider
the partition
{1, 2, ..., s}V {s+l, ..., 2s} v ...J{(g=1l)s+l, ...,n}.

Put t1 =1, sy, = s, t2 = g+l, S, = 2S, c.uy tq = (g-l)s+l, sq = n.

Consider the subring of R:

A ¢

171

A

t,t

271

S VR Y
qu q-2 q-q

and put fi = <1>ii, i=1, 2, ..., g. Then (fl, ceny fq} is a
complete set of orthogonal primitive idempotents. We obtain

(3.2'). P is a basic indecomposable QF serial ring such that
{£ P, £,_4P, ..., £,P} is a Kuppisch series and {f_ , £,, ..,f _,}

is the Nakayama permutation of {fl, f2' ceey fn}.

Now we define (s,s) matrix Qij {lsisq, 1lsj:q) as follows:

-—Atlti N t;
Qi3 =
J(Atiti) Agigl
Atitj étitj_
9y = ST (L # 3
AtltJ Atitj
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and put

21 -+ Qg

Lo
n

Q e Q

ql aq

Then Q is an extension ring of P. We define X, , x21, ceer X

1lq q,9-1"

as follows:

0]
S
* 1 Q (S, = s(A ))
X. = . c 9
1q . 11 1 tltq
0 0]
0]
S,
Ui C Q _ (s; = s(a ))
Xi,i-1 0 = *i,i-1 i titi
| 0
for i = 2, ..., 9. Then
0 ...... 0 xlq
x210 cesean 0
X = 0 x320 oo 0
0 "0 a,9-1
is an ideal of Q. We obtain the following:
) 31 **T1n
(3.3 ). There is an onto ring homomorphism 1 = v
‘l‘nl ..‘l‘nn

from Q to R with the kernel = X; so, Q/X is the representative
matrix ring which is constructed by the basic indecomposable QF

serial ring with (*).

Gase (III): n=sq +r, 0¢ rds. 1In this case, we shall
consider the partition
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{l’ s ey S}V{S"'l, ev oy 2S}u...u{(q—2)5+l, e o0y .(q_l)s}u
{(g-1)s+l, ..., (g-l)s+r}l v {(g~l)s+r+l, ..., n}

and put
t, =1, s, =8, t, = s+l, 5, = 25, ..., tq_2 = (g-3)s+l,
Sq-2 = (q-2) s, tq_1 = (g-2)s+l, Sq-1 ° (q—2) s+r,
tq= (g-2)s+r+l, sq = n.
Put
A A e A,_. -
titj titj+l tisj
A A eee A
. ) ti+l,tj ti+1,tj+l ti+l’sj
ij
A A e A
sitj si,tj+l Sisj
Then -
Ri1 -+ Ry,qe1
R = .o
Rq+l,1"' Rq+l,q+l
In particular,
R R R
q,q-1 qq q,9+1
_Rq+1,q-l Ra+1,q Rgq+1,q41
is the following form . -
A -—- A --|A -- A
tpobga %ty AN bt
N Y
AN ~
N\ N
\\ *;n'tﬂ'l
N Y
\
Az,{xﬂ N
N \
N AN
a b, === - - 4 - A, &
015 e ey B e
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where x = n - r + 1, Here we shall consider the set

— —

A A .. A A
Hi8 65 B1%-1 Yt ti1tga
A A ... A A A
tt; Pt ttqey oty Mepto,

A A e« A A A

t t t t St t
q2 ag9-1 "9 q “qq+tl
A A A A

tgerty - teitq-1  Xtg tq+ltq+H

In-P, we define a sum by the usual matrix sum and a multiplication
by following relations:

a) <a> <B> = <aB> (e, t., k) £ (£ ,,t,,t)))
titj tjtk titj b s A g+l "1’ q
=
b) <a> <B> = <[e a]B>
tq+ltl tltq tq+lx Xt
<8 aB> (i # q)
c) <a> . <B> L tq+lx tq+lti
a 9t <ag> (i = q)
xt
q
6 8> (i 4 gq+1)
d) <a> <g> ot xPTelt
titq+l xtq = _ g+l ] i"q
<[eo a]B> (i = g+l)
tq+lx xtq
where < >titj = < >ij and < >xtq = < >q+l,q in P. It is easily
checked that P becomes a ring by these operations and {fi =
<l>t £ | i=1, ..., q+l} is a complete set of orthogonal primi-

tiveiiaempotents. We obtain

(3.2”). P is a basic indecomposable NF serial ring such that
{ fq+1P' fqP, cees flP} is a Kuppisch series and {fq+l' fl' eeay

fq} is the Nakayama permutation of {fl, R 3 ).

g+l
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Now, corresponding to each Ri'

type as follows:

3

and put

Then N is

x32’ ¢ aay

l,g+1

i, i-l

xq,q-l

a canonical ring extension of P,

X

.

A ... A
tt, tit;
Ja, L) o,

t.t.] A
i’i titi
— -
A ... A
€5ty €5ty
A ... A
£yt £yt
Q1 e Y90

q+l,q as follows:
0
\\ Sl g
0o~
_ 0
0
\\Si g
0 ~
- 0-
0
‘s <
. q
L0 0 7.

Q+1,1°"" Qq+l.q+ﬂ

J

1 q*

0; 4. (2sisg-1)

q,9-

N =
“q"'qu

(i#3,

1

1

We define X

, we make matrix Qij of the same

|

xt
q

(1,3) # (g+1,q))

1,q+1’ %21°

(S, = s(a ))
1 £18q41
(S, = S(A ))
i et
(S = s(a ))
q tqtq-1



131

S *
X = 0 C 9 (S = 8(A ))
1
g+l,q — g+l,q tq+1,tq
0
Then _
0 A 1 xl,q+1
le 0 ....... . 0
X = 0 x31 0 ....... 0
[0 ... oqu’qo J

is an ideal of Q. We obtain
v Tll...Tl’q+1
(3.3"). There is an onto ring homomorphism t=

f ve
rom Q to R, Tpﬂ,l 'Tz-rl,@ff

whose kernel is X. So, R is constructed by the basic indecompos-
able QF serial ring P with (¥*).

4. In this section, we shall study those basic indecompos
able QF serial rings whose Nakayama permutations are identity (s
=1 in § 3).

Example 1. Let 7 be a uniserial ring, ¢ € Aut(Q) and c ¢ Q
such that ¢Q = J(Q), o(c) = c and o(q)c = ¢cq {Yqge&Q. Then, as we

saw in § 1, 0 ... Q]
R =
_Q i QOIC
is a basic indecomposable QF serial ring. We see that
0 1
hY
I=|g ™ o (8 = 5(0))

is an ideal of R and R/I is a basic indecomposable OF serial ring
with the identity Nakayama permutation.
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Example 2, Let Q = Ql, Qyr -n Qn be uniserial rian. Let ¢
€ Q with cQ = Qc = J(Q) and let d& be an automorphism of O = Q/S(Q)
satisfying o(§)c = ©F for all § = g+ S(Q) and &(S) = T. (cf. such
c, o' always exist). Further assume that there exist isomorphisms
ty: 0, = Q;/8(Q) ¥ 2/8(Q), i =1, ..., n, where 1, is the identi-

i
ty map. Choose c, ¢ Q, isuch that ri(Ei) = C. Consider the set

0Ol
N
of -

cees Q0

|

In T, we define a sum by the usual matrix sum and a multiplication
by the following relations:

_ _ <50*(S)>.k (§<k<i)
<a>..<b>,k = _ _ _l

i) J <a0*(b)c>ik (k<j<i or j<i<k)
<a>ij<b>jj = <a1;i(b)>ij (j<i)
<E>ij£B>ji = <xcy>iy (j<i), where x = T;l(ao*(ﬁ))
<@>ji<b>yy = <ry@lbrg Uitk)
<a>ii<b>ii = <ab>ii
L <aBa>,, (1<k<3)
<a>, .<b> = -— 1 . .

ij jk <ab>ik (k<i<j or i<j<k)
- - . _ o =
<a>ij<b>ji = <XCy>.y {i<j), where x = ti(ab)
<a>ij<b>jj = <a'ri(b)>ij (i<j)

Then we see that T becomes a ring and moreover T is a basic inde-
composable (QF serial ring with identity Nakayama permutation.

Now, if R is a basic indecomposable QF serial ring with the
identity Nakayama permutation, then R/S(Q) is a basic indecompos-
able QF serial ring with (*). Noting this fact, we can obtain

(4.1). Every basic indecomposable QF serial rina with the
identity Nakayama permutation is represented as such a rina T in
Example 2,
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ON H-SEPARABLE EXTENSIONS IN AZUMAYA ALGEBRAS

Hiroaki OKAMOTO

Throughout this report, A/B will represent a ring
extension with common identity 1, C the center of A, and
VA(B) the centralizer of B in A. Let M, N be A-B-
bimodules. If M is A-B-isomorphic to some A-B-direct summand
of a finite direct sum of copies of N, we write AMB | ANB‘
Needless to say, ,M | ,A means that ,M is finitely
generated projective. Also, it is easy to see that BBB | BAB
{(resp. BB | BA) if and only if B is B-B-isomorphic {resp.
B-isomorphic) to a direct summand of BAB (resp. BA). An
extension A/B is called a separable extension if the A-A-map

A®A—A definedby x®@ ym—xy (x, y € A) splits. It is
clgar that A/B is sepafable if and only if aPa | AR g’AA'
An extension A/B 1is called an H-separable extension if
AR f A, | aA;+ It is well known that any H-separable extension
is a geparable extension (see, e.g., [2, Theorem 2.2]), and
that if A is an Azumaya C-algebra then A/C is an
H-separable extension (see, e.g., [6, Proposition 1.1]).

The main purpose of this report is to prove the following

theorenm.

The final version of this paper has been submitted for
publication elsewhere.
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Theorem. Let A be an Azumaya C-algebra, B a C-sub-
algebra of A. Then
(1) B 1is a separable C-algebra if and only if B, | LA

BB B'B°
(2) B is an Azumaya C-algebra if and only if BAB | BBB‘

In preparation for proving Theorem, we state first the next
lemma.

Lemma. Let A be an Azumaya C-algebra, and B a C-sub-
algebra of A. Then A/B is H-separable if and only if
A _ =
(A%A) = {2, a; ®b; € A%A | a Z; a; ®b, = 2; a; ®b;a

for all a € A} is a projective C-module.

Ay | APa-

Proof. Assume that A/B 1is H-separable: AA®
B
A
Then (A?A) s Hom(jA,, AA ?AA) [ Hom(pA,, pA,) = C as C-

module, that is, (A ® A)A is a finitely generated projective
B
C-module. Conversely assume that (A ® A)A is a projective C-
B
module. Since A/C 1is H-separable, (A®A)A is a finitely
C

generated projective C-module. 1In virtue of [l1, p.52, Theorem
A .
3.4], (A g A" s Hom(AAA' AA ? AA) — Hom(AAA, AA % AA) E
(A ® A)A is a C-epimorphism. Hence (A @ A)A is a finitely
B B

generated projective C-module. Since A®A =zAQ® (A® A)A
B C B
as A-A-bimodule by [1l, p.54, Corollary 3.6], we get

AR @R, | 2,

B

As a direct consequence of Lemma, we have the following
corollary which is interesting in itself.

Corollary. If A is an Artinian semisimple ring and CA
is finitely generated (In this case, A is an Azumaya C-
algebra), then A/B is an H-separable extension for every C-
subalgebra B of A. In particular, if A is a finite

dimensional central simple C-algebra, then A/B is an
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H-separable extension for every C-subalgebra B of A.

Recently, K. Hirata proved the following ([4, Proposition
6]): Let A be the group ring K[G] of a finite group G
with a coefficient field K whose characteristic does not
divide the order of G. Let H be a subgroup of G, and B =
K[H]. Then A/VA(VA(B)) is an H-separable extension. As a
matter of fact, this is immediate by Corollary.

We are now ready to complete the proof of Theorem.

Proof of Theorem. (1) The only if part has been proved
in [7, Proposition 1.5]. Assume now that BBB | php- Llet m
be an arbitrary maximal ideal of C, A = A/mA, B = B/mB, and
C=C/m. Then A is a finite dimensional central simple C-
algebra, and B is a C-subalgebra of A such that EEE | ﬁiﬁ'
Hence by Corollary, A/B 1is an H-separable extension. Then
D = VK(E) is a separable C-algebra by [3, Proposition 4.7],
and VE(B) =B by [6, Proposition 1.2]. By [7, Proposition
1.5), we have 555 | 555. Since A/D is an H-separable
extension (Corollary), we see that VR(D) = B is a separable
C-algebra by [3, Proposition 4.7]. Since B | cA | cCr OB
is finitely generated. Hence by [1l, p.72, Theorem 7.1), B |is
a separable C-algebra.

(2) Assume that B is an Azumaya C-algebra. Then by

[1, p.57, Theorem 4.3], A =B G)VA(B) and VA(B) is an

C
Azumaya C-algebra. Hence, we see that BAB = BB ? VA(B)B |
BB % Cy = gBg- Conversely, we assume that A, | gBg- It is

well known that  Ap | pBp implies . Bp | A, (see, e.g.,
[3, Proposition 5.6]). Hence cB is finitely generated and

BB % By | gA ? A, | gAy | gBg- Therefore B is an Azumaya C-

algebra by [6, Corollary 1.2].

The following proposition may be regarded as a sharpening
of [4, Proposition 6].
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Proposition. Let A be a separable (faithful) algebra
over a commutative ring R, B a separable R-subalgebra of A,
D = VA(B) and V = VA(VA(B))' Then A/V and A/D are
H-separable extensions, (V, | (A, and _Dj | p®p-

Proof. By [l1, p.55, Theorem 3.8], A is an Azumaya C-
algebra and C is a separable R-algebra. Then BC is a
separable R-algebra as a homomorphic image of B ® C by I[1,

R

p.43, Proposition 4.6]. Then BC is a separable C-algebra by
[1, p.46, Proposition 1.12]. Since VA(BC) = VA(B) = D and
VA(VA(BC)) =V, D and V are separable C-subalgebra of A
by [1, p.57, Thgorem 4.3]. Hence V, [ vhy and Do | Ay
by Theorem, A/V and A/D are H-separable extensions by [3,
Proposition 4.3].

We shall conclude this report with giving four examples of
H-separable extensions.

Examples. Let K be a field.
KOO
(1) Let A= M,(K), and B = KKO)]. Then A/B is an
3 K O K
H-separable extension (Corollary), and VA(B) = K. As is

easily seen, g is projective, but Ay is not projective.
Needless to say, both BA and AB are finitely generated.

(2) Let A = M4(K), and B = . Then both A

B

OOO0OR
OORXRO
OXROR
RORN®

and AB are finitely generated and A/B is an H-separable
extension with VA(B) = K. But neither BA nor AB is
projective.

(3) Let A = M4(K), and

aob
oad
00 a
0o0o0
are finitely generated and A/B is an H-separable extension

with VA(B)

a, b, ¢, d, e € K7. Then both BA and AB

2000

B. But, neither BA nor AB is projective.
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aek .

a
a_ X
(4) Let A =M (K) (n2 3), B-= [ a,
n 0 a
Then both BA and AB are finitely generated and A/B 1is an

H-separable extension. But, neither BA nor AB is
projective.

In [8], H. Tominaga proved that if A/B 1is an H-separable
extension and BA is projective, then gP is finitely
generated. These examples show that the converse need not be

true.
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EXAMPLE OF A D.F. RIGHT SELF-INJECTIVE REGULAR RING
WHICH IS NOT LEFT SELF-INJECTIVE

Hikoji KAMBARA

Our first example answers negatively the well-known gquestion
whether every directly finite, regular right self-injective ring
is necessarily left self-injective. We form a simple regular
ring with the maximal right quotient ring which is directly
finite and not left self-injective. Second example is a simple
regular ring with continuous elements. Such a ring is given in
(3] by von Neumann, but we form an algebraic example which is a
direct 1limit of artinian simple rings.

1. Right self-injective ring. For a ring R with identity,
R is called directly finite if xy = 1 implies yx = 1 for all x,
YyeR. A ring R which is not directly finite is called directly
infinite. A rank function on a (von Neumann) regular ring R is
a map N: R — [0,1] such that

(a) N{(1) = 1,

{b) N(xy) < N(x) and N{(xy) = N(y) for all x, vye¢R,

{c) N(e + £f) = N(e) + N(f) for all orthogonal idempotents e,

feR,

(d) N(x) > 0 for all nonzero X ¢ R.
If R is a regular ring with rank function N, then 6(x,y) = N(x -
y) defines a metric on R and this metric § is called the N-
metric.

The final version of this paper has been submitted for publication elsewvhere.
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For a field F (characteristic of F # 2) and a positive
integer n, M (F) denote the ring of n xn matrices over F. We

denote by {e(n)} =1 the matrix units of “2n(F)- By the

(n) (n+l) (n+l)
— e33,25 * ©21-1,25-1)

we consider the direct limit S = {iﬂ Mzn(F). Then the following
are known:
(1) 8 is a directly finite regular simple ring with a rank

homomorphism Mzn(F) - M2n+1(F) (eg

function N.

(2) The completion 8§ of S in the N-metric is a directly
finite regular, right and left self-injective simple ring.

(3) The natural map S — 8§ is a ring monomorphism.

(4) The maximal right quotient ring of S is directly
infinite.

(5) (Theorem 5.5 [1]) Let R be a prime regular ring with
rank function N. Then Q(R) ¢ R as subring if and only if
sup{N(x) | x eI} = 1 for all essential right ideals I of R, where
Q(R) is the maximal right quotient ring of R and R is the
completion of R in the N-metric.

From (3) we consider the ring S as a subring of §. We

denote by {e(n)} the matrix units in S induced by the

i,j=1
matrix units {e(")} in Mzn(F). Then from [1] S has an

(ng) o (n) (nt)
orthogonal subset {eitit}t=l of {e;; n,i such that {e e; {8 is

Tele

an essential right ideal and 1 ¥ tZlN(ei E)) Thus we get (4)
by (5). So we will form a subring R (2 S) of § which satisfies
1 = sup{N(x) | x e I} for all essential right ideals I of R. We
denote by T, the subring of 5§ generated by {F, {e(n)}n 1] and by
T the completion of T0 in the N-metric. Then TD' T are strongly
regular rings, that is, every idempotent of Tgr T is central.
For a ring T, B(T) represents the Boolean ring consisting of all
central idempotents.

Definition of the ring R: In the ring §, R is the subring
generated by {S, B(T)}.
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In this paper we give a brief sketch of the proof that the
maximal right quotient ring Q of R is directly finite and not
left self-injective.

First step: For every essential right ideal I of R, we have
a set (f ], of idempotents in I which satisfies the following
conditions;

(a) £, = ay9, for some a €S, g, €B(T), for all t =
1,2,... t
(n) _ - (n) - ofn) (n) _
{(b) acej;- = ag (n=ny), ej; a, = e;5, 9.eji = 9 for
some i,

(e) {gt} is orthogonal in B(T),
(d) gtft = Ger gtft. = 0 for all t < t',
(e) Jo £.R is essential in Ig,

where S is the subring of § induced by Mon(F).

Then by the above set {ft}' we have sup|N(x) | x €I} =
sup N(x) | x ¢ }® ftR} = 1. From (5) in the first note, we have
that Q is directly finite and a subring of § = R.

Second step: We show that there is an element q in §
satisfying the following conditions;

(i) (R.’q) = {x eR [ xq <R} is an essential left ideal of R,

(ii) gR n R = 0.

Then we have Q # S, so we have that Q is not left self-
injective. For if Q is left self-injective, then Q is complete
in the rank-metric and S € Q. This contradicts to Q # 8.
Furthermore by Kobayashi’s result [4), we have that § is the
maximal left quotient ring of Q.

2. Reqular ring with a continuous element. In [3] von
Neumann defined a continuous element and showed an example of a
regular ring with it. For a left and right self-injective
regular simple ring R, {eég)}n,i,j {c R) is called a continuous
set of matrix units of R if it satisfies the following

(n) _ _(n+l) el oy . feﬂ‘)'

conditions; (1) €ij ~ €2i-1,2j-1 2i,2j i=1
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(m_(m _{eih =K . n
(3) e1J ery = 0 3 # k)' for all i,j,k,2 =1,2,...,2, n =

1,2,... . For the above ring R with the field of complex
numbers C as the center of R, an element x in R is called a
continuous element with respect to the continuous set {e(n)} of

o
matrix units, if there is a set {p? |°i # pj (i # 3)}i=1 of

rational numbers for all n = 1,2,... , such that
(n)(x + 0y )e(n) = i?’ = i?’x for any i, n.

Then for the above ring R, the following are known:

(1) R has a unique rank function N and is complete in the N-
metric [2].

(2) For a continuous element x with respect to {eig)} in R,
£(x) is invertible in R for all £ ¢ C[Y], where C[Y] is the
polynomial ring over C [3].

(3) 1 = N(x - s) for all s¢S, where S is the direct union

‘“’}2 } 131,

of subrings S generated by {C, {e i,3=1

For a field F with characteristic 0, we denote by F(x) the
rational function field in one variable over F. For any n, we
define a twisted matrix ring M n({F(x)) by the following

conditions; ]
f(x)e(n) = e(n)f(x + Q—%Ti)

i3 iJ 2
2n 21'1 2n
(n) (n) _ (n)
shfens v bty T Lt sug)e
2"y 2 2° K=3.1 0
n n), _ i - n)

( Z f1J i3 )(12 93383 ) iEj‘Efik‘*’gk:‘* + ey
where {e(n)}1 j=1 is the matrix units of M;n(F(x)), and fi]’ 954
€ F(x).

Then M;n(F(x)) is an artinian simple ring. For any n, we
define a ring homomorphism ¢n: M*n(F(x)) - M;n+1(F(x)) by

(n), . (n+l) (n+1) )
9 (flj ij ) = fij(ezi-l,zj-l + ey 23)- By ¢n' we consider the

direct limit § = lim M;n(F(x)), then S is a simple regular ring
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with a rank function N. Let R be the completion of S in the N-
metric and {e(g)}n i,j the matrlx un1ts in R induced by {e(n)}
r '

in M* n(F(x)) for all n. Then {ei is a continuous set of

]n i,3
matrix units in R, and x is a continuous element with respect to

{e{M}.
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