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PREFACE

This volume is the Proceedings of the 19th Symposium on Ring Theory,
which was held at Shinshu University, Matsumoto, on August 21-23, 1986.
The symposium consisted of thirteen talks including two special lectures
from the knot theory by Dr. T. Kobayashi and the commutative ring by
Prof. H. Matsumura, to whom 1’d like to give my gratitude.

The proceedings contains eleven articles by the speakers. Some of
them are expository and the complete or final versions will appear
elsevhere.

We should like to acknowledge the financial assistance from the
Grant-in-Aid for Scientific Research from the Ministry of Education
through the arrangements by Professor K. Shiratani. VWe appreciate his
arrangements.

We wish also to extend our thanks to all speakers of the symposium,
to Professor K. Kishimoto for his well arrangement and kind hospitality
at Shinshu University, and to Professor H. Tominaga for his compilation

of the proceedings.

Shinshu University (Nagano), November 1986

Yasuo lwanaga
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PROCEEDINGS OF THE 19TH
SYMPOSIUM ON RING THEORY (1986)

ON H-SEPARABILITY OF GROUP RINGS

Kazuhiko HIRATA

Let k[G] be the group ring of a finite group G with a coef-
ficient field k, and C the center of k[G]. Assume that the
characteristic of k does not divide the order of G. Denote by
gx and cyx the number and the sum of elements in the conjugate
class of G containing the element x of G, respectively.

Lemma 1. u = Zcx(l/gx)cxcx-u is a unit in C.

Proof. We can prove that {(l1/gy)cx} and {cy-1} is a pair of
dual bases of C over k, that is, if cy(l/gx) Cy = Zcz(l/gz)czazx,
azx €2, then cpucy = Zcx.,azxcx.l. On the other hand, C is a sep-
arable algebra over k in the sense of that, for any field ex-
tension L of k, Cp, is a semisimple L-algebra. Then u is a unit
in C by Theorem 71.6 in [2] p.482.

Let v be the inverse of u in C, uv = 1.

Corollary 2. Zcx(l/gx)cxecx-w is a separability idempo-
tent in C®yC.

Proof. It is clear that c(Z(1/gy)cy® cyxv) = (Z(1/gy)cy®
cy-tv)c for any c€ C and 2 (1/gy)cyCxiv = 1.

Let p be the projection map of k[G] to C defined by p(a) =
(l/n)zxe G xax'| for a€ k[G], where n is the order of G.

Corollary 3. {x-p; x'v} (x€G) is a system of projective
bases of k[G] over C.

The final version of this paper has been submitted for
publication elsewhere.



Proof. For the identity 1 of G, we have erG(x-p) (1)x3v =
Txeg PX)IxIv = Ty egl(l/gy)oxxtv = T, (1/gy) cycxav = 1. Now,
for any y€ G, we have Xy ¢ g(x-p) (y)xiv = Z xe g Plyx)xiv =
Txe g PR (yx)' vy = y.

Now consider the two-sided k [G]-module k(Gl® ckI[G]. Then,
for each x€ G, the element (l/n)zye c YOxy' is in (k[GI® ¢
k[G]) X [€] ={§€ k[G]1® ckI[G] | at =% a, for all a€ k[G]} . There-
fore the map my, for x€ G, defined by my(a) = ((l/n)Zye cY®
xyl)a, a€ k[G], is a two-sided k[G]-homomorphism of k[G] to
k[G]® ck[G]. The map ny, for x€ G, defined by ny(Z aj®b;) =
Yajxlvbj, Laj®b;€ kIGIQ kIG], is a two-sided k[G]-homomor-
phism of k[G]® -k[G] to k[G]. Then it is easily verified that
Y xe G Meny, is the identity map of k[G]® ¢k[G]. Thus we have
proved the following corollary.

Corollary 4. Kk[G]I® ck[G] is a two-sided k[G]-direct summand
of the direct sum of n-copies of k[G].

If this is the case, then it holds that k[G]®Ck [G] = Home(
k[G], kI[G]) and kI[G] is finitely generated projective over C,
see [5] p.1l12. Therefore k[G] is a central separable C-algebra
by Theorem 2.1 [1].

Let H be a subgroup of G and G = Z{=1 YiHl a coset decompo-
sition of G by H. Denote by hy, and d, the number and the sum of
elements in the H-conjugate class of G containing the element x
of G, respectively. Let A be the centralizer of k[H] in kI[G].
Then {dy,} is a k-basis of & . By the same way as in Lemma 1, it
can be verified that {(1/hy)dy} and {dx-l} form a pair of dual
bases of A over k. Let g be the map of A to C defined by g(a)
= (1/r) Zi yiay;_' . for ag¢A . It can be shown that g does not
depend on the choice of y; and q is the projection of A to C.

Proposition 5. {(l/hx)dxgq; dxﬂv} is a system of projective
bases of & over C, where x runs over all the representatives of
H-conjugate classes of G.

Proof. If we notice that q(d, )’ = (hyx/gy)cy and ¢, is a sum
‘of some dy's, the calculation is similar to the proof in Corol-



lary 3 and we shall omit it.

Let D be the centralizer of A in k[G]. Then D>kI[H] and
the centralizer of D in k[G] is equal to A .

Proposition 6. k[G) is an H-separable extension of D.

Proof. For a representative x of an H-conjugate class of G,
define sy : k[G] — kI[GI® pk([G] by sy(a) = ((1/r) Z,; y;® (1/hy)
dyyjla and ty : k[G1®pk[G] —» k[G] by tx(Zai® bj) = Fa;dy-l
vb;, respectively. As (l/r)ZX; y;® (1/hx)de-jt is in (k(G)®p
k(6]) K(G) ang dytv is in A, sy and ty are two-sided k([G]-homo-
morphisms, respectively. If we notice that de(l/hx)dxy';_dx-cv
is contained in D, it is easily verified that st«atx is the
identity map of k[G]® pk[G], where the sum is taken over all the
H-conjugate classes of G. Therefore k[G]® pk[G] is a two-sided
k [G]-direct summand of a direct sum of finite copies of k(G] and
k[G] is an H-separable extension of D.

Even if the characteristic of k divides the order of G, if
the index of H in G is a unit in k, k([G] is always a separable
extension of k[H] by Proposition 3.1 [6]. In this case it hap-
pens that k[G] may or not be an H-separable extension of D. Let
k be a field of characteristic two. Take G = S3 the symmetric
group of degree three and H = <(12)>. Then G = H + (13)H + (23)
H is a coset decomposition of G by H. Put x; = (12), x, = (13)
+ (23) and y = (123) + (132). Then we have & =kl + kx; + kx,
+ ky and D = k[G]® = A . The projection q of & to C is given
by g(a) = (1/3)(l-a-l + (13)a(l3) + (23)a(23)) for aé A . Then
{qa, %2°q, y-q; l+y, x5, 1} is a system of projective bases of A
over C. Define maps s; : k[G] — k[G]®pk[G] (i =1, 2, 3) by
sy(a) = (1/3) (1@1 + (13) ®(13) + (23)®@ (23))a, sy(a) = (1/3) (1®
Xy + (13)@x,(13) + (23)@ x3(23))a and s3(a) = (1/3) (1®y + (13)
®y(l3) + (23)®y(23))a, respectively. Also define maps t; :
k[GI@pk(G] —> kI[G] (i =1, 2, 3) by t;(Za;®b;) = Ta;(l + y)
bj, to(La;®b;) = Zajxob; and t3(Zaj®@b;) = Za;jbj, respec-
tively. Then Zj=) sjot; is the identity map of k[G]®pk([G] and
k[G) is an H-separable extension of D. Next take G = S4 and H =
<(13), (1234)> a 2-Sylow subgroup of G. Put x = 2(12), y = 2



(123), z = 2.(12)(34) and w = 2 (1234). Then we have x2 = 6 +

3y + 22 2 3+#22=1and w2 = 6 +

Y, y© =8 + 4y + 8z = 0, z2
3y + 2z = y. Therefore kx + ky + k(z - 1) + kw is the radical
of C. Since C is five dimensional over k, C is a local ring.
On the other hand, as there are eight H-conjugate classes of G,
A is eight dimensional over k. Therefore A is not C-projec-
tive and k([G] is not an H-separable extension of D.

Addendum. A. Hattori defined the rank element for finitely
generated projective modules [3]. From Corollary 3 we know
rankck [G] = n/u. This is found in (4] in connection with the
separability idempotent, Example 4 and Proposition 3.1.
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AUTOMORPHISMS OF FINITE ORDER OF KAC-MOODY LIE ALGEBRAS

Zenji KOBAYASHI

1. In this note, we will classify all automorphisms of prime
order of the affine Lie algebra A;E{ up to conjugacy in the group
of all automorphisms of Aéi{. To do this, we will use non
abelian group cohomology of some finite cyclic group acting on

PGL,(C[t,t™11).

2., We first recall some facts about Kac-Moody Lie algebras
and associated groups(see refs.[1l) and [2] for details).

A symmetrizable generalized Cartan matrix A=(aij) is an nxn
matrix of integers satisfying aii=2 for all 1i; aijso if ixj; DA
is symmetric for some non-degenerate diagonal matrix D. We fix
such a matrix A, assumed for simplicity to be indecomposable, A
is called finite(resp. affine) type when DA is positive definite
(resp. positive semi-definite and not positive definite).

The Kac-Moody Lie algebra §=¢(A) is the Lie algebra over G
generated by symbols h;, e; and fi(ISiSn) with defining relations:
[hi,hj]=0; [ei, fj]=5ijhi;[hi,ej]=aijej, [hi,fj]=—aijfj;
(ad(ei))l'aij(ej)=(ad(fi))l'ai:j(fj)=0 (ix3). § is graded by Z"
with ey of degree ai:j”dij’ fi of degree -of and hy of degree 0.
The set A of roots is the set of degree o for which the subspace
g« of elements of degree « in ¢ is non-trivial. Let n (resp. PR

resp. %_) be the subalgebra of 9 generated by the ei(resp. h;,

The detailed version of this paper has been submitted for
a publication elsewhere.



resp. f;)(1¢ién). Then4=7_+f+n and f= Chy+---+Ch . Concor-
dantly with this deconmposition of 9 we have A = A_V(O)VA+.
Difine rieAut( Zn),by ri(dj)"'aj'ajidi’ and put S:(rl,---,rn)

then S generates the Weyl group W, and (W,S) is a Coxeter system,
W preserves the set Aof roots. A real(resp. imaginary) root is
an element of Ap=W(T)(resp. ;=4 -4,), whereT= {og 5--, dn).

3, We now construct the group G associated to the Lie alge-
bra §¢. A@-module V, or (V,®), where ‘R:QHEndm(V), is called
integrable if T(e) is locally nilpotent whenever e€q,, aeap,

(4, ad) is an integrable @-module.

Let G" be the free product of the additive groups gu(o{EA ),
with canonical inclusoins ig: g,HG . For any integrable 9-
module (V,M), deflne a homomorphism T : G Aut (V) by T (:La(e))_
expT(e), Let N" be the intersection of all Ker('lt ), put G=G o .
and let q:G "G be the canonical homomorphism, For e€4, («A€A
put exp(e)=q(ig(e)), so that Uy=exp( 4.) is an additive one-
prameter subgroup of G,

R)»

Example: Let A be the Cartan matrix of a simple finite-
dimensional Lie algebra §over E(i.e. A is of finite type). Then
the greoup G associated to 3:3(1&) is the connected simply-
connected algebraic group associated to g Now let A be the
extended Cartan matrix of 3(1n this case, A is ‘of affine type).
Then the group G associated to Q(A) is a central extension by ¢
of G(E[t,t™11),

To any integrable g-module (V,%) we associate the homo-
morphism(again denoted by)'n::GHAutm(V) satisfying qt(exp(e))=exp
N(e) for eeg,(ot€Ap), The homomorphism associated to (g,ad),
denoted Ad, maps G into Autm(v). The kernel of Ad is the center
C of G, and Ad(G) acts faithfully on 4/c, where c is the center
of g .

By the study of such a group G, Kac and Peterson proved the
invariance of generalized Cartan matrices and the description of

Aut(g).



Theorem 1 [2). (a) If ¢,=4(A) is a Kac-Moody Lie algebra,
with center €y such that fl/cl is isomorphic to f/c, then A:Al
up to a bijection of index sets.

(b) Any automorphism of the Kac-Moody Lie algebra §=4(4)
can be written in the form Ao-or w)o where o€ Ad(G); Aley )= ,\_L ey »

1k

x(f )—X f:. , i=1,---,n, for some )\ GE and a permutation i J.k
k

preserv:.ng the matrix Aja(e;)=-f;, w(fi)=-ei, i=l,---,n,

4. Ne now classify all automorphisms of prime order of the
affine Lie algebra }5(13. up to conjugacy(see ref, [3] for details),
Let 4 be the affine Lie algebra over & of type Ar(i{ (n22),
i.e. the Kac-Moody Lle algebra defined by the symmetrizable general-
ized Cartan matrix of affine type Agli_(a .) satisfying a, 3-2 if
i=zj; =-1 if }Ji-j1=1 or n-1; =0 otherwise, Then we have a un1ver-
sal central extension over T ; (1) 0 —Cz—§ —)Jln(E[t t” ])—) 0,
where z= hl+---+hn,’l(e )= Ei 1412 2(e )= {Enl’ 7(hy)=E; 4
7(h )= =E =B o 'z(f )= E1+1 i ¢(f ) t7UE, i=1,- ,n, 1,] is the
matrix unit with 1 in the i,j position and O elsewhere;
44, (ert,t71)= {XeMn(ﬂ:[t,t']']) | tr x=0}.
By the universality of (1) and Theorem 1-(b),
Aut(9) = Autg(4d, (CLt, t'l] ))
LAty o (T Lt 1) paL,(€Lt,t™11) when n=2
((‘t)xAutm_ 16Tt t'1]))D<PGL (€lt,t™11) when n»3,
where ¢t is the involutive automorphlsm induced by the Dynkin dia-
gram automorphism of A .. More precisely, 7 is defined by t(ei)
=—e_ . and’l'(f )_-f j i=l,--,m, ’Z'(e )=-e_ and 't(f )=-f .

n-i n
PGL (G[t,t~ ]) acts on .{Z (Ct,t~ ]) by con,]ugatlon.

1+1 i+l?

From now on we will let R=E[t,t” ]. Let #P be an element of
Autg(4€,(R)), where 8€(TY*Autgy . ,(R) and PEPGL (R). &P is of
order k{ky2) if and only if #¥=1 and (#%"1+p)---(8*P)P=I in PGL_
(R), where #° note the action of & on PGL (R). Let 0'P and &PE
be elements of order k. 0P1 is conjugate to d‘P under PGL (R)

i.e. #P -Q' (6P,)Q for some Q€PGL/ (R), if and only if Py (0'Q 1)
P,Q for some QePGLn(R). The condition (8%~ 1°p)---(&'P)P I,



(resp. P (0‘Q'1)P2Q) coincides with the cocycle condltlon (resp.
the coboundary condition) of the group cohomology ut (Z »PGL_ (R))
under the action of # (=a generator of Zk) on PGLn(R)

Let O (resp. £€,) be the automorphism of R induced by twrt
(resp., t—»=-t), then the set{o, £2’ T, To, T€,) is a set of
representatives of the conjugacy classes of order 2 of (T *Aut
- alg(R) Let §_Dbe the automorphism of R induced by tH?_,kt (Ek
=k~th primitive root of unity), then the set [£k,(\€k)‘2
(21{)(k -1)/2 } is a set of representatives of the conjugacy
classes of order k(k is an odd prime) of (t)xAutm_alg(R).

-1

5. We determine some cohomologies Hl( Zk,PGLn(R)) in the
following situation:(1l) k=2 (a) trivial action; (b) 0-~action; (c)
&-action; (d) T-action; (e)T@-action; (f) TE,-action; (2) x=
odd pr:Lme (a) “rivial action; (b) Ek-action. At first, we deter-
mine HY (Zk,GL (R)) with the above actions, using Grothendick's
"theory of descent" and the normalization of symmetric bilinear

forms over R-modules,

I
Theorem 2. HY( Zy s 6L (R)) is: (1)-(a) [ I, y = [ a"IbJ |

I, . I
a+b=n} H (b) [ Ja,b,c = th N Ja,b,c = -th |
-I =TI
c
L1 L1
atb+c=n}; (¢) {In]; (d)[K1= l" y Ky= [tl,- ]}; (e) {Kl} ;
11
0 .
] _ - -1
(s @@ Ut ey 0 L, | Zo2,=0 ) ;
31
I ka, _q

(b) (1,1 .

Since the sequence l*R'*GLn(R)*PGLn(R)*l is exact, the se-
quence Hi(Zk,GLn(R))+H1(Zk,PGLn(R))+H2(Zk,R') is exact (ref.[4]).



Using this exact sequence, we can determine Hl( Z, ,PGL (R)).

Theorem 3, HY( Z, ,PGL (R)) is : (1)-(a) { Ia,bl a+b=n, &b}
3
o *
(n=odd), { T, y, |~ H  _y|]ayb ) (n=even); (0) (I, 4 o» I3 o 5 |

by

0t~
10

ayb+c, dye+f, dx0}; (c) {I )} ; (d) {Kl, Ka} (n=o0dd), { Kys Ks,

-10
Ky= . 0',0 1|} n=even); (e){ Ky} (n=odd), { K;, Ks, K,=
01
10 ‘ -10
ott 0t
l Ozll ) K5= _l O'l }(n:even); (f) (Kl] ; (2)—(a)
0t~ 0ot~
{ Iao;"’ak lI (ags-svya)_p) runs a set of representatives of the

equivalence relation generated by (ao,---,ak_l)-\-(a('),---,a}'{_l) [~
ad=ay,cmap_>=ay 1s a1, } (When k is not a divisor of n);

L, £~d
{1, .. s | o=, kxk matrix and j=l,---,
8037 38K L l

(k-1)/2 } (When k is a divisor of n); (b) {I ).

6. As an application of Theorem 3, we classify all auto-
morphisms of prime order of gup to conjugacy. In this note,
we only state the case n=2, other cases are found in [3].

Theoren 4, Letf:ﬁ(Agl)). A complete set of representa-
tives of automorphisms of prime order k up to conjugacy in Aut(})
is the following: (1) k=2 (a) ejmr-ey, fym=-f), ey =€y, -1,
s (a') e1me,, I i, eymey, fymf; (b) e1H -, f1-1;, e,
F£5,171,8,), fo02[les5e115e9] 5 (b') ejmrey, f198), €50
"}[[fa’fl]sfl]s fal—)-'}[[eapel]se]_] ; (b") eleZ’ leea9 eszls
fomreq; (c) e ey, 1P f, e;p-e,, fzn_-)a-fz; (2) lac?,j Put ;=.;.1§
(a) For a=l,---,(k-1)/2, elr—)f‘el, f,Y 1, exmy ey, f03 £,



10
' b -b
(b) For b=l,--,(k-1)/2, eqrre,, fiPf, ezh'S €5s f2h+3 £5e
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PROCEEDINGS OF THE 19TH
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*
LINK GRAPHS AND TILED ORDERS

Hisaaki FUJITA

In [4]), B. J. Miller introduced the concept of links between
prime ideals in fully‘bounded noetherian rings to study local-
izability of semiprime ideals. Recently in [5], he initiated a
detailed study of the link graphs. In this note we shall announce
some results concerning link graphs of tiled orders over a local
Dedekind domain. Detailed proofs of them can be found in [1], [2].

First, we shall recall links between prime ideals of a fully
bounded noetherian ring of Krull dimension one. Let P and Q
be nonzero prime (or maximal) ideals of a (fully) bounded
noetherian ring of Krull dimension one. Then there exists a link
fron P to Q@ 4if PN Q 3 0P holds. (See [4].)

Let R be a local Dedekind domain with the maximal ideal
TR and the quotient ring K. Let A be a tiled R-order in (K)n
(i.e., an R-order in the full n x n matrix ring (K)n over K
which contains n orthogonal idempotents of (K)n). Since A is
finitely generated as an R-module and R is local, A is a
semiperfect bounded noetherian prime ring of Krull dimension one.

Al
By [3, Lemma 1.1), we may assume A = (1 “JR) C (R) . Let A be

m, ..
basic and for each 1 sk sn put M = (7 liR) where Meij =

1 (if i =3 = k) and Aij (otherwise) . Then My, ..., M are

the maximal ideals of A.

* This note is a summary of [1] and [2].
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Proposition 1. Let A be a basic tiled R-order in (K)n
and let 2(A), be the quiver of A defined by A. Wiedemann and
K. W. Roggenkamp [7]. Then there is a link from M; to Mj if
and only if there is an arrow from i to j in Q(A).

If global dimension of A is finite, @Q(A) contains no
loops. Hence as an easy consequence of the proposition, we obtain

Corollary 2. If gl.dim{(A) < », all maximal ideals of A is
idempotent.

An ideal of a ring is said to be eventually idempotent if

some power of it is idempotent. In connection with above fact,
we note the following proposition.

Proposition 3. All maximal ideals of A are eventually
idempotent.

In what follows we shall confine ourselves to tiled R-orders
between (R)n and (‘ITR)n (i.e., (R)nD AD (nR)n).

Theorem 4. Let A be a basic tiled R-order between (R)n
and (nR)n, 0(a) the quiver of R/TR-algebra A = A/(nR)n and
M1, ceey Mn the maximal ideals of A. Then there is a link from
Mi to Mj if and only if there is an arrow from i to 3j in
Q(a), or else i 4is a non-domain and j 1is a non-range in Q(Aa).

We shall give an example to illustrate the contents of the
theorem.

R TR 7R
Example 5. Let A = TR R 7R and A = A/(mR).. Then the
T R R 3

quiver of A is given by
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The non-domains of €Q(A) are {1, 3} and the non-rages of {(A)
are {1, 2}. so, the link graph of A 1is given by

(2
Z%Zi—j:\3 .

Let A be a tiled R-order between (R)n and (nR)n and A
= A/(nR)n. Then the quiver of A has the full information of A.
However, as for the link graph, there exist tiled R-orders A
and T between (R)n and (ﬂR)n with the same link graph, but
the quiver of A = A/(nR)n is different from that of B = F/(nR)n.

R TfR T’R ‘"R R R R R
_ R R TR 1R _ TR R ©R mR

Example 6. Let A = | p p pqr |24 T =1 2 R R |"
R R T R "R R TR R

Then Q(A) and Q(B) are given by

3 1 4 and 3,/”1R\\4 .
AN N,

Hence by Theorem 4, the link graphs of A and T are given by

The relationship between such A and T is clarified by
the following theorem.

Theorem 7. Let A and T be basic tiled R-orders between
(R)n and (nR)n. Then the following statements are equivalent.

(1) A 1is isomorphic with T as rings.

(2) The link graphs of A and T are equal except for the

numbering of the vertices.
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3) T = uAu-1 for some regular element u ¢ (R)n.

For a tiled R-order A = (Aij) between (R)n and (nR)n,
let dA(A) denote the number of Aij's which are equal to TR.

Corollary 8. Under the same assumption of the theorem, if A
is isomorphic with T, then d(A) = 4(I').

Proposition 9. Let A and T be basic tiled R-orders
between (R) ~ and (vR) ~ with the same link graph, and put A =
A/(nR)n. Then if the quiver of A 1is disconnected, then A =T.

Next, we shall state some results on global dimension of
tiled R-orders between (R)n and (nR)n.

Proposition 10. Let A be a basic tiled R-order between
(R)n and (nR)n and put A = A/(nR)n. Then if the quiver of A
is disconnected, gl.dim(A) = o,

Proposition 11. Under the same assumption as Prop. 10, if
the quiver of A is a tree, gl.dim(A) s 3.

Remark. Let the quiver of A be a tree. Then it follows
from the proof of Prop. 11 that g¢gl.dim(A) € 2 if and only if
2(A) has a unique source or a unique sink. This fact is a
special case of [6, Theorem].

Finally, we shall give an example of an ascending chain of
tiled R-orders between (R)n and (nR)n whose global dimensions
are increasing.

Example 12. Let m =2 2, n =2m and 1 £k €sm - 1, and let
Ak be the basic tiled R-order between (R)n and (ﬂR)n such
that the quiver of Ak/(nR)n is given by
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e — 00 m

AN

m+] — mM+2 —> o> —p Mtk —+ ¢ — 2m .,

Then A, CA,C -+ CA
m - 2 and gl.dim(Am_1

n=1" gl.dim(Ak) =k +3 for 1l sk §
) = =,

Concluding remark. Utilizing above results, I have written a
program to compute a list of all non-isomorphic tiled R-orders
between (R)n and (nR)n. If n=5 (resp; 6), there are 45
(resp. 244) non-isomorphic ones. Let G(n) = Max{gl.dim(A) | A
is a tiled R-order such that (R)!'1 DA D (11R)n and gl.dim(A)
is finite}. Then G(n) =1, 2, 3, 3, 4 where n =2, 3, 4, 5, 6,
respectively.
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COMPRESSIBLE ALGEBRAS

Efraim P. ARMENDARIZ, Hyeng Keun KOO and Jae Keol PARK

Dedicated to Professor Hisao Tominaga on his 60th birthday

1. Introduction.

For a ring R with identity, R is called compressibie if Z(eRe) = eZ(R)
for every idempotent ¢ of R, where Z(R) denotes the center of the ring R.
When every idempotent is central, then obviously R is compressible; thus,
in some sense, compressibility is a measure of centrality of idempotents.

The concept of compressibility was introduced by S.K. Berberian in [4]
and several classes of rings related to operator algebras were shown to be
compressible. In response to a question of Berberian, A. Page [10] gave a
partial affirmative answer for the von Neurnann reguia.r ring case, that ié, for
any n the n X n matrix ring over a regular compressible ring is compressible.
But G.M. Bergman [5] constructed a (non-commutative) integral domain,
satisfying a polynomial identity, for which the 2 X 2 matrix ring over the
domain is not compressible, thereby shcw@ring that compressibility need not
be a Morita invariant property.

However, E.P. Armendariz and J.K. Park [1], [2] proved that sepa-
rable algebras, regular P.I. group algebras and prime P.I. group algebras
are compressible. Also in [2] they observed the compressibility of some

interesting classes of rings such as biregular rings and skew group rings,

etc.

This paper is in final form and no version of it will be submitted for

publication elsewhere.
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Furthermore, in [3] E.P. Armendariz, H.K. Koo and J.K. Park showed
that every semiprime group algebra is compressible. Indeed, they proved
that every n X n matrix ring over a semiprime group algebra is compressible.
By this fact idempotents of semiprime group algebras may be considered
as being almost central.

For the non-semiprime group algebra case, K. Motose [8] constructed
a noncompressible group algebra of a finite group. This example, coupled
with Bergman’s example shows the limitations of compressibility. But,
however,; K. Motose [8] found some classes of non semiprime group algebras
which are compressible.

In this semi-expository paper, after recalling what we consider the in-
teresting results and examples already done by several authors, we establish
the compressibility of endomorphism rings of projective modules over com-
mutative rings using the same line of investigation in [1], [10]. Also we
consider the possibility of characterizing separable algebras via compress-
ibility.

For compressible endomorphism rings, we provide some examples. As
we see later, these examples show that the result of Page as well as those
of Armendariz and Park may not be extended beyond the endomorphism
ring of a projective module with finite rank.

We can prove, however, that the endomorphism ring of a projective
module (not necessarily of finite rank) over a commutative Noetherian ring
or over a commutative domain is always compressible.

For the possibility of characterizing separable algebras via compress-
ibility, we give some compressible but not separable algebras which suggests

other additional strong hypotheses will be necessary.

2. Semiprime Compressible Rings.

In this section we collect some interesting results and examples about



semiprime compressible rings which are due to several people.

We start with the following

Proposition 1. [3] Let R be a semiprime ring and let Q(R) be the max-
imal right quotient ring of R. If Z(R) = Z(Q(R)), then R is compressible.

Corollary 2. (a) If R is semiprime, then Q(R), the Martindale quotient
ring Qo(R), and the extended central closure RZ(Q) are compressible.
(b) A semiprime rationally complete ring is compressible.

(c) Every regular right self-injective ring is compressible.

(d) If R is a semiprime P.1.-ring and Z(R) is self-injective, then R is com-

pressible.

A ring is called an I-ring if every non-nil right ideal contains a non-zero
idempotent.
By Proposition 1, we are able to characterize prime compressible I-

rings.

Proposition 3. [3] If R is a prime I-ring, then R is compressible if and
only Z(R) = Z(Q(R)).

For the compressibility of regular Baer rings, D. Castella obtained the
following via the relation between Z(R) and Z(Q(R)).

Theorem 4. [6] Let R be a regular Baer ring without a non-zero central

abelian idempotent. Then R is compressibleif and only if Z(R) = Z(Q(R)).

Corollary 5. Let R be a regular Baer ring. Then R is compressible if and
only if R = Ry ® Ry with R, reduced and Z(R;) = Z(Q(R2)).

In a reduced ring, every idempotent is central and so it is compressible.
Also every abelian regular ring is compressible. Hence we have a naturally
raised question: “Is every regular P.I.-ring compressible?”. But the answer

is negative, as Y. Hirano’s example in [3] shows.
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A ring R is called biregular if for each a € R the two-sided ideal RaR

is generated by a central idempotent.

Theorem 6. [3] (a) Every biregular ring is compressible; in particular,
every simple ring is compressible.
(b) Every finitely generated semiprime algebra over a commutative regular
ring is compressible.
(c) Every semiprime finite centralizing extension of a commutative regular

ring is compressible.

As a direct consequence of Theorem 6, a semiprime group ring R[G]
with G finite, as well as the n X n matrix ring Mat,(R) over a commutative
regular ring R, is compressible.

Moreover, for the matrix ring case, A. Page obtained the compressibil-

ity of the n x n matrix ring over a regular compressible ring.

Theorem 7. [10] For any n, the n X n matrix ring over a regular com-

pressible ring is compressible.

Because of Page’s result, combined with the compressibility of a semi-

prime group ring of a finite group over a commutative regular ring, we raise

the question:

Question 8. Let R be a regular compressible ring and G be a finite group

whose order is invertible in R. Then is R[G] compressible?

Theorem 7 is a partial affirmative answer for a question raised in [4].
But in answering negatively to the question, Bergman [5] constructed a
(non-commutative) P.I. domain such that the 2 x 2 matrix ring over the
domain is not compressible. This domain given by Bergman eliminates a
large class of rings, prime Goldie rings, for which compressibility is a Morita
invariant property.

In contrast to P.I. domain given by Bergman, Armendariz and Park



showed that every Azumaya algebra over a commutative ring is compress-
ible. In particular, the matrix ring Mat,(R) is compressible whenever R is

commutative.
Theorem 9. [1] Every Azumaya algebra is compressible.

In the following example, due to Armendariz, there is a noncompress-

ible prime regular ring which eliminates various potential conjecture about
compressibility when combined with Bergman's example.
Example 10. [4] Let H be an infinite dimensional complex Hilbert space,
B the *-algebra of all bounded linear operators on H, F the ideal of oper-
ators of finite rank. For a proper subfield I of the complex field @ that is
closed under complex conjugation, let A = F + IK1 be the set of all opera-
tors £ = Al + a with X\ € I and a € F, where 1 is the identity operator of
H. Then A is prime, unit regular but not compressible.

However, for the group algebra case, every semiprime group algebra is

always compressible as Armendariz, Koo and Park have shown.

Theorem 11. [3] For a positive integer n, every n X n matrix ring over a
semiprime group algebra K[G] over a field K is compressible. In particular,
every semiprime group algebra K[G] over a field K is compressible.

Without the condition of semiprimeness, a group algebra is not always

compressible.

Example 12. [8] (1) The group algebra K|[S;] is not compressible,
where K is a finite field of 4 elements.

(2) Let K be a finite field of 4 elements. For the quarternion group Q of
order 8, i.e.,

lpy = I-x) ,

Q=(zyls*=1,22=¢", vy~
let g be the automorphism of @ defined by 7 = zy and y? = 2. Now let T

be the semidirect product of @ by a cyclic group (g) of order 3 with respect
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to this action. Then T is isomorphic to SL(2,3) ande =1+ g+ g2 is an
idempotent in the group algebra K[T]. In this case Z(eX|[T)e) # eZ(K[T))

and hence K[T] is not compressible.

In spite of Example 12, Motose proved that some non semiprime group

algebras can be compressible.

Theorem 13. [8] The group algebra K[G] of a finite p-nilpotent group
G over a field K is compressible.

We close this section with the following example which shows that the
group ring R[G] may not be compressible even though the order of G is

invertible and R is a P.I. domain.

Example 14. Let R be the P.I. domain given by Bergman such that
Matz(R) is not compressible. Note that R may be an algebra over the
complex number field ©. Take G = S;. Then the order of G is invertible in
R. Now R[G] = R&p C[G] = RQp (T CDdMaty(C)) = RS ROMaty(R).

But since Maty(R) is not compressible, R[G] is not compressible.

3. Compressible Endomorphism Rings.

Continuing the line of investigation in Theorems 7 and 9, in this section
we concentrate on the compressibility of endomorphism rings of projective
modules.

Recall that a Morite contezt consists of two rings R and S, two bimod-
ules sMp and gNg and two bimodule homomorphisms (called pairings)
(,): N@sM - Rand [, |]: M ®r N — S satisfying the associativity
conditions n[m, n'] = (n,m)rn' and m(n,m') = [m,n]m’ for m,m’ in M and
n,n’ in N. A Morita context (R, sMRg, rNs, S) is nondegenerate if the
modules sM, Mg, rRN, Ns and two pairing ( , ), [, | are faithful. For
details, see [9].

Now for a free R-module F, we may check easily that the derived



Morita context (R, 4Fgr, rFj, A) is nondegenerate, where pFj = Hom
(Fr,Rp) and A = Endg(F). In this case, note that two pairings are
(, ) and [, ] such that (f,m) = f(m) and [m, f}(z) = mf(z) for m,z in
F and f in F*.

The following may already be known. But for completeness we give its

proof.

Lemma 18. The maximal right quotient ring of the column finite matrix
ring over a commutative Noetherian ring R is the column finite matrix ring

over the maximal quotient ring Q(R) of R with the same rank.

Proof. Let A be the column finite matrix ring over the commutative
Noetherian ring R indexed by a set I, then A is the endomorphism ring
of the free R-module F with rank equal to the cardinality of the set I.

In this circumstance, we may observe that the derived Morita context

(R, aAFR, rF}, A) of the module Fp is nondegenerate. Hence by B.J. Mueller

[9, Theorem 19], the maximal quotient context (Q(R), Q(4Fr), Q(rF3),
Q(A)) is right normalized. Now since R is Noetherian, the maximal quo-
tient module Q(FRr) of Fp is a free Q(R)-module having rank the cardinality
of the set I, by K. Louden [7, Corollary 1.10]. Hence the maximal right
quotient ring Q( A) of A is the endomorphism ring of the free Q( R)-module
Q(FR). Therefore it is the column finite matrix ring over Q(R) indexed by
I

Lemma 16. Let R be a commutative ring and I be a finitely generated

ideal of R satisfying I = I. Then I = eR for some idempotent e of R.
With these preparations, we have one of our main results.

Theorem 17. The endomorphism ring of free module over a commutative

Noetherian ring is compressible.

Proof. Let A be the endomorphism ring of a free module F over a com-
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mutative Noetherian ring R. Then A is the column finite matrix ring over
R. To prove that A is compressible, let a matrix E be an idempotent in A.
Say E = (z;;) with z;; in R and B = }_z;;R. Since z;; = }_ zirzy;, the
ideal B satisfies B = BZ.

Now since R is commutative Noetherian, the ideal B is finitely gener-

ated and so by Lemma 16, B = eR for some idempotent € in R.

By these facts we claim that the ideal AEA and the left annihilator
ideal £4(AEA) of AEA satisfies AEANC4(AEA) =0and AEA+£4(AEA)
is dense in A. Since B = eR, we have z;je = z;; for every i,j and so
Ee = E. Now suppose X is in AEAN 4(AEA). Then X = ) a;E¥;
with a;,b; in A. Hence Xe = Y a;Ebije =Y a;Eeb; = Y a;Eb; = X. For
indices a, 8 let E,5 be the matrix with 1 in («, §)-position and 0 elsewhere.
First we show that eE,, is in AEA for every a. Say e = z;;a + Zrmb where
zi; and z, are entries of E and a,b are in R. Then we have E,;EFE;.a =
zijaEqq and Eqi EEmqb = TrmbEqa and so0 eBaq = (Tija + Zrmb)Eqa =
zijaEqq + TimbBoa = EqiEEjqa + EqiEEnqb is in AEA. Now since
X =Xeisin AEANC4(AEA) and eE,, is in AEA for every a, we have
XEq.o = XeEyq =0 for every a. Hence X = 0.

Now to prove that AEA+£,4(AEA) is dense in A, let X be an element
of Asuch that X(AEA+£€4(AEA)) = 0. Since E(1—¢) = 0, we have (1—¢e)I
is in £4(AE A), where I denotes the identity matrix. Hence X(1 —e)I =
X(1-e) =0 and so X = Xe. By our previous result, since eE,, is in

AFEA for every a, XeEqq = XEoq =0. So X =0.

Finally for the compressibility of A, let ¢t be an element of Z(EAE).
Define a map f from AEA + 4(AEA) to Aby f(} z;Eyi +2) =Y zity;.
Since AEAN £4(AEA) = 0, f is well defined by the technique of Armen-
dariz and Park [1, Proposition 1]. In this case, f is an (A4, A)-bimodule
homomorphism. Now observing that AEA +£4(AEA) is dense in A, there



exists ¢ in Z(Q(A)) such that f(z) = gz for every z in AEA 4 £4(AEA).
By Lemma 15 g = gol for some ¢q in Q(R). Now qF = qoIE = qoF and so
gE = qo(zi;j) = (gozi;) is in A. Thus gox;; is in R. Hence goe is in R. Let
s = goe. Then s isin R = Z(A) and so t = gF = qoeE = sE is in EZ(A).

So A is compressible,

Every corner of a compressible ring is always compressible. Hence we

get the following immediately.

Corollary 18. The endomorphism ring of a projective module over a com-

mutative Noetherian ring is compressible.

As we already mentioned in the previous section, Bergman [5] con-
structed a noncompressible 2 x 2 matrix ring Mat,(R) over a P.I. domain

R; for the commutative domain case, we have

Theorem 19. The endomorphism ring of a projective module over a com-

mutative domain is compressible.

Proof. In view of Theorem 17 and Corollary 18, it is enough to consider
compressibility for the free module case. Let A be the endomorphism ring
of a free module F over a commutative domain R. Then A is the column
finite matrix ring over R. Now let E be a nonzero idempotent matrix in A.
Say E = (zi;). We claim that the ideal B =} z;; R is equal to R. For each
index k, let Ay be the ideal of R generated by the entries of the k** column
of E. Then A is finitely generated. Since E? = E, we have BA; = A;.
Now assume to the contrary that B # R. Then there is a maximal ideal
M of R containing B. Let S be the complementary set of M in R. Then
S~'BA; = S 'Ai. In this case (S™'B)(S~'Ax) = S~'Ai. Note that
S—'M is maximal in S~'R, $~!B # 0 and S~!A; is finitcly generated.
Now let J(S~!'R) be the Jacobson radical. Then since S™!R is a local
ring, we have S™'B C S~'M C J(S™'R). So by the Nakayama lemma
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S-14; = 0. Hence A; = 0 for all k. Hence E = 0 — a contradiction.
Therefore B = R. Now by K. Louden [7, Corollary 1.10] the maximal
quotient module Q(FRr) of Fr is a free module over the maximal quotient
ring Q(R) of R. Asin Lemma 15, Q(A) is the endomorphism ring of Q(Fr).

Finally for the compressibility of A, we have AEAN 4(AEA) = 0
and AEA + €4(AEA) is dense in A by the same method as in Theorem 17.
Hence if t is in Z(EAE) then t = Eq for some ¢q in Q(R). So (zi;)g isin A
and hence z;;q is in R for every i,j. Therefore B¢ C R and so ¢ is in R.
Thus A is compressible.

It would be interesting to know if Theorems 17 and 19 extend to com-

mutative (semiprime) Goldie rings.

4. Examples.

As we already mentioned, every separable algebra is compressible. In
particular the n x n matrix ring over a commutative ring is compressible.
This result was partially extended in Theorems 17 and 19. But in general
the endomorphism ring of a free module over a commutative ring will not

be compressible.

Example 20. Consider the polynomial ring Z[z,,z2,...] over the ring
Z of integers with commuting indeterminates z,,z2,... . Let I be the
ideal generated by z,z% — z,, z;z; withn > 2,¢,7 2 2 and i # j. Then
R'= Z[z,,z,,...]/] isa commutative ring. Now let A be the endomorphism
ring of a free R-module of countably infinite rank. Then the diagonal matrix
E in A with T7Z3; in (i, {)-position is an idempotent, where ~ denotes the
canonical image in R. For convenience of our notation, Z; "} E denotes the
diagonal matrix with Z37 in (2, j)—position. Then in this case EAE is a
commutative ring and Z(EAE) = EAE. Note that Z7~'E = E(z7 'E)E
isin EAE.

But we claim that ;"' E is not in EZ(A) For, if z7 ' E is in EZ(A),



then there exists a in R such that Z1Z7za = T3, Tiz3a = T3,...,T1Zna =
Znye... S8y @ = f(T1,%2,...,Zm) With f(z1,22,...,2,) € Blz1,Z2,. . \Zm]-
Then since F; = F1zxa for all n = 1,2,3,... and T;, Z;j are orthogonal
for ¢,j 2 2 and ¢ # j, f(z1,Z2,...,Zm) = 9(z1) + u(z2,z3,...,2m) with
nonzero polynomial g(z, ) in Z[z,] and u(z3, =3, ...,z ) in Z[z2,Z3,...,Zm]-
Now for k > m, we have Ty = T1Zga = Z1Z:9(Z7). Hence z,z:9(z)) — z&
is in I. Wherefore there are by, b2, ...,b, in Z such that byz;zx + boz?z) +
«++ + byziT — 2k = h(z),24)(217% — 24) for some polynomial h(z,,zx) in
Z[z,,zk). Soif we substitute z,z2 for z in byz 2+ boxizi+- -+ b,zizi—
zy then its value should be 0. But this is impossible. Hence 7' E is not

in EZ(A) and so A is not compressible.

The next example shows that Theorem 7 can not be extended beyond
the endomorphism ring of a free module with finite rank even for commu-

tative regular rings.

Example 21. Let @ be the field of complex numbers and let R be the set
of all sequences from € which are eventually real. Then R is a commutative
regular ring. Let A be the endomorphism ring of a countably infinite direct
sum of copies of R. Now for each positive integer k let ¢x be the element
of R with 1 in the k£** position and 0 elsewhere. Then the diagonal matrix
E in A with e, in (n,n)-position is an indempotent. In this case every
element of EAE is a diagonal matrix with esannen in (n,n)-position for
some anp in R. Hence EAE is commutative and so Z(EAE) = EAE. Now
let ann be the sequence with i in the nt® position and 0 elsewhere, where
2 +1 = 0. Then the diagonal matrix in A with a,ne, in (n, n)-position is

in EAFE but it is not in ER. Hence A is not compressible.

Finally, the following two examples show that in order for a compress-
ible ring to be separable some additional quite strong conditions are prob-

ably necessary.
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Example 22. Let F be the free algebra with variables z,y, z and w over
the real number field IR. Let I be the ideal of F generated by z2+1, y2 +1,
22 +1, zy +yz, zy — 2, Tw + wz, yw + wy, zw+ wz and w?. Then the ring
A= F/Iis alocal ring and Z(A) = R. So A is compressible because 4 has
only idempotents 0 and 1. It can be checked that A is finitely generated
projective over IR. But A is not an Azumaya algebra because the Jacobson

radical J(A) of A is the ideal generated by w + I.

Example 23. Let Z be the ring of integers and let
' Z 2%
A= (2% Z ) ’
Then A is prime and Z(A) = Z. Also A is finitely generated projective

over Z and A is compressible. In this case the enveloping algebra A @z A°?
is not isomorphic to Homz(A4, A). Take f in Homz(A, A) such that

(6 20)-(3)-

But there do not exist a;,asz,...,a, and b;,b,,...,b, in A such that

1 0 0 2 0 2 0 2
(0 0)=al (0 O)bl+a2(0 O)bz+"'+an(0 O)bn-
So A is not an Azumaya algebra.
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PRCCEEDINGS OF THE 19TH
SYMPOSIUM ON RING THEORY (1986)

SIGNIFICANT EXAMPLES IN MODULAR
*
REPRESENTATIONS OF FINITE GROUPS )

Shigeo KOSHITANI

Throughout this note let G be a finite group, let p be a
fixed prime number > 0, and let (F,R,K) be a splitting pmodular
system for G (see [l, p.l15] or [1ll, p.47]), namely, R is a
complete discrete valuation ring of rank one with a maximal
ideal (m) generated by w € R such that p¢€ (n), K 1is the
quotient field of R with characteristic 0, F= R=R/(m), F is
a field of characteristic p, and both F and K are splitting
fields for all subgroups of G. We write FG, RG and KG for
the group algebras of G over F, R and K, respectively.

Here all groups are finite and all modules are finitely generated
right modules. By an RG-lattice M we mean an R-free finitely
generated RG-module. For such an M, let M= M/Mn, so that M

= MGRK , 8O0 that M is a KG-module

is an FG-module, and let M K

K
(hence semi-simple).

§1. Problems

Since it is considered that all finite simple groups G have
been determined, as the next steps we want to get the following
four things. Namely,

(1) the ordinary character table of G,

(2) the decomposition matrix D of G with respect to p,

*) This is a report of my result whose complete version will
probably be published elsewhere.
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(3) the Loewy structure of all projective indecomposable
modules (p.i.m.'s) over FG,
(4) all indecomposable FG-modules.

Concerning these problems we need more explanation. That is,

(1) Let {xl,...,xk} be the set of all irreducible K-
characters of G, and let {Cl,...,Ck} be the set of all
conjugacy classes of G (their numbers are always the same k).
The ordinary character table

C1 C2 ceven Ck

X
@i504,5  ° :
X

of G 1is a kx k-matrix over K such that

L= Y. (9. f . .
a1J xl(gj) or any gje Cj

and for all 1i,j=1,...,k (cf. [3]).

(2) Let {Sl,...,SE} be the set of all simple FG-modules.
As is well known (see e.g. [4, Chap.Il), there are RG-lattices
X re++sX such that {(xi)K| i=1,...,k} is the set of all simple
(irreducible) KG-modules, so that we may assume (xi)K affords
X for each i=1,...,k. Then the decomposition matrix

S, §

1 «e.. S

2 L
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of G with respect to p 1is defined as a kx g-matrix over Zao
such that dij is the muitiplicity of Sj in the composition
factors of an FG-module xi for each i=1,...,k and j=1,...,
L. Now, let {P;,...,P,} be the set of all p.i.m.'s over FG
such that Pj is the projective cover of Sj for each j. Then
the Cartan matrix

2 v P2

Neee 3 W
l\}l—'

L

of FG 1is defined as an 2x f£-matrix over z,, such that cjj'
is the multiplicity of Sj in the composition factors of Pj'
tD-D = C where

D 1is the transposed matrix of D (see e.g. [4, p.67]). This

for each j,j'=1l,...,%. Then, it is known
t

means once we get the matrix D, we'automatically get all
composition factors of all p.i.m.'s over FG.

(3) Let J be the Jacobson radical of FG. For an FG-
module X# 0 and a positive integer n, let

L (X) = xg" "1 /xgn

and this is called the n-th Loewy layer of X. The Loewy series
of X 1is defined as

Sll ceae Sl,rl
S21 cssssecccaas Sz'r2
S eses S
ml m,r.
where Ln(X) = Snla cee B Sn,rn and all Snr are simple FG~-

modules for each n=1,...,m and m is the Loewy length of X,
\J
namely the least positive integer m' with XxJ" =0 (see e.qg.
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[1, p.174] or [11, PpP.25-26]1) . Therefore, the Loewy series of
all p.i.m.'s Pj's are of course more explicit than the Cartan

matrix C of FG.

Here, in the present note, we consider the problem (3) for a

concrete finite simple group G.

§2. Tools and lemmas
In this section we give several tools and lemmas which are

useful for calculating the Loewy series of modules. We use the
same notation as in §1.

Lemma 1 (Frobenius Reciprocity, Nakayama Relations, Shapirds
Lemma). Let H be a subgroup of G, and let X and Y be
respectively FG- and FH-modules. Then for any non-negative
integer n,

n +G, =~ n n +G - n
ExtFG(X, Y ) = EXtFH(x+H’ Y), ExtFG(Y : X) = ExtFH(Y, X+H)

as F-spaces, where Y+G = Y@FH FG, so that Y

and X

tG is an FG-module

+H is the restriction of X to FH (so an FH-module}.

Proof. See e.g. [2, Proposition 1.12]}.

Lemma 2. Let X,Y' and 2 be FG-modules. Then for any
non-negative integer n,

~

n = pes N
ExtFG(X@FY, 2) = ExtFG(X, Y*@FZ)

as F-spaces, where x@FY is an FG-module by the action (x0y)g
=xg®yg for all x€ X, yeY and g€G, and Y* 1is the dual of
Y, namely Y*= HomF(Y,F) and by the action (y) (og) = (yg-l)o for
all ye€eY, g€G and g€ Y*, Y* is an FG-module, too.

Proof. See [2, Lemma 1l.4].

Lemma 3 (Thompson). If dij # 0 for an irreducible K-
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character Xi and a simple FG-module §S., then there is an RG-
lattice M such that MK= (xi)K' Ll(M)= Sj and idilxsl,...,
dilxsl} is the set of all composition factors of M.

Proof. See e.g. [11l, I Corollaries 17.4 and 17.5].

For an FG-module X, we call X a trivial source module if

X 1is an indecomposable direct summand of IH+G for a subgroup
H of G, where I, is the trivial one-dimensional FH-module.
Lemma 4. (1) PFor any trivial source FG-module X, there is
an RG-lattice M such that M= X.
(2) (Scott) If X and Y are trivial source FG-modules
(so that there are RG-lattices M and N such that MZX and
N=Y from (1)), then

Homp. (X,Y) = Homg. (M,N) = Homp - (M,N) / [Homp . (M,N) ] =
as F-spaces and this implies

dimg [Homp. (X, ¥)] = (xyr Xy)g

where Xy and Xy are respectively the K-characters of G

afforded by MK and N and (xM, XN)G is the inner product.

Kl

Proof. See e.g. [1ll, @ Theorem 12.4 and I Proposition 14.8].

The above Scott's theorem Lemma 4(2) is very powerful for
calculating Loewy series of trivial source modules. It has been
used for instance by P. Landrock, G. Michler and D. Benson (see
the references of [6]).

Lemma 5 (Landrock). For simple FG-modules S and T and

any positive integer n,

dimF[HomFG(Ln(PT),S)] = dimF[HomFG(Ln(Ps*), T*)]
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where P, and P are the projective covers of T and S%*,

T S*
respectively:

Proof. See [11l, I Lemma 9.10].

§3. Applications

In this section, we shall try to show a little bit how to
use the lemmas in §2 for calculating the Loewy series of p.i.m.'s
with respect to the following special case

G 1is the Tits simple group 2

F,(2)' of order 17971200
11 .3 .2 4
(= 277+3757.13) and p = 3

(**)

(the complete version of this example can be seen in [10]). So
we assume (**) throughout this section. The reason why we have
been interested in this special group G is explained in our
previous note [6] and the introduction of [9].

G. Hiss obtained the decomposition matrix D of G in his
paper [5]. Namely,

Proposition 1 (Hiss). The decomposition matrix D of the

principal block of G in the situation (**) has the form

I 26 26* 77 124 1242 572 10991 10992

1
I 1l
26 1
26* 1
78 1l 1l
300 1 1 1 1
325 1l 1 1
D = 624l 1 1 1
6242 1 1 1l
650 1l 1 1
1300l 1 1 1
13002 1 1 1
2048l 1 1 1 1 1l 1 1l
20482 1 1 1 1 1 1 1
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and all the other blocks 27, 27%*, 3510, 351, 351*, 675, 7021,
7022 and 1728 are of defect 0 (so that semi-simple, nothing
to do), where 1= I, is the trivial FG- or KG-module and for
other simple FG- and KG-modules we denote each of them by its
dimension, together with a subscript if there is more that one
simple module of the same dimension which is not the dual of the

first one.
Proof. See [5].

By [12], G has a maximal subgroup V such that V is a
semi~direct product of a group of order 210 by the symmetric
group on 3 letters, so that |G:V|=2925. Since the Sylow
3-subgroup of V is cyclic of order 3, by the results of Dade,
Janusz and Kupisch (see [4, Chap.VII ]), all indecomposable FV-
modules in the principal block are

I

I, 1, v ly

S T . . Py =1, , Py =1
v oty 1, o1yt Pty 1y " v
v v

where Iy is the trivial FvV-module and 1v is the other simple

FV-module of F-dimension one in the principal block. Then, by
[5S, Lemma 1],

(5) X = X¢t X +x + X + X + X
Iy I" %624, " %624,  "650" "351," %675

Hence, by Proposition 1,

(6) Iv =X®e 3510 ® 675

for an FG-module X such that all composition factors of X are
(7) I, I, 26, 26, 26*, 26*, 77, 572, 572 and 572.

By so complicated computations and by (5), (6) and (7), X has
the form
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572
|/6 2*
/
|\ 26*
5727

so that X 1is a trivial source module. Hence, by (5),(6) and
Lemma 4(2), dimF[EndFG(x)]= 4. By (2) and Proposition 1, all
composition factors of P, are

(8) X =

(9) I, 1, I, 77, 77 and 572.

By Lemma 1, there is an exact sequence

1G
\'

— I — 0

(10) 0 — Y — I

of FG-modules. Thus, for a simple FG-module S, (10) induces a
long exact sequence

1G

0o — HomFG(I,S) — HomFG(IV :S) — HomFG(Y,S)

1G

1 1 1
(11) - ExtFG(I,S) — Ext:FG(IV S) — ExtFG(Y,S)

of F-spaces. Hence, by (11), (9) and Lemma 1, we get

i
PN
I 572

~

7|7/

I .

(12) P =

As a matter of fact, by Proposition 1 and Lemma 3, we have known

Ext (I 77) # 0. Anyway, from (12) and Lemma 5, we get
{1 if n=2 or 4
0 otherwise

{1 if n=3
0 otherwise .,

dlmF[HomFG(Ln(P77), I)]

dimF[HomFG(Ln(P572),I)]
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By complicated calculations (which are more than 50 times of
the above?), and by making use of [7], [8] and [9], we finally
obtain

Theorem (Koshitani ([10]). Let p= 3. Then the Loewy and
socle series of the p.i.m.'s over F[2F4(2)'] and F[2F4(2)]
are completely determined. 1In particular, their Loewy lengths
are 9,
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FIFTEEN YEARS OF COMMUTATIVE ALGEBRA (1971-85)

Hideyuki MATSUMURA

§1. INTRODUCTION.

In this historical survey we will consider some of the main

developments of the theory of noetherian rings during the period
1971-85. Since this report is intended for non-specialists we
start with some basic definitions.

A ring will always mean a commutative ring with unit element.
A local ring (R,m) will mean a noetherian ring R with a unique
maximal ideal m. Spec(A) denotes the set of prime ideals of the
ring A. We introduce a topology on Spec(A) by taking the sets
V(I):= {P € Spec(A): P21} , where I runs over the set of all
ideals, as the closed sets; this is called Zariski topology.

The dimension of a ring A is defined by

dim A := the supremum of the length of prime ideal chains
= sup (s : PO > P1 Do D Ps' Pi € Spec(A)}.
The height of a prime ideal P, denoted by ht P, is defined by
ht P := sup {s : P=P;DP,D>... DP_ }
= dim AP .
For a noetherian ring, one can show that ht P can not exceed
the number of generators of P, hence ht P is always finite. The

height of an arbitrary ideal I is defined by
ht I :=min (ht P : P21 }.

The support of an A-module M is defined by

This paper is in final form and no version of it will be submitted for
publication elsewhere.
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Supp M := {P € Spec(A): Mp # 0 }.

If M is finitely generated and I = ann M, the annihilator of M,
then Supp M = V(I) = Spec(A/I). The dimension of M is defined
by dim M := dim A/I.

When (A,m) is a local ring and dim M = d, a system of ele-
mgnts CPNERRYLE) of m such that l(M/a1M + ceot adM) < o (where
£ denotes the length of module) is called a system of parameters
(s.o.p. for short) of M. An ideal of A generated by an s.o.p.
of A is called a parameter ideal.

Part I. Classification of local rings
There is the following hierarchy of local rings:

regular => complete intersection =) Gorenstein =$>
Cohen-Macaulay = Buchsbaum.
(These notions have global versions also.) Remarkable progress
was made on the last three classes of rings.

§2. REGULAR RINGS.
The basic properties of regular local rings (homological

characterization, unique factorization) had been proved by Serre,
Auslander-Buchsbaum before 1970.

§3. COMPLETE INTERSECTION.
If a local ring A of dimension d is of the form R/(a1,...,as)

where R is a regular local ring of dimension d+s, then A is
called a complete intersection (c.i. for short). More generally
a local ring A is called c.i. if its completion 3 is c.i. in the
above sense. When A is a homomorphic image of a regular local
ring the two definitions are equivalent. A local ring {(A,m) is
c.i. iff H3(A,A/m,A/m) = 0, where Hi«( ) is the homology module
of André-Quillen. (Michel Andre, Homologie des algébres commu-
tatives, Springer Verlag 1974). Using this homological charac-
terization, Bulgarian mathematician L.L.Avramov (Soviet Math.
Dokl. 16 (1975),1413-1417) proves that,if f: (B,n) + (A,m) is

a flat local homomorphism of local rings, then A is a c.i. iff

B and A/nA are c.i. As a corollary he proved that localization
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preserves complete intersection property. Global complete inter-
section presents more difficult but interesting problems which
are closely connected with algebraic geometry. For these, see
Greco et al., Complete intersections, Springer LN 1092 (1985),

§4. COHEN-MACAULAY RINGS.
Let A be a ring, I an ideal and M an A-module. A sequence
@qs++.,a, Of elements of I is called an M-sequence in I if

(1) { a; is a non-zerodivisor on M,
a is - - - -~ - on M/aM,

ap is - - - - - - - - on M/(ajM+...+a._qM).

Sometimes the following additional condition is required:

(2) M#aM+ ... + aM.
The supremum of the lengths of M-sequences in I is denoted by
depth(I,M). One can prove that

depth(I,M) = inf {i : Exti(A/I, M) £ 0 )

inf {i : a%(m) £0},

where H;( ) is the local cohomology functor. When (A,m) is a
local ring we write depth M for depth(m,M). It is eésy to
see that depth M € dim M. The module M is called a Cohen-
Macaulay (C-M for short) module if the equality depth M = dim M
holds. The local ring A is called a C-M ring if it is C-M )
module., If A is a C-M local ring then we have:

a) ht I + dim A/I = dim A for every ideal I ;

b) every s.o.p. of A is an A-sequence, and 2(A/q) = e(q)
holds for every parameter ideal g, where e( ) denotes
the multiplicity.

A noetherian ring A is called C-M if Ap is C-M for all maximal
ideals m, Then:

c) A is C-M iff the unmixedness theorem holds in A, i.e.
if an ideal I of height r is generated by r elements
then every associated prime of I has height r. (r 2 0).

d) If A is a regular local ring and B is an integral domain
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containing A such that B is a finitely generated A-module, then
B is c-M & B is free as A-module.
e) If A = RAg + Ay + ... is a noetherian graded ring
such that Ag = k is an infinite field and A = kl[A;1],

then
A is C-M &» there exist Yjre-ee¥g £ A1 , algebra-

ically independent over k, such that
A is a free module over k[y1,...,yd].
These results were obtained before 1970.
Determinantal varieties.
Let k be a field and X = (xj5),1 € ig<r,14$j¢ s, bea
matrix with rs variables as components; let I, be the ideal of

the polynomial ring k(X] := k[xij] generated by the t x t minor
determinants of X (t 2 min(r,s)). Then k[X]/Iy is C-M.
(Hochster-Eagon, Amer. J. Math. 93(1971)).

Invariant Theory.

e L e

Let k be a field and G = (Gm)X = k* ... xk* be an algebra-
ic torus over k. Let G operate on the polynomial ring kl[X]=
k[X1lo-OIxn] by s

r tiy
aXj =Lj21 aj "J%i 0 @ = (ag,..0ap).

Then the ring of invariants k[X]G is C-M. (Hochster, Annals of
Math., 96(1972). This paper of Hochster was also epoch-making as
the first work to combine commutative ring theory with topology
and combinatorics. The starting point is the following easy

Lemma. Let A be a local ring and I,J ideals. Then there
is the following exact sequence:

0 + AJIAT -+ (A/I)Q(A/T) + A/I+J -+ 0.

Therefore, if A/I and A/J are both k-dimensional C-M and A/I+J
is (k-1)-dimensional C-M, then A/IAJ is k-dimensional C-M, as
one can easily see from the long exact sequence of local cohomology
or Ext.
With this in mind, one defines a ‘polytope of ideals' of a noeth-
erian ring R as a function which associates to the unions of
faces of a d-dimensional polytope P some ideals of R, in such a
hay that inclusion relation is reversed and {J, NN of unions of
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faces correspond to N\, + of ideals. This machinery enables one
to transform problems of ideals to problems of combinatorial
structure of polytopes.

Advancing further, Hochster-Roberts (Adv. in math. 13(1974))
proved the following big theorenm.

Theorem. Let k be a field, S a reqular noetherian k-algebra
and G a linearly reductive* algebraic group over k acting k-
rationally on S. Then the ring of invariants SG is C-M.
(*i.e. such that every linear representation is completely reduc-
ible. In characteristic p such groups are just tori.)

The ring k[x]/It mentioned above is also the ring of invariants
of some group, hence the result of Hochster-Eagon follows from

this theorem in the case of characteristic zero.

Stanley-Reisner Rings.

Rings of the form k[x1,...,xn]/1, where k is a field and I is
an ideal generated by square-free monomials (e.g. I=(X1X3, XyX3)
or I=(X1X3X3)), are called Stanley-Reisner rings. Given such an
ideal I, one can define an abstract complex I by

Xiqee Xig ¢ I & (ge..aip) e
(i1 < i3 < «0e < ip). Then:

~

Theorem (Reisner 1976). The ring k[Xq,-..,X,1/I is C-M iff
certain reduced homology groups with coefficients in k of £ and

certain subcomplexes of ¥ vanish.

This important result was immediately used by Stanley to solve
the so-called Upper Bound Conjecture of combinatorics affirma-
tively. Stanley, The Upper Bound Conjecture and Cohen-Macaulay
rings, Stud. in Appl. Math. 54 (1975), cf. also Stanley, Combi-
natorics and Commutative Algebra, Birkhauser 1984.

§ 5. GORENSTEIN RINGS.
Gorenstein rings are C-M rings which have particularly good

homological properties, and can be characterized in many differ-

ent ways.
1957. Grothendieck proved that, if a local ring A is a homo-
morphic image of a regular local ring R, then
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Ky := Ext§(A,R) t = dim R - dim A
depends only on A and not on the choice of R, and he defined
A is a Gorenstein ring if A is C-M and Kp = A.

1963. H, Bass proved that, for a local ring (A,m) of dimension
n and of residue field k, the following conditions are equivalent,
and when they are satisfied he called the ring A Gorenstein.

1) inj.dimy A< 00 ;

2) The minimal injective resolution of A has the form

0>a—-10> , . o150, 19:= @ E,A/P).
htP=q

( Ep(N) denotes the injective hull of the A-module N.)
3) Ext}(k,A) ={o (i#n)
k (i=n).
4) A is C-M, and every parameter ideal of A is irreducible
{(in the sense that it is not an intersection of two larger
ideals.)
% &k *hkdkdk Kkk
1971. Herzog-Kunz (Springer LN 238) systematically reconstructed
the theory of canonical modules, and discussed Gorenstein rings
on this basis. They define the canonical module Kr of an arbi-
trary local ring R. It does not exist in general, but it exists
for a wide class of local rings, and
1) Kg is a finitely generated R-module,
2) if R is Gorenstein then Ky exists and == R,
3) conversely, if R is C-M and Kz = R then R is Gorenstein,
4) if R is C-M, the minimal injective resolution of Kg is

of the form 0 — Ky -10 ., 115 -1"—o, Iq=htt£:> E(R/P),
P=g

5) if R is C-M and M is an i-dimensional C-M R-module, then

Extg-l(M: Kg) is again i-dimensional and C-M,

Expg(M, Kg) = 0 for j # n-i,

if we set M' = Extg-l(M,KR) then M"7 o~ M.
1973. Kei-ichi Watanabe (Osaka J.Math.ll) studied the invariants
of a finite subgroup G of GL,(k) acting linearly on R = k[Xq,e.«,
Xp] and proved the following theorem.
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Theorem. i) If G is contained in SL,(k), then R® is Goren-
stein.
ii) The converse is also true provided that G does not contain
pseudo-reflections.

In the proof of ii) he used canonical modules.

1978. S. Goto - K. Watanabe (J. Math. Soc. Japan 30) considered
graded rings of the form R = Rg + Ry + ..., where Ry is a field
k and R is finitely generated over k as a ring. They reconstruct-
ed the theories of injective hulls and canonical modules in the
category of graded R-modules, and discovered an important invari-
ant which they denoted a(R):

a(R) := - min {i : (KR); # 0}

= max {i : HM(R); # 0} (n = dim R),
where g; denotes graded local cohomology and ( ); denotes the

degree i part.

§ 6. BUCHSBAUM RINGS.

For a parameter ideal q of a local ring (R,m),it holds in
general that A&(R/q) = e(q). The equality holds iff R is C-M.
Buchsbaum asked in 1965 whether the difference % (R/q) - e(q) is
independent of the choice of q, and W. Vogel in 1973 showed that
it is not necessarily so. He then proceeded to study the class
of local rings for which 2(R/q) - e(qg) is independent of q, call-
ing them Buchsbaum rings. Being a Buchsbaum ring is a weaker
condition than C-M, but if R is Buchsbaum and P is a prime ideal
other than m then Rp is C-M.

Let (R,m) be a local ring with R/m = k and let M be a finite-

ly generated R-module. A sequence aj,...,a8p €M is called a

weak M-sequence if
(a1,...,ai_1)M: ai = (a1,...,ai_1)M: m (1€ixsr).

Theorem (Stlckrad-Vogel 1973) The following are equivalent:
(1) Every s.o.p. of M is a weak M-sequence,
(2) There is a constant c(M) such that, for every s.o.p. X =
fx1500.0%g} of M, 2(M/xM) - e(x,M) = c(M) holds.
When these conditions hold M is called a Buchsbaum (Bbm for short)
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module. The local ring R is Bbm iff it is a Bbm module.
Characterization by local cohomology. Let R,m,k,M be as above.
For the local cohomology it holds in general that

Hi(M) = lim Ext{(R/mv, M).
vieo

Therefore there exist canonical maps
i, i(k Hi(M).
¢ 2 ExtR( M) > m(M)
Theorem (Stickrad-Vogel). If ¢ are surjective for all i £
dim M, then M is Bbm. When R is regular the converse is also

true.

Buchsbaum rings and modules were intensively studied in East
Germany and in Japan, by Schezel, Stuckrad, Trung(Hanoi), Vogel,
Goto, Shimoda, Ikeda, Yamaguishi among others. In particular,

Goto produced many examples of Buchsbaum rings.
Part II. Pathologies of Noetherian rings.

§ 7. COUNTER-EXAMPLES.
The following are some of the difficult problems which arose

in the theory of noetherian rings.

1° If A is a noetherian integral domain, is the integral clo-
sure A of A in its quotient field a finitely generated A-
module ?

2° If A is a local ring with completion &, are the properties
of A such as normal or reduced(= without nilpotents) in-
herited by A2

3° Are the lengths of maximal prime ideal chains in a local
domain constant ? (A noetherian ring A is said to be
catenary if for each pair of prime ideals P,Q with P DQ,
the length of any maximal prime ideal chain between P and Q
depends only on P and Q. The above problem is equivalent
to asking whether every noetherian ring is catenary.)

Y. Akizuki constructed a counterexample of 1° in 1935. 2° is
closely connected with 1° (if A is reduced then & is finite
over A), and there are counterexamples due to Akizuki and Nagata.
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In 1955 Emil Artin visited Japan for a conference on Algebraic
Number Theory, and when he met Nagata (then 28 years old) he
urged him to settle the problem 3°, saying that all great alge-
braists of this century had tried it without success. Taking up
this challenge Nagata started to work on it, and within a month
or so he found counterexamples.

Nagata was not only eager to find counter-examples, but also
looked for a nice set of axioms to avoid pathologies. He defined
a class of noetherian rings which he called pseudo-geometric
rings (and which are now called Nagata rings) in his book Local
Rings (Interscience, 1962). This class was designed to avoid
the pathologies of type 1°. Not much later, Grothendieck defined
a smaller class, called excellent rings, in Ch.4 of EGA (1964).
This class avoids all three types 1°,2°, 3° of pathologies. For
some time, however, the relation between these two classes was
not clarified.

1977. Christel Rotthaus (Math. 2. 152) invented a very compli-
cated, but very powerful, new technique to construct bad noether-
ian rings, by which she constructed Nagata rings which are not
excellent.

1980. T. Ogoma (Jap. J. Math, 6) applied the method of Rotthaus
successfully to find non-catenary normal Nagata rings. The non-
catenary rings of Nagata were such that their normalizations

were catenary, and whether normal noetherian rings were catenary

had been a long-standing problem.

§8. EXCELLENT RINGS AND RELATED TOPICS.
Problem: Suppose a noetherian ring A has a property P. Does

the polynomial ring A[X] have the same property ?

Answers:

a) P = Nagata. Yes (by Nagata himself).

b) P

¢c) P = catenary. No.(Nagata's examples of 1955 answered also
this problem negatively. If A[x1,...,xn] are catenary for all n
then A is called universally catenary. Ratliff showed that if
‘A[x1] is catenary then A is universally catenary.

excellent. Yes (by Grothendieck).
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Problem: Suppose a noetherian ring A has a property P. Does

the formal power series ring A[{X]] have the same property ?
Usually this problem is much more difficult than the preceding
one,

Answers:

a) P = universally catenary. No (by H. Seydi, Bull. Soc. Math.
France, 398(1970)).

b) P = Nagata. Yes (by J. Marot, C.R.Paris, 277(1973)). 1In
his proof Marot used a difficult and half-forgotten theorem of
Yoshiro Mori, and this latter was later given a new and elegant
proof by J. Nishimura (J. Math. Kyoto Univ. 15 (1975)}.

c) P = excellent. The answer is yes in almost all cases.

When A is finitely generated (as ring) over a field k,

1969 Kunz proved it for the case char(k) = p with [k:kP)~1 o0 .
1973 Matsumura, for the case char(k) = 0.
1975 Valabrega, for general k.

When A is semi-local, Rotthaus proved it in 1979 (Nagoya Math.
J. 74.)

When A contains the rational numbers, Rotthaus proved it in
1980 (Math. Ann. 253) by using Hironaka's resolution of singular-
ities of excellent rings containing the rational numbers and by
introducing some other brilliant new ideas. Her solution was
such that if resolution of singularity over a field of character-
istic p is settled, then her proof would also work for such
excellent rings. Thus she has almost settled the problem, al-
though the case when A contains no fields remains untouched.

Let A - B be a homomorphism of noetherian rings, and let
f: Spec(B) = Spec(A) be the induced map. If P € Spec(A), then
£-1(P) is homeomorphic to Spec(B ®pk(P)), where k(P) = the
quotient field of A/P = the residue field of Ap. The algebra
B @pk(P) over the field k(P) is called the fibre over P. 1In
particular, when A is a local'ring and B is the completion ﬁ,
the fibres are called formal fibres of A. Now the definition of

an excellent ring is the following: a ring A is excellent if
+ 0) A is noetherian,
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1) all formal fibres of all local rings of A are smooth,( an
algebra over a field k is said to be smooth if it is a regular
ring, and remains so after any coefficient extension),

2) A is universally catenary,

3) for every A-algebra B of finite type, the singular locus
Sing(B):= {P: Bp is not regular} is closed in Spec(B).

When A is a local ring the last condition follows from 1) and
can be omitted. The condition 1) is the condition which guaran-
tees that good properties of Ap are inherited by (AP)A, and it
was Grothendieck who first recognized its importance. Noetherian
rings which satisfy 1) are called G-rings.

J. Nishimura constructed an example of a G-ring A such that
A[(X]] is not a G-ring.

R. Y. Sharp (J. of Algebra 44(1977)) modified the definition
of excellent rings as follows and called the resulting rings
acceptable rings: in axiom 1), replace 'smooth' by 'Gorenstein',

and in 3), replace 'singular locus' by 'non-Gorenstein locus'.
He showed that a theory parallel to that of excellent rings can
be built for acceptable rings, and that homomorphic images of
Gorenstein rings, and more generally rings which possess dualiz-

ing complexes, are acceptable.

Part III. Homological Tools.

§9, MINIMAL INJECTIVE RESOLUTIONS.
Let A be a noetherian ring and M an A-module. Let

0*M>10 11> 1

be the minimal injective resolution of M. Since every injective
module over A is a direct sum of indecomposable ones and since
the indecomposable injectives are of the form EA(A/P) with some
prime ideal P (theory of Matlis, 1958), one defines the Bass
number uj(P,M) as the number of times EA(A/P) occurs in Ij;

we have .
wl(p,M) = dimy ) Ext} (k(P), Mp).

1963. Bass proved that
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Min (3 : wd(P,M) # 0 } = depthp(Mp),
sup {3 : wI(P,M) # 0} = inj.dimp(Mp).
inj.dimp (Mp) = = < uI(P,M) # 0 for 3 > dim Ap.
1971. Foxby proved a part of the following theorem.
1976. Fossum-Foxby-Griffith-Reiten (Publ. IHES 45, 1976) proved
depthp,(Mp) € 3 € inj.dimy (Mp) => ul(p,M) # O.

§ 10. LOCAL COHOMOLOGY.
Let A be a noetherian ring and I be an ideal. For each A-
module M , set Tp(M) := {x e M : IVx = 0 for some y > 0}. Then

'y is a left exact functor. We denote its derived functors by
H%(M) and call them the local cohomology functors. We have

nlm) = l%m Exti(a/1Y, M). |
When (R,m) is a local ring and M is an R-module, we write HY (M)
for H%(M). If dimM =d and depth M = r, then
d = sup (i : Hi(M) £ 0},
r = inf (i : Hi(M) £ 0}.
In particular, M is C-M iff Hi(M) is different from 0 for only
one value of i.

Local duality. Let (R,m) be a complete d-dimensional Goren-

stein local ring. Let E = Eg(R/m) be the injective hull of R/m.
Then
HS(+) = Homg(Extd=S(+,R), E).

When R is not Gorenstein but C-M, then the formula remains valid
if one replaces, in Ext(°,R) of the right hand side, R by the
canonical module Kg.

Grothendieck created the theory of local cohomology and made
it public in a seminar at Harvard in 1961. Later the lecture
was published as Springer LN 41. Local cohomology was extensive-
ly used in algebraic geometry by Grothendieck and his school in
the Sixties, but its usefulness in commutative algebra was recog-
nized only in the Seventies. R.Y.Sharp's expository work of
1970 (Local cohomology theory in commutative algebra, Quart. J.
Math. Oxford 21, 425-434) had some influence, but the decisive
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event was the appearance of the big paper of Peskine and Szpiro:
Dimension projective finie et cohomologie locale, Publ. IHES 42,
(1973),47-119, in which they solved many problems, including some
of the homological conjectures (see $§12) in important special
cases, by skillful use of local cohomology and by many other new
ideas. For instance, in proving the intersection conjecture in
characteristic p, they used local cohomology to estimate the
dimension of a module, and to calculate local cohomology they
used Frobenius maps.

For the graded version of local cohomology, see the 1978 paper
of Goto-Watanabe cited above.

§11. DUALIZING COMPLEXES.

For some purposes the category of modules is not adeguate, and
one has to work in the larger 'category of complexes'. The need
of such a machinery was first recognized by Grothendieck and
was hinted in his talk at the Edinburgh Congress,1958. But he
did not systematically develop the theory. Early in the Sixties
Verdier invented the notion of derived category in his thesis,
and using this theory Grothendieck outlined his theory of duality
to Hartshorne, who filled in the details and wrote the thick book
Residue and Duality, Springer LN 20, 1966. Like local cohomology,
it took some years till the theory began to be used in commuta-
tive algebra. R.Y.Sharp, Dualizing complexes for commutative
Noetherian rings, Math. Proc. Camb. Phil. Soc. 78 (1975), 369-386,
simplified the theory by avoiding the use of derived category.
Paul Roberts, Two applications of dualizing complexes over local
rings, Ann. Scient. Ec. Norm., Sup. 9 (1976), 103-106, applied
dualizing complexes to give a new proof of the intersection
theorem of Peskine and Szpiro, and to an independent proof of
the theorem of non-vanishing of ui(P,M) obtained also by Fossum-
Foxby-Griffith-Reiten (cf. §9).

Fix a noetherian ring A. Consider complexes

Y RS YL S VE R )
of A-modules as objects of a category. A morphism ¢ ¢ M* + N°
is a fimily (¢i) of A-module homomorphisms ¢i: Mi + N!' such that



54

+ Mi-1 Mi -+ Mi+1 -+

14)1-1 l“’i L¢i+1

-+ Ni'1 +' Ni + Ni+1 -+ )
is commutative. If ¢ induces isomorphisms Hi(M°) + Hi(N') for
all i, then ¢ is called a quasi-isomorphism (quism for short).
The derived category is, roughly speaking, the category in which
the complexes of A-modules are the objects and the quisms are
the isomorphisms.
Example: Let =+ p~i 4 p-i+1 4 5 p-1, p0 ., M3+ 0 be a pro-
jective resolution of a module M. We can identify M with the
complex which has M in degree zero and 0 elsewhere. The morphism

p-i, ve. » P71, p0 . 0
Y 1!
0

+ vee+ 0 oM 40

->

->

is a quism, hence we can 'identify’' M with P-., similarly with
injective resolutions. What is essential is the notion of quism,
and one can dispense with derived categories.

For two complexes M* ,N* we set

Hom,(M*,N*) = @ HomA(MP,Nq), M'@N° = ® MP®NI
o P,q P/q

where Hom(MP,N9) lies in degree g-p, while MP®NY in degree
p+gq, and the differential operators are defined suitably. Wwhen
(A,m) is a local ring, a complex D is called a dualizing complex
of A if

(1) it is a bounded complex of injective modules
0 - DN »

... D0+ o
with finitely generated cohomology modules Hi(D'); and
(2) for each complex M* which is bounded above or below and
has finitely generated cohomology modules, it holds that
Hom( Hom(M-+,D*), D* ) =x M°
where 22 denotes quism.
Or equivalently, a dualizing complex of A is a complex D* with

finitely generated cohomology such that, for each integer i,

Dt =
PGSpe@(A), aim(a/p)=i E(A/P).
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It is unique (if it exists). If A is a homomorphic image of a
Gorenstein ring then D exists. If A is C-M then D* is quasi-
isomorphic to the canonical module of A, so that we don't need
the theory of dualizing complexes as long as we consider C-M
rings.

Let A be an n-dimensional local ring with a dualizing complex
0+D™ ™ »,.. + D% + 0, Then A is a Buchsbaum ring iff the com-
plex 0 > D+l & 5 p0 5 o g quasi-isomorphic to a complex
of vector spaces over the residue field.

For details of the theory of dualizing complexes, see

Paul Roberts, Homological invariants o§ modules over commutative rings,
Les Press de l'université de Montréal, 1980.

H.-B. Foxby, A hamological theory of complexes of modules, Preprint Series
No.19a,b, Copenhagen Univ. Math. Inst. 1981.

P. Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-
Ringe, Springer IN 907, 1981.

Part IV. Problems, Solved and Unsolved.

§12. HOMOLOGICAL CONJECTURES.

There are a number of conjectures which are grouped (by Hoch-

ster) under the vague name of homological conjectures.
(1) Auslander Conjecture (Zero-divisor Conjecture).

Let R be a local ring and M be a finitely generated R-
module with proj.dim M< o, Then every M-sequence is also
an R-sequence.

(2) Bass Conjecture.
Let R be a local ring and suppose there exists a finitely
generated R-module M of finite injective dimension. Then
R is C-M. (The converse is true and easy to prove.)

(3) Intersection Conjecture. (Peskine-Szpiro)

If R is local and M,N are finitely generated non-zero R-
modules such that M®N has finite length, then
dim N £ proj.dim M.
(3) implies (1) and (2), and Peskine-Szpiro (loc.cit.) proved
these conjectures for the cases
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(a) R contains a field of characteristic p,
and(b) R is essentiallyof finite type over a field (i.e. R is of
the form Ap, where P is a prime ideal of A and A is finitely
generated over a field as ring).

(4) Existence of Big C-M module. (Hochster)
Let R be a local ring and x = {%X9,-..,X3} be an s.o.p. of R.
Then there exists a (not necessarily finitely generated)

R-module M such that x is an M-sequence (with xM # M).
(5) Existence of Small C-M module.(Hochster)
Let R be a complete local ring and x be an s.o.p. of R.

Then there exists a finitely generated R-module M such
that x is an M-sequence.

Since a finitely generated C-M module M over‘a is a big C-M
module over R, (5) implies (4). Hochster proved that (4) im-
plies (3) and many other important consequences. And around
1974 he proved (4) for the case when R contains a field. He
proved it first for the case of characteristic p by using Fro-
benius maps, and he reduced the characteristic zero case to the
p case by applying Artin Approximation theorem, a technique
which had been already used by Peskine-Szpiro (loc.cit.). The
unequal characteristic case (i.e. when R contains no fields)
remains still open, in spite of tenacious efforts of Hochster.

Applications of Hochster's theorem.

1°) The proof of Fossum-Foxby-Griffith-Reiten (loc.cit.) of the
non-vanishing of Fi(P,M) used big C-M modules of Hochster.
Their theorem itself is valid in the unequal characteristic

case also.
2°) Solution of the Syzygy Problem by Evans-Griffith (1981).

Theorem. Let (R,m) be a local catenary domain containing
a field, and M be a non-free R-module of rank r and of finite
projective dimension satisfying Sk Then r 2 k.
(A module M said to satisfy Sy if
depthRP(MP) > min(k, ht P)
holds for every prime ideal P. A module M is called a k-th
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syzyqgy if there exists an exact sequence of the form

0+ M + Fp_q +...+F0+N+0
with F; free. Auslander-Bridger (1969) showed that, when R is
C-M and proj.dim M < «, M is a k-th syzygy iff it satisfies Syi.)

In their proof they used big C-M modules. The theorem has many
geometric applications. For example,

Theorem (Evans-Griffith). Let R be a regular local ring
containing a field of characteristic zero with dim R 2 7. Let
P be a prime ideal of height 2 such that R/P is normal isolated
singularity. Then R/P is a complete intersection (i.e. P is
generated by two elements).

(6) Conjectures on Intersection Multiplicities. (Serre)

Let (R,m) be a local ring and M,N be finitely generated R-
modules satisfying proj.dim M < «» , proj.dim N < « and
2(M@N) < «» (this last condition is equivalent to Supp M M
SuppN = {m}). Then each Tor;(M,N) has finite length, and one
can define

x(M,N} = I (-1)ig(Tor;(M,N)).
%0

This number is called the intersection multiplicity of M and N.
{Let X = Spec R, x=m, Y = V(I) and W = V(J). Then
x(R/I, R/J) is the intersection multiplicity of Y and W on X at
the point x, at least when R is the local ring of the point x
on a smooth algebraic variety.)

Serre proved that, when R is regular, it holds that

dim M + dim N < dim R.

Furthermore, he proved that, under the additional assumption
that R is unramified,

(M1) dim M + dim N < dim R = x(M,N) = 0,

(M2) dim M + dim N = dim R = x(M,N) > O.
(A local ring is said to be unramified if either it contains
a field or the residue field characteristic p is not in m2.)
Serre conjectured that these would hold for all regular local
rings. Some poeple conjectured that even the hypothesis of

regularity may be superfluous.
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1974. Peskine and Szpiro proved that (Ml), (M2) hold in the
graded case under the assumption proj.dim M < co only.

1983, Hochster-Dutta-McLaughlin found a counterexample to (Ml)
in the case R is a hypersurface isolated singularity, proj.dim M
is finite but proj.dim N is infinite.

1985. P. Roberts (Bull. AMS) proved (M1) under the assumption
that both M and N have finite projectvie dimension but R may be
either a c.i. or an isolated singularity. The proof depends on
the intersection theory of Fulton-Baum-Macpherson.

References.

M. Hochster, Topics in the homological theory of modules over commutative
rings, Regional Conference Series 24, AMS, 1974.
E.G.Evans - P.Griffith, The Syzygy Problem, Ann. of Math. 114
(1981),323-353.
----------- Syzygies, London Math. Soc. Lect. Note Series 106,
Camb. Univ. Press, 1985.

§13., SERRE CONJECTURE ON PROJECTIVE MODULES.

Serre conjectured that all finitely generated projective
modules over a polynomial ring k[Xy,...,X,] are free. (Sur les
modules projectifs, Sem.Dubreil-Pisot 1960/61 ), where k is a
field. Geometrically, this is equivalent to saying that an
algebraic vector bundle over an affine space kP is necessarily
trivial. The case n=1 is trivial, and the case n=2 was proved
by Seshadri shortly afterwards. But the general case remained
open until 1976, when Quillen and Suslin independently proved
the conjecture for the more general case k= a principal ideal
domain. Then it was asked whether the theorem holds true even
when k is a regular local ring of arbitrary dimension. Lindel
has obtained some positive results in this line, but I don't
know whether the general problem is still open at present. The
theorem of Quillen-Suslin is useful in the problem of complete
intersection. Namely, when a certain ideal I of k[x1,...,xn] is
given, one takes a minimal projective resolution ... >Lg »1
-0, and proves that L has rank r. Then Ly is free of rank r
by the theorem, so that one can conclude that I is generated by
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r elements.
References.
Lam, Serre's Conjecture, Springer LN 635, ]1978.

Kunz, Eiqfﬁhrung in die komm. Alg. u. alg. Geometrie, Kapitel IV.
Vieweg & Sohn 1979, English ed. ]986.

Part V. Some Other Topics.
Here we will collect some more topics with the names of main
researchers, with or without comments, just to show the variety
and richness of commutative algebra of today.

§14, LINKAGE (liaison).

Two proper ideals I,J of a local Gorenstein ring R said to
be linked if there is a R-regular sequence a = aj,...,38g in
INnJ such that J = (a):I and I = (a):J. The set of all
ideals of R which can be obtained from I by a finite sequence
of links is called the linkage class of I. One looks for n.a.
s. conditions for two ideals to be in a same class, and in par-
ticular, characterizations of ideals in the linkage class of a
complete intersection ideal.

After sporadic works by Dubreil (1935), Apéry (1945) and
Gaeta (1952), Peskine-Szpiro, Liaison des variétés algébriques
I, Invent. Math. 26 (1974), rediscovered the notion and system-
atically developed the theory. Note that J.Watanabe's work of
1973 (Nagoya Math. J. 50, 227-232) was also in this direction.
After them, Hartshorne, P.Rao, Buchweitz, Kustin, Miller, and
among others, Huneke and Ulrich.

§15. ALGEBRAS WITH STRAIGHTENING LAWS (ASL)

An ASL is a k-algebra generated by a finite poset (=partially
ordered set) over k satisfying certain axioms. The homogeneous
‘coordinate ring of a Grassmann variety is a typical example.

The foundation of the theory was laid by DeConcini-Procesi-
Eisenbud, and was first published by Eisenbud in
Introduction to algebras with straightening laws,
in Ring Theory and Algebra III, Dekker, 1980.
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Later they gave a fuller account in DC.-P.-E., Hodge Algebras,
Astérisque 91 (1982). Hodge Algebra is a generalization of ASL,
but Hibi showed that every graded algebra has a structure of
Hodge algebra. K.,Watanabe and Hibi have been investigating
many examples of ASL, sometimes in connection with lattice

theory and combinatorics.

§16. MAXTIMAL COHEN-MACAULAY MODULES AND BUCHSBAUM MODULES.

If A is a d-dimensional local ring, a C-M (resp. Bbm) module
over A of .dimension d is called a maximal C-M module (resp.
maximal Bbm module). Following the example of representation
theory of non-commutative rings a la Gabriel, Auslander and
Reiten, and under the strong influence of M. Auslander, some
commutative ring theorists started,rather recently,to work on
the classification of maximal C-M modules (mainly over isolated
singularity). Beside Auslander and Reiten, Herzog, Buchweitz,
Knorrer, Greuel, Yoshino. On the other hand, S.Goto succeeded
in classifying the maximal Bbm modules over a regular local ring
completely (1985).

§17. ARTINIAN RINGS.

In 1984 J. Watanabe observed that there is a remarkable par-
allelism between combinatorics and the theory of Artin rings.
Let A be an Artin local ring let u(I) denote the minimum number
of generators of an ideal I. Set

d(A) = Max{;(I) : all ideals},

r(A) = Min{2(A/yA) : all non-unit element y of A},
and call d(A) the Dilworth number of A and r(A) the Rees number
of A, He proved that d(A) € r(A). According to him the number
d(A) corresponds to the Dilworth number of a finite poset P,
which is defined as the minimum number of disjoint chains into
which P is decomposed.

Other interesting results have been obtained by Iarrobino
and Emsalem.
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§18. COMBINATORICS AND COMMUTATIVE ALGEBRA.

After the pioneering works of Hochster and Reisner, Richart
Stanley of MIT led the movement to combine combinatorics and
commutative algebra. He also used advanced results of algebraic
geometry such as Hard Lefschetz Theorem and intersection homolo-
gy to solve combinatorial problems.. Now there is an active
interplay between combinatorics and commutative ring theory.:
Baclawski, Bjorner, Hibi.

§19. BLOWING UP.

Starting from a local ring A and an ideal I, one can form
the Rees ring R(I,A) = A + I + I2 4+ ... and the associated
graded ring G(I,A) = A/I + I/I2 + 12/13 4 ... - The scheme
Proj(R(I,A)) is the blowing-up of Spec(A) along V(I). These
rings were extensively studied. Herrmann, Orbanz, Goto, Shimoda,
Ikeda, Valla.

§20. FREE RESOLUTIONS AND FINITE FREE COMPLEXES.

Buchsbaum and Eisenbud, and more recently Akin and Lascoux,
made many important discoveries about complexes of finite free
modules and free resolutions of (say) determinantal ideals.
Also Northcott, Eagon, Bruns.

§21. ARTIN APPROXIMATION THEORY.

Mike Artin (Publ. IHES 36, 1969) started the approximation
theory, which runs, roughly, as follows: given a set of algebra-
ic equations with coefficients in a Henselian ring A, any solu-
tion in the completion'ﬁ can be approximated by solutions in A
as closely as one wants. There are some variants of the theme,
and one of the problems is to characterize the class of local
rings A for which the above statement is true. M.Artin, Kurke,
Pfister, Roczen, Popescu, Rotthaus. Note that some logicians
contributed to this theory, via ultraproduts.

§22 NUMBER OF GENERATORS OF MODULES AND IDEALS.

Eisenbud-Evans, and independently Storch, proved in 1973
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that every algebraic set in (affine or projective) n-space can
be defined by n equations. In the affine case this means that
for every ideal I of the polynomial ring k[Xj7,...,X,], k a field,
one can choose n elements fq,...,f, of I so that I and (fq,...,
f,) have the same radical. Judith Sally proved many interest-
ing results about number of generators of an ideal of a local
ring. Also Bruns, Mohan-Kumar. See the book of Kunz cited in
§13, and Sally's monograph Numbers of Generators of ideals in
local rings, Dekker, 1978.

§23. DERIVATIONS AND DIFFERENTIALS.

Kunz, Lipman, Scheja, Storch, Radu, S.Suzuki, Nakai, Matsu-
mura, Kimura, Niitsuma. Kimura-Niitsuma (J.Math.Soc.Japan 34,
1982) proved a conjecture of Kunz which says that, if S is a
regular local ring of characteristic p and R is a subring such
that S D R ;289 and S is a finitely generated R-module, then
R is regular iff S has a p-basis over R. See the new book of
Kunz, Kahler Differentials, Vieweg & Sohn 1986.

§24, INTEGRAL DOMAINS.

Rationality (Asanuma), Finite generation (K.Yoshida, Onoda,
Heinzer, Sally) , Semi-normality {(Traverso, Swan, Greco).

§25. ASYMPTOTIC THEORY.

McAdam, Ratliff, Eakin. See McAdam, Asymptotic Prime Divisors,
Springer LN 1023,(1983).

/
§26. RATIONALITY OF POINCARE-BETTI SERIES.

Gulliksen, Lofwall, Roos, Anick, Avramov.

See J.-E. Roos (ed.), Algebra, Algebraic Topology and Their Inter-
Actions, Springer LN 1183,(1983).

and the articles by Anick-Halperin and others in Volume 38 (1985) of
J. Pure and Appl. Algebra, which was dedicated to J.-E. Roos.
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CHRONICLE.

1971

1972

1973

1974

1975

1976

Herzog-Kunz introduced canonical modules.
Hochster-Eagon proved Cohen-Macaulayness of k[X]/It(X)-
Foxby's work on minimal injective resolution.

Ratliff characterized catenary rings.

Hochster used polytopes in the study of C-Mness of rings
generated by monomials, combining commutative ring theory
with topology and combinatorics.

Ratliff: Catenary rings and the altitude formula.

Peskine-Szpiro used local cohomology and Frobenius maps
effectively.

Buchsbaum-Eisenbud gave an exactness criterion of complex
of free modules.

Hochster proved the existence of big C-M module in charac-
teristic zero.

Vogel started the theory of Buchsbaum rings.

Storch, and Eisenbud-Evans, independently proved that

an algebraic set in n-space can be defined by n equations.
Reisner gave a topological criterion of Cohen-Macaulayness
of Stanley-Reisner rings.

Peskine-Szpiro, Liaison I.

Hochster-J.Roberts, Rings of invariants of reductive
groups acting on regular rings are C-M.

K. Watanabe, Certain invariant subrings are Gorenstein.
M. André, Localisation de la lissité formelle.

----- , Homologie des algébres commutatives.
Stanley applied the theory of C-M rings to combinatorics
(Upper Bound Conjecture).

Fossum-Foxby-Griffith-Reiten's work on minimal injective
resolution.

Strong approximation theorem of Pfister-Popescu.

Hochster wrote the Regional Conference Monograph, propos-
ing many homological conjectures.

Quillen and Suslin proved that projective modules over
polynomial rings are free.

P. Roberts, Two applications of dualizing complexes over
local rings.
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1977

1978

1979

1980

1981

1982

1983

1984

1985

Eisenbud-Buchsbaum, Algebra structure for finite free
resolutions, and some structure theorems for ideals of
codimension 3. (American J. Math. 99)

Rotthaus invented a powerful method to construct bad
noetherian rings.

Stanley, Hilbert functions of graded rings.(Adv. in Math.
28)

Goto-K.Watanabe, On graded rings, I, II.
J. Sally, Numbers of generators of ideals in local rings.

Lascoux, Syzygies des variétés déterminantales.(Adv. in
Math. 30)

Rotthaus proved that formal power series rings over an
excellent semi-local ring are excellent.

Rotthaus proved that formal power series rings over an
excellent ring containing a field of char. zero are
excellent.

Ogoma constructed an example of non-catenary normal ring.
DeConcini-Procesi-Eisenbud initiated the theory of ASL.

Evans-Griffith, The Syzygy Problem.
Foxby, A homological theory of complexes of modules.

Huneke introduced the notion of d-sequence.

Schenzel, Dualisierende Komplexe in der lokalen Algebra
und Buchsbaum Ringe.

Hochster-Dutta-Maclaughlin found a counterexample to a
conjecture about multiplicity.

Stanley, Combinatorics and Commutative Algebra.

P. Roberts solved the vanishing part of Serre conjecturg
on multiplicity, using the intersection theory of Fulton.

J. Watanabe found parallelism between Artin rings and
finite posets.

Maximal Cohen-Macaulay modules were studied by Auslander,
Herzog, Buchweitz, Greuel, Knorrer, Yoshino.

Goto determined maximal Buchsbaum modules over regular
lotal rings.

Department of Mathematics
Faculty of Sciences
Nagoya University

Nagoya, Japan



PROCEEDINGS OF THE 19TH
SYMPOSIUM ON RING THEORY (1986)

ISOMORPHISM OF GROUP RINGS OF
INFINITE NILPOTENT GROUPS

Téru FURUKAWA

This note is an abstract of the author’s paper [4{], and we
shall state only some of our results. See [4{] for details.

Let G be a group and R an integral domain of character-
istic O in which no element g # 1 of G has order invert-
ible. We denote by RG the group ring of G over R. In the
case where G 1is finite, a remarkable consequence of an algebra
isomorphism 'RG ~ RH between two group rings is the lattice
isomorphism induced between the set of normal subgroups of G
and that of H., 1In fact it is an isomorphism which preserves
many natural operations and properties on these sets. By virtue.
of this, the isomorphism RG ~ RH preserves nilpotency, solv-
ability, class of nilpotency and the derived length of G, and
so on. In the case where G 1is iﬁfinite. however, such a lat-
tice isomorphism is not yet established. In the integral case
Sehgal [11, p.229] proposed the following problem : Does
ZG ~ ZH, G solvable (nilpotent) = H solvable (nilpotent) ?
Rohl [9] has introduced a new notion of the torsion-length for
infinite nilpotent groups and has shown that the answer to the
nilpotent case is affirmative. In such a situation, however,
the question whether the class of H coincides with that of G
still remains with us,.

The main purpose of [4] is to consider the question whether
an isomorphism RG & RH preserves the class of nilpotency of G,
and it is proved that, under some strong assumptions on G, the

65
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answer is “fyes’’ (Theorem 3 and Proposition 2). In the process
of establishing this, it is shown that in the nilpotent case the
isomorphism RG  RH entails a lattice isomorphism between the
periodic normal subgroups of G and H (Theorem 2).

In what follows, R always denotes a commutative ring with
identity and, unless otherwise stated, G denotes an arbitrary

group.
1. Central units of finite order in RG.

We denote by ¢(G) the center of G and by TG the set of
elements of finite order in G. Also, denote by U(RG) the
unit group of the group ring RG. A unit of RG 1is said to be
tréivial if it is of the form rg, r € U(R), g € G.

Following [7] we say that R is G-adepted if R 1is an
integral domain of characteristic O in which no element g # 1
of G has order invertible, The following result, which is well
known for the case R = Z, plays a central role in the proof of

Lemma 1.

Proposition 1, If R 1is G-adapted then any central unit of
finite order in RG 1is trivial ; that is

Tc(U(RG)) = TU(R) x Tg(G),

Remark. If a = Ja(glg is a central element in RG, we see
that the supporting subgroup < g € G | a(g) # 0 > is always
polycyclic-by-finite. The above proposition therefore follows
from a certain result of Sehgal on group rings of polycyclic-by-
finite groups.

The isomorphism problem for group rings asks whether the
groups G and H are necessarily isomorphic if their group
rings RG and RH are isomorphic as R-algebras. When this is
so for a group G, G is said to be charactenized by RG. In
[8], Rohl has proved that the circle group G := (4,0) of every
nilpotent ring A 1is characterized by its integral group ring



67

ZG. ((A,0) 1is the group induced by the circle operation

a ob=a+b+ ab, a,b € A,) This result is mainly based on the
triviality of central units of finite order in any integral group
ring and we see, by virtue of Prop.1, that the proof remains valid
over any integral domain R of characteristic 0. Thus we have
the following

Theorem 1, If R 1is an integral domain of characteristic 0
then the circle group G := (A,0) of every nilpotent R-algebra
A is characterized by RG,

2, Normal subgroup correspondence.

Throughout this section, R will denote a G-adapted ring,

The forsion-length of a nilpotent group, which is introduced
by Rohl [9], is defined as follows. Let {1} = £5(G) ¢ £,(6) ¢
see C ci(G) € **+ be the upper central series of G and we
write T;(G) = TG N ci(G) for i 2> 0., If TG forms a subgroup
of G, then {Ti(G)]izO
groups of G with the property that

Ti(G/Tj(G)) =T (G)/Tj(G)

for all i,j 2 0. This formula can be seen by induction on i,

is an ascending series of normal sub-

14]

keeping j fixed. In case G 1is nilpotent (of class n), we
have a finite series {1} = TO(G) < T1(G) < v o Tn(G) = TG and
the torsion-length t(G) of G is defined to be the number of
different terms Ti(G) ( # {(1}). Note that since G 1is nilpo-
tent TG is a normal subgroup of G (see e.g. [6, p.470]).
Clearly, t(G) = 0 if and only if G is torsion-free. More-
over, since every nontrivial normal subgroup of G has a non-
trivial intersection with the center ¢ (G) = c1(G), we observe
from the above formula that if t(G) > 0 then t(G) =
t(G/T,(G)) + 1.,

The induction argument on t(G) together with Prop.1 gives
us the following result whose proof is almost identical to that

of [9, Proposition on p.138].
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Lemma 1. Let G be a nilpotent group and suppose that
RG &~ RH as R-algebras for some group H. Then H is nilpotent
with t(G) = t(H), and R is H-adapted.

However this does not any impact on our question of showing
that the classes of G and H coincide, and we need to inves-
tigate the normal subgroup correspondence.

Before stating the next lemma, we introduce the following
notation. For any normal subgroup N of G, let AR(G,N) be
the kernel of the natural epimorphism RG + R(G/N). It is equal
to AR(N)RG, where AR(N) denotes the augmentation ideal of RN,
For X a subgroup of U(RG) and I a (two-sided) ideal in RG,
XNn(1+I) = {ueX | u-1€I} forms a normal subgroup of X,
In particular we write U(1+I) for U(RG)N (1+I)., It is easy to
verify that AR(G,GI\(1+I)) € I, and hence U(1 + AR(G,GI\(1+I)))
is normal in U(1+I).

Lemma 2. Let G and H be nilpotent groups, let I be an
ideal of RH contained in AR(H), and assume that RH/I ~ RG as
R-algebras. Then the factor group U(1+I)/U(1 + AR(H,HI\(1+I)))
is torsion-free.

Remark. In case H 1is finite, Lemma 2 1is trivial because
I 1is necessarily equal to AR(H,HI\(1+I)). But in the infinite
case, I # AR(H.HI\(1+I)) in general.

Let us now suppose that we have an isomorphism 6 : RG + RH
of R-algebras. We may assume that 6 is augmented, that is,
eHe = €5 Where g4 and ey are the augmentation maps of RG
and RH respectively (see [11, p.64]). Following [1], for any
normal subgroup N of G we define the normal subgroup ¢N of
H as ¢N = Hn(1+8(2(G,N))). It is well known [11, pp.94-95]
that if R 1is an integral domain of characteristic O in which
no rational prime is invertible, then ¢ yields an isomorphism
of the lattices of the finite normal subgroups of G and H,
However it seems to be hard to extend this result to arbitrary
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normal subgroups. For the case of nilpotent groups, we obtain
the following result which is applied in our arguments. For
convenience, we denote by I(RG) the lattice of ideals of RG
and by LPN(G) the lattice of periodic normal subgroups of G.
(A group is called periodic if all of its elements are of finite
order.) Also 8, denotes the map LPN(G) + I(RG) defined by
8, (N) = ap(G,N).

Theorem 2. If G is nilpotent then the following hold :

(a) ¢ induces a lattice isomorphism between Lpy(G) and
LPN(H), and the diagram

)
LPN(G) S LPN(H)

| % | =
)
I(RG) ———— I(RH)

is commutative.

(b) Let I ¢ I(RG), and set N = Gn(1+1), K = Hn(1+6(1)).
If K € LPN(H)' then ¢N = K.

Remarks:

(1) In the situation of (b) we have not been able to show
that K € Lou(H) if N € Lpy(G).

(2) It would be nice to know if it is true that, given a
torsion-free normal subgroup N of G, there always exists a
normal subgroup K of H such that 6(4g(G,N)) = AR(H,K) ;
because in that case, by going mod TN Theorem 2 tells us that
B(AR(G,N)) = 8p(H,¢N) for any normal subgroup N of G and
hence that ¢ 1is an isomorphism between the lattice of all
normal subgroups of G and that of H,

3. Lie dimension subgroups.

The Lie powers AR(n)(G) (n = 1,2,*++) of the augmentation
ideal AR(G) are defined inductively as follows :
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R(n+‘l)(G) = [AR(“) (6),85(G)]RG,

where [X,Y] denotes the R-submodule of RG generated by
[x,y] = xy - yx, x € X, y € Y. Then by the n-th Lie dimension
subgroup of G over R, written D( p(G), we understand

1
8,4 (6) = az(6), &

D(n),R(G) =Gn(1 ¢ AR(n)(G))- Let Yn(G) denote the n-th term

of the lower central series of G starting with Y1(G) = G,
We notice that Yn(G) S D(n) R(G) for all n, because

{D(n),R(G)}n>1 is a central series of G (see [5]).

For the results of the next section we need the following two
lemmas on Lie dimension subgroups. The first is an application
of Theorem 2 and is analogous to a result of [2] on dimension
subgroups (see also |3]). The second one is due to Sandling
|10], and our results heavily depend on it.

Lemma 3. Suppose RG & RH as R-algebras, where R is
G-adapted. Then D(n) R(G) = {1} implies D(n) R(H) = {1}.

Lemma 4. (1) For all n £ 6, D(n),Z(G) = Yn(G).

(2) If G is a metabelian group, then D(n) Z(G) = Yn(G)
for all n 2 1.

4. Main theorenm.

The ring R is assumed to be G-adapted in this section also.
For a nilpotent group G, ¢1(G) denotes its nilpotence
class ;3 that is, ¢1(G) 1is the smallest integer ¢ such that
Yc+1(G) = {1}. The application of Lemma 3 and Lemma 4 together
with Theorem 2 gives us the following results.

Theorem 3. Let G be a nilpotent group and suppose that
RG » RH as R-algebras. If ¢cl(G/TG) < 5, then ¢cl1(G) = cl1(H).
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Proposition 2. Let G be a metabelian and nilpotent group,
suppose that RG » RH as R-algebras. Then H 1is metabelian
and nilpotent, and ¢l1(G) = cl(H).

Remark. Taking the proof of Theorem 3 into consideration,
it seems reasonable to conjecture that the condition
c1(G/TG) < 5 can be dropped.
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PROCEEDINGS OF THE 19TH
SYMPOSIUM ON RING THEORY (1986)

ON ANTI-HOPFIAN MODULES AND
RESTRICTED ANTI-HOPFIAN MODULES

Isao MOGAMI

1. Introduction. One of the interesting properties of the
p-Priifer group 2Z(p*) is that it is isomorphic to every non-
zero factor group of itself, 1In fact, Szélpdl [8] proved that
the p-Priifer groups are characterized as non-simple Abelian
groups with this property. In this paper, we shall study the
structure of anti-Hopfian modules (non-simple modules all of
whose non-zero factor modules are isomorphic) and restricted
anti-Hopfian modules (non-simple modules all of whose non-zero
proper factor modules are isomorphic). A restricted anti-
Hopfian module has the striking property that every non-zero
proper factor module is subdirectly irreducible. Non-simple
modules with such property will be called restricted subdirectly
irreducible, and will be studied in Section 2. Section 3 is
devoted to the study of structure of anti-Hopfian modules and
restricted anti-Hopfian modules and their endomorphism rings.

Throughout this paper, R will represent an associative ring
with identity and all modules will be unitary right R-modules.

2. Restricted subdirectly irreducible modules.

Definitions. (a) A module M is said to be uniserial if
the set of submodules of M 1is linearly ordered by inclusion.

This is a summary of my papers [4], [5] written jointly with Y. Hirano.

73



74

(b) A non-zero module M is said to be subdirectly irre-
ducible if the intersection H of all its non-zero submodules
is not 0. In this case, the submodule H 1is called the heart
of M.

(¢) A module M is called completely subdirectly irreduc-
ible if every non-zero factor module of M is subdirectly
irreducible.

(d) A non-~simple module M is called restricted subdi-
rectly irreducible (resp. restricted Artinian) if each proper
non-zero factor module of M 1is subdirectly irreducible (resp.

Artinian).

In this section, we shall study the structure of the
restricted subdirectly irreducible modules.
First, we state the following

Proposition 1 ([4, Proposition 1], [5, Lemma 1]). An R-
module M is completely subdirectly irreducible if and only if
M is Artinian and uniserial.

Example 2 ([5, Example 2]). 2z (p™) is completely subdi-
rectly irreducible. In fact, every non-zero factor group of
2(p™) 1is isomorphic to Z(p®). But 2(p”) is not Noetherian.

For any module M, we denote the Jacobson radical and the
socle of M by Rad(M) and Soc(M), respectively.

We shall now give the following theorem which plays an
important role in our study.

Theorem 3 ([5, Theorem 3)]). Let M be an R-module. Then,
M is restricted subdirectly irreducible if and only if one of
the following holds:

(1) M is a direct sum of two simple modules;

(2) M 1is restricted Artinian and uniserial;

(3) M is Artinian, M/Soc(M) is non-zero uniserial, Soc(M)
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is a direct sum of two simple modules and Soc(M) is a waist of
M (that is, every submodule is comparable with Soc(M)).

Moreover, if M # Rad(M) and M satisfies (2) or (3), then
M is local.

In case R is commutative, we have the following

Theorem 4 ([5, Theorem 4]). Let R be a commutative ring,
and M an R-module such that M # Rad(M). Then, M is
restricted subdirectly irreducible if and only if one of the
following holds:

(1) M is a direct sum of two simple modules;

(2) M 1is local, Noetherian and uniserial;

(3) Soc(M) is a unique maximal submodule of M, and is a
direct sum of two simple modules.

Let R be a Dedekind domain, K the field of fractions of
R, and P a prime ideal of R. We denote by R(P*) the P-
primary part of K/R, which is called the module of type P%
(see Kaplansky [6, p.335]). It is easily seen that R(P®) is
isomorphic to K/RP, where RP is the localization of R at P.

When R is a Dedekind domain, we can completely classify

the restricted subdirectly irreducible R-modules as follows:

Theorem S ([5, Theorem 6]). Let R be a Dedekind domain,
and M an R-module. Then, M 1is restricted subdirectly irre-
ducible if and only if one of the following holds:

(1) M R/P ® R/Q for some prime ideals P and Q;

(2) M R/Pn for some prime ideal P and some positive
integer n; '

(3) M is isomorphic to R(P®) for some prime ideal P;

(4) R is a discrete valuation ring and M is isomorphic
to the field of fractions K of R.

m

As a particular case of Theorem 5, we have
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Corollary 6 ([5, Corollary 7]). An Abelian group M is
restricted subdirectly irreducible if and only if one of the
following holds:

(1) M = 2(p) ® 2(q) for some primes p and q;

(2) M z(p") for some prime p and some positive integer

n

w

(3) M Z(p®) for some prime p.

3. Anti-Hopfian modules and restricted anti-Hopfian modules.

Definitions, (e) A module M is said to be Hopfian if
every surjective endomorphism of M is an automorphism.

(£) A submodule N of M is said to be a non-Hopf kernel
(for M) if there exists an isomorphism of M/N to M.

() A non-simple module M is said to be anti-Hopfian if
every proper submodule of M is a non-Hopf kernel.

(h) A non-simple module M is said to be restricted anti-

Hopfian if any two non-zero proper factor modules of M are
isomorphic. Clearly, every anti-Hopfian module 1is restricted
anti-Hopfian.

(i) A ring R is said to be a (right) CH-ring if every
cyclic right R-module 1is Hopfian. Clearly, every right
Noetherian ring is a CH-ring. As is well known, every finitely
generated module over a commutative ring R is Hopfian (see,
e.g.,[2]). Hence, every commutative ring is a CH-ring.

The lattice of the R-submodules of M is denoted by LR(M)
= L(M). We set Wt = {tlt <w}, where w denotes the first
limit ordinal.

We shall now characterize the anti-Hopfian module M over a

CH-ring R by the structure of L(M).

Theorem 7 ([4, Theorem 2]). Let R be a CH-ring, and M an
R-module. Then the following conditions are equivalent:
1) M is anti-Hopfian.
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2) L(M) is lattice isomorphic to ot and the heart of M
is a non-Hopf kernel.

When R is a right Noetherian ring, we have the following
simple criterion for a module to be anti-Hopfian.

Corollary 8 ([4, Corollary 3]). Let R be a right
Noetherian ring, and M an R-module. Then the following
conditions are equivalent:

1) M 1is anti-Hopfian.

2) M is subdirectly irreducible and the heart of M 1is a
non-Hopf kernel.

Remark 9 ([4, Example 4]). Let R be a left and right
hereditary Noetherian prime ring which is not primitive and has
no proper idempotent ideal. Let M be an indecomposable,
injective right R-module, which is not torsion free., Then, M is
anti-Hopfian by Corollary 8 and (7, Corollary 1].

Remark 10 ([4, Remark 6]). Right Artinian rings have no
anti-Hopfian modules.

In case R is commutative, we can remove the condition that
the heart of M is a non-Hopf kernel, in 2) of Theorem 7:

Theorem 11 ((4, Theorem 8]). Let R be a commutative ring,
and M an R-module. Then, M 1is anti-Hopfian if and only if
L{M) is lattice isomorphic to wh.

Next, we shall consider a restricted anti-Hopfian module M
with M = Rad(M). When this is the case, for any non-zero
proper submodule N of M, M/N is a non-simple R-module all of
whose factor modules are isomorphic. Hence, M is a restricted
anti-Hopfian module with M = Rad(M) if and only if M/N is
anti-Hopfian for every non-zero proper submodule N of M.

As is well known, every non-zero module has a subdirectly
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irreducible factor module (see, e.g., [1l, p.95]). Hence every
restricted anti-Hopfian module is restricted subdirectly
irreducible.

In case R is a CH-ring, Theorem 3 and Theorem 7 enable us
to characterize restricted anti-Hopfian R-modules M with M =
Rad (M) .

Theorem 12 ([5, Theorem 10]). Let R Dbe a CH-ring, and M
an R-module such that M = Rad(M). Then, M 1is restricted anti-
Hopfian if and only if one of the following holds:

(1) la) The set of proper submodules of M forms a chain

such that
iQNMi = M, and

1b) M2/M1 is a non-Hopf kernel for M/Ml.
(2) 2a) The set of proper submodules of M forms a chain
[ = c [ = =4 c [ =
z M_2 = M_l z Mo z Ml = M2 z
such that

nM, = M, =
jez i 0, ié; i M, and

2b) for each i, Mi+1/Mi is a non-Hopf kernel for
M/Mi.

(3) 3a) Soc(M) is a waist of M, and is a direct sum of
two isomorphic simple modules and the set of
proper submodules of M containing Soc(M) forms
a chain

M, = Soc(M) 3 My 2 Mg 7 ¢-*

1 3
such that

inMi = M, and

3b) for every simple submodule S of M, M1/S is a
non-Hopf kernel for M/S.

Corollary 13 ([S5, Corollary 11]). Let R be a commutative
ring, and M an R-module such that M = Rad(M). ‘Then, M is

restricted anti-Hopfian if and only if one of the following
holds:



79

(1) The set of proper submodules of M forms a chain
0 M, 3 My, Mz § +-v
such that

i T
that is, M 1is anti-Hopfian.
(2) The set of proper submodules of M forms a chain

Tt EM_, EM ) F My EM EM, E ocee
such that
nM, = M, = .
jegii = 0r jUMy =M
Definitions. (3) Following P.M. Cohn [3], an integral
domain R (not necessarily commutative) is said to be a

discrete valuation ring if there exists a prime element p such

that every element of R is of the form
upn (n > 0, u a unit).
When R is commutative, this reduces to the usual definition.
(k) A ring R 1is called left duo if every left ideal of R
is two-sided. v

Given a non-empty subset N of an R-module M, we put
AnnR(N) = {reR|{xr = 0 for all x e N} (the annihilator of WN).

We shall exhibit here some properties of anti-Hopfian
modules and restricted anti-Hopfian modules, and the structure
of their endomorphism rings.

Proposition 14 ([4, Theorem 5], [5, Proposition 12]). Let R
be a CH-ring, and M an R-module.
(I) If M is anti-Hopfian, then
(1) every proper submodule of M is cyclic;
(2) 8§ = EndR(M) is a (left duo) complete discrete valua-
tion ring;
(3) M 1is injective as a left S-module;
(4) for every non-zero right ideal I of R = R/Annp (M),
MI = M, and so R 1is a prime ring.
(II) If M 1is not anti-Hopfian but restricted anti-Hopfian,
and M = Rad(M), then
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(1) every proper submodule of M is finitely generated;
(2) S = EndR(M) is a division ring.

Proposition 15 ([4, Theorem 10], (S5, Lemma 13]). Let R be
a commutative ring, and M an R-module.
(I) If M is anti-Hopfian, then
(1) M 1is a quasi-injective R-module;
(2) s = EndR(M) is a commutative, complete discrete
valuation ring;
(3) M 1is isomorphic to Q(S)/S, where Q(S) 1is the field
of fractions of S;
(4) S is a homomorphic image of the completion of R =
R/AnnR(M) with respect to the p-adic topology, where
P is the annihilator of the heart of M.
(II) If M is not anti-Hopfian but restricted anti-Hopfian,
and M = Rad(M), then
(1) every proper submodule of M is cyclic;
(2) any two non-zero proper submodules are isomorphic;
(3) R= R/Annp (M) is a discrete valuation ring;
(4) M is an injective R-module (so that M is a quasi-
injective R-module).

Furthermore, in case R is commutative, we can describe
explicitly the classes of anti-Hopfian R-modules and restricted
anti-Hopfian R-modules. )

Theorem 16 ([5, Theorem 14]). Let R be a commutative
ring, and M an R-module. Then,
(I) M is restricted anti-Hopfian if and only if one of the
following holds:
(1) M has exactly one non-zero proper submodule;
(2) M 1is a direct sum of two isomorphic simple modules;
(3) s = EndR(M) is a discrete valuation ring, M = Q(S)/S
and LS(M) = LR(M);
(4) R = R/AnnR(M) is a discrete valuation ring and M is
isomorphic to Q(R).
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(II) M is anti-Hopfian if and only if
(3) 8 = EndR(M) is a discrete valuation ring, M = Q(S)/S
and LS(M) = LR(M).

Finally, we shall extend Szélpal’s theorem [8] to. modules
over a Dedekind domain.

Corollary 17 ([4, Theorem 9], [5, Corollary 15}). Let R
be a Dedekind domain, and M an R-module. Then,
(I) M 1is restricted anti-Hopfian if and only if one of the
following holds:
(1) M = r/P?;
(2) M
R;
(3) M 1is isomorphic to R(P”) for some prime ideal P;
(4) R 1is a discrete valuation ring and M 1is isomorphic
to Q(R).
In particular, if M = Rad{M), the following statements are
equivalent:

"

R/P ® R/P, where P 1is a non-zero prime ideal of

1) M 1is a restricted anti-Hopfian module.

2) M 1is a restricted subdirectly irreducible module.
(II) M 1is anti-Hopfian if and only if

(3) M 1is isomorphic to R(P®) for some prime ideal P.

Remark 18 ([4, Remark 11}). Let R be a commutative ring,
and M an anti-Hopfian R-module. Then, by Proposition 15,
EndR(M) is a complete discrete valuation ring and
Q(EndR(M))/EndR(M) £ M as R-modules.

Conversely, let T be a complete discrete valuation ring.
Then, as was seen before, the T-module Q(T)/T 1is anti-Hopfian.
Since T is complete, it is easy to see that End,(Q(T)/T) =T,
In conclusion, every complete discrete valuation ring may be
regarded as the endomorphism ring of a certain anti-Hopfian
module.
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PROCEEDINGS OF THE 19TH
SYMPOSIUM ON RING THEORY (1986)

LEFT SERIAL RINGS OVER WHICH EVERY RIGHT MODULE
WITH HOMOGENEOUS TOP IS A DIRECT SUM OF HOLLOW MODULES

Anri TOZAKI

Throughout this note, R is a left and right artinian ring
with identity 1 and J 1is the Jacobson radical of R. 1In [4],
M. Harada has considered a left serial ring R satisfying the
condition (*,2) that every maximal submodule of a direct sum of
any two hollow modules is also a direct sum of hollow modules,
and characterized such a ring by the structure of eR for each
primitive idempotent e. And it is shown that the condition
(*,2) is equivalent to saying that every factor module of eJ ®
eR is a direct sum of hollow modules. Here we consider the
following condition on a projective indecomposable right module
eR over a ring R.

{A): Every factor module of eR ® eR is a direct sum of
hollow modules.

Clearly if R 1is a ring of right local type, then all pro-
Jjective indecomposable right R-modules satisfy the condition
({A), and as well known ([6]), R is left serial. The purpose of

this note is to characterize a left serial ring R over which

The detailed version of this paper has been submitted for
publication elsewhere.
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every projective indecomposable right module eR satisfies the
condition (A) (i.e. a ring R as described in the title (see
Theorem 1}} in terms of the structure of eR. Thus our result
gives a generalization of rings of right local type.

.Lemma. ([6, Corollary 4.2]}) Let R be a left serial
ring. For each primitive idempotent e and each natural number
Jy eJV is a direct sum of hollow modules, and eR has a

‘structure expressed by the following diagram:

eJ

>

edJ

2,t A2n

+1°
(nl—l) 2

n,
. i |
is a hollow module, el =@ A and

k ik X, -+ X

where each Ai
1 1 s

k

8
means XJ = @ X. .

. i

i=1

Theorem 1. For a primitive idempotent e, the following
four statements are equivalent.

(1) eR satisfies the condition (A).

R(n)

(2) Every factor module of e is a direct sum of

hollow modules for each natural number n.

{3) If M is an R-module such that M/MJ =x [eR/eJ](n) for
n
some n, then M x @ eR/Xi, where each Xi is a submodule of
i=1
eR.

(4) Let Ci and Di {i =1, 2) be submodules of eR such
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that eR 2 Ci > Di' If f : CI/D1 —_— Cle2 is an isomor-
-1

phism, and Cl/D1 is simple, then f or f is extended to
some homomorphism from eR/D1 to eR/D2 or one from eR/D2 to

eR/Dl, respectively.

The equivalence of (1) and (3) in the theorem tells us that
the property of a ring R that the condition (A) holds for all
projective indecomposable right R-modules is Morita invariant.
So we will assume that R is always a basic ring. The condi-
tion (4) is used to check whether eR satisfies the condition
(A) or not.

From now on, R is a left serial ring. If eR satisfies
the condition (A), then the following two propositions hold.

Proposition 1. If eR/eJ1 is uniserial and eJ!s Aile Aize
AN Aip for some i, where p 2 3 and each Aik(l < k $ p) is
a hollow module, then we have A., 2~ A.,, =~ -« ~« A, , and each
il i2 ip

Aik is simple.

Propogition 2. 1If eR/eJl is uniserial and eJ'= Aile A.12
for some i, where A.,, and Ai2 are hollow modules, then both

il
Ail and A are uniserial.

i2

From these two propositions, eR with the condition (A) has
one of the following structures.

(a) eR is a uniserial module.

A(bl) For some natural number i, eR/eJi is uniserial and

eJlz A.. @ A, , where A and A.,, are uniserial modules which
il i2 il i2
are not isomorphic to each other.

(bz) For some natural number i, eR/eJ1 is uniserial and

i_ .
eJ = Ail ] Aiz' where Ail ~ Ai2 and Ail is uniserial.
{(c) For some natural number i, eR/eJ' is uniserial and
i
eJ ' =

@ -0 @ Ai (p 2 3), where A,

11: Ai N e X Ai are

A 2 P

simple.

P
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We put A:= eRe/eJe and A(A):= { x € A | x'A $ A, x's X

for some x' € eRe ), where A is a hollow module and X is
the coset of x in A. Then A is a division ring and A(A)
is a division subring of A. In the case that eJiz Aii ] Ai2 ®
) Aip (p 2 2), we put A(Ail) = Ai' If eR with the
condition (A) has the structure (bz) or {(c), then the dimension

[& :Ai]r of A as a right Ai—vector space is equal to the

length of the top of eJi. Further in this case, the following
condition (#) on A as a right Ai-vector space holds.

(#) Let V1 and V2 be subspaces of AA and vy and
i
Vo be elements of A satisfying |V1| é |V2| and lei n V1:
0 = vai n V2. Then there exists x in A such that le < V2
and xvls v2 {mod V2).

By [4, Lemma 5], the following holds.

Proposition 3. Let A ; Ai be division rings. If A
and Ai satisfy the condition (#), then the left dimension [A
: Ai]Q is é 2. In particular, if eR satisfies the condition
(A), then [A : Ai]Q < 2.

By this proposition, if eR with (A) has the structure (bz)
or (c), then we have [A :Ai]2 = 2.

Conversely, if eR has the structure (b2) with [4& @ Aill =
2, then eR satisfies the condition (A), and if eR has the
structure (c) with the condition () for A and Ai' then eR
satisfies the condition (A). As a consequence, we obtain the

following main theorem.

Theorem 2. Let R be a left serial ring. The following
are equivalent for each primitive idempotent e.
(1) eR satisfies the condition (A).
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{2) eR has one of the structures (a); (bl); (bz) with [A
Ai]A = 2 ; and (c¢) with the condition (#) for A and Ai.

Remark. If R is a finite dimensional algebra over a
field, then [A : Ai]r= [a : Ai]E holds. So for a primitive
idempotent e, if eR satisfies the condition (A), it follows
from [A : Ailﬂ é 2 (by Proposition 3) that [A : Ai]r § 2.
Hence eR never has the structure (c). Further suppose that R
is a finite dimensional algebra over an algebraically closed
field. Then we have [A : Ai]r= {a : Ai]£= 1. Hence eR has
the structure (a) or (bl).

Examgles

Here we give some examples of left serial rings having
projective indecomposable modules with structures (bl), (bz),
and (c) which satisfy the condition (A).

Example 1. Let k be a field and put

k k k k 1 0 0 0

0 k k k 0 0 0 O
R:=s e:=

0 0 k O 0O 0 O 0O

0 0 0 k N 0 0 0 O .

Then every projective indecomposable R-module satisfies the
condition (A) and eR has the structure (bl). Note that R is
not of right local type.

Example 2. Let K $ L be fields with |[L : K] = 2. Put

L L L 1 0 O
R:= 0 L L and e:= 0 0 O

0 0 K 0 0 O
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Then eR has the structure (bz) and satisfies the condition on
the left dimension in Theorem 2. Also in this case every
projective indecomposable module satisfies the condition (A) but
R is not of right local type.

Example 3. (Asashiba [1]}) Let F and G be division rings
and M an (F, G)-bimodule having the dimension sequence
(3,1,2,2,1) (see Dowbor, Ringel and Simson [2]). The existence
of such an M follows from Schofield [5, section 13} and [2,

F M

Proposition 1]. Then R::[ ] has exactly 5 non-isomorphic
0 G

"indecomposable modules and [M : G]r= 3, say MG= A1 @ A2 @ A3

1 0 0 0
with each A. = GG' Put e1:= and e2:= . Then we
1 0o 0 0 1

can identify elJR= MG. Since the set S:= (ezR, elR, elR/Al,
eIR/(Ale Az), eIR/elJ) consists of 5 non-isomorphic local
modules, § 1is a complete set of representatives of isomorphism
classes of indecomposable R-modules. Thus R is of right local
type. Hence every projective indecomposable R-module satisfies
the condition (A). In particular so does eIR. Further since
elJ is isomorphic to a direct sum of three copies of a simple
module, elR has the structure (c) and satisfies the condition

(#).
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PROCEEDINGS OF THE 19TH
SYMPOSIUM ON RING THEORY (1986)

THE REPRESENTATION TYPES OF CERTAIN
TRIANGULAR MATRIX ALGEDRAS

Mitsuo HOSHINO and Jun-ichi MIYACHI

In this talk, we summarize our results (7)) and [8).
Throughout, we work over a fixed algebraically closed field Kk

1. Majn Results.

l.Let A be a finite dimensional self-injective algebra and
assume that A is basic, connected and non-simple. For an
integer p & 2 , denote by Tp(A) the algebra of the p X p

upper triangular matrices over A . VWe ask when Tp(A) is tame.

So we may assume that A is representation-finite, otherwise
Tp(A) is wild (18). Then, as well known, the universal cover of

the stable Auslander-Reiten quiver of A is isomorphic to a
Dynkin~translation-quiver 2ZA (111, where A = Aq (q 2 1), Dq

(@2 4) or E (a=6,7,8), and A is called the Dynkin class of
A

Theorem 1. Il.et A be as above. hen, T,N) is tame if

and only if A has Dynkin class A3

=

smark. The case p > 2 is rather casy. Denote by Jp(A)

the idcal of Tp(A) consisting of the strictly upper triangular

matrices. 1f p>2 and pare 2 , Tp(A)/Jp(A)r is tame if

91
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and only if A 1is a Nakayama algebra of Dynkin class Aq and

{p,q,r) = (3,2,2), (4,1,3) or (4,1,4) (cf. (163).

Our second objective is the algebras of the form [3 g

with A, B 1local. There has been the complete list of the
representation-finite algebras of this type [2].

Theorm 2. Let A = [3 g be a finite dimensional algebra

with A, B 1local. Then, A is tame if and only if A is
isomorphic or anti-isomorphic to one of the following:

) —
P .0« with a?n = a8 = 0

2) BRC-—HDa with o? = 82 = 0

2°) with ou8 = a2 = B2 = 0

3 with ob - uR = o%u = o® = 82 = 0, q = 2,3
4 with o - u8 = a%u = a% = 8% = 0, q = 2,3,4

Recall now that an algebra A is said to be representation-
finite if there are only a finite number of pairwise non-
isomorphic indecomposable objects in mod A , the category of
finite dimensional left A-modules, to be wild if there is an
exact embedding mod k — mod A , where kQ is the path
algebra of the quiver g: C-0D , which is a representation
equivalence with the corresponding full subcategory of mod A ,
and to be tame if A is neither representation-finite nor wild.

2. Basic¢ Tools.,

Covering fechniques ({23, 31, (5] and [6]) will play an
indispensable role in deciding the representation type of a given
algebra. For a certain class of algebras, by taking appropriate
Galois coverings, the problem can be reduced to the calculation
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of vector space categories, which have been classified in [14]
(see also [9]). On the other hand, we will come across an
algebra which can be obtained as a quotient of a suitable Galois
covering of the tame local algebra 1 C-3 6 with a2 = 12 = 0
[13], thus is tame. The similar argument will also apply to the
situation that there is a Galois covering of a given algebra
which has a wild algebra as a quotient.

2.1. Loec Bo Categories.

A locally bounded category A is a k-category such that: a)
distinct objects are not isomorphic; b) for each x € A", the
algebra A(x,X) is local; c¢) for each x € A, Ey e AIAX,y) k]

and Zy e AfA(Y,x):k]l are finite [2]. The support supp M of a

A-module M is the full subcategory of A consisting of the

objects xXx € A such that M(x) » 0 . The dimension vector of a
A-module M is the family dim M = [M(x):k]x c A lLet Pi (i €
I) be a family of full subcategories of A . Denote by
Ui c ]rl the full subcategory of A consisting of the objects
of the Fi . For a family of objects X5 € AN (i €T1), we denote
by (xi)i el the full subcategory consisting of the objects xi.
A is said to be locally support-finite if for each X € A ,
UM(x)#o supp M is finite [5].

Meind A

2.2. Galois Coverijings.

LLet A be a connected locally bounded category and G a
group of k-linear automorphisms of A . Then G acts naturally
on mod A by the left. We assume that the action of G on A
is free, that is, gx » x for any g € G \(1} and any x € A
Following [6), we can consider the quotient A/G and the Galois
covering F:A — A/G.Then we have the push down functor
FA:mod A — mod A/G which is left adjoint to the induced

functor F.:mod A/G — mod A . If G acts freely on ind A ,
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that is , gM » M for any g € G\(1) and any M € ind A , then
FA preserves the Auslander-Reiten sequences. We will freely use

the following results.

sjtion 3 (see [6])). Let S be a quotient category of
A with the natural embedding mod S — mod A, and L = { X €

ind S | M € ind S for any g € G\{1)} . Then there exists a
set-theoretic injection I — ind A/G . In particular, in case
L 1is cofinite in ind S , the following hold.

(1) If A/G is tame, so is S unless it is representaion-finite.
(2) If S is wild, so is A/G .,

oposition 4 51). Jf A 1is locally support-finite and
if G acts freely on ind A , then the push down functor

F,:mod A — mod A/G is dense. In particular, if A 1is tame,

A
so is A/G

In what follows, we will deal only with a full subcategory
A of a Galois covering U which is in fact a quotient category,
thus we may consider mod A as a full subcategory of mod U by
the natural embedding.

2.3. Vector Space Categories.

A vector space category K is an additive k-category
together with a faithful functor | |:K — mod k such that
every idempotent in K splits. Given a vector space category
K , its subspace category U(K) is defined as follows: its
objects are triples of the form (U,X,9) , where U is a k-
space, X is an object in K , and ¢:U0 — |Xxl| is a k-linear
map. A homomorphism from (U,X,¢) to (U',X',¢') is given by a
pair («,B) where o:U! — U' is k—linéar, B:X — X' is a

morphism in K such that |B|¢ = ¢'a« . Given a poset § ,
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considered as a category, add kS is a vector space category.
Conversely, assume that K is a vector space category with only
1-dimensional indecomposable objects, then K 1is of the form
add kS for some poset S .

Let A be a one-point extension algebra of R by M , then

(kU.RX.Q:RMakU — RX ) o It

is well known that U(Hom(M,mod R)) is representation equivalent

any A-module is given by a triple

to the full subcategory of mod A consisting of the A-modules
without non-zero direct summands of the form (k,0,0) or
(0,Y,0) with Hom(M,Y) = 0 . 1In case R is tame, if the vector
space category Hom(M,mod R) is tdme, so is A .

3. About Theorem 1.

Let us consider first the case where A 1is a Nakayama
algebra. Suppose that A is a Nakayama algebra of Dynkin class

Aq . Then, T,(A) has the following universal Galois covering

B_, 8,
ces lu_, luo lu, oo
> a-;‘)° (!o A >
With oMy = Wy Ry = ey ottt e e = By BB =0 for

all i €Z . If q &2 then U is locally representation-finite
[4], if q = 3 then U is locally support-finite and tame [171],
and if q & 4 then U has a finite quotient which is wild [17].
Thus, in this case, T,(A) 1is tame if and only if q =3

In what follows, we assume that A 1is not a Nakayama
algebra. Notice that A is a Nakayama algebra if A has Dynkin
class Aq (q S 2).
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Consider next the case where A has Dynkin class Aq (q &

4), Dq (g 2 4) or Eq (6 S q S 8). Then, as easily seen, the

Auslander-Reiten quiver of A has the following full subquiver:

and, as a quotient, the Auslander algebra over " A has the

following algebra:

</ with Bya, + Bya, + Byay = O .
This is a concealed hereditary algebra of type B, . Notice that
T,(A) is representation equivalent to the Auslander algebra over

A [1]1, because A is assumed to be representation-finite. Thus
T,(A) is wild.

It only remains the case of A having Dynkin class A, .

Then, the universal cover of the Auslander-Reiten quiver of A
is the following:

N\ Ay
NINININININT

ININININININ
N N/

Thus, since A 1is standard [12)], A has the following universal
Galois covering:



6. = R
i

g
,//’Ef: \E;\\*
with v, - 68, =

PN

i+16i = 0 for all i € Z [6].

*i+1
Hence, by [5], it suffices to prove that the following locally
bounded category U is locally support-finite and tame:

Y %
[1]
b > a >
0 1~ B
e 1
Yo, ao/l Bo 0/
_)80 :Co
L LA
| v 2
. * 1
vy, %o / B 84
-_— a > C

with a6, = B v, = ai 6 =B vi=0 forall i€Z and

all the squares commutative.

4. bout Theorem 2.
We have only to consider the algebras of ordinary quiver
+—+0d or C-—-D , which have the following coverings:

o
-
»
L 4
o

-1 a_, 0 o 1
or
8, g,
> by s > by
lu_l luo lul .
a, o, 3 a, 8y ’ .

For only (2), the Galois covering is not locally support-finite,
but, this is a quotient of the following tame algebra:
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RCb—> adoa with o2 = 82 = val = UBY = YU = Uy = 0 (see [4
\Y

for details). Thus, (2) is tame.

emark. Given a representation $ C VO ¢ of the quiver vt C:0

=

with relations 02 = 12 = 0 , by defining the representation

VeV VD¢, we obtain a full exact embedding. Since the

above algebra is a Galois covering of the algebra: vt C-© g with
a2 = 12 = tadt = 0 , with Galois group = Z/2Z , by Proposition 3,
the category of the finite dimensional representations of the
quiver

T CD o6 with relations 02 = 12= 0 is similar to that of the
quiver T C-D g with relations 02 = t2 = 10t = 0. Note that
the latter is a finite dimensional algebra.

S. An Example of Tameness.

As an example for proofs of tameness of algebras in our theorems
we show that the following algebra is tame:

(33)Bcb—“»aoa with ol - UR = af = B3 = 0 ,

Take the universal Galois covering U with Galois group =

Z:
B_, 8,
> b > by b
[Hr [ [

YA Tan, %0 T, N
wi th “iui - ui+18i LIPS L T Bi+28i+18i = 0 for all i
Z.For each n€ Z , let A2n be the following full subcategory
of U:

n+4 n+§ bn+6

[ e B -
P &~ o

-

n+3 n+4 n+5

]

(o]

€
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and let A2n-1 be the following full subcategory of U:

In+3 ’ In+4 ? In+5
e > 80T 2ne2 > 8n437  3ne7  %nes

these are concealed hereditary algebras of type E; , and for

I, m€E€Z with 1 S m, as before, let Al m be the full
»
subcategory of U consisting of the objects of the An , 1 &S na
m . Then, as an algebra, A2n-1.2n+1 is isomorphic to
k DN2n 0
0 A2n M2n
0O 0 k

o 1

and N, = o;xx%% are regular modules

11
where M = 000111
2n oo 2n

belonging to the same tube:

\/@/\/@/\A
/N/N/N\N/\N/\

K/\/\/\/\A

The vector space categories Hom(Mzn. mod A, ) and

Hom(mod A N, ) Dbelong to the pattern (Eg, 5) , and

2n’ "2n

= Pan Ran an ., where P2n consists of the

with restriction to A2n being

ind Ayno1,2n+1

objects of Ind A2n.2n+1

preprojective, th consists of the objects 1ind A2n-1.2n with

restriction to A being preinjective and R2n consists of the

2n
regular objects of ind A2n except that the above tube changes

to the following:
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/\/\/\
VA TAVAVA VAV
b\/\/\/\/\/\

Thus, A2n-1,2n+1 is tame.
Similarly, A2n-2,2n is isomorphic to
k DN, , 0
0 A1 Mapoy
0 0 k ,
where Mon<y ° 111998  and Nop-1 = 000868 are regular modules:

\/\/N)%WK/
/N/N/N/N/N
h/\/\/\/\q

The vector space categories Hom(M 1° mod A ) and

2n-~ 2n-1

Hom(mod A N )} belong to the pattern (Eg, 5) , and

2n-1' "2n-1

ind A P v R2n-1U Q , where P consists of

2n-2,2n -~ " 2n-1 2n-1 2n-1
the objects of ind A2n-l.2n with restriction to Aypn-y Dbeing

preprojective, an-l consists of the objects of 1ind A2n-2.2n-l

with restriction to A2n-l being preinjective and R

2n-1
consists of the regular objects of ind A2n-l except that the
above tube changes to the following:
/' \/ \
h/\/%)\/ﬁ?\/

!/ \.7 \. / \./\./\./ \

Thus, A2n—2.2n is tame.
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For 1,m€ Z with 1 & m, Al- is the one-point

1,m+]

extension of by the module with support in A1 and with

Al.m+1
restriction to it being Ml . The vector space category

Hom(M mod A is isomorphic to Hom(Ml. mod AI) , and

1,m+1’
ind A

ll

ind A U jind A . Therefore ind U =

1-1,1+1 1,m+1

Unezind An-l.n+l ,» in particular, U 1is locally support-finite

and tame. Thus, (T-33) is tame.

1-1,m+1
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PRCCEEDINGS OF THE 19TH
SYMPCSIUM ON RING THEORY (1986)

HEREDITARY ORDERS OVER Pl AND

EXTENDED DYNKIN DIAGRAMS

Daisuke TAMBARA

§0. This is an exposition of Lenzing's papers [5] and [6]. Let
A be a Dynkin quiver and A = A v {*} be an extended Dynkin quiv-
er. The representations of A were classified in [2]. They
divide into three classes of modules, namely preprojective, pre-
injective and regular modules. The category of regular modules
turns out to be equivalent to a direct sum of categories Ue(x)
indexed by points x of the projective 1line Pl, where Um denotes
a uniserial category with m simple objects and we put e(x) =1
for almost all x and the integers e(x) # 1 are the same as the
numbers of points in branches of the graph A (for example if A
is of type Eg, they are 2, 3, 3) ([3]). This phenomenon had not
been explained intrinsically until [5] and [6] appeared. In
characteristic zero, one can reduce to Mckay correspondence,
considering vector bundles over P1 with a polyhedral group
action. In general, Lenzing constructed an abelian category
F/Fo as a localization of some functor category on kid-modules.
The category E‘/IF0 is very similar to the category of coherent
modules over a curve and the category of objects of finite
length in F/Fo is equivalent to the category of regular

This paper is in final form and no version of it will be sub-
mitted for publication elsewhere.
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kA-modules. In this report we directly construct an equivalence
between ki-modules and A-modules, where A is an order over Pl
made from the Dynkin graph A.

§1. Let X = Pl be the projective line over an algebraically
closed field k. Suppose that we are given a finite subset B of
X and positive integers e, for x € B. From these data we shall
define two objects, a quiver A and an Qi-algebra A. The points
of 4 are 0 and (x, i) where x € B and 0 < i < e,- We put 0 =
(x, 0) for x € B. The arrows of 4 are (x, i) — (x, i-1) where
0 <ice,. Forx €X letm denote the Ok-ideal defining the
point x. Let Matdk) be the matrix algebra over 0& with size #4
. and let epq {(p, 9 € A) be the matrix units. Then A is the sub-
algebra of MA(ak) whose (p, q) entry is Ok if there is a path
from q to p, otherwise it is " where p = (x, i).
Now assume that the underlying graph of 4 is Dynkin (i.e.

A, D, Eg Ejy Eg). Let A =4 U {*] be a quiver such that it
contains the quiver A and its underlying graph is an extended
Dynkin (i.e. K;, 5n, Eg, Eﬁ, Eé) and there is no arrow from *.
We denote by kA and k& the path algebras of 4 and A respective-
ly. Let r be an integer 0, 1, 2, 3 or 5 according as A is of
type A, D, EG' E7 or E8' Let TrD be Auslander-Reiten's functor
for kA-modules. Since kA is contained in A as the constants,
any kA-module M extends to a A-module A @ x4 M. Define a A-
module 2 by 2 = A ® kA(‘I‘rD)r(kA) @ Aeoo ® 0&(1). It can be
shown that (EndAZ)OP = kA, so we have a functor Zz @ xx from kZL‘
modules to A-modules.

L -
Theorem. The derived functor 2 @ kX ¢ D(kA) — D{(A) is an
equivalence from the derived category of kA-modules to the
derived category of quasi-coherent A-modules. -

The proof does not use the classification of regular
modules. There exist almost split sequences in locally projec-
tive A-modules, ‘so we can speak of the Auslander-Reiten quiver
of them. Roughly speaking, the theorem is proved by comparing
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the Auslander-Reiten quivers of kA-modules and of locally pro-~
jective A-modules.

One can deduce easily from the theorem that the above func-
tor induces an equivalence from the category of regular modules
to the category of A-modules of finite length. By the defini-
tion of A, the latter is equivalent to the direct sum of the
categories Ue(x) where x runs through the points of Pl. Thus we
obtain a constructive proof of the structure theorem for regular
modules as stated in section 0. The following is also proved by
using the equivalence of the theorem.

Corollary. For any finitely generated kA-module M, the ring
@ n»0 Homkz(M, (TrD)™M) is a finitely generated module over its
center which is of Krull dimension € 2,

The fact D(k3) = D(A) may be also proved as folléws. There
is an equivalence D(A) = D(T) where T = End,(A @ Aego © dk(l))op
(C4] Proposition 4.1). This finite dimensional algebra T was
called the canonical algebra and studied by Ringel. Then it
suffices to find an equivalence D(T) ¥ D(kA), which is probably
known,
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