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PSEUDO-RANK FUNCTIONS ON CROSSED PRODUCTS OF

FINITE GROUPS OVER REGULAR RINGS

Jiro Kapo

In this note, we shall announce some results in our

recent papers (10, 11]).
I.1. Extensions of pseudo-rank functions

Let R be a regular ring and we use FP(R) to
denote the set of all finitely generated projective
left R-modules. For modules A, B, A ¢ B implies

that A 4is isomorphic to a submodule of B and we use

n.A Eo denote the direct sum of n copies of A.

Definition [2, p.226). A pseudo-rank function on

R is a map N:R—>»[0,1) such that

(1) N(1) = 1.

{2) N{rs) ¢ N(r} and N(rs) & N(s) for all
r,s € R.

{3) N{(e+f) = N(e)+N(f) for all orthogonal
idempotents e, £ € R,

If, in addition

(4) N(r) > 0 for all non-zero r € R,
then N 1is called a rank function. We use P(R) to

denote the set of all pseudo-rank functions on R.



Definition (2,p.232]). A dimension function on
FP(R) is a map D:FP(R)— R* such that

(1) D(RR) =1

(2) If A, B € FP(R) and A ¢ B, then D(A) <
D(B).

(3) D(A@®B) = D(A) + D(B) for all A, B € FP(R).

Let D(R) denote the set of all dimension

functions on FP(R).

Pseudo~rank functions on R and dimension
functions on FP(R) are equivalent functions as

follows.

Lemma I.1 (2, Prop.16.8]. There is a bijection
TR:P(R) —?D(R) such that [R(P)(Rr) = P(r) for all P
€ P(R) and r € R,

Our main objective is to study a crossed product
R*G of a finite multiplicative group G over a
regular ring R. A crossed product R*¥G of G over R
is an asso-ciative ring which is a free left R-module
containing an element X € R*G for each x € G and
the set generated by the symbols (X: x€G } is a
basis of R*G as a left R-module. Hence every element
€ R*G can be uniquely written as a sum ¢ = zx(—G
with ry, € R. The addition in R*G is the obvious
one and the multiplication is given by the formulas

%7 = t(x,y)Xy rX = Xr*



for all x, vy ¢ G and r € R. Here the twisting
t:G x G=—) U(R) is a map from G x G to the group of
units of R and for fixed x ¢ G, the map “)'E:r—-)r;“
is an automorphism of R. We assume throughout this
note that the order |G| of G is invertible in R.
The Lemma 1.1 of [17] implies that R*G 1is also a
reqgular ring. First we will study the question whether
a pseudo-rank function P of R can be extended to
one of R*G. We shall shov;r that P is extensible to
R*G if and only if P |is G-invariant, i.e., P(r) =
P(rs") for all réeéR and x € G. We always view R
as a subring R*G via the embedding r-—ri1., Then
there exists a restriction-map @ :P(R*¥G) —P(R).

We consider the same connections between D(R*G) and
D(R) . For all D € D(R*G) and A ¢ FP(R), define
(D|g)(A) = D(R*G @ A). We can easily see that D|g

is a dimension function on FP(R) and [Rag(N)|g =

Tr(NIg).

Lemma I.2 [10,Lemma 2]). Let N be in .P(R*G)
and D be in D(R*G). Then we have that (N|g)(r) =
(N|g)(r*) and that (D|g)(Rr) = (D|g)(RrT) for all r

€ R and all x € G.

Now we shall define an extended dimension function
on R*G for a G-invariant D € D(R). Note that for

A € FP(R*G), pA € FP(R).



Proposition 1.3 [(10,Prop.3)}]. Let D be a G-
invariant dimension function on FP(R). Put DS(a) =
||~ 'D(xA) for all A €& FP(R*G). Then D¢ is a

dimension function on FP(R*G) and DG|R = D,

Corollary I.4 [10,Cor.4). Let P be a G-invariant
pseudo-rank function on "R. Define PG(k) =
(Pr(P))C(R*G)) for all of € R*G, then

(1) p® 4is a pseudo-rank function on R*G and
PC|p = P

(2) We have PO() = |G|~V Pr(ry), if p(R*cd) ¥
®JRry, where r; € R.

Definition (2, Ch.19]. Let P be in P(R). R
admits a pseudo-metric § by the rule:§(r,s) = P(r-s).
Note that § is a metric if and only if P 1is a rank
function. We call § the P-metric. Let R be the
completion of R with respect to § and we call it the
P-completion of R. R 4is a unit-regular, left and
right self-injective ring by [2, Th.19.7] . There
exists a natural ring map ¢:R —> R and a continuous
map P:R —10,1] such that BP¢= P. By [2, Th. 19.6],
P is a rank function on R. Put kerP = { ré& R: P(r) =
0}, which is a two-sided ideal. P induces the rank
function P on R/kerP. Then R is eqgual to the P-

completion of R/kerP and ker = kerP.
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Now let R*G be a given crossed product of a finite
group G over a regular ring R and let P be a G-
invariant pseudo-rank function. Since P is G-
invariant, kerP is G-invariant ideal and therefore
each automorphism % induces an automorphism % of
R/kerP and ¥ is uniformly continuous with respect to
the induced metric. Consequently we have an
automorphism of R, which is again denoted by ; such
that ¢ (r)¥ = f(r?") for all r €R.

Let a map t':t G x G — U(R) be t'(x,y) =$(tix,y))
for all x, y € G. Here of course t: G x G —» U(R)
is the given map for R*G., We define a crossed product
R*G of G over R using multiplication formula (aX%
)(bY) = (ab’-‘qt'(x,y))ﬁ for a, bR and x, vye G,
and define a map @:R*G —) R*G by the rule:p( ,(crxX
) = T yegPlry)X. Then $ is a

ring homomorphism and the following diagram is

commutative ;

\ 1
e

R
|
R*

o

G

Proposition I.5 [10,Prop.6]. Let P be a G-
invariant pseudo-rank function on R, let R bea ‘P‘-
completion, let P be a continuous extension of P
and let c}:R—)ﬁ the natural map. Then we have the
relationship between PC® and (F)® such that the

following diagram is commutative ;



pG
R*G ~y [0,1]
_l’ (P)¢
R*G > (0,1].

Definition (2, Ch.16 and Appendix]. For a regular
ring R, we view P(R) as a subset of the real vector
space mﬁ s which we equip with the product topology .
Then P(R) is a compact convex subset of mR by [2,
Prop.16.17] . A extreme point of P(R) is a point P
€ P(Ri which cannot be expressed as a positive
convex combination of distinct two pionts of P(R). We
use 9gP(R) to denote the set of all extreme points of
P(R). The important result is that P(R) 1is equal to
the closure of the convex hull of 9J,P(R) by Krein-

Milman Theorem.

Theorem I.6 (10,Th.7). Let R*G be a crossed
product of a finite group G over a regular ring R
with |G|~'¢é R. Let P be a G-invariant extreme
point of P(R), let K be the P-completion of R, let
$:R = K be the natural ring map and let P be the
continuous extension of P over R.

(1) The crossed product R*G of G over R
defined above, is the completion of R*G with respect
to PC-metric.

(2) The extension PS can be expressed as a



positive convex combination of finite distinct elements
in 9.(R*G),i.e., PG = Z?o‘iNi, where Nj_C—QeP(R*G) ¢ O
¢ oy <1 and ZPd; = 1.

For N € 3 P(R*G), we have the following

relationship between N and (N|R)G.

Theorem I.7 [10,Th.,10]. Let R*G be a crossed
product of a finite group G over a regular ring R
with |G|"'€ R and let N be extremal pseudo-rank
function on R*G. Then we have (N|g)€ =aN + (1-a)N'
for some N' € P(R*G) and some positive real number

d £ 1.

Remark. For a G-invariant element -Pé deP(R),
let NyseoesNg be elements in aeP(R*G) associative
with P. We can easily prove that { Njy,...,N } is
equal to the set { N€ 3,P(R*G): O(N) = N|gp = P},
where ©:P(R*G)—>»P(R), by Theorem I.6 and Theorem
I.7. Unfortunately we don't know whether NlR is
always extremal for any extremal pseudo-rank function N

on R*G or not.

Now we consider a pseudo-rank function P which is

not necessarily G-invarint. For each x €& G, put
A=

PX(r) = P(r*¥ ) for all r ¢ R. Then PX is also a

pseudo-rank function and kerP* a (kerP)X . Put ¢t(P)
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= 2’xeG|G|‘1Px, then t(P) 1is G-invariant pseudo-
rank function with P § |G|t(P). We call t(P) to

the trace of P.

Proposition I.8 [10,Prop.10]. Let R*G be a
crossed product of a finite group G over a regular
ring R with |G|-'€ R. Let P be in ° 9P(R)
which is not necessarily G-invariant and let ¢t(P) be
the trace of P. Then the extension t(P)® can be
expressed as a poslitive convex combination of finite

distinct elements in 3 ,(R*G).

Corollary I.9 [10,Cor.11]. Let R*G be a crossed
product of a finite group G over a regular ring R
with |G]~' € R. If 9 P(R) is a finite set, then

9eP(R*G) 1is also a finite set.

I.2. Isomorphism of O.

Definition {1, p.202]. A partially ordered abelian
group is an abelian group K equiped with a partial
order < which is translation invariant. The
positive cone of K is the set K* = {( x € K; x »
0} If the partial order on K 1is directed
( upward or downward ), then K 1is called a directed
abelian group. An ordered-unit in K is an element u
0 such that for any x € K, there exists a positive

integer n for which x ¢ nu. We denote by a pair



(G,u) a partially ordered abelian group with order-

unit u.

Definition [1, §15). For a unit-regular ring T,
the Grothendieck group Kp(T) is an abelian group with
generators (A), where [A] is the isomorphism class
for A € FP(T) and with relation [A & B] = [A] +
[B). Every element of Ky(T) has the form [A] - [B])
for some A, B € FP(T). Ko(T) 1is a partially
ordered abelian group with order-unit ([T] and
positive cone Kg(T)* = ( [A): A e FP(T)} by [1,

Prop. 15.2] .

We shall study conditions under which @ is a

homeomorphsim.

Theorem I1.10 [10,Th.15]. Let R be a left
self-injective, regular ring of Type IIf and R*G be
a crossed product of a finite group G over R with
|é|~! € R. We assume any M € Max(R) is G-invariant.
Let ©: 3 P(R*G)—) J.P(R) be a natural restriction
map. Then the following conditions are equivalent:

(1) ©& is a homeomorphism.

(2} The natural map f: Ky(R)=— Ky3(R*G) ,defined
by £([(A)) = [R*G @z A] for A € FP(R), is an
isomorphism as a partially ordered abelian group with
order-unit.

(3) B(R) = B(R*G).
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II.1. Relations between P(R*G) and P(RG)

Definition [15]. Let T be a ring with identity
element 1 and let G be a finite group of
automorphisms of T with |G|-'€T. The skew group
ring, T*G, is defined to be a crossed product which
has a trivial twisting map. Throughout this paper, put
e = |G|'1zxeci and V:e(T*G)e — TG given by ylel

Txeg FxXlel = Tyeq tiry), where t(r) = I'G|-1zxeG X
for r ¢ T. Then e is an idempotent and v is an

isomorphism by [15 , Lemma 0.1].

In this section, we shall study the relation between
P(R*G) and P(R®) (resp. 9.P(R*G) and 9.P(R®) ).
If R*G and RE are Morita equivalent, then
K.R.Goodearl has shown by a general situation that
there is a bijection between P(R*G) and P(R®)
in [1,Cor.16.9]. We shall define maps between P(R*G)
and P(RG), which are more concrete than Goodearl's

Theorem, without the assumption of Morita Equivalence.

Let R be a unit-regqular ring and let G be a
finite subgroup of Aut(R) with |[G|™' € R. The skew
group ring R*G is a regular ring by [18].
Unfortunately we don'n know whether R*G 1is unit-

regularor not. Then, from now on, we assume that R*G
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is unit-regqular in many cases. We regard R*Ge as a

(left R*G, right R®)-bimodule.

There exists a natural functor /J;FP(RG) —
FP(R*G) by the rule m(M) = R*Ge QRE' M. Then we have
a positive homomorphism /i :KO(RG) —3 Ko(R*G), defined
by AM([M]) = [pm(M)]. Set F = ( N ¢ P(R*G): N(e) =

Then M also induces a map ,U*: P(R*G)-F — P(R®)
by the rule am*(N)(a)= N(e)~'Dy(@(RCa))

for any N € P(R*G)-F and any a € RG, where Dy
is the dimension function corresponding to N. 1In
fact, since p(RGa) = R*Ge @ R®a ¥ R*Gea, we have Dy
MRCa)) = N(ea). Then u*(N)(a) = N(e)~'.N(ea) for all
a € R, fThus /u*(N) is a pseudo-rank function by the

isomorphism ¢ eR*Ge — R® and (1, Lemma 16.21.

Proposition II.1 (11,Prop.l1]. Let/f: P(R*G)=F =
P(R®) be the map given above . If N & P(R*G)-F |is

extremal in P(R*G), then /u*(N) is also extremal.

In general, there may not exist any map from P(RG)
~—3) P(R*G)., From now on, we assume that R 1is a
finitely generated, projective, left RG-module. For
any A €& FP(R*G), define A(A) = Hompug(R*Ge, A).
Since Homgsg(R*Ge, R*G) ¥ eR*G ¥ R as left RG-
modules, then A(A) is a finitely generated,

projective, left RC-module. The functor A 1induces a
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positive homomorphism A:Kg(R*G) — KO(RG) by the
rule; 3A([A]) = [ A(A)]. Since Hompxg(R*Ge, R*G) %

eR*G ¥ R as left RC-modules, we have Z([R*G]) = [ _R].

RS
We define

A (Q)(x) = Dg(R)~'Dg( A (R*Gx))
for any Q € P(RG) and for all x € R*G, where Dq

is the dimension function corresponding to Q. Then

R*(Q)' is a pseudo-rank function on R*G.

Remark II.1. We note the following relation that
A (Q)(e) = Dolga R)"' for all o ¢ P(RS), because
A(R*Ge) ¥ eR*Ge £ RC.

Now we shall determine pseudo-rank functions on RG

from ones on R¥*G.

Theorem II.2 {11,Th.2]. Let R be a unit-
regular ring , G a finite supgroup of Aut(R) with
lg]-Y € R and R*G a skew group ringof G over
R.Put e = |G|-1zxéG X and set F = ( N € P(R*G):
N(e) = 0). We assume that R*G is a unit-reqular ring
and that R 1is a finitly generated, projective,
left RG-module. Then we have the following results;

(1) p: KO(RG) ~— Kg(R*G) 1is an order-embedding map
and j m = identity.

(2) For any Q € P(R®), there exists some N &
P(R*G)-F such that Q(a) = N(e)~'N(ae) for any a ¢
RC.
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Next we shall determine a condition that R*G and

RG are Morita equivalent.

Proposition II.3 [11,Prop.3]. Let R be a unit-
regular ring and let G be a finite subgroup of
Aut(R) with |G|~' € R. We assume that R*G is also
a unit-reqular ring. The following conditions are
equivalent.

(1) R*Ge (resp. eR*G) 1is a generator as a R*G-module.

(2) N(e) » 0 for all N € 9 P(R*G).

II.2. X-outer automoxrphisms

In this section, let R be a directly finite, left
self-injective, regular ring and G a finite group of
automorphisms of R with |G|~1¢é R. It is known that
both R*G and RS are directly finite, left self-
injective, regular rings ([18]) and that such rings are
unjt-regular rings ({1, Th.9.17]). K.R.Goodearl has
shown that there exists a bijection 79 P(R) —3 Max(R)
by the rule; P — ker P and that R/kerP 1is a
simple self-injective regular ring with the unique rank

function [ 6, 1I.14.5 ]. We use repeatedly that fact.

Definition [16]. An automorphism g of R 1is
called an X-inner if there exists a non~-zero element

x € R such that rx = xr9 forall r ¢ R. If g is
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not X-inner, we call g X-outer. For a subgroup G
of Aut(R), we call G X-outer if all g ¢ 1 & G

are X-outer. Let 2Z(R) be the center of R.

First we shall determine the structure of Max(R*G)
for an X-outer group G. The following Lemma has been
essentially proved in [ 7 ]}, but we shall prove it in
this note for the sake of completeness. We denote the

set of all central idempotents of a ring T by B(T).

Lemma IX.4 [11,Lemma 4]. Let R be a directly
finite, left self-injective, regular ring and G a
finite group of automorphisms of R with |G|-le Rr.
We assume that G is X-outer. Then we see that

Max(R*G) = { (NgegMI)*G : M € Max(R)} .

Proposition II.5 [11,Prop.5]. Let R be a
directly finite, left self-injective, regular ring and
G a finite group of automorphisms of R with |G| e
R. We assume that G is X-outer. Then we haveaeP(R*G)

= { t(@%: Q & 9.P(R)}

Lemma IIX.6 [11,Lemma 6]. Let R be a directly
finite, left self-injective, regular ring and G a
finite group of automorphisms of R with |G| 1e R.
We assume that G 1is X~-outer. Then we have the
following results:

(1) N(e) = n~' for all N € 9,P(R*G), where n =

lel.
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(2) R*¢ ¥ M (RE).

Now , using Lemma IJ.6, we shall prove a
interesting result with respect to "a normal basis"

of R over RG.

Proposition II.7 (11,Prop.7]. Let R be a
directly finite, left self-injective, regular ring and
G a finite group of automorphisms of R with |G[‘1e
R. We assume that G is X-outer. Then R ¥ RC(G)

as RC-modules.
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ON FPF~RINGS
Shigeru KOBAYASHI

A ring R is called right finitely pseudo-Frobenius
(FPF) if every finitely generated faithful right R-mod-
ules is a generator in the category of right R-modules.

FPF-rings include quasi-Frobenius rings, pseudo-
Frobenius rings, commutative self-injective rings,

Priifer domains, and almost valuation rings.

Recently, C. Faith [1] has shown that a commutative
ring R is FPF if and only if (1) The total quotient
riﬁg K of R is injective, (2) Every finitely
generated faithful ideal is projective. In particular,
as in the case that R 1is a commutative semiprime ring,
he has also shown that R is FPF if and only if the total
quotient ring K of R is injective and R is
semihereditary.

On the other hand, S. Page [7] has shown that a
{(Von Neuman) regular ring R is (right) FPF if and only
if R is isomorphic to a finite direct product of full
matrix rings over abelian regular self-injective rings.
Therefore we shall require a characterization of arbitrary

FPF-rings, which includes the above results.

The results of this paper will be found in [4], [5]
and [6], which will be appeared in Osaka J. Math.
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theorem of C. Faith. If R 1is a regular ring, the
condition (ii) says that R is a right self-injective.
Furthermore, the conditions (i) and (iii) imply that

R 1is isomorphic to a finite direct product of full matrix
rings over abelian regular self-injective rings by

[3, Corollary of Theorem 2]. Therefore the theorem of

S. Page follows.

Next we consider semihereditary FPF-rings. If R is
a commutative semiprime FPF-ring, then by Theorem 1.1,
we can see that R is semihereditary. However, for
arbitrary non-singular FPF-ring R, it is not known
wheather R is semihereditary. Therefore in the next
theorem, we shall give a characterization of semihereditary
FPF-rings, and by this characterization, we shall give a
necessary and sufficient condition for non-singular

FPF-rings to be a semihereditary.

Theorem 1.2 [4, Theorem 2]. Let R be a ring.
Then the following conditions are equivalent.
(1) R is a right semihereditary right FPF-ring.
(2) (i) R is right bounded and right non-singular.

(ii) For any positive integer n, (nR)R has
the extending property of modules for Lr(nR), where
Lr(nR) is the lattice of right R-submodules of (nR)R.

(iii) For any finitely generated idempotent
right ideal I of R, there exists a central idempotent
e of R such that BRI = eR.
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In this paper, we shall concerned with non-singular
rings. The results of this paper will appear in [4], [5],

and [6]. Therefore we will ommit the proofs.
1. A characterization of non-singular FPFrings.

The purpose of this section is to give a characterization
of non-singular FPF-rings.

First of all we require some definitions and lemmas.

Definition 1.1. A ring R is right bounded if
every essential right ideal contains a nonzero two-sided

ideal of R which is essential as a right ideal.

Lemma 1.1 [4, Lemma 1]. For a right non-singular
ring R, the following conditions are equivalent.

(1) R is right bounded.

{(2) FOr any finitely generated right R-module M,
rR(Zr(M)) is an essential right ideal of R, where Zr(M)

the singular submodule of M and rR(-) is the right

annihilator ideal.

Lemma 1.2 [4, Lemma 2]. Let R be a right non-
singular right bounded ring. Then for any finitely
generated right R-module M,

M is faithful if and only if M/Zr(M) is faithful.
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By [3, Proposition 1], we know that right non-singular
right FPF-rings are right bounded. Therefore, by virture
of Lemma 1.2, if we show that right non-singular right
bounded rings are right FPF, it suffices to show that
any finitely generated non-singular faithful module is a
generator.

Further, by [7], the maximal right quotient ring Q
of a right non-singular right FPF-ring R, is a flat
epimorphic extension of R. By using Pierce stalk, we
know that Q@ is the classical left quotient ring of R.

Now we can give a characterization of non-singular

FPF-rings.

Theorem 1.1 [4, Theorem 1]. Let R be a ring and
Q be the maximal right quotient ring of R. Then the
following conditions are equivalent.

(1) R is a right non-singular right FPF-ring.

(2) (i) R is right bounded.

(ii) Q 1is the classical left quotient ring of

(iii) For any finitely generated right ideal I
of R, TrR(I) ® rR(I) = R (as ideal), where TrR(—) is

the trace ideal.

Remark. If R is a commutative semiprime ring,
the condition (iii) of (2) of Theorem 1.1 shows that R
is a semihereditary and the condition (ii) implies that
the total quotient ring of R coincides the maximal

quotient ring of R. Hence Theorem 1.1 follows the
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Corollary 1.1 [4, Corollary 1]. Let R be a non-
singular right FPF-ring. Then R is right semiheredirary
if and only if for any positive integer n, nR has the

extending property of modules for Lr(nR).

Corollary 1.2 [4, Corollary 2]. Let R be a right
semihereditary right FPF-ring. Then R is left FPF if
and only if R is left bounded.

By using the language of stalk, we can give an another

characterization of commutative semiprime FPF-rings.

Corollary 1.3 [4, Corollary 3]. Let R be a
commutative ring. Then the following conditions are
equivalent.

(1) R 1is a semiprime FPF-ring.

(2) ReR has the extending property of modules for
Lr(ReR) and all stalks of R are Priifer domain.

2. Applications.

In this section, we apply Theorem 1.1 and Theorem 1.2
to determine the structure of some type of FPF-rings.

First of all, we consider about the theorem of S. page.
As we mentioned in the introduction, S. Page has determined
the structure of regular FPF-rings. On the other hand, if
R 1is a non-singular right FPF-ring, then R 1is regular
if and only if R 1is right continuous, where a ring R is
right continuous if (1) R has the extending property for
right ideals, (2) for any element x of R such that xR
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is isomorphic to a direct summand of R, there exists an
idempotent e of R such that xR = eR.

Therefore we are intrested in the structure of non-
singular right quasi-continuous, right FPF-rings, where
a ring R is right quasi-continuous if (1) R has the
extending property for right ideals, (2) for any
idempotents e,f in R such that eRnfR = 0, eR @ fR is
a direct summand of R.

We generalize the theorem of S. Page, as follows

Theorem 2.1 [5, Theorem 2]. Let R be a non-singular
right FPF-ring and Q be the maximal right quotient ring
of R. Then the following conditions are equivalent.

(1) R is right continuous.

(2)  id(R) = id(Q).

[
3 = i -
(3) R R1 X JI.Mn(i)(Si)’ where R1 is a non

singular right FPF-ring whose maximal right quotient ring
is an abelian regular self-injective ring, and each §

i
is an abelian regular self-injective ring and n(i) »2. -

Next we consider about noetherian non-singular FPF-rings
and hereditary FPF-rings.

In [2], C. Faith and S. Page have proved that two-sided
noetherian non-singular right FPF-rings are isomorphic to
a finite direct product of bounded Dedekind prime rings (=
hereditary noetherian prime rings whose nonzero ideals
are invertible ).

On the other hand. in the case that ring R is right

noetherian non-singular two-sided FPF-rings, we have the
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followinf similar result.

Theorem 2.2 [6, Proposition 1]. Let R be a right
noetherian non-singular two-sided FPF-ring. Then R is
isomorphic to a finite direct product of Dedekid prime

rings.

Further, for hereditary FPF-rings, we have the fl
following.

Theorem 2.3 [6, Proposition 2]. Let R be a right
hereditary ring. Then the following conditions are
equivalent.

(1) R is two-sided FPF.

(2) R is isomorphic to a finite direct product of

Dedekid prime rings.

Finally, we consider a matrix representation of right
semihereditary right FPF-rings.
. We can not give a precise matrix representation of
semihereditary FPF-rings so far. However, under the

Morita equivalence, we cangive a representation.

Theorem 2.4 [6, Theorem 1]. Let R be a right
semihereditary right FPF-ring. Then R is Morita

equivalent to the type of ring.

DD oooooD I

O eose
|w)
H ) eoso
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Where D is a right semihereditary right FPF-ring
whose maximal right quotient ring is an abelian regular
self-injective ring and I is a finitely generated faithful

#*
right ideal of D, and I is the dual module of I and
0,(I) is the left order of I, i.e. 0,(I) ={aeq_ (D) |

ngI} .

Definition 2.1. A ring R is Priifer prime ring if
R is two-sided semihereditary and two-sided Goldie,
and doesnot contain proper finitely generated idempotent

ideals.

If R is a prime right semihereditary right FPF-ring,
and has the restricted minimum condition (= for any
essential right ideal I of R, R/I is artinian ), then

we have a matrix representation.

Theorem 2.5 [6, Corollary]. Let R be a prime
right semihereditary right FPF-ring with the restricted
right minimum condition. Then R is isomorphic to the
type of ring of Theorem 2.4, and in this case the ring D

of Theorem 2.4 is a bounded Priifer prime ring.
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ON FPF TRIVIAL EXTENSION RINGS
Yoshimi KITAMURA

Let R be a ring with identity and M an (R, R)-bimodule.
The cartesian product R x M with componentwise addition
and multiplication given by (r, m)(r', m') = (rr', rm' 4mr')
becomes a ring. This ring is called the trivial extension
of R by M and denoted by R x M. In [F] Faith gave a
characterization of FPF trivial extension R kx M in case
M is a faithful module over a commutative ring R. Here
a ring is said to be right FPF provided that every finitely
generated faithful right module is a generator in the
category of all right modules.
This paper is concerned with a problem mentioned in [F]:
when 1s R x ™ right FPF for a faithful bimodule M over a
noncommutative ring? We shall give a necessary condition
for R x M to be right FPF under a certain hypothesis.
Throughout this paper R will be a ring with identity,
M an (R, R)-bimodule and all modules unital. We shall
treat a right R &k M-module as a couple (X, ux), where X is
a right R-module and uy i1s an R-homomorphism of X QR M to
X with ux.(uX 2 lM) = 0. The connection between a right
R i M-module X and a couple (X, ux) 1s given by a relation
x.(a, m) = xa + ux(x, m) for a in R, m in M, x in X.

The detailed version of this paper will be submitted

for a publication elsewhere.
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Proposition 1. If a right R k M-module (X, ux) is a
generator, then there exist a finite number of 8y in
HomR(X, R) such that

(1) ] mg =&,

(ii) By-uy = 0 and

(iii1) Ker u, < Ker (g:l 2 lM)'
Moreover the converse holds if M is injective as a right

R-module.

Proposition 2. Let I be a right ideal of R and N a

right R-submodule of M such that IMC N. Let
. >

u(I, N (I, N) QR M (I, N)
be a homomorphism given by

uog N)((a, n) 8m) = (0, am) for a in I, n in N, m in M.

’
If ((I, N), U N)) is a generator over R x M, then
9

tR(I) + lR(M) =R
where tR(I) = HomR(I, R)(I) is the trace ideal of I and
lR(M) is the left annihilator of M in R.

Corollary. Assume that M is faithful as a left
R-module. If ((I, N :
module «1, ),u(I’ N

a generator. Moreover the converse holds if, in addition,

)) is a generator, then I is
M is flat as a left R-module and injective as a right R-module.

Proposition 3. Assume that M is flat and faithful as
a left R-module and injective as a right R-module. Then
the following are equivalent.

(a) Every finitely generated faithful right ideal I
of R such that Im = 0, m in M, implies m = 0 is a generator.

(b) Every finitely generated faithful right ideal of

Rx M is a generator.
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Now we consider the following condition on a ring R,

(#) Every finite subset of R generating R as a right

ideal also generates R as a left ideal.

Remark. If R is commutative or a finite product of

local rings, the condition (#) 1s satisfied.

Theorem. Assume that R satisfies the condition (#)
and that M is faithful as a left R-module and nonsingular
as a right R-module. If R k M is right FPF, then M is
injective as a right R-module and a maximal right quotient

ring of R X M takes the form of a trivial extension.
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ON PRIME RIGHT IDEALS OF INTERMEDIATE RINGS
OF A FINITE NORMALIZING EXTENSION

Taichi NAKAMOTO

Introduction and definition.

Throughout this report, S will present a ring
extension of a ring R with common identity 1. Let I
be a right ideal of R, and bp(I)={re R | Rr < I}, As
in [5], "I 1is called a prime right ideal provided that if
XYS I, X, Y areright ideals of R, theneither X cI
or YSE I. It is clear that a maximal right ideal is a
prime right ideal. If I is a prime right ideal, then
bp(I) is a prime ideal. Let R' be a ring, M a R-R'-
bimodule. M is said to be a torsionfree R-R'-bimodule
if ry(X) = 2y(Y) = O for every essential ideal X of R
and every essential ideal Y of R', where rM(X)
(resp. %y(Y)) is the right (resp. 1left) annihilator of
X (resp. Y) in M. Moreover, M is said to be a finite
normalizing R-R-bimodule if there exist elements a, ag,
n ©f M suchthat M=}} ;Ra; and Ra; =ayR'

for i=1, 2, **¢ , n, Such a system {al, a9, *°°, an}

LN ’ a

ig called a normalizing generator of M. We say that §
is a finite normalizing extension of R if S is a
finite normalizing R-R-bimodule.

The purpose of this report is to give a "cutting

The final version of this paper will be submitted for
publication elsewhere.
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down" theorem for a prime right ideal of finite
normalizing extension. We previously studied a "cutting
down" theorem for a prime ideal (cf. [1], [2], [3], [4]
and [6]). In [3], Heinicke and Robson exhibited a
"cutting down" theorem for a prime right ideal: If S is
. a finite normalizing extension of a ring R, T is a ring
with R cTc S, and J is a prime right ideal of T,
then there exist right ideals Hl' Hy, ¢*¢, H, of R
such that nl£=1Hi =J n R and, for each i, H;/(J n R) is
a prime right R-module. In the author's paper [7], we
obtained another representaion of a "cutting down" theorem
for a prime right ideal of a prime torsionfree finite
normalizing extension. Namely, there exist prime right
ideals K;, Ky, *++, K, of R such that n5_;K; =J

S 1

nR. In this report, we shall prove a "cutting down"

theorem without the condition "torsionfree'.

1. Preliminaries.

Throughout this report, suppose that S is a finite
normalizing extension of a ring R, and T is a ring with
RcTcS. Let P beaprime ideal of T. P is said to
be a standard setting if (1) S is a prime ring, and (2)
An Ti P for each non zero ideal A of S. In [1],
[2], [3], [4], [6] and [8], the following results are

well-known.

Proposition 1.1 ([3, Proposition 2.2]). Let P be
a prime ideal of T. Then there exists a prime ideal Q
of S such that Q nT ¢ P and, for each ideal A 2Q, A
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nT¢P.

By Proposition 1.1, S/Q is a prime finite
normalizing extension of R/(Q M R), T/(Q nT) is a ring
with 8/Q2 T/(Q nT) 2 R/(Q nR), and P/(Q nT) is a
standard setting.

Theorem 1.2 (Cutting down, [3, Theorem 2.13 and 5,
Theorem 2.2]). Let P be a prime ideal of T. If P is
a standard setting, then (1) R is a semiprime ring, (2)
there exists a set {Pl' Po, *¢* , Pp} of at most n
(the number of normalizing generators of S over R)
prime ideals of R such that J_,P;, =0 and the prime
rings R/Pi are all isomorphic, and (3) there exists &
subset {Pk}k of {Pl' sz oo | Pm} such that Pn R =

" kPk-

Theorem 1.3 ([1, Proposition 3.3, and Lemmas 5.2 and
5.3]). If S 1is a prime ring, then S embeds in the
right Martindale quotient Q(S), and there exist
orthogonal idempotents f,, f2, eee , £, in VQ(S)(R)
such that f; + fo+ e+ fp=1 and rR(fi) =P; for
all 1i=1, 2, *** , n. In this case, we obtain that
fiQ(S)fj is a torsionfree fiR-ij-bimodule and fiSfj
is a torsionfree finite normalizing fiR-£ jR—bimodule.

Let f; be as in Theorem 1.2. Let us set Sij =S
Si = Sii + fiR and Ti = Tii + fiR for all i, j s 1, 2,

eee  m, We immediately obtain fiR < Ti < Si < fiSfi
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< fiQ(S)fi and Tii < Sii = ;iSfi' Let us set R¥* =
Z?_:lfiR' S¥* = Zn-l=1fi3fl and T" = Z?,j=1Tij°

Theorem 1.4 ([2, Corollary 2.25 and Theorem 4.6]).
™ is an essential R-R-subbimodule of T. In this case,
there exists a non zero ideal U of S such that 0# U
nTc T#,

2. Prime right ideals of an intermediate ring of a
finite normalizing extension,

Use the notation in the section 1., Let S be a
prime finite normalizing extension of a ring R, and T a
ring with R ST S S. Let J be a prime right ideal of
T such that bT(J) is a standard setting. Let us set
hy(J) = {t; € Ty | t;£;T#Tc J}. Then we immediately
obtain that h;(J) is a right ideal of T;. 1In this

situation, we have the following
Lemma 2.1. h;(J)=T; ifandonlyif £;TfTc J.

Proof. If hi(J) =T;, then, by assumption, we have
T£;T#T ¢ J, and so £;T!T cJ. Conversely, if £;TfTc J,
then, for all ¢ty + f4r € T; (t; ¢ Ty, £57r ¢ £4R), it is
easy seen that (t;f; + fir)T#T < fitifiT#T + firfiT#T
< fiT#T + fiT#Tg J. Hence we have T;¢ hi(J), and so

h(J) = Ty.

Lemma 2.2, There exists f£; such that hi(J) # Ty
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Proof. If hj(J)=T; forall 1=1, 2, *°¢, m,
then, by Lemma 2.1, we have THT ¢ £,7#T + £,7#T 4 o0 4
fmT#T €J. By Theorem 1.4, there exists an non zero
ideal U of S such that 0 # UNT < T#, which
contradicts that bp(J) is a standard setting.

By Lemma 2.2, we may assume that fiT#Ti J for i=
1,2, +**, 8, and £, T#T S J for i=s+l, +os, m. In
this situation, we shall prove the following

Lemma 2.3. bp(J) " RS N§_iP;.

Proof. Since # is an essential R-R-subbimodule
of T, there exists a non zero ideal U of S such that
0#£Un T ¢ T#. Therefore, since bT(J) is a standard
setting, we have (U n T)fiT#Tg bp(J) for i=1, 2, ¢e°
. s, and so TT*£,£,T#T ¢ bp(d). Let us set Qyy=(t;
e Ty | TTe e £, T#T € bp(I)} for each i =1, 2, *+- s,
By the correspondence of prime ideals in a Morita context
C; = T Tl‘#fi ’ Qéi) is a prime ideal of T;

£, T
which corresponds to bT(J). By [3, Proposition 2.11], we
have Q{;y" £;R = 0. Since TT#f,(by(d)n R)E;THT
S Tbp(IT ¢ bp(J), we obtain £(bp(J) 0 R)f; ¢ £;Rn Q'i)
= 0, and hence bT(J) n RS rR(fi) = P;. This implies
bp(J) n Rg n§_,Py.

Lemma 2.4. For each i=1, 2, **° , s, hi(J) is
a prime right ideal of T; such that A(i)n Ty g h; (J)
for each non zero ideal A('i) of Sj.
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Proof. To see that h;(J) is a prime right ideal
of T;, let a, b€ T; with aT;b ¢ h;(J) and b
fhi(J). Let U be as in Theorem l.4. Then, from
afyTHT(U 0 T)E;bE, T#T < aT;bf T#T € J, we have either
af, T#T 0 J or (U nTEE,TIT c O If (U 0 T)E;bEgTHT
€J, then, since bpq(J) is a standard setting and
£,b£;T'T is a right ideal of T, we obtain bf;T'Tg J,
and so b € hi(J), which is contradictory. Hence we have
af;T#TS J, and so a € hy(J). This implies that h;(J)
is a prime right ideal of T;. Next we claim that
bTi(hi(J)) nE;R = 0. Let fir ¢ bTi(hi(J)) n £;R (r
€ R). Then we have f£,THTT#e re, T#T ¢ T £,re,T#T ¢ g,
and so, by assumption for i, we have TT#firfiT#T J.
Since T'I‘#firfiT#T is an ideal of T, we have fir ¢ Q'i)

N f5R = 0, where 'i is as in the proof of Lemma 2.3.
Therefore we have bq (h;(J)) » £4R = 0. Finally, if
l .

un an

there exists a non zero ideal A('i of S; such that
A('. NT. € by (h;(J)), then, by [2, F)roposition 2.20], we
i) i="T;%4

have 0 # A('i) nf.RS by (hj(J)) 0 £4R, which contradict
i
to bT-(hi(J)) n £5R = 0. This completes the proof.
1

Theorem 2.5. For each i =1, 2, ee¢¢ | s, hi(J)
n £f;R is a prime right ideal of £;R, and bf.R(hi(J)
i

Proof. First, let X, Y be right ideals of £4R
such that XY ¢ hi(J) n £f;R and Y# hi(J) nf;R. Then
we immediately obtain that f£;RYT, is an essential f£4R-
fiR-subbimodule of T;. By the canonical epimorphism

R—)fiR, we may regard that fiRY is an essential R-R-
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subbimodule of T;. Hence f£4RYT;M T;; is an essential
R-R-subbimodule of T;;. By [2, Corollary 2.25], there
exists a non zero ideal A of S such that A n Tii
€ f4RYT; 0 T;4. Since A N fjAf; is an ideal of S;, and
since A NT;; = (AN £f5Af; NT;) nTy; is an ideal of
€ h;(J), and so, by Lemma 2.4, either XT; ¢ hij(J) or A
€ h;(J), then we have either A n fjAf; nT; € hj(J) or
Tj4 € hi(J). The first case is contradictory to Lemma
2.4, and the second case is contradictory to [3,
Proposition 2.6]. Therefore we obtain X ¢ XT; n £;R

= hi(J) n £;R, Thus hi(J) N f;R isa prime right ideal
of f£;R. Next, if bg p(h;(J) " £5R) # 0, then
i

bfiR(hi(J) n £;R)T; is an essential f;R-f;R-subbimodule

of T;. It follows from [2, Corrolary 2.22] that there
exists a non zero ideal B of S such that BN Ti = B

Proposition 2.22], B n f;Bf; 1is a non zero ideal of Si-
This contradicts to Lemma 2.4, Therefore bg p(h;(J)
i

n fiR) = 0.

The following theorem is a '"cutting down" theorem for

a prime right ideal.

Theorem 2.6. Let S be a prime finite normalizing
extension of a ring R, and T a ring with R c Tc S.
If J is a prime right ideal of T such that bg(J) is
a standard setting, then there exist prime right ideals

Kys Ko, ***, K; of R such that n§_;K; =J nR and
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br(K;) = P;. In this case, bg(J A R) = n3_;P; 2 bp(J)
n R,

Proof. By Lemma 2.2, we assume that fiT#T t J for
i=1,2, ¢ee, s, and £;T#Tc J for i=s+1, *+o, m.
For each i=1,2, **+,s, let usset K; ={r eR| £;r
€ hy(J) » £5R}. Then, by Theorem 2.5, we immediately
obtain that, for each i=1, 2, se¢, g, Ki is a prime
right ideal of R, and bp(K;)=P;. If r ¢J nR, then,
for i=1,2, ¢ , 5, we have firfiT#T < rT#T c J, and
so f;r € hy(J) 0 R. This implies J n R ¢ n§_;K;.
Conversely, for all r e n3_;K;, since fire hy(J) n £;R,
we have firfiT#T < J for each i=1, 2, ***, s. On
the other hand, noting that £;T#Tc J for i=s+l, ee¢
, m, it follows that rT#T ¢ J$_ £ re THT + J0__ £ rf THT
SJ 4+ I0_EirTT S0 4+ [P ET'T € U Therefore r(U
n T) < J, where U is as in Theorem 1.4, and then, since
bT(J) is a standard setting, we have r ¢ J n R.
Consequently, we obtain J R = §=1Ki' Finally, since
bR(J N R) is an ideal contained in Ki for each i=1,
2, **+, s, weobtain bp(J nR) ¢ n$_;bp(ky) = n $-1P1
n$_iK; =J n R, and then we obtain bp(J nR) = n§_;P;

bp(J) n R .

nu un
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UNIVERSAL COVERS OF REPRESENTATION-FINITE
SELF-INJECTIVE ALGEBRAS

Takayoshi WAKAMATSU

This article gives an outline of some results on
relations between iterated tilted algebras of Dynkin type
and representation-finite self-injective algebras without
proofs. A detailed account will appear elsewhere.

Throughout this article, we assume that all algebras
and modules are finitely generated over é commutative Artin
ring K. The ordinary duality functor HomK(?,I) will

be denoted by D, where I 1is the injective envelope of
the K-module K/radK. Every homomorphisms operate from
the opposite side of the scalar.

For an algebra A, the trivial extension algebra
T(A) = AxDA of A by its minimal injective cogenerator
DA 1is defined over the underlying additive group A & DA
by giving its multiplication as

(a;,q,)°(ay,9,) = (a;-a,,3,°q, + q;°a,)
for any (al,ql), (az,qz)eA @ DA.

It is easy to see that T(A) becomes a symmetric
algebra and hence is self-injective.

A basic module TA over an algebra A 1is called a
tilting module [5] if it satisfies the following three
properties:

. . -
(Tl) proj. dim T, =1,

(TZ) Ext;(T,T) = 0, and
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(T3) There is a short exact sequence
0 A, —T —>T" —0

such that both T' and T" are in the class

add TA'

For a tilting module TA’ putting B = End(TA), we

call a triple (B A) a tilting triple[2].

’BTA’
In the paper [10], Tachikawa and the author proved

Proposition 1. Let (B,T,A) be a tilting triple.

Then there is a stable equivalence £: mod-T(A) = mod-T(B).

An algebra A is called an iterated tilted algebra

of‘type X 1if there is a sequence of tilting triples

(n-1) (1)
), (A s A )y oo o, (AT sAg)

such that A = An and A0 is a hereditary algebra of type
x.

(n) A T

(An’T *“n-1

Tachikawa[9] proved

Proposition 2. Let A0 be a hereditary algebra of

Dynkin type X. Then the trivial extension T(AO) is

representation-finite of Cartan class X.
Hughes and Waschblsch[7] proved

Proposition 3. Assume the trivial extension T(A)

be representation-finite of Cartan class X. Then there
is a tilted algebra A' of Dynkin type X such that
T(A) ¥ T(A').
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Here, any endomorphism ring of a tilting module over
a hereditary algebra is called a tilted algebra[5]. Of
course, any tilted algebra is an iterated tilted algebra.

Assem, Happel and Roldén[l] and Tachikawa and the

author[11] have proved

Proposition 4. The trivial extension T(A) is

representation—-finite of Cartan class X 1if and only if

A 1is an iterated tilted algebra of Dynkin type X.

For a simple projective module eA, putting TA =

(1-e)A ® TrD(eA), we always have a tilting module T,
This special kind of tilting modules is called an APR-
tilting module and was first introduced by Auslander,
Platzeck and Reiten as a generalization of reflection
functors for hereditary algebras. In the above proposition,
we can choose a sequence of tilting triples (An’T(n)’An-l)’

(1)

. (AI’T ,AO) with A = An and A, being a

0
hereditary algebra of Dynkin type X in such a way that

all tilting modules Til) are APR-tilting modules. For
i-1

proof, see [11]. In this case, we call A an APR-iterated

tilted algebra of Dynkin type X. From the above

proposition, we have

Corollary 5., Any iterated tilted algebra of Dynkin
type is, in fact, an APR-iterated tilted algebra.

In the study of the trivial extension algebra T(A),
Hughes and Waschbisch[7] introduced the following doubly

infinite matrix algebra:
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A-1 M1

>

M
n n
An1 Mo

~ J
in which matrices are assumed to have only finitely many
entries different from zero, An = A and Mn = DA for

all integers n, all the remaining entries are zero, and

multiplication is induced from the canonical maps

Am, DA>DA, DAwm, A ™5 DA, and zero maps DA z, DA —> 0.

A
It is easy to see that the infinite matrix algebra 4?
is one of examples of locally bounded categories defined
by Bongartz and Gabriel.
A locally finitely generated module over 4} is defined

by giving a set of finitely generated A-modules %-xn}nez

and a set of A-homomorphisms S.fn: xn nADA —> xn+1%nez

such that -fnnDA = 0 for all integers n.

fn+1
The category of all locally finitely generated ﬁLmodules

is denoted by Mod-R.  The category modA is defined as

the full subcategory of Mod-‘ﬁ~ consisting of all'ﬁlmodules

an’fn nez such that ngzxn is finitely generated

over K (this is equivalent to saying that X = 0 for

only a finite number of n's). We call an object in the

category mode a finitely generated ﬁFﬂmdule.
Similarly, a finitely generated module over the

trivial extension algebra T(A) is defined by giving a
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finitely generated A-module X and a A-homomorphism f:

X 8, DA—> X such that f-fmDA = 0.

Hughes and Waschbiisch defined a functor

F,: mod-A — mod-T(4)

by F,Gx 6D =Cax, 06).

They proved[7,13]

Proposition 6. The functor FA is exact and preserves

indecomposable modules, almost split sequences, irreducible

maps, and the composition length of modules.

In the case where T(A) is representation-finite, the
functor FA is, in fact, a covering functor in the sense of
Bongartz and Gabriel and further ind%& has no oriented
cycles. Therefore, we can consider 4& as the universal
cover of T(A).

By the way, by slightly modifying the proof of

Proposition 1, we get

Proposition 7.[12] Let (B,T,A) be a tilting triple.

Then the stable categories mod%& and modJ% are equivalent

and we have the following commutative diagram of functors:

mod-A ——=—5 mod B
F, | l Ts

A mod-T(A) —o—> mod-T(B) .

Therefore, in the case of T(A) being representation-
finite, the tilting process preserves the stable part of

the universal cover of mod-T(A). So it is interesting to
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know the change of the configurations in the sense of

Riedtmann.

Proposition 8.[11] Let (B,T,A) be an tilting triple

and £ the equivalence given by Proposition 1, then we have

the following short exact sequence for any T(A)-module X:

0 —> Homy,y (Tw,T(A),X) —> £(X) —9'0-.}(8)'(Exti(T,X)) — 0.

In the above,&IE(B) denotes the loop space functor of
Heller.

By Proposition 4, in our study, we may assume that T,
is an APR-tilting module. Assume eA be simple and put
T, = (1-e)A @ TrD(eA) and B = End(TA). Using the
above proposition, we can give a description of the change

of the configurations as follows:

Proposition 9.
(a) £(eT(A)/soc) =‘Q,*I(B)('€T(B)/soc).
(b) For an idempotent f % e,
£(£T(A) /soc) "ﬂ‘;in) (Hom, (T, £A/rad £A)).

(c) For an idempotent f % e, assume that rad fA

has no direct summands isomorphic to eA, then
£(£T(A)/soc) = ?T(B)/soc.

In the above @ €B is the idempotent corresponding to
the direct summand TrD(eA) <Q T, and, similarly, /f\eB

is the idempotent corresponding to the direct summand fA

@1,.
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*
NOTE ON COVERINGS OF TRIVIAL EXTENSIONS
Hiroshi OKUNO

Let A be an artin algebra over a commutative artin
ring C . T(A) denotes the trivial extension of A by
an A-A-bimodule DA = HomC(A,I) , where I is the injective
envelope of C/rad C over C . Let A be the doubly

infinite matrix algebra without identity:

in which matrices are assumed to have only finitely many
entries different from zero, An = A and Nn = DA for all
integers n , and all remaining entries are zero. The

identity maps An — An+ and Nn — Nn+ induce an

1 1

automorphism Va of A.
In [1] Hughes and Waschbiisch stated that if C is

a field and the quiver of A has no oriented cycles then

~ ~

A =B 1is equivalent to T(A)

{14

T(B) . But unfortunately,
as Tachikawa pointed out in the Informal Problem Session of

the International Conference on Representations of Algebras

* This note is a summary of [2] .
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at Carleton in 1984, this is not true in general, because

there is a counter example given by Wakamatsu.

Example 1. Let I‘1 and P2 be the following quivers:

1"1 .—Bp. 1"2 048—’0
—— _—)

Let A be the path algebra kI‘1 with a relation aB =0
and B the path algebra kr2 with a relation y°B8" =0 ,
where k 1is a field, then T(A) = T(B) but A # B .

Also Tachikawa proposed the problem to give a necessary
and sufficient condition for A and B to force ; =z ﬁ
there. This note gives a solution of the problem. At first
we will give some definitionms.

A pair of C-algebras (A,B) 1is said to be a D-pair if
A and B have the following triangular matrix decomposi-

tions:

r
5, M

and
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=
n

Let IA = el + e2

orthogonal primitive idempotents of A . And let IA =
. . i
1 + e% + eee ¢ ei be the decomposition induced by the

*oeee te be a decomposition into

e

decomposition above. Let Q. be the quiver of A , and
A

{ ei } 1is regarded as the set of vertices of Q. . Va
induces a graph aﬁtomorphism of Q. . A completz vA—slice
A of Q. 1is a full subquiver of AQ. such that the verti-
ces of 2 is a set of representativzs of thé vA-orbits of
vertices of Q. and a vertex fi iscontained 'in A if

A
there exists a chain ft —> sse —> fi — see — fS where

f. and fs are contained in A (cf. [1] ) . If A is

t
a complete vA-slice and { £0 £55 °00 fm } is the set

of vertices of A , we put Alg(A) = (ZIJP___1 fj)A(z?=1 fj)

Theorem 1. Let A be a connected basic artin algebra
over a commutative artin ring C , then the following are
equivalent for a C-algebra B :

(1) A=B;

(2) (A,B) is a D-pair ;

(3) B = Alg(A) for some complete vA-slice A of Q..
A
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Note that if (A,B) 1is a D-pair then T(A) = T(B)
It is also true that A = B implies T(A) = T(B) , however

the proof is not obvious. In order to prove this, we have

-~

to show the existence of a C-algebra isomorphism from A

-~

to B commuting with Va and vg

Next we consider the following condition (N-0) for A :
(N—O} The quivers of algebras whose trivial extensions

are isomorphic to T(A) have no oriented cycles.

Theorem 2. Let A be a connected basic artin algebra

~

satisfying (N-0) , then A = B if and only if T(A) = T(B).

~ In [4] Yamagata proved that if T(A) is of finite
representation type then the quiver of A has no oriented

cycles. Then we have the following.

Corollary. Let A be a connected basic artin algebra,
and assume that T(A) 1is of finite representation type.

~

Then A = B if and only if T(A) = T(B) .

Let A be a path algebra kI' , where k 1is a field
and T 1is a tree graph. Then it is easy to check that A
satisfies (N-0) , and we can calculate the algebras whose

trivial extentions are isomorphic to T(A) by Theorem 1.

Example 2. Let Q be the following quiver:
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Let A be the path algebra kR , where k 1is a field. Then

Q. 1is the following quiver:
A

=

If T(A) = T(B) , then B 1is the path algebra kQ° where

Q° 1is one of the following quivers with relations:

(i) (ii) l

(i) and (ii) have no relatioms.

(iii) I (iv) :

> > 3 3
I Lahd — e L4 re rI

The relations of (iii) and (iv) are all paths of

length 3.

(v) . B
e\" z

The relation of (v) 1is aB = y§ = €§ .
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REPRESENTATIONS OF ORDERS AND ONE-POINT
EXTENSION ALGEBRAS

Kenji NISHIDA

1. Let R be a complete discrete valuation ring with prime
element T and residue field k. Let K be a quotient field
of R and £ & semisimple K-algebra. An R-order A in I is
a subring of I such thet:

1) R is contained in the center of A,

2) A is a finitely generated R-module,

3) KA = L.
A right A-lattice M is a finitely generated right A-module
which is torsionfree over R. Let L(A) be the category of
all right A-lattices. We study +the Auslander-Reiten
quiver of L(A). Recently many results have appeared about
this problem(see, for example, [6]). Under some conditi-
ons, we can give a mehtod of adapting the Auslander-Reiten
quiver of the category of socle projective mosules over &
right peak algebra to determine that of L(A). We shall
report here the outline of this result and the
details will appear in [3].

2. Let T be a hereditary R-order in I and I a proper I'-
ideal in A such that KI=E. Put A=A/I and B=T'/I. Then A
is a subring of B. Let C=/A B) and € a full subcategory
of mod C such that (xA,YB,¢9 B ¢ %40, E}xA + Y, is ing-
ective, Im ¢ B=Y and YB is projective. Here we identify a
right C-module with a triple (XA,YB,¢) such that ¢:Xe B +

A
Y5 & B-homomorphism and ¢ ¢ HomA(X,Y) is the adjoint of ¢.



54

Now define the functor H:L(A) =+ C by H(M)=(M/MI,MI'/MI,¢)
where ¢ is the adjoint of the canonical inclusion M/MI G
MI'/MI. Then we have

THEOREM 1. [1,5]

H induces a representation equivalence L(A)=C.

Remark. A functor F:A + B for additive categories A, B
is called a representation equivalence if;

a) H preserves every isomorphism,

b) if A £ A @A, in A, then F(a) € F(Al) ® F(A2),

c) for every B e¢ B, there exists Ae A such that F(A)=B.

3. In what follows, we assume I=rad I'. Then B is semi-

simple. Let S "’St be the representatives of the non-

-
isomorphic sim;le left B-modules, Ki=EndBSi(i=l,...,t),
G=Sl$...est and E=EndBG=le...XKt. Let C'=£é E . Then

C' is a one-point coextension h-algebra of A by G. Define
the functor p : mod C + mod C' with p(xA,YB,q)):(xA,YoBG,q;)
where ¥ : X®,G + Ye G is Y(x®g)=¢(x8l)®g. Then p is a
category equivalence. Let & = pH : L{A) + mod C'. Then
Im ¢ has very nice property. In order to state this, we
need results due to Simson[T].

A basic artinian ring C is called a right peak ring if

soc(CC) is projective.

PROPOSITION 1. [7] C is a right peak ringé& C= % %)
where K is a product of division rings, AM is faithful and
MK is finitely generated.

Let modSp C be a full subcategory of mod C consisting

of modules having a projective socle.
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PROPOSITION 2.[7] (XA,YK,¢) € modsp = ¢:XA -+ HomK

(M,Y) is injective.

| The category modsp C for a right peak k-algebra C has
enough injectives, almost split sequences, and is studied
widely by Simson and others(ef.[T]).

By Proposition 2 we have Im ¢ < modsp C'. Let mods; c'
be the full subcategory of modsp C' consisting of modules

having no simple projective direct summands.

THEOREM 2. [2]

¢ induces a representation equivalence L(A)zmods; c'.

4, Decompose the hereditary order F=Fle...eFk into the
direct sum of indecomposable rings. Let GiJ(J=l,...ai;i=
1,...,k) be the representatives of nonisomorphic indecom-
posable projective I'-lattices, where for i(i=1,...,k) Gij
(J=1,...,ai)is a P-lattice. For i(i=l,...,k), we number
so that;
(Gij = Gij+l'rad Fi(3=l,...,ai—l)
G.g. Gil-rad Fi (see[l]).
Then we can state the relations of Auslander-Reiten quivers

Q and Q' of L(A) and modSp C', respectively, as follows.

THEOREM 3. Q' is obtained from § by identifying every
simple projective module (O,EndB (GiJ+1/Gij)’0) with an
indecomposable injective module E((O’EndB(Gij/Gij-l)’o))
where if j=ai then a
tified with Gi

i+l is replaced by 1 and G, is iden-
iaj

l-rad Fi and if j=1 then O is replaced by a,

and the same identification is done as before.
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5. Example. Let A = fR7T™ m m m 7\ vhere we abbreviate 7R
RRTR®TT™T
RRRR@™
TTTR®TTW
RMTTRRT™®™
RUTRRR
tomand T = (R)6. Then rad T ¢ A ¢ T and
ct=/h000O0O0Fk
RkROkoOOR
RkkhhoOoOER
0O00ROOR
ROORROER
kRORREER
00000O0FR
The Auslander-Reiten quiver of modsp C' is
N\

\/’\/\/

where dotted lines indicate T-orblts. Thus by Theorem 3
the Auslander-Reiten quiver of L{A) is

o OZ.N
N
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ON A CONSTRUCTION OF DTr-INVARIANT MODULES
OVER ONE-POINT EXTENSION ALGEBRAS

Noritaka KOYAMA

This note is a summary of the paper [5]* by the
author and J. Miyachi.

In the study of finite dimensional algebras over a
field k of infinite representation type ( i.e. each of
which has infinite number of indecomposable modules ) ,

V. Dlab and C. M. Ringel showed that in each of the
Auslander-Reiten quivers of tame hereditary algebras,
stéble tubes ( in particular homogeneous tubes ) play an
important role [3], [7]. A homogeneous tube is a basic
component which contains IN-number of indecomposable
modules which are constructed by extensions of the simplest
one in it.

Here we characterize a part of DTr-invariant modules
over one-point extension algebras, and construct homogeneous

tubes by using it.

1. In this section, we recall fundamental notations
and definitions.

Throughout this note, we deal only with finite dimen-
sional algebras over a field k , and finite dimensional
( usually left ) modules. Let A be an algebra. We denote
by P(X) , the projective cover of an A-module X , and by
E(Y) , the injective hull of an A-module Y . The k-dual
Homk(-,k) is denoted by D , and the A-dual HomA(-,A)

* This paper was contributed to Tsukuba J. Math.



59

*

is denoted by -
Let X , Y be A-modules. We call a homomorphism

f : X— Y irreducible if (1) £ is neither a splitable

monomorphism nor a splitable epimorphism, (2) given a

commutative diagram

f
X——> X

™A

Z

b

either g 1s a splitable monomorphism or h 1s a splitable
epimorphism.

Theorem ( Auslander, Reiten [1] [2] )
The following statements are equivalent for a non-split

exact sequence of A-modules
£ g
0—»L—M—N—790

where L and N are indecomposable.

(1) £ , g are irreducible.

(2) given any homomorphism s : L — X which is not a
splitable monomorphism, there is a t : M — X such
that t £ =s .

(3) given any homomorphism u : Y — N which is not a
splitable epimorphism, there is a v : Y — M such
that gv=u.

For an arbitrary non-projective indecomposable
A-module N ( non-injective indecomposable A-module L ),
there uniquely exists the extension with above properties
up to isomorphism. We call it an Auslander-Reiten sequence.

Here L 1is given by DIr N , the Auslander-Reiten
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translation of N . It is the composition of D and Tr

( transpose ) which is defined as follows. Let
P

P —Pp—N—0

be the minimal projective presentation of N . Then we set
*

* p *
Tr N =Cok ( Pp — P; ) .

After this DTr is denoted by 1 .

Given an algebra A , the Auslander-Reiten quiver of
A 1is a directed graph which has as vertices the isomorphism
classes of indecomposable A-modules, and if there is an
irreducible homomorphism f : X — Y , we write an arrow
[X] — [Y], where [X] denotes the isomorphism class of
the module X . By the previous theorem, an Auslander-

Reiten quiver locally has the following form.

ey,
<:/v

A connected component C of an Auslander-Reiten quiver
is said to be a stable tube of rank n if C is the form
of ZA_/n , namely C has the following form

NI » 7 N - N S N~
NSNS TN 2
\1//2 \\u.//z \\»./ ‘u.//z \\\E/' .
)E\\».//) \\“.//2 ~ A \\30//2;\
\i/ \/ \’/ \J./ \;i/
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where vertical dotted lines on both side are identified.
In particular if n =1, we say C a homogeneous tube.
We know the Auslander-Reiten quiver of a tame hereditary
algebra has infinite number of stable tubes. And almost
all are homogeneous. In the sequel, we construct homoge-

neous tubes in more general case.

2. For an algebra A , and an A-module M , we denote

by R = R(A,M) the one-point extension of A by M,

-0 1)

It is well known that the category of R-modules is equi-

namely

valent to the category of representations of the bimodule
AMk . It has as objects the triples ( kU, AX, $ ) with

an A-homomorphism ¢ : AM GkU e Ax , and a morphism from

( kU, AX, ) to ( kU . AX » $° ) 1is given by a pair
(a, B) of a k-linear map a : K kU’ , and an

A~homomorphism B : AX — AX’ satisfying B ¢ = ¢ (1ea) .

After this, we write ( dimkU, X, ¢ ) for (U, X, ¢)

and we will call V= ( dim U, X, ¢ ) just an R-module.
Given an R-module V= (n, X, ¢ ) , we consider the

following commutative diagram in mod A .

0 —> Ker v —+ Y — P(Cok ¢) ——+ Cok ¢ —+ 0

S (RN [

0 — Ker ¢ r‘M“ » X ——> Cok — 0

¢
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This construction is as follows. In the bottom row,

morphisms are canonical. Since P(Cok ¢) £ Cok ¢ — 0
is the projective cover, we can take p € HomA(P(Cok $),X)
such that € =7 p . For the pair ( ¢, p ) , we take the
pull-back ( Y; u, v ) . Then this square is exact, and
Ker v 1is isomorphic to Ker ¢ .

Using this diagram, we get the first result which

characterizes a part of DTr-invariant R-modules.

Theorem 1. Let V= (1, X, ¢ ) be a non-projective
indecomposable R-module.
(I) If ¢ is an epimorphism, the following two statements
are equivalent.
1) T V=V,
(2) (a) ,X = E(top(Ker ¢)) .
(b) dimk HomA(M,X) =2,
(II) If ¢ 1is not an epimorphism, the following two
statements are equivalent.

) =, v=Vv,

R
(2) (a) R& TA(COk $)
(b) dimk HomA(M,X) =2,

(¢) 1In the commutative diagram (A), Im 1 < rad Y.

Corollary 2. Let V= (1, X, ¢ ) be a non-projective
indecomposable R~module.
(I) If ¢ 4is a monomorphism, the following two statements
are equivalent.
(1) pv=v.
(2) (a) X = 1,(Cok ¢) .

(b) dimk HomA(M,X) = 2.
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(II) If ¢ 1is not an epimorphism and proj.dimA Cok ¢ = 1,
the following two statements are equivalent.
(1) TR V=V,
(2) (a) ¢ 1is a monomorphism.
(b) AX = TA(COk $) .

(c) dimk HomA(M,X) =2,

Remark. In this theorem, easy calculations show that

if Tr V=V then ,X 1is indecomposable. This fact is

A
very useful to applications.

This theorem is essentially obtained by the following
proposition.

Proposition 3. Let V= (n, X, ¢ ) be a non-
projective indecomposable R-module. Then TR V 1is iso-
morphic to the R-module ( dimk HomA(M,TA(Cok ¢)OIV) -,
TA(COk ¢)$IV, $ ) with some & . Here Iv is the
injective A-module D(Qx) where Q is the direct summand

of P(Y) such that P(Y) = Q®P(Ker ¢) .

Corollary 4. Let V= (n, X, ¢ ) be a non-projective
indecomposable R-module. Then
(1) If ¢ 1is an epimorphism, TR
( dim, HomA(M,E(top(Ker $))) - n, E(top(Ker ¢)), & )

with some & .

V 1is isomorphic to

(2) If ¢ 1is a monomorphism, V 1is isomorphic to

T
R
( dim, HomA(M,‘rA(Cok %)) - n, TA(Cok ¢), & ) with

some ¢ .
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(3) 1If proj.dimA Cok ¢ =1 , TR
( dim_ Hom, (M,7,(Cok $)@E(top(Ker ¢))) - mn,
TA(COk $)@E(top(Ker ¢)), 3 ) with some & .

V 1is isomorphic to

Now we know that the t-invariant module constructed in
the theorem belongs to a homogeneous tube C [4] . We next
consider a construction of it. Before this, we recall some
definitions. A module V contained in ( is called quasi-
simple if there does not exist an irreducible monomorphism
W—>V with W# 0. And a module V in C has quasi-
length s if there is a chain Vy — V) — -+ — Vs =V
of irreducible monomorphism with V; quasi-simple [6] .

In the following theorem, we denote V(s) the module in C

which has the quasi-length s .

Theorem 5. Let V= (1, X, ¢ ) be a non-projective
indecomposable R-module. And assume 12N V=V. Then V

is quasi-simple, and V(s) = ( s, XS, ®(8) ) , where

Y

o(s) = ¢._-¢
0 .
¢

with ¢ being an arbitrary A~homomorphism which is linearly
independent of ¢ . Further the Auslander-Reiten sequence

which has the end-term V(s) has the following form
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1(s) us+! ~1(s)
d(s+l)
u® ws) _ 1M | o |®

o (s) 7 N 8(s)
s ////// -~ .8-1 ) \\\\\3 s

| - J(s-1) Lﬂ I(s-1) X

s

¢(s-1)

J(s-1) ‘XS;’1 J I(s-1)

where I(s) = [EéflJ , J(s) = (0| E(s) ) with E(s)

the unit matrix of degree s .

Recently Ringel considered the stable separating
tubular families, and he made I )k - family of stable
tubes [7] . In connection with it, we get the following.

Proposition 6. Let V= (1, X, ¢ ) be a non-
projective indecomposable R-module. Assume TR V=V,
¢ a monomorphism, EndA(X) = k , and k an infinite field.
Then we can make | k | - family of homogeneous tubes.

(] | means the cardinal number. )

Example. We observe these statements by a famous

example. Let

€ Mé(k)

OO0OD
oooT R
oOnN O
AOCON
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with k an algebraically closed field.

The Auslander-Reiten quiver of A 1is as follows.

b) ¢ d]
(b)
La4 . a
(] bed ’b \ bed /
(a)-__aLa aa

/l\

AN

\ Lb c]/ \

Here, for example, bac] means the indecomposable A-module

\ /

N such that top N = SbQSc and soc N = Sa , Where S#

means the simple A-module corresponding to the idempotent
# . We take a simple A-module (a) as M in the state-

ments. Then

axyzu
0bo0O0O

R(A,M) = 00c00 ] ¢ MS(k)
000d0
0000e .

The Auslander-Reiten quiver of R(A,M) 1is as follows.

AA NTAA
AR T IRVAVARS
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In the middle part of the above quiver, there are P k -
family of stable tubes. Three of them are rank 2 and
the others are homogeneous. Now let’s observe the situation

of the theorem. For (a,B) € Pk, let
V(a,8) = [ I, [b c d], ¢(a,8) ] :

aa
where ¢(a,B) 1is an inclusion

bc d]

¢(a,B) : (3) — [ aa

Then Cok ¢(a,B) = [b ; d] for almost all (a,B) € TPk .

( Except three cases. In fact these three cases correspond
to three stable tubes of rank 2 in the above Auslander-
Reiten quiver. ) And in these cases the conditions (I),
(2) of Corollary 2 are satisfied. So we can construct

T-invariant modules which generate all homogeneous tubes.
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ON CONNECTED GALOIS EXTENSIONS AND DISCONNECTED
GALOIS EXTENSIONS OF A CONNECTED RING

Kazuo KISHIMOTO

Let A be a ring with an identity 1. By C(A) and
B(C(A)) we denote the center of A and the set of all
idempotents of C(A). Then A 1is said to be connected
(resp. disconnected) if the cardinality |B(C(A))| = 2
(resp.|B(C(A))| >2). The purpose of this note is to study

about connected Galois extensions and disconnected Galois
extensions over a connected ring. Thus, throughout in
this study, we assume that A 1is a connected ring and

B 1s a G-Galois extension over A with a finite group
G. 1In [1], M. Ferrero and the author studied on the
connectedness of p-Galois extensions. As a sequel, we
study about the connectedness of G-cyclic extensions of
Kummer type in §1. While, in §2, we study about dis-
connected Galois extensions B/A and |B(C(A))|. The
detail of §1 will be seen in [2] and that of 82 will be
seen in the forthcoming paper [3].

An element e of B(C(A)) is said to be a G- idem-—
potent of B 1if there holds either T(e) = e or T(e)e
= 0 for any T& G. The following theorem [1, Lemma 1,8]
plays important role in this study.

Theorem. If |B(C(A))| > 2 then there exists a non-

trivial G-idempotent.
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A G-idempotent e of B is said to be of length m
if (G:Ge) = m where Ge = {1€G;1(e) = el.

Let p be an automorphism of A. Then a monic poly-
nomial £(X) of a skew polynomial ring of automorphism
type A[X;p] is said to be a generator if f(X)A[X;p] =
A[X;plf(X). A generator f(X) of A[X;p] is said to be

w-irreducible if the degree of f(X) is minimal in the

set of generators of degree > 1.

1.CONNECTED STRONGLY CYCLIC EXTENSIONS. In this
section, we assume that an integer n(>1) & U(A), the set
of all invertible elements of A, C(A) contains a primitive
n-th root 7 of 1 such that 1 - Cie U(A) for i =1,
2,...,n -1, and G 1is a cyclic group of order n with
a generator g. A G-Galois extension B of A 1is said
to be a G-strongly cyclic extension if there exists x &€
U(B) such that g(x)= xf and BA & AA.

It is known that A has a G-strongly cyclic exten-

sion B if and only if there exist an automorphism p

of A and a generator X" - a of AlX;p] such that

p(g) = ¢ and o €U(A). Moreover, if this is the case,
B A[x;y]/(x“ - a)A[X;p]. The main theorem of this section
is the following.

Theorem 1.1. Let B = A[X:;p]/(X" - a)A[X;p] be a
G-strongly cyclic extension over A, Then B is connected

if and only if X" - o is w-irreducible.

Proof., Assume £(X) = X" - o is not w-irreducible.

Then f£(X) = g(X)h(X) for some proper generators g(X)
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and h(X). Hence nX" L = £'(X) = g' (X)h(X) + g(X)h'(X).
Let x be the coset of X in B = A[X;p]/(xn - a)A[X;p].
Since x € U(B), we can see that L - £'(x) =

g'(x)h(x) + g(x)h'(x) 1is an invertible element of B.
Therefore, (g(x)) and (h(x)) are co-maximal ideal of
B and B22 B/(g(x)) @& B/(h(x)). Thus f(X) is w-
irreducible if B 1is cdonnected.

Conversely, assume that B 1is disconnected. Then
there exists a nontrivial G-idempotent e of B. For
this e, we put G_ =(0™). Then the length of e is m

- m
and To(e m) Zm L oi(e) =1. Let T=5 . Then T =

zm da(x );A where m' = n/m. Further, we can see
that T/A is a (o|T)-strongly cyclic extension and
' -

210 60 (e)A. If we put y=xm and y = 2‘:3

oi(e)ai (a € A) then we''have
(1) a; € AP = {a € A; p(a) =a},
(2) aa, = aio (a) for any a€ A and 0 <i< m-1,
3) a-= aim for any a, # 0.
In virtue of (1) and (2), we have the following

decomposition of f(X):

EX) = (™) @)
=" - a) " el oy ™ )“"zai Feven.
+ (3 ™1

for any a; # 0.
Then by (1) and (3)) wecan seethat the two factors of
f(X) are w-irreducible,

For an automorphism p of A, the index of the sub-
group of inner automorphisms in (p) 1is said to be the

index of p. If X" - a € A[X;p] is a generator and n 1is
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a prime, then the index of 0 1is either n or 1 since
~ -
pn =q 1, an inner automorphism generated by a % From

this we can see the following

Lemma 1.2, If n is prime, then a generator X" -
o in A[X;p] 1is either w-irreducible or a product of

gnerators of degree 1.

Combining Theorem 1.1 with Lemma 1.2, we have the
following

Theorem 1.3, Let n be a prime. Then A has a
connected G-strongly cyclic extension if and only if one
of the following conditions (a) and (b) is satisfied.

(a) (U :v@" > .

(b) A has an automorphism p of the index n such
that p<4Z) = C and {aeA‘;) o" =% + ¢.

2.DISCONNECTED GALOIS EXTENSIONS. In this section,
we shall study the case that B is a disconnected ring.

The detail of proofs will be seen in the forthcoming paper
[31.

Theorem 2,1, Let B/A be a disconnected G-Galois

extension, e a G-idempotent of B of the maximal length
= U U....U =
m and G 'rlGe 'rZGe 'rmGe ('1'l 1) the left coset
decomposition of G by Ge‘ Then we have the followings:
m .

(1) B=), ,@®71,(e)B and {rye)si=1.2,...,m }
is linearly independent over A,

(2) 1f |Ge | is an invertible element of A, then
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T,(e)B 1is connected for i= 1,2,...,m and [B(C(B))| =
m
27,
G m
(3) 1f Ge is a normal subgroup, then B € = zi=l
@71 (e)A, 1,(e)B 1is a connected (G| T4(e)B) -Galois
extension over Ti(e)A for i = 1,2,...,m and |B(C(B))|

= o™,

As direct consequences of Theorem 2.1, we have the
following

Corollary 2.2, Under the same assumptions and
notations as in Theorem 2.1,

(1) If A 1is an algebra over a field of character-
istic 0, then Ti(e)B is a connected (GT (e)|Ti(e)B)—
Galois extension over Ti(e)A for 1 =1,2,...,m and
|B(c(B))] = 2™,

. G, _tm

(2) If G 1is abelian, then B € = zi=1€9 Ti(e)A,
Ti(e)A is a connected (Gelri(e)B)—Galois extension over
T,(e)A for i=1,2,...,n and |[B(C(B))| = 2™,

(3) If n is prime, then B 1is disconnected if

(n)

and only if B is$ ring isomorphic to A , a direct sum

of n-copies of A,
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AZUMAYA ALGEBRAS AND SKEW POLYNOMIAL RINGS
Shiiichi IKEHATA

This is a summary of the auther's paper [6] in
preparation. In [4, S], we have studied some Azumaya
algebras induced by skew polynomial rings over commutative
rings, and some skew polynomial rings of automorphism type
whose coefficient rings are Azumaya algebras. 1In this
note, we study certain skew polynomial rings of derivation
type whose coefficient rings are Azumaya algebras. The
main result is Theorem 4.

Throughout this note, B will mean a ring, D a deri-
vation of B. We denote by B[X;D] the skew polynomial
ring defined by aX = Xa + D(a) (a & B). By B[X;D](O),
we denote the set of all monic polynomials g in B[X;D]
with gB[X;D] = B[X;D]lg. A ring extension B/A is called
H-separable if B@AB is B-B-isomorphic to a direct
summand of a finite direct sum of copies of B. A poly-
nomial g in B[X;D](O) is called H-separable if
B[X;D]/gB[X;D] is an H-separable extension of B.

We shall use the followng conventions. VB(A) = the central-
izer of A in B. B = {be B | D(b) = O}.

First, we shall state the following lemma which is

useful in the proof of Theorem 4.

Lemma 1 ([3, Theorem l]). . Let B be an Azumaya

C-algebra, and H a C-subalgebra of B. If BH is

projective then B/H is an H-separable extension.

The detailed version of this paper will be submitted for
publication elsewhere.
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Let D*: B[X;D] »> B[X;D] be the derivation defined by
D*(zi xlci) = Xi xlD(ci). Concerning H-separable poly-

nomials, we know the following which is complicated.

Lemma 2 ([4, Lemma 1.5], [9, Theorem 1.9]). Let

f be in B[X;D] , and deg £f=m. If f is H-separable

(0)
in B[X;D], then there exist .yi, zi ¢ B[X;D] with

deg ' <m and deg z; < m such that ay, = yia, az, = z.a

L1 = . «K
(a &€ B) and Ei D (yi)zi = 1 (mod fB(X;D]), Ei D (yi)zi
2 0 (mod fB[X;D]) (0 £k £ m-2), and convercely.

Definition. An H-separable polynomial £ is called
strongly H-separable if the elements {yi, zi} in Lemma 2

are obtained from the center of B.

Lemma 3. Let £ be in B[X;D]

]
3

and deg £
(0) a
Let C be the center of B, 4 = D|C . and A =C .
Then, f 1is strongly H-separable in B[X;D] if and only
if AC is a finitely generated projective module of

rank m and Hom(AC, AC) = C[d].

Remark. 1If AC is a finitely generated projective
module and Hom(AC, AC) = C[d], then C/A 1is called a
purely inseparable extension of exponent one (e.g. [10]).
Hence the existence of a strongly H-separable polynomial
characterizes a purely inseparable extension of exponent

one.

Now, we shall state the main results of this note

which is a generalization of [3, Theorem 3.3].
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Theorem 4. Let B be an Azumaya C-algebra, D a
derivation of B, d =D|C and A = Cd. Assume that

B[X;D] contains a polynomial f of degree m > 2.

Then tlgg)following are egquivalent:

(1) AF is a finitely generated projective module
of rank m and Hom(AC, AC) = cld].

() f 1is strongly BH-separable in BI[X;D].

(3) S = B[X;D]/fB[X;D] is an Azumaya A-algebra
with VS(C) = B.

(4) B[X;D] is an Azumaya A[f]-algebra with
VB[X;D](C) = B[f].
When this is the case, there holds the following:
(i) B is of prime charactgristic p, and f is a

~polynomial of the form ze Xpr +b_ (p° = m)
prpolyn j=0 j¥1 * %o ‘P '

. D
bj+1€ A (l<j<e) and boé B .
(ii) For any Y € A, sY = B[X;D]/(f + Y)B[X;D] is
an Azumaya A-algebra with VS (C) = B.
Y
(iii) {g € B[X;D]I g is H-separable in BI[X;D]}

= {g € B[X;D] | g is strongly H-separable } = {f + y | ye a}.

As a special case of Theorem 4, we have the following
Corollary. Note that the centralizer conditions are

superfluous in this case.

Corollary 5. Let B be a commutative ring, 4 a
derivation of B, and A = Bd. Then B/A 1is a purely
inseparable d-extension of exponent one and AB is
projective rank m if and only if B[X;d] is an Azumaya

A[f]l-algebra for some f¢€ B[x;d](o) of degree m.
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By means of [8, Theorem 6.1] and Theorem 4, we have
the following proposition which is a generalization of

[8, Theorem 6.3] and [l1, Theorem 2].

Proposition 6. Let C be a commutative ring, d a
derivation of C, and A = Cd. Let C/A 1is a purely
inseparable d-extension of exponent one and AC is
projective rank m = pe. Assume that d satisfies a

e e-1
minimal polynomial &£ o+ a, + ...+ xa, (aié A).
Let E be an Azumaya A-algebra with C as an A-subalge-
bra, and E, be projective. Then, if B = Vv (C}, there
.is a derivation D of B which is an extension of 4,

and an element u in BD such that E 1is of the form
e e-1
“B[X;D1/(x® + %P a_ + ...+ Xa, - wBIX;Dl.

1

Remark. In [2], K. Hoechsmann studied skew polynomial
rings of derivation type whose coefficient rings are simple
algebras. Theorem 4 and Proposition 6 contains the main
results [2, Theorem 3.1] as a special case. As an another
application of Theorem 4, we have a generalization of
R. Irving's theoremv[7, Theorem 5.4]. The details will be
appeared in [6].
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ON FLAT RING EXTENSIONS AND GABRIEL TOPOLOGY
Kozo SUGANO

1. Throughout this report every ring will have the
identity 1, and every subring of it contain 1. All modules
over a ring will be unital. All terminologies and notations
are the same as in [5], [6] and [7].

Let G be a Gabriel topology on a ring R consisting of
right ideals. As in [5] we will denote liygecuom(éR’RR) by
R(G)’ and'(R(G))(G) by RG. A left R-module M is said to be
G-divisible if aM = M holds for each a in G. If M is R-flat
and G-divisible, we can make M a left R(G)
following way. Let m ¢ M and x ¢ R(G) represented by £ €

~module in the

Hom(gR,RR) with a € G. Then we have m = Zaimi for some a; €
a and m, e M. Define xm = ZE(ai)mi. Then it is easily seen
that this is well defined and gives M a left R(G)

structure. Furtheremore, we see R(G)QRM = M by the map *®m

-module

—r xm (x € R(G)’ m € M) and HomR(M, N) = HomR M, N)

for any left R, ,-module N. The same goes with(ﬁé and M,

and we can obtégg a simpler proof of Theorem 1.4 [4].
Theorem 1 (Theorem 1.4 [4]). Let M be a flat left R-
module and G the class of right ideals a of R such that aM
= M. Then G is a Gabriel topology on R, and M is a faithful
left RG-module. There exists a ring isomorphism Y of RG to
a subring of Bicom(RM) defined by 1M(x)(m) = xm for each x

€ RG’ m € M.

2, Now consider the case where A is a ring and B is a

This report is the abstract of the author's forth-
coming paper [9].
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subring of A. Denote D = VA(B), the centralizer of B in A,
and C = VA(A), the center of A. Suppose that A is flat as a
left B-module, and let G be the Gabriel topology on B con-
sisting of right ideals a of B such that aA = A. It is easi-

ly seen that Bicom( A) is a subring of Hom( A ), and

D A’D A
that there exists a natural ring isomorphism v of End( )
to VA(D). Thus we have ring monomorphisms

1 i v

BG —4 Bicom( A) — I-lom(D 47D A) — V (V (B))

where N is the map defined in §1, and i is the inclusion
map. Denote the composition of the above maps by ¢A Then
we see that Im¢, = {Zg(a,)m, | £ ¢ Hom(ay,Ap), a € G, Iam,

= lwitha ¢ a, m ¢ A}. Now the question under what con-

i i
ditions Im¢A = VA(VA(B)) holds comes out. Concerning with

this problem we have

Theorem 2. If A is an H-separable extension of B and

A is left B-flat, then we have BG = Im¢A = VA(VA(B))'

3. In this section we will deal with an H-separable
extension of a regular ring. Note that A is regular if and
only if every left A-module is A-flat. By Prop. 5.4 [2] we
can see that a separable extension of a regular ring is al-
ways regular. Here we will give the other proof of it. This
is an immediate consequence of the next lemma. A left A-
module M is said to be (A,B)-projective if and only if M is

isomorphic to a direct summand of A@hM as left A-module.

Lemma 1. If a left A-module M is (A,B)-projective and
B-flat, then M is also A-flat,

The proof of the above lemma is an easy exercise. This

lemma shows that, if A is a left semisimple extension of B,
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every left A-module which is B-flat is A-flat. Now we have

Theorem 3. Let B be a regular ring and A an H-separa-
ble extension of B. Then A is also a regular ring, and we
have VA(VA(B)) = B.

It is already known that, i1f M is a finitely generated
flat left B-module such that A“BM is A-projective, then M
is B-projective (See Prop. I 11.6 [5]). If A is an H-sepa-

rable extension of B, A® A is left (as well as right) A-

finitely generated projegtive. Therefore we have

Proposition 1. Let A be an H-separable extension of
B. If A is finitely generated flat as left B-module, then
A is left B-projective. Consequently, A is left B-projective
if one of the following conditions are satisfied;

(1) B is a right B-direct summand of A, and A is left
B-flat.

(2) B is regular, and A is left B-finitely generated.

Finally we will deal with an H-separable extension of
a left full linear ring, and give the complete improvement
of Theorem 3 [8]. A left full linear ring is the endomor-
phism ring of a left vector space over a division ring.
Such a ring is always regular, indecomposable as ring and a
left injective module over itself. Thus by Theorems 2, 3 [8]

and Prop. 1, Theorem 3, we have

Theorem 4. Let B be a left full linear ring. Then A
is an H-separable extension of B, if and only if the fol-
lowing three conditions are satisfied;

(1) A is also a left full linear ring

(2) D is a simple C-algebra with [D: C] < =,

3) VA(VA(B)) = B.
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If these conditions are satisfied, A is a free Frobenius

extension of B having a left (or right) B-free basis con-

sisting of [D: Cl-elements of A.

(1]

[2]

(3]

[4]

(5]
[6]

[7]

(8l

[9]
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THE SELF - DUALITY OF H~-RINGS AND NAKAYAMA

AUTOMORPHISMS OF QF-RINGS
Kiyoichi OSHIRO and Shinichi MASUMOTO

In 1978, M. Harada ([ 4 ]) has found a new class of
artinian rings which includes QF-rings and Nakayama (artin-
ian serial) rings. In [ T]a[ 9], the first author has
studied this ring and called it a H-ring. In this abstract,
we shall discuss on the problem whether this ring has self-
duality or not like QF-rings or Nakayama rings. Although
we can not solve this problem, we shall show that the foll-

owing three problems are mutually equivalent ones:

Problem A: Do basic left H-rings have Nakayama isomor-
phisms ?

Problem B: Do basic QF-rings have Nakayama automorph-
isms 7

Problem C: Do left H-rings have self-duality ?

Morita Duality. We start with Morita duality. Consider

two rings R and S, and let _m and "b be the categories of

R
all finitely generated left R-modules and right S-modules,
respectively. If there exist contravariant functors C: g™

— n% and D: n% ——)Rm such that DC and CD are isomorphic

to the identity functors of R
(Cc,D) is said to be a (Morita) duality between

m and nb, respectively, then
Rm and "b'

We use Rm,x.n% to mean that there exists a duality between

g™ and m., and in this case, n%(resp. R

dual to g™ (resp. n%). In particular, when _m~ g, R is

said to be self-dual or to have self-duality.

m ) is said to be
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From theorems of Morita [ 5], Azumaya [ 3 ] and Mueller
[ 6] we see the following: Let R be a left artinian ring,
and let E be the injective hull of R/J(R) as a left R-module
where J(R) is the Jacobson radical of R. Then Rm’\'mEnd(E)
if and only if E is finitely generated. And in this case
End(E) is a right artinian ring. In particular, if E is
finitely generated and End(E) is isomorphic to R, then R’is
self-dual,

This is a principal result for the study of self-duality.
However, in spite of this result, it is not easy to find
those artinian rings which have self-duality; even if we
find an artinian ring with duality, it seems to be difficult
to verify whether it is self-dual or not.

Finite dimensional algebra over a field, QF-rings and
Nakayama rings are typical artinian rings which have self-
duality. The reader is reffered to Waschbusch [10] from
which we can know an interesting history on the study of

self-duslity of Nakayama rings.

Notation. Throughout this paper all rings considered
are associative with identity, all R-modules are unitary
and all homomorphisms between R-modules are written on the
opposite side of scalars. The notation Mo (resp. RM) is
used to stress that M is a right (resp. left) R-module.

For R-modules M and N, we use ‘M gi'N’ to mean that M is
isomorphic to a submodule of N. For an R-module M, by E(M),
J(M) and S(M) we denote its injective hull, Jacobson radical
and socle, respectively. And M = JO(M) 2 Jl(M) 2 J2(M)

D ...8and 0= SO(M) < sl(M) g__sz(M) C ... mean the
descending Loewy chain and ascending Loewy chain of M, res-
pectively, i.e., Ji(M) = J(Ji-l(M) and si(M)/si—l(M) =
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s(u/s;_ ().

Let R be a left artinian ring and let E be a complete
set (i,e. sum = 1) of orthogonal primitive idempotents.
For convenience’sake, we put

(e,f) = (eR,fR) = HomR(eR,fR)
[e,f] = [Re,Rf] = HomR(Re,Rf)
for e, £ in E. When E is arranged as {el, cees en}, we

can identify R with the following matrix rings:
elRel oo elRen

e Ee .o e Re
n 1l n n

(el,el) cen (en,el)

(el,en) . (en,en)'

[el,ell - [ei,en]

[en,el] ven [en,en]~

We use the terms ‘ei—row’ and‘éi—column’ instead of the
terms i-row and i-column, respectively. So, we identify
eiR and Re:.L with e, -Tow and eicolumn, respectively.

For f in E, the following basic result is due to
Fuller ([3]):
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Lemma 1. RRf is injJective if and only if there exists

e in E such that (eRjRf) is an injective pair, i.e.,
~ o
RRe/J(RRe) ~ RS(RRf) and fRR/J(fRR) N S(eRR)R

When this is so, eRR is also injJective.

e € are in E ={ e
seos en} such that (eiR;ReJ) is an injective pair, then

We note that if R is basic and

S(eiRR) = ! 0..0 s(eiReJe Re YO ..0
! JJ
0
0 . 0
0
0
0 : 0
0
S(RReJ) = 0 .. 0 s(e.Re eiReJ) 0..0
. i i
0
0 0
0

Nakayama automorphism. Let R be a basic QF-ring, and

let {el, .vey en} be a complete set of orthogonal primiti-
ve idempotents of R. Then, there is a permutation{ f
R fn} of{el,

pair for i =1, ..., n. This permutation is called the

l’
cevs @ } such that (fiR;Rei) is an injective

Nekayama permutation of {el, oo @ }. And if there
exists an automorphism ¢ of R satisfying ¢(ei) = £, for

i=1l, ..., n, then ¢ is called a Nakayama automorphism of
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R. Although we do not know whether such an automorphism
exists or not, we will see latér +that the existence of
tﬁis is essentially related to our study of self-duality.
For later use , we shall generalize (Nakayama automor-
phism’ to ‘Nakayama isomorphism, for arbitrary basic arti-
nian rings. Let R be a basic left artinian ring, and let
E = Lel, cees en} be a complete set of orthogonal primitive
idempotents of R. Put E, = E(R(Rei/J(RRei))) and E = El()
eee @ En. Then the endomorphism ring T = EndR(E) is

identified with the matrix ring:

[El,El] ceee [El,En]

[En,El] ceee [En,En]

where [Ei,EJ] = HomR(Ei,EJ). Let f, be the matrix such
that its (i,i) position is the unity of [Ei,Ei] and all
other entries are zero. Then{f., cany fn }is a complete
set of orthogonal primitive idempotents of T3 T = ffr() ..
® fnT. Here if there exists an isomorphism ¢ of R to T
such that ¢(ei) = fi for all i, then we call it a Nakayama
isomorphism of R. Of course, when R is a basic QF-ring,

it is Just a Nakayama automorphism of R.

H-ring. Now our purpose of this paper is to investi-
gate the self-duality of a new artinian ring which was
found by M. Harada and studied by the first author. Among

several characterizations of this ring ([ 9]), we adopt
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here the following as its definition:

Definition. A ring R is a left H-ring if it is left
artinian and its complete set E of orthogonal primititive
idempotents is arranged as

E = {e cees ©

ll, ln(l), LECIE Y eml, CACECEE Y em(m)}
for which

1) each eilRR is injective,
2) eilRR ;2 ei2RR 2 .- ;2 ®in(i) for each i, and
more precisely
e k-1FR ™ ey Bg or Jley \ (Rlp e, Ry
for each k, and
3) e, By _7: eJtRR if i # 3.
We look at the following two conditions both which are

necessary and sufficient conditions of a left artinian ring

R to be a left H-ring:

e) The family of all (finitely generated) injective
left R-modules is closed under taking small covers.

b) The family of all (finitely generated) projective
right R-modules is closed under teking essential extensions.

As these conditions are mutually dual, we obtein the
following

Proposition 1. Let R be a left H-ring. If S is a ring
such that Rm ~m

left H-ring.

g? then S is a left and right artinian
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Example. QF-rings are clearly left and right H-rings.
Nakayama rings are also left and right H-rings; whence so
is the ring of all upper triangular matrices over a divi-

sion ring D:

As an typical example, for a local QF-ring Q, the ring

Q...Q8 ... Q
T o
Ll :
39 :
25 AT
J ... JJ...3Q

is a left H-ring, where Q = Q/S(Q) and J = J(Q).

Problems A, B and C. As left H-rings and self-duality

are Morita invaliants, in order to investigate the self-
duality of left H-rings, we may restrict our attention to
basic left H-rings. Therefore, hereafter,we assume that
R is a basic left H-ring and E is a complete set of orthog-
onal primitivé idempotents of R. E is therefore arranged
as

E = {e

for which

11° 700 S1p(1)7 ttc Sm e emn(m)}

i i € i<
1) eilRR is injective for 1 £ i € m,

2) e;3Bp 2 -0 2 ein(i)RR; more precisely there
)

. . s i
exists an isomorphism Gk from eikRR to J(ei

2k-1

k-17R’R
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for 1< i<mn, 1< k <n(i).

We use later the notations:

i . .
el,l = the identity map of eilRR
i A i i

ek,l - e2,1 " ek—l,k—29k,k-l°

Now, we represent R as

(ell’ell) ceeees (emn(m)’ell

R

(13 m(m)?’ **** (Cun(n)*Smnim)’

ellRell ceeseces ellRemn(m)

emn(m)Rell cesee mn(m)Remn(m)

The following properties hold on R:

a) Each S(eiJRR)R is simple,

s(e; )wxn.gu R&,

1R ®in(1)"R
S(eiJR)R ?Q S(ekt)R if i # k.

b) TFor each e; R, there exists a unique g; in E

such that (ei

injective.

lR;Rgi) is an injective pair; whence RRgi is
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¢)  S.(gRe;) = S(e,R) @ ... DS(e, k)
for 1 £i<m, 1<k <£n(i). So, Sk(RRgi) is a two-sided
ideal. In particular, S(RRgi) = S(eilRR) is a simple ideal.

In the matrix representation,

PE O o

Sk(RRgi) = 0 . 0

Ohﬂ'

O e

where X, = S( e. . Rg.) = S(e. . R ) for 1 < j < k.
i i) - =

-3
J eineiJ i) 1giRgi

d) Rgi/sk-l(RRgi) is injective as a left R-module and
isomorphie to E(RReik/J(RReik)) for 1 idm 1< k¢n(i).

BY 8> Ve denote the generator g * s, .( Rgi) of Rgi/

k-1'R

S,_1(gh8;) for 1 ¢ i ¢m, 1 <k &{n(i). Put
G = Rgll@...@Rgin(i)@...@Rgml@...@Rgmn(m),
T = Endg(LC).

Since RG is finitely generated and isomorphic to E(RR/J(R)),

by Proposition 1, we have

Proposition 2. M~ Mg 3 whence T is a left and right

artinian left H-ring.

In order to investigate the structure of T, we express
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[gll,sll] [sll,smn(m)]

T = :

lEnnm) >8] = [Ban(a) Eanim)!,

where [gij’gkl] = HomR(Rgij’ngl)° Let hij be the matrix
sxch that (ij,ij) position is the unity of [gij’giJ] and
all other entries are zero. Then K = {hll’ cens hln(l)’ ..

) hml’ cees hmn m)} is a complete set of orthogonal primi-
tive idempotents of T; so

T=h T® ...@hln(l)@...@hmlT@...@hmn(m)T.

Further we have the following two propositions on T.

Proposition 3. T is a basic left H-ring such that

1) hilTT is injective for 1 < i { m, and

2) by Tp D 0Ty D vee 2 BypgyTp for 1 < Lm

Proposition 4. For e,y 1P E and hkt in K, the follow-

ing are equivalent:
1) (eilR;Rekt) is an injective pair.

2) (hilR;tht) is an injective pair.

In view of these propositions, we see that the structure
of T is too similar to that of R, and want to raise the fo-
llowing problem: Does there exist an isomorphism ¢ from R
to T satisfying ¢(eij) = hiJ for all ij ? Namely, in other

words, does R have a Nakayama isomorphism ?
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Here we raise more explicitly the following three pro-

blems:

Problem A: Do basic left H-rings have Nakayama iso-

morphisms ?

Problem B: Do basic QF-rings have Nakayama automorph-

isms ?
Problem C: Do left H-rings have self-duality ?

Of course problems B and C are sub-problems of problem
A. However, as stated in the introduction, we can prove
that these are equivalent problems. Though, in this abstra-
ct, we only give a skech of its proof, detail will apper

elsewhere.

Problem B & Problem A. We recall that g = 8, is the

element of E such that (eilR;Rgil) is an injective pair for

1 (i {m. Here we define two mappings

g: {1, ..., m} — {1, ..., m}

p: {1, ..., m} —1{1, ..., n(1)}\wv... V{1, ..., n(m)}
by the rule o(i) = k and p(i) = t if Biq = Oy namely

(eilR;Re )) is an injective pair.

a(i)p(i
We note that{o(1), ..., o(m)} C {1, ..., m} and 1 £
p (i) < n(o(i)). Here we introduce a left H-ring of Type

(#) as follows:

Definition. R is Type (*) if{o(1), ..., o(m)} is a
permutation of {1, ..., m}, and p(i) = n(o(i)) for 1 < i £

m.
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For example

o
o

(D: division ring)

U...

is Type (*), since m = 1 and p{(1) = n(i).

For a local QF-ring Q with S(Q) # O, consider the ring:

t n-t

///—-\__“ T —

Q cvens Q Q . Q
ST . .
R = g‘. 2 . : E
: s Q-

] JQ .

\ vT . |

: ISR

'\JUH.JJ“:jQ/

where J = J(Q) and Q = Q/5(Q). Since m = 1 and p{(l) = t
n(l) = n, this ring is Type (%) iff t = n.

Now, we must observe the structure of R and introduce

#
two matrix rings P and R .

We put
(ejl’eil) ceeennas (ejn(j)’eil)\\\
Ry = : :

/
tejl’ein(i)) ........ (ejn(j)’ein(i))/

D
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eilRejl e eilRejn(j)
ein(i)Rejl e ein(i)ReJn(J)
So,
Rll cee le
R =
le cee Rmm
Corresponding to eikReJt’ we define
eilRejl = (ejl’eil) ifi# )
P, = = i i =
ik,jt eilReJl (ejl’eil) ifi=3,k¢t
J(eilRejl) = J((ejl’eil)) ifi=j, k)t

for ik, jt in {11, ..., In(1), ..., ml, ..., ma(m)} , and
put

Pis,sn o Paagn(s)
ij ~

Pin(i),51 ***  Pin(4),In(3)

Namely, when i # J,
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e, Re, esao

11°%5 ;1R

P..
id

eilRejl 0ses eilRejl

and when i = j,

il ' il il
Pij = ..
J(eilReil)
;1R85
We put
Pll seee le
P = . .
Pm o e v o Pmm

Then P becomes a ring by usual matrix operations. Let pi

J
be the element of P such that its (ij,ij) position is the

unity of Pij ij and all other positions are zero. Then
H]

{ Prys> sees Prp(g) cos Bpps cees mn(m)} is a complete set
of orthogonal primitive idempotents of P; P = p,.P ®. @

pln(l)P ®... 0 pmlP ®... @pmn(m)P.
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We define a mapping

Tik,jt°  Fik,jt ? e5xReyt
NI "

: -
. i J
by the rule: a -—)(Bk,l)aet,l° Then we see that ik, it

is an epimorphism of &abelian groups and

T, T =1
ik,Jt Jt,pq ik,pq
for any ik, jt, pq in {11, ..., mn(m)} ; whence

T3, °°° T11,mn(m)

A
[
s o C

Tan(m),11  °°* Tan(m) ,mn(m)

gives a ring epimorphism from p to R and then T(pik) = e
for all ik.

We need the following proposition,

Proposition 5. For T,

ik, Jjt?
1) if j # o(i), then Tik, it is an isomorphism,
2) if j.=o0(i) and t < p(i), then Tik,jt 1S @lso an
isomorphism,
3) if §J = o(i) and t > p(i), then Tik, it is not an

isomorphism. Indeed, in this case,

ik
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Ker T, {ae'(ej]_,eil) | Ker o = Jp(i)(e R )}V O

ik,Jjt J1I'R
= 8( e..Re,.)
eilReil il 7j1
= 5( P )
Pik,ix K-t |
= 8(e..Re
il JleJlRejl
= 8(P,
lk’JtPJt,Jt
and Ker Tik,Jt is simple as a left Pik,ik-module and right
PJt,Jt-module.
We replace Pik,o(i)t in
‘-
/ Pil,o(i)l Pil,o(i)n(o(i))
P, ,. |
io(i) i .
P, ,. . A . .
\ in(i),o0(i)1 1n(1),0(1)n(o(1))/
by P /s(P, ) for k=1, ..., n(i) and j =

ik,o(i)t ik,0(i)t
*
P +1, ..., n(o(i)), and denote it by Pio(i)' And we put

/ *
/ Pr1 oot Pio(a)-1"10(2) F1,0(0)41 le\

/

—

/

I
j

*
Ppoo--e Pm,o(m)-lpmo(m) Pm,o(m)+1 tee Pmm//
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* *
and by e:.L we denote the element of R which corresponding

to P,
i

k

X in P for each ik in {11, ..., mn{m)}. Then, by

Proposition 5, we obtain

*
Theorem 1. R becomes a ring and T induces a ring iso-

* * * ¥

morphism T from R to R satisfying 1 (e.,) = e,, for all
* * \ ik ik

eik . Therefore R is a representative matrix ring of R.

We shall illustrate this theorem for two cases:

1) The case m = 1. Then
' JO) .

Y > PR

b . .. /
\ s..0%.58 )
ellRell’ J = J(ellRell) and Q = Q/5(Q). (Then Q
is a local QF-ring).

where Q =

2) The casem = 2, ¢g(1) = 2 and g(2) = 1. Then

£
f‘M— _'
Q ... QA..AA..A\
' S
ORI S
* . - — i
R = _ QA ..AK.. X
B..BB..BT .cooeeanes T
o J(m)
B..BB..B T
L
) _
where Q = ellReLi’ T = e2lRe2l’ A= ellReel’ A = A/S(A),
B = e2lRell and B = B/S(B).
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Next, we put

e1afe €1afeny oo eppfem \
e21Rell eelRe21 .o e2lReml X
aw=l
. . . /.'
R

J
eml ell emlRe21 . ee emlReml /

*
s

* ¥
Then Q(R) becomes a ring; Q(R) ™~ eRe ~ pPp ™~ e R e

= + ... = + ...
where e ell+ e21 + eml’ P pll + p21 + pml
# # # #

and e = ell + e21 + ..., t eml'

The following hold on Q(R).

Proposition 6. If R is Type(*), then Q(R) is a basic
QF-ring and R is {left and) right artinian.

Proposition 7. Assume that R is Type(*). Then R has a
Nakayams isomorphism if and only if Q(R) has a Nakayama

automorphism.

*
The following is proved by using the representation R

and induction on m.

Proposition 8. There exist basic left H-ring Tl’ T2,
cees Tn and ring epimorphisms ¢l: Tl - T2, ¢2: T2——) T3,

. . i #
cees ¢n-l' T 1 Tn’ ¢n. T, — R such that T, is Type(*)

and Ker ¢i is a simple two sided ideal of Ti’ i=1,2, ..,

n.
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Proposition 9. If R has a Nakayama isomorphism, then

so does R/S for every simple ideal S of R.
We are now in a position to state the following

Theorem 2. If Problem B is affirmative, then so is
Problem A.

In fact, if Problem B is affirmative, then T1 in Pro-
position 8 has a Nakdyama isomorphism, since Q(Tl) has a
Nakayama automorphism. Hence, by Proposition 9, we see

that R has a Nakayasma isomorphism.

As a by-product, we see that R is right artinian, since

Tl in Proposition 8 is right artinian. Thus we have

Theorem 3. Every left H-rings is (left and) right

artinian.

Problem C & Problem A. We put

. [sz if § = o(1)

R,, =
iJ
\,Pi‘j if § # o(i)
and
(Pik,jt if § F o(i)
*
R ik, Jt y Pik,jt if § = o(i), t ¢ o(i)
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So,
* *
Rll a6 R]m
* ] 9
R = : :
* *
le o0 0 Rmm
and
R* R*
il,j1 °e i1l,jn(J)
R* - ) []
ij : :
R* R*
in(i),J1 °°° “in(i),n(i)

*
Here, adding one row and one column to R , we make an ex-

tension ring Wi(R) of R as follows: Put

* * * *
Ry =ee Ris Y} By gup oo Rip
; W* 9 .* 0*
Ril e o0 Rii Yi Ri+l o0 Rim
W.(R) = X, ee X X QX oen X,
* * * *
* * * #
Ry «ee Ryt Yo Rpie1 oo R

where X, is the last row of Rf for k=1, ..., i-1, i+l,
k ik

ees, I, Yk is the last column of Rki for k=1, ..., m,
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* * *
%= Ringa),11 *** Pin(1),10(1)-1 T®Rin(1) ,in(1))> 202 0 =
*
Rin(i),in(i)° Then Wi(R) becomes & ring from operations of

*
R , and moreover it is a basic left H-ring.

For example, consider the case: m = 2, n(1l) = 1, n(2)
=2, d(1) = 2, o(2) =1, p(1) = 2. Then

where Q =
K = J(T),

)Reqs T = €yyRepy5 A = e, Repp; B = e Reys

o
D.
w
w

o
o
td
(oo}

W, (R)

where J = J(Q)

W,(R)

~

|
\ A X T T
\\ A K T/

']

Proposition 10. Let W be in {Wl(R), cees Wm(R)}. Then
W has a Nakayame isomorphism if and only if R has a Nakayama

isomorphism.
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This proposition enable us to prove the following
Theorem 4. If Problem C is affirmative, so is Problem A.

Indeed, assume that Problem C is affirmative. Then,
there exists an isomorphism ¢l from R to T, where T is the
ring described in Proposition 23 Recall that T = hllT ®...

@hln(l)T@ @hmlT@... @hmn(m)T and

a) h,,Tp is injective,

b) hilTT ;2 hi2TT 2 2hin(i)TT
fori=1, ..., m.

We want to prove that there exists an isomorphism ¢

from R to T satisfying ¢(eij) = hij for all eiJ' To prove
this, we can assume by Proposition 10 that
n(l) < n(2) ...  n(m) ... (%)

Putting Vig = ¢l(eij)’ {wij} is a complete 'set of orthogonal

primitive idempotents of T and

a' ) w,T is injective,

1T
B ) vy Tp 2VioTe 2 00 2 Vi) Tr
fori=1, ..., m. For {hij} and { v, } , there exists an

automorphism ¢2'of T such that {¢2(wij)} = {hij} (ef.[2,pl2]).
Then, comparing a), b) to a’), b ), together with (*), we
see that ¢2(wij) must be Jjust hij for all w,,. Hence putting

ij
¢ = ¢01, we get ¢(eij) = hij for all ey

From Theorems 2 and 4, we obtain the following
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Theorem 5. Problems A, B and C are mutuelly equivalent

ones.

Finally we note that all arguments above on left H-
rings work on Nakayama rings; so the following problems

are mutually equivalent ones:

Problem A: Do basic Nakaysma rings have Nakayama iso-~
morphisms ?

‘Problem B: Do basic Nakayama QF-rings have Nakayama
automorphisms ?

Problem C: Do Nakayama rings have self-duality ?

As Nakayama rings have self-duality ([10]), it follows
that Problems A and B are affirmative. By a similar reason,
we see that finite dimensional algebras over a field have

Nakayama isomorphisms.
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ON THE PROJECTIVE INDECOMPOSABLE MODULES OVER
THE GROUP ALGEBRAS OF GROUPS WHOSE
SYLOW 3-SUBGROUPS ARE EXTRA-SPECIAL OF ORDER 27
OF EXPONENT 3 IN CHARACTERISTIC p = 3 *)

k%)
Shigeo KOSHITANI

All groups considered here are finite and all modules
considered here are finitely generated right modules. Let
FG be the group algebra of a finite group G over an
algebraically closed field F of characteristic p > 0.
Let J be the Jacobson radical of FG. For an FG-module
M # 0, we write j(M) for the Lowey length of M, that is,
j(M) 1is the least positive integer j such that MJj = 0.
We are interested in the Loewy structure of the projective
indecomposable modules (p.i.m.'s) over FG (see [4] and
[12]).

For a while, let's assume that G is p-solvable.
Even in this particular case, few on the Loewy structure
of the p.i.m.'s over FG has been known if G has p-
length > 1.

The next is the simplest example in this case. It is
noted that K. Motose firstly remarked that j(FG) = 4 in
the following situation (see [17, Proposition]).

*) This is a report of my results, some of which have
already been announced elsewhere and the rest of which
would be published elsewhere.

#*%*) Supported by Alexander von Humboldt Foundation (Aug.
1983-March 1985).
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Example 1 ([7, VII 15.10 Example]). Let G be the
symmetric group on 4 letters, and let p = 2. Then the
Loewy and socle series of the p.i.m.'s over FG are

PI P2

I 2
f//Q\\é f//$\\é
2 I I
\,/ \/

2
where I 1s the trivial FG-module and 2 1is a simple

FG-module of F-dimension two, and PI and P, are

respectively the projective covers of I and 2.
The thing we had to calculate was the following:

Example 2 (Koshitani {9]). Let p = 3 and let G be
the semi-direct product of the elementary abelian group of
order 9 by the special linear group SLZOFB) = SL(2,3)
in a natural way. Then the Loewy and socle series of the
p.i.m.'s over FG are completely determined (see [9,
Theorem]). 1In particular, j(FG) = 9 (cf. [16, Theorem]
and [15, Example 2.5]).

An advantage of Example 2 is the following.

Corollary to Example 2 ([10]). Let G be p-solvable
and p > 2, and let B be a block ideal of FG with
defect group

D = M(p) = <a, b, c | aP =bP =cP =1, a”

a_lca = ¢, b-lcb = ¢>,

lpa = be,
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namely, the extra-special group of order p3 of exponent

p (see [6, p. 203]). Then the Loewy and socle series of the
p.i.m.'s in B are completely determined. In particular,
j(B) = 4p - 3 (ef. [8, Lemma 1.4]).

Now, let's consider non-p-solvable groups G whose
Sylow 3-subgroups are isomorphic to M(3) in the above
notation and let p = 3.

By [18], the Tits simple group '2F4(2)' has a maximal
subgroup Aut(SL(3,3)), which is isomorphic to the semi-
direct product SL(3,3):Z2 of SL3(F3) = SL(3,3) by the
cyclic group 22 of order 2 such that the action of 22
on SL(3,3) is the transpose-inverse. So that 2F4(2) has

the following subgroups;

2, (2) = aut(PF,(2)") 3 2R (D) 3 SL(3,3):2, = Aut(SL(3,3))
S~ 16007

> SE53,3) > (Z3 x Z3):9p(2,3) 2 (z3 x Z3):SL(2,3)
- ~13-- -~ T 2 - -

where (Z3 x Z3):GL(2,3) and (Z3 b Z3):SL(2,3) are
respectively the semi-direct products of the elementary
abelian group Z3 b Z3 of order 9 by the general linear
group GL(2,3) and the special linear group SL(2,3) in
a natural way, and the numbers between two groups are the
indices.

Hence it appears worth-while to get the Loewy and socle
series of the p.i.m.'s over F[SL(3,3)] and F[Aut(SL(3,3))].
In fact, we get the following by making use of Example 2.

Example 3 (Koshitani [11]). Let p = 3., Then the
Loewy and socle series of the p.i.m.'s over F[SL(3,3)]
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and F[Aut(SL(3,3))] are completely determined. In
particular, the Loewy 1ehgths of both of the group algebras

are 9.

Concerning other examples, in which the Loewy and
socle series of p.i.m.'s over group algebras are calculated,
see [1], [2], [3], (4], [5], [12], [13] and [14].
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ON A CONJECTURE OF P.LANDROCK
Yukio TSUSHIMA

This article outlines the joint work[2] with T.Okuyama.

Let G be a finite group, k an algebraically closed:
field of pfime characteristic p and let J be the Jacobson
radical of the group ring kG, P.Landrock conjectured in
his book[l] that

(L): Ji/Ji+l

all 1.

Unfortunately this is not true in general, as the

is self-dual as a (right) kG-module for

Mathieu group Mll shows for p=11. However we acknowledge

the significance of this conjecture for various reasons.
So it seems to be reasonable to investigate when or for
which groups it is true. Here we shall mention some results
concerning it without proofs.

Lemma 1. (L) is true if and only if dim Jie = dim eJi
for all i and every primitive idempotent e of kG.

Proposition 1. If every irreducible k-character is

algebraically conjugate to its dual, then (L) is true.

The following corollary to the above Proposition shows

that (L) is true for a large class of groups.

The detailed version will appear elsewhere.
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Corollary 1. Let |G|=pam with (p,m) =1. Then (L) is

true if there is an integer n such that 1:.n £ -1 mod m.

Lemma 2, Let H be a normal subgroup of G and assume
that (p,[G:H]) =1. Then (L) is true for G if and only if
it is true for H.

Since (L) is trivially true for Sn (the symmetric group

on n letters), we can show the following by making use of

Lemma 2.
Proposition 2. (L) is true for A .

One may notice from Lemma 1 that (L) is true if there
is an anti-automorphism f of kG such that f(e)kG= ekG for
any primitive idempotent e of kG. This is just the case
for G=GLn(q) or Un(q)'

In fact if we define f by f(x)==tx for x ¢ G, where x
denotes the transpose of x, then this enjoys the above

condition. Thus we have

Proposition 3. (L) is true for GLn(q) and Un(q)'

Also we have

Proposition 4. (L) is true for SLn(q)'



116

References

[{1] P.Landrock, Finite group algebras and their modules,
Cambridge University Press, London, 1984,
{2] T.Okuyama and Y.Tsushima, On a conjecture of P.Landrock,

preprint.

Department of Mathematics
Osaka City University



