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PREFACE

The 17th Symposium on Ring Theory was held at
University of Tsukuba, Japan, on December 4 -6, 1984.
This volume consists of the articles presented at the
Symposium. Besides these, there were a lecture dedicated
to the memory of Professor Takeshi Onodera, given by
Toyonori Kato, and an expository lecture given by Yasuo
Iwanaga, on Artin's problem.

The Symposium and the Proceedings were financially
supported by the Scientific Research Grants of the
Educational Ministry of Japan through the arrangements
by Professors Toshiro Tsuzuku at Hokkaido University,
and Mieo Nishi at Hiroshima University.

This Symposium has continued to the present with
cooperation of Professors Shizuo Endo, Manabu Harada,
Hiroyuki Tachikawa, and Hisao Tominaga.

I wish to express my hearty thanks to Algebra staffs
of Department of Mathematics, Okayama University for
the publication of the Proceedings.

Finally I would like to thank Takayoshi Wakamatsu,
Hisaaki Fujita, and the graduate students specialized in
the ring theory at University of Tsukuba for their best
help in making the meeting run smoothly.

December 1984
Y. Miyashita






ON REGULAR RINGS WITH INVOLUTION

Tadashi YANAIL

This is a summary of my paper [3] written jointly
with Y. Hirano. In this note, we first classify (von Neumann)
regular rings having no nontrivial symmetric idempotents
(Theorem 2). Next, we determine the structure of regular
rings having finitely many symmetric idempotents (Theorem 6).
Further, we extend these results to commutative p.p. rings
(Corollary 8).

Throughout this note, R will represent an associative
ring with involution (an anti-automorphism of order 2) # .
An element a of R is said to be symmetric if a*=a.
A symmetric idempotent is called a projection. A projection
is said to be minimal if it can not be represented as a

sum of two orthogonal nontrivial projections.

Lemma 1. ([2,p.18]) Let R be a semiprime ring with
involution *. If a minimal right ideal p of R contains a
symmetric element s such that sp#0, then p contains a

nontrivial projection.

From this result and [2,Theorem 2.3.4], we shall
completely classify regular rings having no nontrivial

projections.



Theorem 2. R 1is a regular ring with involution *
and has no nontrivial projections if and only if R is
(1) a division ring, (2) a direct sum of a division ring
and its opposite with (a,b)*=(b,a), or (3) the 2x2 matrix

d -b).

ring over a field with (Z :)*=(-c a

This result and [2,Theorem 2.1.7] imply the following:

Corollary 3. Let R be a 2-torsion free ring with
involution *, Then the following are equivalent:
(a) R is semiprime and every nonzero symmetric
element is invertible,
(b) R is regular without nontrivial projectionms,
(¢) R is (1) a division ring, (2) a direct sum of a
division ring and its opposité with (a,b) *=(b,a),

or (3) the 2x2 matrix ring over a field with
a by*_rd -b
(c d) _(-c a)'

Our second purpose is to determine the structure of
regular rings with finitely many projections. To prove

the theorem, we need the following useful results.

Proposition 4. Let R be a regular ring with involution
* and has finitely many projections. Then, a minimal
projection e of R is either
(1) a sum of two orthogonal primitive idempotents
f,g with f*=g, or
(I1) a primitive idempotent.



Proposition 5. ([1,Theorem 3.1.1]) Let D be a division
ring with involution. If every symmetric element of D is

algebraic over a finite field, then D is commutative.

Theorem 6. R is a regular ring with involution *
having finitely many projections if and only if R is a
finite direct sum of rings of the following types:

(1) a division ring,

(2) a direct sum of a division ring and its opposite

with (a,b)*=(b,a),

(3) the 2x2 matrix ring over a field with

abyvx rd-b
(c d) ‘(—c a)’
(4) a finite dimensional matrix ring over a finite field,
(5) a direct sum of a finite dimensional matrix ring

over a finite field and its opposite with
(a,b)%=(b,a).

Now, we extend these results. We say that R is a p.p.

ring 1if every principal one-sided ideal of R is projective.

Proposition 7. ([l,Lemma 3.1]) R is a commutative
P.p. ring if and only if its classical quotient ring Q

is a regular ring and all idempotents of Q are in R.

Clearly, the involution of R can be uniquely extended
to its classical quotient ring in this case, so from this

result, Theorems 2 and 6, we have the following:



Corollary 8. Let R be a commutative p.p. ring with
involution *.
(1) If R has no nontrivial projections, then R is
(a) a domain, or (b) a direct sum of a domain
and its opposite with (a,b)*=(b,a).
(2) If R contains no infinite number of orthogonal
projections, then R is a finite direct sum of

rings of types (a) and (b).
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PROJECTIVE MODULES OVER DIRECTLY FINITE REGULAR
RINGS SATIFYING THE COMPARABILITY AXIOM

Mamoru KUTAMI

This paper is an abstract of the author's paper [5],
but some new results are added to them. In [2], J. Kado
has studied simple directly finite regular rings satisfy-
ing the comparability axiom, and completely determined
the directly finiteness of projective modules over these
rings.

In the section 1 of this paper, without the assum-
ption of simplicity in [2], we shall study directly
finite projective modules over directly finite regular
rings satisfying the comparability axiom. In Theorem 1.6,
we shall give a criterion of the directly finiteness of
projective modules over these rings. Using this criterion,
in Theorem 1.7, we shall show the following result: Let
R be a directly finite regular ring satisfying the com-
parability axiom. If P and Q are directly finite pro-
jective R-modules, then P ® Q is directly finite.

In the section 2, xo-continuous projective modules
over directly finite regular rings satisfying the compara-
bility axiom are investigated, We show that avery
directly infinite io—continuous projective modules over

these rings is completely reducible.

Throghtout this paper, R is a ring with identity
and R-modules are unitary right R-modules. If M and N are

R-modules, then the notation N < M (resp. N ® M) means



that N is isomorphic to a submodule of M (resp. N is iso-~
morhic to a direct summand of M). For a submodule N of

an R;module M, N <@ M means that N is a direct summand of
M. PFor a cardinal number o and an R-module M, oM denotes

a direct sum of a-copies of M.
1. directly finite projective modules

First we recall some definitions and well-known
results {(cfe [1]).

1
implies yx = 1, for all x, ¥y € R. An R-module M is direct-
ly finite if EndR(M) is directly finite. A ring (a module

Definition. A ring R is directly finite if xy

M) is directly infinite if it is not directly finite.

It is well-known that M is directly finite if and only if
M is not isomorphic to a proper direct summand of M itself.
A regular ring R is said to satisfy the comparability axiom
provided that, for any x, y € R, either xR SZyRor yR g
xR, or equivalently, for any finitely generated projective
R-modules P and @, either P < Qor Q <P A ring R is

said to be unit-regular if, for each x ¢ R, there is a

unit (i.e. an invertible element) u of R such that xux =

X,

Lemma 1.1. (a) Every directly finite regular ring
satisfying the comparability axiom is unit-regular (cf.
[1, Theorem 8.12]).

(b) Iet R be a unit-regular ring. Then,

(1) Every finitely generated projective R-



module is directly finite ([1, Proposition 5.2]).
(2) Let B, A1, A2, «e. be projective R-modules.

If each An is finitely generated and A1 ® ... ® An B

for all n, then & A X B ([', Proposition 4.8]).

(3) let A be a finitely generated projective
R-module. If B and C are any R-modules such that A & B
* A®C, then B = C ([1, Theorem L.14]).

(4) Let A, B and C be projective R-modules
such that A= B® C. If C is finitely generated, then
A is directly finite if and only if B is directly finite.

An R-module M is said to have the exchange property

if, for any direct decomposition G = M' @ C = QieIDi with

Ml

M and the index set I, there are submodules Di 4 Di

3 = M! 1
(i € I) such that G = M' @ ($ieIDi)'
Lemma 1.2. Every projective module over a regular

ring has the exchange property.

Let R be a regular ring, and let P be a countably
generated, but not finitely generated, projective R-module
which has a cyclic decomposition P = $i:1Pi satisfying
the condition

(*) Pi 2 Piet
R-module X such that X < Pi for all i.

for all i, and there exists no nonzero

Consider the following conditions on {Pi}:

(A) There exists a positive integer m such that

(1) for each i 2 m, P. < for some positive

in tipi+1



integer t.,, and
i

(2) ®._nP; < tB for some positive integer t.

(B) There exists an increasing sequence 1 = i1 < i,
[

< ..., Of positive integers such that Pi for

X ¥oP;
n n

+1
n=1,2y eee »

(C) There exists a positive integer m for which
the condition (1) of (A) holds.

Lemma 1.3. Let R be a directly finite regular ring
satisfying the comparability axiom. Then, for a counta-
bly generated, but not finitely generated, projective

1=1Pi

satisfying (%), either (B) or (C) hold, but not both.

R-module P with a cyclic decomposition P = ©

Proposition 1.4. Let R be a directly finite regular
ring satisfying the comparability axiom. For a countably
generated, but not finitely generated, projective R~-

modle P with a cyclic decomposition P = ei:1Pi satisfying

(*) and (C), the following are equivalent:
(a) P is directly finite.
(b) There exists a positive integer n > m such that

8. P. <P .
1=n 1 v nm

(¢) There exists a positive integer t > 1 such that
®.” P. < tP_,
i=m i~ m
Proposition 1.5. Let R be a directly finite regular

ring satisfying the comparability axiom. Then, a



countably generated, but not finitely generated, projective

R-module P with a cyclic decomposition P = eiZIPi satisfy-

ing (*) and (B) is directly finite.
We are now in a position to prove the main theorem.

Theorem 1.6. Let R be a directly finite regular
ring satisfying the comparability axiom. Then for a
projective R-module P, the following conditions are
equivalent:

() P is directly finite.

(b) (1) P is finitely generated or

(2) P is a countably generated R-module with

a cyclic decomposition P = Oi:1Pi satisfying (*) and (A),

or (*) and (B).
(¢) (1) P is finitely generated or
(2) P is a countably generated R-module with

a cyclic decomposition P = QiZIPi satisfying (¥) and
the following condition:
(#) For each positive integer k, there exists a

positive integer x(k) such that 8 v(x)Fi < P,

If, in addition, R has the nonzero socle, then a projective,
R-module P is directly finite if and only if P is finitely

generated.

Proof. (a) ¢ (b) has proved in [5], and (c) + (b)
follows from Lemma 1.3 and Proposition 1.4. (a), (b) =
(¢). Assume that P is a countably generated, but not

finitely generated, directly finite projective R-module
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with a cyclic decomposition P = ei:1Pi satisfying (%),

and that P = G{Z P. does not satisfy (#). Then there

1
. - - o«
exists a positive integer k such that Pk Ed $i=npi for

all n, and so we can choose an increasing sequence k+1 =

k1 < k2 < ... of positive integers such that P e
kh+1—1
P, forn =1, 2, ... by Lemma 1.1 (b). Therefore

i=k
n

@

we have that ¥ P, <®@._ P. <@ P, which contradicts the

1

directly finiteness of P.

Remark 1. Let R be a nonzero simple directly finite
regular ring satisfying the comparability aexiom. Then,
every non-finitely generated directly finite projective
R-module P is a countably generated module with a cyclic

decomposition P = Oi:1Pi satisfying (*) and (A), because

R has a strictly positive dimension function ([1, Coro-
llary 16.15]).

Remark 2. A directly finite regular ring R with
the comparability axiom is classified into two cases:

(1) All non-finitely generated directly finite

projective R-modules P have a cyclic decomposition P

Qi:1Pi satisfying (*) and (A).

(2) All non-finitely generated directly finite

projective R-modules P have a cyclic decomposition P

ei:1Pi satisfying (*) and (B).

Example. There exists a non-simple directly finite
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regular ring satisfying the comparability axiom which has
the case 1 of above Remark 2. Choose & field F, let V be
an uncountable-dimensional vector space over F, and set

Q= Endp(V). Set J = {xeQq]| dimg(xV) < =} and set R =

F +J. Then R is a non-simple directly finite regular
ring satisfying the comparsbility axiom with a nonzero
socle J (see [1, Example 5.15, p.237 and p.238]).

Set R = M2n(R) foralln =1, 2, ... . Map each R *R _,

along the diagonal, i.e., map x *-(xO) and set S = lim Rn.
Ox

Let f be the natural map Rn + 8. Then S is a non-simple

directly finite regular ring satisfying the comparability

axiom with the zero socle, and f( 698 ® f(gaams ® ...

is a countably generated, but not finitely generated,
directly finite projective S-module with (*) and (A), where
X is contained in a simple right ideal of R. Therefore

S is a desired one,

From Lemma 1.1, Theorem 1.6 and Remark 2, we have

the following result.

Theorem 1.7. ILet R be a directly finite regular ring
satisfying the comparability axiom. If P and @ are
directly finite projective R-modules, then so is P & Q.

Lemma 1.8. Iet R be a directly finite regular ring
satisfying the comparability axiom, and let P and Q be
countably generated, but not finitely generated, directly
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finite projective R-modules with cyclic decompositions P

w0 [ ]
_ - . o ). .
= ei=1Pi and Q = 8, _,CQ. satisfying (*). If there exists a

positive integer m such that P.&... &P 3 9, then

P& Q.
Proof. Ve can choose an increasing sequence nm+1 <
< < s .
x(nm+1) <n x(nm+2) ... of positive integers such

> T
that P& 2 Qni 3 Qx(ni) ® ... & Qx(ni )=1 for each i m

by (*) and Theorem 1.6. Noting that P, ®...8FP

Q1 ... & Qx(n

+1
n
)=12 we can conclude that P &2 Q.
m+1
Theorem 1.9. Let R be a directly finite regular
ring satisfying the comparability axiom. Then,
(a) For countably generated projective R-modules P
and Q, either P X Q or Q < P hold.
(b) If P and Q are countably generated, but not
finitely generated, directly finite projective R-modules
such that P g Q, then P 6& Q.

® © .

Proof. let P = ei=1Pi and Q = ei=1Qi be cyclic
decompositions of P and Q. {(a) Assume that P é Q. 'Then
there exists a positive integer n such that P1 ... 9 Pn
£ Q by Lemma 1.1 (b), and so P,®...08P2 >Q,8...00Q
for all m. Hence P &> P1 ... 9 Pn 3 Q.

(b) Assume that P 2Q It is sufficient from ILemma 1.8

to show that P1 ... 8 Pn z Q for all n. There exists

e positive integer n, such that Q1 b P1 ... ® Pn and

1
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Q, £ P, ® ... 0 Ph _q» 8nd so there exists a positive
1

integer m

1 such that Q1 ® ... & qn1 h P1 e ... ® Pn and

1

Qe ... 0 Qm1+1 z P.®...8 Pn1' Using Lemma 1.1.(b),

m1+1 m1+1

Q1 ... ® Qm1 ®

we have a direct sum decomposition Qm = X ey
1

n

such that Ym1+1 # 0 and P1 9 ... 8 Pn1
X

m1+1. Noting that Q1 ® ... & %m1+1 N P, again by Lemma

1.1 (b), there exists a positive integer n2(> n1) such

that Ym1+1 b Pn1+1 ® ... 0 Pn2 and Ym1+1 é Pn1+1 ® ... ®

P _,» and so there exists a positive integer m2(> m1)
2

such that Ym,+1 & Qm1+1 ® ... 8 qn2 < Pn1+1 6 ... 8 Pn2

and Ym1+1 8 Qm1+1 6 ... ® Qm2+1 é Pn1+1 ® ... ® Pnz.

Then we have a direct sum decomposition Qm - X 1 ®

5 my*
Ym 1 such that Ym +1 # 0 and Pn 1 8 oeo @ Pn = Ym

2 2 1 2 1

Qm1+1 ® ... 0 Qm2 ® Xm2+1. Continuing this procedure,

we have that P = Q and so P Qz Q.

)

+19

Corollary 1.10. Let R be a directly finite regular
ring satisfying the comparability axiom, and let P and Q
be directly finite projective R-modules. If P $Q and
Q < P, then P = Q.
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Iet I be a set. Denote by |I| the cardinal number
of I.

Corollary 1.11. Let R be a directly finite regular
ring satisfying the comparability axiom, and let P be
a directly finite projective R-module such that P = A & B
=C@®D. IfAc=Cand|B|]=]|D|, then B = D,

2. xo-continuous projective modules

Let M be an R-module and let A(M) be the family of
all submodules A of M such that A contains a countably

generated essential submodule. We say that M is Ro-

continuous if M satisfies the following conditions (C1)
and (C2):

(C1) For any A € A(M) there exists a submodule A¥*
of M such that A is an essential submodule of A¥ and

A <$ Mo

sequence O + A + M splits,

Then note that, if M is nonsingular and io—continuous

then so is every direct summand of M (see [3] and [4]).

lemma 2.1. Let R be a regular ring and let P be a

non~-finitely generated lo-continuous projective R-module

with a cyclic decomposition P = eieIPi' Then,

(a) We have a decending chain condition on N for
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{Pﬁ}iel‘
(b) If there exists i. e I such that Pi < Pi for

0 0
all i ¢ I, then we have a decending chain condition on

s’ for cyclic submodules of Pi , and hence we have a
0

simple submodule of Pi'
0

Proof. (a) Let P. > P, > ,.. with a non-isomor-
11 o 12’\'
phic monomorphism f. : P. +P. forn=1, 2, ¢e0 o
i i i
n n+1 n

Then, for each n, there exists a nonzero submodule Qi of
n
Pi such that Pi = fi (P. ) ® Qi , and we see that

i
n n n n+1 n

en:1qi <® Pand Q © (Gn:1fi cef (@ ) (e en:1qi )
n 1 n n

1 n+1

is a non-direct summand of Ri , which contradicts the
1

X

0-continuity of P.

(b) For each i € I, let £f,: P, > P, bea monomorphism,
0

Assume that there exists a family {Ai}i:1 of cyelic

submodules of Pi such that A1 > A2 > «ss » Then, for
o
each n, we can choose a nonzero submodule Bn of A.n such

that A =A . ®B , and ve see that & fin(Bn) <@ P and

®B (=@ f. (B)) is a non-direct summand of P. ,
n i*n iy

which contradicts the Bb—continuity of P.



16

Theorem 2.2. Let R be a directly finite regular
ring satisfying the comparability axiom and let P be a
non-finitely generated projective R-module, Then, P is

Jo-continuous if and only if P is completely reducible.

Proof. Let P = eieIPi be a cyclic decomposition of

P. " if part " is clear. only if part " Assume that

P is &o-continuous. From Lemma 2.1, there exists a simple
projective R-module S such that S < Pi for all i e I.
Note that each Pi is directly finite !O—continuous.

Then, in view of Lemma 1.1 and [4, Theorem 2], we can

choose a positive integer ti such that tiS 2 Pi for each

1, and so P = eieIPi é@ ® S. Thus P is completely

reducible.

In view of [3, Theorem 9], we have shown that 30-

continuous directly finite projective modules over
directly finite regular rings satisfying the comparability

axiom are finitely generated. For ib—continuous directly

infinite projective modules over these rings, we have

the following.

Corollary 2.3. Let R be a directly finite regular
ring satisfying the comparability axiom. Then every

directly infinite Ro-continuous projective R-module is

completely reducible.



(']
[2]
[3]

(4]

[5]
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ON ARTINIAN RINGS WHOSE PROJECTIVE
INDECOMPOSABLES ARE DISTRIBUTIVE

Yoshito YUKIMOTO

1. Introduction

A module L#£0 1is called local (or hollow) if
L=L1+L2 implies L=L1 or L.=L2
rian module is local if and only if it has a unique

. Especially a noethe-

maximal submodule.

A module M is called distributive if Xn(Y +2)
=(XnY)+ (XnZ) for every submodules X,Y,Z in M.
It is clear that any sub-(or factor) module of a distribu-
tive module is distributive.

We call a ring R right locally distributive, right
LD in abbreviation, if it is right artinian and every
projective indecomposable right R-module is distributive.
It is evident that every local right module over a right
LD-ring is distributive. The class of right LD-rings is
a generalization of the class of right serial rings.

In this note right LD-rings are studied, mainly to

construct a number of right LD-algebras.

2. Right LD-rings
The following lemma, shown by Fuller, is basic to

study distributive modules over a semiperfect ring.

Lemma 1. Let R be a semiperfect ring. The following
conditions on a right R-module M are equivalent:
(1) M 1is distributive.

(2) For every primitive idempotent e of R, the set
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{ xeR | xeM} of all homomorphic images of eR in M is
linearly ordered.
(3) For every primitive idempotent e 1in R, the

right eRe-module Me 1is uniserial.
Proof. See Fuller [1].

Theorem 2. The following conditions on a right
artinian ring R are equivalent:

(1) Every projective indecomposable right R-module eR
is distributive.

(2) For every primitive idempotent e and f of R,
eRf 1is a uniserial right fRf-module.

(3) Every submodule in a projective indecomposable
right R-module eR 1is characteristic, and the lattice of

two-sided ideals in R 1is distributive.

Proof. (1)&(2) is a special case of Lemma 1.

(1) =>(3). Every submodule in eR 1is a sum of local
submodules and every local submodule is characteristic
in eR by Lemma 1. Hence every submodule in eR is chara-
cteristic.

Let {ei}?=1 be a complete set of primitive idempotents,
and let I1,J,K be two-sided ideals in R. Then by the
distributivity of eiR,
ei(I n(J +K)) =eiIn(eiJ +eiK)

= (eiI r\eiJ) + (eiIneiK) =ei(Ir\J) +ei(Ir\K).
Summing up each sides of the equations (i=1,...,n), we
have In(J+K)=(I1nJ) +(IAK).
(3) =>(1). Let A be a submodule on a projective inde-

composable module eR. Since A 1is characteristic in eR,
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eReA = A. We notice that there exists a two-sided ideal A'
(= RA= ReA) satisfying eA' =A.
If X,Y,Z are any submodules in eR, then
eX'n(eY' +eZ2') ze(X*'n(Y'+2'))
=e((X'AY') +(X'nZ')) =(eX"'neY') + (eX'n eZ').

Hence eR 1is distributive.

A right artinian ring is called right LD if it satisfies

the equivalént conditions in Theorem 2.

3. Construction of right LD-algebras

We begin with a general remark on modules. For a module M
we denote by H(M) the inclusion-ordered set of all local
submodules in M. A homomorphism f :M —=N of modules
induces a correspondence : H(M) —= H(N), X+ £(X). This
correspondence is not a mapping in general (the image
of some submodule M by f may be 0). If M is a module
of finite length and f 1s an epimorphism, then there is
a natural surjection

(*) §XeH(M) | XgKer(f)} —=H(N).
In fact, for every Ye H(N).  there exist xl,nu,xne H(M)
such that £ ' (¥)= X +...+X , and £(X)=Y
for some 1ie¢ {1,...,ni. Moreover if M 1is distributive,
i is unique by Lemma 1, and (*) 1is bijective.

In this section a method to construct some right LD-
algebras is presented. We introduce some terminology.

Suppose C 1is a fixed set. A pair (P,t) of a set P
and a mapping t :P—=C 1is called a C-set. When (P,t)
and (P',t') are C-sets, a mapping t :P—=P' is called
a C-set homomorphism if t=t'f. Moreover, in case that

P and P' are posets, f 1is called a C-poset homomorphism
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if £ 1is both a C-set homomorphism and a poset homomorphism.
A subposet U of a poset P 1is said to be an upper
part of P 1if xe¢U, yeP and x<y imply ye¢ U. In par-

ticular, when P 1is finite, U is an upper part of P 1if

}

and only if it is of the form §xeP | xzpliu...ugxel’ | x2 p]

(pl,.-.,pné P)o

Definition. Let C be a set. A family of finite C-posets
i(Pl,cl),...,(Pn,cn)} is called an admissible system
(of C-posets) if it satisfies the following conditions(i=1,..,n):
(1) Every poset Pi has a unique maximal element m, .
(2) c=fe,(m),.enpt (m)} (t,(m) At (m) 1f 144).
(3) For every ceC the subposet {xe P, | ti(x) =c}
is linearly ordered.
(4) For every ac P, there exist jeft,...,n} and
a C-poset isomorphism from an upper part of P

3

to ixePi | x<ai.

Remark 1. Suppose that the conditions (1),(2),(3)
of the above definition are satisfied and that £ 1is
a C-poset isomorphism from an upper part of P-1

to §xe P, | x<al. Then j 1is determined by ¢t (m )=tif(m )

J 3 J
= ti(a)o
Let bO be any element in P, and bos ...gbr=m:| be
a chain with bk—l being maximal in §xe Pj |x§bk}(ke{1,‘..,ri).
Then f(bk—l) is maximal in §x¢ P ngf(bk)} by (3).

';‘herefore f(bo) is determined inductively, and the iso-
morphism in (4) of the above definition is unique.
Remark 2. By a similar argument we can replace (4) with
(4') 1If ae P, is maximal in P, ~{m.j, there exist

jefl,...,n} and a C-poset isomorphism from an upper part



22

of Pj to ixePiIxSa}.
If R 1is a right LD-ring with the Jacobson radical J,
and iei};=1 is a basic set of primitive idempotents for R,
then by the first remark of this section, the posets
H(elR),...,H(enR) form an admissible system with the mapping
top( ) (:=()/()J) : H(e,R) —>T(R) (ief1,...,n}),
where T(R) denotes the set of all isomorphism class of

simple right. R-modules.

Theorem 3. For any admissible system 'f(Pi,ti)§2=1
of C-posets, there exists a right LD-ring R such that
H(eiR) is isomorphic to (Pi’ti) (T(R) 1is identified
with C by a bijection B:

the isomorphism class of top(eiR)r——4> ti(mi) ), where

fe

1° is a basic set of primitive idempotents for R.

i'i=1

Proof. Since the C-poset isomorphism of (4) 1in the
definition of admissible systems is uniquely determined by
an element ac¢ P1 (Remark 1), we denote the isomorphism

by a. Letting any element in P outside the domain of

J

definition of a correspond to no element, the isomorphism
a is extended to a correspondence :Pj——+-Pi, which operates

P on the left. This extension is so trivial that it is

3

also denoted by a.
1 :Pi—-y-Pj and a, :Pk—>- Ph

a
(a,€Pyn 2y ala2==0 if the composition
a,°a, of the correspondences =@ or h#1, and otherwise

5152==51052 the composition of correspondences. Then the

For two correspondences

(ale P, a,e Ph), we define

and jo} forms a semigroup S

9 in Pi’

disjoint union of $alac¢ Pi}i

with the multiplication defined above. If als a
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there exists xe S satisfying ;1 =52x by (4) 1in Definition.
Let R:=KS be the semigroup algebra of S over
a field K. Then R 1is an artinian algebra over K with
the Jacobson radical jZkaE | a#mi for any 1i, and kae K}
and {Eii?=1 is a basic set of primitive idempotents for R.
For any element x#£0 in ijmi’ x=k1a1 Haee +ks§s
with some 51,...,55 :Pj——a-Pi (distinct) and kl,...,kse K~jol .
Since 31500058 6€ Pi and ti(al) = eee =ti(as) =tj(mj),
there exists uniquely the maximal element a(x) of §a1,..,asf
by (3) 1in the definition of admissible posets. If au:=a(x)
(uefl,...,st),
x:=§u (kui-an element of the Jacobson radical)
and xR =a(x)R. Therefore R 1is right LD by Theorem 2.
It is easily verified that a:i :H(miR)—r-Pi ;s XR+—»a(x) 1is
an isomorphism of poset, and that the diagram
H(m,R) Zm P,
top( )l l e,
T(R) —2 ¢

is commutative.

4. Right and left LD-rings

If R 1is a right LD-ring with a basic set {ei}iel

of primitive idempotents, we construct a semigroup SR

from the admissible system {(H(eiR),( )/()J)}ieI. Symmetri-
cally, we have a semigroup RS’ the left version of §
from the admissible system Q(H(Rei),( )/..T())}ieI

a left LD-ring with a basic set iei}iel of primitive idem-

RD
s 1f R 1is

potents, where correspondences operate on the right.
The semigroup algebra KSp (resp. KRS) over a field K
is considered a model of right (resp. left) LD-ring R with

respect to the submodule-lattice structure of the projective
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indecomposable right (resp. left) R-modules.
However, if R 1is a right and left LD-ring, the
"one-sided model" KSR or KRS is two-sided.

Lemma 4. Let e be an idempotent of a ring R, and
suppose that every submodule in eR 1is chatacteristic. Then
(i) Rx<Ry =—>» xR< yR, for any x,ye¢eR,

(ii) zRxR =zxR, for any xe¢eR and =z ¢ Re.

Proof. (i). If Rx <Ry, there is r eeRe satisfying
x =ry. Since yR 1is characteristic in eR, xR =ryR<yR.

(ii). From eRxR =eRexR =xR the result follows.

Proposition 5. Let R be a right and left LD-ring

with a basic set {e of primitive idempotents.

L i} iel
Then SR=RS, KSR=KRS is a right and left LD-ring, and
one of the admissible systems fH(eiR)}iGI, §H(Rei)}i(_I is

obtained by the other.

Proof. Adopting the notation in the proof of Theorem 3,
via xR+~ Rx (xeeiReJ) a bijection: SR—>RS is defined

by Lemma 4,(ii). The rest follows immediately.

5. Examples
The construction of right LD-rings in the section 3
is useful especially in case that the Loewy length is small.

(1) From the admissible system of C-posets (C={1,2})
SN N
1 2 2 1
N N/

a QF-LD-ring is given, where the numbers on the vertices

with the Hasse diagram;



are their values in (.
(2) Let R be a right LD-ring with the admissible

system of {1,2/-posets; 2
1

I
1 )

a
b .

e w— o m—

Then R 1is not left LD, since there is no element x

satisfying b=xa.
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ON P.P. RINGS AND GENERALIZED P.P. RINGS
Masayuki OHORI

Introduction. Recently, A. G. Naoum [4] and Y. Hirano
[2] defined the concept of commutative generalized p.p.
rings and obtained several results concerning these rings.
On the other hand, G. M. Bergman [l1] gave sheaf-theoretic
characterizations of commutative p.p. rings. In the present
note we deal with (non-commutative) generalized p.p. rings
and extend some of their results to non-commutative rings.

Throughout this note the word "ring" will mean "non-
zero associative ring with identity element". For any ring
R, J(R) denotes the Jacobson radical of R. The set of
all idempotents of R is denoted by E(R). A ring R is
called normal if every idempotent of R is central. A
right (resp. left) p.p. ring is a ring in which every
principal right (resp. left) ideal is projective. A ring
R 1is called a generalized right (resp. left) p.p. ring if
for any eiement a of R, anR (resp. Ran) is projective
for some positive integer n (depending on a). A ring
which is both generalized right and left p.p. is said to
be a generalized p.p. ring. Let a be an element of a
ring R. We call a w-regular if there exists an integer
n and an element b of R such that aba = a . Thus
R is a m-regqular ring if and only if every element of R
is m-regular. Evidently, m-regular rings are generalized
pP.p. rings and it is easily verified that every reduced,

generalized right p.p. ring is a (right and left) p.p. ring.
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1. First, we generalize Hirano's theorems to non-
commutative rings. The details of contents of this section
will appear in [5]. We state the first of our theorems

which contains [2, Theorem 2].

Theorem 1. Let R be a ring with normal, classical
right quotient ring Q. Then the following are equivalent:
1) R 1is a generalized p.p. ring.
2) Every element of R is w-regular in Q and
E(Q) = E(R).

A ring R is called local if R/J(R) is a division
ring.

Let R be a commutative ring and let g be a proper
ideal of R. Recall that g is a primary ideal of R

provided every zero-divisor of R/q is nilpotent.

Proposition 1. Let R be a commutative ring and let
Q be a classical quotient ring of R. Then the zero ideal
(0) is a primary ideal of R if and only if @Q 1is a local

ring with nil Jacobson radical.

By Theorem 1 and Proposition 1, we see that the next

contains [2, Corollary 3].

Theorem 2. Let R be a ring with normal, classical
right quotient ring Q. Then the following are equivalent:

1) Q 1is a m-regqular ring, E{(Q) = E(R) and R has
no infinite sets of orthogonal idempotents.

2) R is a finite direct sum of rings whose classical

right qﬁotient rings are local rings with nil Jacobson
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radicals.

In the proof of the above theorem, the following result
of I. Kaplansky [3, Theorem 2.1] is essential.

let R be a ring in which every non-nil right ideal
contains a non-zero idempotent. Then either R contains
an infinite number of orthogonal idempotents, or R/J(R)
is Artinian.

A. G. Naoum [4, Theorem 1.9] and Y. Hirano [2, Theorem
5] independently gave characterizations of commutative
generalized p.p. rings by means of localization. Now we
are going to generalize these results to non-commutative
rings using the notion of central localization. For the
definition of central localization, see [6, §1.7]. Let R
be an arbitrary ring with center C and let S be a
multiplicative subset of C, that is, S is a subset of C
which contains 1 and is closed under multiplication in R.

We let RS be the localization of R by S.

Proposition 2. Let R be a ring with center C.
Suppose that R has a normal, classical right quotient ring
Q and that every element of R is 7m-regqular in Q. Then
for any multiplicative subset s of C(, QS is a classical
right quotient ring of RS'

By the above proposition, the next contains [2, Theorem
5].

Theorem 3. Let R be a ring with center C and
suppose that R has a normal, classical right quotient ring

Q. Then the following are equivalent:
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l) R is a generalized p.p. ring and for any maximal
ideal m of C, the set of nilpotent elements of Qs is
invariant under right multiplication by elements of Qs,
where S 1is the complement of m in C.

2) Every element of R is w-regular in ¢Q and.for
any maximal ideal m of C, Qs is a local ring with nil

Jacobson radical, where S 1is the complement of m in C.

Remark. Theorem 3 remains true if maximal ideals are

replaced by prime ideals in 1) and 2).

2. In this section we give a theorem on normal,
generalized p.p. rings of which the result of G. M. Bergman
mentioned at the introduction is an immediate consequence.

Let R be a ring with center C and let B(R) be
the set of all central idempotents of R. For any e, f ¢
B(R), we define e + £ = e + £ - 2ef, e*f = ef (product in
R). Under these operations B(R) becomes a Boolean ring.
The set X(R) = Spec B(R) of all maximal ideals of B(R)
endowed with the Zariski topology is a compact, totally
disconnected Hausdorff space. For any x € X(R), we denote
R/xR by Rx' which is called the stalk of R at x.
Similarly for any C-algebra S and x ¢ X(R), we set Sx
= S/xS. Let a e¢ R and x ¢ X(R). Define a to be the
coset a + xR € Rx' The support of an element a ¢ R,
written supp a, is the set {x ¢ X(R) | a *® Ox}, which
is closed.

First, we need a lemma.

Lemma. Let R be a ring with classical right quotient

ring Q. Suppose that for any a € R there exists a
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positive integer n such that for every integer m 2 n,
supp a" = supp a" is open and closed, and that for any x
€ X(R) every zero-divisor of the stalk Rx is nilpotent.
Then for any x ¢ X(R), Qx' the stalk of Q at x, is a

classical right quotient ring of Rx'

Theorem 4. Let R be a normal ring with classical
right quotient ring Q. Then the following are equivalent:

1) R is a generalized p.p. ring and for any x ¢ X(R),
the set of nilpotent elements of Qx is invariant under
right multiplication by elements of Qx.

2) (i) For any a € R, there exists a positive
integer n such that for every integer m 2 n, supp am =
supp an is open and closed.

(ii) For any x € X(R), every zero-divisor of R.x
is nilpotent.

(iii) For any x € X(R), the set of nilpotent
elements of Qx is invariant under right multiplication
by elements of Qx'

3) For any x ¢ X(R), Qx is a local ring with nil
Jacobson radical.

4) Q 1is a m-regular ring and E(Q) = E(R).

Corollary 1. Let R be a normal ring with classical
right quotient ring Q. Then the following are equivalent:
1) R is a p.p. ring.
2) (i) For any a ¢ R, supp a is open and closed.
(ii) For any x ¢ X(R), Rx is an integral domain.
3) For any x ¢ X(R), Qx is a division ring.

4) Q is a von Neumann regular ring and E(Q) = E(R).
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Obviously, the above corollary contains [1, Lemma 3.1].

Corollary 2. Let R be a normal ring. Then the
following are equivalent:

1) R 1is a generalized p.p. ring in which every non-
zero~divisor is invertible and for any x ¢ X(R), the set
of nilpotent elements of Rx is invariant under right
multiplication by elements of Rx'

2) For any x ¢ X(R), Rx is a local ring with nil
Jacobson radical.

3) R is a m~regular ring.

Corollary 3. Let R be a normal ring. Then the
following are equivalent:

1) R is a p.p. ring in which every non-zero-divisor
is invertible.

2) For any x ¢ X(R), Rx is a division ring.

3) R 1is a von Neumann regular ring.
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LOCALIZATION IN ABELIAN CATEGORIES
Toyonori KATO and Tamotsu IKEYAMA

Let A be an abelian category and (T, F) a torsion
theory for A in the sense of Dickson [2]. Recall that an
object L ¢ A is T-injective provided each diagram in A

00— K— M — T —+ 0 (exact)

l

L
with T ¢ T induces a morphism ¥ — [ satisfying
K—M—L = K— L.

An object L € A is called local at (T, F) if L ¢ F
and L is T-injective. We mainly concentrate in this note
our attention on the full subcategory L of A consisting

of all local objects at (T, F) in A:

L={LeA| L¢eFand L is T-injective}.

A morphism in A
A: M— [
is called the localization of M at (T, F) if

Ll. Ker A € T and Cok A ¢ T,
L2. L e L.

Most of authors, including Lambek [6], have been

studying localization in the fundamental situation when
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A is the category of modules and the torsion theory (T, F)
is hereditary except Ikeyama [4](cf. Tachikawa and Ohtake
[81).

The main purpose of this note is to discuss localiza-
tion in the most general situation as mentioned above,
extending some main results on localization in the funda-
mental situation to the corresponding ones in our general
situation.

QOur arguments in this note are categorical, so the
dualistic version of our theorems also yields results on
colocalization initiated by McMaster [7].

See the forthcoming paper [5] for the proofs and
details in this note,

Let A be an abelian category. Recall that a pair
(T, F) of classes of objects in A forms a torsion theory
for A if

Ti. T n F = {0}.

T2, If T— X —> 0 is exact in A with 7 ¢ T, then
XeT.

T3. If 0 — X — F is exact in A with F ¢ F, then
X e F.

T4, For each M ¢ A there exists an exact sequence in

0 — tM — M — M/tM — 0

with tM € T and M/tM ¢ F(see Dickson [2]).
In the following, unless otherwise specified, let A

be an abelian category, [T, F} a torsion theory for A and

L the full subcategory of A consisting of all local
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objects at (T, F’.EE A,

Theorem 1. Let

be an exact sequence in A. Suppose that each Mé has its
localization ¥, — L, at (T, F}) (£ = 1,2,3). Then the
induced sequence

0 %rLl > L2 > L3 > 0

is also exact in the category L.

Remark, In the above theorem, the category L may
fail to be abelian (see Example 6 in the end of this note).
Thus Theorem 1 states exactly in conclusion that, for the

induced sequence

a B
Ly =Ly —> Ly

we have

(1) B is the cokernel of o in the category L,
(2) B has the kernel in the category L,
and

(3) o is a monomorphism in the category L.

The condition (3) is an essential part in this theorem

which has been already obtained by Ikeyama [3, Lemma 3.2].
Let

C={CeA|L—C—0 is exact in A with L € L}.
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_ Theorem 2. The category L is abelian if and only if,

for each C ¢ C, there exists an exact sequence in A
0—C/tC — L
with L ¢ L.
Before stating our final theorem, we consult with

Lemma 3 ([1,p.19]). Let L ¢ L. Suppose that L has
its injective hull E(L) in A. Then E(L)/L ¢ F.

Theorem 4. Suppose that each F ¢ F has its injective
hull E(F) in A. Then the following conditions are equiva-
lent:

(1) The category L is abelian,

(2) E(E(L)/L) € F for each L ¢ L.

(3) There exists a hereditary torsion theory for A

at which L consists of all local objects.
This theorem combining with Lemma 3 yields

Corollary 5. Let R be a right hereditary ring with
identity and (T, F) a torsion theory for Mod—R. Then the
category L of all local right R-modules at (T, F) is

always abelian.

We close this note with an example which shows that
the category L is not necessarily abelian even if A is the

category of modules.

Example 6 (Ikeyama [4, Example 5]). Let K be a
field,
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b=\ ]

i
oo xRN
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~NRAROR

ococohn

a subring of K4, E=KXKKKK), L= (0KKK), X =
(0 0KK) and ¥ = (0 0 0 X) right R-modules by matrices
operations. Then as is shown in Ikeyama [4, Example 5],

we have

(1) FE = E(L),

(2) HomR(L/WL E(L)) = 0,
(3) HoqR(L/WL E(L)/L) = 0,
4) HomR(X/WL E(L)/L) # 0.

Now, let (T, F] be a torsion theory for Mod-&
generated by L/M, that is,

F = {F ¢ Mod-R | Homy, (L/M, F) = O}.

Then L is local at (T, F) by (2) and (3), nevertheless
E(E(L)/L) ¢ F by (4). Thus the category L is not abelian

in view of Theorem 4.
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SIMPLE MODULES OF
A DIRECT SUM OF UNIFORM MODULES

Syuhei TANIGUCHI

In a paper of M. Harada [2], a right Artinian serial
(resp. coserial) ring is characterized as a right QF-2
(resp. QF-2*) ring satisfying that the class of all finite
direct sums of hollow (resp. uniform) modules is closed
under submodules (resp. factor modules). In his another
paper [1l], a new class of right Artinian rings satisfying
the above condition and that any hollow module is quasi-
projective is determined as a generalization of right serial
rings. In this note, we shall give a class of rings which
is a generalization of right coserial rings.

Throughout this note, R denotes a right Artinian ring
with identity element and every module is a finitely gener-
ated unitary right R-module. For a module M, we denote
its socle and injective hull as Soc(M) and E(M), a direct
sum of k-copies of M as M(k), and put SO(M)==O and
Sn(M)/Sn_l(M)==Soc(M/Sn_1(M)), inductively.

Let U and V be uniform modules with Soc(U) = Soc(V),
and set S=.Shoc(U) and E=E(U), then we may assume that
V 1is a submodule of E. We shall write A for EndR(S).
We can obtain the mapping ¢ from EndR(E) to A by the
restriction to S. Since E 1is injective, ¢ 1is an epimor-
phism, While we shall denote the image of the restriction
mapping from HomR(U,V) to A as A(U,V) and A(U)
instead of A(U,U). It is known that A(U) 1is a subdivision
ring of A, so we shall denote the left dimension of
over A(U) as dim U, if it is finite.
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A right coserial ring satisfies the following conditions:

d-I : Every factor module of any finite direct sum of

uniform modules is also a direct sum of uniform modules.

d-II : Every uniform module is quasi-injective.

Main Theorem. The following statements are equivalent:

(1) R satisfies the conditions d-I and d-II.

(2) R satisfies the condition d-I for direct sum of
three uniform modules, and the condition d-II.

(3) For every indecomposable injective module E .with
S =S50c(E), there are two uniserial modules A and B such
that E/S=A/S @ B/S, and no factor of composition series of

A/S 1is isomorphic to any one of B/S.

Regarding the condition d-I, we will consider the
following conditions for a direct sum D of uniform modules,

the former one is an equivalent to d-I.

d-( *) : Every factor module, with respect to any simple

submodule, of D 1is also a direct sum of uniform modules.

d-(**) : Every simple submodule of D is contained in a non-

trivial direct summand of D,

(w7
L 171=1 o
D'=);®U; satisfies d-(**), then D= Zi=11@ U; satisfies

d-(*%),

Lemma. Let be a set of uniform modules, 1If

Lemma. Let {Ui}gzi be a set of uniform modules with

IUil =n. Then if D=Z::i@ Ui satisfies d-(*), then D does

d= (%)
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Theorem. Let {Ui}tilg_1 be a set of uniform modules
= =" (%%
such that Soc(U,) Soc(Ul). D _zi=l-@ Uy satfsfies d-(**)
if and only if for any elements 61, 62, e s Gn in A,
there are an integer t and ;1 € A(Ui’Ut) for any i such
n - e -
that S-i=1 y;8;=0 and yt#O.

Proof. Put S =Soc(U and E=E(U1), then we can

1

assume that all U1 are submodules of E. Let Py D » U1

and ;]1 : U1 -+ D be the projection and the injection. Assume

that D satisfies d-(**). Let §,, 3 cee s 3n be elements

in A, and S*-{zi -1 Gi(s) | s € S} ¢ D Then there is a

direct decomposition D= Dl @ D, such that D; > s* and

D2 is uniform. Let q:D - U2 be the projection. Since

EndR(Dz) is a local ring, there is an integer t such that
i

ptqj1 € Hom (Ui’Ut) for any i. Then z, is an isomorphism.

ue vy z,7z;, and y; =¢(y,) € A(Ui’gt)'_ Then we get that

zi=1 yi6i=0. Conversely, let S*={21=1 61(5) | s e s}

thptlDz is a unit. Let 2z e Endp(E) be an extension of
Put ¥y =

be a simple submodule of D, and 61 elements in EndR(E)
such that 61=¢(Gi). By our assumption, there are an integer
t and ;'i € A(Ui’Ut) such that Zi -1 yi i =0 and yt#O
Let yy € End (E) be an extension of y1 such that yi(Ui)
cU Let D'-{u—f(u) | ueZiiE@U}cD where

f: zi# + U 1s a homomorphism given by setting

t
f(Xi#t x) zl#t Y yi(X) Then D=D'@Ut and D' o Sk,

Corollary. Let U be a uniform module. Then D=U(k+1)
satisfies d-(**) if and only if dim U < k.

Corollary. Let {U }n be a set of uniform modules

with Soc(U ) —Soc(U) and ki—dimU for all i. Then

D= Zi 1@ U(ki) satlsfles d-(**) if and only if there is a
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monomorphism from some Ui to another Ut'

Proof. We can take a set of linearly independent
elements {313}§%1 in & over (U;). Applying Theorem

for the set {Eij} , there is a non-zero element iij

i,]
€ A(Ui’ut) for some pair 1+#t, which induces a monomorphism

from U; to U.. Conversely if U, 1is a submodule of Up»

i
then A(Ut) CA(Ui’Ut)‘ Therefore U;L@Ut(kt) satisfies

d-(*%),

Proposition. When any indecomposable injective module
E has SZ(E)==E, Main Theorem holds.

Proof. We shall show only the implication from (2) to
(3). Let E be an indecomposable injective module with
S=Soc(E). Since the condition d-(**) holds for any direct
sum of three submodules of E, which are of length two. It
is enough to show that E/S=U/S@ V/S where U and V are
only submodules of length two. If U/S is isomorphic to V/S
via f, then a submodule W with W/S={u+£f(u) | u ¢ U/S}
must be equal to either U or V. Therefore it must be
u/s # v/s.

In following three lemmas, we shall assume that the
statement (2) in Main Theorem holds.

Lemma. Let U be a uniform module with S =Soc(U).
Then there are two submodules Vl and V2 of U such that
U/S=V1/S @VZ/Si SZ(Vl) and SZ(VZ) are uniserial and
S,(V))/s # 5,(V,°)/s, if U#s.

Proof. By the condition d-I, there are submodules
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{v,}]_, such that U/s=J]_ @V./S and V,/S are uniform.
On the other hand put E E(U) and E'=S§ (E), then E'=

2 (J ) and E' is R/J -injective, where J denotes the
Jacobson radical of R and ¢ (J ) the left annihilator of
J2 on E. Then from the above proposition, there are two
submodules B' and C' such that E'/S=B'/S @ C'/S,

|B*|, |c'| s 2 and B'/S # C'/S. Therefore we can get that

n &2 and sz(vl)/s # sz(vz)/s.

Lemma. Let U be a module. 1If SZ(U) is uniserial,

then U 1s also uniserial.

Proof. Assume that U is not uniserial. Then there are
submodules A, B and C of a factor module of U such that
A and B are uniserial modules of length three, SZ(A) =€
and A/C # B/C. And put S=8S0c(C) and D=A® B, and let
S* be a simple submodule of D. Then we can get that D/S*
=VEeS for some uniform module V=A + B and some simple
module S, and that S 1is homomorphic image of neither A

nor B, which is a contradiction.

Let E be an indecomposable injective module with §
= Soc(E). Then since Sk(E)=£E(Jk) and J"=0 for any k
and some n, E is of finite length. Hence there are two
uniserial submodules A and B such that E/S=A/S@® B/S
and S,(A)/s # s,(B)/S, if E#S, from above lemmas.

Lemma., Let E, S, A and B be as above, and set A:I.
=Si(A) and B;=S.(B). Themn A, /A, FB,

i j 1+1 for any
pair 1, j.

J+1 :l

Proof. We proceed by induction on i+ j. The case of

i=j=1 4is done. Assume that i+3j > 2 and that Ai+1/Ai
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Bj+1/Bj° Then Ai+1/Ai is isomorphic to
no factor of composition series of Ai/S QDBj/S, by induction

hypothesis. Put K= A + Bj’ Ai+1 + Bj and C2 A + Bj+1’

then’ CO/K is isomorphic to C /K via some isomorphis £,

and let C, be a submodule of E such that C1/K=={E-+f(E)|

C ¢ Co/K}. Then C; is a hollow module with a maximal sub-

module K. Put D=C1 + C2

module of D. Then we can show that there is a uniform

is isomorphic to

and let S* be a simple sub-

module U==C1 + C2 and a direct sum D' of uniform modules

{Ut}:=l such that D/S*=U@® D', and that there is an integer
t such that the composition mapping Ve of the natural
1D~ D/S* » D' » U is not zero. And it

holds that vt(Cl)/vt(K) = Cl/

homomorphisms C
i+1/Ai’ which means that

Ai+1/Ai is isomorphic to some factor of composition series
of U, and to some one of Ai/S @Bj/S, by comparing the

factors of composition series. Therefore we get a contradiction.

We had prove the implication from (2) to (3) in Main
Theorem. It is enough to show the other implication that D
= {0 —(* n

2k=19 U satisfies d-(*), where {Uk}k=1

uniform modules. Assume that every indecomposable injective

is the set of

module has the form in statement (3). If there is a monomor-

phism from some U, to another Uj’ then D satisfies d-(*%),

i
hence D satisfies d-(*) by induction on n. So showing

following lemma, we can make an end of the proof.

Lemma. Let E be an indecomposable injective module with
S=S50c(E). Assume that A and B are uniserial modules such

that E/S=A/S @ B/S, and set Ai=si'(A) and Bj=Sj(B). Let
Uk=Aik+ Bjk; 1zxg il < i2 < ese < in, jl > ‘-12 5 00 > jn 2.1,
n
= —(*
then D zk=1f U, satisfies d-(¥%).
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Proof., Let S* be a simple submodule of D. And set

- v _ n-1
VA *By and D _(A11/S) ® (1@ V) @ (B, /9).

Then we can show that D/S* = D',

jn
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ON QF-1 ALGEBRAS
Ryohei MAKINO

In this note we shall announce the main results
obtained in [9], [10] and [11].

Thrall [19] defined QF-1 algebras as follows: For a
(finite dimensional) algebra A over a field, A 1is said
to be QF-1 if every faithful representation of A coin-
cides with its own second commutator, He proposed to give
an internal characterization of QF-1 algebras, but this
problem remains unsolved at the present time except in
special cases. An algebra A 1is sald to be of left
colocal type (resp. local-colocal type) if every indecom-
posable (finitely generated) left A-module has a simple
socle (resp. a simple socle or a simple top). It should be
noted that all examples of QF-1 algebras known until now

are either QF or of local-colocal type.

1, QF-1 algebras of local-colocal type and left
serial QF-1 algebras

Let M be a left module over a ring A and K, L
submodules of M, We denote M =K V L if the following
conditions are satisfied:

(1) M=K+1L,

(2) Both K and L are serial modules such that
X[, Il > 2.

(3) KN L coincides with the socle S(M) of M,

We shall say a module M to be of type I in case
M=K VL for suitable submodules K and L of M, By
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Tachikawa's theorems in [15] and [16] it is known that if
A 1is an algebra of local-colocal type over a field P
with the radical N, then indecomposable left A-modules
M are classified into the next four types;

(1) type I,

(2) the P-dual module M* = HomP(M, P) is of type I,

(3) the top T(M) = M/NM of M is simple and the
radical NM of M 1is of type I,

(4) serial,

We shall call indecomposable A-modules M satisfying
(2) and (3) to be of type II and type III, respectively.
Now we can state the next theorem, which is a solution of

Thrall's problem to the case of algebras of local-colocal

type.

Theorem A ([10, Theorem 5.5]). Let A be an algebra
of local-colocal type, N the radical of A, e a primi-
tive idempotent and K, L serial submodules of Ae. Then
in order that A may be QF-1 it is necessary and suffi-
cient that the following conditions are satisfied:

(1) If Ae 1is serial and Ne 1is projective, then
every composition factor of Ae 1is isomorphic to a mini-
mal left ideal. And the same holds for a primitive right
ideal eA that is serial,

(2) 1If Ae 1is of type II, then every composition
factor of Ae 1is isomorphic to a minimal left ideal. And
the same holds for a primitive right ideal eA that is of
type II.

(3) Let Ae be of type IIT and Ne=K VL, If K
is projective, then every composition factor of K V SZ(L)

is isomorphic to a minimal left ideal. And the same holds
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for a primitive right ideal eA that is of type III.

(4) Let Ae be of type IT and Ne = K & L, If
(Ae/K)* 1is projective, then K* 1is embedded into a prim-
itive right ideal. And the same holds for a primitive
right ideal eA that is of type II,

(5) Let Ae be of type IT and Ne = K ® L. Let £
be a primitive idempotent such that Af/Nf = K/NK and
¢: eA —> fN the projective cover of £N, If (Ae/K)*
is projective,. (Ae/L)* 1is nonprojective and eA 1is of
type II, then the kernel Ker(¢) of ¢ 1is nonserial, And
the same holds for a primitive right ideal eA that is of
type II,

Tachikawa [18] proved that a left serial QF-1 algebra
is of left colocal type., He established also the following

structure theorem of algebras of left colocal type.

Theorem., (Tachikawa [16]) In order that an algebra
A may be of left colocal type it is necessary and suffi-
cient that the following conditions are satisfied:

(1) A 1is left serial,

(2) eN 1s either serial or a direct sum of two

serial modules for any primitive idempotent e of A,

From Theorem A and the above results due to Tachikawa
we have the next theorem, which is a solution of Thrall's

problem to the case of left serial algebras.

Theorem B ([9, Theorem 3,1]). Let A be a left
serial algebra and e, f primitive idempotents of A,
Then in order that A may be QF-1 it is necessary and
sufficient that the following conditions are satisfied:
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(1) eN 1is either serial or a direct sum of two
serial modules,

(2) If Ne 1is projective, then every composition
factor of Ae 1is isomorphic to a minimal left ideal,

(3) If eN 1is not serial, then every composition
factor of eA 1s isomorphic to a minimal right ideal.

(4) If eN=K®L, where K and L are nonzero
serial modules, and (eA/K)* is projective, then K* is

embedded into a primitive left ideal.

2, QF-1 algebras with infinitely many minimal
faithful modules

H. Tachikawa gave the author a problem whether or not
there exists a QF-1 algebra with infinitely many minimal
faithful modules, We can answer this problem and show the
existence of QF-1 algebras with infinitely many minimal
faithful modules,

Let A be a diserial ring and M a standard left A-
module such that M = le °"VX5 with in = Uil o UiZ
(see [7] for the definition of diserial rings and standard
modules and for the meaning of M = X, v °"VX5). Assume

1
S(Un) = S(UmZ) # 0 and sz(xl/Ulz) # sz(xm/Uml). Let

n
% = = .

M 0j=1Mj with Mj M and ¢: ej=lsj1——’ej=lsjm an
isomorphism where _?jl = S(Ull) (c MB) and S.m = S(EmZ)

(c Mj)’ and let M* = M*/W with W= {x-¢(x)|x e $j=lsjl}'

If a left A-module K 1is indecomposable and isomorphic to
a module M* constructed as above, then K wili be said
to be of second kind. Donovan-Freislich [4] proved that if
A 18 an algebra defined by a Brauer graph, then for left
A-modules the following (#) holds:



50

(#) A left module is indecomposable if and only if
it is either standard or of the second kind.

Now we shall assume the following situation. Let A

r s
be a basic diserial algebra and 1 zi=1ei + zj=lfj + g
(r,s > 1) a decomposition into orthogonal primitive idem-

potents of A, Put e = +g and f =1 :lf + g.

r
Zi=1%4
Assume that the next conditions hold:

(1) (1-f)Af = 0 and (1-e)A(l-f) = 0.

(2) eNg' 1is an ideal of eAe and B = eAe/eNg 1is

an indecomposable serial algebra.

3=1

(3) C = fAf 1is an indecomposable weakly symmetric
algebra.
Under this situation we have the following proposi-

tions.

Proposition A ([11l, Proposition 2,3]). Let A be an
algebra each of whose simple modules is one-dimensional.
Assume that B is QF-1 and the above (#) holds for left
C-modules, Further assume that there exists no standard
left C-module into which T(Cg) ® T(Cg) 1is embedded., Then

(1) If M is a minimal faithful left A-module
having a direct summand isomorphic to Ag, then M is
balanced;

(2) If the length of the first dominant chain end of
B is 2, then A is QF-1,

Proposition B, If C 1s of infinite type, then A
has infinitely many minimal faithful modules.

Let B be an indecomposable serial P-algebra each of
whose simple modules is one-dimensional, and B a multi-

plicative Cartan basis of B, Assume that Be0 is simple
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projective for a primitive idempotent e (¢ B). Let G
be a graph, F an edge in G and N a node joined by F,
and assume that the following conditions are satisfied:

(1) G 4is not a Brauer tree, i.e., G contains a
cycle or G has at least two exceptional nodes,

(2) Except F there is no edge joined by N, and
N 1is not exceptional,

(3) Any path on G starting from N and ending at
N passes through an odd number of nodes (on counting N
at the start and N at the end and all other repetitions).

Let C be a P-algebra defined from G and ¥y the
multiplicative basis of C which is used in defining C
from G (cf, [4]). Assume that C 1s diserial and Cfo
is serial, where fo is the primitive idempotent corre-
sponding to F, Further, concerning B and Yy assume

the following:
ey = f, (=8) and Bny-={gl

Now put a = By ¥ and define a multiplication on a as

follows
xy = (xy in B) if x, y e B
xy = (xy in C) if x, vye¥y
xy = 0 otherwise,

where x, y € o, Let A be the P-algebra with the multi-
plicative basis a, Then this algebra A satisfies the
above situation. By Donovan-Freislich's result stated
above, (#) holds for left C-modules, Moreover, by the
assumption on G there exlsts no standard left C-module
into which T(Cg) ® T(Cg) 1is embedded. Thus by Proposi-
tion A, if the length of the first dominant chain end is 2,
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then A is QF-1, Moreover, since G 1is not a Brauer

tree,

A has infinitely many minimal faithful modules by

Proposition B,
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ON BRUMMUND'S METHOD FOR REPRESENTATION-FINITE ALGEBRAS

Yutaka Kawada

During last ten years representation theory has developed by
introducing,the new combinatorial and homological tools: quivers,
partially ordered sets, vectorspace categories, Auslandexr-Reiten
sequences and covering spaces. Simultaneously it seems that the
classical amalgamation, i.e.Brummund’s method has been forgotton.
We,however, belive that representation theory on Artin rings is
nothing else an analysis of its Jacobson radicals, and also that
Brummund’s method is still useful with this viewpoint.

In the present paper, we shall fixst prepare a fundamental
lenma {in terwms of Brummund's method) on left Artin rings, and by
applying it we shall get a refinement of J. Waschbiisch [8, Satz 3).
Let further A be a representation-finite and a finlte dimenslonal
algebra over a comnutative field K (K arbitrary), and e and £
primitive idempotents of A. Then, by only applying the fundamental
lemma to several cases, we shall be able to determine easily the

structure of the bimodule fAf[fAe]eAe {Propositions 8, 12 and 14 ).

The proofs are self-contained and so we do not assume even the

results of J.P. Jans [4].

However, since this is an abstract of the above paper, the

proofs in §§2-4 are all omitted. The details of this paper will

appear elsewhere.
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1. Fundamental lemma

Throughout this section, A is assumed to be a left Artin
ring and N its Jacobson radical. Two primitive idempotents e
and £ in A are said to be isomorphic to each other (elvfiin no-
tation) if and only if Aex~ Af (or equivalently eA« fA). For a
left A-module M, we denote by |M| the composition length of M.
Then the following lemma will play a fundamental rble in this
paper.

Lesma 1. Let {ej} be primitive idempotents of A and let

A=-epimorphisms Ej: l\ej—;)\ejfj (lL$j3£n, nz3) satisfy the follow-

ing conditions:

. . . v.&. (l5j£n, u, =
(1) Nejﬁj:)soc AejEJD Af]-lquJ @ )\vaJ{;'J (153 ¢ Uy
v, = 0) where {Ej} are primitive idempotents of A.

(1) vy ¢ E;g(huk + Avy + Ker £k)ekNej + Auj + Ker Ej

(l¢j<én-1).

(III) |AejEj| = IAek£k| whenever ejzzek.

Setting now M = @lAe Ej/L' 7’)\5 {v, £ - “j+1£j+1) and
J=
&1
I @Ae —lr O Ae € LN
8,] =1 3 j=1

where L denotes the canonical projection, we have M = ELIAe .

If the next condition (*) is valid, then M is indecomposable.

(*) For any A-homomorphism 7’j: Aej—rM (1% j$ n) such that

T o= e.x, e +e.5. + > e.x.ef, with x €N for every
e;5 2% 5¥keKk * €58 fn. 5%k k0 x K
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k<3j, it holds that lKer 3’j| g |Ker Ejl (although Ker ]'jCAvj +
Ker Ej by (I1)).

Proof. Pirst of all it should be noted that from the con-
struction of M the properties below follow:

(1) V.S- = uj+15-+1 (1L£3j%n-1) and Ker Sj = Ker Ej (L 3jSn).

(2) 1f szs = 0 with 2y € AeJ (18 jS n), then there exist
j=1

y:€ Af,

j 5 (1% j<£n-1) such that zj-=-: -Y.

J-luj + ijj mod Ker Ej
(1S j&€ n) where we set Yo = ¥, = 0.
n
(3) If szé‘k = 0 and if z.= Xus + yv, mod Ker £, for some
k=1 j j j
j (25£3j<n-1), then we have szjk + xujS = 0 and at the same
k<3

time yvjj‘j + E;.zkfk = 0.
J

We can next assume without loss of generality that there are
pairwise non-isomorphic primitive idempotents {gr | lersg t} such
that

{ej | 153¢ nJ- = {gr(nr times) l 1$r% t} and n = :L:fln .

Under this situation assume now that M is decomposable;
that is,

M=M1@M2, Ml*O and Mz*o.

n t
Since @Aej = @ Agr(nf)—r M is the projective cover of M, we
j=1 r=1

can take the projective cover of M, as follows:

oy
: n (mg)

: : @Ah1= @Ag T — M
din i=1 r=1
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where, for brevity, we set

{hilléié m}= {9, (m_ times) Ilérét}

t
with Oémré n_ (L€frsSt) and m = m_. Then {hio(.i} generate M

r= 1

and are expressed in the form:

n
(4) hy, = j};{lxijgj with x; e hyAe, (15iSm).

llere, repeatedly applying the elementary substitutions to-

the generators {hio(.i} of Ml' we can assume from the first that

there exist a sequence {V(i)} satisfying

(5) 1sVvI< 2K -+ < Y(m)En, h, = e (LS5igm)

v{i)
and , for each i,

(6) xije N for every j< V(i), X v(i) T (i) and

x}'y(i) = 0 for every f# i.

m
Then we remark that if j_g‘;tzid'i = 0 for ziEAey(i) (1£ifm)
then z, € Avy(l) + Ker Ev(l)' To prove this, by (4) we have

i=1

n m
ifz.d. = Z(F’z X, )5: = 0,
ivi ] =1 17157935
and by (6) we see that the coefficient of XV(:'.) in the above is
just Z5, and so by (2) z; is expressed in the form:

25 = XUy, + YiVy(i) + Y i) with Yi) € Ker £y(i)
(LSigm) and in particular, for the case where y(1} =1, z, =
Y;vy * w;. MHence we have only to consider the case where ¥(1) > 1,
and by (3) together with (1) we have
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m
Z(Zz.x..)S.+xu = > (m by
jes1) i=1 * 1373 1%v(1)8y() F<P1) -1 E.leixij) s I

m-
{:L::l"‘i“v(i) FY V) t "wi)”‘i.yu)-x}é‘ym-l X8 vay
= 0,

whence it follows by (2) again that

Z‘.Lgl(xiul'(i) YY) Y ) X, vy -1= T M y-r t Y04
mod Kerx 6)’(1)-1 for some y € A, where Xi,0(1)-1€ N by (6).

Therefore xle N; otherwise, we would get

[
"y(l)—le j?:7,1(41\%,(“ + Avy(i) + Ker £V(i))QV(i)NeV(1)-1

*Au, gyt Rer gy
which contradicts our assumption (II). Thus we obtain the above

remark.

By using this remark we want to show that

@ || 2 ggIAev(i)‘EY(i) -+l
In case m = 1, this is valid; because then Hl a Ae)’(l)d'l and

4 *
lKer oLll £ |Ker Ey(1)| by our assumption (*), and hence

|| = [2eyuy] - |Rer o] 2 [aeyyy| - [Ker £,y

= IAey(l)EV(l)|'
In case m>1l, it readily follows from the above remark that

Ker o(.lc Avy(l) + Ker ‘5)’(1) ¢

and that

m
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Therefore, by the modularity on composition lengths we have
| neyts|
o |ne _ I m
| v | Ay Z‘“evm | |F”‘evu) 1|

2 [aeyq)| - [ vy, + xer Eyay | + | 1“

= [reyy | = [avyqq) + ex £y | + v(i)“il

= I“eyu) yl =1+ 77“%(1) 1'

because IAVv(l) + Ker Ey(l)/Ker 5y(1) |= l. 1In virtue of

induction on m, we have further

|§2“°v(1)°‘1| 2 g;l“eymfyu)l T w14l

and consequently we obtain (7).
Moreover, by our assumption (III) we can always set

IAejE,jl =p, for e; = 9, (L&r&t),
and,since '{ey(i)l léi‘ém} = {gr(mr times) | 18§ l:}, (7) is

reformed as:

[4
IMll Zgg_mrﬂr -m+ 1l

In the same way as Ml, we have also

t
Iyl 237 o - mif. - n-m o+,
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t
because, @ Agr(nf m"-—?Mz is a projective cover of M

ro=}l 2°

Consequently we obtain

' t n
|u] = |ny| + |M2|21§’nx£r -n+2s ?;’ll;\ejejl -n+ 2,

which contradicts the fact that

n n
Ml = | @ nests| - |u] = 37 nese| - n 41
Iul Ijg i1 - 1ul ng e5gy| - n 41

Thus M must be indecomposable.
Remark 1. 1In almost all cases, the assumption (II) may be

replaced by:
s
(I1') (Auj + Avj + Ker Ej)ejNekc: Ker £, for j + k.

Of course (II') is a stronger assumption than (II) (in the sgitu-
ation that (I) holds).

Remark 2. Under the circumstances that (I), (IX) and (III)
hold, a sufficient condition for (*) is given by:

(Iv) Uy é(vj+xer Ej)ejl\ej+l WAV HRer £y, (Lsj&n-1).

In fact we have then Ker 73c:xer &j' otherwise, there would

exist vj + vy (wje Ker £j) such that (vj + wj)73 = 0 and hence

by (3)

. =0,
VjJ‘j + (Vj + Wj)xj+15j+l + k%il(vj + wj)xké\k

and by (2) further

(vj + wj)xj+1=_= - “j+l + yvj+1 mod Ker £j+1 for some yéA,

which contradicts (IV).

The following is useful, but is not applied in the presgent

paper:
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Corollary 2. Under the same notations as in Lemma 1,

assume (I),(II') and (III), and further assume ej4’ej+1 for each

j (1$€j&En-1). Then M is indecomposable,
Proof. Since (II') implies (IV), we have Ker 73(: Ker £j:
that is, the condition (*) is automatically satisfied. So the

corollary is a direct consequence of Lemma 1.

2. Depths and Waschbiisch's result

In this section also, let A be a left Artin ring and N its
Jacobson radical with f as its nilpotency index, i.e. Np-l 0
and N = 0. we set N0 = A for convenience.

Definition. (Cf. Gabriel ([3]) Given an element u in A,

max {mlue N", Oémé'/’} is called the depth of u, denoted by d(u).
Vle shall express as u~v in case d(u) = d(v).

The following is a refinement of Waschbiisch [8, Satz 3].

Lemma 3. Let A be a representation-finite left Artin ring,
and e and £ primitive idempotints of A. For given elements u
and v in fNe, the statements below are valid:

(1) I£ 'd(u)2 d(v), then there exist elements ae€ fAf and

b ¢ eAe such that u = avb mod Nd(“)+1.

{ii) If d(u) = d(v), then there further exist elements c
€ fAf and d e eAe such that u= cv + vd mod Nd(u)+1.

Remark. (ii) in Lemma 3 was already obtained by Waschbiisch
(8, Satz 4]. (Also cf. (IV)).

Corollary 4. (Cf. [8, Satz 4]) Let A be a representation-

finite left Artin ring, and e and £ primitive idempotents of A.
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Let further M be a subbimodule of EAE[fAeleAe' and set m = min

{d(vilv_e'M}. Then, for any element u € M with d(u) = m, we have
M = (£Af)u(ede) = £N"e.

Definition. 1In Corollary 4, u is called a bigenerator of
M, expressed as M = <u> in notation. Also m is called the depth
of M, denoted by d(M).

Remark. Let A be a left (resp. right) Artin ring. Then A
is called a left (resp. right) Kothe ring if every idecomposable
left (resp. right) A-module has a square-free top as well as a
square-free socle. About twenty-three years ago we established
a characterization of left Kothe rings and a classification of
all possible left indecomposables of those. (Cf. [€]) For left
(resp. right) Kothe rings we enjoy the following nice property:
Every subbimodule M stated in Corollary 4 is always expressed as

M = (fAf)u = u(ede). (CE. [6, I, Corollaries 5°2 and 5°9])

3. 7Types of bimodules and Preliminary results

Hereafter A is always assumed to be a representation-finite
and a finite dimensional algebra over a commutative field K (K
arbitrary). For given (but fixed) primitive idempotents e and

f of A, we set

v = ee/eN™ e (0gmsp),

and futher set respectively
E = eAe/eNe and F = fAf/fNf.

Then VvV, is regarded as an F-E-bimodule. Keeping these notations,
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we obtain the next.

Lemma 5. IE Vm # 0 then we have either d:lrnB Vm = ] or

di.mF Vo, 1., Especially, in case ex €, dj,mE v, = dimp Vm = 1

Lemma 6., If dimB Vo © 1 then dimp vmg 3. sSimilarly if

dim, vV, = 1 then dim, v 3S3.

Definition. (Cf. Dlab and Ringel {2]) Let M be a non-zero
subbimodule of fAe with m = d(M). Then M is called a bimodule
of type (p,q), in case dimp v, = p and dimB Vo = 9.

Remark. In the above, 1§pg€ 3 by Lemmas 5 and 6. If fAe
itself is of type (p,q), so is every non-zero subbimodule; be~
cause, we seaee that

pzqadimKE:dimKP,

which does not depend on m.

The next lemma was first obtained by Jans (4] for the case
where K is algebraically closed, and later his result was essen-
tially generalized by Dlab and Ringel [1] to the case where K is

an infinite field. (Also cf. Waschbiisch (8, Satz 2])

Lemma 7. INme/Nm+1e|§ 3 for every m21.
Previous to prove the lemma, assume that |N"e/nN™le| 4.
Then Nme/Nm+1e becomes a direct sum of at least four simples,

whose possible forms are classified as follows:
(@) s, DS, @S, BS; @ +=++- ,
(b) S, ®S, DS, DS; D -,
(c) sl®sléslgsz@.....'
@) S; DS, DS, DS; @ -+,
(e) 81682633954@.....'
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vhere {Si = Afi/ﬂfillé:is 4} denote mutually distinct simples.

However (a) is impossible by Lemma 6. The other cases also will
be shown to be impossible.

Lemma 7-1. (b) is impossible.

Lemma 7-2. (c) is impossible.

Lemma 7-3. (d) and (e} are both impossible.

Remark. A As is easily seen from its proofs, Lemmas 7-1 and

7-3 are valld for representation-finite left Artin rings.

4, Structures of bimodules

In this section also A is assumed to be a representation-
finite and a finite dimensional algebra .over a commutative field
K (K arbitrary). We always denote by e (resp. f) a primitive
idempotent of A.

The next is somewhat or well known. (CFf., Waschbusch [8,
Satz 1))

Proposition 8. eAe is a uniserial algebra; that is,

Ae[eAe] as well as [eAe]eA is serial. If eNe = <w) then (eNe)i

e, e

= eAewi = wieAe for every izl.

Lemma 9. Let fNe f 0 and e4 f. If d((fNeleNe))<& d((ENE)
{£Ne)) (resp. d((fNeleNe)) 2 d((fNfYENe}), then there is an int-
eger h21 such that (ENfXfNe) = (fNeXeNe)!' (resp. (£n£)M(fNe)

= (fNeJeNe)}), and that each subbimodule of fNe is expressed as

(fNeleNe)k (resp. as (fo)k(fNe)) for some k 20.
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Remark. Lemma 9 was obtained by waschbusch (8, satz 4}.
Also cf. Kupisch [7].

Though the two cases stated in Lenwa 9 are not completely
separated, corresponding to those fNe is called a bimodule‘of

degree (1,h) (resp. of degree (h,1)); that is,
Degree (1,h): (ENfIENe) = (ENeleNe)® with h3 1, which

contains the case where (ENEXfNe) = 0, (fNeXeNe)'™ & 0 and

where (ENeIeNe)h = 0,
Degree (h,1): (ENE)P(ENe) = (£NeXeNe) with h1, which

contains the case where (fNelede) = 0, (£Nf)""1(eNe) # 0 and
where (£N£)D(fNe) = 0.
Observe that these terminologies are consistint for bimodules of
degree (1,1).
Lemma 10. Let fNe be a bimodule (with e f) of type (p,1)
with p> 2. Then £Ne is never of degree (h,l1} with he 2.
Lemma 11. Let fNe bhe a bimodule (with ef£f) of type (p,1)
with p22. Then fNe is never of degree (1,h) with h32.
Combining Lemmas 10 and 1l we obtain the following.
Proposition 12, Let fNe (with e4: £) be a bimodule of type

(p,q) with pq + 1. Then fNe is always of degree (1,1): that is,

(ENfXENe) = (fNeXeNe) (=0 or +0). More precisely, denoting
by fNe = <u), it is expressed as follows:
(i) case of type (2,1) (resp. of type (3,1)):
fNe = ueAe = FAEu @ fAfua([® fAfub) for some a [(and b)
in ehe \\eNe.

(ii) case of type (1,2) [resp. of type (1,3)]:
fNe = EAfu = ueRe @ aueAe|d buehe] for some a (and b])

in EAEN\ENE.
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Finally we ghall consider the case of type (1,1).

Lenma 13, Let fNe (with e#f) be a bimodule of type (1,1)
and of degree (1,h). If (eNf) (fNe) (eNe)4. then we have either
h$2 or (eNe)? = 0 (with h = 3).

By using Lemm# 13 we obtain the following.

Proposition 14. Let fNe (with es£) be a bimodule of type
{1,1) and of degree (l,h) (resp. of degree(h,l)). Then neces-
sarily h$3. More precisely, setting respectively fle = <u),
£NE = (v) and eNe = ¢<w), fNe is expressed in the forms

Case of degree (ll,h) 3 fNe = uele ='£Afh or fAfu @ fAfuw or
£Afu @ EfAfuw @ fAfuwz { according to h = 1, 2 and 3).

Case of degree (h,1): fNe = fAfu = uede or ueAe @ vuede or

ueAe @ vueAe @vzueAe { according to h =1, 2 and 3).

As for another amalgamations we shall study those in a sub-

sequent paper.
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EXT ALGEBRAS

Daisuke TAMBARA

In this report we show that in a special case we can
recover a ring A to some extent from the algebra Eth(K, A)
when A is a suitable factor ring of A. In 3l we state the
main theorem and a related duality of Ext algebras. §2

consists of examples.

81 Let A be a ring and X be an A-module. Then we have a

graded algebra Eth(x, X) =@ Exti(X, X) whose multiplica-
i30

tion 1s Yoneda product. Our main result is the follow-
ing.

Theorem 1. Let R be a commutative noetherian ring
and M be a maximal ideal. Let A be a finite R-algebra and

put A, = (A/mA)/rad(A/mA), B, = Exti(A , A), B=®B
0 i A0 0 130
;-gr the Ext-groups in the abelian

category of graded B-modules. For a graded B-module X and
q € Z, the graded B-module XCql is defined by xrq]n =
X

i'
We denote by Ext

gtn’ With these notations we assume the following condi-
tion about the graded algebra B,
(LR) Excg_gr(no, ByLql) =0 (p + q # 0) and
Extg_gr(BO, BOE-pJ) is finitely generated over k = R/m.
Put J = rad(ﬁn). Then we have an isomorphism of
graded algebras

i, 1+1 x
ng'Am = J /I = ExtB(BO, BO) .

There is a duality for the graded algebras satisfying
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the condition (LR).

Theorem 2. Let A be a graded algebra over a field k
such that A.n =0 (n< 0) and AO is semi-simple and finite
dimensional over k. If A satisfies (LR), then B =
Eth(AO, AO) satisfies (LR) and we have an isomorphism of
graded algebras

A = Exty(B, B)).

To explain categorical background of these dualities,
we introduce the derived category for differential graded
algebras.

Let k be a commutative ring. C(k) denotes the
category of (unbounded) cochain complexes of k-modules.
DG-algebra over k is by definition the monoid object of

C(k) with respect to ® (tensor product of complexes). For
k
a DG-algebra A’ we have natural notion of a DG-A -module.

It is a pair (X, u) of X" € C(k) and u: A" @ X' —> X°.
|3
Two maps of DG-A -modules f, g: X' —> Y° are said to be

homotopic if there is a map h: X' —— Y'C-1] of graded

A -modules (ignoring differentials) such that £ - g =

dh + hd. Then we have a category K(A"') whose objects are
the DG- A’ -modules and morphisms are the equivalence
classes of maps of DG-A -modules by homotopy relation.
K(N\') is triangulated category in the sense of [1] and so
the class of morphisms (called quasi-isomorphisms) which
induce isomorphisms on cohomology admits the calculus of
fractions in both sides. Now the category D(A') is defin-
ed as the localization of K(A’') with respect to the class

of the quasi-isomorphisms. The derived functors



70

% of ® and IRHom;\. of Hom,‘\. are also defined. The funda-
N N

mental properties of these functors are the following

spectral sequences,

1. 1) Tor*j;"')‘gr(ucx'), H(T') Cql)

= wPx §v).
Al
(Eilenberg-Moore)

(1. 2) ExtH(A) gr(u(x’), H(Y')l:q:l)

= pPt qmlom (X', Y°)
= Hom D(A)(x » Y° (P+q))
(multiplicative but not necessarily convergent)
(Y' (n) is the complex with Y (n)P = Yn+p.)

Let A be as in Th. 1. Take an injectine resolution
A0 —» I° in A-modules. A" = Hom (I » 1I') is a DG-
algebra over R. We introduce some notations. D (A'OP) is
the full subcategory of D(A Py consisting of the pG-A °P-
modules X° such that H (X°) =0 (1« 0) and H (X°) are
finitely generated over k = R/m. Ca 15 the class of R-
modules which are supported in {m} and artinian. DIL}A)
is the full subcategory of D(A) consisting of the complex-
es X° such thatH(x)"O(i« 0) andH(X)e ome Now
we can state

Theorem 3. Let A and B be as in Th. 1 (assume B
satisfy (LR)) and \'be as above. Further assume.ng&m is
noetherian. Then we have an equivalence of derived

categories

+ —~ ntracoP
Dz:,.(A) = Df(l\ ).

Remark. (1) If &, denotes the m-adic completion of A,
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then DC.(A) is equivalent to D, (A op)op that is the full
subcategory of D(A 0p)°p formed by the bounded above comp-
lexes with finitely generated cohomology (Matlis duality).
(ii) A relation between D(A'OP) and the derived
category of the abelian category of the graded H(A’oP) =

B°P-modules is given by (1. 2).

§2 Examples.
(2. 1) Let A be a finite dimensional algebra over a field
k. Consider the following condition

(DR) there is a function h: {simple A-modules} —>
Z such that ExtK(S, S8') =0 for p # h(S') - h(S).

If A satisfies (DR), then the algebra B =
Ext:(A/rad(A), A/rad(A)) also satisfies (DR) and we have
A= Ext;(B/rad(B), B/rad(B)). Moreover there is an equi-
valence

D (8)°F == D_(B).
This is not the case where Th. 2 can apply, but principle
is same.

Examples of such algebras come from Cohen-Macaulay
partially ordered sets (CM-posets for short) ([2]). Let

= kEM] be the poset algebra of a CM-poset I". Simple A~
modules are indexed by points of I" and A satisfies (DR)
with the function h defined by h(Sx) = height(x) (xe )
(2.

The following examples (2. 2) ~ (2. 4) lie in the
situation of Th. 2.
(2. 2) Trivial extensions and tensor algebras.

Let K be a finite dimensional semi-simple algebra
over a field k and V be a K-bimodule finitely generated
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over k. Put V' = HomK(V, K) (dual of the left K-module V),
We have two algebrasA= K @® V (trivial extension) and B =

TKop(V") = @ (V")Qi (tensor algebra). Then
i30

~ ~ b 3
B = Eth(K, K), A= ExtB(K°p, K°P).

(2. 3) Symmetric algebras and exterior algebras.

Let k be a field and V be a finite dimensional vector
space over k., Put A = S(V) (symmetric algebra) and B =
A(VV) (exterior algebra) where V¥ denotes the linear dual
of V. Then

B = Ext)(k, k), & T Extp(k, k.
Since both A and B are finite over their centers, Th. 3
can apply. In this case we have equivalences of simpler
forms

D;(BOP)°p o D;(A°°p)

D;MP = D" & = MWs')

130
where in the right sides A’ and B’ are viewed as DG-

algebras with zero differentials.

As a deformed version we have the following pair

(A, B) of algebras. Let Aij € k-10} (1€ i< j ¢ n).
Put A = k[Xl,.., X J with relations iji ij in (1< 3
and B = kIY,,.., ¥ ] with relations Y2 =0, v.v,
1 i ji
1
= ij in (i < j). Then we have

B = Ext)(k, k), AT Ext;(k, K).

(2. 4) Tree-like algebras.

Let k be a field and n € NN. Let Vij (1s41i, j €« n)

be a family of finite dimensional vector spaces over k.
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Put K=kx ... xk (n factors),V=$Vij. V can be
looked as a K-bimodule in the way e Ve, = V,, where
1 . i3 13
= (0,005 1,005, 0). We assume V,, = 0 for all i. Take

e
i ii
(T8
a base lxijx; of Vij' The algebra A is the factor of the

tensor algebra T (V) by the ideal generated by

ijggﬂ(u>aif3<k,x>ﬁ1fj>k) Then A is
finite dimensional. Put Uij = V ., (linear dual) and U =
(3] Uij' U is a K-bimodule in the similar way. Let

) ()
{yij]‘ be the dual base of Uij for {xijt*' The algebra B

is the factor of the tensor algebra TK(U) by the ideal

generated by y:;)a y;{:)(xsp if j< k, «<p if j > k).
Then we have
B ¥ Ext, (K, K), A ¥ Extj(K, K).

This is only a special case of Th. 2, but provides an
interesting example of finite global dimension. The con-
struction above shows that for any K-bimodule V such that
eiVei 0 for all i, there is an algebra A of finite
global dimension (in fact < d1m.kV) such that A/rad(A) = K
as algebras and rad(A)/rad (A) £ V as K~-bimodules. Thus
it occurs the following two problems.

(1) Does there exist a finite dimensional algebra A
such that dim rad(A) /rad?(A) < gl.dim(A) < ?

(i1) If A is a finite dimensional algebra of finite
global dimension, is Exti(S, S) = 0 for any simple A-
module S?

For the latter we have

Proposition. (ii) is yes for the following two cases.

(a) A=A,@A
A0 is semi-simple and A is generated by A1 over Ao.

® ... is a graded algebra such that
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(b) gl.dim(A) € 2.

Remark. The author found in [3) that Roos mentioned
a result (biduality of Lofwall) which seems relate to our
Th. 2.
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ON SCHUR ALGEBRA OVER @
Michitaka HIKARI

Let A be a central simple algebra over Q. If
there exists a finite multiplicative subgroup G of A
such that A 1is spanned by G with coefficients in {,
then A 1is called a Schur algebra over . The Schur
subgroup S(Q) of the Brauer group Br(Q) consists of
those algebra classes that contain a Schur algebra over
Q. By Benard [2] and Fields [3] an algebra class [A]
of Br(Q) belongs to S(Q) if and only if the index of
A 1is either 1 or 2. This means that

S(@ = (D] | a, be @) ,

where (362) is a quaternion algebra over @, i.e. (562) =

Q+0QL+Qj+ 0k, i2=a, j>=b, 1j =—j1 =k.

Let A be a division algebra central over Q. If
[A) € S(Q), then there exists a positive integer n such
that Mn(A) is a Schur algebra.

For a positive integer n we set
s™ @) = ([a] ¢ s | M_(a) is a Schur algebra} .
By Amitsur [l], it is easily seen that
sM @ = tre1, (D), 1D

More generally, using the Brauer-Witt theorem we can prove

the following

Theorem. Let A be a division algebra central over

Q@ such that [A] € S(Q). Let I be the set of rational
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. 1
primes p with invp A= - - We set

TT P if 241,

pell

21T » if 2 ¢
pell

n(n) =

Then [A] € S(m)(Q) if and only if ¢ (n(m)) | 2m.

The list of all set 1, which satisfies @(n(m)) | 2m

for m <5, is given as follows.

1 @, {2}, {3}

2 ¢; {2}, {3}, (5}, {2, 3}

3 g, {2}, {3}, {7}

4 o, {2}, {3}, {5}, (2, 3}, {2, 5}, {3, 5}
5 8, {2}, {3}, {11}

Then we have

s @ = tra1, 1, 1EEhn,

(2) 10y = -1,-1 -3,-1 -5,-2 -3,-1
s () ={[@], [(__5_-)]’ [( 0 )1, [( Q ) I ¢ d )1},

(3) 0y = -1,-1 -3,-1 -7,-1
s @ = t1e1, (D1, 1EFED, 1D,

(4) .0y = -1,-1 -3,-1 -5,-2
s ={Iel, [G——a——)], [( 3 )1, [ Q )1,

(&b, 12501, 1&g,

(5) oy = -1,-1 -3,-1 -11,-1
s*/(Q) ={[q], [(-—6——)], [( N )1, [( Q )1} .



[1]

[2]

[3]

[4]

77

References

S.A. Amitsur: Finite subgroups of division rings,
Trans. Amer. Math. Soc. 80 (1955), 361-386.

M. Benard: Quaternion constituents of group algebras,
Proc. Amer. Math. Soc. 30 (1971), 217-219.

K.L. Fields: On the Brauer-Speiser theorem, Bull.
Amer. Math. Soc. 77 (1971), 223.

T. Yamada: The Schur Subgroup of the Brauer Group,
Lecture Notes in Math. 397, Springer, Berlin, 1974.

Department of Mathematics

Keio University



78

Introduction to vMorita Theory
Mitsuhiro TAKEUCHI

This report is derived from the author's article [1]
in preparation. Let us begin with a finite extension of
fields A/k. It is known (see Rosenberg and Zelinsky [2]

for example) that there is an isomorphism of abelian groups
(1) H2(A/k) = Br(a/k)

where the left-hand side HZ(A/k) denotes the second Amitsur
cohomology group of the multiplicative group Gm with
respect to the extension A/k and the right-hand side
Br(A/k) denotes the Brauer group of Azumaya k-algebras
split by A, Sweedler [3] shows that this isomorphism is
realized as follows.

By an A/k-algebra we mean a pair (E,i) where E is
a k-algebra and i: A >+ E a k-algebra map. Let

(2) g = § a; ®b, ®cy

be an element in A @ A @ A, For an A/k-algebra E we
define a new multiplication %, on E as follows. For

X, ¥y in E we put

(3) Xk y = ; aixbiyci.

If o 4is an Amitsur 2-cocycle (this means ¢ 1is a unit in

particular), then the product g is associative with unit
_ -1

(4) e = (g aibici) .

We denote by E? the k-algebra E with product L In

particular we have a k-algebra Ac, and E° becomes an A°/k—
g

algebra. On the other hand, we have an isomorphism of k-



79

algebras

(5) AzA% a+ ae .

Thus, for an Amitsur 2-cocycle o for A/k we have an
endofunctor

(6) E — E°

of the category éA/k of all A/k-algebras.
The endomorphism algebra Endk(A) has a natural
structure of A/k-algebra. Sweedler [3] shows that the

isomorphism (1) is realized by
(7 o+ End (8)°.

This report is concerned with generalizations of the
functor (6).

First note that A/k need not be a field extension to
have the formation E°. Let A/k be an extension of commu-
tative rings. For an Amitsur 2-cocycle ¢ for A/k and an
A/k-algebra E, we can define the Aclk—algebra E° as above
and we have the isomorphism (5). Hence the endofunctor (6)
is well-defined in this case. Furthermore, Ege functor (6)
is an equivalence with quasi-inverse E & EC corresponding
to the inverse o-l.

In the following, let k be a commutative ring, and let
A be a (non-commutative) k-algebra. Sweedler [3] generalizes
the notion of Amitsur 2-cocycles as follows. The element
in (2) is called a (Sweedler) 2~cocycle if the following two

conditions are satisfied:

(8) ii,:jaiaj ®bs ®c.b; ®c, =i§,:jai ®bsa, ®by ®c
(9) There is an element e, in A such that

e

E aiecbi 2 ci =191-= g a, ® bieoci'
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The element e0 is uniquely determined. If A 1is commuta-
tive, condition (8) is equivalent to the Amitsur condition.
If .6 is a unit in addition, condition (9) follows from (8)
with (4). Hence, in the commutative case, Amitsur 2-cocycles
are just invertible 2-cocycles.

For an element ¢ in (2) put

(10) o(X,Y) = ) a ,Xb Yc
} i1 71

with indeterminates X, Y. The condition (8) (resp. (9)) is
equivalent to condition (11) (resp. (12)).

(11) a(a(X,Y),2) = O(X,O(Y,Z)),
(12) o(eo,x) =X = o(X,eo).

Thus ¢ 1is a 2-cocycle if and only if o(X,Y) 1is a formal
ring law. For an A/k-algebra E, we have

(13) Xk y = a(x,y)

for x, y € E. This observation shows immediately that E°
is an associative k-algebra with unit e . We have a k-
algebra Ao, and E° becomes an Aolk-algebra. One should
note that the isomorphism (5) does not hold in the non-

commutative case. Hence the functor (6) is from A to

A/k
éﬂo/k.
Let o be a 2-cocycle for A/k. If A 1is commutative,
is invertible, i.e., an Amitsur 2-cocycle if and only if
the functor (6) is an equivalence. Hence in general, we
define the 2-cocycle ¢ to be invertible if the functor (6)

is an equivalence from onto

Ba/x N
To proceed with the theory, I have to talk about

monoidal categories. The reader is referred to Eilenberg

and Kelly [4] for a generality of monoidal categories and

monoidal functors.
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A monoidal category is a combination of a category M,

a bifunctor ®: M x M + M, an object IM in M, and two

kinds of natural transformations
(14) XeY)eoZzXe (Yo2),

(15) X®quX;IM_®X

for X, ¥, Z in M. The natural transformations (14) and
(15) are assumed to satisfy the coherence condition.

For a monoidal category M, a monoid object in M

means a triple (X,m,u), where X is an object in M,

m: X®X-+X and u: IM + X are maps in M such that the
associativity and the unit condition for usual monoids (or
semigroups) are satisfied. The category of all monoid

objects in M is denoted by g?on.

For two monoidal categories M, N, a monoidal functor
M > N consists of a functor T': M + N, a natural transfor-
mation
(16) rx) er¥) »r(xs Y)

for X, Y in M, and a map in N

17 I§=+ P(IM).

The structure maps (16) and (17) are assumed to commute with
natural transformations (14) and (15) for M and N. Such a
monoidal functor T: M + N induces a functor I: g?°“ -+ g?°“
in a natural way. We call a monoidal functor T a monoidal
eguivalence if TI' 4is an equivalence and the structure maps
(16) and (17) are isomorphisms. If T 1is a monoidal equiv-
alence, then T, is obviously an equivalence.

The monoidal categories of bimodules play an essentail
role in the /Morita theory. For simplicity we fix a base

ring k. All algebras are assumed to be over k. Let A be
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an algebra. We write QA instead of éA/k' Let AEA be

the category of all A-bimodules over k. This means are the

left and right actions of every element in k are the same
on those A-bimodules. For A-bimodules M, N over k, the
tensor product M @k N of MA and AN over A has a
natural structure of an A-bimodule over k. The category

Agﬂ becomes a monoidal category with temnsor product ®A

and unit object A. The monoid objects in AQA are identi-
fied with the A/k-algebras. Hence we have
(18) A, = (M)

=A A=A
More precisely, AQA is a k-linear monoidal category in the
sense that there is a canonical ring map k - cent(Aga),
where the center cent(AgA) mearns the endomorphism ring of
the unit object A.
A monoidal functor T of general monoidal categories
would not be a monoidal equivalence even if I is an equiva-

lence. But for monoidal categories of bimodules this does hold.

(19) Theorem [5, Lemma 5.12]. Let A and B be algebras.

Let T: AgA -+ BEB be a monoidal functor. T is a monoidal

equivalence if and only if I is an equivalence.

In fact, the algebras A and B can be over different
base rings.

For a 2-cocycle o for A/k, we have a functor (6) from

éﬁ to A_o. We show this comes from a k-linear monoidal
A
functor AEA > Aoghg. Let M be an A-bimodule over k. For
aceA and me M we define a new operation L by
(20) ax m = o(a,m), mx a = o(m,a).

With this operation M becomes an A%-bimodule over k. Let

M° denote this bimodule. We have a k-linear functor
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o
(21) MM, M - poot
We make this into a monoidal functor. We take the identity
A% > A% as the map (17). For M, N in AQA’ the map (16)

g o g
(22) M ®A9 N > (M ®, N)

is defined by m® n +— § a;mb, ® nc;. The map (22) has

the following meaning. FOr an A-bimodule M over k, let

(23) TA(M) =AoMe (M@A Mo M® M@A M a ...

A
be the tensor A/k-algebra of M. This is the free A/k-
algebra generated by M. Since both Aolk—algebras TA(M)0
and Tyéﬁo) contain Mg, there is a natural Aalk-algebra map

g o
(24) TAO(M ) -+ TA(M)

which is the identity on M%. This map preserves graduation

and induces an A®-bimodule map
(25) e M e, M°
A A

in the second degree. If we replace M with M e N and
restrict the amp on M° ®A0 No, we get map (22).

From this observation it follows that the functor (21)
becomes a monoidal functor with structure map (22). One can
check easily that the functor (Ag.iA)mon > (AUQ:AG)mon induced
from this monoidal functor is precisely the functor (6).

As a corollary, the following statements are equivalent

with each other.

(i) The 2-cocycle o is invertible,
(ii) The monoidal functor (21) is a monoidal equivalence.

(iii) The functor (6) is an equivalence.

For algebras A, B, we denote by A ﬂ B if algebras A
and B are k-linearly Morita equivalent. We denote by Alﬁ B

if there is a k-linear monoidal equivalence between monoidal
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categories and BEB’ and in this case we say algebras

PN
A and B are k-linearly yMorita equivalent.
For an invertible 2-cocycle ¢ for A/k, we have
A =~ AC,
/M
If A /ﬁ B, the categories A, and é% are equivalent.

4
Let A°?  denote the opposite algebra to A. If AOP/ﬁ B,
then the categories éA and é% are still equivalent. This
follows since there is an isomorphism

op -
(26) E<xE"", A, = éA-OP.
We have the following basic properties of vVMorita eqiva-

lences. See [1] for the proof.

(27) et A and B be algebras (over k).

- - op - op
1. AMB #AmBéAt&k_A MB®kB .
2. A/ﬁ B = center(A) = center(B).

3. The classes of the following k-algebras are closed

with respect to /ﬁz central, separable, simple.

4., A 1is Azumaya & A /ﬁ k.

The theory is called vYMorita (suggested by Moss Sweedler)
by property 1.

We showed the categories éﬁ and éB are equivalent if
A /ﬁ B or if A°P /ﬁ B. We are concerned with the convese
problem: when éﬁ and éﬂ are equivalent.

Before presenting our answer, let us explain the "k-
linearlity" of A

A,. Let (éA’A) denote the category of all
A/k-algebra maps E -+ A. If A: A, ~ A, is an equivalence,

we have A(A) = B. Hence A 1induces an equivalence (A,A):
(QA,A) -+ (éB’B)' On the other hand, there is a natural equiv-

alence between categories (éA’A) and é? » the category of

A
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all trivial non-unitary A/k-algebras [5, Proposition 1.1].
The category AEA is identified with the subcategory of all

trivial non-unitary A/k-algebras. Hence there is an embedding

(28) M A oM oy ( »A) .

’ A—A
It is known [5,§2] that for every equivalence A the equiva-
lence (A,A) 1induces an equivalence of subcategories A':

AEA + Bga. We say the equivalence A 1is k-linear if the

induced equivalence A' 1is k-linear.
Let A1 and AZ be algebras., Assume the tensor product
Al @ A2 is zero. (If k 1s an extension of a field by

a nil ideal, this means one of A, and A, 1is trivial).

1 2

Let A = A1 x AZ' In this case, the functor

29 M) =ty ety p B * At T At

becomes a monoidal equivalence. 1In particular, it induces an

equivalence
A .
(30) "A"Al x =A2 > A—"A
Let Al, AZ, Bl’ B2 be algebras such that A1 @k A =0

op
B1 ®k BZ' If A1 /ﬁ 1 and A /— 2, then we have the

following chain of equivalences

(31) A, ~ A, xA -~ A, X ~ A
=A —Al —AZ =Bl éﬂz =g
where A = Al X AZ and B = B1 X BZ' The main result of

this report is to claim the converse is true.

(32) Theorem [5, Theorem 5.14]. Let A and B be k-algebras.
Every k-linear equivalence éﬂ ~ éB comes from a decomposi-
tion A = A1 x AZ’ B = B1 x B2 with 2% ®k A2 =0 = B1 ®k B2
and vYMorita equivalences Al /i Bys Ay i By

This presentation seems determined uniquely up to iso-

morphism by the equivalence QA ~ éB'
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ON A CLASS OF REPRESENTATION-FINITE QF-3 ALGEBRAS
Yasuo IWANAGA

This is a summary of my joint work with I. Assem,
which has been announced at the 4th International Conference
on Representations of Algebras (ICRA IV) at Carleton
University in 1984. The complete form of the results will
appear in the Proceedings of ICRA IV and thus, in this note,

I don’t give any proof.

1. Motivation

Let me start to mention about the motivation of this
work. For a given finite dimensional algebra A over a
field K, we consider the following three types of algebras
which are all extensions of A and which are related to a
notion of so-called QF-3 algebras:

(1) Trivial extension T(A) =A X DA, where DA=

HomK(A,K);

(2) (:AZ) ;

(s 1)
3 A A
These are interesting algebras to investigate their
representations because of the following reasoms:
(1) T(A) is a symmetric algebra, i.e., HomK(T(A),K)

= T(A) as T(A)-bimodules (thus, self-injective algebra
and A is a homomorphic image of T(A);

A0
2) ('DA A.) is a QF-3 algebra and closely related
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to T(A) in the following sense. In Hughes-Waschbiisch’s

work (H-W), they succeeded to use an infinite matrix algebra

oo N

0

DA A
DA A

0 .
\ 4

as a universal covering of T(A) in characterizing when

T(A) 1is reﬁresentation—finite; The 'finite' dimensional

algebra (I?A 2) is a homomorphic image of A;
A A

(3) For a representation-finite algebra A, A 0
and the Auslander algebra have finite type simaltaneously.
Here, Auslander algebra of A 1is an endomorphism algebra
of a direct sum of all non-isomorphic indecomposable A~
modules.

For a symmetric algebra A, it is certainly obvious

A O A O
DA A A A

Now, we’d like to raise the following problems

that ( ) is isomorphic to

according to each algebra of (1), (2) and (3):
(I) When is T(A) representation-finite?

A O
(DA A

A 0
A A

(II) When is ) representation-finite?

(I1I) When is ( ) representation-finite?
and

(IV) How is the relationship between representation
types of algebras (1), (2) and (3)?

(I) has been solved completely. See (A-H-R), (H-W),

(Y1) and (Y2). (II) and (III) are unsolved yet, and (III)
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was given by Auslander in (Au) and there is some partial

answer in (M).

About (IV)
(1) (Assem) If T(A) 1s representation-finite, then

( é; 2 ) is simply connected, especially representation-
finite, and moreover, if we assume A is a tilted algebra
of Dynkin type, then the Auslander-Reiten quiver of T(A)

is obtained by identifying some rayers in the Auslander-~

A 0
Reiten quiver of ( DA A.) .

A O

DA A ) has the (left and right) maximal

(11) (

quotient ring

Q = (A HomA(DA,A))
DA A

which is also QF-3, and if ( 2 2‘) is representation~
finite, then so is Q. However, it is unknown whether

A O .
(DA A) is representation-finite or not.

A O

2. Algebra (DA A

A O
DA A

image of A. Now, we can consider a more general situation:

As we mentioned earlier, ( ) is a homomorphic

for any t 21, let

r
4, 0
Q 4
Q, A
A(E) 2 %2
. 0 Qt At
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where A, =A and Qi'=DA for all i and multiplication

i
(v) (t)

of A
still a QF-3 algebra, and for a connected hereditary
algebra A, TFAE:

is given by the map DA ®ADA -+ 0. Then A is

(i) A(t) is representation-finite for any t 21,
(ii) A(l) is representation-finite,
(iii) T(A) 4is representation-finite,
(iv) A 1is of Dynkin type, i.e., the ordinary quiver
of A has a Dynkin diagram Ah’ Bn, Cn’ P> En (n=6, 7, 8),
F4 and 62 as its underlying graph. However, these equiva-
lences no longer hold even for an iterated tilted algebra A.
(See (A-H-R) for the definition of an iterated tilted
algebra.)
Next, we want to stress the difference of (I) and (II).
In the case (I), that is, if T(A) is representation-finite,
then the ordinary quiver of A doesn’t contain an oriented
cycle (see (Y1)), thus A has to be a homomorphic image of
some hereditary algebra. However, an algebra A with an
oriented cycle or a loop might have a representation-finite
A(t), and then, of course, T(A) is representation-infinite.

Now, we’d like to see some examples concerning the
problem (II).

Examples

(1) Let A be the algebra given by the quiver
a8
A / with the relation Ba=0, then A is
oé&—-o

representation-finite but T(A) is not.

(2) Let A be the algebra with square-zero radical
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given by the quiver °£§io—lao with relations Ba=aB =vya

= (0, then A(l) is representation-finite but A(t) is not
for any t = 2.

On the other hand, if A 1is the algebra with square-

O
zero radical given by the quiver 09"§§° with Ba =0,

then A 1is a homomorphic image of a hereditary algebra, and

A(t) is representation-finite for all t =1, but T(A)

is not.

(3) Let A be the Nakayama algebra given by the quiver

__________ P L L L L
e et - . ~

03 0 =~ 04—, O.¢ »Q——0 $»0 —» 0 —> 0
1 2«._ 3 4705 6 " 8 .9

"N e mma. - - e e - ="

-
-
N e ="

bound by the ideal generated by the set of constant length 3
(i.e. the dotted lines mean the zero-relations), then A is
an iterated tilted algebra of Euclidean type and A(l) is
still representation-finite.

(4) For a s?i§—injective Nakayama algebra A with

Lowy length n, A is representation-finite iff n < 3.

Finally, we’d like to end this summary by stating the
results on the problem (II) which we obtained. We got the
criterions for two classes of algebras A when an algebra
A(t) 1s representation~finite, and they are the following:
(1) A(E)

zero radical;

(i1) A(l) for any Nakayama algebra A.

for any t 21 when A has the square-

(i) is given by constructing the separated diagram of

A(t)/(Rad A(t))2 and by applying Gabriel’s theorem (G).
(t)

, which follows from that

In this case, we use the fact that A
finite 1ff so is A'®)/(Rad a(t))?
A(t) is QF-3. (4i) 1is given by constructing the ordinary

is representation-
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(1)

quiver of A from a given A and by looking at

Bongartz’s list (Bl) of full convex subquivers and further,

(1)

we consider the Galois covering A+ aA if necessary,
namely, if A contains an oriented cycle. The result we

need appears in (B2).
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