PROCEEDINGS OF THE
16TH SYMPOSIUM ON RING THEORY

HELD AT THE TOKYO-TO KYOIKU KAIKAN, TOKYO
SEPTEMBER 8—10, 1983

EDITED BY
Toyoxor:r KATO

University of Tsukuba

1983
OKAYAMA, JAPAN



PROCEEDINGS OF THE
16TH SYMPOSIUM ON RING THEORY

HELD AT THE TOKYO-TO KYOIKU KAIKAN, TOKYO
SEPTEMBER 8—10, 1983

EDITED BY
Tovonorlt KATO

University of Tsukuba

1983
OKAYAMA, JAPAN



wldpin-i oo u b e s )

vt b

P
]l
(oA



CONTENTS

PREFACE

Yasuyuki HIRANO and Hisao TOMINAGA: ON DERIVATIONS
OF PRIME RINGS .....cccvvvvncnns cecerrecsoassroas 1

Kozo SUGANO: H-SEPARABLE EXTENSIONS OF
SIMPLE RINGS .....cccviveeneeennss D 13

Kazuo KISHIMOTO: ON CONNECTEDNESS OF p-GALOIS
EXTENSIONS OF RINGS ....ccvveneccness cesessacrans 21

Kiyoichi OSHIRO: ON TWO RINGS OF M. HARADA ........... 26

Takashi MANO: THE INVARIANT SYSTEMS OF SERIAL
RINGS AND THEIR APPLICATIONS TO THE THEORY
OF SELF-DUALITY .....cceeeecrecencncnanen cerescae 48

Yoshiki KURATA, Kazuo SHIGENAGA and M. T. CHEN:
ON THE HEREDITARITY OF TORSION CLASSES ....ccec,. 57

Hikoji KAMBARA and Shigeru KOBAYASHI: ON REGULAR
SELF-INJECTIVE RINGS .....ccvceeecaes ceeerecssasa 71

Hiroyuki TACHIKAWA: REFLECTION FUNCTIONS AND
AUSLANDER-REITEN TRANSFORMATIONS FOR
SELF-INJECTIVE ALGEBRAS .........ccccvceevtannns, 77

Hideo SATO: SELF-INJECTIVE DIMENSION OF
SERIAL RINGS ....ccivieececconcscacocones creeno e 93

Tetsuo OKUYAMA: ON FINITE GROUP ALGEBRAS
WITH RADICAL CUBE ZERO.....coveuvsencscnocacannns 105

Yoshito OGAWA: EXT FOR BLOCKS WITH CYCLIC
DEFECT GROUPS ..cccvencocncccnnns ereeanne ceceoaan 112






PREFACE

This volume consists of the articles presented at the
16th Symposium on Ring Theory held in Tokyo, Japan, on Sep-
tember 8 - 10, 1983.
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Shizuo Endo, Manabu Harada, Takasi Nagahara, Hiroyuki
Tachikawa, Hisao Tominaga and Yukio Tsushima.

The Symposium and these Proceedings were financially
supported by the Scientific Research Grant of the Educational
Ministry of Japan through the arrangements by Professor
Toshiro Tsuzuku at Hokkaido University.

Finally, I would like to take this oppotunity to thank
Professors Kanzo Masaike, Hiroyuki Tachikawa, Hisao 'lTominaga,
and the graduate students specialized in the ring theory

at the University of Tsukuba for their close cooperation.
November 1983

Toyonori Kato






ON DERIVATIONS OF PRIME RINGS
Yasuyuki HIRANO and Hisao TOMINAGA

1. About a quarter of a century ago, Posner [14]

proved the following longstanding theorems.

Theorem 1. Let R be a prime ring of characteristic
not 2, and S, T derivations of R such that the iterate
ST 1is also a derivation. Then one at least of S, T is

zero.

Theorem 2. Let R be a prime ring with center C,
and D a derivation of R such that [x,xD]==xxDﬁ-xDx €
C for all x ¢ R. Then, if D is not trivial, R is

commutative.

Since 1959, many authors (see References) have been
concerning these theorems. 1In this lecture, we shall
exhibit several recent results they obtained, together

with comments or proofs.

We begin with subjects related to Theorem 1. If R
is a prime ring of characteristic 2, Theorem 1 fails. In
fact, the square of a derivation of such R 1is always a
derivation.

Now, let R be a prime ring of characteristic not 2,
If Dl’ D, and D, are derivations of R such that
D.D.D is also a derivation, can we conclude that at

1°273

least one of the Di's is trivial? The following example

shows that the answer is no!

Example. Let us consider the ring R==0t)2 and the
element a==(é g) in R. Then we can easily see that



Inn(a)3==1nn(a), where Inn(a) denotes the inner deriva-
tion induced by a.

An additive subgroup U of a ring R is called a
Lie ideal if [r,u] e U for all r ¢ R and u € U.

Let R be a prime ring of characteristic not 2, and
S, T derivations of R. If ST is trivial, then, as a
particular case of Theorem 1, either §=0 or T=0.
The following theorem shows that if ST=0 on a non-

central Lie ideal of R, then the same is true.

Theorem 3 (Bergen, Herstein and Kerr [1, Theorem 4]).
Let R be a prime ring with center C, char R#2, and
U £ C be a Lie ideal of R. Suppose that S and T are
derivations of R such that UST=0. Then either S$=0

or T=0.

To prove Theorem 3, they required the following

results.

Proposition 1 (Herstein [5, Theorem 1]). Let R be
any ring, T a derivation of R such that T3#(L Then
the subring generated by all rT, r € R, contains a non-

zero ideal of R.

Proposition 2 ([6, Theorem (1)]). Let R be any ring,
and T#0 a derivation of R. Suppose that a ¢ R is suct
that [a,xT]==0 for all x ¢ R. If R 1is not of charac-

teristic 2, a must be in the center of R.

Proposition 3 (Bergen, Herstein and Kerr [1, Theorems
1 and 2]). Let R be a prime ring with center C, char R
# 2, and let U be a Lie ideal of R. Let T#0 be a
derivation of R.

T2
(1) 1If U =0 them U cC.



(2) If U¢C then VR(UT)=C.

Martindale and Miers [11] proved the following theorem
concerning the iterates of derivations. Note that the

second assertion follows also from Proposition 2.

Theorem 4 (Martindale and Miers [11]). Let R be a

prime ring and let D and T be derivations of R such
n on

that [xD ,yT ]=0 for all x, y € R. Then either R is

commutative or D" 1=0 or T™l-g, Furthermore, if
n=1 and char R#2, then either R is commutative, or D=0,

or T=0.

Next, we 3state several results which generalize Theorem
2. Let R be a ring with center C, § a subset of R.
An (additive group) endomorphism T of R 1is said to be
centralizing (resp. skew-centralizing) on S 1if [sT,s] € C
(resp. (sT,s)==sTs+ssT € C) for every s € S. Mere gener-
ally, T is defined to be semicentralizing on § if [sT,s]
e C or (sT,s) € C for every s € S. In case S=R, we
say simply T is centralizing (resp. skew-centralizng) or

semicentralizing according as so is T on R.

Theorem 5 (Hirano, Kaya and Tominaga [9], see also
Mayne [13]). Let U be a nonzero ideal of a prime ring R,
T a nontrivial derivation of R. If T is centralizing

(resp. skew-centralizing) on U, then R is commutative.

Theorem 6. Let T be a semicentralizing derivation of
a prime ring R. If T is not trivial, them R 1is commu-

tative.

For the proof of Theorem 6, the following result is

needed.



Proposition 4 (Kharchenko [10, Corollary 5]). Suppose
the prime ring R satisfies a nontrivial identity involving
derivations. Then the central closure RZ 1is a primitive
ring with nonzero socle whose skew field is finite-dimension-

al over Z.
Finally, we exhibit a theorem of Herstein.

Theorem 7 (Herstein [8]). Let R be a prime ring with
center C and suppose that T#0 is a derivation of R
such that (xT)n € C for all x ¢ R. Then either R 1is

commutative or is an order in a 4-dimensional simple algebra.

For the proof of Theorem 7, the following results are

required.

Proposition 5 (Giambruno and Herstein [3, Theorem 2]).
Let R be a prime ring, I a nonzero ideal of R, and T
a derivation of R. If (xT)n==0 for all x € I, where n
is a fixed positive integer, then T=0.

Proposition 6 (Herstein [7, Theorem]). Let R be a
prime ring with center C, and suppose that a ¢ R\C 1is such
that [a,x]n € C for all x € R with some fixed positive
integer n. Then R 1is an order in a 4-dimensional simple

algebra.

Remark. For an automorphism (instead of a derivation),
corresponding to Theorems 5 and 6, the following has been
proved (Hirano, Kaya and Tominaga [9]): Let U be a nonzero
ideal of a prime ring R with center C, and T a nontrivial
automorphism of R. If T 1is semicentralizing on U, then

R is commutative.



2. In this section, we shall give the proofs of
Theorems 5 and 6. In preparation for proving Theorem 5, we

state first three lemmas.

Lemma 1. Let R be a prime ring, and K a right ideal
of R.
" (1) If K. is nonzero and commutative, then R is
commutative.

(2) Let T be a derivation of R. If K 1is nonzero
and T 1s trivial on K, then T 1is itself trivial.

(3) Let T be a nontrivial derivation of R. If I
is a nonzero ideal of R and if xIT=0 (resp. ITx=0)
for some x € R, then x=0.

(4) 1If there exists a positive integer n such that
x"=0 for all x € K, then K=0.

Proof. (1) is [12, Lemma 4] and (2) and (3) are respec-
tively [12, Lemma 2] and [14, Lemma 1] with routine proofs.
(4) is immediate by [4, Lemma 1.1].

Lemma 2. Let T: x + x' be an endomorphism of R, and
U an additive subgroup of R. Let [U]l={u e U | [u',u] €
c} and (@U)={u e U | (u',u) € Cl.

(1) Let u, v € [U] (resp. (U)). Then u+v ¢ (U]
(resp. (U)) if and only if u-v ¢ [U] (resp. (U)).

(2) If v ¢ (U), then [v',v2]=[v,v'2]=0.

Proof. (1) follows from [u'-v',u-v]=-[u'+v',u+v]
+ 2([u',ul +[v',v]) (resp. (W' =-v',u-v)==('+v',u+v) +
2((u’,u) + (v',v)), and (2) is obvious by [x,y°]=[(x,y),y].

Lemma 3. Let T: x > x' be a derivation of a prime

ring R with char R#2 which is semicentralizing on a non-
zero ideal U, and let [U], (U) be as in Lemma 2.



(1) If v ¢ U [U], then (v2)' =0 and vzv' =v'v2=0.
In particular, if U=R and v ¢ [R], then v'4=0.

(2) If CaU=0 and v e U\[U], then v'3=0 and
v2 #0.

(3) 1If CnU is nonzero, then T 1is centralizing

on U.

Proof. (1) Since (v2)'=(v',v) ¢ C and [v',v2]=0
by Lemma 2 (2), we have [(v2+v)',v2+v] = [(vz-v)',vz-v]
2+vef [U] and vz—v ¢ [u].
Then, by Lemma 2 (1), (v2+v) - (vz-v) =2v { [U] shows that
2v2= (v2+v)+(v2-v) € (U), and so v2 € (U). Hence,
2(v2)'v2= ((v2)',v2) €C, i.e., (vz)'v2 € C. Furthermore,
by Lema 2 (2), 0= (v2)'[(v2+v)', (W2 +wn 2] =2(vD) ' [v',v3] =
2(v2) ‘volv',v], i.e., (v2)'v2[v',v]=0. Since (v2)'v2 € C
and R 1is prime, [v',v] #0 implies (vz)'v2=0. Noting
here that (v2)' € C, we get
(1) WH)'=',v)=0 and (v",v)+(v',v')=(v',v")" =0.

Since v2+v ¢ [U], we can apply (i) to see that 2v'v2=

2+V) = ((V2+v)' ,v2+v) =0, and so

= [v',v] # C, which means that v

(v',v
(ii) v'v2 =v2v' =0 and vzv" = (v2v')' =0.

Now, we assume that U=R. If v' ¢ [R], then (v')2v"
=0 by (i1). Since [y,(y")21=0 (Lemma 2 (2)), by (1) we
have 2(v')4=(v')z((v",v)+(v',v'))=0, i.e., (v')4=0.
Thus, we assume henceforth that v' ¢ [R]. Then, by Lemma 2
(1), either v+v' ¢ [R] or v-v' ¢ [R]. We assume first
that v+v' ¢ [R]. Then, by (i) we have
(iii) V', =s(v+v',(v+v")') =0.

Since [v',v] € C, (iii) proves that v'v'" ¢ C. Hence, by
(i) and (ii), we get
v'(vi'v' + (v')z) = (v')2v"+ (v')3 = (v2+ (v')2+ ',V +v)



= (v+v')2(v+v')' =0.
Obviously, if v'v' =0 then (v')3=0. On the other hand,
if v'v'#£0 then v'v'(v'v'"+ (v')2) =0 gives v'v''+ (v')2
= 0, whence it follows that v"+v'=0. This together with
(iii) implies (v')2=0. Also, in case v-v' £ [R], we can
show that (v')3=0.

(2) Observe that vv'=-v'v and wuu'=32u'u for every
u € U. We prove first that VZ#O. In fact, if v2=0 then
for any x € R we have
vxv'v+xvxv'vEs {(v+xv) (v+xv) "2 (v+xv) ' (v+xv) Jv=0.
Replace x by -x in the above to get -vxv'v+xvxv'v=0.
Hence vRv'v=0, and therefore v'v=0. But this contradicts
v ¢ [U].

Next, we claim that vv'2—

=0. Noting that v2v' =0 by

(1), for any x € R we have

-v2xvv' 2_ vxvzxvv'

={(v+vxv)(v+vxv)' 2 (v+vxv)'(v+vxv) lvw' =0,
and similarly vzxvv'z-vxvzxvv'2=0. Hence sz\rv'2 =0,
and therefore vv'2=0 by v2#0.
Now, for any x € R we have _
+xvxv'3= {(v+xv)(v+xv)!' + (v+xv)'(v+xv)}v'2 =0,

and similarly -vxv' 3 + xvxv'! 3

L

(3) Suppose U contains an element v not contained

vxv'3

=0. Hence vRv'3=0, and

therefore v

in [U]. Choose an arbitrary nonzero ¢ € C n U. Because
c' € C, we have [v'+c',v+c]=[v',v] £ C, and so v+c {
[U]. Then by (1),

0= [{(v+c)2}',v] =[2cv' +2¢'v+ (c2)',v] =2¢c[v',v],

i.e., [v',v] =0. This contradiction proves that [U]=U.

Corollary 1. Let T: x » x' be a derivation of a prime



ring R, and U a nonzero ideal of R.

(1) If T is skew-centralizing on U, then it is
centralizing on U.

(2) If T 4is semicentralizing on U and UT is a
left (resp. right) ideal of R, then T 1s centralizing

on U.

Proof. We may assume that T is nontrivial and char R
# 2.

(1) According to Lemma 3 (3), it suffices to show that
C nU 1is nonzero. Suppose, to the contrary, that C n U=0,
Then, for any u e U and x ¢ R,
(ru?-u?- @o?) =0

(u2x+uxu)'
and
(u+xu)2-u2- (xu)2 =0,

From those above, we readily obtain [x,u21'==0. This means

(xu2 +uxu)’

that DT =0, where D=Inn(u2). Then, Theorem 1 shows that
D=0, which tells us that u2=0 for all u € U. But, this
is impossible by Lemma 1 (4).

(2) Suppose, to the contrary, that U contains an
element v not contained in [U]. In view of Lemma 3 (3),
it suffices to consider the case that C n U=0. Let u be
an arbitrary element of U. If uv2 € [U] then it is easy
to see that either v-l-uv2 ¢ [U]l or v--uv2 ¢ [U] (Lemma 2
(1)). Hence, by Lemma 3, )

(u'v2)4= (u'vz){(u'v2)3iv'(u'v )2+v'2(u'v2)}
=u'v2(vtuv2)'3=0
for all u € U. Now, choose r ¢ R such that r'#0. Then,
r'u=(ru)'-ru' ¢ U' for all u e U, i.e., r'U < U', and
hence U' contains a nonzero ideal Rr'U. Since R:c'Uv2 is

a nil left ideal of bounded index, we get v2==0 by



Lemma 1 (4). But, this 1s impossible by Lemma 3 (2).
We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5. 1In view of Corollary 1 (1), T is
centralizing on U. We consider the ring R1= {(g i) | x, v
€ R} with center Cl={(g )};) | x, y € C}, where R is

regarded as a subring of R. 1in an obvious way (see [15]).

As is easily seen, T giveslrise to a ring homomorphism
x+x*=(’6 ;‘:') of R into Rl and [u¥,u] ¢ Cl for all
u € U. First, we claim that [u',u] =0, or equivalently
[u*,u] =0, for all u € U. If char R=2, then

O=[[u+uu',(ut+uwu’)'],ul =[[uu',u'] + [u,(uu')'],u]

= [u',u]?+ [u[u,u"],u].

Since [u,u"]=[u,u']' € C, the last shows that [u',u]2=0,
and hence [u',u]l=0. On the other hand, if char R#2 then

0 uz[u'
0 0 1’

i.e., uz[u',u] € C. Hence, 0= [u',uz[u',u]] =2[u',u]2u,

4( 91y 2 2k, u) [ur,ul = [(wB)*,u?] € C

and therefore [u',u]=0.

Now, linearizing [u*,u]=0 gives [u,v*]=[u*,v] for
all u, v € U, and then

(u-u*)[u,v*] =uf[u,v*] - [u,urv*] = u[u*,v] - [u*,uv] =0.
Hence, noting that x*[u,v*] = [u,(xv)*] - [u,x*]v* (u, v € U,
x € R), we get (u*-u)x*[u,v*] =0, which becomes u'x[u,v]=
0, i.e., u'R[u,v] =0. Thus, we get U=VU(U) U K, where K=
fueU | u' =0} Since U#K by Lemma 1 (2), U coincides
with its center, and therefore R is commutative by Lemma 1

1).

Next, in preparation for proving Theorem 6, we state two

more lemmas.
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Lemma 4 ([2, Lemma 1]). Let R be a prime ring with
an idempotent f£#0, 1. If T is a derivation of R such
that (f+fx—fxf)T=0 for all x € R, then T=0.

Lemma 5. Let R be a prime ring and let Q denote the
Martindale quotient ring of R. Let p, q, r be elements
of Q. If there exists a nonzero ideal U of R such that
puqur =0 for all wu ¢ U, then one, at least, of p, q, T

is zero.

Proof. If x, y are elements of Q such that xUy=0,
then x or y 1is zero. Using this fact, we can prove the

lemma in the same way as in the proof of [14, Lemma 2].

Proof of Theorem 6. In view of Theorem 2, it suffices
to show that T is centralizing. We may assume that char R
# 2. According to Proposition 4, the central closure S of
R is a primitive ring with nonzero socle. In view of [2,
Lemma 4], we can extend T 1in a unique way to a derivation
of S, which will be also denoted as T. For the convenience
of notation, let us write xT==x' for every x € S. Now,
let e be an arbitrary idempotent in S. Then there exists
a nonzero ideal U of R such that fUc R and Uf < R.
For any u € U, we have eu(eu)' = x(eu)'eu, and therefore
e(eu)'eu = (eu) 'eu. Hence we see that (ee'-e')ueu=0 for
all u ¢ U, and so ee'=e' by Lemma 5. Similarly, we can
show that e'e=e'. We see therefore that e'= (ez)' =
ee' +e'e=2e', that is, e' =0, Noting here that f+ fx - fxf
is an idempotent for every idempotent f € S and every x € §
and that T is nonzero, we see that S has no nontrivial
idempotents (Lemma 4). Hence S has to be a division ring,

and so R 1is a domain. Now, by Lemma 3 (1), we conclude
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that T 1is centralizing.

Addendum. Recently, in their paper "On the centralizer
of ideals and nil derivations'" [J. Algebra 83 (1983), 520-
530], Felzenszwalb and Lanski have proved that if D is a
nil derivation on an ideal I of a ring R containing no
nonzero nil right ideals then ID==0, and have led to a

generalization of Proposition 5.
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-H~-SEPARABLE EXTENSIONS OF SIMPLE RINGS

Kozo SUGANO .

Introduction. Throughout this report A will be a ring
with the identity 1, C the center of A, B a subring of A
containing 1 and D = VA(B), the centralizer of B in A. This
report is a continuation of the author's previous paper [9].
When the author wrote it, he was very careless. Because, he
did not know that G. Azumaya had proved in [3] that if A is
a simple ring and S is a simple C-subalgebra of A with [S:C]
< «» then we have S = VA(VA(S))' Thus (2) Proposition 2 [9]
is contained in his works. In 51 we will study on the struc-
ture of a simple ring A where D is simple with [D:C] < «
and B = VA(D) in relation with Azumaya's works and [9]. All
results in 51 will be obtained immediately by applying the
already known results on H-separable extensions. In §2 we
will study on H-separable extensions of closed irreducible
rings in the sense of [1], and prove that_ in the case where
B is a right closed irreducible ring A is an H-separable ex-
tension of B and right B-finitely generated projective, 1if
and only if following three conditions are satisfied;

(1) A is also a right closed irreducible ring

(2) v,(v,(8)) =B

(3) D is a simple C-~algebra with [D:C] < «.
In this case A is a free Frobenius extension of B having a

free basis consisting of [D:C] elements (Theorems 2 and 3).

1. To begin with we will introduce the following char-
acterization of H-separable extensions which has been proved

in [10] in Japanese;

Proposition 1. Let A be a ring with the center C and
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B a subring of A. If VA(VA(B)) = B, the following conditions
are equivalent;

(i) A is an H-separable extension of B and right B-
finitely generated projective

(i1) " A is a left AehD°-generator, and D is C-finitely
generated projective, where D = VA(B).

Proof. Assume (i). Since A is right B-finitely gener-
ated projective, it is a generator of the category of left
Hom(AB,AB)-modules. But Hom(AB,AB) = AQCD° (See Remark 3
[9]). Thus A is a left A@cD°-generator. It is also well known
that D is C-finitely generated projective. Thus we have (ii).
Conversely, assume (ii). Set A = Asz°. Then since A is a
left A-generator, A is a right Hom(AA,AA)-finitely generated
projective. But we have Hom(AA,AA) = Hom(AAD,AAD) S VA(D)
= B. Hence A is right B-finitely generated projective. On
the other hand, by Morita Theorem we have the following iso-

morphism

n:A— Hom(AHom(AA,AA) ’AHom(AA,AA)) = Hom(Ag,Ap)

This isomorphism is exactly given by n(a®d®)(x) = axd, for
a, x € A and d € D, Then A is an H-separable extension of B
(See Remark 3 [9]). Thus we have (i).

By a simple ring we mean simply a ring which has no non
zero proper two sided ideal. Concerning with Azumaya's com-

mutor theorem on simple ring we have

Theorem 1. Let A be a simple ring and S a simple C-
subalgebra of A such that [S:C] < =, and set B = VA(S). Then

we have

(1) A is a left Aﬂhs°—generator, and VA(B) =S
(2) A is an H-separable and Frobenius extension of B

(3) Every automorphism which fixes all elements of B
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is an inner automorphism »

(4) B is also simple if and only if By <@ Ag.

Proof. (1) is due to Theorem 3.7 [3]. (2). A is an
H-separable extension of B and right B-finitely generated
projective by (1) and Proposition 1. Then by Theorem 4 [7]
A is also a Frobenius extension of B. (3). For the same
reason as Remark 5 [9] (2) yields (3). (4). Suppose that
B is simple. Since Hom(AB,BB) # 0, A is a right B-generator,
and we have By <® AB. Conversely if BB <$ Ag, A is left
AchS°—projective by (1) and Proposition 3.2 [4]. Then B =

Hom ( ’AQS°A) is simple, because AGbS° is‘simple.

A®S°A
A ring S is said to be right relatively separable ex-
tension of B in A in the case where B C S C A and the map

L of Aﬂhs to A such that ﬂs(aes) = as for a € A and s € S
splits as A-S-map. Now we consider the case where A and B
satisfy the following condition;

(#) A, B and D are simple rings with [D:C] < =
and B = VA(D)'

This condition is equivalent to the one that A is an H-sepa-
rable extension of a simple ring B and right B-finitely gen-
erated projective (See Theorem 1 [9]). Denote by T the class
of simple C-subalgebras of D and by §r (resp. §1) the one of
simple subrings which are right (resp. left) relatively sepa-
rable extensions of B in A. Then there exist mutually inverse
one to one correspondences between T and 5, (= §1) which are
obtained by letting each subring belonging to T or §r cor-

respond to its centralizer in A (Theorem 2 [9]).

Proposition 2. Let A and B satisfy the condition (#),
and define §r as above. Then for any simple subring S of A

which contains B, we have;
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(1) If s ¢ §T, then A is A-SVA(S)-irreducible, in
particular, A is A-BD-irreducible

(2) 1If A is A-S-completely reducible, then S ¢ §r

(3) Suppose that A contains an irreducible A-B-sub-
module. Then, S € §r if and only if A is A-S-completely re-
ducible.

Proof. (1). Let M be an A-BD-submodule of A, Then
since B is simple, we see MMNB = 0. Let {fi’ai} be a dual

basis for AB’ that is, £, ¢ Hom(AB,BB), a, € A with x =

i i
Eaifi(x) for any x € A, But Hom(AB,AB) = AﬂhD° (See Remark
3 [9]). Hence for each i, there exists Zyijed;j in AeCD°
such that fi(x) = Eyijxdij for each x € A. Then for each a
€ M, we have a = Zaiyijadij with Eyijadij e MO B = 0. -Hence

M = 0, which implies that A is A-BD-irreducible. For each S
in Er’ A and S satisfy the condition (#). Hence A is A-
SVA(S)—irreducible. {(2). Since A is H-separable over B, we
have A-A-isomorphisms AQBA = Hom(Dc,Ac) = AGADDA.
Thus if A is A-S-completely reducible, As%A and Asﬁs are so.
Hence the map Tg of AQBS to A splits as A-S-map. Thus S ¢

§r' (3). Let M be an irreducible A-B-submodule of A, and

S € §r' Since A is A-BD-irreducible by (1), we have A = MD.

- Thus we see that A is finitely generated completely reducible
as A-B-module. Hence A satisfies the descending chain condi-
tions for A-B-submodules and for A-S-submodules. Then A con-
tains an irreducible A-S~submodule N. Then again by (1) we
have A = NVA(S), which implies that A is completely reducible
as A-S-module.

2. Following Nakayama-Azumaya [l] we say that a ring
A is a right closed irreducible ring in the case where A is

the endomorphism ring of a left vector space m over a divi-
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sion ring K; A = Hom(KE,KE). In this case o, is faithful,
irreducible and isomorphic to a right ideal of A, and we
’EA)' Thus A is a (right) ideal irreducible

ring in the sense of [1]. In addition since A = Hom(Kg,Rgg

have K = Hom(_n_:A

with e injective and m, projective, we see that A is left
A-injective. We see also that C, the center of A, is a field
and equal to the center of K. In [1l] it is shown that if A

is a right closed irreducible ring and S is a simple C-sub-
algebra of A with [S5:C] < « then we have S = VA(VA(S)) and
VA(S) is also a right closed irreducible ring. Furthermore
Theorem 36.2 [2] shows that in this case A has a right VA(S)-

free bais consisting of [S:C] elements. In addition we have;

Theorem 2. Let A be a right closed irreducible ring
and S a simple C-subalgebra of A with [S:C] < =. Then A is
an H-separable extension of VA(S).

Proof. Set B = VA(S). By Theorem 10 [1] A@bs° is also
a right closed irreducible ring whose smallest ideal is of
the form §§b8°, where a is the smallest ideal of A. If the
annihilator of A in AQCS° is not zero, it contains ggbs°.
Then, a = aAS = 0, a contradiction. Hence AﬂbS° can be re-
garded as a subring of Hom(AB,AB). But Ash5° is left self
injective, since it is right closed irreducible. Hence Asbs°
is a left A@CS°—direct summand of Hom(AB,AB). On the other
hand A.is right B-finitely generated free by Theorem 36.2
[2]. Hence A is a left Hom(AB,AB)—generator. Then A is a
left Asbs°-generator. Then since S = VA(B) and [S:C] < =, A

is an H-separable extension of B by Proposition 1.

In the case where A has a faithful minimal right ideal
A has also a faithful minimal left ideal (See Theorem 2 [1]),
and therefore is called strongly primitive ring in [2]. Now
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we will deal with H-separable extensions of strongly primi-
tive rings, and show that the converse of Theorem 2 holds.
The next remark about H-separable extensions is alredy well

known. So, we will state it without proof.

Remark. If A is an H-separable extension of B such that
B <$ gh» then we have B = VA(VA(B)) and a = A(a{\B) for any
ideal a of A (See Proposition 1.2 [6] and (2.2) [81).

- Proposition 3. Let B be a strongly primitive ring and
A an H-separable extension of B such that BB'<§ EA' Then A
is a primitive ring.

Proof. Let J be the radical of A. Then J = A(JNB).

All elements of J{\B are quasi-regular in A, and their quasi-
inverses belong to B, because B = VA(D). Then we have J(B
= 0, because B has the zero radical. Hext let z be the smal-
lest ideal of B, whose existance is assured in Theorem 1 [1].
Then we have A = A(ANB) D AzA for any ideal A of A. Thus
AzA is the smallest ideal of A. Then since J = 0, there ex-
ists a maximal right ideal I of A such that AzZA I. If A/I
is not faithful, its annihilator in A contains AzA, and we
have AzZAC I, a contradiction. Hence A/I is a faithful ir-
reducible right A-module. Similarly, we see that there exists
a maximal left ideal K of A such that A/K is faithful ir-
reducible. Thus A is both left and right primitive.

Theorem 3. Let B be a right closed irreducible ring
and A an H-separable extension of B. Then we have

(1) A is a right closed irreducible ring

(2) B=V,(,(8)

(3) If furthermore A is right B-finitely generated pro-
jective, then D (= VA(B)) is a simple C-algebra, and A is a

free Frobenius extension of B having a left (or right)'B—free
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basis consisting of [D:C] elements.

Proof. At first we will show that A contains a faithful
minimal left ideal. By Proposition 3 A has a faithful irre-
ducible left module M. Since B is strongly primitive, B has
a faithful minimal left ideal 1. But M is faithful. Hence
there exists an x in M such that 0 # 1x ¥ 1. This isomorphism
is extended to a left B-homomorphism of M to B, since B is
left B-injective. Thus we have 0 # Hom(BM,BB)(: Hom(BM, A).
Then since A is an H-separable extension of B, for an A-A-
module X = Hom(CM,CA) we have Hom(BM,BA) = XB = D@CXA (See
(1.3) [8]). Thus we have XA = Hom(AM, A) # 0. This means
that A has a faithful minimal left ideal isomorphic to M.
Then by Theorem 2 [1] A has also a faithful minimal right
ideal r. Set L = Hom(EA,EA) and A¥* = Hom(LE,LE). Clearly A
C A*, and we can easily see that r is also a faithful minimal
right ideal of A*. On the other hand A is an H-separable ex-
tension of a left self injective ring B. Hence A is also left
self injective by (2.3) [8], and we have AA <® AA*. Let A%
= A®N as left A-module. Then r = rA* = r ® rN, and we have
TN = 0. Hence N = 0, and A = A*. Thus we have (1). Nextly
since B is left B-injective, we have B 4@ A Then we have
(2) by the remark above Proposition 3. Denote the center of
Bby 2. Z is a field, and we see CC Z = VD(D) by (2). Now
assume that A is right B-finitely generated projective. Then
we have Hom(AB,AB) = e(B)ne,zwherg (B)n is the n x n-full
matrix ring over B and e = e” € (B)n' (B) 1is also a right

Hom (KE’KE) for

some division ring K and a left K-module m. Then, e(B)ne =

closed irreducible ring. Therefore, (B)n

Hom(KEg, me), and we see that ABbD° (= Hom(AB,AB) = e(B)ne)
is also a right closed irreducible ring. Then its radical is

zero, and D has no nilpotent ideal except 0. But [D:C] < «.
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Hence D is a semisimple ring whose center is Z. This implies
that D is a simple ring. Then D is a Frobenius C-algebra. On
the other hand (1), (2) and Theorem 36.2 [2] shows that A has
a right B-free basis consisting of [D:C] elements. Further-
more, Theorem 4 [7] shows that A is a Frobenius extension of
B, and consequently, A has also a left B-free basis which

consists of [D:C] elements. Thus we have finished the proof.
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ON CONNECTEDNESS OF p-GALOIS EXTENSIONS OF RINGS
Kazuo KISHIMOTO

The purpose of this note is to give necessary and
sufficient conditions for a pn-cyclic extension B over
a connected ring A of prime characteristic p to be
connected. The details of proof and related results will
be seen in the joint work[l] of M. Ferrero and the author.
When both A and B are commutative, these are considered
in [3].

Let A %be a ring with an identity. A 1is said to
be connected if O and 1 are only idempotents of its
center C(A). A two sided simple ring with an identity

is a typical example of .a(non commutative) connected ring.

Preliminaries. In this note we assume that A 1is an

algebra over a prime field GF(p) of characteristic p > O
and G is a cyclic group of order pn with a generator o.

A G-Galois extension B of A such that BAC-B > AA (i.e.,~
A, is a direct summand of BA) is said to be a pn-cyclic

eﬁtension. As is konwn in [2], if there are a derivation
Dof A and an element a of A such that oP - p =

Ia (the inner derivation effected by a) and D(a) =0
then M = (XP - X - 2)A[X;D] becomes a two sided ideal of
A[X;D] where AI[X;D] = {inai; aie-A} is a skew poly-
nomial ring of derivation type whose multiplication is
given by ¢X = Xc + D(c) for ce& A. Moreover, T =
A[X3D]/M becomes a p-cyclic extension of A by o(xc) =

(x + 1)e where x=X+M and c € A, and conversely,
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if T¥ is a p-cyclic extension of A then there are a
derivation D¥ of A and an element a* of A such
that D*P _ D* = Iss> D¥(s¥*) =0 eand T* = A[X;D*1/(X®° -
X - a*)A[X;D¥].

Let now B be a pn-cyclic extension of a connected
ring A and T = Bl = {ve B; 1(b) = b for any t€H}
where H = (ap). Since T/A 1is a p-cyclic extension
(with a Galois group G|T), we may assume that T =
A[X3D1/(XP - X - a)A[X;D] for some derivation -D of A
and an element & of A such that D -D=1I_ and
D(a) = 0. Hence, if A and B are assumed to be
commutative, then T = A[X1/(XP = X - a) for some a€A.

The following theorem is proved in [3].

Theorem 1. Assume that B is commutative,

(1) B is connected if and only if T is connected.

(2) T is connected if and only if XP - X - a is
irreducible in A[X].

(3) XP- X - a is irreducible if and only if a ¢
AP - A= {cP - c; cenl.

Connected Cyclic Extensions. In this section we shall

generalize Theorem 1 to the non commutative case. For
this, we shall introduce some notions about polynomials
in A[X;D].

A monic polynomial f£(X) in A[X;D] is said to be
a generator if f(X)A[X3;D] = A[X;D]f(X). A generator

f(X) 1is said to be weakly-irreducible (abbreviate w-

irreducible) in A[X3;D] if f£(X) has no proper monic
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factor of degree > 1 which is a generator.

Remark 1. If f(X) is a generator in A[X;D], then
f(X) is contained in C(Ao)[X] where A = {ce A;D(c) =
0} . Hence the notion of w-irreducibility of f(X) in
A[X] coincides with the irreducibility of f(X) in C(A)[X]
since each generator in A[X] is contained in C(A)[X].
Hereafter, we denote A[X3;D] by R.

Lemma 2. Let f£(X) = XX - X - a be a generator in
R.

(1) 1f R/f(X)R is connected then A is connected
and f(X) is w-irreducible in R.

(2) Let A be connected. Then f(X) is either w-

irreducible or a product of generators of degree = 1.

Let M be g group and N a normal subgroup of M.
Then N is said to be a small subgroup of M if NM' #
M for any proper subgroup M' of M.

Lemma 3. Let A be connected and let S/A be an
M-Galois extension for a finite group M. If SN is
connected for a small subgroup N of M, then S is
connected.

Let B,H=(oP) and T =28"=R/(X* - X - a)R be
same as in the preceeding section. Then, by making use

of Lemmas 2 and 3, we have the following main theorem.,

Theorem 4. (1) B is connected if and only if T
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is connected.

(2) T is connected if and only if XY - X - a is
w-irreducible in R,

(3) ¥X® - X -a is w-irreducible in R if and only
. . ) = pP _ P _
if ae{céAo, I,=D D} but a g A0 Ao.

Proof. (1) Let B be connected. Then, by Lemma 2,
(1) and induction argument on n, we can see that the
connectedness of T. The converse is & direct consequence
of Lemma 3.

(2) By Lemma 2,(1), if T is connected then XP -
X - a 1is w-irreducible. Conversely, suppose X -X-a
is w-irreducible and T is disconnected. Then we can see
that D is an inner derivation of A, and hence, we may
assume R = A[X] and C(T) = c(a)[X1/(x® - X - a)c(A)[X].
Siice XP - X - a is irreducible in C(A)([X] by Remark 1,
¢(T) is connected by Theorem 1, a contradiction.

(3) This is a direct consequence of Lemma 2,(2).

As an immediate consequence of Theorem 4, we have

the following

Corollary 5. Let A be a two sided simple ring.
Then the following conditions are equivalent.

(a) B is connected.

(b) B is a two sided simple ring.

(¢) T is connected.

(d) T is a two sided simple ring.

(e) X - X -a is w-irreducible in R.
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ON TWO RINGS OF M. HARADA
Kiyoichi OSHIRO

Recently, in his papers [7]~-[9], M. Harada has studied
the following conditions:

(*) Every non-small R-module contains a non-zero
injective submodule.

(*)* Every non~cosmall R-module contains a non-zero
projective direct summand.

Concerning these conditions, he has then discovered
two new rings; one is a perfect ring with (*) and the other
is a semi-perfect ring with (*)*. And, in his main theorems,
very interesting ideal theoretic characterizations of these
rings have been given. However, if we carefully read his
papers, we see that several important problems remain on
these rings. Actually, we should investigate the following
fundamental problems:

1) Are these rings in fact new ?

2) Are these rings left-right symmetric ?

3) What kinds of relation are there between these
two rings ?

4)  Applications ?

Now, our purpose of this paper is to briefly announce some
results which answer to these problems. Details will appear
in [12]~,[15].

1. Preliminaries.
Throughout this paper, we assume that all rings R

considered are assocliative rings with identity, all R-
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modules are unitary and all homomorphisms between R-modules
are written on the opposite side of scalars. The notation
MR is used to stress that M is a right R-module.

Let M be an R-module. We use E(M), J(M), S(M) and Z(M)
to denote its injective hull, Jacobson radical, socle and
singular submodule, respectively. Further, by {Ji(M)} and
{Si(M)}’ we denote its descending Loewy chain and ascending

Loewy chain, respectively;

JO(M) = M SO(M) =0
Jl(M) = J(M) Sl(M) = S(M)
JZ(M) = J(Jl(H)) SZ(M)/SI(M) = S(M/Sl(M))

For submodules A and B of M with AC B, the notation AC_B
means that A is an essential submodule of B; while AC.B
(in M) means that A is a co-essential submodule of B, i.e.,
B/A is a small submodule of M/A.

For two R-modules M and N, we use MC N to stand for
M is isomorphic to a submodule of N’. The term ACC means

the ascending chain condition.

Definition. We say that an R-module M is an extending

(resp. lifting) module if, for any submodule A of 'M, there
* * *

exists a direct summand A of M with A A (resp. A Q-_CA).

Definition([ 7 ]~[ 9], c¢f [16]). An R-module M is said
to be a small module if it is small in its injective hull,
and M is said to be a non-small module if it is not a small
module. Dually, M is said to be a cosmall module if there
exists an exact sequence T i)1\1 —0 with ker £fC T, and M is

said to be non-cosmall if it is not cosmall.
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Definition ([2 ]1,[3 ],[17]). A ring R is said to be
right QF-3 if it has a minimal faithful right ideal, and
R is said to be right QF-2 if every indecomposable project-
ive right R-module has simple socle.

2. H=-ring.

Harada studied the following condition ([ 7]1,[9 ]):

(*) Every non-small right R-module contains a non-
zero injective submodule.

The following result is one of his main results:

Theorem 2.1 ([9 , Theorem 2.3]). A right artinian
ring R satigfies (*) if and only if, for any primitive idem-
potent e in R with eRR non-small, there exists an integer t
20 for which

a) eRR/Sk(eRR) is injective for all 0& k<4t, and

b) eRR/St+1(eRR) is a small module.

Remark. 1) Rings with (®*) are lforita invariant. 2)
A left and right perfect ring with (*) is right artinian
([7 , Theorem 5]).

Now, we can easily show that (*) is equivalent to the
condition: For any injective R-module ER and any submodule
A of E with A not small in E, A contains a non-zero direct
summand of E. From this fact, we see that the condition (%)
is weaker condition than the following:

(#) Every injective right R-module is a lifting
module.

Here, a natural question arises:
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How far is (*) from (#) ?

For this question, we have

Theorem 2.2([12]). The following conditions are equi-
valent for a given ring R:

1) R satisfies (#).

2) R is a right artinian ring with (*).

3) R is a right perfect ring with the condition: The
family of all injective right R-modules is closed under
taking small covers, i.e., for any exact sequence P-E) E-O0
where E is injective and ker f is small in P, P is also
injective.

4) Every right R-module is expressed as a direct sum

of an injective R-module and a small R-module.

Definition. We call that a ring R is a right H-ring
if it satisfies the equivalent conditions in the above theo-
rem. A left H-ring is symmetrically defined and a right
and left H-ring is simply called an H-ring.

Combining Theorem 2.2 with Colby-Rutter’s theorem [ 2,

Theorem 1.3], we have

Theorem 2.3. A right H-ring is both right and left
QF-3. ’

The following is due to Harada:

Theorem 2.4([ 7]). Every indecomposable injective
right R-module over a right H-ring is a cyclic hollow module.
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3. Co-H-ring.

The following condition is dual to (*)

(*)* Every non-cosmall right R-module contains a non-
zero projective direct summand.

Harada gave the following ideal theoretic characteriza-

. *
tion of semi-perfect rings with (*) :

 Theorem 3.1([ 8], [91]1). A semi-perfect ring R satis-
fies (*)* if and only if, for a complete set {ei}\/{fj} of
orthogonal primitive idempotents of R with each eiRR small
and each ijR non-small, the following hold:

1) Each eiRR is injective.

2) For each eiR there exists integer ty 2 0 such that
J (eiRR) is projective for 0<t<t and Jt +1(eiRR) is a
singular module.

3) For each ij, there exists eiR such that ijR g;

eiRR'

Therefore, if this is so, R 1is right QF-2,

Now, we note that (*)* is equivalent to the condition:
For any projective module PR and any submodule A of P, if
A is not essential in P then there exists a proper direct
summand B@P with AC B (cf. [12]). Hence, (*)* is weaker
than the following condition:

(#)# Every projective right R-module is an extending
module.

By comparing (*)* with (#)#, we obtain the following
theorem which is dual to Theorem 2.2:
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Theorem 3.2 ([12]). The following conditions are
equivalent: ‘ ‘

1) R satisfies (#)#.

2) R satisfies (*)* and the ACC for right annihilator
ideals of R.

3) The family of all projective right R-modules is
closed under taking essential extensions.

4) Every right R-module is expressed as a direct sum
of a projective module and a singular module.

Further, when this is so, R is a semi-primary right and
left QF-3 ring and satisfies the ACC for left annihilator
ideals (cf. [2]).

4, Connections with classical artinian rings,
Clearly, quasi-injective right R-modules are extending
modules. Dually, if R is a right perfect ring, then quasi-
projective right R-modules are lifting modules ([10],[11]).
Let us consider the following conditions: ’
a) Every injective right R-module is projective.
a*) Every projective right R-module is injective.
b) Every quasi-injective right R-module is quasi-
projective.
b*) Every quasi-projective right R-module is quasi-
injective.
c) Every extending right R-module is lifting.
c*) Every lifting right R-module is extending.

~

injective —ry ) projective

quasi-injective . quasi-projective

nt

v

extending lifting
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As 1s well known, the following conditions are equiva-
lent:

1) R is QF.

2) R satisfies a).

3) R satisfies a*).
So, a) and a*) are right-left symmetric.

On the other hand, the following conditions are equiva-
lent ([11], [4]):

1) R is a unisetial ring.

2) R satisfies b).

3) R satisfies b*).
Therefore, b) and b*) are also right-left symmetric.

In view Figure above, a natural question arises: What
is a ring R with c) or c*) ?7 By using Theorems 2.2 and 3.2,

we can study this question. Our conclusion is the following:

Theorem 4.1 ([13]). The following conditions are
equivalent:

1) R i8 a generalized uniserial ring.

2) R satisfies c).

3) R is a right perfect ring with c*).
So, 2) and 3) are left-right symmetric.

By above theorems we have ilmmediately

Theorem 4.2. QF-rings and generalized uniserial rings

are both H and co-H-rings.

QF-rings can be characterized in terms of H or co-H-

rings as follows:
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Theorem 4.3 ([12]). The following conditions are
equivalent for a given ring R:

1) R is QF.

2) R is a right H-ring with Z(RR) = J(R).

3) R is a right co-H-ring with Z(RR) = J(R).
So, 2) and 3) are right-left symmetric.

Next, we shall study right non-singular right H-~ or
co-H-rings. If R is a right co-H-ring, we see from Theorem
3.2 that every non-simgular right R-module is projective.

In case R is right non-singular, the converse also holds,
because, in this case, a submodule A of a projective module
PR is a closed submodule if and only if P/A is non-singular.
Therefore, by the Goodearl’s work [ 6, Chapter 5], a right
non~singular right co~H-ring is completely determined as it
is Morita equivalent to a finite direct sum of upper tri-

angular matrices over division rings.

A right non-singular right H-ring have also the same

structure as the following shows:

Theorem 4.4 ([12]). The following conditions are
equivalent for a given ring R:

1) R is right non-singular right H.

2) R is right mon-singular right co-H.

3) R is Morita equivalent to a finite direct sum of
upper triangular matrices over division rings.

Therefore, 1) and 2) are right-left symmetric.

5. Typical examples.
In view of Figure in § 4, the following questions
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arise:
1) Are right H-rings left H-rings ?
2) Are right co-H-rings left co-H-rings ?
3) Are right H-rings right co-H-rings ?
4)  Are right co-H-rings right H-rings ?

However, in the case when R is an algebra over a field
of finite dimension, these problems are all equivalent, as

the following shows:

Theorem 5.1([12]). Let R be an algebra over a field
of finite dimension. Then R is a left H-ring if and 6n1y
R is a right co-H-ring.

In this section, we give two typical examples of left
H- and right co-H-rings. From one of these, we see that

the answers of the questions above are no.

Now, in order to make these examples, let us consider
a special type of a co-H-ring. Let R be a co-H-ring with
a complete set {e, f} of orthogonal primitive idempotents
such that

1) eRR is injective,

2) eJ(R)R'L-’fRR.

We put Q = eRe and X = S(eRR). Then, XR is simple and
isomorphic to S(fRR). Note that the projective cover of
X is either eR or fR.

Under these situations, we have the following two

theorems.
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Theorem 5.2([12]). Q is a local QF-ring. So, S(QQ)
is simple and coincides with S(

Q
Q Q/s
J Q/s:)

becomes a ring canonically, where S = S(QQ) and J(Q).

Q) and therefore

Theorem 5.3([12]). 1) If eRR is a projective cover
of XR, then R is isomorphic to the ring

Q Q/s
J Q/s

2) If fRR is a projective cover of XR, then R is

isomorphic to the ring
Q Q
J Q

Now, conversely for a given local QF-ring Q, we‘put

Q Q
v(Q)
J Qo/

Q Q/s)
(g Q/s

where S = S(QQ) = S(QQ) and J = J(Q). Then we have

]

W(Q)

Theorem 5.4([12]). 1) V(Q) is a H- and co-H-ring.
2) W(Q) is a left H- and right co-H-ring.

We can extend Theorems 5.3 and 5.4 as follows:
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Theorem 5.5([15]). A ring R is a basic right co-H-

ring with homogeneous socle if and only if it is represented

as a matrix ring: Kk

— —

Q .. QQ . Q

JQ

J  ..JQQ .. 1

J .. JQ .. Q

. S A .
Sooraa

J .. JJ .. JQ

k>1
for a suitable local QF-ring Q, where 6-= Q/S(Q) and J =

J(Q). Furthermore, such a ring is also left H.

~ Here, we shall show that W = W(Q) above is not a left
co-H-ring in general. Suppose that W is a left co-H-ring.

We put 0 0
f = _
0 0 0 1

Since We is injective, Wf must be isomorphic to J( We),
whence it follows J = QJ(Q)QgQ(Q/S) As a result, J must
be a cyclic left ideal of Q. However, this is not true
in general.

For example, consider the ring
e — 2 2
K[x,y] = K[x,y]1/(x",y")

where K is a field. This is a local QF-ring with Jacobson
radical (x,y). As is easily computed, (§:§) is not a cyclic
ideal. Thus if we take this ring as Q, W(Q) is a left H-
and right co-H~-ring but not right H- nor left co-H. As an
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interesting other property of this ring, we note that this
W(Q) is left and right QF-3 and right QF-2 but not left QF-
2. Therefore this ring givesa counter example of a ring

which solve a problem raised in Fuller [3].

Remark. Althrough we did not give proofs of Theorems
5.2 ~5.5, the following results are used for their proofs:
1) Let R be a one sided artinian ring and let e and
f be primitive idempotents in R. Following Fuller [5], we
say that the pair (eRR, RRf) is an injective pair if
S(eRR) Q:fRR/fJ and S(RRf) e RRe/Je

where J = J(R). It is shown in [5] that if (eRR, RRf) is

an injective pair then eR_ and RRf is injective.

R
2) Let R be a right artinian ring and let M be a
right R-module. The following criterion is due to Harada

([91): M is a small module if and only if MS(RR) = 0.

6. Coincidence of left H-rings and right co-H-rings.

Now, from our results in §§ 2 ~~5, we can enoughly
expect that Theorem 5.1 is valid for all rings. Indeed,

this is true:

Theorem 6.1([14]). A ring R is a left H-ring if and
only if R is a right co-H-ring.

In this paper, we only give a sketch of a proof. For
a complete proof of this theorem, the reader is referred
to [14].
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6.A Proof of ‘right co-H => left n’

In this sub-section we assume that R is a basic right
co-H-ring with E, a complete set of primitive orthogonal
idempotents of R. Then we have a partition

E = {ell’ cees eln(l)} ... \./{eml, cees emn(m)}

such that
1) eilRR is injective for all i,

2) eiln';Leizk ;2 cee ;Zein(i)R’ more precisely
J(eikRR)Rfliei,k+1RR for 1 and k = 1, ..., n(i)-1,

3) each S(einR) is simple; so S(eilR)Rf}g... ~s

S( R)R for all 1.

®in(i)
Remark. Henceforth, we observe R by representing it
as the matrix ring:

[ell’e11] :.......... [emn(m)’elll

-~}
]

[ell’emn(m)] cececeas [emn(m)’emm(m)]
or

ellRe11 cseccseccsccse ellRemm(m)

w
]

emn(m)Rell cesesvens emn(m)Remn(m)
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where [eij’ekt] = HomR[ein,ektR]. So, we identify e
with ij-row and Re

in
15 with ij-column.

Lemma 6.A.1. R is left artinian.

Proof (sketch). We may show that fRe is artinian

fRf
for any f, e in E.

Step 1. As R is semi-primary QF-3, we see from [ 2]
that eilRejl
for any 1, j.

is left artinian as a left e. . Re,_ -module for
il i1

Step 2. Assume that equ is a projective cover of
s(eilRR)R' If p # 1, then

eilReil AvERY fﬁﬁein(i)Rein(i) (as rings).

If p = i, then there exists s in {1, ..., n(i)} such that

1) e,.Re oo geisRe

i1 11 is’

2) ey grifey gl ot Ve nRen),

3) there exists a ring epimorphism:

®1sRe1s> 81, et1R%1, 51"
Consequently, eineij is artinian as a left eineij-module
for all e_..
1]
Step 3. We observe einekt for i # k. Put fj = eij’

fl S €13 By T e s B T By Then, note that ijgt becomes

a left flRfl-module. Now, we see that

£R8. f.Rg
flRflj t ___flRfll t

and there exists an epimorphism:

ng_) f.Rg
flRfl 1" flRfl 15t
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Hence it follows that ijfjijgt is artinian.
Step 4. Put @ T @15 cees € = ein(i) and observe
ejRei for 1 # j. If 1 { j, then ejRei becomes a left eiRei-

module and

eiRei

So, ejRejejRei is artinian. If 1 ) j, then e

a left e.,Re,-module and

b | o
ee{'\/
e.Re i >~ e.Re
jRey e
Hence ejRejejRei is artinian.

eRey Ce JRe ieiRei

iRei becomes

eiRei.

By Step 1~ Step 4, fRfng is artinian for all f,g in
E and hence R is left artinian.

Lemma 6.A.2. Let e, £ in E and assume that fRR is the
projective cover of S(eRR). Put X = HomR(fR, S(eRR)). Then,

1) eRex and X are simple.

fRf

2) eRf) and X ~ S(eRf

eRex A 4 eRes(eRe fRf — fRf)fRf

3) S(eReeRf) = S(eRffRf).
Lemma 6.A.3. Let £ in E and assume that fRR is the
projective cover of s(eilRR)' Then,

1 Sk(RRf) = S(eilRR) + ... + s(eikRR) fork=1,..,
n(i).
2) S(ein(i)RR)(Rf/Sk(gf)) = s(ein(i)RR) for k < n(d)
and
S(RR) (Rf/sn(i) (Rf)) = 0
whence Rf/Sk(Rf) is a non-small left R-module for k{ n(i)
and Rf/Sn(i)(Rf) is a small left R-module.
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Lemma 6.A.4. The following conditions are equivalent
for a given f in E:

1) RRf is a non-small module.

2) RRf is injective.

3) fRR is a projective cover of some S(eilRR)'

Now, we are in a position to show that R is a left H-
ring.

By Lemma 6.A.1, R is left artinian. Let Rf and eilR
be as in Lemma 6.A.3, i.e., fRR is the projective cover of
S(eilRR)' We may show that Rf/Sk(RRf) is injective as a
left R-module for k =1, ..., n(i)-1 (cf. Lemma 6.A.4). In
view of Lemma 6.A.3, Sk(RBf) is a two-sided ideal of R for
k < n(i); so, the factor ring R = R/S ( Rf) is considered.
Then, we can see that (ei k+1RR R Rf) is an injective pair;
whence -Rf is injective. Here, noting S(-Rf) = S(e k+lRR)’
we can show that Rf (—Rf/S ( Rf)) is injective.

6.8B. Proof of * left H > right co-H,.

In this sub-section, we assume that R is a basic left
H-ring and E is a complete set of orthogonal primitive idem-
potents of R. Since R is semi-primary QF-3, we have a
partition: E = {e 45 -.¢ ein(i)}\/...\l{eml, cees emn(m)}

\/ G such that
1) each eilRR is injective,
2) s(eilRR) N oeee v S(ein(i)RR) for all i,
3) S(gRR) is not simple for all g in G.
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Remark. We observe R by identifying it with the matrix
ring:

leypoeyyl oor leguemyrenn] [B1epi  wooe e8]

[ell’emn(m)]""[emn(m)’emn(m)][gl’emn(m)]""[gt’emn(m)]

le;;°8,1 ---- [em(m),gll [31’31] [gt,gl]

le)y08.0  ooor lep (mye8]  [8p080  ---- [8e58.]

where G = {gl, cees gt} and [p,q] = Hom, (PR,qR) for p, q in
E.

Lemma 6.B.1. Assume that eiZRR¢,einR for j = 3,
..y n(1). Then

1) eiZRR ?é_gRR for all g in G,

2)  eypRg e Iley;Rp).

Proof. We can take h in E such that hRR is the pro-
jective cover of S(eilRR)'

Assume that there exists g in G such that eiZRR EigRR.
We can assume that gRy %}zRR for any z in G - {g}.
We put

o .. O 0 o .. 0
o . 0 0 o .. 0
o .. O 0 0 . 0
o .. O 0 o .. 0
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0 .. 0 0 0 .. 0

A2 = 0 . 0 [hR,S(eiz)] 0O .. 0
0 .. 0O 0 0 0

o .. O 0 o .. O

0 .. O 0 0 . 0

A = 0 .. 0O 0 0 .. 0
g 0 .. O [hR,S(gR)] O .. O
0 .. 0 0 0 .. 0O

0 .. 0 0 0 .. 0

where HomR =(hR,S(einR)) = [hR,S(ein)], i=1, 2 and

Hom, (hR,S(gR;)) = [hR,S(gRp)].

We see that A1 = S(eilRR) = S(RRh); s0 A1 is a on-
sided ideal of R. We denote the factor ring R/A1 by R.
Note that J(eilRR) and e, R become right R-modules, there
exists an epimorphism: J(eilRR)ﬁ -—}.I(eilRR)E-and an iso-
morphism : eiZRi ~ eiZRﬁ'

Further:_Ye see that A1 + Ag = SZ(RRh) and AZ(Rh/Al)

# 0. Hence Rh must be injective as a left R-module and he-
nce so is as ?_left-ﬁfmodule. Since the socle of ﬁﬁﬁ is Kg,
we see that (gRﬁ,-iRh) is an injective pair. As a result,
gRi has simple socle. However this implies that gRR has

simple socle, a contradiction. Thus such g does not exist.
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From this fact and the assumption, we see that(éizii,iﬁﬁ)
is an injective pair; so eiZRﬁ is injective. Since eiZRﬁ

fﬁfeiZRﬁ s;’J(eilRR)-,we see eiZRﬁ f}iJ(eilRR)ﬁ and hence
eiZRR ::;J(eilRR)R as desired.

By a similar argument, we can show the following

Lemma 6.B.2. 1) There is a permutation {eif’ cee

ein(if} of {eiZ’ cees ein(i)} such that

k-1
Yoy Rpdr L ey Ry
for k = 2, ..., n(i) .
D ey Ry C ek

for all e,, and g in E.

ij
D 7Sley Ry C S(eRYp)

for all e, .and g in E; so G is empty.

3

Now, Lemma 6.B.2 shows that R is a right co-H-ring.

7. Application.

As an application of our study, we can show the follow-

ing

Theorem 7.1([14]1). If R is a right QF-3 and right

generalized uniserial ring then R is a genmeralized uniserial

ring.

For a proof of this theorem, the following two lemmas
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are needed.

Lemma 7.1. If R is a right QF-3 and right generalized
uniserial ring, then R is a right co-H- and hence left H-
ring.

Proof. This is easily shown by using Theorem 3.1.

Lemma 7.2. If R is a right QF-3 and right generalized
uniserial ring, then so is R/S(RR).

Proof. We can assume that R is a basic ring. As in

§ 6, we observe R by identifying it with the matrix ring:

Ly

[e);0e),] e (e n (m)*©11]

e emm] ° [Cmn@)’Cmn@m)]

where E = {eij} is a complete set of orthogonal primitive
idempotents of R such that

1) each eilRR is injective,

) e S C,nw)-1fr € oo CeRR S oy
(Note that R is a right co-H-ring by Lemma 7.1). Put R =

R/S(RR). Then, clearly,
3)  Cin()FR CC,n@)+nfR & o0 C840%% € ey
for all {i. When.ziiﬁ £ 0, we take h in E such that hRR is

the projective cover of SZ(eilRR)R' Then we see that
(eilRi’ iRh) is an injective pair. As a result,
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4) each Eiliﬁ is injective if it is non-zero.
By 3) and 4), we see that R is a right co-H-ring. So,
it is QF-3 by Theorem 3.2.

Proof of Theorem 7.1: We can assume that R is a basic
ring. Let E = {eij} be as in Lemma 7.3. We take h, in E
such that hiRR is a projective cover of s(eilRR)R for i =
1, ..., m. Then, by the argument in § 6,

a) S(eilRR) + ... + S(eikRR) = Sk(RRhi)

for k=1, ..., n(i) and moreover
B) S (gRh,)/S, _,(3Rh.) is simple

(as a left R-module) for k=1, ..., n(i).

Now, by induction of the sum of composition lengths
of all einR together with Lemma 7.3, we see R/S(RR)iS a
generalized uniseral ring. In view of &) and B), this
implies that R is a left generalized uniserial ring.
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THE INVARIANT SYSTEMS OF SERIAL RINGS
AND THEIR APPLICATIONS TO THE THEORY OF SELF-DUALITY

Takashi MANO

This note is a summary of the author’s paper [12].
Proofs and details will be published in [12].

The structure of serial rings has been studied by many
authors (cf. [1]1, [2], [3], [6]1, [9], [15], [16], [17] and
" [18]). 1In this note, we shall define the invariant systems
of serial rings and prove that there is a larger class of

serial rings which have self-duality.

1. The invariant systems of serial rings. Throughout
this section, R denotes an indecomposable self-basic serial
ring with the radical J. Let

l=e,+e

1 2
be a decomposition of 1R into a sum of mutually orthogonal

+ . 4e
n

primitive idempotents such that Rel, Rez, seey Ren Ais a

- -

Kupisch series of R, i.e., Rel, Re2, oray Ren satisfy the

folllowing conditions:
c(RRei) >2 for 1i=2, 3, ---, n,

c(RRe ]) < c(RRei)+1 for 1i=1, 2, -+, n,

[i+1 )
Rei/Je:L = Jei+1/J e 11 for i=1, 2, ..., n-1,
and
2
Ren/Jen = JellJ e, if Jel#O,
where c(RM) denotes the composition length of a module RM

and [k] denotes the least positive remainder of an integer
k modulo n. Let us put bi=c(RRei), i=1, 2, «-+, n.

9% "t bn is called an admissible
sequence of R. Let us put

The sequence bl, b
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Ri=eiRei’ Ji=eiJei,

c:i._'] = C(RieiRej) = c(eiRejRj) .

Then Rl, RZ’ ceey Rn are the local uniserial rings with

the radicals Jl’ J2’ sy Jn respectively, and we have
clg By) =5
i
c c
i3 | ij

Moreover, we have the following lemma

Lemma 1.1. With the above notations, we have
cii= {bi- [bi] }/n + 1

cij = {bj - [j-i] - [bj - [j-i]]}/n + 1 if i#j!

ijic[j—l]jicjjic‘+l if 143,

ij
13 S Cip141) S 64 S oyt 1E 173,
Icii-cjjl = 1,

Ciri+1] 2 ¢33~ 1

C

(o

In the rest of this section, we shall assume that n#1.

(Notice that R 1is uniserial if and only if n=1.)

Let Yy € e133[1+1] be an element such that

esRerim) " RiY1 = Y34y

Then there exists a mapping ¢i :Ri -+ R[i+l] such that
riyi==yio¢i(ri) for all r; e Ri’
c
. i[i+1]
Let “[i+l] : R[i+1] - R[i+l]/(J[i+1]) be the
natural homomorphism.
C1[1+41])

Lemma 1.2. Tri41])°%% R, > R[i+1]/(J[i+1])
is an onto ring homomorphism.

For each i and each j, we shall define

x,.=1 ,
ii Ri
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TR TS R R ISR

W3S YiY i)"Y (14217 [4-1)
Then it is easy to prove that

eiRej = Rixij = xinJ.,
J1= Riwi=wiRi’

C
: (mod (J 1[1+1])

o (vy) 2w [i+1]’

Definition. With the above notations, the system

$= {n; bi’ Ri’ Wis ¢1} will be called an invariant system
of R.

Since a Kupisch series of R 1is not uniquely determined
by R, an invariant system of R is not uniquely determined
by R. However, two invariant systems of R are "equivalent".

(As for the definition of an equivalence, see §3 below.)

2. Serial systems. In this section, we shall define
the notion of serial systems.
Let bl’ b2, N bn be a sequence of positive
integers satisfying the following conditions:
bi32 for i=2, 3, ..., n,
A b[i+l] 5b1+1 for i=1, 2, <<+, n,
where [k] denotes the least positive remainder of k
modulo n. For convenience sake, we shall assume =n > 2.
Let us put ‘
¢y ={by-[b;1}/n + 1,
cij={bj-[j-i]-[bj-[J'-i]]}/n+ 1 (i#£37),
for 1 <1, j < n. Then the c,.’s satisfy Lemma 1.1.

ij
Let Rl, R2, ceey, Rn be local uniserial rings with the

radicals Jl’ J2, cee, Jn respectively, such that

°(R1R1) =Cj5
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Cili+l1] Ci[i+l] ,
Ri/(Ji) = R[i+1]/(J[i+1]) for all i.

Let by ¢ Ry *'R[i+1] be a mapping and w, € Ri’ i=1, 2,

s n. Then the system $={n; b Ri’ Wi ¢i} is called

i’
a serial system if the following four conditions are

satisfied: For each 1,
(i) Ji=Riwi=wiRi,
(11) ﬂ[i+l]°¢i is an onto ring homomorphism where

c

. i[i+1]

natural homomorphism, c
(111) ¢, (w,) = w (mod (J,,..,) ‘il
ivi [1+1] [i+1] ’

(iv) riwi:=wi¢[i-l]°¢[i-2]° ...o¢i(ri) for all r; € R;.
It is easy to prove that an invariant system of an

indecomposable self-basic serial ring is a serial system.

The first main theorem is stated as follows.

Theorem 2.1. Let § be a serial system. Then there
uniquely exists an indecomposable self-basic serial ring R

such that § 1s an invariant system of R.

3. Isomorphisms between two serial rings. Let R be
an indecomposable self-basic serial ring with the radical
J. The notations are as in §1.

Let Rei, Reé, ceey Re; be another Kupisch series of

R, and $'={n; bi, Ri, w!, ¢i} bé an invariant system of

i
R which is constructed from Rei, Reé, ceey, Re; as in §1.
Then there exist a unit u ¢ R and an integer m such that
= ! _1 1 = -l g
e[i—m] ue u and e;=u e[i_m]u for all 1.
For each i, let us put

ei: R[i-m] EY r[i-m] > u r[i_m]u € Ri.
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Then is a ring isomorphism. Next, there exists a unit

i=1, 2,

0
1
ulie1] € Rigen] Such that yjup, ., =u Y[l o]%?

+++, n. Then we have

[ 'lv [] -
(ulge)) 005 Ty n10 440y = 0442 COpa-m] Friom)?))

°i[1+1])

(mod (J for all r[i—m] € R

[141)) [1-m]’

e(w

(1-m) = ¥i%ra+101 ey’ o7 #1118 C a1
where ¢51=¢'[i-l]°¢[i-2]° '”"bj HA#3).

From the above discussion, we get the following

definition. For convenience sake, we shall assume n > 2.

Definition. Let $= {n; bi’ Rys Wiy ¢4} and §'-=
{n'; bi, Ri, wi, ¢i] be serial systems. We shall say that
8 1is equivalent to $' if the following three conditions
are satisfied:

(1) n=n',

(11) there exists an integer m such that

b[i m]=b' for all i,
(iii) for each 1, there exist a unit u! € R!

[1+1] [1+1]

and a ring isomorphism 91' R such that

(1-m] ~
(i) ¢ (8y(rpy m]))“[1+1] z 9[i+1](¢[i—m](r[i-m]))

i[i+l])

(mod (J for all

[1+1)’ Tli-m] € R[i-n]’

9; (w cee B

1
[1-m]? = Vi®[141]1 Cpaaa)’ [1-114 ®11-1704°
= H 0O easep ']
where ¢ji ¢[i—1]°¢[i-2] ¢5 (1#£3).
The above relation is an equivalence relation of serial

systems, and two invariant systems of the same indecomposable
self-basic serial ring are equivalent.

The second main theorem is stated as follows.
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Theorem 3.1. A necessary and sufficient condition for
given two indecomposable self-basic serial rings to be
isomorphic to each other is that their invariant systems

be equivalent to each other.

Corollary 3.2. There is a bijective correspondence
between all Morita equivalence classes of indecomposable
serial rings and all equivalence classes of serial systems by

[R] = [8p0],
where [R] denotes the Morita equivalence class of an
indecomposable serial ring R, R° denotes the basic ring
of R, SR° denotes an invariant system of R°, and [5R°]

denotes the equivalence class of SR°'

4. Self-duality. The notations are as in 1. Let
us put-’ '
E; =E(gRey/34), 1=1, 2, ---, n,
E=EI®E2$°--eEw
S=End(RE),

and fi :E + Ei be the projection, i=1, 2, ---,‘n. Then

S 1s an indecomposable self-basic serial ring such that

sf., Sf an is a Kupisch series for S and

gs "t
C(SSfi)=bi=c(RRei) for all i,

and RES defines a Morita duality between the category of

all finitely generated left R-modules and the category of

l’

all finitely generated right S-modules.
J. K. Haack [5] has proved the following theorem.

Theorem 4.1. Every factor ring of an indecomposable
serial ring with either a constant or a strictly increasing

admissible sequence has a self-dual. (The admissible
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sequence of R 1is said to be strictly increasing if
bk+1 < bk+2 < eee < bn < b1 < e < bk for some k.
Notice that the admissible sequence of R is constant if

and only if R is quasi-Frobenius.)

As one of the applications of Theorem 3.1, we get the

following theorem which is a generalization of Theorem 4.1.

Theorem 4.1. Assume that
(*) #Hi | bi 1 (mod n)} < 1.
Then there exists a ring isomorphism I :R + § such that

I‘(ei)=fi for all 1i.

In particular, if R satisfies the condition (*), then
every factor ring of R has a self-duality.

Theorem 4.2 is proved by the induction on n.

For a suitable ei, we can prove that eRe satisfies

the condition (*), where e=1l-e, = e +eee 4 €4-1 te +

i+1
---+en. Let us put f=f1+°"+fi-1+fi+1+”'+fn'

Then fo==End(eReE(eRe/eje)) and there exists a ring

i

isomorphism T': eRe + £Sf such that

I"(ej)=f:i for j#1i,
by the induction hypothesis. Using Theorem 3.1 and the
ring isomorphism TI', we can construct a ring isomorphism
F': R~ 8 such that

I‘(ej)=f for all j.

3
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ON THE HEREDITARITY OF TORSION CLASSES*
Yoshiki KURATA, Kazuo SHIGENAGA and M. T. CHEN

Let R be a ring with identity. A torsion class of
R-modules is sald to be cyclic-hereditary, following Ikeyama
[3], if it is closed under submodules of cyclic R-modules.
Not all cyclic-hereditary torsion classes are hereditary.

In this paper, we attempt to find necessary and suffi-
cient conditions under which cyclic-hereditary torsion
classes are hereditary. It is shown that torsion class T
of R-modules is hereditary if and only if (i) T is cyclic-
hereditary and (ii) for each M (# 0) € T there exists x
(# 0) € M such that Rx € T. We can provide examples to show
that these conditions (i) and (ii) are independent with each
other and each of them does not always imply the

hereditarity of T.

§ 1. Throughout this paper, R is a ring with identity
and R-modules are unitary left R-modules. R-mod denotes
the category of all R-modules. For R-modules M and M', we
use M' < M to denote that M' is a submodule of M.

Especially m < R means that m is a left ideal of R.

R
A pretorsion class T of R-modules is a subclass of R-

mod closed under factor modules and direct sums.
In addition, if T is closed under extensions, then it is

called a torsion class.

* Dedicated to Professor K. Murata for the celebration

his sixtieth birthday.
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A torsion class which is closed under submodules is said to
be hereditary.

For a class T of R-modules, let us put

D) = {m< R | R/me T

If T is a hereditary torsion class, then L(T) satisfies:

(1°) If m € L(T) and n is a left ideal of R such that
m < n, then n € L(T). ,

(2°) 1If m and n belong to L(T), then m [y n € L(T).

(3°) 1f me L(T) and 2 € R, then (m : a) € L(T).

(4°) 1f m is a left ideal of R and there exists n ¢
L(T) such that (m : a) € L(T) for all a € n, then m € L(T).

A family of left ideals of R satisfying the conditionms
(1°) to (4°) is called a left Gabriel topology on R. It is

well-known that T -+ L(T) gives a bijective correspondence

between hereditary torsion classes of R-modules and left
Gabriel topologies on R. There exists, however, a non-
hereditary torsion class T such that L(T) is left Gabriel.
Such a torsion class can be characterized as one closed
under submodules of cyclic R-modules and is called cyclic-
hereditary [3, Theorem 5].

We refer to Stenstrdm [8] for more information about

torsion theories for R-mod.

§ 2. For a torsion class T of R-modules, as was shown
by [3, Lemma 4], L(T) satisfies only (1°) and (4°) of the
preceding section. 1In case R is commutative, it is easily
seen that (1°) implies (3°) and hence L(T) satisfies (3°)
(cf. [3, Corollary 6]). This, however, is not the case in

general.
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Example 2.1. For a field K, let R = (§ ). Then I

= [g i) is an idempotent ideal of R and T = { M | IM = M}
is a torsion class of Rfmodules. In this situation, L(T)
coincides with {m < gR | R=1 + m} and does not satisfy

K O a a
(2°) as well as (3°). For, both [0 0] and {[0 O]I a € K]
belong to L(T), but their intersection does not belong to

L(T).

It is, therefore, natural to ask when L(T) satisfies

(3°). Concerning this we have

Lemma 2.2. Let T be a class of R-modules closed under
isomorphic images. Then L(T) satisfies (3°) if and only if

T is closed under cyclic submodules of cyclic R-modules.

Proof. For a left ideal m of R and a ¢ R, 0 + R/(m:a)
+ R/m is exact, from which the lemma follows. //

Especially we have

Corollary 2.3 ([3, Theorem 5]). Let T be a torsion
class of R-modules. Then L(T) is left Gabriel if and only
if T is cyclic-hereditary.

As was shown in [3, Example 4], not all cyclic-
hereditary torsion classes are hefeditary. We now consider
conditions under which cyclic-hereditary torsion classes
are hereditary.

For a class T of R-modules, let us put

T, = {RM | Rx € T for all x ¢ M}.
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If T is a pretorsion class, then To coincides with

(M | M' €T for all M' < M}.
This is the largest class of R-modules which is contained
in T and is closed under submodules. If T is a torsion
class, To becomes the largest hereditary torsion class

contained in T.

Proposition 2.4. For a pretorsion class T of R-modules,
the following conditions are equivalent:
(1) T is closed under submodules.
(2) (1) T is closed under cyclic submodules of cyclic
R-modules.
(ii) For each M ¢ T and each x ¢ M there exists a
cyclic submodule of M in T containing x.
(3) (1) T is closed under cyclic submodules of cyclic
R-modules.
(ii) For each M ¢ T and each x € M there exist y ¢ M
and a € R such that Ry ¢ T and 2R(x) = QR(ay).

Proof. The implications (1) + (2) » (3) are obvious.
(3) » (1). Let x ¢ Me T. Then, by assumption, Ry ¢ T and
QR(x) = ZR(ay) for some y ¢ M and a ¢ R. Since ZR(y) e L(T)
and L(T) satisfies (3°) by Lemma 2.2, QR(x) = (QR(y) : a) e
L(T). Hence Rx ¢ T and thus M ¢ To. l/

§ 3. Let L be a family of left ideals of R and let
L,={ms R| (m:a) el for all a € R}.
This is the largest family of left ideals of R which satis-
fies (3°) and is contained in L. Furthermore, if L satis-
fies (1°), then so does Lo' If L satisfies (4°), then so
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does Lo and Lo is the largest left Gabriel topology contained
in L.
For each R-module M, define t(M) and to(M) to be

tM) = {xe M| QR(x) e L}
and

to(M) = {xeM| ER(x) € Lo},
respectively. Both t(M) and to(M) are merely subsets of M
and to(M)C: t(M). If L satisfies (4°), then to(M) is the
largest submodule of M contained in t(M), and t, may be
regarded as a left exact radical of R-mod corresponding to

the left Gabriel topology Lo'

Even if L satisfies (4°), t(M) is not always a sub-
module of M unlike to(M).

Example 3.1. For a field K, let R = (5 ). Put I=
(g g] and L = {m < gR | I <m}. Then I is an idempotent
left ideal, but not a right ideal. Hence L satisfies (1°)
0 0

to (4°) except for (3°). However, t(R) = [0 K) and is not
a left ideal of R.

The following proposition gives conditions for t(M) to

be a submodule of M.

Proposition 3.2. Let L be arfamily of left ideals of
R and let t(M) and to(M) be as above. If L satisfies (4°),
then the following conditions are equivalent:

(1) t(M) is a submodule of M for all R-modules M.

(2) t(M) = to(M) for all R-modules M.

(3) L= Lo'
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(4) L satisfies (3°).

Moreover, if L satisfies (4°) and if one of the condi-
tions (1) to (4) holds, then t may be regarded as a left
exact radical of R-mod and the corresponding left Gabriel
topology on R coincides with L.

Proof. The equivalences (1) Z (2) and (3) < (4) are
obvious. (2) + (3). Assume (2). Then t may be regarded
as a left exact radical of R-mod and the corresponding left
Gabriel topology on R coincides with L. Hence L must be
left Gabriel. (3) + (2) is also trivial. //

Proposition 3.3. For a torsion class T of R-modules,
let L(T) = {m < ;R | R/me T} and t(M) = {x e M | 2,(x) ¢
L(T)} for each R-module M. Then the following conditions
are equivalent:

(1) t(M) is a submodule of M for all R-modules M.

(2) L(T) is left Gabriel.

(3) T is cyclic-hereditary.

Moreover, if one of the conditions (1) to (3) holds,
then t may be regarded as a left exact radical of R-mod, the
corresponding left Gabriel topology on R coincides with L(T)
and further T(t) = T , where T(t) = {.M | eq) = M}.

Proof. We may only show the last statement. M e T(t)
means that zR(x) e L(T) for all x € M, or equivalently,
Rx ¢ T for all x £ M, which shows that M ¢ To' !/

Now we come to the main theorem of this paper. We need

the following lemma which is a slight generalization of [9,
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Lemma 2.1].

Lemma 3.4. Let r and s be an idempotent preradical
and a radical of R-mod, respectively. Then r < s if and
only if, for each R-module M (# 0) with r(M) = M, we have
s(M) # 0.

Proof. The "only if" part is obvious. To prove the
"if" part, assume that r *zs. Then there exists an Rfmodule
M such that r(M) # s(M). Hence s(r(M)) # r(M). It follows
that r(M)/s(r(M)) # 0 and r(r(M)/s(r(M))) = (M) /s(x(M)).
By assumption, s{(r(M)/s(r(M))) # 0, a contradiction. //

Theorem 3.5. For a torsion class T of R-modules, the
following conditions are equivalent:
(1) T is hereditary.
(2) (1) T is cyclic-hereditary.
(ii) For each M (# 0) ¢ T there exists x (# 0) ¢ M
such that Rx ¢ T.

Proof. (1) + (2) follows from Proposition 2.4.
(2) » (1). Assume (2). We show that Tc:_To. To do this,
for each R-module M, put t(M) = {x ¢ M | QR(x) e L(T)}.
Then, by Proposition 3.3, t may be regarded as a left exact
radical of R-mod and T(t) = To. By assumption, for each M
(# 0) € T, there exists x (# 0) € M such that Rx ¢ T. Hence
QR(x) e L(T) and x € t(M), which means that t(M) # 0. Thus,
by Lemma 3.4, T(:,To. //

It is to be noted, in the preceding theorem, that the
conditions (2) (i) and (2)(ii) are independent with each
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other. [3, Example 4] shows that (2)(i) does not imply
(2)(ii) in general. The following example shows that (2)(ii)
does not always imply (1) as well as (2)(i).

Example 3.6. Let e = [8 g) in Example 2.1. Then, for
any M (# 0) ¢ T, M = IM = ReM. Hence eM # 0 and so there
exists x € M such that ex # 0. Since ex = e(ex), Rex ¢ T.
However, L(T) does not satisfy (3°), as was pointed out in

Example 2.1, and thus T is not (cyclic-)hereditary.

Corollary 3.7. Let R be commutative. Then a torsion
class T of R-modules is hereditary if and only if, for each
M (# 0) € T, there exists x (# 0) ¢ M such that Rx ¢ T.

Corollary 3.8 (cf. [5, Theorem 4]). For an ideal I
(# 0) of R and the torsion class T = {Rﬁ I IM = M}, the
following conditions are equivalent:

(1) T is hereditary.

(2) 1) {m<_ R |R=1I+mn} is left Gabriel.

(11) For each sequence a;, a of elements of

s oas
I, there exists n > 0 such that R = 12+ QR(ala2 cew an).
(3) (1) T is cyclic-hereditary.
(i1) PFor each R-module M (# 0) & T there exists x
(# 0) ¢ M such that x € Ix.

Proof. (1) = (2). Let F be the free R-module with

basis x,, x,, ... . For each sequence a,, a .. of ele-
1 2 1

2,
ments of I, let

Yn T *n T %%+
and G the submodule of F generated by Yis Yos oo -

1 for each n > 0
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Then the factor module F/G is in T. Hence R(x1 + G) € T and
so (G : x;) € L(T). As is easily seen, L(T) = {m < Rk I
R=1+m} and (G : X)) = 2p(a;a, ... a ) for some n > 0.
(2) ~ (3). Let M (# 0) be an R-module and suppose that IM

= M. As was shown in the proof of [5, Theorem 4], there
exist sequences 815 895 o»- of elements of I and Xys Xgy eee
of elements of M such that a,a, ... a x, # 0 for all 1 > 0.
By assumption, R,R(ala2 cen an) € L(T) for some n > 0. Hence
Rala2 cee @ X belongs to T. (3) » (1) follows from Theorem

3.5. /]

§ 4. A left Gabriel topology L on R is called a
l-topology if it has a basis B consisting of principal left
ideals of R.

For a subset S (# ¢) of R, define a family L of left
ideals of R to be

L={m< R|mpn S#ol
If L is a left Gabriel topology on R, then L becomes a 1-
topology ﬁith basis {Ru I u € S}. Moreover, any l-topology
L' on R with basis B can be obtained in this way, i.e., L'
={m< R|mgn S# ¢}, where S ={uecR | Ruc B}

We now ask for conditions on S for L to be left Gabriel.

Lemma 4.1. If S satisfies:
(S0) For any u, v ¢ S there exists a ¢ R such that
auv € S, then L satisfies (4°).

Proof. Let n € L and m a left ideal of R such that
(mn: a) eL for all a ¢ n. Then there exist ve n (y S and

ue (m:v) S
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By assumption, c(uv) € S for some ¢ € R. Thus c(uv) e m
n Sandme L. //
We note that the converse of this lemma is not true in

general.

Example 4.2. Cozzens [2] has constructed an example
of a left V-ring R which is a.principal‘left ideal domain,
but not a field. Take a non-trivial left ideal I of R and
let T=Ra. Put S={a)andL=1{mg R|mn S%¢}
Then L coincides with {m < ;R | I < m} and satisfies (4°).
However, S cannot satisfy (SO).

Concerning (3°) we have

Lemma 4.3. The following conditions are equivalent:
(1) L satisfies (3°).
(2) (Ru: a) el for all ue S and a € R.
(3) S satisfies:
(S1) For any a ¢ R and u ¢ S there exist b ¢ R and

v € S such that bu = va.

Proof. (1) + (2) is obvious. (2) + (3). Let a ¢ R
and u € S. Then (Ru : a) ¢y S # ¢. Thus va = bu for some
beRandveS. (3) > (1). LetmeL and a ¢ R. Then
there exists u e m ¢y S and by assumption bu = va for some
beRand veS. Henceve (m: a) [y Sand thus (m : a)
e L. //

Combining Lemma 4.1 with Lemma 4.3, we have

Proposition 4.4. For a subset S (¥ ¢) of R, let L =
{E;RR|Ens#¢}andt(M)={xeM |2R(x)eL}for
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each R-module M. Then the following conditions are equiva-
lent:

(1) s satisfies (SO0) and (S1).

'(2) L is a 1-topology with basis {Ru | u € S}.

(3) t(M) is a submodule of M for each R-module M and
t may be regarded as a radical of R-mod.

Moreover, if one of the conditions (1) to (3) holds,
then t is left exact and the corresponding left Gabriel
topology is L.

Proof. (1) + (2) follows from Lemmas 4.1 and 4.3.
(2) » (3) is well-known. (3) - (1). Let u, v ¢ S. Then
u(l + Ru) = 0 and so R/Ru ¢ T(t). Likewise R/Rv ¢ T(t).
Moreover, Rv/Ruv is a homomorphic image of R/Ru and hence
Rv/Ruv € T(t). Since t is a radical, T(t) is closed under
extensions. The exactness of the sequence 0 -+ Rv/Ruv >
R/Ruv + R/Rv + 0 implies that R/Ruv ¢ T(t). There exists w
¢ S such that w(l + Ruv) = 0 and auv = w € S for some a2 ¢ R.
Thus S satisfies (S0) and, by Lemma 4.1, L satisfies (4°).
The proposition then follows from Proposition 3.2. //

We now specialize the above discussion. For an ideal
I (# 0) of R, we let

s={1-b | ber1}.

Then S is multiplicatively closed and hence satisfies (SO)
trivially. The class T = {RM l ™ = M} of R-modules is a
torsion class and, in this situation, L(T) coincides with
{mg R|mn S# ¢l |

Proposition 4.5. For an ideal I (# 0) of R and the
torsion class T = {;M | IM =M}, let S = {1 -b | be I}
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and t(M) = {x e M I 2R(x) e L(T)} for each R-module M.
Then the following conditions are equivalent:
(1) S satisfies (Sl1).
(2) L(T) is a l-topology with basis {Ru | u € S}.
(3) T is cyclic-hereditary.
(4) t(M) is a submodule of M for all R-modules M.
(5) t(M) is a submodule of M for all R-modules M e T.
(6) t(R/Ru) = R/Ru for all u ¢ S.
Moreover, if one of the conditions (1) to (6) holds,

then t may be regarded as a left exact radical of R~mod,the
corresponding left Gabriel topology on R coincides with L(T)
and further T(t) = {Rﬂ | x € Ix for all x ¢ M}.

Proof. The equivalence of (1) to (4) and (6) follows
from Proposition 3.3 and Lemma 4.3. (4) -+ (5) 1is trivial.
So we may prove (5) -+ (6).

Assume that t(M) is a submodule of M for M ¢ T. Let
ueS., If R/Ru= 0, then clearly t(R/Ru) = R/Ru. Suppose
now that R/Ru # 0. Put u=1 - b for some b ¢ I, then R =
I + Ru and so I(R/Ru) = R/Ru. By assumption, t(R/Ru) is a
submodule of R/Ru. Since u(l + Ru) = 0, 1 + Ru € t(R/Ru)
and a + Ru = a(l + Ru) € t(R/Ru) for all a € R. Hence
t(R/Ru) = R/Ru. //

Theorem 4.6. For an ideal I (# 0) of R and the torsion
class T = {Rﬂ | I = M}, let t(M) = {x e M | 2R(x) e L(T)}
for each R-module M. Then the following conditions are
equivalent:

(1) T is hereditary.

(2) t(M) is a nonzero submodule of M for all R-modules
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M (#0) ¢ T.
(3) t(M) = M for all R-modules M e T.

Proof. (1) » (3) follows from Proposition 3.3 since
T= To and (3) + (2) is trivial. (2) = (1). By Proposition
4.5, T 1s cyclic-hereditary and hence, by Theorem 3.5, T is
hereditary. //

We note that t(M) < IM for all R-modules M. Therefore,
if t(I) = I holds, then by [4, Lemma 3.1] we have t(M) = IM
and hence t(M) = M for all R-modules M ¢ T. By Theorem 4.6,
T is hereditary. Especially we have

Corollary 4.7 (cf. [1, Theorem 6] and [7, Lemma 1.2]).
For an idempotent ideal I (# 0) of R, T is hereditary if and
only if t(I) = I.
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ON REGULAR SELF-INJECTIVE RINGS

Hikoji XAMBARA and Shigeru KOBAYASHI

JIntroduction. Let R be a ring with identity. R is
said to be right bounded if every essential right ideal
contains a non-zero two-sided ideal, which is essential as
a right ideal.

In [2], we have determined the regular right bounded
and right self-injective ring. More precisely we have proved

the following theorem.

Theorem 1. Let R be a regular, right self-injective
ring. Then R is right bounded if and only if
R =]1'Mn(i)(Ti) x'rrEndDj(vj) where each T, is

an abelian regular self-injective ring and each V, is a

J

right vector space over a division ring Dj'

In this report, as an application of theorem 1, we
shall give a necessary and sufficient condition for the

maximal right quotient ring Q(R) of R to be type If.

Preliminaries. Let R be a regular ring. Then R

is abelian provided all idempotent in R are central, and

R 1is said to be directly finite if xy =1 implies yx =1,
for all x,y € R, Furthermore R is called a regular ring

of bounded index of nilpotence if for any nilpotent element
x of R, there exists a positive integer N such that

xN = 0.
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A regular right self-injective ring R is called
type I if R contains an idempotent e such that eR is
faithful right R-module and eRe is an abelian regular
ring. We call R type If if R 1is type I and directly

finite.

We shall state basic results used in the following

section.

Proposition 1 ([1, Theorem 3.2]). For a regular ring
R, the following conditions are equivalent.
(1) R is abelian.
(2) R has no, non-zero nilpotent elements.
(3) All right (left) ideals of R are two-sided.
{(4) Every non-zero right (left) ideal of R contains a

non-zero central idempotent.

Proposition 2 ([1, Theorem 10.24]). A regular right
self-injective ring R 1is type If if and only if R is
isomorphic to a direct product of full matrix rings over

abelian regular self-injective rings.

Proposition 3 ([2, Proposition 4]). Let R be a
regular ring of bounded index of nilpotence. Then R is
right bounded and every non-zero two-sided ideal of R

contains a non-zero central idempotent of R.

“Application of Theorem 1. Let R be a regular ring.

We denote the maximal right quotient ring of R by Q(R).
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In this section, we shall prove the following theorem.

Theorem 2. For a regular ring R, Q(R) is type If
if and only if

(1) R is right bounded.

(2) Every non-zero two-sided ideal of R contains a

non-zero central idempotent of R.

In order to prove this theorem, we prepare the next

lemma.

Lemma 1 ([2, Lemma 2]). Let R be a right bounded
and regular ring such that every non-zero ideal contains a
non-zero central idempotent of R. Then Q(R) 1is also

right bounded.

Proof. Let I be an essential right ideal of Q(R).
Then clearly InR ge RR. Since R is right bounded,
there exists a non-zero ideal J such that J ge InR.
And from the assumption, J contains a non-zero central
idempotent e of R. Note that e is also central in Q(R).
Thus I contains a non-zero central idempotent in Q(R).
Let H be the ideal generated by all the central idempotents
in I. We claim that H %00. Assume not, then 1Q(H), the
left annihilator ideal of H in @, is not zero and
Hf\lQ(H) =0 since R is semi-prime. Hence there exists a
non~zero central idempotent f in erlQ(H) since J(\lQ(H)
is a non-zero two-sided ideal in R. On the other hand,
f is in H because f €J < I. But this contradicts that
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Hr\lq(H) = 0. Consequently, H is an essential right ideal

of Q(R), as claimed. ‘Therefore Q(R) is right bounded.

Proof of Theorem 2. If Q(R) is type I_., then by

fl
Proposition 2, Q(R) is isomorphic to a direct product of

full matrix rings over abelian regular self-injective rings
and by proposition 1, each full matrix ring over an abelian
regular ring has bounded index of nilpotence. Thus there
1*€pre e in Q(R)
such that Q(R) =11an(R) and each enQ(R) has bounded

exist orthogonal central idempotents e

index of nilpotence. First we show that (2) holds. Let

I be a non-zero two-sided ideal of R. Since @ enQ(R) is
an essential right ideal of Q(R), we have that I nenQ(R) £0
for some positive integer n. On the other hand, enR has
bounded index of nilpotence because that enQ(R) has bounded
index. Thus enR(\I contains a non-zero central idempotent

f of enR by proposition 3. Now it is easy to see that

f 1is a central idempotent of R. Hence (2) holds.

Next we shall show that (1) holds. Let J be an essential
right ideal of R. Then for each n, we have that J(\enR # 0.
Thus Jr\enR is an essential right ideal of enR.

On the other hand, enR has bounded index of nilpotence, so
enR is right bounded. Therefore Jr\enR contains a

non-zero central idempotent in enR. Consequently, J contains
a non— zero central idempotent in R. Let H be the ideal
generated by all the central idempotents in J. We claim

that H is an essential right ideal of R. For a non-zero
element x in R, there exists a positive integer n

such that e x # 0. Thus there exists a central idempotent
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f in J such that fenx #0 and in J since enR is
right bounded and the ideal generated by all central
idempotents in Jr\enR is essential. Hence fenx is in
H. This implies that H is an essential right ideal of R,
so (1) holds. Conversely, we assume that (1), (2) hold.
Then by Lemma 1, Q(R) is right bounded. Hence Theorem 1

shows that @Q(R) = Ql X Q2 where Ql is type I_. and Q2

is a direct product of right full linear rings. girthermore
(2) states that every non-zero ideal of Q(R) contains a
non-zero central idempotent. But it is easily ;een that Q2
does not satiesfy this property. Therefore we can conclude
that Q(R) is type If.
Corollary. Let R be a regular, right self-injective
ring. Then R 1is isomprphic to a finite direct product of
full matrix ring over abelian regular self-injective rings
if and only if
(1) R is right bounded.

(2) All prime ideals of R are maximal.

Proof. It is clear by Theorem 1 and 2.

Remark. Without (1) or (2), Theorem 2 can fail,
as the following examples show.

A regular right bounded ring does not necessarily have
the maximal right quotient ring such that type If. .
For example, choose a field F, let V be a countable-in-
finite dimensional vector space over F and set

R= End(V) and M={xe¢R | dim (xV)< 0} . Then clearly
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R 1is regular, right self-injective ring. Given any

x ¢eR - M, we have dimF(xV) = dimF(V) and so XxV = V,
whence xR = RR. This shows that R is not directly finite.
On the other hand, R 1is right bounded by Theorem 1.
Furthermore, a regular ring R, which every non-zero ideal
contains a non-zero central idempotent of R, also does not
necessarily have the maximal right quotient ring such that

. For example, choose fielfs F

type I ..o 5 Set

f 1’ F2'
R =M (F) forall n=1,2, ..., and set R=[[R . Let
M be a maximal ideal of R which contains @Rn. Then R/M
be a simple right and left self-injective regular ring, but

not type I. by [1, Example 10.7 ].
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Reflection Functors and Auslander-Reiten
Translations for Self-Injective Algebras

Hiroyuki Tachikawa

This report is an introductory version of reflection
functors stated in the title and a generalization of the
relation between them and Auslander-Reiten translations in
hereditary algebras. Further we shall state the limit of
announced results and a view for generalizations at end.
The detailed proofs will appear elsewhere [7].

Let L = (Fk’kMi)’ k,ie s be a K-species, i.e.

Po is a finite set of indices, Fk division rings with

center K and kMi finitevK-dimensional Fk-Fi—bimodules

on which K operates centrally. Then I associates with
a valued graph T having an orientation A and a here-
ditary algebra A. Cf. Dlab-Ringel [4], pp.l1-5.

Assumé that (T',A) is connected and without cycle.
Then A is a two-sided indecomposable, hereditary and
basic finite dimensional K-algebra. For the orientation

A and a vertex j € Po » We can define a new orientation

ojA by reversing the direction of arrows along all edges

containing j. Since T has no cycle, there is an
admissible ordering of vertices kl’kZ""’kn with respect
to A, i.e. each vertex kt is a sink with respect to

the orientation ¢ g cee O A
kel K2 k
In the case j € Fo is a sink (resp. a source)

with respect to A, let us denote by Pg the set
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of starting (end) vertices of all arrows containing j.

k

- . j _
such that N s kMi for k,i ¢ ro and jNi HomK(fﬂj,K)

. ]
(resp. iNj HomK(jMi,K)) for i e Fo. And we shall

Then we can define a new species on = (F ’kNi)’ k,1 € Fo .

nr

denote the corresponding valued graph and the algebra by
(r, o, A) and ojA respectively.

Denote L(Z) and mod-A the category of all represent-
ations of I in K and the category of all finitely generated
right A-modules respectively. Given a sink (resp. a source)
k of I, the reflection functors s; (resp. s;) is defined

as a functor: L(Z)———+L(ok2), equivalently mod-A—mod-o A.
It is well known that for an object X of L(I) (an A-module
X) s;(x) (respi s;(x)) is non-zero indecomposable iff
so is X, provided X is not isomorphic to a simple represent-

tation (a simple A-module) L, which corresponds to k € T o’

k
i.e. Lk = (Xj; i¢j:xjﬁ.jmf__+xi)’ xk=Fk’ Xj=0 for j # k and
+ -
all in = o. And sk(Lk) = 0 (resp. sk(Lk)— 0).
Denote by mod-A (resp. mod-A) the stable category of
mod-A, i.e. the objects of mod-A (resp. mod-A) are same
with ones of mod-A, but the groups of morphisms are
residue class groups of morphisms in mod-A by the subgroups
generated by morphisms which factor through projective
(resp. injective) A-modules. It is well known the Auslander-
Reiten translation DTr is a functor from mod-A to mod-A.
In case of A being a tensor algebra associated with
a species I with no cycle Brenner and Butler [3] proved
that DT_ = s s, -
r IS S, oS
n n-1 1
through an admissible sequence k1""’kn el O(Z). This

,where the composition goes

is the theorem which in this note I want to generalize for

the case of self-injective algebras.
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Put HomK(A,K) = D(A). Then D(A) is an injective
cogenerator right and left A-module. Further the full
subcategories of all projective A-modules and all injective

A-modules are equivalent by — ® AD(A) and Hom, (D(A),—) with

n o>

natural equivalences § : HomA(D(A),—) GAD(A)
and y: 1mod—A'E HomA(D(A),—-GAD(A)).

The trivial extension R of A by D(A), denoted by
A & D(A), is an algebra defined as follows: R = A @ D(A)

as an additive group and the multiplication is defined by

1mod-A

(a,q)(a',q') = (aa',aq'+qa') for (a,q),(a',q') € R. It is
well known that an R-module X has expressions
(X,8,D(8)7—2—%,) and (x> [D(4),,X, 1,) with
¢ - ¢ 6D(A) =0 and [D(A), ¢ ] + ¢y = 0 which are considered
as objects of mod-A K (— @ D(A)) and [D(A),— ] mod-A
respectively. Cf [8] . Here ¢ corresponds to ¥ in an
adjoint relation HomA(X ® D(A),X) = HomA(X,HomA(D(A),X)),
and x(a,q) = xa + ¢(x ®q) =xa + Y(x) (q) for x € X,
a € Aand q € D(A). Denote Im ¢ by V (=XD(A)). Since A
is hereditary, V is injective and we have a decomposition
X U @V as A-modules, where U = X/XD(A). Then

¢ (XD(A) © D(A)) = O (resp. ¥ (XD(A)) = 0) and hence

¢ (resp. V) may be identified with ¢JU ® D(A) (resp.
$ |U). According to ¢=0or ¢# O X is said to be of
1st kind or 2nd kind. Hereafter we shall use

(U @ p(a)—v) (resp. (U-I*[D(A),V] )) as a canonical ex-
pressior of X in place of (X @ D(A)—iﬂx) (resp.

(x> [3(A),X] ). X is of 1st kind iff X is an A-module
and then X is indecomposable iff it is indecomposable as
an A-module. For indecomposable R-modules X of 2nd

kind the author proved in [ 6] the following theorem.
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Theorem 1. For the case ¢ {resp. ¢) # O, an R-module
is indecomposablé iff either one of the following conditions
(1) and (ii) is satisfied:

(1) ¢ (resp. ¢) is an isomorphism and U A is
indecomposable projective.

(i1) ¢: U @ D(A)——V (resp. ¢ : U—>[D(A),V 1)
is an epimorphism (resp. a monomorphism) but not an
isomorphism, Ker ¢ (resp. Cok ¢ ) is indecomposable
and Ker ¢A (resp. Im ¢A) is 1large submodule of U ® D(A)
(resp. small submodule of [D(A),V ]).

In the case (i) X is a projective and injective
R-module.

Proposition 1. Let (U ® D(A)——$+V) and (U-J£+[D(A),V] )
be the canonical expressions of the same indecomposable
R-module X of 2nd kind. Then

Cok y = TrD (Ker ¢ ) and Ker ¢ zDTr(Cok V).

Proof. By Theorem 1 U—[D(A),V]— C——0 is a

minimal projective resolutuion of C Hence we have an

exact sequence 4

0— DT_(C)—> U @ D(A)—=[D(4),V] 8 D(4)—>0.
But [D(A),V] @D(A) =V and ¢ = 8§ * ¢ ® D(A).

Here it is to be noted that R is a symmetric (i,e.
self-injective) algebra. Therefore mod-R = mod-R .

From now on we shall consider Auslander-Reiten
translations which are the endofunctors on mod-R, and
in order to emphasize the difference from DT :mod-A
~——mod—-A and TrD :mod-A— mod-A we shall denote them
DT§ and TrDR respectively. And the relation between
DTr and DTS is characterized by the following theorems:

Theorem 2, Let X be a non-projective indecomposable R-
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module. _
(i) If X is a non-projective indecomposable A-
module, then DT\ (X} = DT_(X).
(1ii) Let X be a projective indecomposable A-module .
If X@ D(A)A is non-projective, then Ker » = DTr(X ® D(A))
provided DI (X) = (U ® D(A)—2»V). If X @ D(A), is

projective, then DTS(X) = X ® D(A) 9 D(A).

(iii) Let X = (U @ D(A)-2—V ) with ¢# O and
DTS(X) = (U'® D(A)—l—+V'). If Ker ¢ A is not projective,
then Ker ) = DTr(Ker ¢ ).

(iv) Let X = (U @ D(A)-2—v) with ¢ # 0. If Ker N
is projective, then DTS(X) = Ker ¢ @ D(A).

Theorem 3. Let X be an indecomposable R-module.

(1) 1If X be a non-injective indecomposable A-module,
then T DV(X) = T.D (X).

(ii) Let X be an injective indecomposable A-module.
If [DA),X] is non-injective, then Cok 7 = TrD([D(A),X])

provided TrDR(X) = (U=2—[D(A),V]). If [D(A),X] is
injective, then TrDR(X) = [D(A),[D(A),X]].

(iii) Let X = (U-Y—[D(A),V]) with ¢ # O and T_D(X)

z (U'—£—+[D(A),V']). If Cok ¢ A is not injective, then
Cok ¢ = TrD(Cok V).

(iv) Let X = (U-Y—(D(4),V]) with ¢ # 0. If Cok ¢ A
is injective, then TrDR(X) = [D(A),Cok y ].

As was stated before, for a valued graph (T , A )
without cycles associated with a species I we have hereditary

algebras A A, % A,..., and reflection functors s+
1

k.
J

%%

» O
k1 2
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mod-ok «es0,, A —mod- o A for an admissible

B B S | j Ti-1 1
sequence kl,...,kn e I(g).

In this case we can construct trivial extensions

A NAD(A),okIA xo(oklA),okzokIA X D(okzokIA),..., which
in the following we shall denote by R,0, R,0, o, R,... .
k1 kZ k1

Then it arises naturally a question whether there exist

+
functors Sk : mod-g cee Op R— mod-ok k R

h | i-1 1 3 j-1 1

such that DT§ = S: ...S: We shall show in the

n n-l1 1

R

wn
~+ =

remaining part of this note how to define such functors
and show the outline of the proof of the isomorphism.

In Theorem 3 for an indecomposable R-module X of lst
kind DT?(X) = DTr(X) except XA is projective, when DTr(X)

vanishes and DTN(X) = (U 8 D(A)-2-V) s of 2nd kind and
Ker ¢ = DTr(X @ D(A)) or X @ D(A) @ D(A) according to
X €@ D(A) is non-projective or projective.
This fact suggests us the following definition of S:.
Definition 1. Let k be a sink of (I'>A) and X a
non-projective indecomposable R-module. An indecomposable
R-module S:(X) is defined as follows:

(1) 1If X is of 1lst kind and not isomorphic to L

9k
k
which is the simple R-module corresponding to the sink k,

+ +
then Sk(X) = sk(X).

(ii) 1If X is isomorphic to Lk’ then Ker ¢' =
(L @ D(A)) provided S (X) (U' © D(o A)———+V ).
(iii) If X is of 2nd kind and X=(U e D(A)———+V) and
if Ker ¢ £ Lk’ then Ker ¢ ' = sk(Ker ¢ ) provided
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+ = (1" ¢'
Sk(X) = (U'9 D(okA)—)-V').
(iv) 1If X is of 2nd kind and having

(Uue D(A)—2—+V) as the canonical expression and Ker ¢ =

Lk’ then S:(X) = L' which is the simple okR-module

A).

k
corresponding to the source k of (T, O
Further, for the the case of a vertex k being a

source with respect to ( I', A) we make dually

Definition 2 (i) If X is of lst kind and not
isomorphic to Lk’ then S;(X) = s;(X).
(ii) If X is isomorphic to L, which is simple

k
R-module corresponding to the source k, then Cok ¢

= s ([D(4),L, ]) provided S _(X) = (tY—[D(Aa),v1).

(111) If X is of 2nd kind having (UY—[D(A),V])

as the canonical expression and Cok ¢ # Lk’ then
- - 1
Cok y' = sk(Cok ¢) provided Sk(X) = (U'—£—+[(D(A),V']).
(iv) If X is of 2nd kind and having (U—Y—[D(a),V])

as the canonical expression and Cok y = Lk’ then

S;(X) = L'k which is the simple ¢, R-module corresponding

to the sink k of ( T, okA ).

k

In Definition 1 it is clear that the correspondence:
X———+S:(X) is injective on the set of R-modules X of
the cases (i) and (iv). Further in the case (iii),
by Theorem 1 Ker ¢ s 1s mot injective. Hence Ker ¢ #
Lk @ D(A) . Therefore the correspondence is injective
and consequently bijective on the set of all non-projective
indecomposable R-modules, because by the folleowing

Proposition 2 Lk © D(A) is only one injective A-module
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of which the image by s; is not an injective (kA-module.
Similarly the correspondence: X———»S;(X) is bijective

for all non-projective R-modules.

Proposition 2 (Dlab-Ringel [4]).

Let kl,kz,...,kn be an admissible sequence of
(r>A), and Lt 1 and Lé simple representations (modules)
in LQ;Kt lqkt é..qk l")(mod-ok Ok . k
nding t6 a sink k ané source k witﬁ respect to
(Lt) and

4A) correspo-

[s) g LI o | Aa ThenP .-.S
k. kif k, t kl kz ke

Qt-l Sk Si "'sk(Lé-l)’l st s n, are an indecomposable
projectivg rep%esentation (A-module) whose top constituent

is isomorphic to Lt and indecomposable injective represen-—

tation (A-module) whose bottom constituent is isomorphic

to Lt-l respectively. Consequently, if ki 3 Fo is a

sink (resp. a source) with respect toA, and t # i, then

s:i(Pt) (resp. s;i(Pt)) and s (Q ) (resp. s (Q )) are

indecomposable projective and inJective N A-modules

i
respectively such that the top and the bottom constituents

are respectively isomorphic to the simple module corresp-

onding to kt of (1, okiA)-

Now we shall give an outline of a proof of the
following main theorem. For the details, however, c.f.

{7 1.

Theorem 3. For any non-projective R-module X it

R
holds that S S .o S (X) = DT _(X) and
k "k r
n n-l 1

- - _ R
= D (X).
sklskz...sk (X) T, X)
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Proof. 1In our proof we shall make the following

abbreviation of notations; o, 0, = ...0, A to
0,0 g st tos - 1 kiEI -lkls to S d
1%1-1""91h> S i’ Sk 083 » 9 tos; an
- -1 i i i

S to S . '

ki i

The proof consists of the four parts (i)—(iv)
which correspond to the classifications of indecompo-

sable R-modules in Definition 1.

(i) X is of 1st kind and X # L,. Let us denote by
Li+l’ 1 s1is q—l, the simple 0,04 1--+0 R-module
corresponding to a sink k
If Sisi-l°'°sl(x) # Li+1
by the definition and Theorem of Brenner and Butler

it holds that S S _,...5,(X) = s -.8,(X) =

1+1 °F (T2040;

for each i, 1 £i & n-1, then

1
1 ...OIA).

1 nSn-1°

DT:(X) 3 DT?(X). Hence hereafter we shall assume that

S¢Sy 1+-+5;(X) = L
s, (X) #L.,, fori=1,2,...,2-1. Then it should be
1 i+l -1 -1 1
noted that X = S 8y +--8y (L2+1) = P2+1 and P2+1 is a
g+1 = Losre
At the begining we shall consider the
Case 1); X ® D(A) = P +1 ® D(A) = Q2+1 is not

projective. Let (U ® D(A) V) be the canonical
R

0+l for some £ ( £ £ n) but Sy85.1°°"

projective R-module such that Top P

expression of DTr(X). Since X © D(A) (= Q2+1) is not
projective, by Theorem 1 Ker ¢ = DTr(Q2+1) TS 8 e
81(Qp4)-

On the o;her hand, if we put SnSn_l...SQ+ISQ...Sl(X)
- 1 -
= (U1 ® D(A)———+V1) then Ker ¢1 = 8§ S "'Sl+1(Ll+1 (3]
D(ozol_l...olA)) because Slsl-l"'sl(x) = 5252-1"'51(x)
3 Ll+1’ which is a simple 0102_1...01A—modu1e correspond-
ing to a sink k2+1 of (F,oz ol—l"'olA)'
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Now L2+1 ] D(olo

injective o

2_1...0 A) is isomorphic to an

A-module Q'+i whose simple socle
of (1",0202_1

..,kz is a admissible

27g-1"""%
corresponds to a sink k
Since k k

Y}

o+l ...olh).

.’kn’kl’ .

L4+1° 42"

sequence with respect to (r,oz 02_1...01A), by Proposition
t - t
2 it follows that Qpy 5252-1’"slsnsn-l"’sz+2(L2+2)

and Q s s

B cee8 (L!
2+1 n n+l L4277+
0202+1...01A-modu1e which corresponds to a vertex k2+1

of (P,02+loz
and Ker ¢1 =z

1 .
1), where L2+1 is a simple

! =
.++0;A). Thus we have Q; , = 5252_1---51(Q2+1)
SnSn-1°"Sp+1505g-1°"*51(Qp4q) . It follows

S8, _1:+ S;(X).

that DTS(X)

Case 2): X © D(A) = Q2+1 is a projective A-module.
Suppose QR'_'_1 = Pj' Then (I', A) must be the following
linear diagram:

Kem—m—pom——3+ " e—e». k

k| 2+ 1
and it follows %+l = 1. But this is impossible and

this case does not happen.

(ii) X is of lst kind ande = Ll’ where L1 is a

simple R-module corresponding to the sink k of (I',A),
i.e. it is also a simple A-module.

At the begining we shall consider the Case 1):
L1 ® D(A) = Q1 is not a projective A-module, whére Q1

is an injective A-module with Soc Q1 z Ll'
By Definition 1 Ker ¢1 = sl(L1 ® D(A)) where
¢

= lu 2
Sl(X) = (U1 e D(OIA)___+‘1) and s is the reflection

functor of mod-A to mod-olA which is corresponding to

the sink kl of (T',A). From the assumption of Case 1)
we know 0 # DT (L, ® D(A)). It follows that

sisi—l"’sl(Ll ® D(A)) # 0 for 1 = 1 = n, since
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DTr(Lle D(A) = Snsn-l"'sl(Ll ® D(A)). So if we put
1 ]
Snsn-1°°'sl(x) = (U' ® Q—i—+V'), then by the definition
! =~
Ker ¢' = 8, 8n-1" " sl(L1 @ D(4)).

On the other hand, for the canonical expression

(U & D(a)-2—v) of DTE(X) we have Ker ¢ = DI (L8 D (A))
o e
by Theorem 3. Hence DTr(X) =] Snsn—1'°'sl(x)'

Case 2): L1 ] D(A)A =Q1
If Q1 = Pj’ then the graph (I' , A) should be the

is projective.

following linear diagram:

k k k k

'1——)-——)-. ree —_ > —_

and consequently j=n., Then it follows by Theorem 2 that
DTr(X) E L1 = L1 @ D(A) @ D(A) Ql ® D(A) = Pn @ D(A)

2 Qn = Ln’ where Ln’ Pn’ Qn are simple, projective and
injective R-modules respectively which are corresponding
to vertex kn of (' , A) and Top(Pn) 2 Ln = Soc(Qn).

¢ i
On the other hand, we put S (X) = (U, @ D(olA)—Lrvl),

Ker ¢1 S sl(L1 ® D(A)) Sl(Pl ® D(A)) = Sl(Ql) = Sl(Pl)'
Now, in (T ,o ...olA) the vertex kn is a

n

n-1%n-2

sink and the correspondingnsimple o . .0, A-module

n-1"n-2""""1
? Y
Ln is projective. Hence by Proposition 2 sn-lsn—2'°'sl(Pn)

]
..olA)—>V2) is the

(s

~ ' .
> Ln' Hence if (U2 ® D(on_lon_zt

i {
canonical expression of sn_lsn_z...sl\X), then Ker ¢2

[}

n

L] - . .
Ln. Therefore by the d§f1n1t10n of Sn’ Snsn-1'°'sl(x)
! =
Ln and this follows DTr(X) = Snsn—l"'sl(x)'
For indecomposable R-modules X of 2nd kind correspond-

ing to the classifications (iii) and (iv) of Definition 1
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we can proceed the proofs similarly, but for the sake of

the restriction of spaces we shall omit them.

Complementing the definition of morphisms we can obtain
stable functors S: and S; : mod-R——mod-g, R from Definitions
1 and 2. And we have

Ok

Theorem 4. Let kl’kz""’kr be an admissible sequence
of (T , A). Then self-injective algebras R and

o] +++0, 0, R are stably equivalent to each other. Especial-

k k, k

lyrby tak%ngla suitable admissible sequence Op +++0k Ok R is
jsomorphic to & self-injective algebra with C&Be—zero
radical.

Similarly 1if T is a Dynkin diagram An,o g, R

kr...akz k1
can be taken a Nakayama algebra (= a serial algebra).

In the remaining part we would like to mension the
relation between (T , A)(= the quiver of A) and the quiver
of R (= A x D(A)), where A in not necessary hereditary.

Proposition 3. For K-algebras A and R = A X D(A)
denote by T = (T, ry) and r' = (I"O ,P'l ) the quivers
(= (set of vertices, set of arrows)) of A and R respectively.

Then T = T' and
o o

' \ 4 . a
Ty rY{id—- )| ei(SocAAcw Soc AA)ej # 0},
where ei’ej are primitive idempotents of A corresponding to
i’j € I‘o.

Proof. Denote the Jacobson radicals of A and R by
J and N respectively. Clearly N=J & D(A)C R (=A & D(A))
and N2 = J2 ® (JD(A) + D(A)J). It follows that (i-—-j)
e T iff ej(J/Jz)ei @ ej(D(A‘)’Z/JagAHD(A)J)ei $ 0.
But (i ——>+j) € T iff ej(J/J )ei # 0. Thus Fi > Iy

Now let ( , ) be an inner product : D(A) x A—— K
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defined by (f , a) = £(a) for f € D(A), a € A, Then
SocAA and Soc AA are the annihilators of JD(A) and
D(A)J in A with respect to ( , ). Hence Soc AA(\ Soc AA
is the annihilator of JD(A) + D(A)J and

AD(D(A)/JD(A) + D(A)J)A EA(Soc AAr\ Soc AA)A
Therefore ej(D(A)/JD(A) + D(A)J)ei # 0 iff

ei(Soc A A Soc AA Je, # 0. This concludes our proof.

A 3

The next corollary characterizes the Brauer quiver

of A % D(A) where the quiver of A in a Dynkin diagram An.

Corollary 1. Let R be a DJK-algebra with a Brauer
quiver Q. Then R is isomorphic to a trivial extension of
a hereditary algebra A whose quiver is a Dynkin diagram An
iff there is a linear subgraph of Q such that each non-
looped cycle of Q has one and only one edge which is

an edge of the linear subgraph too.

Consider the following quiver with no relation as
the quiver of an algebra A. Then by Proposition 3 we
know the dotted arrows in the diagram are arrows which

should be added as arrows of the quiver A X D(A).

- Tl - - ~ o~
p > S, AN
1 2 3 4 S 6

So the Brauer quiver of A x D(A) is Example 1.

Proposition 3 teaches us a DJK-algebra having the Brauer
quiver of Example 2 never been constructed as a trivial
extension of hereditary algebra, but constructed as a
trivial extension B & D(B) of tilted algebra B whose
quiver is 1 2 3 * 4 3
< [B
6

with zero relation B a = 0.



90

Example 1.

Example 2.
5 b o~ ::;(]
T —————
6
(:>‘\~_,—/>' i\
1 2 3

From our Theorem 4 it follows, however, that the DJK-
algebra associated with the quiver of Example 1 is stably
equivalent to a wreath-like algebra associated with the

Brauer quiver (:D

2

by our stable functor SISZS; .

The existence of DJK-algebras such as Example 2
seems to imply that our context in this note is more
special than one in Gabriel-Riedtmann [5] . But our
context is vaild to self-injective algebras of not only
finite type but also of infinite type. Further we

can extend our theory in this note, by which we know
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that the DJK-algebra having the quiver of Example 2
is also stably equivalent to a wreath-like algebra

associated with the Brauer quiver

N

2 3

+
1
to an APR-tilt. Cf.[1] and [2].

by a functor § F6 » where a stable functor F6 corresponds
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SELF-INJECTIVE DIMENSION OF SERIAL RINGS

Hideo SATO

This note is an abstract of [9], in which we gave the
complete proofs. We shall state only some of our results
and ideas. See [9] for details.

Following Eisenbud and Griffith [2,3], we say that a
ring R is serial if both RR and RR are direct sums of uni-
serial modules of finite length. Nakayama [8] established
the well known theorem that each module over such a ring
is a direct sum of factor modules of indecomposable -
projective modules and conversely. With each indecomposable
serial ring R, Kupisch [6] associated a series Pl,...,Pn
of non-isomorphic indecomposable projective left R-modules
[1+1] for 1<i <n
where [1] is the least strictly positive remainder of i

so that there exist epimorphisms P

modulo n and N is the radical of R. Such a series Pl,...,P
is called a left Kupisch series for R. Then let c(i) = |P |,
the composition length of Pi' The series (c¢(1),...,c{(n))

is called the left admissible sequence of R corresponding
to a left Kupisch series Pl,...,Pn.

Fuller [4] showed that the global dimension of a serial
ring is determined by its left admissible sequence. On the
other hand we are interested in the self-injective dimension
of serial rings. In the last section we shall give examples
which answers negatively to Sumioka's problem whether the
maximal quotient ring of a QF-3 artinian ring with self-
injective dimension one on both sides is QF or not. (Cf.

[(10])
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1. Preliminaries

Throughout this note, let R be an indecomposable serial
1,...,Pn and let (c(l),...,
c(n)) be the corresponding left admissible sequence.
Furthermore let N be the radical of R, n = n(R) and c¢(R) =

ring with a left Kupisch series P

min{c(l),...,c(n)}. Withour loss of generality, we can
assume c(R) = c(1).
For a left R-module M, we use the following notations.
pd(M) = the projective dimension of M
id(M) = the injective dimension of M
|M| = the composition length of M
P(M) = the projective cover of M
E(M) = the injective hull of M
(Ek(M)) the minimal injective resolution of M
(Pk(M)) the minimal projective resolution of M
Qk(M) the cokernel of Qk-l(M) > Ek-l(M) where QO(M)
=M
A*M) = the kernel of P*"1(M) + A¥"2 () where AO(u) =M.
The following is essentially due to Fuller [4].

Theorem 1. For an indecomposable left R-module M, both
id(M) and pd(M) are determined only by the left admissible
sequence of R, |M| and M/NM. In particular both id(RR) and
id(RR) are determined only by the left admissible sequence
of R

For our purpose to calculate id(RR) and id(RR), we can

RR = (c¢(l)y...,c(n)) by the

above theorem. Recall that Kupisch [6] constructed a serial

abbreviate our serial ring as

ring with the given left admissible sequence.
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2. Periodicity of self-injective dimension.
The following is the key lemma for our theory.
Lemma 2. Let M be an indecomposable left R-module

with |M| = n.
(1) If M is not injective, then EO(M) = El(M) and

2
[2°M) | = n.
(2) If M is not projective, then PO(M) = Pl(M) and
2
|[A“@)| = n. ‘

So we have immediately,

Theorem 3. If a serial ring R is of finite global
dimension, then c(R) < n(R).

Let pR = (c(1),...,c(n)) and ok = (c(1)4n,...,c(n)+n).
Let??,...:P; be the corresponding left Kupisch series for
R. Then we have the following.

Theorem 4. (Periodicity Theorem) The following
statements hold: for each k, 1 < k < n.
(1) If 1d(P)) = =, then 1d(F)) = =.
(2) Assume id(Pk) = m.
(1) If m is even, then id(ﬁ%) =
(11) If m is odd, then 1d($%) = =,

I
8

I
8

Therefore our problem to calculate self-injective

dimension of a serial ring R is reduced to the case c(R)

= A

-

n(R). Let R be an indecomposable serial ring with c(R) =
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that 1s, of the first category in the terminology of Murase
[7]. Then Eisenbud and Griffith [3] applied Chase's result
[1] and Murase's result [7] to show that R is of finite

global dimension. We can showdirectly the existence of the

upper bound depending only on n(R).

Theorem 5. Let R be an indecomposable serial ring with
c(R) = 1. Then gl.dim R < n(R)-1.

3. Rivers and corivers

Let R be an indecomposable serial ring with c(R) > n(R)
= n.and P,...,P_ its left Kupisch series. Let X = Pk/NnPk.
By Lemma 2, we have directly,

Lemma 6. (1) Xk is injective if and only if QZ(M) = 0.
(2) 1If Xk is not injective, then there exists T(k), 1 < T(k)
£ n, such that Qz(xk) = XT(k).
With each indecomposable serial ring R with c(R) > n(R),
we associate the following oriented graph G(R), which we
call the river of R.
The set of verteces of G(R) = {1,...,n}, n = n(R).
The arrow i + j,exists -if and only if QZ(Xt) = Xj,
A vertex i in G(R) is said to be an initial point if there
exist' a vertex j and an arrow j + i. Dually a final point
is defined. Remark that a river has not necessarily any
final point. A final point is said to be of height 0, and
a non-final point k is said to be of height p if there

exist verteces k = k_.k kp such that kp is a final

OD 1""!
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point and there exist arrows ki-l -+ ki for 1 < i < p. Then
we let h(k) = p. If each vertecex has height, we let h(R)
= sup{h(k)}, which we call the height of G(R). Otherwise
we let h(R) = =,

Lemma 7. The following conditions are equivalent for
(1) There exists xh such that Qz(xh) = Xk.
(2) The projective cover of Xk is injective.

Lemma 8. A vertex k in G(R) is a final point if and
only if Xk is injective. Hence G(R) has no final point
if ¢(R) > n(R).

We can show the dual statements of Lemma 7 and Lemma 8.

Therefore, for an indecomposable serial ring R with c(R)
2 n(R) = n, we can obtain the dual notion of the river,
which we call the coriver of R and denote by G*(R). More
precisely,

The set of verteces of G*(R) = {1,...,n}.

The arrow j + i exists if and omnly if AZ(XI) = Xj.
Also we define initial points and final points in G*(R)
similarly, and we define coheights h*(k) and h*(R) dually.

4. Rivers and corivers for the case c(R) = n(R)

Let R be an indecomposable serial ring with c(R) =
n(R) = n. Then we can obtain precise informatiomns about
the river G(R) and the coriver G*(R). Recall that we assume

|P1| = n = n(R). We begin with the river.
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Lemma 9. If Xk is not injective, then we have
k < t(k) = k + d([k+1]) - n

where d(i) = |E(Pk/NPk)|.

Lemma 10. If neither Xk nor Xk, is injective, then

k < k' implies T(k) < T(k').

1)
(2)

(3)

(4)

(5)

(6)

From the above lemmas, we have immediately,

Proposition 11.

G(R) contains no oriented cycle.

Each connected component contains exactly one final
point.

Each connected component contains one point k such
that Xk is projective, and then k 1s necessarily

an initial point.

The maximal height in each component is given by an
initial point k such that Xk is projective.

If k and p such that Xk is injective and Xp is
projective belong to the same connected component,
then p < k and each j, p £ j £ k, belongs to that
component.

The number of connected components is equal to that

of the final points.

Corollary 12. The following statements hold for an

indecomposable serial ring R with c(R) = n(R).

(1)
(2)
3)

id(xk) = 2*h(k) for each k.
h(R) £ n(R)-1.
sup{id(xk)} = 2¢h(R).
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We have the dual statements of the aboves for the
coriver G*(R). We write down only the duals of Lemmas 9
and 10.

Lemma 9%. If xk is not projective, then we have
k>0(k) =k -c(k) +n
where Az(xk) = xO(k)'
Lemma 10*, If neither xk nor xk. is projective, then
k < k' implies o(k) < o(k').

Now we can directly obtain the coriver G*(R) from the

river G(R) and conversely.

Theorem 13. (Transformation Theorem) ‘

(1) Assume that k is not an initial point in G(R). Let
p1<""<pt be all the points such that T(pl) = ves
= T(pt) = k. Then o(k) = P,

(2) Assume that k is an initial point in G(R) such that
xk is not projective. Then there exists at least one
point k' (>k) which is not initial point in G(R).
Let p be the least number among them. Then o(k) =
a(p).

By Transformation Theorem, we can show the following.

Theorem 1l4. Let R be an indecomposable serial ring.
Then we have
(1) h(R) = h*(R).
(2) sup{id(xk)} = sup{pd(xk)}.
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5. Self-injective dimension for the case c¢(R) = n(R)

Throughout this section, R is assumed to be an
indecomposable serial ring. We must compare the minimal

injective resolution of P, with that of Xk.

k

Lemma 15. Let X and Y be nonzero indecomposable R-
modules, both of which are non-injective. Consider the

following commutative diagram with exact rows.
0->Y>E(Y) > Q(Y) >0

(Y,X:n,e,ﬁ') : +n +¢ +n
0+X-+EX »aX) +~0

(1) 1f n .is a monomorphism, then n' is an epimorphism.

(2) 1f n is an epimorphism, then n' is a monomorphism.
Applying this lemma and its dual, we have

Theorem 16. Let R be an indecomposable serial ring
with n(R) = ¢(R) = n, and Y an indecomposable R-module
with |Y| > n. Let X = Y/N'Y. Then there exists an integer
s such that id(Y) = 2¢s and 0 < s < h(k).

Theorem 16*. Let R be an indecomposable serial ring
with ¢(R) = n(R) = n, and Y an indecomposable R-module
with |Y| 2 n. Let Xk'be the submodule of Y with length n.
Then there exists an integer s* such that pd(Y) = 2¢s* and
0 < s* < h*(k).

Iwanaga showed id(Rp) = sup{pd(E) | E is indecomposable
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injective}. Hence we apply Transformation Theorem to have

the main theorem.

Theorem 17. Let R be an indecomposable serial ring
with ¢(R) = n(R) = n. Then id(RR) = id(RR) = 2+h(R).

We are interested in the last term of the minimal

injective resolution of a serial ring.

Theorem 18. Let R be an indecomposable serial ring
with ¢(R) = n(R) = n. Let id( R) = 2h. Then an injective
indecomposable R-module Y is a direct summand of E ( R)
if and only if |Y| = n and pd(Y) = 2h.

6. Examples and Remark

For an indecomposable serial ring R with typical left
admissible sequence, we can calculate id(RR) explicitly
because we can easily calculate its right admissible

sequence.

Example 19. (Iwanaga [5]) Let R be an indecomposable
serial ring with left admissible sequence (c,ctl,...,
ct(n-1)). Then id(RR) <o if and only if c < nor ¢ = 0
(mod. n). If the conditions above are satisfied, then

1d(gR) = 1d(R) < 2.

Example 20. Let H = H(c,n) be an indecomposable
serial ring with left admissible sequence (c,c+l,...,c+l)
and n(H) = n (ct+l occurs (n-1) times in the admissible
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sequence). Then the following statements hold.

I. If ¢ =1, then gl.dim H = n-1.

II. Assume c >-1. Then the.following conditions are
equivalent.
1) id(HH) < o, (2) id(HH) <®, (3) (ctl,n) = 1.
As such is the case, we have id(HH) = id(HH) = 2h
where h is the least integer such that 0 < h < n-1

and 1+h(c+l) = 0 (mod. n).

Let R be aQF-3 artinian ring with self-injective
dimension one on both sides. Then Sumioka proved in [10]
that R is Morita equivalent to a matrix ring over a QF
ring if its maximal quotient ring Q is QF. He asked whether
Q is QF or not. The following example answers negatively

to his problem.

Example 21. Consider the bounden quiver

a B
Q: 2 . 1 .3
y §

with relation ya = 68, ad = By = 0. Let A = K(Q) be the
bounden quiver algebra over a field K. Then A is a QF-2
algebra with minimal faithful left ideal Ael. Furthermore
it is easily shown that AellAa = HomK(eaA,K) and AellAB =
1’ Ael/Aa and AellAB form a
complete set of non-isomorphic injective indecomposable
left R-modules. Also it is easy to show Aa = Ae2 and AB =
Ae3. Hence id(AA) = 1, Similarly we can show id(AA) = 1.

On the other hand we have

HomK(ezA,K). Therefore Ae
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Q= Bi—End(AAel) = a,b,c,d,f

a00o0
bcdO||sg,h,x,y,2 €K
fgho

z a
Hence Q is a serial algebra with left admissible sequence
(2,3). Therefore id(QQ) = id(QQ) = gl.dim Q = 2 by Example
20.
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ON FINITE GROUP ALGEBRAS WITH RADICAL CUBE ZERO

Tetsuro OKUYAMA

Let G be a finite group and k be an algebraically
closed field of characteristic p, a prime number. Let B
be a block algebra of the group algebra kG with defect
group D and let J(B) denote the Jacobson radical of B.
It is well known that J(B) = 0 if and only if D =1 if
and only if there exists a projective simple kG-module in
B. Furthermore it is true that J(B)2 =0 (J(B) # 0) if
and only if p=2 and ID|] =2 if and only if there
exists a projective indecomposable kG-module with Loewy
length 2 in B,

In my talk I considered blocks B of finite groups
with J(B)3 = 0. Our main result is the following.

Theorem 1. J(B)> = 0 (and J(B)? # 0) if and only if
one of the following conditions holds ;

(1) p=2, D is a four group and B is isomorphic
to the matrix ring ovef kD or is Morita equivalent to

kA4 where A, is the alternating group of degree 4,

4

(2) p is odd , |D] = p , the number of simple kG-
modules in B is p-1 or p~1/2 and the Brauver tree of B
is a straight line segment such that the exceptional

vertex is in an end point(if it exists).

For the prime 2 we have the following.
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Theorem 2. Assume p = 2. Let U be the projective
indecomposable kG-module with U/Rad(U) = kG , the
trivial kG-module. If Loewy length of U is 3 then
a 2-Sylow subgroup of G is dihedral.

I had reported these reults also in Conference at
Obelwolfach (Representation Theory of Finite Groups, 24-

30,July 1983). A complete proof will be given elsewhere.

1. Examples 7
First we shall give some examples of blocks B with
J(B)3 = 0. The principal blocks of the following groups

satisfy the condition.

(a) p=2 and G = Zitzz . B has only one simple

kG-module i.e. the trivial kG-module k = kG and the

corresponding projective indecomposable kG-module has the

following Loewy series, k
k k
k .

(b) p=2 and G = A
modules S., S

1" "2 3°
indecomposable kG-module corresponding to Si' Then Ui

4 B has three simple kG-
and S Let Ui be the projective

has the following Loewy series, Ui = 8 where

{i, 3.k} = {1,2,3} .

(c) p isodd and G = Sp {the symmetric group of
degree p). B has a defect group of order p and its
Brauer tree is the following;

1 2 p-1

P R R e ————
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Let Si (Ui,resp.) be the simple (projective indecompos- .":
able , Resp.) kG-module corresponding to the edge 1i.

Then Ui has the following Loewy series; U, =

17 5
]
S2
1l
U, = S (2 $ s p-2) and U =S
i i 1l ~p-1
S, S, ]
1-& i+l P2
. ]
i Pl .

(d) p is odd and G = Ap(the alternating group of
degree p). B has a defect group of order p and its

Brauer tree is the following;

1l 2 p-1/2 ex. (2)

Sl ® ® 8 & § & ———

Let Si and Ui be as in (¢). Then Ui has the
following Loewy series ; Ul= S1 ' Ui= Si
S S, S,
2 i=1 i+l
S S,
1l i
(2£ifp1/2-1) and U = s
P2 p-1/2° 4 Tp-l/2g :
p-§/2—1 ~p-1/2
p-1/2

Erdmann [6] shows that for each prime power g with
q = 3 (mod.4) the group PSL(2,q) satisfies the assump-
tion in Theorem 2. U has the following Loewy series;

U= k where S and T are some simple kG-
] T
k

modules.

2. Some Lemmas
In this section we shall give some lemmas which will
be used to prove Theorem 1. Throughout this section, B

is an arbitrary block algebra of a finite group G. Let
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D be a defect group of B. For a positive integer n

let np denote the p-part of n.

Lemma 1. There exists a simple kG-module § in B
such that a vertex of S 1is D and a source of § |is

p’'-dimensional.

This follows from the fact that there exists a simple
kG-module S in B with (dimkS)p = |G:D|p .

Let £2 denote the Heller's syzygy functor. Then the
following lemma follows from the fact that kG 1is a

smmetric algebra.

Lemma 2. Let X be a kG-module with no projective
direct summand. Then Soc({2}(X)) ¥ X/Rad(X) .

Lemma 3. Let P be a nontrivial cyclic subgroup of
D. Then there exists a kG-module X in B such that
(1) a vertex of each indecomposable direct summand
of X is P and (dim X) = |[G:P
L Eimn = (el
(2) X =T .

The lemma can be proved by using the theory of
vertices of Green and some properties of the Green

correspondence [9]1,[11]),[12].

3. Outline of Proof of Theorem 1.
If a block B satisfies one of the conditions (1)

and (2) in Theorem 1 , then it is easy to show that J(B)3
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= 0 and J(B)2 # 0. In the rest of this section we assume
that J(B)3 = 0 and J(B)2 # 0 and we shall show that

B satisfies one of the conditions (1) and (2).

Step 1. If X 1is a nonsimple nonprojective indecom-
posable kG-module in B , then Soc(X) = Rad(X).
See[14]}.

Step 2. If p is odd, then |D}| = p.

Our proof of Step 2 uses Lemma 2 , Lemma 3 and the
result of Erdmann [5].
Using the result of Brauer [2] Prop.(6G) and [15]

a similar argument as in Step 2 shows the following.

Step 3. If p 2 , then D is elementary abelian.

Step 4. If P 2 , then D is a four group.

For a proof of Step 4, we use Lemma 1 and the results
of Knorr [13] and Conlon [3]. We also require some
results from the theory of Auslander-Reiten sequences [l],
[17]1.

Step 5. Conclusion.

If p =2, then by Step 4 the result follows from
the result of Erdmann [7]1,[8]. If p 1is odd, then by
Step 2 the result follows from the theory of Brauer-Dade
[4] on blocks with cyclic defect groups and the result of
Peacock [16].
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4. oOutline of Proof of Theorem 2.

Our proof of Theorem 2 uses the result of Webb {18]
which says that if Rad(U)/Soc(U) is decomposable, then
a 2-Sylow subgroup of G is dihedral. We also use the

result of Fong [10] on self~dual simple kG-modules,

References
[1] M.Auslander and I.Reiten, Representation theory of
artin algebras IV, Comm. Alg.5(1977),443-518.
[2] R.Brauver, Some applications of the theory of blocks
of characters of finite groups 1V, J.Alg. 17(1971) ,489-521.
{3] sS.B.Conlon, Certain representation algebras, J.
Austral. Math. Soc. 5(1965),83-99.
{4] E.C.Dade, Blocks with cyclic defect groups, Ann. of
Math. (2),84(1966),20-48.
{5] K.Erdmann, Blocks and simple modules with cyclic
vertices, Bull. London Math. Soc. 9(1977),216-218.
[6] K.Erdmann, Principal blocks of groups with dihedral
Sylow 2-subgroups, Comm. Alg. 5(1977) ,665-694.
[7] K.Erdmann, Blocks whose defect groups are Klein four
groups, J. Alg. 59(1979), 452-465.
{8] K.Erdmann, Blocks whose defect groups are Klein four
groups ; A correction, J. Alg. 76(1982),505-518.
[9] W.Peit, The Representation Theory of Finite Groups,
North-Holland, Amsterdam,New York,Oxford (1982).
{10] P.Fong, On decomposition numbers of J, and R(q),
Symposia Math., XIII(1974),415-422.

1

{11] J.A.Green, A transfer theorem for modular represen-
tations, J. Alg. 1(1964),73-84.



111

[12] J.A.Green, Walking around the Brauer tree, J.
Austral. Math. Soc. 17(1974),197-213.

[13] R.Knorr, On the vertices of irreducible modules,
Ann. of Math. (20 110(1979) ,487-499.

[14] W.Muller, Unzerlegbare Moduln tber artinschen
Ringen, Math. Zeit. 137(1974),197-226.

[15] T.Okuyama and Y.Tsushima, Local properties of p-
block algebras of finite groups, Osaka J.Math. 20(1983),

33—410
[16] R.M.Peacock, Blocks with a cyclic defect group, J.

Alg. 34(1975),232-259.

[17] K.W.Roggenkamp, Integral representations and struc-
ture of finite group rings, Les Presses de l'Université
de Montréal, Montréal (1980).

[18] P.J.Webb, The Auslander-Reiten quiver of a finite
group, Math. Zeit 179(1982),97-122.

Department of Mathematics

Osaka City University



112

EXT FOR BLOCKS WITH CYCLIC
DEFECT GROUPS

Yoshito OGAWA

According to Reiten [4] we consider a k-algebra A
given by a Brauer tree as a generalization of a block with
a cyclic defect group. The aim of this note is to determine
the indecomposable A-module M with ExtX(S,M) # 0 for cer-
tain values of n, where S is a fixed simple A-module whose
Projective cover is uniserial. Janusz's classification of

indecomposable A-modules [3] and Heller's loop-space oper-
ation [2] enable us to compute ExtX(S,M). The canonical

walk by Alperin and Janusz [1] describes our result. The
proofs will appear in Journal of Algebra.

Let A be a k-algebra given by a Brauer tree [4].
Then the edges correspond to the simple modules, there is a
unique vertex called exceptional and the edges incident with
each vertex give a counter-clockwise ordering.

Let S be a fixed simple module whose projective cover
is uniserial. Then S corrésponds to an edge E = PQ,
where P 1is nonexceptional and E 1is a unique edge incident
with P [3, Collary 7.3]. Put Q0 = P, F0 = E and Q1 = Q.

For 1 >0 let Fi+1 be the edge immediately following
Fi around Qi+1 and let Qi+2 be the vertex such that
Fi+1 = Qi+1Qi+2° Thus we get the canonical walk QO’ F

0’

Ql’ Fl’ Q2, e s Qi’ Fi’ Qi+1' ... [1].
Every nonprojective indecomposable module M 1is de-

termined by a sequence M s Mt of submodules of M,

1* *°°
where Mi has a unique maximal submodule Mi 1 @ Mi and
» *
Mi j is uniserial. Then we write M = (Ml, cer s Mt) [4].
’
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Theorem. Let M be a nonprojective indecomposable A-
module, where A is a k-algebra given by a Brauer tree with
e edges. Let S be a fixed simple module whose projective
cover is uniserial. i and j denote the integers such that
0<1i<j< it2e and i-j 1is odd.

We have Eth(S,M) # 0 only for n = i (mod 2e) and

n =3 (mod 2e) if and only if M is isomorphic to the A-
module (Ml, cee Mt) with the property (P): Fi corre-
sponds to soc Ml,l if the edge denoted by Fi does not
appear between Qi+1 and Qj in the canonical walk. Other-
wise Fi corresponds to MllJMl (Ml,l = 0); Fj corresponds
to soc Mt,2 or Mt/JMt (Mt,Z = 0).

To compute Eth(S,M) we use Heller's loop-space oper-

ation @ [2}: Exth(s,M) = Eth(S,Q_(n_l)M).

Proposition 1. If a nonprojective indecomposable module
M= (Ml, cee s Mt) has the property (P) for fixed integers
i and j such that 0 <1 < j < i+2e and 1i-j 1is odd,
then Q-lM is isomorphic to a module L = (Ll, e s Lr)
with the property (P) for 1i-1 and j-1. (If 1 =1, we
consider the property (P) for 0 and j-1.)

We know that Exti(S,M) # 0 if and only if there is the

exact sequence 0+ M-+ W=+ S8 > 0 with W indecomposable:

Proposition 2. For the indecomposable A-module
M with the property (P) for integers i and j such
that 0 < i < j < i+2e and 1i-j is odd, we have Exti(S,M)
# 0 if and only if i =1 (mod 2e) or j = 1 (mod 2e).
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(1]

(2]

[3]

(4]

These propositions immediately show our theorem.
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