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PREFACE

The 15th Symposium on Ring Theory was held in
Takarazuka City, Japan, on October 29 - 31, 1982. A number
of new results were announced there, which will be found
in these Proceedings. In addition to it, there was an
expository lecture given by H. Sasaki (Hokkaido University)
on the Auslander-Reiten quiver of a finite group.

The meeting and these Proceedings were financially
supported by the Scientific Research Grant of the Educational
Ministry of Japan through the arrangement by Professor
H. Tachikawa (University of Tsukuba).

It has.been fourteen years since the annual Symposium
on Ring Theory was founded in 1968. I wish to take this
opportunity to thank Algebra staffs of the Department of
Mathematics, Okayama University, for their long standing
assistance in publishing the Proceedings so far. Without
it, they would not have existed as they do. I also wish
to thank T. Sumioka for his best help in the organization
of the meefing.

November 1982

Y. Tsushima



. . . B . . . 4 S -
- . L . . . - . . . -
. v . . - ey P . - . . P - . .
~ . s . s R : . . i - s .
. . I . T “ . N - g
B R 2 L < Z . T ; R .
. - - - - .- - cem o~
. . : PR . . i - L . .
o o [ . . , B TN - ' B H . B o N . N
- . . N . . . . : : oo - - . R
- . . P A ‘ : : § -
- . : o - .
' N . [ . . . . . . R )
. : e b ) i . - . .
. . N b : - .
. . - . s : . = . .
. o C 7 i . A . 3 o . -y .
. e el e e . Loe !
R B - - B . .
L FER o . . * N . . N " ° "

. : e - . B . . V. : :




QF-3 RINGS WITH SEMI-PRIMARY QUOTIENT RING

Kanzo MASAIKE

In this paper we give an outline of results which
will be appeared in [§].

Let R be a ring with identity. R is said to be left
Qf-3, if R has a minimal faithful left R-module (cf. [i0]).
A theorem of Faith and Walker [2] states that if R is a
ring such that every injective left R-module is projective,
then R is left Aritinian (and hence quasi-Frobenius). 1In
this paper we shall apply a generalization of this result
to investigate those rings whose maximal left quotint rings
are semi-primary left and right QF-3. Let (T, F) be a
hereditary torsion theory with a left exact radical t,
where T (resp. F) is the t-torsion class (resp. t-torsion
free class). A submodule M of a left R-module N is said to
be t-closed, if N/M is t-torsion free. Every t-torsion
free left R-module becomes an R/t(R)-module canonically.

In the following let us denote E(RM) the injective hull of
a left R-module M. ACC (resp. DCC) means the ascending

chain condition (resp. the descending chain condition).

Lemma 1. Let R be a ring with a hereditary torsion
theory (T, F) such that R is the ring of quotient with
respect to t. If E(RR) is projective and R has ACC on

t-closed left ideals, R is semi-primary.

From this result we have the next



Theorem 1. Let (T, F) be a hereditary torsion theory
of a ring R. If every t-torsion free injective left
R-module is projective as an R/t(R)-module, then the ring
of quotient of R with respect to t is semi-primary and R
satisfies DCC on t-closed left ideals.

In [(] it is proved that if R has DCC on t-closed
left ideals and every t-torsion free left R-module is
embedded in a direct product of copies of R/t(R), every
t-torsion free injective left R-module is R/t(R)-projective.
A left R-module M is said to be E(RR)—tosionless, if M is
embedded in a direct product of copies of E(RR). Now,
assume that (the torsion free class) F is the class of all
E(RR)-torsionless modules. If E(RR) is torsionless, a
t-closed left ideal coincides with an annihilator left
ideal of R. If R is a ring with ACC on annihilator left
ideals and E(RR) is projective, we can prove that R has

DCC on annihilator left ideals. Therefore, we have

Corollary 1. The following conditions are equivalent,
if E(RR) is projective.
(1) E(RR) is I-injective.
(ii) Every direct product of copies of E(RR) is
projective.
(iii) R has DCC on annihilator left ideals

If F is a class of all E(RR)-torsionless modules, the
ring of quotient with respect to t is called the maximal
left quotient ring.

The next Lemma was proved in [3].



Theorem 2. The following conditions are equivalent
for a ring R.

(1) Every finitely generated submodule of E(RR) is
torsionless.

(ii) Every finitely generated E(RR)~torsion1ess left
R-module is torsionless.

(iii) The maximal left quotient ring Q of R is embedded

is a maximal right quotient ring and every finitely

generated E(QQ)-torsionless left Q-module is torsionless.

From Lemma 1, Theorem 2 and a result of [1 , Theorem

1.3] we have the following

Theorem 3. The following conditions are equivalent
for a ring R.

(1) R has a semi-primary left and right QF-3 maximal
two-sided quotient ring .

(ii) R satisfies DCC on annihilator left ideals and
every finitely generated submodule of E(RR) is torsionless.
(iii) R satisfies DCC on annihilator left ideals and
every finitely generated E(RR)—torsionless left R-module

is embedded in a free left R-module.

(iv) R has a maximal two-sided quotient ring Q such
that every E(QQ)-torsionless left Q-module is embedded in
a free left Q-module.

Remark 1. Generalizing a result of Rutter, Sumioka
[9 1 proved that a perfect ring R is left QF-3, if and
only if every finitely generated submodule of E(RR) is

torsionless.



Corollary 2. 1If R has DCC on annihilator left ideals
and every finitely generated submodule of E(RR) is
torsionless, then every finitely generated submodule of
E(RR), the injective hull of RR’ is torsionless.

Lemma 2 (Masaike {4 ]). The following conditions are
equivalent for a ring R with the maximal left quotient ring Q.
(1) R is left and right QF-3.
(ii) Q is left and right QF-3 and Q is torsionless as
right and left R~-modules.
(ii1) Q is a left and right QF-3 maximal two-sided
quotient ring of R and R has a minimal dense right ideal
and a minimal dense left ideal.
(The proof of (1) =9 (iii) is a immediate consequence
of Rutter [ §].)

Proposition 1. Let R be a ring with DCC on annihilator

left ideals. Then, the following conditions are equivalent.
(1) R is left and right QF-3.

(ii) Every finitely generated submodule of E(RR) is
torsionless and R contains a minimal dense left ideal and a
minimal dense right ideal.

(1ii) R is left QF-3 and foer every minimal left ideal
S, there exists a local idempotent element f, such that

i i
S, ¥ Rfi/in, where J is the Jacobson radical of R.

Now, assume that R is a left QF-3 ring with ACC on
annihilator left ideals. 1If R has an essential left socle
and a minimal dense left ideal, we can see that E(RR) is
finitely generated projective. It follows that R satisfies

DCC on annihilaltor left ideals. Since R has a minimal dense



left ideal and a minimal dense right ideal, from Proposition
1 we have that R is QF-3 and we have the next

Theorem 4. Let R be a left QF-3 ring with ACC on
annihilator left ideals. Then, the following conditionms
are equivalent.

(i) R is right QF-3.

(ii) R has an essential left socle and a minimal
dense left ideal.

(iii) R has an essential left socle and for every
minimal left ideal Si there exists a local idempotent
element fi such that S, Rfi/in'

Corollary 3. The following conditions are equivalent.

(i) Every E(RR)-torsionless left R-module is embedded
in a free left R-module.

(11) Every E(RR)—torsionless right R-module is embedded

in a free right R-module.
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WEAKLY DIVISIBLE, DIVISIBLE AND STRONGLY
M-INJECTIVE MODULES

Shoji MORIMOTO

This note is an abstract of the author's papers [6]
and rT], but some new results are added to them. In the
first place of this paper, we characterize weakly divisible
and divisible modules by using the concepts of coindepen-
dence and weakly coindependence. Next, we prove that
Sato's pseudo-cohereditarity of idempotent preradicals
coincides with Jirédsko's one. Further, we show that the
Goldie torsion radical G is pseudo-cohereditary if and only
if every nonsingular module is injective. In the latter

part, we study strongly M-injective modules.
1. Preliminaries

Throughout this note, R means a ring with identity
and modules mean unitary left R-modules. Also we denote
the category of all modules by R-mod. Recall that a pre-
radical t of R-mod is a subfunctor of the identity functor,
We shall say that a preradical t

- idempotent if t(t(M)) = t(M) for all modules M,

- radical if t(M/t{(M)) = O for all modules M,

- left exact if t(N) = t(M)\N for all modules M

and submodules N,
- cohereditary if t(M/N) = (t(M) + N)/N for all
modules M and submodules N,

a cotorsion radical if t is idempotent and



cohereditary.

To each preradical t of R-mod, we put
P(t) = {M ¢ R-mod | t(M) = M} and F(t) = {M ¢ R-mod | t(M) =
0}. In general, T(t) is closed under homomorphic images
and direct sums, while F(t) is closed under submodules and

direct products.
2. Weakly divisible and divisible modules

Definition 2.1. For a preradical t, we call a module
M weakly divisible (resp. divisible) with respect to t if
the functor HomR(-,M) preserves the exactness of all exact
sequences of modules O + A + B + C + O with B ¢ T(t) (resp.
C e T(t)).

When there is no confusion, we say simply that M is
weakly divisible (resp. divisible). Clearly, every injec-
tive module is divisible and every divisible module is
weakly divisible, but in general, the converses of these

two implications are not true.

Lemma 2.2. Let t be a preradical and let M be a
module and N its submodule. Then

(1) If M is weakly divisible and N2t(M), then N is
also weakly divisible.

(2) If t is idempotent, N is essential in M and is
weakly divisible, then N2 t(M).

(3) If t is left exact and t(M) is weakly divisible,
then M is veakly divisible.



Especially, if t is a preradical and M is weakly
divisible, then t(M) is also weakly divisible. Furthermore,
in case t is idempotent, M is weakly divisible if and only
if t(M) = t(E(M)) (cf. (9, Theorem 2.1) and [10, Lemma 1.3},
where E(M) denotes the injective hull of M.

Example 2.3. Let K be a field, R the ring of all 2X 2

K K ‘ .
0 0\‘ Then I 1is

an idempotent two-sided ideal of R. Hence I determines a

upper triangular matrices over K and I = (

cotorsion radical t by t(M) = IM. Since E(R) = (E g)
b}

t(E(R)) = I. By Lemma 2.2, I is weakly divisible and since
t is a cotorsion radical, I is divisible. But I is not a

direct summand of R, namely, I is not injective.

Example 2.4. Let R be as above. We put J = (8 g )
and I =(g g). Then J is a two-sided ideal of R and
J2 = 0., Let t be the left exact preradical corresponding
to the linear topology which has the smallest element J.
Since t(M) = {m ¢ M | Jm = 0}, t(E(R)) = I. By Lemma 2.2,
I is weakly divisible. Also R/I ¢ T(t). If I is divisible,
then I is a direct summand of R. This is a contradiction.

Hence I is not divisible.

Definition 2.5. For a preradical t, we call an exact
sequence 0 =+ A i B of modules coindependent (resp. weakly
coindependent) with respect to t if B = j(A) + t(B) (resp.
B/(j(A) + t(B)) e T(t)).

Remark 2.6. Let t be a preradical and let O + A > B

+ C -+ 0 be an exact sequence, Then
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(1) If 0+ A+ B is coindependent and A ¢ T(t), then
Be T(t).

(2) If t is an idempotent radical and O + A + B is
weakly coindependent, then C e T(t).

Now we give examples of coindependent (resp. weakly
coindependent) sequence O + A + B with B ¢ T(t) (resp.
B/A ¢ T(t)).

0K

Example 2.7. Take J = o K] in Example 2.3. Then

0 +J + R is coindependent, but, since t(R) = I, R ¢ T(t).

Example 2.8. Let K be a field, R the ring of all 3X 3
upper triangular matrices over K. If we put

_{OKK /00K
I—(OOO) andJ—(ooo),thenbothIa.ndJa.re
0

00O 00O

two-sided ideals in R and J2 = 0. Let t be the left exact

preradical corresponding to the linear topology having the
smallest element I. Then, since I & t(R), R/t(R) e T(t)
and 0 + J + R is weakly coindependent, but R/J ¢ T(t)
because Jg I.

Theorem 2.9. Let t be an idempotent preradical. Then
the following conditions are equivalent for a module M:

(1) M is weakly divisible (resp. divisible).

(2) For every coindependent (resp. weakly coindepen-—
dent) sequence 0 + A i B and every homomorphism f: A -+ M,
there exists a homomorphism g: B + M such that goj = f.

(3) For every coindependent (resp. weakly coindepen-

dent) sequence 0 - A 4 B with j(A) essential in B and every



11

homomorphism f: A + M, there exists a homomorphism g: B ~ M
such that goj = f.

(4) Every coindependent (resp. weakly coindependent)
sequence 0 - M i N splits.

(5) Every coindependent (resp. weakly coindependent)
sequence 0 > M i N with j(M) essential in N splits.

3. Pseudo~cohereditary preradicals

Definition 3.1. A preradical t is called pseudo-co-
hereditary in the sense of Sato if every weakly divisible

module is divisible.

Definition 3.2. We call a preradical t pseudo-cohere-
ditary in the sense of Jirésko if every homomorphic image
of M/(t(E(M)N\M) is in F(t).

Theorem 3.3. Let t be an idempotent preradical. Then
the following conditions are equivalent:

(1) t is pseudo-cohereditary in the sense of Sato.

(2) t is pseudo-cohereditary in the sense of Jirésko.

(3) For any weakly divisible module H, every homomor-
phic image of H/t(H) is in F(t).

() For every module M, an exact sequence O + M » D(M)
is coindependent, where D(M) is defined by D(M)/M = t(E(M)/M).

Proof. Refer to [6] for the equivalence of (1), (2)
and (3). (1)==(4). We put H(M) =M + t(E(M)). Since
H(M) is weakly divisible by Lemma 2.2, it is divisible by
the hypothesis. Also, since D(M)/H(M) ¢ T(t), H(M) is a
direct summand of D(M). Further H(M) is essential in D(M),
namely, H(M) = D(M). Hence O » M > D(M) is coindependent.
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() =(1). Let M be a weakly divisible module. Since
0 + M > D(M) is coindependent, M is a direct summand of
D(M) by Theorem 2.9. So M = D(M), namely, M is divisible.

Therefore t is pseudo-cohereditary in the sense of Sato.

Here, we consider the following condition for a pre-
radical t:
(*) Every weakly coindependent sequence is coinde-

pendent.

Theorem 3.4. Let t be an idempotent preradical.
Then t satisfies the condition (*) if and only if t is a

cotorsion radical.

Corollary 3.5. For a left exact preradical t, the
following conditions are equivalent:

(1) t is an exact radical.

(2) t is pseudo-cohereditary in the sense of Sato.

(3) t is pseudo-cohereditary in the sense of Jirésko.

(4) t satisfies the condition (*).

Corollary 3.6. For the Goldie torsion radical G, the
following conditions are equivalent:

(1) G is pseudo-cohereditary.

(2) Every nonsingular module is injective.

(3) R =G(R) ® K, where K is a semisimple artinian

ring.

The equivalence of (2) and (3) is due to Armendariz
[l, Theorem 3.2].
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L. Strongly M-injective modules

In this section, we fix a module M and denote the
left annihilator lR(M) of M by T. Also t means the left
exact preradical corresponding to the linear topology
which has the smallest element T. As is easily seen, a

module X is in T(t) if and only if TX = O.

Definition 4.1. A module Q is called strongly
M-injective if every hanomorphism of any submodule of MJ
(J is any indexed set) into Q can be extended to a homomor-

phism of MJ into Q.

Clearly every injective module is strongly M-injective
and every strongly M-injective module is M-injective.
Also we can easily check that a direct product of modules
is strongly M-injective if and only if each factor is

strongly M-injective.

Theorem 4.2. For a module Q, the following conditions
are equivalent:

(1) @Q/TQ is strongly M-injective.

(2) @Q/TQ is weakly divisible.

(3) Q/TQ is an injective R/T-module.

Corollary k.3. For a module Q, the following condi-
tions are equivalent:

(1) t(Q) is strongly M-injective module.

(2) t(Q) is weakly divisible.

(3) t(Q) is an injective R/T-module.
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By Lemme 2.2, we obtain the following result.

Theorem 4.4. For a module Q, the following coditions
are equivalent:

(1) Q is strongly M-injective.

(2) Q is weakly divisible.

(3) -t(Q) is an injective R/T-module.

The following corollary corresponds to Theorem 14 of

Azumaya [2].

Corollary 4.5. Let M be a faithful module. Then the
following conditions are equivalent:

(1) Q is strongly M-injective.

(2) Q is weakly divisible.

(3) Q is injective.

Next, we investigate rings for which every module is

strongly M-injective.

Theorem 4.6. The following conditions are equivalent:
(1) Every module is strongly M-injective.

(2) Every module in T(t) is strongly M-injective.

(3) Every module is weakly divisible.

(4) Every module in T(t) is weakly divisible.

(5) R/T is a semisimple artinian ring.

(6) MJ is completely reducible for any indexed set J.
(7) Every cyclic module is strongly M-projective.

(8) Evéry module is strongly M-projective.
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The equivalence of (5), (6), (7) and (8) was given
by Varadarajan [11, Theorem 2.8].

Corollary 4.7. Let M be a faithful module. Then the
following conditions are equivalent:

(1) Every module is strongly M-injective.

(2) Every cyclic module is strongly M-projective.

(3) Every module is strongly M-projective.

(4) R 1is a semisimple artinian ring.

(5) M s completely reducible for any indexed set J.

In general, M-injective module is not strongly M-
injective. To show this, it is enough to give a completely
reducible module M for which MJ is not completely

reducible for some indexed set J.

Exemple 4.8. Let M be a field and R=M (J is any
infinite indexed set). We can regard M as an R-module.
Clearly, M 1is a simple R-module, but MJ is not completely
reducible.
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ON NORMAL CLASSES AND WEAKLY SPECIAL
CLASSES OF SEMIPRIME RINGS

Motoshi HONGAN

Introduction. Amitsur [1] showed that if (R,V,W,S)
is a Morita context then VN(S)W c N(R), where N(R) denotes
the Baer lower radical, Levitzki radical or Jacobson radical
of the ring R. Radicals with this property were called
normal radicals by Jaegermann [11]. Amitsur also showed
that if (R,V,W,S) is an S-~faithful Morita context and if
R is a prime ring or a primitive ring, then so is S [1].
In [14) and [15], Nicholson and Watters studied classes of
rings possessing this property and called them normal
classes, and showed that the radical determined by a normal
class of prime rings is a normal and special radical (in the
sense of Andrunakievié [2]). 1In this paper, we mainly study
properties of normal classes of semiprime rings and extend
the results obtained in [15] for normal classes of prime

rings to those of semiprime rings.

1. Preliminaries. All the rings we consider will
be associative rings not necessarily containing identity,
and all the classes of rings are non-empty and closed
under isomorphisms. A Morita context (R,V,W,S) consists of
two rings R and S and two bimodules RVS and sz
together with mappings V x W—>R and W x V- ->S (written
multiplicatively) which induce bimodule homomorphisms
Y ®g W- >R and W e V - >S5S and which satisfy the asso-
ciativity conditions (vw)v'=v(wv') and (ww)w'=w(vw')

for v, v' ¢ V and w, w' ¢ W (see Amitsur [1] for details).
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An equivalent formulation is that [3 g] is a ring with the

usual matrix operation. An example we shall refer to is the
standard Morita context (R,M,M* E) determined by a left R-
module, where M*=HomR(M,R) and E=HomR(M,M). In order
to avoid constant repetition, a Morita context (R,V,W,S)
will be called S-faithful if S#0 and VsW=0 (s € S)
implies s=0. 1In case (R,V,W,S) is a Morita context and

P is an ideal of R, we write VP=={V € V| vW c P},

WP={w € W| Vw c P} and SP={s € S| VsW ¢ P}. Then it
is known that (R/P,V/VP,W/WP,S/SP) is a Morita context, the

products being defined in the natural manner.

In the next proposition, the classes of rings of inter-

est to us are isolated.

Proposition 1 ([15, Proposition 1]). The following
are equivalent for a class P of rings:

1) I1If (R,V,W,S) is a Morita context and P is an
ideal of R such that R/P ¢ P, then either SP==S or
S/SP € P. .

2) If (R,V,W,S) is a Morita context and R ¢ P, then
either §,=S or S/S0 € P.

3) I1f (R,V,W,S) is an S-faithful Morita context, then

Re P implies S ¢ P.

Following [15], a class P of rings is called normal
if it satisfies one of the equivalent conditions in
Proposition 1.

Let P be a class of semiprime rings. We consider the

following conditions:
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(WS1) Every non-zero ideal of R 1is in P whenever
R 1is in P.

(WS2) Let A be a non-zero ideal of R. Then R/Al
belongs to P whnever A 1is in P, where
At =5 (8) 0 rp(a).

(WS3) Let A be a non-zero ideal of a semiprime ring
such that A 1is essential in RR (and in RR)' Then
belongs to P whenever A is in P.

(WS4) Let A be a non-zero ideal of a semiprime ring

R such that A*=0. Then R belongs to P whenever A
is in P.

Proposition 2 ([9, Lemma 6]). Let P be a class of
semiprime rings. Then the following are equivalent:

1) P satisfies (WS1l) and (WS2).

2) P satisfies (WS1l) and (WS3).

3) P satisfies (WS1l) and (WS4).

Following Ju. Rjabuhin (see [9]), a class P of semi-
prime rings is called a weakly special class if P satisfies

one of the equivalent conditions 1) - 3) in Proposition 2.

In order to obtain conditions analogous to the above
conditions (WS1l) and (WS4) which characterize normal classes,

we need the following.

Proposition 3. Let (R,V,W,S) be a Morita context with

RV

. Then C 1is a semiprime ring
W s,

R# 0, and write C=[
if and only if
1) R 1is a semiprime ring,

2) Vw=0 (we W) implies w=0,
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3) vW=0 (veV) implies v=0, and

4) S=0 or S 1is a semiprime rimg.

Proof. Observe that the lack of symmetry in 2) and
3) is only apparent. For example, wV=0 implies (Vw)2= 0,
so w=0 by 1) and 2). Similarly, Wv=0 implies v=0.

To see that C 1is a semiprime ring, suppose cCc =0, where

(r ) r v||R O]|r v|] _ [rRr rRv
€= U] ¢ C. Since 0 [w s] [0 0] {w s] B [er va]

and R 1is a semiprime ring, we have r=0. And since

4 -
0= 2 : [8 g] [3 :] = [g ::jz] » we have vVvWRvW=0. By the

semiprimeness of R, we have vW=0 and v=0. Similarly,

o _foo}foo [oo _[0o o
we can obtain w=0. Since 0-[0 s}[O S].*O s]_[o sSs]’

we have s=0 by 4). The converse is equally easy to

check.

In case L is a left ideal of a ring R, we write
L 42 R. Similarly, T <r R indicates that T is a right
ideal of R.

Theorem 1 (cf. [15, Theorem 1]). Let P be a class
of semiprime rings. Then P 1is a normal class if and only
if P satisfies the following conditions:

(N1) If L % T < R, Re P and L 1is a semiprime
ring, then L ¢ P,

(N2) Let L o T o R, lT(L) n rT(L)=0 and
ER(T) n rR(T) =0, where Q,T(L) (resp. rT(L)) is the left
(resp. right) annihilator of L in T. If L e P and

R 1is a semiprime ring, then R ¢ P.



21

Proof. Suppose P satisfies (N1) and (N2). Let
(R,V,W,S) be an S-faithful Morita context with R ¢ P. In
the notation preceding Proposition 1 (with P=0), we have
a context (R,V/VO,W/WO,S) which satisfies the conditions
1) - 3) in Proposition 3. Suppose that sSs=0 (s ¢ S).
Then, we have (sz)2=0 by using sWVs=0. Hence, VsW=0,

and so s=0, that is S 1is a semiprime ring, proving 4).

Hence, the ring C= R v/VO is semiprime by Proposition
WW., S
0
. [rO R V/V
3. Now, Re P and R = [0 0] “@ [0 0 0] a C.
) _ (R ' "o
Let R [0 OJ’ and T [0 0 0]. Since ET(R ) n rT(R )=0

and 2C(T) n rC(T)==0, we have C e¢ P by (N2). Again,

,

0 0 0 0 I r)
S = [0 S] 42 ;W/WO S] <r C and S 1is a semiprime ring, so

(N1) implies S ¢ P. Conversely, suppose P 1is a normal

class and L 4 T <r R. If Re P and L 1is a semiprime
ring, then the context (R,RL,T,L) is L-faithful, and so
L e P. If lT(L) n rT(L)=O, 2.R(T) n rR(T)=0, L e P and
R 1is a semiprime ring, then the context (L,T,RL,R) is

R-faithful, and so R ¢ P and (N2) is satisfied.

Corollary 1 ([10, Theorem 3.2]}). Every normal class

P of semiprime rings is weakly special.

Corollary 2. Let P be a normal class of semiprime

rings. Let (R,V,W,S) be a Morita context with R ¢ P, and

C==[S g]. Then the following are equivalent:

1) C ¢ P.
2) C is a semiprime ring.

3) (R,V,W,S) satisfies 2), 3) and 4) in Proposition 3.



22

Proof. By Proposition, it is clear that 1) — 2)
and 2) =—3). Now, combining Proposition 3 and the proof
of Theorem 1, we readily obtain 3) = 1).

2. Examples of normal classes and weakly special classes.
Let R be a ring, and M a non-zero left R-module such
that RM# 0. Following [3], M is called prime if one of
the following equivalent conditions is satisfied:

(1) aRm=0 (me¢ M, a ¢ R) implies m=0 or aM=0;

(2) QR(M)==2R(N) for all non-zero submodule N of M,
where ZR(X)={a € R | aX=0} for any subset X of M.
We call M monoform if every non-zero partial endomorphism
of M 1is a monomorphism. Furthermore, M is called strongly
prime (abbreviated as SP) if for any m' and non-zero m

in M there exists a finite set {al,...,an} < R such
n . .
that N 1=1 ZR(aim) E_ZR(m ). Following [5], M 1is called

compressible if M can be embedded in each of its non-zero
submodules. Following [16], M is said to have property K
if M is prime and ZR(M/N)==ZR(M) for RN E-RM only
when N=0.

A ring R 1is called endoprimitive (resp. weakly
primitive) if there exists a faithful SP left R-module
(resp. a faithful, compressible and monoform left R-module)
[6]. A ring R 1is called strongly prime (resp. strictly

prime) if, given a 1in R, there exists a finite set
{bl,...,bn}_g R such that N 2=12R(bia)==0 (resp. if for any

a 1in R there exists b ¢ R such that ‘ZR(ba)==0) [8].

A ring R 1is called K-primitive if there exists a faithful
left R-module having property K [17]. If R is a non-
singular ring with uniform left ideal, then R 1is called
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a prime Johnson ring [19]. If R is a prime ring with no

locally nilpotent ideals, then R 1is called a prime

Levitzki semi~simple ring [14].

Theorem 2. The following classes are normal:

(1)
(2)
(3)
(%)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
two-sided)
(12)
(13)
(14)
(15)

The
The
The
The
The
The
The
The
The

semiprime rings [1, 10].

prime rings [1].

endoprimitive rings [6, 10].

weakly primitive rings [14].

K-primitive rings [16].

primitive rings [1].

primitive rings with non-zero socle [16].
prime Johnson rings [16].

prime Levitzki semi-simple rings [1].

The prime subdirectly irreducible rings [15].

The prime rings with no non-zero nil left (right,
ideals [14].

The
The

rings with a faithful uniform SP module [10].
rings with a faithful monoform SP module [10].

The rings with a faithful compressible module [14].

The

module [14].

rings with a faithful uniform compressible

Theorem 3. The following classes of rings are weakly
special:

(1) The strongly prime rings [7].

(2) The strictly prime rings [10].

(3) The completely prime rings, i.e. the domains [10].

(4) The reduced rings, i.e. the rings with no non-zero

nilpotent elements [10].

(5)

The simple rings.
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Remark. The weakly special classes of rings in
Theorem 3 are not normal (cf. Corollary 1): Let V be an
infinite dimensional vector space over a field F, and
E==HomF(V, V). Then, (F,V,V*,E) is an E-faithful Morita

context. But E 1is neither reduced nor strongly prime [10].

3. Properties of normal classes and‘weakly special
classes. A ring R 1is called faithful if zR(R)= rR(R)=(L

We shall now study properties of normal classes.

Proposition 4 ([10, Proposition 3.2]). Let P be
a normal class of rings.

(1) If R e P, then eRe ¢ P for each non-zero
idempotent e of R.

(2) Let e be a non-zero idempotent of a ring R
such that eRe n RaR#0 for any non-zero a € R. If eRe
e P, then R ¢ P.

(3) Let e be a non-zero idempotent of a semiprime
ring R. If eRe € P, then R/(QR(Re) n rR(eR)) € P,

(4) Let R be a faithful ring. If R ¢ P, then the
n X n matrix ring (R)n € P for each positive integer n.

(5) Let R be a faithful ring. If (R)n e P for

some positive integer n, then R ¢ P.

As an immediate consequence of Proposition 4 (1) and
(3), we obtain [12, Theorem 1] and [15, Corollary 2 to
Proposition 5]. '

Corollary 3. Let P be a normal class of prime rings,
and e a non-zero idempotent of a prime ring R. Then,

eRe ¢ P 1if and only if R € P. Especially, eRe is a
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primitive ring if and only if R is a primitive ring.

The next generalizes [15, Proposition 5].

Proposition 5. Let P be a normal class of semiprime
rings, and R a semiprime ring.

(1) If L < T < R, ET(L) n rT(L)==0 and
QR(T) n rR(T)==0, then the following are equivalent:

1) L e P.

2) L 1is a semiprime ring and R ¢ P.

3) LaT=0 (a € L) implies a=0, and R ¢ P.

(2) Let L be a non-zero left ideal of a semiprime
ring R such that QR(L) n rR(L)==0, and let T be a non-
zero right ideal of R such that QR(T) n rR(T)==0. Then,
LnTeP if and only if L n T 1s a semiprime ring and
R e P.

Proof. (1) Obviously, 2)== 3).

l)== 2) follows by the condition (N2) in Theorem 1.

3)==> 1). Consider the Morita context (R,RL,T,L). It
suffices to show that this context is L-faithful by the
normality of P. If RLaT=0 (a e L), then LaT=0, and
hence a=0 by 3), that is the above context is L-faithful.

(2) Let L nTe P. Consider the Morita context
tn1T,T,L,R). If TaL=0 (a ¢ R), then aLTRaLT=0. Since
R 1is a semiprime ring, we have aLT=0. Hence, we have
al ¢ QR(T) n rR(T)==0. Similarly, we have a ¢ QR(L) n rR(L)
=(0. Hence, the above context is R-faithful, and so R ¢ P.
Conversely, let L n T be a semiprime ring and R ¢ P.
Since the Morita context (R,L,T,L n T) is (L n T)-faithful,

we have L n T ¢ P.
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As immediate consequences of Proposition 5, we obtain

the next corollary.

Corollary 4. Let P be a normal class of semiprime
rings.

(1) Let A be a non-zero ideal of a semiprime ring R
such that QR(A) n rR(A)==0. Then, A ¢ P if and only if
R ¢ P.

(2) Let R e P, and L a non-zero left ideal of R
such that QR(L) n rR(L)==0. Then, L ¢ P if and only if
Ln rR(L) =0.

(3) Let R be a semiprime ring, and L a non-zero
left ideal of R such that 2R(L) n rR(L)==0. Then,

Le P if and only if L n rR(L)==0 and R ¢ P.

Proposition 6 ([10, Proposition 3.3]). let P be a
normal class of semiprime rings, and R ¢ P. If L is a
non-zero left ideal of R and T 1is a non-zero right ideal
of R, then the following are equivalent:

1) LnTe¢P.

2) LnT 1is a semiprime ring.

3) For any non-zero x e L. n T, x(Ln T)#0 and
(L n T)x#0.

4) For any non-zero x e¢ L n T, LxT#0.

Corollary 5 ({10, Corollary 3.21). Let P be a
normal class of semiprime rings, and R ¢ P. Then, a left
(resp. right) ideal L (resp. T) of R is in P if and
only if rR(L) n L=0 (resp. JI.R(T) n T=0).
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Proposition 7 ([10, Proposition 3.4]). Let P be a
normal class of semiprime rings, and L a left ideal of a
semiprime ring R with rR(L)==0. Then the following are
equivalent:

1) R € P.

2) L ¢ P.

3) Every subring of R containing L is in P.

4) Some subring of R containing L is in P.

According to Theorem 2, the class of (left) primitive
rings, the class of prime rings, the class of weakly primi-
tive rings, the class of endoprimitive rings, K-primitive
rings, the class of prime Johnson rings and the class of
prime Levitzki semi-simple rings are normal. Now, the next

is an immediate consequence of Proposition 7.

Corollary 6 (cf. [12, Corollary to Theorem 2]). Let
R be a semiprime ring, and L a left ideal of R with
rR(L)==0. Then the following are equivalent:

1) L 1is a primitive (resp. prime, weakly primitive,
endoprimitive, K-primitive, prime Johnson or prime Levitzki
semi-simple) ring.

2) Every subring of R containing L 1is a primitive
(resp. prime, weakly primitive, endoprimitive, K-primitive,
prime Johnson or prime Levitzki semi-simple) ring.

3) Some subring of R containing L 1is a primitive
(resp. prime, weakly primitive, endoprimitive, K-primitive,

prime Johnson or prime Levitzki semi-simple) ring.

Following [22], a left R-module M is called semiprime
in the sense of Zelmanowitz (abbreviated as ZsP) if

(m,M*) =0 (m ¢ M) implies m=0, where (m,f)=mf for
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meM and f € M*., And M is called torsionless if (m,M%)
=0 (m € M) implies m=0. The first result in the next
proposition was proved for prime rings by Zelmanowitz [21],
and for primitive rings by Posner [18] and extended by

Amitsur [1] to normal classes.

Proposition 8 ([15, Proposition 8]). ©Let P be a
normal class of rings, M a left R-module, and E==HomR(M,M).
(1) If M 1is torsionless, then R ¢ P implies
EeP.’
(2) Suppose that M is faithful and M*m=0 (m e M)
implies m=0. Then E ¢ P implies R ¢ P.
(3) Let M be a faithful ZsP module. Then, R ¢ P
if and only if E € P.

The possibility of embedding a ring in a class of rings
P 1in a ring with identity in P 1s included in the
following more general result which answers a question of
Szasz [20, Problem 76].

Proposition 9 ([9, Theorem 1]). Let P be a weakly
speclal class. If Re P, then there exists a ring S ¢ P
such that S>3 1 and R is isomorphic to an ideal of S.

As a combination of Theorems 2, 3 and Proposition 9,

we readily obtain

Corollary 7. If R 1is a semiprime (resp. reduced)
ring, then there exists a semiprime (resp. reduced) ring
with identity such that R 1is isomorphic to its ideal.

Every prime (resp. primitive) ring can be embedded in a
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prime (resp. primitive) ring with identity as an ideal.
Every strongly prime (resp. strictly prime) ring can be
embedded in a strongly prime (resp. strictly prime) ring
with identity as an ideal. And every completely prime ring
can be embedded in a completely prime ring with identity as
an ideal (cf. [4, p. 101] and [13, p. 518]).
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NON-SOLVABLE MULTIPLICATIVE SUBGROUPS OF MZ(D)
Michitaka HIKARI

Let MZ(D) be the full matrix algebra of degree 2
over a division algebra D of characteristic 0 . 1In
[7] we determined the simple groups which are homomorphic
images of multiplicative subgroups G of MZ(D) . In this
paper we will study non-solvable multiplicative subgroups

G of MZ(D) . Our main result is as follows.

Theorem. Let G be a finite non-solvable multiplicative
subgroup of MZ(D) over a division algebra D of
characteristic O . Then there exists a non-trivial
solvable normal subgroup N of G such that
Aut(T) 2 G/N 2T and T ¥ PSL(2,5), PSL(2,9) or
PSL(2,5) x PSL(2,5) .

Let K be a field contained in the center of D .
Let G be a multiplicative subgroup of MZ(D) . We define
VK(G) ={Za(igi ‘ As €K , gieGj as a K-subalgebra of
Mé(D) . Then we have

Lemma ! ([61). vK(c) ’=‘1)l , D, ®D, or M, (D,)

where D] and D2 are division algebras.

On p-subgroups of MZ(D) we have
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Lemma 2 ([5],[6]). Let P be a p-group which is a
subgroup of M2(D).

(1) If P 1is abelian, then P 1is generated by at
most 2 elements.

(2) 1f p# 2, then P is abelian.

(3) 1f p =2, then P/[P,P] is generated by at

most 4 elements.

All simple groups whose Sylow 2-subgroups are
generated by at most 4 elements have been determined in
Grenstein - Harada [4] . Using their theorem and Alperin-

Brauer-Gorenstein's theorem [1| we have

Theorem 3 ([7]). Let S be a simple group. If
there exist a division algebra D of characteristic O ,
a finite multiplicative subgroup G of MZ(D) and a
normal subgroup N of G satisfying G/N =S , then S
is isomorphic to PSL(2,5) or PSL(2,9) and N # 1.

Let G be a non-solvable subgroup of MZ(D) . Let
G = Gl:)G22>... DGr = 1 be a principal series for G .
Since G 1is not solvable, there exists a factor group
G, / 6 28 x ... xS such that S ¥ PSL(2,5) or
PSL(2,9). A Sylow 3-group of PSL(2,5) (resp. PSL(2,9))
is a cyclic group (resp. an abelian group of rank 2 ),
i+1 = PSL(2,5) , PSL(2,9) or
PSL(2,5) x PSL(2,5) , because a Sylow 3-subgroup of Gi

which implies G, /G

is generated by at most 2 elements. Further we can prove
that the number n of non-solvable factor groups Gi / Gi+‘
is %2 and that if n =2 then G, /G, ¥ PSL(2,5) .

1
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From this we obtain our main theorem.

Theorem 4. Let G be a non-solvable subgroup of
M,(D) . Then Gp'N # | such that Aut(T) $G6/N 2T and
T 2 PSL(2,5), PSL(2,9) or PSL(2,5) x PSL(2,5).

Put 7= 12,3,5,7Y. Since a solvable subgroup of
MZ(D) has a normal Hall ®'-subgroup (see [6]), we have

Corollary 5. If G is a finite multiplicative
subgroup of M,(D) for some division algebra D . Then

G has a normal Hall 7t'-subgroup.

Let P be a Sylow 2-subgroup of G . Multiplicative
subgroups of MZ(D) with an abelian Sylow 2-subgroup
have been studied in [6]. Here we assume that P is not
abelian. Since the rational number field § 1is a subfield
of the center of D , we can define VQ(P) and by lemma |
VQ(P) %Dl, D, ®D, or M,(D;) . Let H =Q+@Qi +@j +ak
be the ordinary quaternion algebra over @ . Let €, be
a primitive n-th root of unity. Then one of the
following conditions is satisfied:

(1) P is a generalized quaternion group of order 2"

and Vo (P) = H @Q(Ex+ ).

Q
= & =1
(2) VQ(P) = Dl @Dz ’ Dl Ho® Q¢+ €,m ) , and
D, Y a field or HOGDQQ( €t t;;l) .
3) VQ(P) e'MZ( Dl) » D, is a field.

~ , =1
4) V(@) = M,(H ®Q(E* €0 )

Q oQ
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In the case (2) or (4) for n 2 3, we have

Proposition 6. Let G be a subgroup of MZ(D)' Let
P be a Sylow 2-subgroup of G. If P satisfies one of
the follows conditions (i), (ii), then the Schur index of
D over @ is equal to 2 and G 1is a subgroup of GL(4,€):

(L VQ(P) = (Ho @ Q(ez,"i'ez:l) ® D,, n 2 3, for some

Q

division algebra D2.

-1
(11) VQ(P) =M2(H0®QQ(E;}! +te,, ), n 2 3.
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ON ALGEBRAS OF SECOND LOCAL TYPE

Hideto ASASHIBA

Introduction. Throughout the report, A denotes a
(left and right) artinian ring with identity 1, J its

Jacobson radical. Let n be any natural number. Then

we say that A 1s of right nth local type in case for

" "every finitely generated indecomposable right A-module M,
the nth top topnM = M/MI® of M is indecomposable. For
such a ring A, the question of indecomposability of finitely
generated right A-modules can be reduced to the corresponding
problem of.modules over A/Jn. In [8]) H. Tachikawa has
studied the case n =1 and obtain the necessary and suf-
ficient condition for algebras (by algebra we always mean
a finite dimensional algebra over a field k) to be of this
type. Further the representation theory of algebras with
square-zero radical is well known [4],[5],[6]. So in this
note we examine the case n =2 and give some necessary
conditions for artinian rings with selfduality to be of this
type. Further in particular for QF rings, we give necessary
and sufficient conditions to be of this type. More precisely
we show:

Theorem 1. Let A be with selfduality, of right 2nd
local type and e any primitive idempotent in A. Then

1) J2e is a uniserial waist in Ae 1if Jze # 0 (see
section 2 for definition of a waist),

(2) eJ® is a direct sum of local modules for every
m> 2,
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(3) for each local direct summand L of er, LJ2
is uniserial.

Further if A 1is an algebra we have

(4) Ae 1is uniserial if h(Ae) > 5.

In particular if the ground field k 1is in additiom
an algebraically closed field, then

(5) Ae is uniserial if h(Ae) 3 4,
and then

(6) eJ2 is a direct sum of uniserial modules.

Theorem 2. Let A be a QF ring. Then the following
statements are aquivalent:

(1) A 1is of right 2nd local type,

(2) A is of right an colocal type (see section 1
for definition),

(3) for any primitive idempotent e in A, eA 1is
uniserial if h(Ae) > 4,

) A/Jc is QF for every t > 3,

(5) for each MA indecomposable and h(M) » 3, there
is a primitive idempotent e in A such that M = eA/eJh(M),

(6) A=A XA for some QF rings A1 and AZ such

1 2

that Al has cube-zero radical and A2 is a serial ring.
Furthermore each of these conditions are equivalent to

the corresponding left side version.

In the theorems above h(M) dinotes the height ( =
Loewy length) of M, namely h(M):= minine NuioliMs® = of .

In section 1, we introduce the basic tools used in the

following sections. Section 2 is devoted to the structure
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of indecomposable projective left modules. In section 3 we
examine the structure of indecomposable projective right
modules on the whole using the method of Sumioka [7].
Finally in section 4 we give the proof of Theorem 2.

Proofs will be given only in outline See [0] for details.

The anthor would like to thank Professor T. Sumioka and

Dr. T. Okuyama for fruitful conversations.
1. Preliminaries

1.1, Throughout the note all modules are (unital) finitely
generated. We write homomorphisms on the opposite side to
scalar multiplications. For homomorphisms p : K —3 L

and ¢q :nL —> M of left A-modules and for a decomposition
Dil=®L of L (D)= (p)y ] and (0,) = (4]
are matriXx expressions of p and q relative to D, respec-
tively. 1In addition to the definition of right nth local
type for n any natural number, we define the dual notion:

A 1is called to be of left nth colocal type in case for
th

every indecomposable left A-module M, the n~ socle soc™

of M 1s indecomposable. It should be noted that if A

has a selfduality, then A 1is of right nth local type iff

A 1s of left nth colocal type. Further as easily verified,

when A 1s of right nth local type, A 1s of finite rep-

resentation type 1ff A/Jn is of finite representation type.
Since the property to be of nth local (colocal) type

is Morita invariant, we may assume that A 1is a basic ring.

We put pi(a) :={e1,...,ep} to be a basic set of primitive

idempotents of A.
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n
1.2, Definition. Let D : L 2121Li be a decpmposition
of a right A-module L, p : K—> L be a homomorph%sm and
je{l,...,ny. Then the pair (p,D) (or p : K ——elglLi)

is called j-fusible in case there is a homomorphism q :

& L, — L, such that the diagram
. 1 J
i#j
<P1>f¢
K o Li
" i#]
P + 1
K L

commutes where (p,D) = (pi):=g . The pair (p,D) 1is called

fusible in case (p,D) is j-fusible for some j = 1,...n.
Finally (p,D) 1is called infusible in case (p,D) is not

fusible.

1.3. Let I be a two-sided ideal of A and e,f € pi(A).
Then we have the canonical isomorphisms HomA(fA, eAlel) 5
eAf /elf 2':o}lomA(Ae, A£/If). We denote by p° the image of
every p € HomA(fA,eA/eI) or inverse image of every p €
HomA(Ae, Af/If) under the composition of these isomorphisms.

Proposition. Let e,fl,...,fn € pi(A), > m, j e

n
ﬁ,...,n} and p = (pi)?=l :iglfiA-——é eJm/eJl be a homomor-

phism. Then the following statements are equivalent:
< = .
1

n
(2) pt: Ae/Jl-me ——9121Afi/J £, 1is j-fusible
n

where pt is the induced map by the homomorphism (pz)i=l.

Proof. Direct culculation.
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In futur pt shall always mean the above induced homo-

morphism when the domain of p 1is of the form as above.

Corollary. Under the same situation as above but § =
m+ 1, the fol%owing statements are equivalent:

(1) 7 ¢ @ A/E,I —> el™/ed™ (the induced map by p)
is a monomorphism,

t n +1

(2) p- : Ae/Je ——>iglAfi/J‘“ £, 1s infusible.

In particular if p : £§1fiA ——aheJm is a projective
cover of eJm, then pt : Ae/Je —> iglAfi/Jmﬂfi is infusible.

1.4, Proposition. let 0 —> K -B>L -d>M —>0 be

split exact sequence of right A-modules and D : L =

non-

1@l

a
n
be a decomposition of L (n > 2). Then we have
(1) If M is indecomposable, then (p,D) 1is infusible.
(2) If K 1is simple, each Li

infusible, then M 1is indecomposable.

is local and (p,D) 1is

Proof. See [1] or[2].

n
Corollary. Let p : iQlfiA —>eJ” be a homomorphism such
that the induced map p :top(dom(p)) —> top(cod(p)) is a

monomorphism and the sequence

t n
0 —> Ae/Je 2> iglAfi/Jmei —> M —>0

be exact. Then M is indecomposable.

Proof. Clear from Corollary 1.3 and Proposition 1l.4.
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2. Structure of indecomposable projective
left modules

For an A-module M, we put |M|:= the composition length
of M.

2.1. Proposition. Let A be of nth local type, n any

natural number and e € pi(A). Then J% is uniserial.

Proof. It suffices to prove that IJme/Jm+1e|5 1 for
every m 2> n. Suppose IJme/Jm+ie|) 2 for some m ¥ n.

Then we have a homomorphism p : AfleAfz‘—_$ fme/Jm+le; fl’

- 2
f2 € pi(A) such that the induced map p:iglAfi/in —> J"e/

2
Mo 45 a monomorphism. Putting L =iglfiA/fiJm+l’ we
t

have an exact sequence 0 —> eA/el —Pﬁ L— M —> 0 where
M is indecomposable by Corollary 1.4. But pt(eA/eJ) < L

gldn. Hence topnM = toan is decomposable, a contradiction.

2.2, Definition. ([3]) Let AL §'AM. Then L is called to
be a waist in M in case 0 # L # M and for each ,N £ M

A A
it holds that L~ N or N ~ L.
Proposition. Let A be with selfduality, of right an
local type and e € pi(A). Then J2e is a waist in Ae if
2
J%e # 0,

Proof. Deduced from the following lemmas:

Lemma 1. Let AM be nonsimple indecomposable. Then
soc{(JM) = soc M.
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Lemma 2. Let AM be local and soc2M indecomposable.

Then soc(JZM) = gsoc M if J2M # 0.
Proof. Clear from Lemma -1l.

Lemma 3. Let A be of left 2nd local type, AM be
local and J2M be a nonzero uniserial module. Then J2M

is a waist in M.

Proof. Suppose J2M is not a waist in M. Then for
some X<M, IPME X and X ¢ JIM. But J%Mn X = I for
some t» 3. Hence M/I™M ) (3*M/3™M) @ (X/3%M) where
J2M/JtM # 0 and X/JtM # 0. On the other hand since
socz(M/JtM) is indecomposable and J2(M/JtM) # 0, we have
that soc(M/JtM) = soc(JzM/JtM) is simple by Lemma 2.

This is a contradiction.

We get Theorem 1 (1) from Propositions 2.1 and 2.2.

Corollary. Let A be with selfduality, of right ond

local type, e € p1i(A) and h = h(Ae). Then we have soch-t

(Ae) = J% for every t = 0,...,h.

2.3. Lemma. Let ,L,;, ,L, be local with height > 3 such
that for each 1 = 1,2, soc Li is uniserial and J2ei is
a uniserial waist in Ae, where Ae, 1is the projective

i i

cover of soc3Li. Suppose AK is simple and there exists

an isomorphism Pyt K—> socL;, for each 1 = 1,2. Consider

i

a
1
p=(p;,P,) q{q
0 —>K yL8L, —>M —> 0

the exact sequence:
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2
Then soczM is decomposable if p : K —>.8

i 1s_ocL is
fusible.

i

Proof. See [0].

Proposition. Let A be with selfduality, of right 2"
local type and ALl’ AL2 be local with height > 3 such
that soc3Li are uniserial and H1|QJL2|. Then for every
isomorphism r : socLl-——) socLz, r 1s extendable to a
monomor phism Ll-——a L2 if r 1is extendable to a homomor-
phism soch1 —> soc2L2.

Proof. Put K = socLl, P;= identity map of socL1 and
P=(p;,P,)
Py=rT. Let the sequence 0 —> K —> L]_QL2 A5 —o0

be exact. If r 1s extendable to a homomorphism soc L1

—_— soc2L then p:K —> soc2L Gsoch is fusible. Hence

2° 1 2
by Lemma 2.3, soczM is decomposable thus M 1is decomposable.
Therefore p: K —> le)L2

—> L, since [L,ISIL,| where q is

is fusible thus r 1s extendable
to a homomorphism q:L1

monic since socLl is simple.

2.4, Indecomposable projective modules with height > 4

Throughout the rest of this section, A 1is an artinian
ring with selfduality and of right 2"% local type.

Proposition 1. Let e,f € pi(A) and fJe/sze # 0.
Then Af 1is uniserial if h(ae) 2 4.

Proof. See [0].
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Proposition 2. Assume that e ¢ pi(A), h(Ae)> 4 and
Ae is not uniserial. Then

(1) all simple submodules of Je/JZe are mutually iso-
morphic, and

(2) Jze/J3e = J3e/J4e.

Proof. See [0].

Proposition 3. Assume that e,f,g € pi(A), h(Ae) 2 5
Ae 1is not uniserial, fJe/fJZe # 0 and Jze/J3e T Agllg.
Then fAf/fJf = gAg/glg as rings.

Proof. See [0].

Proof of Theorem 1 (4),(5). Suppose Ae 1is not uni-

serial and h(Ae) 2 4. Let »p ielpi ——<>Je/J e be a pro-

jective cover of Je/J3e where each APi is indecomposable.

Then n 2 2. By Proposition 2, there is an f& pi(A) such
that every P, = Af. And J2e/J3e ¥ Ag/Jg for some g ¢ pi(A).
If we put Li (P )p for i=1, 2 then L Af/JZf,
J2e/J3e Je/J e, LN L,
for each i = 1,2. Since we have an exact sequence

Af/Jf

=7 e/J e and topLi

0 — Jze/J3e — LIQ)L2 —> L1+L2 ~—> 0 where Jze/J3e =
Agllg, L, oL, (Af/Jf)2 and L, + L, is colocal, there

exists an infusible homomorphism Ag/Jg ——9-(Af/Jf)

Therefore (fA/fJ) is isomorphic to a direct summand of
gJ/gJZ. Hence dim (ng/ngf)fAf/fJf 7 2. 1If h(ae) 2 5
or k 1is algebraically closed, then by Propsition 3 d:=

dim (ng/ngf) = dim (ng/ngf) 7 2. Hence

gAg/glg £Af/£IE

(Ag/Jg)d is isomorphic to a direct summand of Jf/sz
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and d ? 2. Thus IJf/JZfI) 2. This contradicts the uni-

seriality of Af. Hence Ae must be uniserial.

3. Structure of indecomposable projective

right modules

3.1, Lemma. Let 0 —K —P—> L J—)M —> 0 be a nonsplit

exact sequence of left A-modules such that K is simple,

]

D : ielLi is a decomposition of L and for each 1

l,...on, h(L) =@+ 1 @3 1), JL, = soc“’Li and L ¥

. < m
Aei/Ii for some e ¢ pi(A) and Ii\. J e;. Then JM

soc™ if (p,D) 1is infusible.

Proof. See [0].

Proposition. Let A be with selfduality, of right

2ndlocal type, m 3 2, e,fl,...,fneg pi(A) and p: 6 f.A

ml mi L L

—>el"/eJ be a projective cover of el "/ed . Then

pt : Ae/Je —> G Jf /Jm+1 is infusible.

i

Proof. By Corollary 2.2 , Proposition 1.4 and Lemma
3.1. See [0] for details.

3.2. Proof of Theorem 1 (2). Let p 19 £A—> el” be a

171
projective cover of eJ™ and fi ¢ pi(A) for each i =1,
.,n. There is some u, € eJmfi\ eJm+lfi for each 1 =1,

.,n such that the it coordinate map of p 1is the right

multiplication by u,. Then eJ" = 2; u A where each uiA

is local. If eJ® 1is not a direct éu% of local modules,

n
then we have 3 uja, =0 for some a;€ A and ujay #0
i=1 *
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for some j =1,...,n. We may assume that there is some

g € pi(A) such that ujajg # 0 and a; = fi 18 for each

i=1,...,n. As easily seen, aie fiJg for each 1 =1,
..,n. From these facts we can show that pt : Ae/Je —>

iGIin/Jm+1 is fusible. This contradicts Proposition 3.1.

See [0] for details.

3.3, Proof of Theorem 1 (3),(6). Suppose LJS/LJS+1r).2

for some s 2 1. Then LJ° is a direct sum of local modules

and L =vA for some v ¢ erg\ eJ3g and for some g€ pi(A).

Hence vJ° = u,A @ u,A @ ... for some u,< eJ2+sfi\ eJ3+sfi.

Then for each i = 1,2, there is some aie gJ f such that
Define the map p,: Ag/J g — J°f /Js+3f —

Af /Js+’js i x —>{(x a, + 35H3¢ ) for each 1 = 1 2. Then

Py 3and p, are both m::gmorphisms since if we put Vi= v

+Jg and ui'= u; +J°7f,, then soc(Ag/J g) = AV and

soc(Jsfi/Js+3fi) = Aﬁi are simple modules and (A?'r)pi =

Aﬁi for each i =1,2. 1In particwl 9g is uniserial.

In case s 2 2, by the above AV -———> IE /Js+3 £, is
(py5P,)

fusible. By Proposition 2.3 Ay ___11—3—91% Af, /Js+3 is

fusible, say 2-fusible. Then we can show 02A=$ ulA where

Gi:= ug + er+3 for each 1 = 1,2. This contradicts the

linear independency of ElA and EZA. In case k 1is alge-
braically closed, we may assume s = 1. By the similar
argument we can show the linear dependency of GlA and
EZA. See [0] for details.

4. QF rings of right an local type
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4.1. Proof of Theorem 2. Let (x)' be the left side version
of (x) for each x = 1,3, We show (1) = (3)' & (3) =
(6) = (4) = (5) => (1). Note (2) > (1)' since A has a
selfduality. Put D := HomA(?,A) to be the selfduality of
A.

(1) => (3)'. Let e ¢ pi(A) and h:= h(Ae) > 4. Then
J2e is a uniserial waist in Ae. Hence soc2eA = D(Ae/Jze)

is a waist in eA = D(Ae) and socter = ed"2 is a direct

sum of local modules for h-2 2> 2. But since ed’2< ea
and eA is colocal, eJh-2 is local. Hence IJe/J2e|=|soc2
(eA)/soc(eA)I= 1l and Ae 1is uniserial.

(3)' &> (3). Clear from the fact that height and uni-
seriality is preserved by D.

(3) = (6). It suffices to prove that if A 1is an
indecomposable ring and J3 # 0, then A 1is serial. (Note
we assume that A 1is basic.) Put Q to be the right
quiver of A, namely the oriented graph with vertex set
{1,2,...,p) where pi(a) ={e1,...,e } and with n
i—>j 1iff dim(eiJej/eiJ e.) n,.. Note that

j ejAe./e.Je.= ij 3
A is an indecomposable ring iff QJ id cdnnected. J° # 0

arrows

1j

implies that h(eiA)I> 4 for some i=1,...,p, therefore
eiA is uniserial by (3). There is a unique j = 1,...,p
such that i —» j in Q for eiA is nonsimple and uni-
serial. Then we obtain the following

(a) i # j, and

(b) e, A 1is uniserial and h(ejA)'> 4.

Now put E :={ié'{1,...,§}|eiA is uniserial with height
2’4} . Since A 1is basic QF there exists a permutation
p such that soc(eiA) B ep(i)A/ep(i)J . -By (a) and (b),
we have i ¢ E €9 p(i) ¢ E. We show E ={1,...,p}. Suppose
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there is some % €{l,...,p\E. Then L —>3j in Q (1 # j)
for some j € E by (a),(b) and by the fact that Q 1is con-
nected. If eA is uniserial, then soc(elA)_i eiA/eiJ

for some i € E by (a) and (b). Hence 8 =p (i) ¢ E, a
contradiction. If 2elA is no; uniserial, the; h(elA) =3
e = ejJ/ejJ . But ;jJ/e J7 = e A/e J

for some 1 € E by (b). Hence 1§ = (i) ¢ E, a contradic-

and soc(elA) =

tion. Thus eA 1is uniserial for each e € pi(A) i.e. A 1is
serial.

(6) => (4). Clear from the fact that for a serial ring
A, A 1is QF iff the admissible sequence of A 1is constant.

(4) = (5). Let M be indecomposable and h:=h(M) > 3
Then A/J% 1is QF by (4). Let 0 —> K _>91P1 —>M —>0
be a projective cover ofm M over A/J with each Pi inde-
composable. Then soc(;8,P.)¢ K implies that socPi$' K
for some i =1,...,m and then P, N K = 0. Hence Pfc—e»M.
But since Pi is injective, Pi is isomorphic to a direct
summand of M. Hence IE.Z M for M 1is indecomposable.
Further Pi = eA/eJh for some e € pi(A).

(5) =» (1). Clear.
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TILTED ALGEBRAS OF FINITE DIMENSIONAL HEREDITARY

ALGEBRAS OF TAME TYPE
Kenji NISHIDA

Introduction. Let A be a finite dimensional k-algebra
where k is assumed to be an algebraically closed field for
the simplification. Following [6], a right A-module T is
called a tilting module provided it satisfies the following

1) p.dim T, 1,

2) Exti(T,T) =0,

3) There is an exact sequence 0 -+ %ﬁ -+ TA > TX + 0 with
T',T" € add T, = {XA ; XA <9TA(n for some nl.

A finite dimensional algebra B = End(TA) is called a tilted

algebra provided TA

dimensional hereditary algebra A[6]. In this note we

is a tilting module over a finite
construct certain tilted algebras and study the torsion
theory (T,F) over the category of all finitely generated

right A-modules mod A.

§1. Preliminaries. In this section we give the

exposition of the representation theory of algebras and
Brenner-Butler Theorem.

(1.1) We give the definition of the Auslander-Reiten
quiver of an algebra A([1], see [9] for short and exposi-
tory report). Let M,M' ¢ mod A. Then f : M + M' is called

an irreducible map if f is not a splittable monomorphism

and not a splittable epimorphism, moreover, the factoriza-
tion £ = f"f' implies that f' is a splittable monomorphism

or f" is a splittable epimorphism.
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An exact sequence 0 + A LA B & C + 0 is called an

Auslander-Reiten seguence if it doesn't split, A and C are

indecomposable, and, for not a splittable epimorphism h :
X + C, there exists j : X + B such that h = gj. It holds
that A = 7C and C = TL A where T = DTr(fJ' = TrD) is the

Auslander-Reiten transformation.

The Auslander-Reiten quiver Q(A) of an algebra A

consists of the set of vertices and the set of arrows. The
vertices of Q(A) consist of the equivalence calasses of
Ind A= {X emod A ; X is indecomposable}l and there exists
an arrow [M] + [M'] for M,M' € Ind A if there exists an
irreducible map M + M',

(1.2) Let A be a finite dimensional hereditary alge-
bra of tame type whose representations are identified with

the representations of an Euclidian graph. We assume A to

be basic and connected. We summarize the properties of
mod A (see [3,4,5] for detail).

Ind A is the disjoint union of Ind P, Ind R, and Ind I
where P,R,I are the subcategories of mod A consisting of
all preprojective, regular, preinjective modules, respecti-
vely. P,R,T are characterized as follows;

1) X € P <=> There is a positive integer n such that TnX=O,
2) X € T <=> There is a positive integer n such that qu=0,
3) X € R <=> There is a positive integer n such that XX,
In 3) the smallest such n is called the t-period of X. R

is an exact abelian subcategory of mod A and has a simple

regular module, i.e., a regular module which has no nonzero
proper regular submodule. Using the simple regular modules
ve can define the regular composition series, the regular

length, the regular socle, the regular top for a module in
R same as in mod A. R = Rgyx...xRgyxH (0<hs<3, ti22), where
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Rti(H) is the category of all regular modules of T-period
ti(1). If X e P, Y e€R, Z €1, then HomA(Z,X) = HomA(Z,Y)
= Hom, (¥,X) = 0.

(1.3) We shall state Brenner-Butler Theorem and
related results(see [2,6]). Let B = End(TA) with T tilting
and put T = (M ; er(n) »» M}, T = {M ; Hom,(T,M) = 0}.

Then (T,F) forms a torsion theory over mod A. Let F =
HomA(T,-), F' = Exti(T,—) :mod A +mod B, G = -® T, G' =

B
Tor?(-,T) :mod B-+mod Aand ¥Y=Im F, X = Im F'. Then

Brenner-Butler Theorem.

a) gl is tilting and A = End(BT) canonically.

b) G'F = GF' = 0, F'G = FG' = 0, further,

F and G induce a category equivalence T £ ¥, F' and G'

induce a category equivalence F & X,

(X,Y) forms a torsion theory over mod B by a), more-
over, if A is hereditary, i.e., B is a tilted algebra,
then (X,Y) is a splitting torsion theory, thus N ¢ X or N ¢
Y for each N € Ind B. If A is hereditary, then T is tilt-
ing <=> Ext7(T,T) = 0 and |Ind T, the number of the non-
isomorphic representatives in Ind T, equals to the number

of the isomorphism classes of the simple A-modules.

52. Tilted algebras of tame hereditary algebras.

Let A be a finite dimensional hereditary algebra whose
representations are identified with representations of an
Euclidian graph, further, A basic and connected. T is a
tilting module which is multiplicity-free, i.e., T & eTi

such that each Ti is indecomposable and i # j => Ti # Tj'
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PROPOSITION 2.1. ([7, (3.2)]). The following are

equivalent.
i) T is infinite.
ii) 1cT,

iii) T has no nonzero preinjective direct summand.

PROPOSITION 2.2. ([7, (3.2%)]). The following are
equivalent.

i) F is infinite.

ii) PcF.

iii) T has no nonzero preprojective direct summand.

PROPOSITION 2.3. ([7, (3.3)]). One of the following
occurs.
(1) TeP,orTel.
(11) T=T"®T', 0#T' ¢ Pand 0 # T" ¢ R.
(II*) T=T"' ® T, 0# T' €I and 0 # T" ¢ R.
T
0

(I11) T T ®T"', 0#T ¢ P, " ¢ R, and
#T" ¢ 1.

In the following we shall study the cases (II) and
(IT*), thus assume T=T' 6 T", 0 # ' ¢ Por T and O # T
€ R. The proofs of the following results are omitted so

that the reader is referred to [8].

LEMMA 2.4. If S is a simple regular module with T-
period t, then not all the v S(i=0,...,t-1) are contained
in Ind T".

COROLLARY. If Ind T" c Rt’ then |Ind T"| < t.
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LEMMA 2.5. If X € Rt n Ind T", then reg.2(X) < t.
Therefore, if X # 0, then t 2 2,

By the above lemma, for T", we only study Rt(t22).
It is noted that the number of categories Rt(t22) is less
than k4(see (1.2)).

LEMMA 2.6. If X € Ind T and ©X € F, then X ¢ Ind T.

LEMMA 2.7. If X ¢ R, then t(X), X/t{X) ¢ R, where
t(X) is the torsion submodule of X with respect to (T,F).

COROLLARY. There exists a simple regular module S ¢
Ind T".

By the above results we firstly decide T" ¢ R such
that Ext (T",T") 0 and a simple regular module S € Ind TV
Then we seek for T' ¢ Por T' ¢ I with Ext (T'GT" T'eT") =
0 such that |Ind (T'®T")| equals to the number of the iso-
morphism classes of the simple A-modules. We may assume
that Ind T' contains a projective (injective) direct
summand, if T' € P(I)(see the proof of [7, (3.2)1).

Example. Consider the component Rh' Let S=S1 be a
simple regular module of t-period 4 and Si+l=rls(i=1,2,3).
The Auslander-Reiten quiver is the following (dotted lines

are identified);

1S 2 ALRN 2//’ NN 2 i g2 A
'/ \3/”‘N3/ A Lf \

l
53 ?
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We only consider subquiver

S2 Sl Sh
\;52/7 \Se/
Nt
S3
2° i
The other T" 's are obtained by applying t  for some i.
The list of Ind T" with Exti(T",T") = 0 such that Ind T"

contains Sl or 82 or S. and consists of the above subquiver

3
is the following:
(s}, {8,}, {8}, {5,,8,}, 155,5,}, {83,5,), {55,5,},

2 3 3 3
(s2,5,), 183,5,,5,}, 83,5,), (83,8,1, (53,8,

3 .2 3.2 3 .2 3.2
{82,82,82}, {82,82,81}, {S2,Sl,sl}, {Sz,sl,Sh}'
Remark. Tt is not necessarily the case that there

exists some T' ¢ P or I with T'®T" tilting corresponding

to each T" above (for example, consider EY :
5

} and T" = S3@S‘).

h +3+2+1«6«7+8 31

§3. Our standing assumption of this section 1is the
same as §2. Let T=T' ® T, 0#T' ¢ Por 1 and O#T" ¢ Rt
(t22), a tilting module. If T' ¢ P, then H,I,Rt, c T for
t'22 and Rt' n Ind ™ = ¢. Dually, if T' ¢ I, then H,P,Rﬁ,
c F for t'22 and Rt‘ n Ind ™ = ¢(cf. Propositions 2.1,2.2
also [7, (3.2),(3.2%)]). Thus we only study the remaining
components in order to decide the torsion theory (T,F).
Put S(S') = {S ¢ Rt; S is simple regular and is not a

regular composition factor of tT"(T")}.

THEOREM 3.1. Let X € Ind Rt'
1) If T' is preprojective, then;
a) X e€ T <=> the regular top of X is in S or
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there is an epimorphism M + X with M ¢ Ind T".
b) X e F <=> X c ™ with M ¢ Ind T".
2) If T is preinjective, then;
a) X e T <=> there is an epimorphism M - X with
M ¢ Ind T".
'b) X e F <=> the regular socle of X is in S' or
X ¢ 1M with M € Ind T".

Put;

TO = {X € Ind T ; There is no chain of irreducible maps
from X to any ™™, M € Ind T},

FO = {X € Ind P ; There is no chain of irreducible maps

from any M, M € Ind T, to X},

T. = {X € Ind T ; There is a chain of irreducible maps
from M to X, or X=M for M € Ind T},

F. = {X € Ind P ; There is a chain of irreducible maps
from X to ™, or X=1M for M € Ind T}.

THEOREM 3.2. 1) If T' e P, then FO c FnIndPc Fl.
2) If T" €1, then TO cTnIndlc Tl.

PROPOSITION 3.3. 1) Let T' € P and X € Ind (P-Fl).
Then X ¢ T <=> HomA(X,TT") = 0.

2) Let T' € 1 and X € Ind (I—Tl). Then X € F <=>
HomA(T",X) = 0.

Example. Consider the path algebra A of the quiver
5

+ ~
4y >3 +2+>1+«6«T+«8 of type E,. The simple regular

2
representations sl=oooi110, s.=111%100, s_=011t000, 5,,=

2 3

i = = = 3 =
0019111 form the t-orbit. Let T1 82, T2 112§321 82, T3 Sh'
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Then T" = T10T29T3 € Rh' Let I be indecomposible injective
and n be a nonnegative integer. Then; Extk(t n+kI,T")§

DHomA(f-(k+l) T",1)=0(0<k<3) <=> k=0=I=Iu’ k=2:I=18, where
Ii is the indecomposable injective module corresponding to

. _ 8 _ _6 _

each i ¢ B . Let 7,=112%210=" I,, T5-111§211-r Iy, T

_4 _ 2 _ _ e 8
111%110=1 I)» T7—0008100-T Igs T8-1008000-1h and T'=e _,T..
Then T = T'®T" is tilting and B = End(TA) is a tilted alge-

bra. The Auslander-Reiten quiver of A is PszxR3thxHxI

by [5]. Thus P,R2,R3,H c F and Rh’ T is the following;

o, {9
_ N
,where T(F) isuéncircled by the solid (dotted) line.
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TILTING MODULES AND TORSION THEORIES
Mitsuo HOSHINO
Introduction

Bremner-Butler[5] first introduced the notion of a
tilting module in a rather restrictive form, and Happel-
Ringel[6] generalized their work and extensively developed
the theory of tilting modules, which has a close connection
with the work of Auslander-Smald[2] and [3]. Let A be an
artin algebra. Recall that a finitely generated A-module '
T 1is said to be a tilting module if it satisfies the

following three properties;
(1) projdimT < 1.
(2) Exty(T,T) = 0.

(3) There is an exact sequence O0-—A =T" > T°" >0

with T”, T°" directsums of direct summands of T.

Let TA be a tilting module, then TA induces a torsion

theory (T, F) on MA’ the category of finitely generated
right A-modules, where T = {X|Exti(T,X)= 0} and F =
{X|HomA(T,X)= 0}. The torsion class T consists of the
modules generated by T, and the torsionfree class F
consists of the modules cogenerated by DIrT. Let B =
End(TA), then by the Theorem of Brenner-Butler BT is also
a tilting module, thus as above induces a torsion theory on
BM, the category of finitely generated left B-modules.
Hence by the duality D, we get a torsion theory (X,VY)
on MB’ the category of finitely generated right B-modules,
where X = {X|X8T=0} and VY = {X|Tor;(X,T)= 0} . The

torsion class X consists of the modules generated by
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TrDU, and the torsionfree class Y consists of the

modules cogenerated by U, where UB = D(BT). Let F =

1
? ‘= 2
HomA(BTA,.), F ExtA(BTA,.) b; the functors from MA
= ? ‘= ?
to MB’ and G ’QBTA' G Torl("BTA) those from MB

to MA. The following theorem is the main result on

tilting modules.

Theorem of Brenner-Butler(see [5], [6]). Let TA be

a tilting module with End(TA) = B. Then BT is also a
tilting module with End(BT) = A. With the above

notations, T and Y are equivalent under the restrictions
of F and G which are mutually inverse to each other,

and similarly F and X are equivalent under the
restrictions of F° and G”° which are mutually inverse

to each other.

Happel-Ringel[6] showed that in case A 1is hereditary
(X,Y) 1is always splitting, thus by the Theorem of
Brenner-Butler B 1is of finite representation type when-
ever A 1is. From this point of view, we ask when (X,VY)
is splitting. The main aim of this note is to answer this

problem.

In §1, we study, in general situation, torsion theories
on MA’ the category of finitely generated right modules
over an artin algebra A.

In 82, we study torsion theories on MA such that
every injective module is a torsion module (note that for a
tilting module T, the associated torsion class T
contains every injective module). We show that the work of
Auslander-5malé[2] and [3] has a close connection with the
theory of tilting modules, and that certain torsion

theories conversely determine tilting modules.
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In §3, we give an answer to the above problem and
some other necessary conditions for (X,Y) to be

splitting.

Throughout this note, we deal only with artin algebras
over a fixed commutative artinian ring C. We denote by
D duality Homc(?,I), where I 1is the injective envelaope
of C/radC over C. For an artin algebra A, we denote by
MA the category of finitely generated right A-modules and
by 1 (resp. T_l) DTr (resp. TrD). All modules are
finitely generated and most modules are right modules. We
refer to [1] for DTr and Auslander-Reiten sequences, and
to [2] for Auslander-Reiten sequences in full subcategories.

We freely use the results of [1].

1. Preliminaries

We first recall some definitions Let A be an
artin algebra. The pair (T, F) of full subcategories of
MA is said to be a torsion theory on MA provided X
belongs to T if and only if HomA(X,Y) =0 for all Y
in F, and Y belongs to F if and only if HomA(X,Y) =0
for all X in T. The modules in T are said to be
torsion modules, and those in F torsionfree. Clearly
the torsion e¢lass T 1is closed under extensions and factor
modules, and the torsionfree class F is closed under
extensions and submodules. For any module X, there is a
torsion submodule t(X) such that X/t(X) is torsionfree,
where t 1is a subfunctor of the identity functor called
the idempotent radical. If t(X) is always a summand of

X, (T,F) is said to be splitting, which is clearly
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equivalent to that Exti(Y,X) =0 forall X&€T and
all Y € F. Throughout this section, we fix the above
notations. Let C be a full subcategory of MA closed
under extensions. A module X € C is said to be Ext-
projective (resp. Ext-injective) if Exti(X,Y) = 0 (resp.
Ext,(Y,X) = 0) for all Y € C (see [2]).

The following two lemmas are well known.

Lemma 1. Let X &€ T be indecomposable. Then X is
Ext-injective in T iff X = t(J) for some indecompos-
able injective module J.

Lemma 2. Let X €& F be indecomposable. Then X is
Ext-projective in F iff X =~ P/t(P) for some indecom-

posable projective module P.

Lemma 3([7], c£.[2]). Let X €T be indecomposable.
Then

(1) X is Ext-projective in T iff X € F.

(2) Assume that X is not Ext-projective in T. Then
t(1X) 1is indecomposable, and for the Auslander-Reiten
sequence 00— 1X->E -»X »0 the induced sequence
0— t(1X) 2 t(E) -»X -»0 1is the Auslander-Reiten sequence
in T.

The dual statement of Lemma 3 is the following.

Lemma 4. Let X € F be indecomposable. Then

(1) X is Ext-injective in F  iff X e T

(2) Assume that X is not Ext-injective in F. Then
T—lX/t(T-lX) is indecomposable, and for the Auslander-
Reiten sequence 00— X —E —> T-lx —(Q the induced sequence
0—>X —>E/t(E) > r—lxlt(r-lx) >0 1is the Auslander-Reiten

sequence in F.
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Proposition 5([7]). The following are equivalent;
(1) (T,F) 1is splitting.

(2) T is closed under T ..

(3) F 1is closed under T.

Proposition 6. Let J be the anihilator ideal of
t(D(A)), then ¢t(D(A)) = D(A/J).

Proof. Clearly, (DF,DT) is a torsion theory on AM.
Denote by E the idempotent radical for (DF,DT). Then
we have t(D(A)) =~ D(A/t(A)). Setting J = t(A), we are

done.

2. Tilting modules and torsion theories

Throughout this section, A 1is an artin algebra and

(T,F) 1is a torsion theory on MA.

Lemma 7. Assume that T contains every injective
module. Let X ¢ T be indecomposable. If X is Ext-

projective in T , then projdimX < 1.

Proof. We may assume that X 1is not projective.

Let 0-—> 1X -)IO -911

By the definition of T-l, we get the minimal projective

be the minimal injective resolution.

resolution

p
HomA(D(IO),A)-9 HomA(D(Il),A)-+ X »0.

Since 1X& F and D(A) « T, we get

K

Ker p HomA(D(TX),A)

"

HomA(D(A),TX)

= 0.
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Proposition 8(cf.[3]). Assume that T contains every
injective module. Let T be the direct sum of the non-
isomorphic indecomposable Ext-projective modules in T.
Then T generates every module in T iff T 1is a tilting
module.

" "
Proof. 1if part: See [6].

"only if" part: We have only to show that there is an
exact sequence 0—= A>T "> T""—>0 with T", T°" Ext-
projective modules in T. Note that T is faithful, since
T generates D(A). Let Els cees E_€ T be generators
over C and define an A-homomorphism f : A ;T(r) by
f(a) = (tl

sequence 0-> A-E;T

a, ..., t_ a) for any a € A. From the exact
{r)_, Cok f >0, we get the exact

sequence of functors

(r)

HomA(T ,?)-i;ﬂomA(A,?)-«;Exti(Cok.f,?)->Exti(T(r),?),

where ¢ = HOmA(f,?). Since T generates every module in
T, % is monic on T. Therefore the functor Exti(Cok £,7)

vanishes on T , thus Cok f is Ext-projective in T.

Proposition 9([4], cf.[6]). Let n be the number of
non-isomorphic simple modules. Let T = Tle...eTm be a
direct sum of non-isomorphic indecomposable modules.
Suppose projdimT < 1 and Exti(T,T) =0. Then m < n,

and m=n iff T is a tilting module.

Proposition 10([2]). Assume that (T, F) |is
induced by a tilting module. Then T, F have Auslander-

Reiten sequences.

Proof. This proposition directly follows from

Lemma 3 (2), Lemma 4 (2) and the Theorem of Brenner-Butler.



65

Theorem 11(cf.[2], [3]). Let T be the direct sum
of the non-isomorphic indecomposable Ext-projective
modules in T. Then, T has the same number of non-
isomorphic indecomposable Ext-projective modules and Ext-
injective modules iff T generates every module in T,

In that case, T has Auslander-Reiten sequences.

Proof. By proposition 6, we may assume that T
contains every injective module. Then, this theorem is an

immediate consequence of propositions 8, 9 and 10.

At the end of this section, we give, in an applicable
form, a condition for (T, F) to determine a tilting
module as the direct sum of the non-isomorphic indecom-

posable Ext—projective modules in T.

Theorem 12([8]). Assume that T contains every
injective module. Suppose that either T or F contains
only a finite number of non-isomorphic indecomposable
modules. Let T be the direct sum of the non-isomorphic
indecomposable Ext-projective modules in T. Then T is

a tilting module.

If both T and F contain infinitely many non-
isomorphic indecomposable modules, T does not necessarily
contain an Ext-projective module. Consider, for example,
the case in which A 1is connected, hereditary and of
infinite representation type. Let T be the full sub-
category of the pre-injective modules, and F that of
modules without a pre-injective summand. Then (T, F)
is a torsion theory on MA and T contains every
injective modules, whereas T does not have any Ext-

projective module.
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3. Splitting torsion theories induced by tilting
modules

Throughout this section, we use the same notations as

in the introduction.

Theorem 13([7]). The following are equivalent;
(1) (T,F) 1is splitting.

(2) F(1X) ~ 1(FX) for all X € T.

(3) F(<1x) = vI(F'X) for all X eF.

(4) injdimX <1 for all X e F.

The next lemma is included in the Theorem of Brenner-

Butler.

Lemma 14. Denote by t the idempotent radical for
both the torsion theories (T, F) and (X, Y). Then

(1) For (T,F), t(X) = GFX and X/t(X) == G°F°X.

(2) For (X,VY), t(X) = F'G’X and X/t(X) = FGX.

Proof of Theorem 13,

(1)=»(2): By Lemma 3, Proposition 5, Lemma 14 and the
Theorem of Brenner-Butler.

(2) = (1): By Proposition 5.

(1) =>(3): By Lemma 4, Proposition 5, Lemma 14 and the
Theorem of Brenner-Butler.

(3) =>(1): By Proposition 5.

(1)= (4): Let 0> XJ be the injective envelope
of X€F and set L =Coku. On the exact sequence
0> X—->J->L >0, by applying the functor F we get the
exact sequence 00— FJ— FL -5 F“X -»0, and thus the exact

sequence of functors

Ext]é(? JFJ) - Ex':.]];(?,FL) N ExtlB(?,F’x) .
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By Lemma 1 and the Theorem of Brenmner-Butler, FJ 1is Ext-

injective in Y, thus Ext;(?,FJ) vanishes on Y, and by
the assumption on (X, VY) Ext;(?,F‘X) also vanishes on VY.

Therefore Ext;(?,FL) vanishes on VY, thus FL is Ext-
injective in Y. Hence again by Lemma 1 and the Theorem of
Brenner-Butler, L = GFL 1is injective.

(4)=>(1): Let 0—>X » IO—->Il~>0 be the minimal
injective resolution of X & F, on which by applying the
functor F we get the exact sequence
0-» FI_ -»FI

0
functors

1»~>F‘X -»0, and thus the exact sequence of

1 1 2
) - 2 F*X) . ?
ExtB(.,FII) ->ExtB(.,F X) >ExtB(.,FIO).

Since Y contains every projective module and is closed
under submodules, Extg(?,FIO) vanishes on Y because by
Lemma 1 and the Theorem of Brenner-Butler FI is Ext-

0

injective in VY. Similarly FI, is Ext-injective in VY,

1
thus Exti(?,FIl) vanishes on Y. Therefore Exti(?,F‘X)
vanishes on Y, which together with the Theorem of Brenner-

Butler completes the proof.

In what follows, we assume that (X, Y) is splitting.
Let {sl, cees Sn}, {Pl, o Pn] and {Il, ey In] be
the complete sets of simple, indecomposable projective and
indecomposable injective modules respectively such that

top Pi-“: Si’—-" soc I:l for all i.
1

Connecting lemma([6]). T FIi== F‘Pi for all 1{i.

Proposition 15([7]). For any i, the minimal left

almost split homomorphism starting at FIi is of the form

FIi—> F(Ii/Si)eF (rad Pi) .
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Remark. In case A is hereditary, this proposition
is due to Happel-Ringel [6]. Their situation was, however,
contrary to ours. They used this proposition to prove that
(X,Y) 1is splitting.

Proposition 16 ([7]). 1If injdim §; > 1, then P, e T.

Proof. Let X be a non-zero indecomposable summand
of Ii/Si and suppose that X 1is not injective. Then
FX 1is not Ext-injective in V¥, thus by Lemma 4 and the

assumption on (X, Y) we conclude that T-lFX e V.

Therefore by Proposition 15 we conclude that F°P, = r-lFI

i
= 0.
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FINITELY HEREDITARY TORSION THEORIES
Tamotsu IKEYAMA

This note is an abstract of the author's papers [4, 5
and 6] with some new proofs. We introduce new notions on
torsion classes called cyclic~hereditary and finitely
hereditary. Let T be a torsion class and {(T) = {XR'i R |
R/X ¢ T}. Then it is well-known that T =+ {(T) gives a
bijective correspondence between the hereditary torsion
classes and the right Gabriel topologies over a ring R.
There exists, however, a non-hereditary torsion class T
such that §(T) forms a right Gabriel topology. We
characterize such torsion classes as cyclic-hereditary
torsion ones in Theorem 2. In Theorem 7 we show that
every torsion class over a ring Morita-equivalent to a
commutative ring is finitely hereditary. We close this
note with some applications of Theorem 7.

Throughout this note we consider in the categbry mod-R
of unital right R-modules over a ring R with unit and
retain the notations used in the above introduction. For
the definition and basic properties of torsion classes

and torsion theories see [2].

We begin this note with the following definition.

A non-empty set § of right ideals of R is called a
right Gabriel topology provided it satisfies the following
conditions:

(1) If Xe § and X < YR-i R, then Y € §.

(2) If X, Ye §, then XY € §.
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(3) IfXe 4§ and a ¢ R, then (X; a) ¢ §.

(4) 1f X e ¢ and Y. < R such that (Y; x) € § for
every x € X, then Y € §.
(In the above conditions (X; a) = {r ¢ R | ar ¢ X} for
every right ideal X and a € R.)

Then, as noted in the introduction, T »16(T) gives a
bijective correspondence between the hereditary torsion
classes; i.e., the torsion classes closed under taking
submodules and the right Gabriel topologies on R (see [3]
and [8]). There exists, however, a non-hereditary torsion
class T such that {(T) forms a right Gabriel topology as

follows.

Example 1([4, Example 4]). The class T of injective
modules over the ring Z of integers forms a torsion class
over Z, since the ring is hereditary and Noetherian. The
torsion class is obviously non-hereditary and §(T) = {Z}

forms a right Gabriel topology.

Definition. We call a torsion class to be cyclic~
hereditary (resp. finitely hereditary) provided it is
closed under taking submodules of cyclic (resp. finitely

generated) torsion modules.

Theorem 2([4, Theorem 5]). Let T be a torsion class.
Then §(T) forms a right Gabriel topology if and only if T
is cyclic-hereditary.

Proof. The proof given here is different from [4,
Theorem 5). Suppose that §(T) forms a right Gabriel
topology and Y/X a submodule of R/X in T. Then the
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epimorphism
& R/ ) — Y/X ((r)) — [ yr,)

induces Y/X ¢ 7. The converse implication follows from the
same proof of the well-known assertion that §(T) forms a

right Gabriel topology for every hereditary torsion class
T.

A ring is called a right Duo ring provided every right
ideal is two-sided.

Proposition 3. Every torsion class over a right Duo

ring is cyclic-hereditary.

Proof. It follows from the fact that every cyclic
submodule of a cyclic module M over a right Duo ring is

isomorphic to a factor module of M.

We give two characterizations of cyclic-hereditary (

resp. finitely hereditary) torsion classes.

Theorem 4(see [5, Proposition 1.3 with Remark in §1]).
Let T be a torsion class. Then the following conditions
are equivalent:

(1) T is cyclic-hereditary (resp. finitely hereditary).

(2) For every cyclic (resp. finitely generated)
module M, M is torsion if and only if each of the elements

in M is annihilated by some right ideal in §(7).

Proof. (1) = (2). By [5, Proposition 1.3 with
Remark in §1].

(2) = (1). Obvious.
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Proposition 5 ([5, Proposition 1.1 with Remark in §1]).
Let (T, F) be a torsion theory. Then T is cyclic-hered-
itary (resp. finitely hereditary) if and only if each of
the injective hulls of the torsionfree modules has no non-

zero torsion, cyclic (resp, finitely generated) submodule.

Now, we show that every torsion class over a ring
Morita-equivalent to a commutative ring is finitely hered-

itary. To show this we need the following lemma.

Lemma 6([5, Lemma 2.1]). Let N be an essential sub-
module of a non-zero module M and {mi | i=1,..., n} a
finite subset of the non-zero elements in M. Then there
exists r € R such that m, re N for every 1 and m, r #0

i
for some 1.

Theorem 7([5, Theorem 2.2]). Every torsion class over
a ring Morita-equivalent to a commutative ring is finitely

hereditary.
Now, we have the following trivial implications

hereditary torsion classes

U

finitely hereditary torsion classes

J

cyclic-hereditary torsion classes

J

torsion classes.

Moreover, Example 1 with the preceding theorem shows that
the converse of the first implication is not true in
general. The following two examples show that none of the

rest of the converse is true.

Example 8([6, Example 2]). Let R be the subring of
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the form

alOb
0 ac a, b, ¢, d eK
00d

of the ring of 3 x 3 full matrices over a field K and T
the class of injective right R-modules. Then T forms a
torsion class for mod-R, since R is right hereditary and
Noetherian. Moreover, T is cyclic-hereditary but not

finitely hereditary.

10
00 R a
right ideal of R. Then T = {M ¢ mod-R | MI = M} forms

a torsion class which is not cyclic-hereditary.

Example 9([6, Example 3]). Let R be the ring of 2 x
2 upper triangular matrices over a field and I =T

Thus a cyclic~hereditary torsion class need not be
finitely hereditary. The two notion, however, coincide
when the corresponding torsionfree class is a TTF-class

introduced in [7].

Theorem 10([6, Theorem]). Let (T, F} be a torsion
theory with a TTF-class F. Then T is cyclic-hereditary
if and only if it is finitely hereditary.

We close this note with applications of Theorem 7.
The following theorem is well-known when the ring is
commutative (see e.g. [9, Lemma 8.6, p.154]). We give a

new proof making use of Theorem 7.

Theorem 11([5, Theorem 2.7]). If a ring R is Morita-

equivalent to a commutative ring, then every idempotent
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ideal of R finitely generated as a one-sided ideal is

generated by a single central idempotent element.

In [1] a ring R is called a right R-ring provided Ry
is torsionfree for every non-trivial torsion theory for
mod-R. Combining [1, Corollary 1.14] with the preceding
theorem, commutative hereditary domains are right (and

left) R-rings. Furthermore, we have the following.

Theorem 12([5, Theorem 2.4]). Every ring Morita-
equivalent to a commutative Noetherian domain is a right
(and left) R-ring.

References

[1]1 L. Bican, P. Jambor, T. Kepka and P. Nemec: On rings
with trivial torsion parts, Bull. Austral. Math.
Soc. 9 (1973), 275-290.

[2] S. E. Dickson: A torsion theory for abelian categories,
Trans. Amer. Math. Soc. 121 (1966), 223-235.

[3] P. Gabriel: Des catégories abéliennes, Bull. Soc.
Math. France 90 (1962), 323-448.

[4] T. Ikeyama: Torsion theories with Gabriel topologies,
Comm. Algebra 10 (1982), 545-555.

[5] : Finitely hereditary torsion theories, to
appear in Comm. Algebra.

[6] : Generalizations of hereditary torsion
classes, to appear in Comm. Algebra.

[7]1 J. P. Jans: Some aspects of torsion, Pacific J. Math.
15 (1965), 1249-1259,

[8] J. M. Maranda: Injective structures, Trans. Amer.



76

Math. Soc. 110 (1964), 98-135.

[9] B. StenstrBm: Rings of Quotients, Springer-Verlag,
Berlin, 1975.

Institute of Mathematics

University of Tsukuba



77

%
A CERTAIN TYPE OF COMMUTATIVE HOPF GALOIS EXTENSIONS )

Atsushi NAKAJIMA

Let R be a commutative algebra over the prime field
GF(p) (p # 0), u an element in R, and m a positive
integer. We denote by H(u,pm), the free Hopf algebra

m
over R with basis {1, &, ..., sP -1} whose Hopf algebra

structure is defined by

m
s =o,
A(8) = 61 +1®68 + u(6®8), ¢€(8) =0 and
m
-1 i i-1.1
Ay = I8 DTS,

where A, € and A are the comultiplication, counit and
antipode of H(u,pm), respectively. 1In this note we
characterize commutative H(u,pm)-Hopf Galois extensions of
R and using this characterization, we show that a commuta-
tive H(u,pm)-Hopf Galois extension is a cyclic pm—extension
[2], a purely inseparable extension [6], or a strongly
radicial extension [7] according as u is invertible, or
u=0, or u is nilpotent. Moreover, for H(u,pz)—Hopf
Galois extensions A and B of R, we determine H(u,pz)-
module algebra isomorphisms from A to B and give a
system of generators of the H(u,pz)—Hopf Galois extension
A-B of R. Finally, using the above results, we determine

the isomorphism class group of H(u,p)-Hopf Galois extensions.

*) This is drived from author’s article [4] which

includes all the proofs omitted here.
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Throughout the following, R 1is a commutative algebra
over GF(p) (p # 0), each ®, Hom, etc. is taken over
R and each map is R-linear unless otherwise stated. By an
R-algebra A we always assume that A 1is a ring extension
of R with the same identity. All R-algebra homomorphisms
are unitary. We freely use the notations, terminologies and
the results of Hopf algebras and Galois objects in Sweedler
[5] and Chase-Sweedler [1l].

First we give some definitions. Let H be a finite
cocommutative Hopf algebra over R. An R-algebra A is
called an H-module algebra if A is an H-module such that
the following conditions hold:

(1) h(ab) a)(h(z)b) and h(l) = e(h)l,

IORLE
where A(h) =Z(h)h(1)®h(2). If A and B are H-module
algebras and f € Hom(A, B), then f 1is called an H-
module algebra homomorphism if it is an H-module homomor-
phism and an R-algebra homomorphism. For an H-module

algebra A, the smash product A#B 1is eqaul to A®H as

an R-module with mutiplication

(a#h)(b#k) = z(h)a(h(l)b)#h k (a,beA, hk €H).

(2)
A commutative H-module algebra A 1is called an H-Hopf

Galois extension of R if A 1s a finitely generated

projective R-module and the map ¢: A#H —> Hom(A, A)
defined by 4(a#h)(x) = ah(x) 1is an isomorphism. Note
that if A is a commutative H(u,pm)-module algebra, then

by (1), § operates on A as follows:
§(ab) = 8(a)b + ad(b) + us(a)d(b) and d8(1) = 0.

Now, we have the structure theorem of commutative

H(u,pm)—Hopf Galois extensions.
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Theorem 1 ([4, Th.1.3]). Let A be an H(u,p )-Hopf
i-1
Galois extension of R. Let &, = s, R, = {a € A

ai(a) = 0}, and Hi an R-Hopf subalgebra generated by §
(1 2i €m). Then there exist x X in A which

i
ORERE
satisfy the following conditions:
= = p-l =
(1) s;(x;) =1, 6i(xj) 0 and (6,)" "(x),9) = %
(l€cj<igm 1l=ksunl).

(2) {xii... xi*? is a free basis of A.

(3) Ri is generated by Xys eees Xy 1 @8 an R-
algebra and A 1is an Hi—Hopf Galois extension of Ri'
p_ .p-1 p pil p1
(4) X - u Xy € R and Xy = (u ) xi+-§’1(xi_l)

£, 10 € Ry [X] withdeg £, ,(X)€p-1 2 sism.

If u=0, then § is an R-derivation on A and so

6(xi) = 0. Thus we have the following

Corollary 2 ([4, Cor.l.4]). Let A be an H(O,pm)-
Hopf Galois extension of R. Then there exist Xps eees
X in A such that Gi(xi) = 1. Further we have xg & R
and R[xl, cees xm] = A; and there exists an R-algebra

isomorphism

AT R[x1]/(x‘l’ - x‘{) D...0 R[xm]/(xr‘l’1 - x:l).

Let A be a commutative R-algebra, and u: A®A —> A
a map defined by uw(a®b) = ab. A is called a purely
inseparable algebra over R if Ker(u) 1is contained in
the Jacobson radical J(A®A) of A®A (cf. [6, Def.l and

Lemma 1 (a)]). A 1is called a strongly radicial over R
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if A 1is a finitely generated projective R-module and
Ker(u) is a nil ideal (cf.[7]).
By Th.l, we have the following

Theorem 3 ([4,Th.1.9]). Let A be an H(u,pm)-Hopf
Galois extension of R.

(1) If u 1is contained in the Jacobson radical J(R)
of R, then A 1is a purely inseparable algebra.

(2) A 1is strongly radicial if and only if u is

nilpotent.

Remark. Let A be an H(u,pm)—Hopf Galois extension
of R. If u is invertible, then o = u§ + 1 is an R-
algebra automorphism of A of order pm and H(u,pm) =
R<g>, where <¢> 1s the cyclic group generated by o.
Thus A 1is a cyclic pm-extension of R 1in the sense of [2].
If u 1is idempotent, themn Au is a cyclic pm-extension of
Ru and A(l-u) 1is an H(O,pm)-Hopf Galois extension of
R(1-u).

Now, let Ai be H(u,pz)-ﬂopf Galois extensions of R
(i =1, 2). Then by Th.1l, there exist Xgs ¥y € A such
that the following conditions hold:
(2) 6(x,) =1 and Sp_l(y ) = x,.
i i i
jk
(3) {xiyi}Oé j, k& p-1 is a free basis of Ay
p_ Pl P _ PPl
4) xg = uw Ty + r, and vy = (u™) Yy + fi(xi)’ where
- vpP-1 h|
fi(xi) Zj=Osijxi (ri, sij e R).

Un&er the above notations, we have the following
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Theorem 4 ([4, Th.2.4]). There exists an H(u,pz)-
module algebra homomorphism : Al —e'Az if and only if
there exist r ¢ R and g(X) ¢ R[X] with deg g(X) < p-1

such that the following conditions hold:

p_  p-1 _
(L «r u r + (r1 rz).

-1
(2) g(xz)p = (up)p g(xz) + fl(x24-r)-f2(x2).
(3) G(B(XZ)) = gp_l(x24'r)'-gp_1(x2), where
gp_l(xi) = 8(y;).
When this is the case, ¢ 1is given by
w(xl) =x,+r and w(yl) =y, +8x).

Moreover the coefficients of g(X) is determined explicitly.

2
For H(u,p )-Hopf Galois extensions A, and A we

1 2°
define the product of H(u,pz)-Hopf Galois extension of R

as follows:
(5) Aj-A, = {Zalis aZieA1@A2|25(ali)@a2i= Zan@c(aZi)},
where 6 acts on A.-A, by &6(a®b) = 6(a)®b (= a®s(b)).

172

Then it is known that Al-A2 is an H(u,pz)-Hopf Galois

extension of R. We set

X x1®1-+1®x2

and

<
]

P p-1
y1®6 (y2) + G(yl)OG (y2) + ...
p-1 p
+ 6 (y1)96(y2) + 6 (yl)eyz.

Then we have the following

Theorem 5 ([4, Th.2.5]). Under the above notations,

we have
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(1) 6(x) =1 and Gp_l(y) = x.

@ {5

0 <4,k <p-1 is a free basis of Al-Az.

Let Gal(H(u,p)) be the group of H(u,p)-isomorphism
classes of commutative H(u,p)-Hopf Galois extension of R
with product defined by (5). If A dis an H(u,p)-Hopf
Galois extension of R, then by Th.l there exists x ¢ A

such that 6(x) p—l}

= is a free basis of
p-1

1, {1, %, ..., x
A and xP = u "x+r for some r € R. Thus we may write
A = R[x3r]. Let B = R[y;s] be another H(u,p)-Hopf Galois
extension of R, and z = x@l1 + 1®y. By Th.5, A*B has
P=ly 5(z) =1 and 2P =

up—lz + (r+s). Therefore A°*B = R[z;r+s]. Thus we have

a free basis {1, z, ..., 2

the following theorem which is a generalization of [1, Cor.
17.14 or 3, Th.2.4].

Theorem 6 ([4, Th.3.1.2]). Let R' be the additive

group of R. Then there exists a group isomorphism
v: RT/{eP - oPLe|e e R} —> Gal(H(u,p))

defined by ¢(r) = (R[x;r]).
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ON DUAL HOPF GALOIS EXTENSION

Kenji YOKOGAWA

Introduction. It was shown by A.A. Albert [1] that a
cyclic p-algebra contains a purely inseparable extension as
well as a cyclic extension of its center, which are related
by inner actions. On the other hand, the quaternion algebra
R(i,j) contains two cyclic extensions R(i) and R(j) of
R related by inner actions. Further, N. Jacobson [7] showed
that a certain type of p-algebra contains a pair of purely
inseparable extensions of its center which are also related
by inner actionms.

In this paper, by making use of Hopf algebras, we shall
generalize the above results; under suitable conditions, we
shall show that if a central simple algebra A over a field
K contains an H-Hopf Galois extension of K (in the sense
of [17], see also [3], [18]) as a maximal commutative sub-
algebra, then A contains an H*-Hopf Galois extension of K.
This will be done in §1. In §2, we shall treat with some
type of Hopf algebras and show that the former two classical
results cited above are typical examples of our theorems.

In 3, we shall treat with the case in which a pair of purely
inseparable extensions appears. The details of §1 and §2
will be found in [19], and so we shall state the results in
these sections only with outline ‘of proof or without proof.

Throughout this paper, K will denote a field, and H
a finite commutative co-commutative Hopf algebra over K;
€ (resp. A, A) will denote the augmentation (resp. diago-
nalization, antipode) of H. Unadorned @ and Hom will
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mean ®K and HomK. We shall denote by -* the functor
HomK(-,K). For Hopf algebras and Hopf Galois extensions,
we refer to [3], [12], [17] and [18]. ‘

1. Dual Hopf Galois extension. Let A be a central
simple K-algebra which contains an H-Hopf Galois extension
L of K as a maximal commutative subalgebra. Suppose that
A 1is a projective left L-module. Then the action of H
on L can be extended innerly to the action on A and A
becomes a smash product algebra LglL where ¢ is a 2-
cocycle associated to an A-innerization of the action of H
on L (cf. [16] Corollaries 3.7, 3.8). But, in general, A
would not be an H-module. The following proposition is

fundamental in our study.

Proposition 1. The following conditions are equivalent:
(i) A 1is an H-module algebra.
(ii) The associated 2-cocylce o0 1is K-valued, i.e.,

d(g®h) ¢ K for any g, h ¢ H.

Proof. The assertion follows from the paragraph

preceding Lemma 1.11 of F.W. Long [9].

Corollary 2. Suppose the equivalent conditions in
Proposition 1. If a homomorphism v gives an A-inner
action and makes A an H-module algebra, then the K-module

v(H) forms a K-subalgebra of A.

From now on, we always assume the equivalent conditions
in Proposition 1.
We define an H¥*-action on v(H) by

x.v(h) = § x(h,,\)v(h x € H*.

),
(h) (2

(1)
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As to this H*-action we have the following

Proposition 3. Through the natural isomorphism v(H)
= H, the H*-action on v(H) is given by the canonical left
H*-module structure of H and v(H) becomes an H*-module

algebra.

Theorem 4. Under the equivalent conditions in Propo-

sition 1, v(H) 1is an H*-Hopf Galois extension of K.

Proof. Let o¢ be an associated normal 2-cocycle.
Since o 1is K-valued, the cocycle conditions ensure that
o 1is a unit-valued Harrison 2-cocyle. The multiplication

in v(H) 1is given by the fbrmula

v(g)v(h) = ] a(g1y®h 1y )v(8 o @ hpoy).
(g), (h) (1)* (D (2)® 7(2)
Thus, v(H) =H(g) in the sense of [18] §2, and we get

Theorem 4 by [18] Theorem 2.3.

Next we consider an A-innerization of the H*-Hopf Galois
extension v(H) =H(g). Since L/K is an H-Hopf Galois
extension, we may write L=H#*(u), where u ¢ H@H 1is a
normal 2-cocycle in unit-valued Harrison cohomology (cf.

[18] §52). We define V:H* » H*¥(u) < A by
(v(£)) (h) = £(x(h)), f ¢ H*.

By the laborious computations, we can prove that V gives

an A-innerization of H#*-action on v(H) =H(6). Thus we

get

Theorem 5. Let A be a K-central simple algebra which
contains an H-Hopf Galois extension H*(u) of K as a
maximal commutative subalgebra. Suppose that A is left

H*(u)-projective and the associated 2-cocycle ¢ is K-
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valued. Then A contains an H*-Hopf Galois extension

v(H) =H(o) of K such that H#*(u) and v(H) are related
as follows: There exist homomorphisms v:H + v(H) € A and
V:H* > H*¥(u) ¢ A such that v gives an A-inner action
extending the H-action on H#*(u) and V gives an A-inner

action extending the H*-action on v(H).

2. Dual Hopf algebra. In this section, we investigate

the dual structure of group rings as Hopf algebra.

Proposition 6. Let p be a prime number different
from the characteristic of K, and G a cyclic group of
order pn. If K contains a primitive pn-th root of 1,
then (KG)* = KG as Hopf algebra.

Proof. Noting that the character group G* 1is

isomorphic to G, we can easily see the assertion.

Remark. Theorem 5 and Proposition 6 explain the

phenomenon that a pair of cyclic extensions appears.

Next we review a Hopf algebra Hn introduced by
A. Hattori [5] and K. Kosaki [8]. Let K be a field of
characteristic p#0. Then Hn is defined as a K-algebra

P_ P_ c.o.o.xP -
K[XgsXps wooaX 11/ (Xg= XXy = Xp, -oonX) g =X )

whose Hopf algebra structure is defined by
A(xi)=Si(x0® 1, ---ux;@ 1318 x5, **5lexy),
e(xi)=0 and )«(xi)=-xi

where Xy denotes the residue class of Xi, and Si the

polynomials which define the addition of Witt vectors.
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Proposition 7. Let K be a field of characteristic

n
p#0, and G={1,8, --..,6P -1y . cyclic group of order p".
Then (KG)* is isomorphic to Hn as Hopf algebra.

Proof. Let {ei} be a K-basis of (KG)* defined by
ei(ej)= 51 j (Kronecker’s delta). We define a homomorphism
9’

n
P -1
¢:H_ -+ (KG)* by ¢(x,)= z a,,e,, where the coefficients
n 3 i=1 ji~ i
aji € Z/pZ are determined by
aj0=0 for all 3, (30193119"°9an_11)= (1909"'90)9

(1,0,"‘,0)+"°+(1909"'90)

(a a',oo-,a_ )=
0i’71i n-11i i terms |

(in Witt vectors). Then, we can prove that ¢ is a Hopf

algebra isomorphism.

Proposition 8. Let K be a field of characteristic
p#0, and L a commutative K-algebra. If L/K is an Hn-
Hopf Galois extension then L is a purely inseparable K-
algebra in the sense of M.E.Sweedler [13].

Proof. Since L/K 1is an Hn—ﬂopf Galois extension,

n
L®L = Hom(H,L) = H*@ L = KG® L = L[X]/(XP ), where G 1is
a cyclic group of order pn. Using the above isomorphisms,

we can prove that the following diagram is commutative:

L® L
multi.
| L
n p
LIX]/(xP )

where multi. is the multiplication, P is defined by p(x)
=0 (x the residue class of X). Thus the kernel of multi.
is nilpotent.
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Remark. Theorem 5, Proposition 7 and Proposition 8
explain the phenomenon that a pair of a cyclic extension

and a purely inseparable extension appears.

3. Pair of purely inseparable extensions. In this
section, we shall review the paper of N. Jacobson [7] from
Hopf Galois theoretic view-point. Now, let K be a field
of characteristic p#0, and let H(pn) be a Hopf algebra

defined as follows: H(pn) is a K-algebra freely generated

by d with relation dpn==0 and its Hopf algebra structure
is given by A(d)=d®1+1®d, ¢(d)=0 and A(d)=-d.

A. Nakajima and the author [10] showed that if L==K(xl)®
K(x2)® '--®K(xn), xg € K, is a purely inseparable exten-
sion of K of exponent one, then L/K is an H(pn)-Hopf

Galois extension and the partial converse holds, namely

we have

Proposition 9. Let L be a commutative K-algebra.
Then L/K is an H(pn)-Hopf Galois extension if and only
if L 1is isomorphic to K(xl, --o,xn), xg ¢ K, as K-algebra.

Proof. See [10] Proposition 2, Corollary 4 and

Theorem 7.

Next, let H[pn] be a Hopf algebra defined as follows:

H[pn] is a pn—dimensional K-vector space with basis

n
{hi}? al, and its Hopf algebra structure is given by h_=1,

i= 0
_ o i+] =Vr -

hihy= (77D hype Ah) =)y gh@ by 4, e(hy) =6y o

A(hi)= (—l)lhi. The Hopf algebra H[pn] is related to

iterative higher derivations (ecf. [14]).
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Proposition 10. The Hopf algebras (H[pn])* and H(pn)

are isomorphic.

pl p-l
Proof. 1If {Di}i =0 is a dual basis of {h }1-0 ,

then we get easily DiDj Di+j (i+3 <p My, especially
(Dl)p -0 We define a homomorphism ¢ : (H[p"1)* + H(p™)
i

by ¢(D y=d . Then, ¢ 1s an algebra isomorphism and
indeed a Hopf algebra isomorphism.

Proposition 11. Let L be a commutative K-algebra.

Then L/K is an H[pn]-Hopf Galois extension if and only
n n-1
if L 1is isomorphic to K(x), xP ¢ K, xP § K, as K-

algebra.
n
Proof. If L 1is isomorphic to K(x), ¥ ¢ K, then

we can define the action of Di to xj by Di(xj)==(i)x3_i

(j >1) and Di(xj)==0 (j < i). Then, as is easily seen,
k(x), and hence L, is an H[pn]-module algebra and L/K 1is
an H[p"]-Hopf Galois extension. Conversely, if L/K is an
H[pn]-Hopf Galois extension, then M.-Weisfeld [14] Theorem 2
asserts that L 1is of the desired form (the assumption that
L is a field is unnecessary and the assumption that L/K

is an H[pn]—Hopf Galois extension works well).

Theorem 12 (N. Jacobson [7]). Let A be a p-algebra
of degree pn (order p2n) over K. Suppose that A
contains an H(pn)-Hopf Galois extension L==K(x1,---,xn),

xi € K, of K and that A 1is left L-projective. Then,
A contains an H[pn]-Hopf Galois extension L'=K(x),

n n-1
xP € K, xP 1 K, of K.
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Proof. It is enough to check the condition in Propo-
sition 1. Since the action of H(pn), especially of d, can
be extended A-innerly to that on A, we take such an element
a of A that gives the A-inner action of d, i.e., d(g)=
at-%a, 2 ¢ L. We define v :H(pn) + A by v(di)==ai.
Then, v gives an A-inner action of H(pn) and A becomes
an H(pn)—module. Now, by Theorem 4, Propositions 10 and 11,

we get the assertionm.
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ON RADICALS OF SKEW POLYNOMIAL RINGS
Miguel FERRERO

Let K be a ring, not necessarily with 1. The
following result is due to Amitsur [1]:

The Jacobson radical J(K[X]) of the polynomial ring
K[X] is the polynomial ring N[X] where N=J(K[X]) nK
is a nil ideal of K.

It is natural to study on radicals (the Jacobson
radical, the lower nil radical, etc.) of (i) the skew
polynomial ring of automorphism type, (ii) that of deriva-
tion type and (iii) the skew group ring. '

The case (i) (and (iii)) is considered by Bedi and Ram
in [2]. The case (ii) is considered by Jordan when K is
a right Noetherian ring [6]. Recently, we determined the
structure of the Jacobson radical and the lower nil radical
of the case (ii) [4].

This note is an abstract on some results of [2] and
[4]. In §1, we shall consider the automorphism type and
the details can be seen in [2]. §2 is devoted to the

derivation type, and the details can be seen in [4].

1. Automorphism type. Throughout this section, we

assume that ¢ is an automorphism of K and we put

This note was written while the author was under a post-
doctral fellowship awarded by Conselho Nacional de

Desenvolvimento Cientifico e Tecnolégico (cNPq), Brasil.
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R=K[X;0] is a skew polynomial ring of automorphism type
(i.e., the multiplication is given by bX=ZXo(b) for all
b ¢ K).

An ideal will mean a two-sided ideal. An ideal 1 of
K 1is called a o-ideal if o(I)=I. If I 1is a o-ideal of
K then { zixiai 3 ay € I} is an ideal of R which we
will denote by I[X;0]. The Jacobson radical of R will
be denoted by J(R).

Let I={ae K; Xae J(R)}. Then I 1is a g-ideal of
K and XI[X;o]=={zi>lXiai 3 a; e I} < J(R). Further, it
can be seen that I n J(K) ¢ J(R). Thus (I n J(K)) +
XI[X;0] ¢ J(R).

We now have the following key result.

Lemma 1.1. If J(R)#0 then I¢#0.

Using this, the following theorem can be obtained by

the same way as in [1].

Theorem 1.2. J(R)=(I n J(K)) + XI[X;0] where 1I =
{aeK; Xae JR)}.

It is now natural to ask about the following
questions:
(1) Is J(R) = I[X;0] ?
It is true if and only if I c J(K). _Equivalently,
this is so if and only if Xa ¢ J(R) implies a ¢ J(R).
(ii1) Is J(R) n K a nil ideal of K ?
(iii) Does J(K) 0 dmply J(R) =0 ?

To answer these questions, let K=zi€z @S

1° i
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an arbitrary ring and o : K » K such that ¢(] fez ai) =

ziezbi where bi=ai-l'

I=K. Thus we have a negative answer for above questions,

Then, it is easy to see that

choosing a suitable S.

Related with question (iii), we have the following

Theorem 1.3. Let K = Al ® --- 0 At where Al, *eey

At are simple rings with 1 and let ¢ be any automor-

phism of K. Then J(R)=0.

For an automorphism ¢ of finite order we can give
an affirmative answer for the above questions. More
generally, an automorphism ¢ of K 1is said to be of locally
finite order if for every a ¢ K there exists an integer

n(a)

n(a) > 1 such that o (a) =a. 1In this case we have

* Corollary 1.4. If ¢ 1is of locally finite order then
I is a nil ideal and J(R) =I[X;0].

Corollary 1.5. If ¢ 1is of locally finite order and
J(K) 1is a locally nilpotent ideal then J(R) =J(K)[X;0]
and J(R) 1is a locally nilpotent ideal.

2. Derivation type. Throughout this section, we
assume that D 1is a derivation of K and we put R=
K[{X;D] is a skew polynomial ring of derivation type
(i.e., the multiplication is given by bX=Xb+D(b) for
all b ¢ K).

As in 6§1, an ideal will mean a two-sided ideal. An

ideal I of K is called a D-ideal if D(I) < I. If I
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is a D-ideal of K then {Zi.xiai ; a; ¢ I} is an ideal
of R which we will denote by I[X;D]. It is clear that
if M 1is an ideal of R then M n K is a D-ideal of K.

Following [5, p.194], for every ordinal o, we define
an ideal NK(u) and a D~-ideal D(a) of K as follows:

(1) NK(O) =0 and D(0)=0.

(i1) Suppose NK(u) (resp. D(a)) has been defined for
every ordinal a less than the ordinal 8. Then NK(B)
(resp. D(B)) 1is defined as follows:

Case I: B=y+1 1is not a limit ordinal. NK(B) (resp.
D(B)). is the sum (= the union) of all ideals I of K (resp. D-
ideals E of K) such that I° c Ne(y) (resp. E° ¢ D(y))
for some integer s.

Case II: B is a limit ordinal. Then

NK(B) = ZY<BNK(Y) (resp. D(B) =ZY<B P(v)).
There exists an ordinal <t (resp. p) such that NK(T)=
NK(T+1) (resp. D(p) =D(p+1)). By D(K) we denote D(p)=
D(p+1). As it is known, NK(T)==NK(14-1) is called the
lower nil radical of K. Hereafter, by L(A) we denote
the lower nil radical of a ring A.
The following theorem can be proved using transfinite

induction.

Theorem 2.1. For any ordinal «, NR(u) K=0(a) and
NR(a) =D(a) [X:D].

As a direct consequence of this, we have the following

Corollary 2.2. (i) For any ordinal «, NR(u)==0 if
and only if D(a) =0.
(i1) D(K)=L(R) n K and L(R) =D(K)[X;D].
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Next we shall consider the Jacobson radical. We now
put S=J(R) n K and we have the following key lemma, as
in §1.

Lemma 2.3. If J(R)#0 then S#0.

Using this, we can also obtain the following theorem

(cf. [1]).

Theorem 2.4. J(R) =S[X;D] where S=J(R) n K.

It is a natural question to ask that whether §S=
J(R) n K 1is nil. It seems this still remain open in
general. Concerning with this problem we can prove that S
is nil if K 1is commutative.

For an ideal I of K we put M(I)={a ¢ I ; Di(a) e I
for i > 1}. Then M(I) is the maximal D-subideal of I.

Then we have

Theorem 2.5. If K 1is a commutative ring then S-=
M(L(K)) and is the maximum nil D-ideal of K.

It is clear that M(I)=1 if and only if I 1is a

D-ideal. Hence we can obtain

Corollary 2.6. If K 1is a commutative ring then

J® =) ®XWL(K) 1f and only if D(L(K)) < L(K). More-
i=0
over, if this is the case, J(R) coincides with the set of

all nilpotent elements of R.

The condition D(L(K)) < L(K) 1s satisfied if the
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abelian group (K,+) is torsion free (see [3], Proposition 1).

We can easily see that L(K) > M(L(K)) > D(K). It is
natural to ask whether M(L(K)) =p(K). It is true under some
finiteness condition of D on L(K).

For every a € K, we denote by Tm(a) the ideal of K
generated by {a, D(a), ---, Dm_l(a)}. Let V be a subset
of K. We say that D satisfies the condition (F) on V
if the following condition holds:

(F) For every a ¢ V, there exists a positive integer
m(a) such that Dm(a)(a) € Tm(a)(a).

Then we can obtain

Theorem 2.7. If (F) is satisfied on Nk(u) then
MV () = D(a) -

Hence we obtain that if (F) is satisfied on L(K), then
M(L(K)) =p(K) and L(R)=M(L(K))[X;D]. Moreover, if K is
commutative then J(R) =L(R).

Assuming (F) is satisfied on NK(u), we can also prove
that NR(a)== 2 ® XiNK(a) if and only if NK(a) is a D-

i=0
ideal. Hence, if (K,+) 1is torsion free, NR(y)==NK(y)[X;D]

for all y < a.

As an application of the above results we can prove

Theorem 2.8. Let K be a commutative ring with 1,
and D a derivation of K such that D(L(K)) < L(K). Then
n
z Xia
i=0

in K and a, is nilpotent for i > 1.

¢ R 1is invertible if and only if a is invertible

i 0
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Hence, if K is a commutative ring with 1 such that
(K,+) 1is torsion free, then the unit group U(R) of R can
be obtained by U(R) =U(K) +L(K)[X;D] where U(K) is the
unit group of K.

Remark 2.9. After submitting our work [4], the author
obtained an affirmative answer for the following question
proposed by Prof. Kaplansky: Is D(K) the intersection of
all D-prime ideals of K? Here, a D-ideal I of K 1is
called a D-prime ideal if AB c I for any two D-ideals
A and B of K implies that either Ac I or Bc I
(cf. [6]).

Acknowledgment. The author would like to thank Prof.
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