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PREFACE

This volume contains the papers presented at the 1l4th
Symposium on Ring Theory held at Shinshu University, July
30 - August 1, 1981.

Thé annual Symposium on Ring Theory was founded in
1968. The main aims of the Symposium are to provide a means
for the dissemination of recent theories on rings and modules
which are not yet widely known and to give algebraists an
opportunity to report on recent progress in the ring theory.

The Symposium was organized by Professors Shizuo ENDO
(Tokyo Metropolitan University), Manabu HARADA (Osaka City
University), Hiroyuki TACHIKAWA (University of Tsukuba) and
Hisao TOMINAGA (Okayama University); the 1l4th Symposium
itself and these Proceedings were supported from the Grant-
in-Aid for Scientific Research from the Ministry of Educa-
tion, Science and Culture (Subject No. 56340001) through the
arrangements by Professor Hiroyuki TACHIKAWA. I would like
to take this opportunity of thanking him for his arrangements.

Finally, we would like to thank Professor Kazuo KISHIMOTO
for his unending patient and kind hospitality to the par-
ticipants of the l4th Symposium.

November 1981
H. TOMINAGA



p

RS

. - . .
0 o . - - .
. , . - Vel - . .
.- oy Lo g R S g g
PN RN . t
, ; .- o “ - .
. s 3 . ° . .
. v
3 n AN B
ol . et -
N e e e ' . .
i - . L o .
. £ L N (A ’
pa et N § B
e - K B i [
B . : . S
: . ., .-
. - . . .
B uy B



SOME POLYNOMIAL IDENTITIES AND
COMMUTATIVITY OF RINGS. I

Yuji KOBAYASHI

1. Introduction. There have been many results of

- the following type: A ring satisfying a cirtain polynomial
identity is commutative. For example, a ring satisfying the
identity xn=x, n(>2) being a fixed integer, is commutative.
This is a famous result by Jacobson. But the converse of
this result is not true, that is, a commutative ring need
not satisfy x"=x. What types of polynomial identities
both are satisfied by all commutative rings and induce
ring-commutativity °?

Let Z<xl,...,xr> be the non-commutative polynomial

ring in r variables x - sX,, over the ring T of integers.

1°°°

Let F be a polynomial in Z<x ,...,xr> and n .,nr be r

1 1’
integers. F is said to be homogeneous of degree (nl,...,nr),
if all the non-zero terms in F are of degree n. with respect

to x, for i=l,...,r. F denotes the homogeneous
1 Nyse..Np

component of F of degree (nl,...,nr). F is called balanced,

if Fnl,---,np(l""’l) = 0 for any integers n ,...,n . The

identity F(xl,...,xr) = 0 is called balanced if F is balanced.

Easily we can see

(*) An identity F(xl,...,xr) = 0 is satisfied by all

commutative rings if and only if it is balanced.

Now, our problem is to find a balanced identity which

makes (or is apt to make) a ring commutative. However,

there is a non-commutative ring which satisfies any homo-
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geneous identity of total degree higher than 2. In fact,
consider a non-commutative ring N satisfyihg N3=0. To. avoid
this culdesac, we assume that every ring we consider has an
identity element 1. Moreover, for simplicity, we consider
only polynomials in two variables.

In §2, we discuss general balanced identities and give
an answer to the question above. 1In §3, we concentrate
upon the special identity (xy)n=xnyn and give some results,

some conjectures and some problems on this identity.

2. General arguments. Hereafter, R represents a ring

with 1. Let M = Xyt oy be a monic monomial in x and y of
total degree d (xi equals either x or y). We define the
integers ¢(M) and ¥(M) as follows:

1)
o(M) = |{(i,3) | 1lgi<igd, x,=x, xj=Y}|’

y(M) = [{(4,3) | lgi<igd, x;=y, xj=x}|.

¢ and ¥ are extended linearly to the functions of Z<x,y> into

Z, which we denote by the same symbols ¢ and ¥ respectively.

Lemma 1. If FeZ<x,y> is balanced, then ¢(F)+¥(F) = o.

Proof. For a monic monomial M = LSRERE (xi=x or y)
of degree (m,n), we have by the definition of ¢ and ¥ that
¢(M)+¥(M) = mn. Therefore, for a balanced polynomial F
we obtain

o(F)+¥(F) = J (o(F_ )+¥(F_ )) = J mn-F_ (1,1) = 0.
m.n m,n m,n m,n m,n
Let n be a positive integer. R is called n-torsion

free, if nx=0 implies x=0 for every x e¢R.

1) For a set X, |X| denotes the cardinality of X.



Theorem 1 (Kobayashi [6]). Let Fe Z<x,y> be a homo-
geneous balanced polynomial of degree (m,n). Assume &(F)#0.

If R satisfies F(x,y)=0, then R satisfies the identity

(m-1)1(n-1)1¢(F)(xy-yx) = 0.

In particular, if R is moreover (m-1)!(n-1):&(F)-torsion

free, then R is commutative.

In Theorem 1, the condition ¢(F) # 0 (this is equivalent
to ¥(F) # 0 by Lemma 1) is indispensable (see [6, Example 3]).
Moreover, in the conclusion, (m-1)!(n-1)!¢(F) cannot be
replaced by a proper divisor of ¢(F) (see [6, Example 4]).
Thus ¢(F) is a very important index concerning commutativity
of rings. For some F, (m-1)!(n-1)!®(F) can be replaced by
(¢(F))k with k sufficiently large, but it is impossible in
general. It depends on each individual identity. A homo-
geneous balanced polynomial F ¢ Z<x,y> (or identity F(x,y)=0)
is called strong, if ¢(F)#0 and any ring with 1 satisfying
F(x,y)=0 satisfies the identity

(2(F))*(xy-yx) = 0

for some integer k20.

Lemma 2. Let Fe Z<x,y> be homogeneous and balanced.

Assume ¢(F) # 0. Then the following are equivalent.

(1) F is strong.
(2) Any ¢(F)-torsion free ring with 1 satisfying

F(x,y) = 0 is commutative.

Proof. (1) =(2): Easy.
(2) =>(1): Let us assume that (2) holds. Let R be
a ring with 1. Let I be the ideal of R defined by

I={xeR | (a(F))*x = 0 for some k20}.



Then the quotient ring R/I is ¢(F)-torsion free and satisfies
F(x,y)=0. Hence R/I is commutative by (2). Therefore, for
any %,y € R, there exists an integer k(x,y)>0 such that
(@(F))k(x’y)(xy yx) = 0. On the other hand, by Theorem 1

we have (m-1)!(n-1)!¢(F)(xy-yx) = 0 for all x,y € R, where

we suppose that F is of degree (m,n). Hence we get
-1.2)
#(F)-(m-1)1(n-1)1, (a(ENXY)1yEy vy =

for all x,ye R. It follows that R satisfies the identity
(Q(F))k(xy-yx) = 0 for a sufficiently large k.

Example. Let n be a positive integer.
(1) A homogeneous balanced polynomial of degree lower
than 3 with respect to both x and y is strong by Theorem 1.
(2) (xy)n=(yx)n is strong by Bell [3, Theorem 5}v—
(3) (ec.f. [3, §21). xnyn=ynxn is not strong, when
n has a divisor of the form 1+pr+p2r+---+psr, where p is
a prime and r and s are positive integers. Therefore,
xnyn=ynxn is not strong for n=3,4,...,10. What about
N NE RN R 1 b A
Metatheorem. If R satisfies strong homogeneous balanced
identities F,=0, ..., F_=0 such that (&(F,), ..., &(F )k

1l
then R is commutative.

Proof. Slnce F is strong, there is an integer k 20
such that (@(F )) l(xy-yx) 0 for all x,yeR (i=1, ..,s).

Since ((@(Fl)) s sees (@(FS))kS) = 1, we have

Xy-yx = ((¢(pl))k1, ...,(@(FS))kS)-(xy-yx) =

2) For integers Nysee sl their greatest common divisor
is denoted by (nl,...,ns).



Application. Since (xy)"=(yx)" is strong as stated in
Example (2) and ¢((xy)™-(yx)™) = n, we have the following:
If R satisfies the identities (xy)™l=(yx)", ..., (xy)"S=

(YX)nS EEEE.EEEE.(HI,---aUS)=1, then R is commutative.

3. The identity (xy)n=xnyn. Let n be a positive

integer. The first problem we wish to settle is

Problem 1. 1Is (xy)n=xnyn strong ? In other words,
is an Ei%:ll

n n .
X'y commutative ?

- torsion free ring with 1 satisfying (xy)"=

Though we know (xy)2=x2y2 is strong by Theorem 1 (or
by Johnsen, Outcalt and Yacub [4]), the problem is open for

n33. The following result by Abu-Khuzam is interesting.

Theorem 2 (Abu-Khuzam [1]). If R is n(n-1)-torsion

free and satisfies (xy)n=xnyn, then R is commutative.

We define the subset E(R) of T associated with R by
E(R) = {[neZ | n>0 and (xy)"=x"y" for all x,y eR}.

E(R) is a semigroup by multiplication and is called the
exponent semigroup of R (Tamura [10]). If Problem 1 is

answered positively, then so is the following problem in

virtue of Metatheorem.

Problem 2. Is R commutative if E(R) contains integers

Nyseee,n such that (nl(nl-l), cees ns(ns-l)) =2°?

l,

The following is a partial answer to the problem.

Theorem 3 (Kobayashi [7]). If E(R) contains integers

LIPERT 3 such that (nl(nl-l), cees ns(ns-l)) = 2 and some

of n, is even, then R is commutative.



Theorem 3 contains the following well-known result:

If E(R) contains three consequtive integers, then R is

commutative (Ligh and Richoux [8]). More generally, it
contains the following: If E(R) contains m, mtl, n and
n+l such that (m,n) = 1 or 2, then R is commutative (Bell
[2] and Mogami [8]). Observing Theorem 3, we conjecture

the following.

Conjecture 1. If E(R) contains integers 5. ,n
. 1 .
such that R is E(nl(nl_l)’ cees ns(ns-l))-tor51on free

and some of n, is even, then R is commutative.

The following result by Bell'is a very special case

of the conjecture.

Theorem 4 (Bell [2, Theorem 1]). If E(R) contains

integers n and n+l and R is n-torsion free, then R is

commutative.
Considering the case s=1 in Conjecture 1, we have
. n_nn .,
Conjecture 1'. (Xy) =x'y is strong for n even.

The author is very interested in the structure of E(R),

on which we give

Conjecture 2. E(R) is either equal to {1} or express-

ible in the form s
E(R) = ()M(n,) [ \N(n)
i=1

for some integers n cesh 2 2 and n > 1, where

1°°
M(n) = {kntl, (k+l)n | k=0,1,2,..}
and
N(n) = {kn+l | k=0,1,2,..}

It is easily seen that Theorem 3 is a natural conse-

quence of Conjecture 2. The reader may think that this



conjecture is too bold. But we have the following conjecture
on general exponent semigroups, which is true in many
important cases. For a semigroup S, the exponent semigroup
E(S) of S is defined in the same way as for a ring. For

two subsets A and B of Z, we write A = B if (A|JB) \ (AN\B)

is a finite set.

Fundamental Conjecture on exponent semigroups (Kobayashi

[5]). For any semigroup S, it holds either E(S) = {1} or
. s
E(S) = (}M(n,) () N(n)
i=1

for some integers n ,nsz2 and n>1l.

100"
This conjecture is true, for example, for any finite

semigroup S ([5, Theorem S]). Concerning Problem 2 we give

Problem 3. Assume E(R) # {1}. Is E(R) expressible

in the form

s
E(R) = [ M(n,)
i=1

for some integers nl,...,nsg2 ?

If Problem 3 has an affirmative answer, then so does
Problem 2. The following diagram illustraites the relations
among the theorems, the conjectures and the problems given
in this section, In the diagram, A =B means that B follows

from A or that if A is affirmative, so is B.

Problem 1 > Problem 2 <= Problem 3
ﬂ S Conjecture l*g R ‘u

Conjecture 1' ﬂ Theorem 3 <+— Conjecture 2
l, Theorem 4

Theorem 2
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SOME POLYNOMIAL IDENTITIES AND COMMUTATIVITY OF RINGS.II

Yasuyuki HIRANO

Throught this paper, R will denote an associative
ring (with or without 1), and C the center of R. We
denote by D(R) the commutator ideal of R. Given a, b
€ R, we set [a,b]=ab-ba as usual, and formally write
a(l+b) (resp. (L+b)a) for a+ab (resp. a+ba).

A ring R 1is called s-unital if for each x in R,

x e Rx n xR. If R is an s-unital ring, then for any
finite subset F of R, there exists an element e in R
such that ex=xe=x for all x in F. Such an element

e will be called a pseudo-identity of F.

We begin with reproving a theorem of Kezlan-Bell ([21],
(41). ‘

Theorem 1 ([21], [4]). Let £ be a polynomial in
non-commuting indeterminates xl, ces 3 xk with integer
coefficients. Then the following statements are equivalent:

1) For any ring R satisfying the polynomial iden-
tity £=0, D(R) 1is a nil ideal.

2) Every semiprime ring satisfying £=0 is commuta-
tive.

3) There is no prime number p such that (GF(p))2
satisfies £=0.

Proof. Obviously, 2) =1) = 3). We prove that 3) im-
plies 2). Note that the coefficients of £ are relatively
prime and (z)2 does not satisfy f£=0. It is enough to
show that if R 1is a prime ring satisfying £=0 then R
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is commutative. By [3, Theorem 7 (6)] (and Posner's theo-
rem), the quotient ring Q of R is a siﬁple ring satis-
fying £f=0. Hence, by hypothesis, Q must be a central
division algebra over Z of finite rank. Suppose Q 1is
not commutative, and choose a maximal subfield K of Q.
Then, again by [3, Theorem 7 (6)], Q@zK= (K)m (m2= [Q:2]
> 1) satisfies f=0. But, by hypothesis, this is impos-
sible.

Examples. (1) 1If a semiprime ring R satisfies one
of the polynomial identities [(xy)z,[(xy)m,(yx)n]]==0,
) el Gn)®, 30 1=0 and [Gn) ¥, ) "o (yx)* =0, then
R is commutative, where xoy=xy+yx. (Take x=Ell+El2
and y'—‘Ell.) This is [19, Theorem 3].

(2) Suppose that for each pair of elements x, y in
R there exists an integer n=n(x,y) such that 1 <n <N
and [(xy)n-xnyn,x]==0. Then D(R) 1is a nil ideal. 1In
fact, R satisfies the polynomial identity
£x) = [y - x%y2 xly[Gy) - %y ly -+ [V - MyNx1 =0
but f(Elz,E21)=(L This includes [8, Theorem 1] and [20,
Theorem].

(3) 1If a semiprime ring R satisfies the polynomial
identity [[xn,y]-[x,yn],x]==0 {n > 1), then R is commu-
tative. (Take x=E and y=E12.) This includes [8,

11
Theorems 2 and 3].

Remark 1. Let f be as in Theorem 1 3). As was
stated in [14, Lemma 1], if R satisfies f=0 then there
exists a positive integer m such that [x,y]m==0 for all
%X, ¥ € R. However, this can be seen from [24, Lemma 1.6.37,
p. 48].
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Next, in connection with power maps, we consider the
following ring-properties:

Pl(n): R satisfies the identity [xn,yn]=0.

Pz(n): R satisfies the identities (xy)k=xkyk (k=n,

n+1l).

P3 (n): R satisfies the identities (xy)n = xnyn = ynxn.
Pa(n): R satisfies the identity (xy)n= (yx)n.

Ps(n): R satisfies the identity [x, (xy)n] =0.

P6 (n): R satisfies the identity [xn,y] =0.

P7 (n): R satisfies the identity [xn,y] = [x,yn].
Ps(n): R satisfies the identity [xzw (x),y]l = [x,yn],

where V¥(x) is a polynomial with integer coefficients.
P9(n): R satisfies the identity [x,(x+y)n-yn] = 0.

Proposition 1 ([14]). If R is an s-unital ring, then
Pz(n) %Pa(n) =>P4(n) =>P5(n)<‘=’P6(n) =-’Pl(n), and P6(n)
=’P7(n).

Proof. Obviously, P3(n) implies Pz(n) and Pa(n),
and P6(n) does Pl(n), PS(n) and P7(n). Since Pz(n)
together with P6(n) implies P3(n), it is enough to show
that P,(n) ®P.(n) and P,(n) 2 P.(n) ®P_(n).

2 3 4 nn 3 n+16 n+l n+l

Pz(n) =’P5(n). Since xyx y = (xy) =x |y
have x[x",yly?®=0, and therefore x[xn,y] =0. In particu-

, we

lar, x[x",y"]=0. Hence, [x,(xy)"]=x{(xy)" - (yx)"}=
n._n
x[x,y 1=0.
Pa(n) =)P5(n). It is immediate that [x,(xy)n] =
x{ (xy)" - (yx)"} =0.
Ps(n) =>P6(n). As a consideration of x=]E:l2 and
y=132l shows, D(R) is a nil ideal (Theorem 1). Let T

be the (s-unital) subring of R generated by all n-th pow-
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ers of elements of R. Let u be an arbitrary nilpotent
element of R, and u' the quagsi-inverge of u. If a is
an arbitrary element of R, and e a pseudo-identity of
{u, a}, then [u,a]=[e+u,{(e+u)(e+u')a}?]=0. In par-
ticular, every nilpotent element of T 1s in the center of
T. Now, let s, t be in T. Since sntn--(st)n is in
the nil ideal D(T), we get s“[s,tn] = [s,sntn] = s,(st)n]
= 0. Then, [s,tn] =0. This implies that [xn,yn ]=0 for
all x, y ¢ R. So, according to [1l4, Lemma 3], we can find
a positive integer k such that kD(R) =0. This enables

n2k

nzk n
us to see that x

[x,5°] = [x,x" %yP] = [x, (x-x" " Ly)P] = 0,

Hence, we obtain [x,yn] = 0.

In [S, Theorem 3], it is shown that if a riﬁg R_wuith
1 has the property Pz(n) and is generated by ({a® | a
n(n+l)
€ R} or {a

ever, the next is immediate.

| a € R}, then it is commutative. -~How-

Corollary 1. Let R be an s-unital ring having the
property Pz(n). If R 1is generated by {an | a ¢ R},

then R 1is commutative.

Accoding to Theorem 1, if R has any of the proper-
ties Pz(n) - P6(n), then D(R) is contained in the prime
radical of R.

Corollary 2 ([5, Theorem 1], [6, Theorems 2 and 5]).
Let R be an s-unital ring having one of the properties
Pz(n) — P6(n). Furthermore, if R has the property Q(n):
for each pair of elements x, y in R, n[x,y]=0 implies

[x,y]=0, then R is commutative.
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Proof. It is easy to see that an s-unital ring R

satisfying P6(n) and Q(n) is commutative.

The following exaples show that even if (1 €)R has
the properties Pl(n) and Q(n), R is not necessary com-

mutative.

Examples (Bell [6]). a) We consider the following
subring of (GF(4))2:

a b
R = [0 32 g]
0 0 a

It is easily verified that R has the properties P1(3)
and Q(3) and it is obvious that R is not commutative.
b) Let ¢ be an automorphism of GF(pk). We consid-
er the ring R=GF(pk) @GF(pk) with multiplication given
by (a,b)(c,d) = (ac,ad+bd(c)). R 1s called the Corbas
(p,k,¢ )-ring. As is easily seen, R 1s commutative if

a, b, c € GF(4)\.

and on}ly if ¢ 1s the identity automorphism. It is easily
verified that R has the properties Pl(pk-l) and

k
Q(pp -1).

We denote by N the set of all nilpotent elements of
R. Then we have the following

Theorem 2 ([l14]). If R is an s-unital ring having
the properties Pl(n) and Q(n), then DN=0, and in par-
ticular, D2=0. Moreover, if every u ¢ N with u2=0 is

central, then R 1s commutative.

According to Remark 1, if R has the property P7(n)
then R satisfies the identity [x,y]h==0 for some posi--

tive integer h. By making use of this fact, we can prove
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the following

Proposition 2 ([14]). If n > 1, then P (n) ©P (n)
& p (n) =’P (n ) for some positive integer a.

Proof. Obviously, P (n) implies P (n) If R has

Pg(n) then [x, (x+y)" -y ]-[x 24 (x), (x+y) -yl
- [x? P(x),x] =
Next, 1f R has Pg(n) then
[x,y"1 - [x",y] = [x, (x+¥)"] - [(x+y)",y]
= [x+y, (x+y)"]1=0.

We have seen the equivalence of P7(n), P8(n) and Pg(n).

In order to show that P7(n) =’P6(nu) for some posi-

tive integer a, we require the following

Sublemma. If R satisfies the polynomial identity
[[x,y],z] =0, then P7(n) implies P6(n6).

Proof. First, we claim that R satisfies the polyno-

(n-1)2 n3

mial identity (x -1) [x,y 1=0. 1Indeed,

n2

2
- [x n(n-1) [xn’yn] -n

2 1
,y“]z— 3" 1=nx X" T Ix,y" ]
’ 2
(n-1)° _ l)xn-l[x,yn 1= (x

DDy

Since every ring is a subdirect sum of subdirectly irredu-
cible ring with heart S (2 0). Now, let a be an arbi-
trary element in the right annihilator r(S) of S in R.

n3
]

(n-1)?

2
=n(x -1 [x",y" ]

- (@D’

If [a,r is non-zero for some r ¢ R then, by the

2
claim at the opening, the left ideal I={x ¢ R | xa(n_l)

= x} contains the non-zero central element [a,r"'l ], so
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(m-1)2
that I 2 S. But then s=sa =0 for all s ¢ S.
3

This is a contradiction. We have thus seen that [a,yn ]

=0 for all y ¢ R. Next, we prove that R satisfies the
3 3 ' 3
identity .[xn ,yn 1=0. If [x,yn ]=0 for all x, y € R,
3
there is nothing to prove. Now, assume that [b,dn 1]=0

for some b, d € R. Then, again by the opening claim, the

(n~1) 2+l

left annihilator &(b -b) contains the non-zero

element [b,dn ], and so contains S. Then, since

2 .
b(n-l) +l-b is in r(8), it follows from what was just

2 3
(n-1) +1_b,dn 1=0. Thus, at any

2 3
[x(n-l) +1-x,yn ]=0, and

shown above that [b

rate, R satisfies the identity
so the subring generated by all n3—th powers of elements
of R 1is commutative by a theorem of Herstein. Conse~

3 3

quently, R satisfies the identity [xn ,yn ]=0. Now, by

6 3 3
P7(n), it is immediate that [xn » V] = [xn ,yn 1=0.

We now back to the proof of P7(n) =)P6(n°‘). By Re-
mark 1, there exists a positive integer h such that
[x,y]h=0 for all x, y € R. Choose a positive integer

such that n 2 h. Let T be the subring of R gener-

ated by all n"-th powers of elements of R. Since [[x,
K K
y],zn 1= [[x,y]n ,2]=0 for all x, y,.z2 € R, we get

[s" ,]1=0 for all s, t € T (Sublemma). It therefore
2k+6 k+6 K

follows that [xn »¥1= [x™ ,yn 1]=0 for all x, y ¢ R.
In [4], it is shown that if a ring R having the

property P7(n) (n > 1) is generated by {a" | a € .R},
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then R is commutative. This can be improved as follows:

Corollary 3 ([14]). Let R be a ring having the
property P7(n) (n >1), and T the subring of R gener-
ated by {a® | a € R}. If the centralizer of T in R
coincides with C, then R is commutative.

Corollary 4 ([5, Theorem 5] and [14]). If R 1is an
s-unital ring having the properties P7(n) and Q(n)

(n > 1), then R is commutative.

Theorem 3 ([17]). Let i, j be integers in the set
{k | 1<k<9)}, and m, n > 1. Suppose an s-unital ring

R has the properties Pi(m) and P,(n). I1f (m,n)=1,

3

then R 1is commutative.

Proof. According to Propositions 1 and 2, R has the
properties P6(ma) and P6(na) for some positive integer

a. Hence, by [18, Theorem], R is commutative.

A ring-property P 1is called a C(n)-property if every
ring with identity having the properties P and Q(n) is
commutative. Corollaries 1 and 4 shows that if n > 1
then the properties P (n) —-P (n) are C(n)-properties.
The previous example. b) shows that P (pk-l) is not a
C(p - 1)-property for every prime p and k 2 2,

Theorem 4 ({17]). Let i, j be integers in the set
{k | 25k <9}, and m, n > 1. Suppose an s-unital ring
R has the Properties Pi(m) and Pj(n). If R has the
property Q((m,n)), then R is commutative.
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Proof. Let e be a pseudo-identity of {a, b}.c R,
and e' a pseudo-identity of {a, b, e}. Let S=<(a, b,
e, e'> be the subring of R generated by f{a, b, e, e'},
and A=&S(e) (= rs(e)). Then e'+A is the identity ele-
ment of S/A. Since <{a, b>n A=0, we may regard <{a, b)
as a subring of S/A. Obviously, S/A has the properties
Pi(m) and Pj (n). Moreover, we can easily see that S/A
has the property Q((m,n)). Now, the rest of the proof is
immediate by the lemma below.

Lemma 1. Let Pi be a C(ni)-property which is inher-
ited by every finitely generated subring (i=1, ... , t),
and d=(n1,

the properties Pl, eee s Pre If R has the property Q(d)

’ nt). Suppose a ring R with 1 has

then R 1is commutative.

Proof. It suffices to prove the case t=2. We show
that R has the property Q(nl) (and therefore R 1is
commutative). Suppose nl[a,b] =0 for some a, b ¢ R, and
let R' be the subring of R generated by {1, a, b}.
Then, we can easily see nl[x,y] =0 for all x, y ¢ R'.
Since R' has the property Q(d), the above implies that
R' has the property Q(nz) . Hence, R' is commutative,
namely [a,b]=0.

In [9], it is shown that if power map f : x x"
(n >1) in R 1is a surjective ring homomorphism then R
is commutative. Obviously, if the power map f is a ring
ring endomorphism then R has the property Pg (n), and
hence by Proposition 2, £%(R) c C for some a. Using this
fact, we can characterize the class of finite rings in

which a power map is a ring endomorphism. We need the fol-
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lowing notation. If A 1is an algebra over a field K, we

denote by (K,A) the ring whose additive group is the di-

rect sum of K and A with multiplication given by
(k,a)(k',a"') = (kk',ka' +k'a+aa').

Lemma 2, Let R be a ring with minimum condition for
subrings. If themap f : R + R defined by x -+ x° (> 1)
1s a ring endomorphism, then

R=(R;,N) D ... @ (K ,N) @N,
where N, 1s a nilpotent algebra over a field K

i
is a nilpotent ring.

i and N

Proof. Without loss of generality, we may assume that
R 1is indecomposable. There exists a positive integer y
such that fY(R) =f2Y(R). Obviously, N0=Ker £7 1s a nil-
potent ideal. As can be easily seen, Ko==fY(R) is a semi-
simple (Artinian) ring, and therefore f induces an auto-
morphism of Ko and the additive group of R 1s the di—.
and N,. We consider the case that neither

0 0

of Ko and No 1s zero. Since Ko is in the center of

R by Proposition 2, Ko is a direct sum of fields in the
center of R. Recalling here that R 1s indecomposable,

rect sum of K

we can easily see that Ko is a field and N, 1is an alge-

0
bra over Ko. We thus obtain R==(K0,N6).

Theorem 5 ([15]). The following statements are equiv-
alent:

1) R 1is a finite ring and there exists an integer
n > 1 such that the map £ defined by x + X" is a ring

endomorphism of R.
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2) R=(K; N)@...e(x ,N)@N with

C.TT. char Kj 'ﬁ' (|K | -1)) =1, where N is a finite nil-
pggent algebraji ¢]5ver a finite field Ki’ N a finite nilpo-

tent ring, and J={j | Nj= 0}.

Proof. 1) =>2). According to Lemma 2, we have
R= (K,N)D ... & K ,N)DN,
where Ni is a finite nilpotent algebra over a finite
field Ki and N 1s a finite nilpotent ring. Let Py =
ckar Ki As can be easily seen, there exists a positive
integer «k such that £< (x)=x 41if x 1is in Ki and
£(x) =0 1f x is in N,

or N. Then, n-1 is a multi-
ple of |K |-1. Moreover, for each j ¢ J, (K,,N,) con-

s
tains a unit of order pj, and therefore n :I.sja njlultiple
of pj Let A be the least common multiple of IK l-
(i=1, ... , m), and u the least common multiple of p:|
(j ¢ J). Then n=Etix=nu+l for some positive integers

E, n, which implies that (]Tp TT(IK | -1))=1.

2) 1). Let v be the nilpotency index of N, and

Py = char K There exists a positive integer T such that

p; exceed: the nilpotency index of Nj (j € J). Then, by
hypothesis, we can select positive integers £, n such that
v<an=gT] Py -n'ﬁ' (x| -1)+1.
JeJ i=1
Now, it is easy to see that the map f defined by x -+ X"
is a ring endomorphism of R, in fact, f(N) =0 and

f((k,u)) =k for all (k,u) ¢ (Ki’Ni) (i=1, ... ,m).

In what follows, we consider rings with some particu-

lar variable identities.
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Lemma 3 ([11, Lemma 2.1.1, p. 57]). If R contains
a non-zero nil right ideal I satisfying a polynomiai
identity, then R 1is not semiprime. 1In particular, if R
contains a non~zero nil right ideal of bounded index, then

R 1s not semiprime.

Proof. By [22, Theorem 1.6. 36, p. 48] or [2, Corolla-
ry to Theorem 2], the upper nil radical of I coincides
with the lower one (prime radical) of I. If 12

is nothing to prove. If 1220', we set W={a ¢ I | aI=0}.

=0, there

Then there is an ideal A of I such that A is a non-
zero nilpotent ideal of I=1I/W. Now, it is immediate that
Al 1is a non-zero right ideal of R.

Corollary 5. 1If a prime ring R contains a non-zero
right ideal I satisfying a polynomial identity then R

contains no non-zero right ideal.

Proof. Suppose R contains a non-zero nil right ide-
al S, and choose non-zero s € S. Then, for any non—zerb
t € Is, we see that tR 1is a non-zero nil right ideal sat-
isfying a polynomial identity. But this is imposible by

Lemma 3.

In [7]), it is shown that if R is a semiprime ring
with 1 and if for each pair of elements x, y in R
there exists a positive integer n=n(x,y) such that
(xy)k-xkyk € C (k=n, n+1, n+2), then R is commutative.
The next improves this result as well as [20, Theorem]
(see also Example (2)).
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Theorem 6 ([16]). Let &, m be fixed positive inte-
gers. If R 1s an s~unital semiprime ring, then the fol-
lowing statements are equivalent:

1) R is commutative.

2) For each x, y € R there exists a positive inte-
ger n=n(x,y) such that [xkyk-(xy)k,x]=0 and
5y - xy)®,91=0 (k=n, n+1, n+2).

3) For each x, y € R there exists a positive inte-
ger n=n(x,y) such that [ykxk— (xy)k,y] =0 (k=n, n+1,
n+2).

4) For each x, y € R there exists a positive inte-

ger n=n(x,y) such that [(xy)k,(yx)m] =0 (k=n, n+2).

Proof. We prove only that 4) implies 1). Without
loss of generality, we may assume that R 1s a prime ring.
Since [(xy)n,(yx)m] =0= [(xy)mz,(yx)m], we can easily see
Q) ) Gy, 0™ =o.

Now, let 82==0. Then it is known that aR 1is a nil right
ideal (see the proof of [19, Theorem 1]). Since aR is
quasi-regular and R 1is s-unital, we see that aR satis-
fies the polynomial identity [{(l-+x)(l-+y)}z,{(l-+y)(1-+
x)}m] = 0. Hence, by Lemma 3, it follows that a=0, namely,
R 1is a reduced ring. Since the reduced prime ring R
contains no non-zero zero-divisors, (t) proves that R
satisfies the polynomial identity [(xy)z,(yx)m]==0.

Hence, by Theorem 1 (or by Example (1)), R 1is commutative.

We conclude this paper with refering to two recent re-
sults due to I.N. Herstein [12] and A.A. Klein, I. Nada
and H.E. Bell [22].
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Theorem 7 ([12]). Let R be a ring in which, given
X, ¥, 2 € R there exist positive integers m=m(x,y,z),
n=n(x,y,z), and q=q(x,y,2) such that [[xm,yn],zq] =0,
Then the commutator ideal of R is nil. Equivalently, the
nilpotent elements of R form an ideal N such that R/N

18 commutative.

Conjecture. Let k be a positive integer and suppose

that for each x, y &R, there exist positive integers m,

n such that [xm,yn]k= [...[xm,zn],zn]...zn] =0. Then the
commutator ideal of R 1is nil. k

For rings with 1, the answer is yes.

Theorem 8 ([22]). Let R be a ring with 1, and k
a positive integer. If for each pair of elements x, y in
R there exist positive integers m=m(x,y) and n=n(x,y)
such that [xm,yn]k=0, then D(R) 1is a nil ideal.
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A GENERALIZATION OF KRULL ORDERS

Hisaaki FUJITA

In [10-13], H. Marubéyashi has introduced a notion of
noncommutative Krull rings (called Krull orders in [13]),
which is a class of maximal orders in simple Artinian rings,
and many interesting results have been obtained (see [5,14]
too). Krull orders are a Krull domain type generalization
of Dedekind prime rings. A Dedekind prime ring is an HNP
(Hereditary Noetherian Prime) ring such that it is a maxi-
mal order in its maximal quotient ring. In noncommutative
ring theory it is also important to consider HNP rings
which are not maximal orders. In this paper we present a
class of prime Goldie rings which includes both Krull
orders and HNP rings with enough invertible ideals, and we
study its ideal theory and give some inheritance properties
and examples.

Throughout this paper, all rings are associative with
identity. Conditions on rings or ideals are assumed to hold
on right and left sides unless otherwise stated. R is a
prime Goldie ring which is not Artinian and Q 1is a maxi-
mal quotient ring of R. MR (resp. RM) signifies that M
is regarded as a right (resp. left) R-module.

If X and Y are submodules of Q, then we put (X:Y%'
= {qeQ ; qY < X}, (X:Y)r = {qeQ ; Yq < X}, X-l = {qeQ ;
XqX < X}, oz(x) = {qeQ ; qX < X} and or(X) = {qeQ ; Xq
c X}. A right (resp. left) R-submodule I of Q is a
right (resp. left) (fractional) R-ideal if aR c I c bR
(resp. Ra c I ¢ Rb) for some units a,b in Q. A right (or
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left) R-ideal is integral if it is contained in R.

1. Reflexive R-ideals. For a prime Goldie ring R, let
F(R), F*(R) and D(R) denote the set of R-ideals, the
set of reflexive R-ideals and the set of reflexive R-ideals
A such that OL(A) =R = Or(A), respectively. For a right
(resp. left) R-ideal I, we put Iv = (R:(R:I)z)r (resp.
vI = (R:(R:I)r)z). For a right ideal I, since Iv =
HomR(HomR(I,R),R) canonically, IR is reflexive if and
only if I = Iv' An R-ideal A 1is invertible if A(R:A)r =

R = (R:A)QA. First, we generalize invertible ideals.

Lemma 1.1. Let A<F(R), and let RA be reflexive. Then
(1) &(2) =»(3) where

(1) 0,(a) =

(2) (A(R:A)r)v = R, and

(3 a7l = (R:A) .

Moreover, if v(A(R:A)z) = OL(A)’ then (3) implies (1).

Proposition 1.2, Let A,BeF(R). Then

(1) (aB), = (aB) .

(2) 1f BeD(R), then (AB) (ABv)v = ((Av)B)v'

(3) If AeD(R), then A~ eD(R)

(4) If AR is reflexive and if BeD(R), then OQ(A) =
0,(AB) = 0_((R:AB),) = 0,((4B) ).

(5) D(R) forms a group under the multiplication Mol
defined by AeB = (AB)V.

We call an element of D(R) a quasi-invertible R-ideal,
R has enough quasi-invertible ideals provided that, for
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any nonzero ideal A of R, there exists BeD(R) such
that A > B and A > B,
v v

Next, we generalize idempotent ideals.

Lemma 1.3. Let AecF*(R) and integral. Then (1) =>(2)
<(3) where

W @, = A,

(2) OL(A) = (R:A)z, and

(3) (R:A)zA = A,

Moreover, if v(A(R:A)z) = OQ(A)’ then (2) implies (1)*
L& = A,

Proposition 1.4, Suppose that v(A(R:A)z) = Oz(A) and
((R:A) A) = 0_(A) hold for AcF*(R) with A c R. Then
the following conditions are equivalent.

W @&}, = A

W* 4 = a

(2) OQ(A) (R:A) .

(2)* 0_(a) (R:4)_.

(3) (R:A)zA = A,

3)* A(R:A)r = A,

A reflexive ideal A of R 1is said to be quasi-idem-
2, _ ., _ 2
potent if (A )v A= v(A ).

2, Ideal theory of generalized Krull orders. A subring of
Q which contains R 1is called an overring of R.
Following Marubayashi[ll], an overring R' of R 1is right
(resp. left) essential over R if the following two
conditions hold:
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(1) There is a perfect right (resp. left) additive
topology F (resp. G) on R such that R' = RF (resp; R!
=P

(2) If 1e¢F (resp. JeG), then R'I = R' (resp. JR' = R').

(1) is equivalent to the condition that the inclusion
mapping R<E>R' 1is a right (resp. left) flat epimorphism.

A subset C of R 1is a regular Ore set if each element of

C 1s regular and if R satisfies the right and left Ore
condition with respect to C. If C is a regular Ore set

of R, RC = {rc-leQ ; reR and ceC} 1is an essential over-
ring of R. We set S(R) = {qeQ ; qA c R and A'q ¢ R

for some nonzero ideals A,A' of R}, and we call it the
Asano overring of R. S(R) = Q 1if and only if R 1is
bounded (i.e., any essential one-gsided ideal contains a
nonzero ideal). Concerning the basic properties of HNP rings
we refer to [3].

Definition. A prime Goldie ring R 1s a generalized
Krull order if there is a family {Ri}ieI of overrings of
R which satisfies the following conditions:

(GK1) R= n Ri n S(R).
iel
.(GK3) For each 1{ieI, Ri

overring of R whose Jacobson radical is a maximal inver-

is a semilocal HNP, essential

tibleideal; and S(R) 1is a Noetherian simple, essential
overring of R.

(GK3) Each regular element of R 1is a unit of Ri for
almost all ieI.

Remark. We may remove the condition that the Jacobson

radical of Ri is a maximal invertible ideal.
Given a generalized Krull order R = n Ri n S(R), we
iel

shall use the following notations:
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For each 1ieI, Ai = rad(Ri) and Ai = Ai n R,
1 ]
{Mil"°°’Min(i)} is the cycle of (idempotent) maximal
= ]
ideals of Ri and Mij Mij nR (1<§<n(1)).

For an ideal I of R, we set C(I) = {ceR ; c+I is
regular in R/I}. If C(I) is a regular Ore set of R,
RC(A) is denoted by RA'

First of all we investigate the relation between a

generalized Krull order and its overrings.

Proposition 2.1. (1) Let R' be a semilocal HNP, essen~-
tial overring of R, and put A' = rad(R') and A = A'nR.

(a) A is a semiprime ideal.

(b) R/A. = R+A'/A' 1is an order in a semisimple ring
R'/A'.

(¢) C(A) is a regular Ore set of R and R' = RA’

(2) If S 1is a simple essential overring of R, AS =
S = SA for any nonzero ideal A of R. Conversely if S =
S(R) and if AS = S = SA for any nonzero ideal A of R,

S 1s a simple essential overring of R.

Lemma 2.2. Let C be a regular Ore set of R, and
suppose that R satisfies the ascending chain condition
for integral reflexive one-sided R-ideals. Then

(1) For any nonzero reflexive ideal A of R, ARC =

RCA. Furthermore, suppose that RC is hereditary. Then for

any nonzero ideal A of R, ARC = RCA'
(2) If AeD(R) and integral, then ARCED(R).

Let R= n Ri n S(R) be a generalized Krull order,
iel
and let I be a reflexive right R-ideal. Then as in [10,
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§4], we have I = n IRi n IS(R). Thus by (GK3), we conclude
iel :
that R satisfies the ascending chain condition for

integral reflexive one-sided R-ideals. If R 1is a maximal
order, for any nonzero ideal A of R, AR "is reflexive
if‘and only 1if RA is reflexive. Form this fact, the ideal
theory of Krull orders is studied by using reflexive ideals.
The following proposition enables us to make use of refle-
xive ideals to study our ideal theory of generalized Krull

orders, though they are not necessarily maximal orders.

Proposition 2.3, Let R be a generalized Krull order.

(1) For any nonzero ideal A of R, AR is reflexive
if and only i1if RA is reflexive.

(2) For any nonzero ideals A, B, C of R, ((AB)V-C)v =
(ABC)v = (A(BC)V)V-

(3) For any nonzero reflexive ideal A of R,
v(A(R:A)z) = Oz(A) and ((R:A)rA)v = Or(A).

Proposition 2.4. Let R = n Ri n S(R) be a generalized
iel
Krull order. Then

(1) If R is a maximal order, R 1is a Krull order.

(2) MijeF*(R) and AieD(R) for any ieI, j = 1,...,n(1).
(3) R has enough quasi-invertible ideals. '

(4) SR) = U{A-l s A 1s a quasi-invertible ideal}.

Lemma 2.5. Let R' be an overring of R such that the
inclusion mapping Rc<c5»R' 1is a right flat epimorphism and
let A' be an ideal of R' such that A = A' n R ¢ D(R).
Then if I 1is a right ideal of R with I > A and IR' =
R', then I, =R
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Next, we study the reflexive prime ideals.

Proposition 2.6, Let R = n Ri n S(R) be a generalized
iel
Krull order. Then

&) {M;lj ; 1eT, 1<jsn(1)} is the set of reflexive prime
ideals of R.

(2) M is a reflexive prime ideal if and only if M is
a maximal reflexive ideal.

(3) Each reflexive prime ideal is either quasi-invertible
or quasi-idempotent.

For each ieI, Mil""’M are linked by the

in(i)
following relatioms.

Lemma 2.7. Let R = n Ri n S(R) be a generalized
Krull order. Then lel

Myp = (AN

1

-1 -
in(i)Ai )v'

ilAi )v,..., M,, = (AiM

11

Proposition 2.8. Let R = n Ri n S(R) be a generalized
1el

Krull order. Then for any 11,...,ikeI, X=A, n...nA, eD(R).

1 L
Lemma 2.9. Let A be a quasi-invertible ideal of R
and let Ml""’Mﬁ be reflexive prime ideals of R such
that A ¢ Mi for any 1 =1,...,n. Put I = Mln...nMn.
Then v(AI) =AnlIs= (IA)V.

i

Proposition 2.10. Let R = n Ri n S(R) be a genera-
lized Krull order. If 1,kel andfi # k, (M }

and {Mkl’ ceesM (k)} are disjoint.

1177 M)
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We are now in a position to prove the following theorem

that is the first aim of this section.

Theorem 2.11. Let R = n Ri n S(R) be a generalized
ief
Krull order. Then D(R) forms a free abelian group with

generators {Ai}ieI'

Proof. Omitted.
For the second theorem we prepare the following lemma.

Lemma 2,12, Let R be a generalized Krull order, and
let Mi,...,Mh be reflexive prime ideals of R such that
I= Mln...an is not contained in any quasi-invertible

ideals. Then (In)V is quasi-idempotent.

A reflexive ideal I 1is said to be eventually quasi-
idempotent if (In)V = V(In) is quasi-idempotent for some
n=21.

Theorem 2.13. Let R be a generalized Krull order.
Then for each nonzero ideal A of R, there are a quasi-
invertible ideal X and an eventually quasi-idempotent
ideal I such that Av = XeI, and such X and I are
uniquely determined by Av.

Remark. The uniqueness of the theorem holds for any

nonzero ideal of any HNP ring.

3. Inheritance properties and examples. In this section

we shall give some examples and inheritance porperties.
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R 1is a Krull order if and only if R is a maximal,
generalized Krull order by Proposition 2.4 and [13, Propo-
sition 2.1].

Proposition 3.1. R 1is an HNP ring with enough invertible
ideals if and only if R 1is a hereditary generalized Krull:

order.

Let A be a Krull domain with field of .quotients K,
let I be a finite dimensional central simple K-algebra,
and let A be an A-order in I (i.e., A > A,VAK =% and
each element of A is integral over A). Then A 1is a
tame A-order if AA is reflexive and Ap is a hereditary
Ap—order for each minimal prime ideal p of A (see [4]).

Proposition 3.2. Any tame A-order A over a Krull

domain A 1is a bounded generalized Krull order.

Proposition 3.3. If R 1is a generalized Krull order,
then so is eRne where e = e2 € Rn’ the full nxn matrix
ring over R.

For the latter use, we note the following lemma.

Lemma 3.4. Let R be a semilocal Noetherian prime ring.
Then R 1is hereditary if and only if rad(R) is invertible.

Let R[x] denote the ring of polynomials over R 1in

an indeterminante x with rx = xr for all reR.
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Lemma 3.5. Let R be a semilocal HNP ring whose Jacob-
son radical A 1is a maximal invertible ideal. Then

(1) c(A[x]) is a regular Ore set of R[x].

(2) R[x]A[x] is a semilocal HNP ring with the maximal
invertible Jacobson radical A[x]R[x]

(3) R[x]A[x] n Q[x] = R[x].

Alx]"

Theorem 3.6. If R is a generalized Krull order, so is
R[x]. Moreover D(R[x]) = D(R) & D(S(R)[x]).

The proof of the next theorem will give a short proof
to [14, Theorem 1.10].

Theorem 3.7. Let R = n Ri n S(R) be a generalized
iel

Krull order, and let I' be a subset of I. Them T = n
]
Ri n S(R) 1is also a generalized Krull order. 1el
Proof. Omitted.

Theorem 3.8. Let R = n Ri n S(R) be a generalized
iel

Krull order, and let C be a regular Ore set of R. Then
T RC is also a generalized Krull order. In this case,
T= n Ri n S(T) for some subset I' of I and S(T) =

iel'
TS(R) = S(R)T.
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A GENERALIZATION OF SEMIPERFECT MODULES
Shigeki NAKAHARA

The main purpose of this note is to generalize the
notion of semiperfect modules in terms of preradicals. In
particular the results allows several new characterizations
of semiperfect rings and modules (Corollaries 3 and 5 below).

Throughout this note, unless otherwise specified, R
will always denote a ring with identity and all modules
will be understood to be unital right R-modules.

Let M be a module. We denote its Jacobson radical
by J(M). Given a submodule N of M, we say N is
small in M if T+ N=M implies T =M for any sub-
module T of M. Other definitions correspond to the ones
found in Bass [1], Mares [2] and Stenstrém [5].

1. Preliminaries

In this section we shall introduce the notions of
"semicover" and "normality" for preradicals, and, by using
them, generalize semiperfect modules of Mares, as follows:

Let M be a module and let p be any preradical on
modules (see [5] for details concerning preradicals). Then
an epimorphism P 5 M — 0 is called a p-semicover of
M if P is a projective module and Ker n = p(P). A pro-
jective module is said to be p-semiperfect (resp. p-perfect)

if every factor module of it (resp. of every direct sum of
its coples) has a p-semicover.

Of course, semiperfect (resp. perfect) modules are
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J-semiperfect (resp. J-perfect), where "J" denotes the
Jacobson radical. Furthermore, the converse to this is
also true, as we shall see later (Corollary 3 below).

The following definition will play a central role
throughout this note: A preradical p 1is said to be
normal if whenever P 1s a nonzero projective module then
p(P) # P.

For example, the Jacobson radical "J" 1s normal by
[1, Proposition 2.7]). The singular preradical "Z" over
any ring (see [5] for definition) 1is also normal by [6,
Example 1]. In particular, the latter example tells us
that normality does not imply smallness in general (see
also Example 1 below). For further information concerning

normality, the reader is referred to [6, §2].

Lemma 1. Let p be a normal preradical on modules.
Then:

(1) Let M be a module and P M —0 a p-semi-
cover. Suppose that M has also a projective cover Q £,
M —> 0. Then there exists an isomorphism f£: P —> Q such
that = = £f.

(2) 1If a module M has a p-semicover and if Mp(R) =
M, then M = 0.

Proof. See [6, Proof of Lemma 1.2].

2. The main results

For the structure of p-semiperfect modules, we have
the following:
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Theorem 2. Let p be any normal preradical and P
any projective module. Then P is p-semiperfect (resp. p-
perfect) if and only if P 1is semiperfect (resp. perfect)
and p(P) = J(P).

Proof. See [6, proof of Theorem 1.3].

Corollary 3. A projective module is semiperfect (resp.

perfect) if and only if it is J-semiperfect (resp. J-perfect).

If we restrict ourselves to the ring R, we can get

further conditions for R to be p-semiperfect:

Theorem 4. Let p be a normal preradical. Then the
following conditions are equivalent:

(1) R is a p-semiperfect ring (that is, the right
module RR is p-semiperfect).

(2) Every simple module has a p-semicover.

(3) Every semisimple module has a p-semicover.

(4) Every right R/p(R)-module has a p-semicover as
an R-module and p(R) is small in R as a right ideal.

Proof. See [6, proof of Theorem 1.7].

Combining this theorem and Corollary 3 one obtains:

Corollary 5. The following conditions are equivalent

for any ring R:
(1) R 1is a semiperfect ring.
(2) Every simple module has a J-semicover.
(3) Every semisimple module has a J-semicover.
(4) Every right R/J(R)-module has a J-semicover as

an R-module.
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Remark. Condition (2) of this corollary is a general-
ization of a result proved by Sandomierski [3, Theorem. 4]
and Mueller [4, p.465].

Example 1. The smallness assumption of p(R) in
Theorem 4(4) cannot be dropped in general even when p 1is
a normal "radical"™ (recall that a preradical ¢ is called”
a radical if og(M/o(M)) = 0 for any module M): Let R =
Z (the ring of integers) and p any prime number. Set
p(M) = Mp for every module M. Then p is a normal
radical and every right R/p (R)-module has a p-semicover as
an R-module, but p(R) 1is not small in R.

Example 2. There exists a module which has a J-semi-
cover, but has no projective covers: Let R be any ring
such that J(R) is not right T-nilpotent, and let M =
F/J(F), where F 1is a free module with countably infinite
rank., Then M has a J-semicover F, but has no projec-
tive covers, as 1is easily seen by Lemma 1(1) above and the

standard argument as in the proof of [3, Theorem 5].

3. Appendices

This section consists of three different topics
related to the above, namely, the liftability of idempotentg;
a characterization of the Jacobson radical over a perfect
ring; and torsion-free rings for normal preradicals. We

shall consider these topics in turn:

((I) Firstly, we deal with the problem of the possi-.
bility of lifting idempotents modulo the Jacobson radical
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of a ring, as an application of semicovers (we utilized a
more general version of the following proposition in the
proofs of [6, Theorems 1.3 and 1.7]).

Proposition 6. Let R be any ring and R = R/I(R).
Then idempotents can be lifted modulo J(R) if and only if

any direct summand of the R-module §R has a J-semicover.

Proof. '"NECESSITY": Let I be any direct summand of
ﬁR' Then we may write I = €R for some idempotent € in
R and, by assumption, € 1is induced by an idempotent e
in R (i.e. € = e + J(R)). Clearly it follows that the
natural epimorphism eR — I — 0 1is a J-semicover.

"SUFFICIENCY": To show this, it is enough to show

that any direct decomposition R = 2 Ia can be lifted to
T
R. In fact, let Pa -2, Iu—+ 0 be a J-semicover for each

R
a (it exists by hypothesis). Then g Pa 2 %,R—0 is

also a J-semicover. Since R 1s a projective cover of R,
it follows immediately from Lemma 1(1) that 2 Pa yields a
desired direct decomposition of R.

«» The second topic is as follows: If R is a
p-semiperfect ring for a normal preradical p, then we
have p(R) = J(R) by Theorem 2 and hence p(P) = J(P) for
every projective module P, since p(P) = Pp(R). But
Example 3 below shows that in general p # J even if R 1is
a p-perfect ring. This discussion motivates the study of
the relation between the Jacobson radical and (normal) pre-
radicals. The following proposition gives a condition
under which the above equality holds, by characterizing the

Jacobson radical among radicals over a perfect ring.
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Proposition 7. Let R be a right perfect ring and

p any preradical. Then p =J if and only if p 1is' a
radical such that p(R) = J(R).

Proof. Clearly we need only to prove the "if" part.
Assume that p 1s a radical and p(R) = J(R). Let M be
any module and P9M—0 a projective cover of M.
Then since p(P)

so we have p(M)

J(P), P becomes a p-semicover of M,
1(p(P)) = n(J(P)) = J(M) by [5, Lemma
1.2], as was to be shown.

In this proposition, the requirement that p is a

radical is needed, as the next example shows:

Example 3. Let R be a quasi-Frobenius ring which
is not semisimple Artinian, and let p = the singular
preradical. Then we have p(R) = J(R) by the right self-
injectivity of R (so p(P) = J(P) for every projective
module P). But it is readily seen that p # J. (Note
that this p 1s left exact and normal.)

((II)) Finally, we shall give a couple of results for
rings R satisfying the following property:

(*) <«- "o(R) = 0 for any normal preradical op."

For example, von Neumann regular rings have this prop-
erty (see the second remark after Proposition 9). Note
that any ring with this property is in particular right
nonsingular.

Now, it is well known that R is a simple ring (i.e.
there exist no nontrivial two-sided ideals) if and only if

any nonzero module is faithful. In this connection we get:



43

Proposition 8. The following assertions are equiva-

lent for any ring R:

(1) R satisfies the above property (*).

(2) p(P) = 0 for any projective module P and any
normal preradical p.

(3) Any module M such that HomR(P,M) # 0 for

every nonzero projective module P 1is faithful.
Proof. See [6, Corollary 2.5].

Remark. As 1is easily seen [7, Proposition 1.2], the
condition that HomR(P,M) # 0 for a projecive module P #
0 1is equivalent to that M¢(P) # 0, where <t(P) 1is the
trace ideal of P, i.e., the image of the natural pairing
HomR(P,R) ® P — R. In particular, this shows that the
converse to (3) above is always true: If M 1is any faith-
ful module over any ring R, then HomR(P,M) # 0 for
every projective module P # 0. (More generally, it can be
easily verified that M is faithful if and only if every
projective module is isomorphically embedded in a direct
product of coples of M. As a special case of this, we
observe that an injective module is faithful if and only if
the torsion-free class cogenerated by it contains all pro-

jective modules.)

Proposition 9. If R 1is a commutative ring, then the

following assertions are equivalent:
(1) R is a semisimple Artinian ring.
(2) R 1is a Noetherian ring satisfying (*).

Proof. (1) implies (2) 1is obvious. Conversely,
assume (2) holds. Let I # 0 be an arbitrary idea; and
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define a preradical Pr such that pI(M) = MI for any
module M. Then since pI(R) =1, Py is not normal by
assumption. Hence we have pI(P) = P for some projective
module P # 0. It then follows immediately that pI(R) )
1(P). But, since 7(P) is a nonzero idempotent ideal and
further is finitely generated by assumption, we see easily
that t(P) 1is generated by an idempotent element e # 0;
so -that we have a direct decomposition I =e R & I. for

1 1

some ideal Il' If I1 # 0, then we have a similar decom-
position I1 = ezR & I2 by the same argument as above.

Repeating this procedure, we get a strictly ascending chain

elR =Y elR @ e2R g e

Since this chain stops by assumption and the e, are

i
orthogonal, it follows clearly that I 1is generated by an
idempotent element. Hence any ideal is a direct summand of

R; therefore R 1s semisimple Artinian, as was to be shown.

Remarks. 1. Since the above pI is in fact an (epi-
preserving) radical, Assertion (1) 1is also equivalent to:
(2') R 1is a Noetherian ring such that p(R) = 0 for

any normal "radical” op.

2. In the above proof of (2) = (1), we have shown
substantially that 1f R 1s a commutative Noetherian ring,
then (*) implies regularity. However, this implication
does not hold in general unless the Noetherian condition is
assumed. In fact, let R be the ring of sequences (aj,c;,
see,an,B,8,°¢) where n > 0, the a, are in the rational
function field K(X) over a field K and B8 1s in the
polynomial ring K[X]. Then one checks easily that R

satisfies (*) but is not regular (cf. Jacobson [8, p.211]).
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CONTINUOUS MODULES AND SEMIPERFECT MODULES

Kiyoichi OSHIRO

Recent Harada’s work [3]A_[7] motivated the author’s
study of the extending and lifting property on modules. In
this note we shall announce some results studied in [11],
[12].

Throughout this paper R is an associative ring with
identity and all modules considered are unitary right R-
modules. For a module M and its submodules Nl and N, with

2

NI;QE N2 ve use the following symboles:

£(M): The set of all submodules of M.

J(M): The Jacobson radical of M.

ng;eN2: Nl is essential in N2. ,

N, EE%NQ: N, is co-essential in N, i.e., N2/Nl is
small in M/Nl.

Definition. A module M is extending module (resp.
lifting module) provided for any A in £(M) there exists a
direct summand A*<@ M such that A ge A* (resp. A*C__‘-_: A).

[

Definition ([8], [11]). A module M is continuous if
M is an extending module #nd satisfies the condition: for
any direct summand A of M, every monomorphic image of A
to M is a direct summand. M is quasi-continuous if M is
an extending module and satisfies the condition: for direct
summands A,, A, of M, the condition Me:'_D_ A ® A, implies
M=4A @A,

Definition ([12]). M is semiperfect if M is a lifting

module and satisfies the condition: for any direct summand
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A of M, every sequence M —éA ~— 0 splits. M is quasi-
semiperfect if M is a 1lifting module and satisfies the

of M, if M= A_+ A

condition: for direct summands Al’ A 4 5

and Al Vot A2 is small in N A2 5 0.

Rema.rk. 1) (quasi-) semiperfect modules and (quasi-)
continuous modules are mutually dual notions and we know
that quasi-injective module = continuous module =} quasi-
continuous module; semiperfect module % quasi-semiperfect
module. In the case every homomorphic imege of M has a
projective cover, quasi-projective mod.ule—7>h semiperfect
module.

2) A projective module P is semiperfect if and only if
it is semiperfect in the sense of Mares [9], i.e., every

homomorphic image of P has a projective cover (cf. [1]).

Theorem 1 ([8], [11]). The following conditions are
equivalent for a given module M.

1) M is quasi-injective.

2) M@®M is continuous.

3) M®M is quasi-continuous.

Theorem l*([l2]). Let M be a module such that every
homomorphic image of M@ M has a projective cover. Then
the following are equivalent.

1) M is quasi-projective.

2) M@ M is semiperfect.

3) M® M is quadi-semiperfect.

Natation. Let M be a module and n = {Na}I & subfamily
of £(M). By M(n) we denote the set of all x in M such that
x lies in allmost all Noz but finite. Then M{n) is a
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submodule of M, and the map N, M(n) = 2-@ (M/Na) given
I .
by x -—92 (x + Na.) is well defined. In general n, is not
I
epimorphic. As is easily seen it is epimorphic if and only
if for any finite subset F of I

M= (N1 ¢ (1w,

Definition. Let n = {Na}I be a subfamily of £(M).
We say n is co-independent if Na # M for all a¢I, M=
M(n) and n, is epimorphic.

Proposition 1 ([12]). Let n = {N }I be a co-

independent subfamily of £(M) and put Ta = N NB for
I-{a}

all acI and X = M N,- Then
I
M/X = 2 @ (T /X),
1
N, = S Tg for all agl.

o}

Proposition 2([12]). Let X be a submodule of M

and M/X = _5__@ (Ta/x) a decomposition with Ta;é X for each
I

o&I. Put N = > T, for all a&I. Then

= o B

I-{a}

{Na}I is co-independent,

X /\zNa,

I

T = > N
¢ 1-{a} B

for all aglI.
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By the propositions above we see that there exists a
one to one map between the family of all co-independent
subfamilies of £(M) and the family of all decompositions of
all homomorphic images of M.

Definition ([12]). Let X be a submodule of M and M/X

= >0 (T /X) a decomposition of M/X. We sey M/X =
I

26 (TG/X) is co-essentially lifted to a decomposition of
I

M if there exists a decomposition M = Xt@ 2@ To. such
I

that X*CX, T =X+ T and 0 < (T./A X) in T_ for all
a a - s a
@ el

Definition ([7]). Letn = {mm}I be an independent

subfamily of £(M). We say 2@ Na’is essentially extended
I ,
to a decomposition of M if there exists a decomposition

M = x@}f@nﬁ with Na_c.enffor all acI.

The above two concepts are mutually dual by the
following shows:

Proposition 3 ([12]). Let n = {N_}_be a co-

a'l
independent subfamily of £(M), and let M/X = > @ (Ta/X)

be its corresponding decomposition. Then M/X z >® (Ta/x)
I
is co-essentially liftgd to a decomposition of M if and only
if there exists avsublamily {N:}I such that N‘:: < No. for all
c

@ €1 and f\N:@ M.
I
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Definition ([T7], [12]). A module M has the extending
property of direct sum if for any independent subfamily

n= {Na}I > 6 N, is essentially extended to a decomposi-
I
tion of M. Dually M has the lifting property of direct

sum if for any co-independent family n= {Na}I’ its
corresponding decomposition is co-essentially lifted to a

decomposition of M.

Theorem 2 ([11]). The following conditions are equiva-
lent for a given module M.

1) M has the extending property of direct sum.

2) M is quasi-continuous and every internal direct
sum of submodules of M which is a locally direct summand
of M ([2]) is a direct summand of M.

3) Mis written as M= 3 @ M with the following
conditions: I

i) Each M  is uniform.
i) M.} is locally semi-T-nilpotent ([2]).
N

iit) For any partition I = I \V I2 and any

submodule A of > ® M, every homomirphism from A to
I
> e M, is extended to one from z ] M, to 2 @ MB'
I2 Il I2
Theorem 2¥([12]). The following conditions are
equivalent for a given module M:
1) M has the lifting property of direct sum.
2) M is quasi-semiperfect.

3) M is written as M = Z@ Ma with the following
I
conditions:

i) Each M, is hollow.
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(§) For any submodule N of M there exists a
subset J & I such that M = N + ZGMa and N/\E@Ma is
J J

small in M.
W) For any partition I = I V I,
submodule A of 2 ® Ma’ every homomorphism from > @ M
I, I, o
to (2 0 Mg)/A is induced from >0 M, to > @MB.
I I I

and any (small)

Theorem 3 ([11],[12]). Let M be a module with an
indecomposable decomposition M = 29 Ma' Then M is
I

continuous (resp. semiperfect) if and only if it is quasi-
continuous (resp. quasi-semiperfect) and for anydel every

monomorphism (resp. epimorphism) from M . to My is isomorphic.

Remark. 1) Theorem 2 give a generalization of the
following Mares’s result ([9]): A projective module P is
semiperfect if and only if it satisfies the conditions:

1) J(P) is small,

" P/J(P) is completely reducible,

. Every direct decomposition of P/J(P) is induced

n
from a decomposition of P.

2) In S. Mohamed [10] dual-continuous modules are
introduced. This concept Jjust coincides with that of our
sem-perfect modules. He then asked what is the structure
of a dual-continuous module M with J(M) = M. Theorem 2*%
is the complete solusion of this problem.
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V-RINGS RELATIVE TO HEREDITARY
TORSION THEORIES

Yasuhiko TAKEHANA

Villamayor has considered V-rings with the property
that evéry simple module is inj)ective. The main purpose of
this paper is to give a torsion theoretical generalization
of V-rings. Theorem 2 generalizes Theorem 2.1 of [4],
stating that any torsion simple right R-module is divisible
if and only if each right ideal I of R with R/I torsion is
an intersection of maximal right ideals of R. Applying
Theorem 2 for the Goldie or Lambek torsion theories, we
obtained Corollaries 4 and 5. We consider in Corollary b
a ring (called a o(G)-V-ring) for which every singular
simple right module is injective, and in Corollary S5 a o(L)-
~V-ring for which every dense right ideal is an intersection
of maximal right ideals. We characterize V-ringe in terms
of o(G)-V-rings or o(L)-V-rings in Proposition T which is
closely related to Theorem 8 in [5]. In Theorem 8 it is
proved that commutative o{(G)-V-rings turn out to be V-rings.
Fipally two exampies are given to show that o(L)-V-rings
are not necessary o(G)-V-rings and o(G)-V-rings are not
always V-rings.

We assume a knowledge of torsion theory. For example,
see [2]. Throughout of this paper, R is a ring with a unit,
every right R-module is unital and Mod-R is the category of
right R-modules. A subfunctor of the identity functor of
Mod-R is called a preradical. A preradical t is called a
left exact radical if t(N) = N t(M) and t(M/t(M)) = O
hold for any right R-module M and any submodule N of M.
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We put T, = {M ¢ Mod-R; t(M) = M} and F, = {M € Mod-R; t(M)
= 0}, whose elements are said to be torsion and torsionfree
modules, respectively. A right R-module M is called singular
if any element of M is annihilated by a large right ideal of
R. For a right R-module M, Z(M), E(M) and J(M) denote the
singular submodule of M, the injective hull of M and the
intersection of all maximal submodules of M. A right R-mod-
ule M is called divisible if HomR(-, M) preserves the exact-
ness for every exact sequence O+ A-~+>B+C-~+0 withC ¢
T, - A right ideal of R is called dense if HomR(R/I,E(R))= 0.
At first we consider a right R-module which cogenerates

all torsion right R-modules.

Lemma 1. Let o be a left exact radical. Then the fol-
lowing conditions on a right R-module C are equivalent.

(1) ¢ cogenerates each torsion right R-module.

(2) For each torsion simple right R-module S, C con-
tains a copy of EG(S), where Ea(s)'denote the divisible hull
of S(i.e. E (8)/8 = o(E(8)/8).).

Proof. (1) + (2): Let S be a torsion simple right
R-module. Since T  is closed under taking extensions, EO(S)
is torsion. Thus EG(S)C:H(C), and so C contains EG(S), for
S is the smallest nonzero submodule of EG(S).

(2) + (1): Let N be a torsion right R-module and o ¥ n
€ N. Then nR has a torsion simple homomorphic image S. Since
EO(S) is divisible, there exists an f ¢ HomR(N,Ea(S)) with
f(n) ¥ o. But then EO(S)C:C by (2), and so C cogenerates N.

Now we consider V-rings by using hereditary torsion

theories.
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Theorem 2. Let o be & left exact radical. Then the
following conditions are equivalent.

(1) Any torsion simple right R-module is divisible.

(2) For any torsion right R-module M, J(M) = O holds.

(3) If I is & right ideal of R with R/I torsion, then

I is an intersection of maximal right ideals of R.

Proof. (1) »+ (2): Let C denote the product of all tor-
sion simple right R-modules. By the assumption, C is divis-
ible, and so for any M ¢ Tcr’ MCIC holds by Lemma 1. Thus
J(M) = 0 holds.

(2) » (3): Obvious.

(3) > (1): Let I be a right ideal of R with R/I tor-
sion, S a torsion simple right R-module and f ¢ HomR(I » S).
We need to extend f to a2 mapping of R into S. We may assume
f is an epimorphism. We put Ker(f) = K. It is sufficient to
shov that the following exact sequence O + I/K + R/K + R/I
-+ 0 splits. Since I/K and R/I is torsion, R/K is torsion.
Thus by the assumption there exists a meximel right ideal L
of R such that L contains K and does not contain I. Then
L+I=R and LMNI =K, and so R/K = (L/K) ® (I/K). Thus

the above sequence éplits, as desired.

We call a ring satisfying the equivalent conditions of

the preceding theorem a ¢-V-ring.

Corollary 3. Let R be a o-V-ring for a left exact rad-
ical ¢ and L a right ideal of R with R/L torsion. Then

L2 = L holds.

Proof. Since L/(L2) is a homomorphic image of a direct
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sum of some copies of R/L, L/(L ) is torsion. As T is
closed under taking extensionms, R/(L ) is torsion. Thus by
(3) of Theorem 2, L2 is an intersection of maximal right
ideals of R. Then it follows from the same argument as in
the proof of Corollary 2.2 in [U4] that 1 = L holds.

Let G(M)(L(M)) denote the Goldie(Lambek) torsion sub-
module of a right R-module M, respectively. Note that G and
L are left exact radicals, G(M)/Z(M) = Z(M/Z(M)), G(M) =
if and only if Z(M) is large in M, L(M) = M if and only if
Hom, (M,E(R)) = 0, G(M) D2z(M)DL(M), if Z(R) = O then G(M)
= Z(M) = L(M) and if M is divisible with respect to (TG,FG)
then M is injective, for a right R-module M.

Now we apply Theorem 2 for the Goldie or the Lambek
torsion theory.

Corollary 4. The following conditions are equivalent.

(1) Any singular simple right R-module is injective.

(2) For each right R-module M with Z(M) large in M,
J(M) = 0 holds.

(3) If I is a right ideal of R with Z(R/I) large in
R/I, then I is an intersection of maximal right ideals of R.

Corollary 5. The following conditions are equivalent.

(1) If s is a simple right R-module with HomR(S, R)
= 0 and I a dense right ideal of R, then for any f ¢ HomR(
I,8), £ is extended to a mapping of R into S.

(2) For each right R-module M with HomR(M,E(R)) =
J(M) = O holds.

(3) Any dense right ideal of R is an intersection of
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maximal right ideals of R.

Corollary 6. Suppose that Z(R) = 0. Then the following
conditions are equivalent.

(1) If S is a simple right R-module with HomR(S,R) = 0,
then S is injective.

(2) For any singular right R-module M, J(M) = O holds.

(3) Any large right ideal of R is an intersection of
maximal right ideals of R.

Proof. If Z(R) = O, then the Lambek torsion theory
coincides with the Goldie torsion theory. Thus this is clear

by Corollaries 4 and 5.

We call a ring satisfying the equivalent conditions of
Corollary 4 or Corollary 5 a o(G)-V-ring or a o(L)-V-ring,
respectively. It is clear that each o(G)-V-ring is a o(L)-
=V-ring.

The following proposition is closely related to Theorem
8 of [5].

Proposition 7. The following conditions are equivalent.

(1) R is a V-ring.

(2) R is a o{L)-V-ring and every minimal right idesal
of R is injective and Z(R) = O.

(3) R is a 0(G)-V-ring and every minimal right ideal
of R is injective.

Proof. (1) + (2): If R is a V-ring, then Z(R) = O holds
by (b) of Lemma 2.3 in [4], as desired.
(2) + (3): It follows from the fact that the Goldie
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torsion theory coincides with the Lambek torsion theory.

(3) > (1): By (3) of Theorem 8 in [5], it is sufficient
to prove that for every cyclic singular right R-module M,
J(M) = 0 holds. This is clear by (2) of Corollary 4.

Next we consider commutative o(G)-V-rings.
Theorem 8. Each commutative o(G)-V-ring is a V-ring.

Proof. It is well known that R is commutative, then R
is a V-ring if and only if R is a Von-Neumann regular ring.
It is sufficient to prove that for every right ideal I of R
I2 = I holds. If I is a large right ideal of R, then I2= I
holds by an application of Proposition 3 for the Goldie
torsion theory. Now let L be a right ideal of R and J a com-
plement of L in R(i.e. J is maximal in {J& R; JMN L = 0}).
Then it is well known that L+ J is large in R. Thus L + J
=(L+3)2=12+1+17+3°=12+ 7% and so 12=1 as

desired.

The following example is given to show that o(G)-V-

-rings are not necessary V-rings.

Example 1. Let k be a field, R = (i ﬁ), M= (; z) and

oo
k k

proper large right ideal of a ring R and Z(R) = 0. Since M

K= ). Then it is easily verified that M is a unique

is a maximal right ideal of R, R is a o(G)-V-ring by (3) of
Corollary 6. But J(R) = MNK % 0, and so R is not a V-ring.

A commutative o(L)-V-ring is not always a V-ring.
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Example 2. Let k be a field, R = {(2 2); a, b € k}
and M = (g 5). Then R is a commutative ring and has oniy

one non-trivial right ideal M. Since J(R) = M % O, R is not
a V-ring. It is clear that R is a o(L)-V-ring.
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TRIVIAL EXTENSIONS OF TILTED ALGEBRAS

Mitsuo Hoshino

Let A be a connected artin algebra over the center
C and T(A) the trivial extension of A by an A-bimodule
HdmC(A,I), where I 1is the injective envelope of C/radC
over C. In this situation we shall ask the following.

Problem 1. When is T(A) of finite representation
type ?

This problem has been already considered and partially
answered by Miiller [12], Green-Reiten [6] and so on.
Especially in [11] Iwanaga-Wakamatsu proved that if A has
a square-zero radical, T(A) 1is of finite representation
type if and only if the graph of A 1is a Dynkin diagram.
Moreover in [15] Tachikawa proved that if A 1is hereditary,
T(A) 1is of finite representation type if and only if A
is of finite representation type, i.e. the graph of A 1is
a Dynkin diagram. These results suggest to us that the
Dynkin diagrams play an essential role in our problem.

In the section 1, we shall recall some definitions we
need,

In the section 2, we shall give a sufficient condition
for self-injective artin algebras to be of finite represen-

tation type, that is, we shall prove the following theorem.

Theorem 1. Let R be a connected self-injective artin
algebra and assume that there exists a component of the
stable Auslander-Reiten quiver of R whose Cartan class is

a Dynkin diagram. Then R 1is of finite representaton type.
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The converse of this theorem is due to Riedtmann [13]
for the case R 1is an algebra over an algébraically closed
field, and to Todorov [16] for the case R 1is an arbitrary
artin algebra. It seems, however, that our Theorem 1 has
not been yet announced.

Now Problem 1 can be reduced to the following form.

Problem 2. When does a Dynkin diagram appear as the
Cartan class of a component of the stable Auslander-Reiten
quiver of T(A) ?

In the section 3, we shall study, in the general situ-
ation, the relations between two kinds of DTr, one of which
is defined on mod A, the other on mod T(A) and both of
which act on modA. The résults of this section, especial-
ly Proposition 3.4 and Theorem 3.7, will play an essen-
tial role in the proof of Theorem 2.

In the section 4, we shall study tilted algebras and
‘their complete slices, which was introduced by Happel-Ringel
[8], and also the stable Auslander-Reiten quiver of T(A).
The purpose of this section is to give a partial answer to

Problem 2, that is, to prove the following theorem.

Theorem 2. Let B be a connected hereditary artin
‘algebra and T; a tilting module with End(TB)== A. Then
the dual quiver of B appears as the complete t-section
of a component of the stable Auslander-Reiten quiver of
T(A). In particular if B is of finite representation type,
there exists a component of the stable Auslander-Reiten qui-

ver of T(A) whose Cartan class is a Dynkin diagram.

This is the main result of this paper.
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As an immediate consequence of Theorems 1 and 2, we

obtain the following theorem.

Theorem 3. Let B be a connected hereditary artin
s 2 tilting module with End(TB)== A. Then
T(A) 1is of finite representation type if and only if B

algebra and T

is of finite representation type.

After completing this paper, the author learned that
the similar result was obtained by D.Hughes and J.Washbiisch
(cf. [10]). However their proof is entirely different from
ours. It should be noted that in our Theorem 2 we do not

exclude the case the graph of B contains a circle.

Throughout this paper; All modules are finitely gener-
ated, most modules are right modules and homomorphisms ope-
rate by the opposite side of the scalars. Given a artin
algebra A, modA denotes the category of finitely genera-
ted right A-modules, Ty (resp. 1;1) denot:s DTr (resp. TrD)
defined on mod A. For an A-module X, QX denotes the i-

A
th syzygy module of X. D always denotes the duality.

1. Some definitions.

In this section, we recall some definitions we need in
this paper, but refer to (5] for trivial extensions and to
[2] for DTr and almost split sequences.

Given an artin algebra A, a finitely generated A-module
T, 1s said to be a tilting module if it satisfies the fol-

A
lowing three properties;

(1) projdimr, <1,

A
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(2) Exty(T,T)= 0, |
(3) there is an exact sequence 00— AA—+ TA-» TA’—e.O

with T; and T;’ direct sums of direct summands of TA‘

In the case A 1s hereditary, End(TA) is said to be
a tilted algebra (see [8] for details).

The Auslander-Reiten quiver of an artin algebra A

has as vertices the isomorphism classes of indecomposable
A-modules, and there is an arrow from [X] to [Y] if
Irr(X,Y) # 0, which is endowed with the valuation (dXY’diY)
such that dXY = dimIrr(X,Y)K(x) and dXY = dimK(Y)Irr(X,Y),
where Irr(X,Y) = rad(x,Y)/radz(x,Y) and K(X) = End(X)/
rad End(X) (see [14] for details), and simply written by
[X]— [Y] 1if dXY =1-= dXY'

An indecomposable module X 1s said to be stable if
X # 0 for any integer n. The stable Auslander-Reiten

quiver of A 1is the full subquiver of the Auslander-Reiten
quiver of A consisting of the isomorphism classes of the
stable indecomposable modules.

Given an artin algebra A, let {S(1),...,5(n)},
{r(),...,P(n)} and {1(1),...,I(n)} be the complete sets
of simple, indecomposable projective and indecomposable
injective modules respectively such that
‘ topP(1) = S(1) = socI(i), 1 <1 <n, ,

The quiver of A has {1,...,h} as vertices and
there is an arrow from 1 to‘ j 1if Exti(s(i),s(j)) #0,

which 1s endowed with the valuation (d such that

ij’dij)
dij = dimHom, (P(j),rad P(i)/radzP(i))K(P(j))
dij = dimK(I(i))HomA(socZI(j)/socI(j),I(i)),

and as above simply written by 1i—-j if dij =1]1-= dij'
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The graph of A 1is obtained from the quiver of A by
forgetting the orientations of the arrows (see [4] for de-
tails).

The dual quiver of A means the quiver obtained from
the quiver of A by transposing the orientations and the
valuations of the arrows.

In what follows, given a valued quiver we denote by
(dxy,d;y) the image of an arrow from x to y under the
given valuation.

A gtable valued Riedtmann quiver is a valued quiver

‘without loops nor multiple arrows and with a bijective
transformation 7t of vertices such that ('tx)+ = x  for
all x, where x+ (resp. x ) denotes the set of end-points
(resp. start-points) of arrows starting from (resp. ending
in) x, and d =d” ,d

TY,X Xy
from x to y.

‘ =d for any valued arrow
Ty X Xy

Given a stable valued Riedtmann quiver A, a full sub-

quiver T of A 1is said to be a complete t-section if it

satisfies the following two properties;

(1) T contains exactly one vertex from each t-orbit
of A,

(2) if there is a path x0-+ ........ X with xo, X
in T and without a subpath of the form ty+ z-+y, then all

x, belong to T.

: Let T be a valued oriented tree, i.e. a valued quiver
with the underlying graph a tree. We define a stable valued
Riedtmann quiver ZI' as follows; its vertices are the
ordered pairs (n,x) with n an integer and x a vertex
of T, there are valued arrows from (n,x) to (n,y) and

from (n+l,y) to (n,x) for all integer n and all valued
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arrow from x to y, where the valuations are such that

d(n,X),(n,y) - dxy - dzn-i-l,y),(n,X)’

d; =d” =d
(n,x),(n 9}') Xy (n+l 9}') »(n,x)°
and the bijective transformation 1t 1s defined as follows;
T(n,x) = (n+l,x) for all (mn,x).
Given a valued quiver T, we define the Cartan matrix
C(I') as follows; Cox = 2 and cxy = - dxy - dyx (x#vy)
for all vertices x,y, where dxy =0 = d;y if there is no

arrow from x to vy.

Structure Theorem (Riedtmann [13]). Let T, I'" be

valued oriented trees. Then ZT and ZI'“ are isomorphic
if and only if C(Ir') and C(I'“) are similar. Given a
stable valued Riedtmann quiver A, there is a valued oriented
tree T and an admissible automorphism group G of ZT
such that A = ZT/G.

In the above, C(I') is said to be the Cartan class of

A (see [7] for details). Note that if A has as the com-
plete 1-section a valued oriented tree T, then C(I') is the

Crtan class of A.

2. Proof of Theorem 1,
Theorem 1 1is an immediate consequence of the following

two propositions.
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Proposition 2.1(Auslander [1]). Let R be a connected
artin algebra and assume that there exists a bounded length
component of the Auslander-Reiten quiver of R. Then these
are all isomorphism classes of indecomposable modules, and

R 1is of finite representation type.
Proof. See [1, Theorem 6.5].

Proposition 2.2. Let R be a self-injective artin
algebra and C a component of the stable Auslander-Reiten
quiver of R whose Cartan class is a Dynkin diagram. Then
C 1is finite.

Proof. See [0]. This proposition is essentially due
to the fact that for a Dynkin diagram, the coxter trans-
formation has a finite period. Also we can directly prove
this by calculating the composition lengths as Todorov [16]
did.

3. Relations between two kinds of DTr.
Throughout this section; A 1is an artin algebra over
the center C, Q = HomC(A,I) is an A-bimodule, where I
is the injective envelope of C/radC over C. R 1is the
trivial extension of A by Q. L ='HomA(AQA,—) and
¢ = -8)Q
The results of this section will be used in the next

are endofunctors of modA.

section to prove Theorem 2.

Lemma 3.1, Let P and I be the indecomposable pro-
jective and injective modules respectively such that

topP = socI. Then followings hold;
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(1) GP=1I and LI =P, ‘
(2) DHomA(P,X) e HomA(X,I) as End(X)-modules for any

A-module XA.

Proof. Clear.

Lemma 3.2. Let Pl e >P0 > X +0 be the minimal.
projective resolution. Then 71X = KerGp. In particular,

if A 1is symmetric, tX = Kerop.
Proof. See [15, Lemma 2.3].
Lemma 3.3. R 1is symmetric.
Proof. See [11, Proposition 1].

Proposition 3.4. For any A-module XA, there is a

natural exact sequence of the form

0 —r-rAx ——r-rRX —rnAmecx —+ 0.

In particular, if p):ojdilr:;}!.A €1 and injdim

there is a natural exact sequence of the form

AX <2,

0 :rAx :TRX %rRLGX — 0.

Proof. See [0]. In the above proposition natural

means that given a homomorphism XA —£—+YA, there exists

the following commutative diagram

0 A--rAx A'TRX %QAXOQRX — 0
N Tof Bt o
0 QRGf
0 %-rAY %rRY %QAYWRY —0,
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where TAf, QAf are determined modulo projectives over A

and TRf ,QRG f are determined modulo projectives over R.

Lemma 3.5. For any A-module X,, followings hold;
¢h) projdiml'{.A <1 1iff LT%X = 0,

(2) injdimXA <1 iff G‘l‘A X=0.

Proof. See [0].

Lemma 3.6. If projdith <1, for any ZA we have

1 1
ExtR(Z,TAX) o ExtA(Z,TAX).
Proof. See [0].

Finally, as an immediate consequence of Proposition 3.4

and Lemmas 3.5 and 3.6, we obtain the following theorem.

Theorem 3.7. For any indecomposable A-module XA,
followings are equivalent;

1 projdith €1 and injdimrt

(2) TAX = TRX,

(3) the almost split sequence ending in X in modA

AXSl,

is also the almost split sequence in modR.

4, Proof of Theorem 2.

Throughout this section; B is a connected hereditary
artin algebra over a field k. {S(1),...,S(n)},
{r(1),...,P(n)} and {1(1),...,I(n)} are the complete sets
of simple, indecomposable projective and indecomposable in-

Jjective B-modules respectively such that

topP(1) = S(1) = socI(i), 1 <1 < n.
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n
T =& T, is a tilting module with End(T_) = A and pair-
B 4=1 I B

4 =
wise non-isomorphic T,’s, thus A 1is basic. AQA D(AAA)

i
and BQB = D(BBB) are A- and B-bimodules respectively.

R 1is the trivial extension of A by QA'

. _ 1
F = HomB(ATB,-) and P’ = ExtB(ATB, ) are functors from

1
B("ATB)

are functors from modB to deAPp, where mod A°P

modB to modA. H = Homi(_’A:B) and H” = Ext

denotes the category of finitely generated left A-modules.
L= HomA(AQA,-) and G = -GAQA are endofunctors of modA.

dyy = dmIrr (T TGN ga 1 (a)) *

dij = dimEnd(I(j))Irr(I(i),I(j)).

Theorem of Bremmer-Butlar. AT 1s also a tilting
module with End(AT) = B. The full subcategories
{XB|F‘X = 0} and ‘{YA|Tor$(Y,T) = 0} are equivalent under

the restrictions of the functors F and -@ATB which are

mutually inverse to each other, and similarly the full sub-
categories {XB|FX = 0} and {YA|Y8T = 0} are equivalent
under the restrictions of the functors F“ and Tor?(-,AiB)

which are mutually inverse to each other.
Proof. See [8, Theorem 2.1].
Lemma 4.1. For any 1 €< i € n, followings hold;
(1) if I(1) 1is not a direct summand of TB’ then
DHI(1) = DH(I(1)/s(1)),

(2) 1f 1I(1) 1is a direct summand of TB’ then DHI(i)

is an indecomposable injective A-module such that

DHI(1i)/soc = DH(I(1)/s(1)),
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where the isomorphism is induced by a canonical surjection
I(i) —I(1)/S(1) 1in either cases.

Proof. See [0].

Proposition 4.2. For any XB, projdimFxA < 1.

Proof. See [8, Lemma 5.1].

Proposition 4.3. For any indecomposable B-module XB’
followings hold;

(1) if F°X = 0, then

TAFX = DH’X and GFX = DHX,

(2) if XB is not projective, then

DH’X = FTBX and DHX = F’TBX.

Proof. See [0].

Corollary 4.4. For any non-projective indecomposable
B-module XB with F“X = 0, we have

TAFX = FTBX and GFX = F TBX.

Remark, Put X = {xAlxeT =0}, Y= {YA|Tor§(Y,T)==0}.
In [8] Happel-Ringel showed that the pair (X ,Y) forms a
splitting torsion theory (see [8, Theorem 6.3]). The above

corollary gives another proof of this, because we obtain

1 —
ExtA(Y,x) DHomA(x,TAY)

13

DﬁBEA(X,FTB(YGT))
=0

for all X e X and Y ¢ V¥ (see [9] for details).
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Proposition 4.5. The minimal right almost split map
ending in FI(i) in modA 1is of the form

d
@F1(3) Iher, F(1()/s(1)) — FI(D).
3

Proof. See [0].
Lemma 4.6. Hom, (GFI(1),FI(3)) #0 4iff I(1) = P(J).
Proof. See [0].

Lemma 4.7. If HomB(I(j),I(i)) # 0 with i # j, then

we have
Exti(FI(i) ,FI(3)) = O.

Proof. See [0].

Proposition 4.8. If HI(i) = 0, then the almost split
sequence ending in FI(i) in modR 1is of the form

d
0 — T FI(1)—>(8FL(§) ji)e‘rRF(I(i)/S(i)) —FI(1)— 0.
h

Proof. See [0].

Proposition 4.9. If HI(i) # 0 and H(I(1)/S(i)) = 0,
then the almost split sequence ending in FI(i) in modR
is of the form

d
0 1 FI(1) ~~(8FL(3) ji)@'tRF(I(i) /S(1))8P -FI(1) =0,
h

where P 1is the projective cover of FI(i) over R.

Proof. See [0].
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Lemma 4.10. Assume that there is an irreducible map

in modR of the form

d
Frr) 3 ——rFrey

for all j. with Irr(I(i),I(j)) # 0. Then there is an
irreducible map in modR of the form

FI(1) ——F(I(1)/S(1)).
Proof. See tO].

Proposition 4.11. Assume that H(I(1)/S(i)) # 0 and

there is an irreducible map in modR of the form
FI(1) ——F(I(1)/5(1))

Then the almost split sequence ending in FI(i) in modR

is of the form

d
0 —» 7 FI(1)— (8FL(3) ji)enR].-*(I(i)/s(i))—> FI(1)— 0.
k|
Proof. See [0].

Now we can prove Theorem 2. Since B 1is hereditary,
the dual quiver of B 1is isomorphic to the full subquiver
of the Auslander-Reiten quiver of B consisting of the
isomorphism classes of indecomposable injective modules.
Moreover, since R 1s self-injective, the stable Auslander-
Reiten quiver of R 1is obtained from the Auslander-Reiten
quiver of R by deleting only the isomorphism classes of
indecomposable projective modules. Therefore, it is suffi-

cient to prove the following proposition.
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Proposition 4.12. TFor any 1, the middle term of the
almost split sequence ending in FI(i) in modR dis, up

to a projective direct summand, of the form

d i
(8FI(j) I YOT F(I(1)/S(H)).
j

Proof. By induction along the sink sequences in the
full subquiver {I(1),...,I(n)} of the Auslander-Reiten
quiver of B.

If I(i) 1s a sink, this is the case Proposition 4.8
or Proposition 4.9.

Consider now some I(i), and assume that it is already
shown for all I(j) with Irr(I(1),I(j)) # O.

If H(I(1)/s(i)) = O, this is also the case Proposi-
tion 4.8 or Proposition 4.9.

In the case H(I(1)/S(i)) # 0, by Lemma 4.10 the
assumption of Proposition 4.11 1is satisfied.

This finishes the proof.
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ON THE INDECOMPOSABILITY OF AMALGAMATED SUMS

Hideto ASASHIBA and Takeshi SUMIOKA

Introduction. We introduce a consept of "independent

map" and study the relationship between the '"independence"
of a map and the indecomposability of its cokernel in
certain situations.

Let R be a right artinian ring with 1 and consider
the exact sequence

0—>k—LoelL —Esu——>0

of finitely generated right R-modules which does not
split. We will see later that if M 1is indecomposable

then f 1s "independent" but the converse is not true
in general. In Tachikawa [4] we see the converse holds
if the following conditions are satisfied: i) R 1s right
serial; ii1) n = 2 or 3; iii) each Li
uniserial) and its composition length is 2; iv) K is

is local (therefore

simple; v) each fi sthe i-th coordinate map of £ , is
a monomorphism. Our aim is to prove under each of the
following two weaker conditions that this converse assertion
is still true:
1) i) n is an arbitrary natural number 2> 2;

11) each Li is local but not simple for 1 =1,...,n;
1ii) K 1is simple,
2) 1) n is an arbitrary natural number » 2;

ii) each Li is colocal for 1 = 1,...,n;

1ii) fl 1s monomorphic and Ll/fIK is simple.

Unless otherwise stated we assume throughout this

note that R 1s a right artinian ring with 1, J stands
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for the Jacobson radical of R and all modules are unital

finitely generated right R-modules. For maps £ : K-——a-GILi
T

and g : OILi —> M , we denote f (fi)I ' 8 (gi)l

where for each 1 € I the projection Pyt &L, —L

Ii i
and the injection k,: L, —> ®.L, are canonical and

;A | Ii
fi = pif » By © gki which are called the i-th coordinate

maps of f and g respectively. In case I = {a,a+1,...,ﬂh
T Tb b
(fi)I ’(gi)I are written as (fi)i=a s (gi)i=a respectively.

The notation I, it 12 il ... LLIn = I means the union

1
Ilu I2 V oees \,/In = I 1s disjoint.

1. Independent map

(1.1) Definition. A homomorphism £ = (fi)I=; : K

-——94&21L1 (= L) 1is called independent (with respect to
the decomposition L = °1:1L1
n 4 - n =2
and each h= (h,),0, : L—>L, , hf =3 "' hf =0
implies hi is not isomorphic for each i = 4,...,n.

And f 1is called dependent in case f is not independent.

) in case for each i =1,...,n

(1.2) Proposition. For every homomorphism f : K

n n
—>®,_,L;, (= L) putting g : & _,L —>Cok £ to be the

canonical epimorphism, the following statements are equiva-

lent:

a) £ 1is dependent;

b) There is a homomorphism h : L, —> L, for some
#3110

j=1,...,0n such that fj ;e h(fi)i#j 3

c) g4 is a split monomorphism for some i =1,...,n ;

d) There is a split epimorphism p : M —)Ml and a subset

1<{l,...,n} such that p(gi)I: ® L, —> M, is isomorphic.
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Further if each Li is indecomposable then these

four conditions are equivalent to
e) |he€ End@)| hf = 0} € rad End(L) where rad(-)

denotes the Jacobson radical of (-).

Proof. a) = b). If f is dependent then there

exist 1 =1,...,n and h : L—)Li , h= (h such

) n
171=1
that hf = 0 and hj is an isomorphism for some j = 1,
«..yn. Since hj is isomorphic we may assume 1 = j and
Atﬁ.:;llj . Then hi =0 impli:s that ;j = (ihi)i#j(f
b) =»c)+ Suppose that fj = (- i)i#j(fi 14§ Taking

h = (hl""’hj-l’lL.’hj+1""’hn) we have hf = 0.
Therefore there is i homomorphism p : M-——}Lj such that
h=pg where g : L—>M (= L/fK) 1is canonical. Let

kj: Lj-——9 L be the inclusion map then pgj = pgkj = hkj

T
Digy

=1 Thus g, 1is a split monomorphism.

L 3
¢) =b d). Trivial.
d) => a). Suppose d) holds. Taking h = pi[p(gi)I]-lpg
where Pyt °1L1 ———)11 (1 € I) 4is a canonical projection,
we have hf = 0 and hi =1 thus f is dependent.

L
If each Li is indecomp%sable then rad End(L) =
n
{(fij) € End(8)_;L,)| £,y 1 not isomorphic for each 1,

= 1,...,n} . From this fact the equivalence of a) and e)
is immediate. OK.

(1.3) Corollary. If £ is independent with respect

n R

i=11.i with each Li indecomposable
then independence of f does not depend on the decomposition
of L.

to a decomposition L =@
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(1.4) Corollary. If a monomorphism £ is not split
and Cok f 1is indecomposable then £ 1is independent
(with respect to any decomposition of L).

Proof. If f 1is not split and f 1s dependent then
from (1.2) Li

for some 1 =1,...,n. OK.

is a proper nonzero direct summand of Cok £

(1.5) Corollary. Let Ki;; Li for each 1 =1,2
and h : Kl ——e'Kz be an isomorphism. Define f1 = kl’
f2 = k2h vhere 'ki: Ki :Ie'Li is the inclusions for each
i1i=1,2. Then h or h can be extendable to a homo-
morphism L1 S L2 or L2 —)Ll respectively if and only

if (fi)T :K, —> L. @L

1=1,2°% 1 2 is dependent.

(1.6) Example. There is a monomorphism f : K—> L
such that f 1is independent (with respect to any decomposi-
tion of L) but Cok f is decomposable.

Let the exact sequence

0—>Kk—>L—Bsu—->s0
be the projective cover of M = Ml 9 M2 where Ml and M2
are nonprojective indecomposables. Then £ 1is not split
and by (1.2) £ 1is independent but Cok £f = M 1is decom-

posable.

2. Proof of the theorems

(2.1) Lemma. Let R be an arbitrary ring with 1 and
suppose a right R-module M 1is decomposed as follows

=3 n =
M=o L =M 6N,
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where Li is a simple right R-module for each 1 =1,...,n.

Then there i1s a partition of the set {1,...,n} : IILL 12
={1,...,n) such that M= ® (OIzLi) = (QIlLi) oM,.

proof. We prove the assertion by induction on n.
Let L! and LY be the images of L

1 1
M -—)Ml and M -—>M2 , respectively. Then M = Li ®

= 1"
L2 ®...9 Ln or M L1 ) L2 e...9 Ln' We may assume that

the former holds. We denote the image of every submodule
NS M by N under the canonical projection M ——a'M/Li.

Then we have M = fé ¢ ... 9 I; = ﬁi @ ﬁé. By hypothesis

of induction there is a partition Ii11 Ié =-{2,...,n) such

1 under the projections

that M=M, @ (& ,L,) = (8_.,L,) ® M,. Therefore M= M
1 I& i I1 i 2' 1
- 1
+ (OI.Li) =L+ ( I'Li) + M, for ng Ml. Comparing the

composition lengths, we see the sums are direct and it

This completes the proof

follows M=1L & (&_,L,) @ M,.
1 I 2
= - 1

taking I, = {1} Uiy I, =1,. OK.

(2.2) Remark. This lemma holds more genmerally. Let
M= QILi = OJMj be completely indecomposable decomposition
of an R-module M where the ring R 1is not neécessarily
an artinian ring. Then for any finite subset J' = {jl,...
,jn} of J there exists a subset I' = {11,...,ink of

I such that L, & M for each k=1,...,n and

M = (;“I.kao ®)_yiMy) = (87 ;,1) @ (B1M,).
(See [1,Theorem 1.7])

We are now in the position to prove the propositions

in the introduction.
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(2.3) Theorem. Let O > K £ >L —B& yM —— 0
be an exact sequence of R-modules such that L = Gizll'i
with I‘:L local but not simple for each i =1,...,n and

K is simple ( n is an arbitrary natural number > 2).
Then the following conditions are equivalent:

a) M 1is indecomposable;

b) M has no direct summand which is isomorphic to Li
for some 1i=1,...,n; ‘

c) £ 1is independent.

Proof. Since Im f 1s contained in the radical of
L , the exact sequence dose not split so by (1.2) the
implications a) => b) =» c¢) are clear.
c) => a). Now assume that M is decomposable, say M =
Ml -] Mz , Ml’MZ # 0, and let UPE M —)Mi be canonical
projections for i = 1,2. We denote the image of every
submodule N &M by N under the canonical projection
M —>M/MJ where J 1is the Jacobson radical of R.
Then since Ker g € LJ we have
_E = 08, = W) o)
where gLi is simple for every i =1,...,n. By (2.1)
there is a partition Illl I, = -{1,...,n} such that
M= Ml ] (OI gLi) = (OI gLi) @ M2
but since MJ 1is smali in M, i% follows that

M= M +212gL1 =):',Ilg1.i + M,
which means that both ﬂl(gi)l and ﬂz(gi)l are epi-
morphisms. It is easily veriffed that lKerr&(gi)I [ +
KerT, (gi)I = IKI where |N| denotes the compositi%n
length of ﬁ for each R-module N. Then since K is

simple i.e. [K|= 1, either Trl(gi)I or 1T2(gi)1 must
’ 1 2
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be an isomorphism. Hence £ 1s dependent by (1.2). OK.

(2.4) Theorem. Let 0——>K—f—>L—g->M—>0 be

n
1=k (P

indecomposable and L2 .

an exact sequence of R-modules such that L =@
is a natural number » 2) with Ll

...,Ln colocal, the first coordinate map fl is mono-

morphic and Cok £, 1is simple. Then if f 1is independent,

1
M 1is indecomposable.

Proof. Since fl is monomorphic, (gi) 141 is mono-

morphic for Im f » Ker g. Then we have 01#1 gLy < M
where gLi ] L1 for all 1 # 1 and there is a submodule

N of soc M, the right socle of M, such that N & (01#1

soc gLi) = soc M where soc gLi Z goc Li is simple for

each 1 =2,...,n. Now suppose M 1s decomposable, say
M= Ml ® M2 s Ml’MZ # 0, and let UL M—>Mi be the
canonical projections for i = 1,2, Then it holds that
soc M=N® (01*1 1 ® soc b_dz.
Hence by (2.1) there exists a partition Il.u. I2 = {2,...,n}
and a direct sum decomposition N = N1 ) NZ such that
1 ® N, ® (lesoc gLi)
soc M = Nl ® (OI soc gLi) ® soc MZ'
Since soc T 1s essenitial in T for any module T, we
have er\ OIZgLi = 0 and OI}gLin MZ
that the composite maps 1‘I'1(g1 7. and ﬂz(gi)l are
1£1 is simple
3r zero for Cok (gi)i#l = M/Qi#lgl'i = (Qiflgl‘i + ng)/Q)i#lgLi
= gLI/[(GiﬂgLi)r\ ngl = nglgflK and Lllfll( is simple.
As easily seen 'Cok m (g,); [ + | Cok M, (8y) l = |Cok (gi)i#lj

=1 or O, hence either %l(gi)l or ‘n’z(gi)I is
1 2

soc gLi) = goc M

n

soc M soc M

= (0 which means

monomorphisms. On the other hat]id Cok (gi)
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isomorphic. Thus £ is dependent by (1.2). OK.

(2.3) is also a generalization of [3, Theorem 3.7] in
right artinian (semiprimary) case. From (1.2) when each
Li is indecomposable we obtain that £ is independent
1ff fh e End(L) | hf = 0} C rad End(L) . This latter condi-

tion is already considered in [2, p.339 Condition V].
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INTEGRAL REPRESENTATIONS OF CYCLIC GROUPS OF ORDER pq
Tadashi MITSUDA

In a module-theoretic way, considering the represen-
tations of a finite group G over Z is reduced to investi-
gating 2G-lattices which are finitely generated Z-free ZG-
modules. 8o the classification of indecomposable 2G-lattices
is an important problem. In general, however, the number
of isomorphism classes of indecomposable ZG-lattices is not
necessarily to be finite. Relating to the finiteness, the
following result is well-known.

(Heller-Reiner[2], Jones[k])

For a finite group G, the number of isomorphism classes
of indecomposable ZG-lattices is finite if and only if for
each prime p dividing |GL Sylow p-subgroup of G is cyeclic
of order p or pﬁ

But there are few results about the classifications
of ZG-lattices. For example, all the indecomposable lattices
are classified in the case when G is cyclic of order p
(Diederichsen{[1], Reiner[6]), cyclic of order p?(Reiner[B])
or non-abelian of order pq (Pu[5]), where p and q are dis-
tinct primes. For further references on integral represen-
tations, see Reiner([7].

Now, in this paper we will treat the case when G is
an abelian group of order pq. Throughout this paper, we
fix the following notation.

G=<o>x <> dl=7=1 P # q : primes

Ly ¢ primitive n-th root of unity

gi= g, , 0:=1¢,
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R:=2[z] , T:=z[0) , S:=Z[z6] .
r:=[(2/q2)" : <p(mod.q)>| , s:=|(z/pz)*: <q(mod,p)>|
rf=q-1 -

h, : class number of A

u(A) : unit group of A

IB : u*(a)| : index of Im(u(A) —» B) in B

K:=K,® ..... ® K. , K;= Fg

K" :20 0 Ki® vvo @K', vuunn, K206 .....000 K
K:i=F®K,® ..... ® K, -

K":=0 K@ ..... ®Ky,...to, K 1500 ..... 80 0 K
K‘":=F’,‘e K |

§ 1. Extensions
For a ZG-lattice M, put M, ={meM | #(T)m=0} and M,=M/M,,
where 45,,()() denotes the p-th cyclotomic polynomial. Then we
have an exact sequence of ZG-lattices,
0 > M, > M > M, Y
Since ZG/(&{T))* R<o> and 2G/(T-1) = Z<o>, M, and M,

are regarded as lattices over R<o> and Z<o> respectively.

So every ZG-lattice can be obtained as an extension of a
Z<g>-lattice by an R<o>-lattice.

By the results of Reiner, the only indecomposable
Z<o>-lattices are of the following three types.

(1) =z

(L) € : non-zero ideal of T

() 0 — g —p —>C—>0

(& is of type I )

In s similar way, we can show that every indecomposable
R<o>-lattice is one of the following three types.

(I) @ : non-zero ideal of R
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(X) ¥ : non-zero ideal of S
(m) 0—DmA—X—3p —0
( and yare of types of (I) and (I) respectively.)
Therefore we can get every ZG-lattice as an extension
of the form,
(%) 0 —s5de 1 ¥ —u — 2% ;% Fo 0
Now the problem is to determine when such M is indecom-

posable.

§ 2, Indecomposable genera _

Let Il be a finite group. For Zll-lattices X and Y, we
say that they have the same genus and denote X n Y, if they
are locally isomorphic. In fact, X and Y have the same
genus when X¢;= Y» only for each prime p dividing [N|. Let
X Y, then it is also well-known that X is indecomposable
if and only if Y is so. Hence the indecomposability is a
genus property. Now recall the following result of
Jacobinski, which is obtained in much more general situation
but we state only in our case here. For other guoted

results we will do in the same manner.

Proposition 1 (Jacobinski [3]), For a Zll-lattice M,
the following two conditions are equivalent.

(1) M is decomposable.

(i) There exists a Zll-lattice L such that L., is a
direct summand of Myfor any p dividing II|.

So examining the indecomposability of M of the form (*)
is reduced to investigating the non-existence of such a

local direct summand as in Proposition 1. For that purpose )
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we use the next simple remark.

Lemma. Let G be defined as before, and N, L be ZG-
lattices. For given exact sequences;

0 —Nejpy=>X — Lp—> 0 as Z,G-lattices,

0 —Nep—>Y —> L4 —0 as Z,G-lattices,
there exists a ZG-lattice M such that

O_’N —'M—’L—"O, M‘P)zxa.nd M(q)z Yo

Now we must determine the indecomposable lattices in
local case. We can again get every Z,G-lattice by an
extension as before. And in this case, we use the following

result of Jones for examining the indecomposability.

Proposition 2 (Jones [h4])., Let G be as before, and M
be a Zgi-lattice. Then the following two conditions are
equivalent.

(i) M is decomposable.

(i) There exists a ZgG-lattice N such that N is a

direct summand of ﬁ, where ~ means the p-adic completion.

Then we need the results about the complete local case.
But since in the complete local case Krull-Schmidt theorem
holds, we can rather easily determine the isomorphism
classes of indecomposable lattices. Using this result, we

get the theorem in local case.

Theorem 1. With the notation defined as before, there
are Z+ 1 indecomposable ZyG-lattices up to isomorphism.
They are the following ones.
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Z(p): R(p: Tepy » Sqa) ’ Zm<'l'> and

0 —S8

w ——V — T(—> 0 (non-split extension)

Now using Lemma and Theorem 1. repeatedly, we have

Theorem 2. With the notation as before, there are
2"“: g - 2s+ 5 indecomposable genera of ZG-lattices. And
every indecomposable ZG-lattice can be obtained as one of
the following extension forms.

(1) 2z

(2) 0 : non-zero ideal of R

(3) ¥ : non~-zero ideal of S

(k) ¢ : non-zero ideal of T

(5) o —a—X — ¥ —> 0 (non-split extension)

(6) 00— 2 — P —C — 0 (non-split extension)

(1Y o—>0—M—2 —>0 (non-split extension)

(80— a—>M —P —0 (non-split extension)

(9) 0 —>¥% —>M —3 € —30 (non-split extension)

(10) 0 —3% — M —P —> 0 (non-split extension)

(11) 0 —>» X —> M —> 2 —> 0 (non-split extension)

(12) 0 —>X —>M —C —> 0 (non-split extension)

(13 0 —>X—>M — P —> 0 (non-split extension)

(1) 0o — a8y —>M —>P —>0
with M, = 2,21> @ V; , M@= R, ® s‘pzm«»

(15) 0 —m X —>M—>2@®C —0
with M= Zo$T> @ Vi , My W; ® 29 ® Toq» >, Where Vi and
W; are indecomposable ZgG-lattice and indecomposable ZqfG-

lattice obtained as in Theorem 1. respectively.

By this theorem we know all the indecomposable genera
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and the extension forms of indecomposable lattices. So the
last problem is to determine the isomorphism classes in each

extension.

§ 3. Isomorﬁhism classes

Recall the following result of Reiner. By that
Proposition, the computation of the cardinarity of iso-
morphism classes of indecomposable lattices is reduced to
counting the number of orbits under the action of Aut{ ) on
Ext( ) given in [8].

Proposition 3 (Reiner [8]), Let Il be a finite group,
and L, ¥ be Zl-modules with Hom,(L,N) = 0. And let X; (i=
1,2) be a Zll-module which is determined by &.e Ext, (N,L) (i
=1,2). Then the following two conditions are equivalent.

(1) X, = X,

(1) &, y-§-38 for some ve Aut, (L), 8€ Aut,(N).

n

In general, it is very difficult to..express the number
of orbits. Though,in the case of s- = 1, which means (Z/pZ)‘~
= <q(mod.p)>, we give the formula. But it is also consider-
ably complicated. Note that the above condition is always

satisfied when p = 2.

Theorem 3. With the notation defined as before, assume
that s = 1, i.e. (2/p2)" = <q(mod.p)>. Then the number of
isomorphism classes of indecomposaeble ZG-lattices is given by

1+ 2h, + 211,.;1 hs + bghy + 2thS-IFq(C)*‘ : u*(8)|
+ (2hehe + hohoho ) SIK™ 2 u(s)|
+ hahThleH(C)l : u*(S)ViglK‘“z u*(R<o>) + u*(T)|
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x L2 I
+ hohoho IF (2) & u*(S)LEIK™: u*(R<o>)l
+ hehyhg IR () 3 uw*(SI K™ : u*(Reo>)-ur(z @ 1),

X
Corollary. Assume further that p = 2 and (2/qZ) =
<2(mod.q)>. Then the number of isomorphism classes of
indecomposable ZG-lattices is
2 X X
b+ 6h + 3 + 5n;|F,(8) : u¥(T) + 2nL]F, (8) : u*(z<o>)| .

Now we have the formula, but it is quite difficult
to compute each term explicitly. For G with )G|. < 30, =
straightforward calculation yields the following table.

L number of indecomposable
Gl q | r s | ZG-lattices

6 2 311 1 17
10 2 5 |1 1 17
1k 2 712 1 31
15 3 5 |1 1 21
21 (7|32 |1 33
22 2 11 | 1 1 31

26 [ 2 {131 |1 45
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ON MULTIPLICATIVE INDUCTIONS
Yoshito OGAWA

Throughout of this paper, let G be a finite group

and let H be a subgroup of index £. We denote the
2

symmetric group of £ 1letters by‘ $2. Setting G = Ui=l

tiH, we have

gti = tO(iPi’ geEG, 0¢€ Sz, h, e H, 1< i<,
We state some non-vanishing theorems in the cohomolgy of
finite groups. Evens' norm mapping [3] plays a.crutial rolé.
The norm is a multiplicative analogue of the usual transfer.
First we explain the norm from the view-point of 'multipli-
cative inductions' (§1 - §k), and then describe our theorems

(§5). The proof will be published elsewhere.

1. Algebras (cf. Taylor [T, §1]). We begin with multi-
plicative induction of algebras. This is partly a generali-
zation of Hasse's Galois algebra (see Example below). Let
k be a field. Let A be a k-algebra on which H acts
(i.e. an H-algebra over k). We define a multiplicative
induction of A by

Map,(G,A) = {¢: G > A[d(hg) = hé(g), g € G, h € H}.

Here MapH(G,A) is a G-algebra with k-algebra structure
induced by one of A and with the G-action given by (x¢)(g)
= ¢(gx), x € G. Then we have a covariant functor

MapH(G,'): H-algebras + G-algebras.
Note that MapH(G,') is the right adjoint functor of the
restriction: G-algebras + H-algebras. Specially MapH(G,-)
preserves ‘'direct products'.

2 .. -1 L

Since G = U,_ Ht.™, we have MapH(G,A) = Hi=lAi: ¢ >



94

) -1 - L
][i=l¢(ti ), Ay = A. Th%s Hi=lAi becomes a G-algeb#a by
el _j8;) =T by, ey, 8 € Ay
This gives another definition of multiplicative induction
of algebras.

Example. Let F be a finite Galois extention field
of k with Galois group G. Then MagsiG,F) is a Galois
algebra over F with Galois group G. That is, MagsiG,F)
is a G-algebra over F, which is isomorphic to FG as an

FG-module. Observe that Ma.p<b(G,F) 2 FG: ¢ » ):geGq;(g-l)g.

(Riehm [4, 84] and Evens [3, §5]). If A is e
connnuta.tlve H-algebra, then 'Qi:lAi (Ai = A) is a G-algebra
by g(®. .a.) = ot

i 1 8 ®;-1Bc% 26ty 24

defined over k. ®i g‘lAi is called the Corestriction.

EAi., where @ is

L
®i=l. is the left adjoint functor of the restriction:

Commutative G-algebras + Commutatiye H-algebras, and so

preserves 'direct sums',

2. Modules ([3, §3], Dress [1,§5]).From now on @ will
be defined over Z, which is the ring of rational integers.
The restriction: ZG-modules + ZH-modules has the left (resp.
right) adjoint functor ZG@ZH' (resp. HomZH(ZG, ) =
Ma.pH(G, *)). Two adjoint functors are isomorphic and preserve
finite direct sums. Shapiro's lemma in the cohomology of
finite groups arises from this isomorphism.

Multiplicative induction of a module is called the

monomial module: for a.ZH-module M, @ M (Mi =M) is a
2

ZG- module by g(EG m ) = ei=1h0cb Giiy » By € M;. Then
®i=l': ZH—modules + ZG-modules

preserves 'tensor products given:the diagonal action'.
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3. Projective resolutions ([2, §5]). A ZG-projective
resolution can be constructed from a ZH-projective resolution
X = (xn) Now @' is an acyclic ZG-complex by

L
g(@. x) (-1)% e_
ld.;%’d» Hw

i ex S—zl<1<.j<2,i,j
Note that ®2'X is not e.lways ZG-projective. Let W be

a Zsl-projectlve resolution of Z. Then W is an acyclic

n>0*

g € G, x

ZG-chain complex via G » Sl g+v g. Given the diagonal
G-action, W@(@ X) 1is a required ZG-projective resolution
of Z.

cf. A fundamental theorem of Serre [5, Theorem 1]
states that, if T 1is a torsion free group and if TI' 1is
a subgroup of finite index £, then cd(T') = cd(T''). The key
of the proof is to show that, if X is a ZI''-projective
resolution of Z, then @2 X is itself a ZI'-projective

resolution of Z.

L., Cohomology rings ([3, §5 and §6]). Let k be the
prime field of characteristic p > O. We set

a(H) = @ H"(H,k), a(c) = @ W*'(G,k).

(If p = 2, the restriction to even degrees is unnecessary.)
Using the above resolutions (§3), Evens defined

[- -]
norm: a(H) + a(G) as follows. Let a = Qu=0a2u € a(H),

where %y # 0 for only finitely many u > O. We choose a

cocycle f2u which represents - for each u > 0. Then

there is a cochain 8oy for G such that

8ov(Zissy, g2 =¥ 9%, 9.8 x;)
= o)t )y,

where v 2 0, LA € W, TR € Xi and W is the augmentation

of W (w: W, > Z). Clearly g,, is a cocycle, and we
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denote the cohomology class containing 8oy by Yo+ Then

-]
v=0T2v" |
Next we describe the properties of a. First, a is a

norm(oa) is defined by

contravariant functor
Finite groups + Commutative graded k-algebras.
Let G>L>H,G>K, g €G, aBe a(H), yea(G). For

brevity, we write

norm: a(H) + a(G): aw Ga’
* : a(G) > a(H): aw oy
o* : a(i® > a(H): aw o,
where 1: H+G, 0: H+H: h » g-lhg and HE = gHg-l. It
h ¢ H, then ah = a. Though G(
hold, the following conditions are satisfied:
(8.1) %(a-8) <%a-%8
(N.2) "a=aq,
m.3) Ya®) = (Fa)®
CRINQONES S o
where K\G/H is a transversal of the (K,H) double coset
in G.

YH) = YR does not always

5. Applicatiog. Evens introduced the norm in order to
give an algebraic proof of the nbntriviality of the integral
cohomology of finite groups [3,'Theofem 3], which was geomet~
rically proved by Swan [6]. We are interisted in the case
where the coefficients are simple modules. Now we describe:
our results with the following notations: 7

k: the prime field of characteristic p > O

P: a finite p-group (# 1)

H: a p'-subgroup of Aut(P)

G: the semi-direct product of P by H

Z: the center of P
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Q= IP:ZI
E=<xceiz|xf=1
i>0

S'(E): the i-th symmetric power of the kG-module E
M: any simple kG-module.

Theorem 1. If M is a composition factor of S™(E) as
& kG-module, then H31(G,M) # O.

To prove this, it is important to construct a polynomial

ring contained in a(P) from one in a(E) by'using the

norm.

Theorem 2. Furthermore, if each element of H -{1}

H|,2qi
l=lﬂ (a.M) # 0.

has a fixed-point-free action on P, then &
Remark. Let G' be an arbitrary Frobenius
group such that the order of the Frobenius kernel
is divisible by p. Note that G' is the extension of its
maximai normal p'-subgroup by some G in Theorem 2. If we
regérd the blocks of kG' as the sets of isomorphic classés
of simple kG'-modules, then the nontriviality of cohomology
"groups in Theorem 2 distinguishes the principal block of kG'

from other blocks.
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On & -continuous regular rings
Jiro KADO

In 1936, von Neumann and Murrary discovered a regular
ring which coordinates the lattice of projections of certain
operator algebras. Twenty years later Berberian had shown
that an analogous ring can becconstructed for some AW¥%-
algebras [2]. It was shown that these regular rings were
isomorphic to the maximal ring of quotients of those
operator algebras by Loos [10] and Handelman [4]. Recently
moreover Handelman constructed " o,-continuous regular
ring" which coordinated the lattice of projections of finite
Rickart C*-algebras as a subring of the maximal ring of
quotients of the C*-algebras [5]. The general properties
of & -continuous regular ring are studied by Goodearl in
[{9], and Goodearl, Handelman and Lawrence are investigating.
the properties which are applied to the Rickart C*-algebras
in [10]. In this note, we try to introduce the affine
function representation of KO(R) for a §,-continuous regular
ring R which 1s studied by Goodearl, Handelman and Lawrence
in [10].

On the other hand, among general regular rings, there
is a reasonably manageable classes, namely the "ultramatricial
algebras" over a fixed field defined by Goodearl [9, Ch.15].
As an application of the affine function representation,
we show that any simple ultramétricial algebras over a field
F can be embedded into a ¢,-continuous regular ring
which has no simple artinian homomorphic images and which

is an also F-algebra.
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1. &%-continuous regular rings

Definition [9, Ch.14]. A regular ring is ), -continuous
if both the lattice of all principal right ideals and the
lattice of all principal left ideals are upper ¢J,-continuous.
A regular ring is %, -continuous if and only if every
countably generated right (resp. left) ideals of R 1is
essential in a principal right (resp. left) ideal of R.

Definition [2, p.13]. A Rickart C*-algebra is a C*-algebra
with unit (e.g.,[13]) T such that for all t in T,
there exists a projection (i.e., a self-adjoint idempotent)
P in T such that the right annihilator of t is pT.
This is a weak form of the defining axiom for AW*-algebras,
in which it is required that right annihilators of arbitrary
subsets of T are of the form pT. A C*-algebra T 1is
said to be finite if xx* = 1 always implies x*x =1 for

any x in T.

Definition [2, p.229]. A *-regular ring is a ring with
involution in which every principal right ideal is generated
by a projection. Equivalently, *-regular rings may be
characterized as regular rings with involution in which

xx* = 0 implies x = 0.

Handelman proved the following fundamental theorem

concerning finite Rickart C*-algebra.

Proposition 1 [5, Th.2.1]. Let T be a finite
Rickart C*-algebra. Then there exists a ring of quotients
R of T with the following property:
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(1) R 4is a subring of the maximal ring of quotients
of T.

(2) The involution on T extends to an involution
on R.

(3) R 1is *-regular and (p-continuous.

(4) All projections of R 1lie in T.

2. Pseudo-rank functions.

Definition [9, Ch.16]. A pseudo-rank function on a
regular ring R is a map N: R — [0,1] such that

(a) NQ() = 1.

(b) N(xy) £ N(x) and N(xy) £ N(y) for all
x, y in R.

(c) N(e + £) = N(e) + N(f) for all orthogonal
idempotents e, f in R.

A rank function on R is a pseudo-rank function N
with the additional property

(d) N(x) > 0 for all non-zero x in R.

For any regular rings R, we use P(R) to denote the
set of all pseudo-rank functions on R. We view P(R) as
a subset of the real vector space QRR, which we equip

with the product topology.

Proposition 2 [9, Prop.16.17]. For any regular

rings, the set P(R) is a compact convex subset of mR.

Definition [9, Appendix]. Let S be a convex subset
of a real vector space. An extreme point of S 1is any

point x in S which cannot be expressed as a positive
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convex combination of two distinct points. - We use ;LS

to denote a set of all extreme points in S.

There are connections between geometric properties
of P(R) and aIgebraic properties of R. Put kerN =
{x€R; N(x) =01 for N € P(R), then kerN is a
two-sided ideal of R.

Proposition 3 [10, Prop.II.14.5]. Let R be
&scontinuous regular ring. Then there is a bijection
from ZEP(R) to the set of all maximal two-sided 1ideals

of R by the rule: N — kerN.

Proposition 4 [9, Th.14.33 and 10, Th.II.12.6].
Let R be a d)y-continuous regular ring and let N ¢ E%P(R).
Then we have the following results;
(1) R/ kerN 1is a simple regular self-injective ring.
(2) Given a positive integer n, we have N(R) =
{ O,f%, ?21-, eeey, 1} 1f and only if R / kerN 2 Mn(D)
for some division ring D.
(3) N(R) = [0, 1] 1if and only if R/ kerN 1s not

artinian.

3. Affine function representation of KO.

Definition [9, Ch.15]. Recall that the Grothendieck
group KO of a ring R 1s an abelian group with generators
[A] corresponding to the finitely generated projective
right R-modules A and with relations [A] + [B] = [C]
whenever A@ B § C. All elements of KO(R) are of the
form [A) - [B], for suitable A and B. We set
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KO(R)+ = {[A]l; A 1is a finitely generated projective

R-module}, and we define a relation £ on KO(R) so that

X € y if and only 1f y - x lies in KO(R)+. This relation

is a tramslation invariant pre-order on KO(R), so that

KO(R) becomes a pre-ordered abelian group. The element

[R] 1is an order-unit in KO(R), meaning that for any x

in KO(R), there exists n ¢ [N such that x < n[R].

For a unit-regualr ring R, the relations between KO(R)

and the finitely generated projective right R-modules are

much cleaner than in general. Namely for finitely generated

projective right R-modules A, B, C, D, we have .
[A] - [B] = [C] - [D] 4if and only if A@D 2 B&C
[A] - [B] = [C] - [D] 4if and only if A@D . B®C

by (7, Prop.iS.Z].

For a compact convex set S, we use Aff(S) to denote
the partially ordered Banach space with pointwise ordering
and supremum norm of all affine continuous real valued

functions on S.

Let R be a &,-continuous regular ring. Then R
is unit-regular by [5, Th.3.2], threfore KO(R) is a
compact convex subset of the real vector space RR Then we
have the natural map a : K (R) — Aff(P(R)) given
by the rule oa([xR])(N) = N(x) for all x in R and for
all N in P(R). This map o can be extended to a
homomorphism as a partially ordered abelian group, because
KO(R) is generated as a group by the elements [xR] for
X in R. Now we can describe the affine function repre-
sentation for KO(R) proved by Goodearl, Handelmen and
Lawrence [10]. ‘
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Proposition 5 [10, Th.II.15.1]. Let R be a WNp-

continuous regular ring. Whenever N € :%P(R) and
R~/ kerN 1is not artinian, set An = [R. Whenever N
QeP(R) and R/ kerN & Mn(D) for somelpositive integer
n and some division ring D, set An = ;ﬁt. Set

A={p € Aff(P(R)); p(N) ¢ A for all N & %P(R)}
Then the natural map a: KO(R) —> Aff(P(R)) provides
an isomorphism of KO(R) onto A as partially ordered

abelian group wtih order-unit.

Corollary [10, Cor.II.15.2]. Let R be a §p-conti-
nuous regular ring which has no simple artinian homomorphic
images. Then the natural map a: K (R) —> Aff(P(R))

is an isomorphism of partially ordered abelian groups.

pefinition [9, p.219]. Given a field F, an
ultramatricial F-algebra is any F-algebra which is a union
of an Increasing sequence of finite-dimensional subalgebras
each of which is a finite direct product of full matrix

algebra over F.

In [8], we studied the relation between a simple
regular self-injective ring R which is not artinian and
an ultramatricial algebra over its center F which is a
direct limit of MZ(F) —_— MA(F) ~~—2.... Now we can
prove the more general theorem by a corollary of Proposition
5.

Theorem 6. Let R be a & -continuous regular ring
which has no simple artinian homomorphic images and moreover

it is an algebra over a field F. For any ultamatricial
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F-algebra S, there exists a non-zero F-algebra homomorphism
from S to R. Consequently for each simple ultramatricial
F-algebra S, there exists a subalgebra of R which is
isomorphic to S.

Proof. Since S 1s unit-regular, then we have n([S]
2 0 in KO(S) for all positive integers n by [7,Prop.
2.1]1. By [9, Cor.18.2], there exists a order-preserving
homomorphism Bs KO(S) —> R such that B([S]) = 1.
R is naturally identified with the subgroup consisting
of all constant functions in Aff(P(R)). On the other hand,
there exists a isomorphism Yy from Aff(P(R)) to KO(R)
such that Y(1) = [R]. Put &§ = yB . Since & 1is a
order~preserving homomorphism by Corollary of Proposition 5
from KO(S) " to KO(R) such that 6 ([S]1) = [R], we have
a non-zero F-algebra homomorphism f: S —> R such '
that Ko(f) = § by [8,Lemma 3]. If S 1is moreover simple

evidently we have kerf = 0.
4. AF-C*-algebras

Among general C*-algebras, there 1s a reasonably
manageable class which still exhibits many of the general
phenomena, namely the approximately finite-dimensional
(or AF-) C*-algebra introduced by Bratteli [1], these
are the C*-algebras possessing a norm dense subalgebra which
is the union of an increasing sequence of finite-dimensional
sub-C*-algebra. Since finite-dimensional C*-algebra is
isomorphic to finite direct product of full matrix over €
[13, p.50], we say on other word that AF-C*-algebra possess

an ultramatricial algebra over € as norm-dense subalgebra.
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Bratteli showed that such a C*-algebra and such a dense
subalgebra determine each other, in the following manner:

If A and A' are AF-C*-algebras which posses ultramatricial
algebras S and S' over € as a norm-dense subalgebra,
then A and A' are isomorphic as C*-algebra if and only

if S and S' are isomorphic just as algebra [3, Appendix].

Theorem 7. Let T be a finite Rickart C*-algebra
with identity whose all simple homomorphic images are
infinite dimensional. Then £for each simple AF-C*-algebra A,
there exists a sub-C*-algebra A' of T which is isomorphic
to A.

‘ Proof. Let R be the regular ring of T defined in
Proposition 1. By [10, Props.III.16.5 and III.16.7], R
has no simple artinian homomorphic images. Let S be an
ultramatricial algebra over € which is dense subalgebra
of A. Then S 1s algebraically simple , because there
is a bijection between the set of norm-closed ideals of A
and the set of two-sided ideals of S by [1, Th.3.3].
Therefore there is a monomorphismr f: S—— R as algebra
by Theorem 6. Put S' = £(S). On the other hand, T is
*-isomorphic to an nxXn matrix ring over a finite Rickart
C*-algebra for every integer n > 1 by [10, Th.III.16.8],
because T has no finite-dimensional homomorphic images.
Then Handelman showed that every partially isometries of
R 1lie in T in the proof of [6, Th.7.8]. Then the
ultramatricial algebra S' 1is contained in T, because
any element of S' is a linear combination over € of
partially isometries of R. Let A' be the closure of S'
in T, then A' is AF-C*-algebra which is isomorphic to A.
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NOTE ON COMMUTATIVITY OF RINGS
Isao MOGAMI

In the last few years, several authors has been inves-
tigating commutativity of rings. Recently, when ring R
(with identity 1) satisfying the polynomial identities
(xy)u = xuya, @ = Ny,e..,n where n, are positive integer
(with some conditions), then R 1is commutative, as was dis-
cussed by Y. Kobayashi in this symposium [7] and in his
paper [6]. This result is very interest and elegant. In
this note we present a survey of the results of commutativ-
ity of s-unital ring R satisfying the identities (xy)u =

xuya, o= nl(x,y),...,nr(x,y) where n, are positive in-

tegers (with some conditions) depending zn x and y in R.
Alao,vwe consider the identity (xy)B = yBxB and we pose
some conjectures.

Throught, R will represent an associative ring with
center, J the (Jacobson) radical of R. A ring R 1is
called s-unital if for each x ¢ R, x ¢ Rx n xR [14]. As
stated in [10, Lemma 1 (a)], if R is s-unital ring, then
for any finite subset F of R, there exists an element
e in R such that ex = xe = x for all x in R. Such
an element e will be called a pseudo-identity of F.

We consider the followlng properties of rings:

(1) For each pair of elements x, y in R, there
exists positive integer m = m(x,y) such that

(XY)Q = xaya, a=m, m+ 1, m+ 2.
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(2) For each pair of elements x, y in R, there
exist positive integers m = m(x,y), m' = m'(x,y) such that

(m,m*') =1 and
(xy)a = xaya, a=m m+ 1, m', m' + 1.

(3) For each pair of elements X, y in R, there
exist positive integers m = m(x,y), m' = m'(x,y) such that
(m,m') = 2 and

GnN® = xy', e=mo+l,n,n +1.

(4) For each pair of elements x, y in R, there
exists an even positive integer m = m(x,y) such that

(xy)a = xaya, o=m m+ 2, m+ 4,

(5) For each pair of elements x, y in R, there

exists an odd positive integer m = m(x,y) such that
(xy)a = xaya, a=m m+ 2, m+ 4.

(6) For each pair of elements x, y in R, there

exists positive integer m = m(x,y) such that
@ =x%% a=m on+2, n+a.

(I') For each pair of elements x, y in R, there
exists positive integer m = m(x,y) such that

(xy)B = yBxB, B=m m+ 1, m+ 2.

(Z) For each pair of elements x, y in R, there

' = m'(x,y) such that

exist positive integers m = m(x,y), m
(m+ 1l,m" +1) =1 and

(XY)B = YBXB, B=m, m+ 1, o', m' + 1.

(F) For each pair of elements x, y in R, there
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exist positive integers m = m(x,y), m' = m'(x,y) such that
(m+ 1,m'" +1) =2 and

(xy)B = yBxB, B=m,mn+ 1, m', m' + 1.

(&) For each pair of elements x, y in R, there
exists an odd positive integer m = m(x,y) such that

B =yBxB, B=m m+ 2, m+ 4.

(5) For each pair of elements x, y in R, there
exists an even positive integer m = m(x,y) such that

(xy)B = yBxB, B=m, m+ 2, m+ 4.

(6) For each pair of elements x, y in R, there
exists positive integer m = m(x,y) such that

(xy)B = yBxB, B=m, m+ 2, m+ 4.

Although several authors has been concerning above
properties of rings, at the present day we summarize as

follows:

Theorem. If R 1is an s-unital ring having one of the
properties (1), (2), (3), (4), (1), (2), (39, (&) and (§),

then R 1is commutative.

Of course, if R (with 1) having one of the properties
(1), (2), (3) and (4), as polynomial identity, then R 1is

commutative by Kobayashi's Theorem stated below:

Kobayashi's Theorem ([6],[7]). Let R be a ring with
1. If E(R) contains integers Myseeesn 2 2 such that

(nl(nl-l),...,nr(nr-l)) =2 and some of n

i is even, then
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R is commutative. where E(R) = { n e P | (xy)n = xy"
for all x, ye R} and P the set of positive integers.

As 1s easily seen, the following implication are valid:
1') ==>(2") 3" (4') =(6")+==(5")
b1l
(1) ==>(2) (3) (4) ==(6) == (5)
Therefore,properties (2), (3), and (6) are essential but,
unfotunately we do not know if one of the properties (5),
(6) and (6') implies R 1is commutative.

Proof of the Theorem

(A) (1)==> R 1is commutative. Historically, the
first result in this type was obtained by J. Luh [9] in
1971 when he was able to prove in the special case of R
primary ring with 1 (i.e. R/J 1is simple) and having the
property (1) as polynomial identity. This result has sub-
sequently been generalized by A. Kaya, A. Kaya & C. Kog,
S. Ligh & A.Richoux, M. Hongan & author and by
B. Felzenswalb as follows: 1In 1976 A. Kaya [4] proved
that a ring having the property (1) is commutative if it is
a primary ring with 1 or if it is a semiprime ring with 1.
A. Kaya & C. Kog [5] in 1976 proved that if all zero divisor
of R with 1 are contained in a proper left (or right)
ideal, then R 1is commutative. S. Ligh & A. Richoux [8]
in 1977 showed that any ring with 1 which possesses the
property (1) as polynomial identity is commutative. 1In
1978 M. Hongan & author [3],[10] proved it in general for
s-unital ring R. A. Richoux [13] in 1979 showed that a
ring which possesses the property. (1) is commutative if it
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has 1 or if it has no nilpotent elements. Also,
B. Felzenswalb [2] in 1979 proved that if an element a in
R having the property (1), together with for every x in
R and if R has no nonzero nil right ideals, themn a is
central,

(B) (2) == R 1s commutative. In 1978 H. Bell
[1] showed that any ring with 1 which possesses the prop-
erty (2) as polynomial identity is commutative. In 1980
author [l11] proved it in general for s-unital ring R.

(C) (3) — R 1is commutative. 1In 1980 C. T. Ten
[15] showed that a ring which possesses the property (3) as
polynomial identity is commutative if it is primary ring
with 1. 1In 1981 author [12] proved it in general for
s-unital ring R.

(D) (4) == R 1is commutative. (5') == R is
commutative. In 1981 author showed both of them in general

for s-unital ring R.

We conclude this note by listing several conjectures

as follows: Let R be an s-unital ring or a ring with 1.

Conjecture (I). For each pair of elements x, y in R
there exist positive integers nl(x,y),...,nr(x,y) 22
such that (nl(n1 - 1),...,nr(nr - 1)) = 2 and some of n,

is even and such that (xy)u = xaya, @ = 0pyeeenl, then

R is commutative.

Conjecture (II). For each pair of elements x, y in
R there exist positive integers nl(x,y),...,nr(x,y) 22
such that (nl(n1 - 1),...,nr(nr - 1)) = 2 and such that
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(xy)a = x“ya, @ = My,e..,n sthen R is commutative.

Conjecture (I'). For each pair of elements x, y in

R there exist positive integers nl(x,y),...,nr(x,y) such

that (n,(n, + 1),...,n.(n_ + 1)) = 2 and some of n, 1is
1''1 r B B i

odd and such that (xy) =y x , B = Dyseeesn s then R

is commutative.

Conjecture (II'). For each pair of elements x, y in
R there exist positive integers nl(x,y),...,nr(x,y) such.

that (nl(n + 1),...,nr(nr + 1)) = 2 and such that

8.}

(XY)B =yx, B=n5,...,n , then R is commutative.

Evidently, Conjecture (I) includes Kobayashi's Theorem
and among the conditions of Conjectures, there holds the
following:

Conditions of (I') == Conditions of (II')

§

Conditions of (I) = Conditions of (II)
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