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PREFACE

This volume contains the papers presented at the 13th
Symposium on Ring Theory held at Okayama University, Sep-
tember 28 - 30, 1980.

The annual Symposium on Ring Theory was founded in
1968. The main aims of the Symposium are to provide a
means for the dissemination of recent theories on rings and
modules which are not yet widely known and to give algebra-
ists an oppotunity to report on recent progress in the ring
theory.

The Symposium was organized by Professors Shizuo ENDO
(Tokyo Metropolitan University), Manabu HARADA (0Osaka City
University), Hiroyuki TACHIKAWA (University of Tsukuba) and
Hisao TOMINAGA (Okayama University); the 13th Symposium
itself and these Proceedings were supported from the Grant-
in-Aid for Scientific Research from the Ministry of Educa-
tion , Science and Culture (Subject No. 534002) through
the arrangements by Professor Yoshikazu NAKAI. I would
like to take this oppotunity of thanking him for his ar-
rangements. We hope these Proceedings will serve as a

stimulus for the development of the ring theory.

January 1981
H. TOMINAGA



. -

[ .
‘e
P v "
X .
. B
. il -
: ¢ -~
. <

N
\
[

.
" g
f .




ON MODIFIED CHAIN CONDITIONS
Hiroaki KOMATSU

Throughout the present paper, A will represent a ring
without (possibly with) identity, and N=N(A) the prime
radical of A. Given a left ideal I of A and an A-
submodule M' of a left A-module M, for each positive
integer 1 we set I 'M'={ueM | 1ty c M'}. We note
that for A-sbmodules M', M" of M, i c M" is equiva-
lent to M' E_I-iM". Following F. S. Cater [l]}, we say
that a left A-module M is almost Artinian (resp. almost
Noetherian) if for each infinite descending (resp. ascend-
m@&ml%z%szML%S%EHJOfk
submodules of M there exist positive integers m, q such
that Ath S M, (resp. M, E_A_qu) for all 1. If ,A is
almost Artinian (resp. almost Noetherian), we say that A
is an almost left Artinian (resp. almost left Noetherian)
ring. Obviously, for s-unital left A-modules (in particu-
lar, for completely reducible left A-modules), the concept
of "almost Artinian" (resp. "almost Noetherian") coincides
with that of "Artinian" (resp. "Noetherian").

In [1], Cater showed that many of well known properties
of left Artinian (resp. left Noetherian) rings are also
properties of almost left Artinian (resp. almost left
Noetherian) rings. The present objective is to give a quick
way to the preliminary results in [1], and to improve the
main theorems in [1l] with some addition. (For the details,
refer to [3].)

We begin with improving Propositions 4 and 9 of [1]

as follows.



Proposition 1. For a left A-module M, the following
are equivalent:

1) M is almost Artinian (resp. almost Noetherian).

2) For each infinite descending (resp. ascending)
chain M, 2 M, 2 ... (resp. M,
of M there exists a positive integer p such that APMp

= ApMi (resp. A'pup = A‘pui) for all i > p.

< M2 € ... ) of A-submodules

3) In each non-empty family M of A-submodules of
M such that M' ¢ M implies AM' ¢ M (resp. A-IM' e M,

there exists a minimal (resp. maximal) member.

Proof. As is easily seen, 3) =2) =+1). Now, suppose
3) does not hold for some M. Then we can find successively
Mi eM (1=1, 2, ... ) such that M c AiM (resp.
A 1" < M)

We give here a shorter proof of [1, Proposition 7].

Proposition 2. Let M be a left A-module, and M'
an A-submodule of M.
(1) M 1is almost Artinian if (and only if) both

A
M' and M/M' are almost Artinian.

A
(2) AM is almost Noetherian if (and only if) both
Aﬁ' and A M/M' are almost Noetherian.

Proof. (1) Let Ml'g_M2 2 ... be an arbitrary
descending chain of A-submodules of M. There exists a
positive integer p such that M nM cA p(M n M') and
Mpi—M' c A p(M +M') for all i. Therefore, for every

1>p wehave M cA pM n (M +M") EA-pMp n A_p(Mi+M')

= A P(M n (1, +H')) = A P(M +0L 0 HD) ¢ ZPMi



(2) Let M, €M, c ... be an arbitrary ascending
chain of A-submodules of M. There exists a positive
integer p such that Ap(Mi nM') S.Mp n M' and ApMi + M
E.Mp + M' for all i. Therefore, for every i > p we have
M >APM + (M nM') o APM + AP(M, o M') = APQM + QM
L2 5 (p ) 2 o (i ) (p(i ))

— AP ' 2p.
AP, o (M, + M) 2 ATH,.

Next, we reprove [1l, Theorem 1].

Theorem 1. If A 1is almost left Artinian, then A is
semiprimary, namely N is nilpotent and A/N is Artinian
(semisimple).

Proof. Suppose contrarily that N is not nilpotent.
By the condition 3) of Proposition 1, N contains a minimal
non-nilpotent left ideal I. Consider the family of all
left subideals I' of N with II' # 0. Then, again by
Proposition 1, the family contains a minimal member I*.
Since 1II* = I*, there exists a* ¢ I* such that Ia* = I%,
Hence, aa* =a*(#0) with some a € I. Obviously, a is
not nilpotent. But this contradicts the fact that N is
nil. Hence, N 1is nilpotent. Thus, it suffices to show
that if A is semiprime and almost left Artinian then A
is Artinian semisimple. Since, by Proposition 1, every
non-zero left ideal of A contains a minimal left ideal,
the left socle S of A 1is essential in AA. Since AS
is completely reducible and Artinian and every minimal left
ideal of A 1is generated by an idempotent, we see that S
itself is generated by an idempotent. Hence S coincides

with A, whence we can conclude the assertion.

According to Theorem 1, an almost left Artinian ring A



has a principal idempotent e (i.e., e+N 1is the identity
of A/N). We consider the principal Peirce decomposition:
(A,+) = (1 -e)Ae@eAePeA(l-e)D(1-e)A(l-e), where l-e
is used symbolically. Then the ring A is isomorphic to

ele eA(1l-e)
(l-e)Ae (1-e)A(l-e)

easy to see that eAe 1s a left Artinian ring with identity
e and (l-e)A(l-e) 1s a nilpotent ring. Similarly, the
unital left eAe-module eA(l-e) is Artinian and finitely

the generalized matrix ring [ ]. It is

generated., Conversely, let A be a generalized matrix ring

[E IS(}, where R 1is a left Artinian (resp. left Noetherian)

ring with identity, S a nilpotent ring, a finitely

K
RS
generated unital R-module, and SLR a unital R-module,
and the multiplications of K and L are defined by some

(,): RK@SLR+RN(R)R and [, ] : SLQRKS - SSS such

that (k,2)k' =k[2,k'] and 2(k,2') =[2,k]2' for all

k, k' € K and £, 2' € L. Then A is almost left Artinian
(resp. almost left Noetherian). In fact, since [g g] is
an Artinian (resp. Noetherian) left [g g]-module, {g g]

is a left Artinian (resp. left Noetherian) ring. Now, let

s® =0. Since A" = [R K] = [R K] ® [0 0] [R K], for any

L 1K 00 L.0jLOO
n._|RK 00|]|RK
left ideal I of A weget AI= 00 1o [L 0] [0 0]1.
Since [R KJI is a left ideal of R K A 1is almost
00 00)°

left Artinian (resp. almost left Noetherian) by the condition
2) of Proposition 1.

Recalling that a left Artinian ring with identity is
left Noetherian, we readily obtain



Corollary 1. Every almost left Artinian ring is almost
left Noetherian.

Next, we state the following that includes Theorems A
and B of [1].

Theorem 2. Let I and Ij (3=1, ... , k) be left
ideals of A, and M a left A-module.

(1) 1If AA/I is completely reducible and IM = O,
then the following are equivalent:

a) AM is almost Artinian.

b) ,AM is Artinian.

¢) ,AM is finitely generated.

d) AM 1is Noetherian.

> >

e) iM is almost Noetherian.

(2) 1f AA/Ij is completely reducible (j=1, ... , k)
and Il...IkM = 0, then the following are equivalent:

a) AM is almost Artinian.

b) ,AM/I M, ALM/I LM, ..., I,...I[ M=

"IkM/II"'IkM are all finitely generated.

c) AM is almost Noetherian.

(3) Assume that AA/I is completely reducible. If

AAIZ'

M is almost Artinian and for any non-zero A-submodule
M' of M, M' # IM'" then M is almost Noetherian.
(4) Assume that AA/I is completely reducible. If
M is almost Noetherian and for any proper A-submodule M’
of M, M' # I-lM' then M is almost Artinian.

Proof. (1) It is easy to see that AAM is completely
reducible. Therefore, (1) is obvious.
(2) Observe the descending chain



M>IM>I . IM>...3I,...IM>I...IM=0.

k k-1"k 2 k 1 k
Then the assertion can be proved by (1) and Proposition 2.

(3) By Proposition 1, there exists the smallest
member M' among the A-submodules U of M such that
AM/U is almost Noetherian. Since AM'/IM' is almost
Artinian, AM'/IM' is almost Noetherian by (1). Since
IM' = M' by the minimality of M', we get M' = 0. Hence
AM is almost Noetherian.

(4) By Proposition 1, there exists the greatest
almost Artinian A-submodule M' of M. Since AI-]'M'/M'
is almost Noetherian, AI-lM'/M' is almost Artinian by (1).
The maximality of M' yields iy =M', and so M' = M.

Hence AM is almost Artinian.

The next is an immediate consequence of Theorem 2.

Corollary 2. Let A be a semiprimary ring, and M
a left A-module. Then AM is almost Artinian if and

only if AM is almost Noetherian.

We consider here almost left Noetherian rings.

Theorem 3. Let A be an almost left Noetherian ring.

(1) A satisfies the ascending chain condition for
semiprime ideals.

(2) Every nil subring of A is nilpotent and the

nilpotency indices of nil subrings are bounded.

Proof. (1) The proof is straightforward.

(2) There exists a positive integer q such that
Aqr(Ai) E_r(Aq), and hence r(Ai) E_r(Azq) for all 1.
Since A/r(Azq) is left unital and almost left Noetherian,



it is easy to see that A/r(Azq) is a left Goldie ring.
According to [2, Corollary 1.7], there exists a positive
integer n such that K" < r(Azq) for all nil subrings
K of A. It is immediate that K2q+n = 0.

Finally, we shall give necessary and sufficient condi-~
tions for a ring to be almost left Artinian. A left ideal
I of A is said to be almost maximal if A/I is a sum of
minimal left A-modules. If a prime ideal P is an almost
maximal left ideal, then AA/P is completely reducible.
The following includes Theorems 5, 6 and 11 of [1].

Theorem 4. The following are equivalent:

1) A is almost left Artinian.

2) A 1is m-regular and almost left Noetheriam, and
A/N is left s-unital.

3) A is almost left Noetherian and A/N is left
Artinian.

4) A 1is almost left Noetherian and every proper
prime ideal of A is an almost maximal left ideal.

5 N is nilpotent, AANi-l/Ni is finitely generated
for all i > 0, A satisfies the ascending chain condition
for semiprime ideals, and every proper prime ideal of A
is an almost maximal left ideal.

6) N is nilpotent and ANi-l/Ni is Artinian for

A
all i > Q.

Proof. 1) <>3) «>6). Under any of the conditions 1),
3), 6), N is nilpotent and AA/N is completely reducible.
Hence, these conditions are equivalent by Theorem 2.

1) =>2). By Theorem 1 and [5, Lemma 2], A is w-

regular.



2) =»3). Since A/N 1is left unital and almost left
Noetherian, it is easy to see that A/N is a left Goldie
ring. Therefore, as was claimed in the proof of [6, Theo-
rem 3], A/N contains the identity. Moreover, it is easy to
see that every regular element of A/N is a unit. Hence,
A/N coincides with its left quotient ring that is Artinian
semisimple.

3) =»4) and 5). Obvious.

4) or 5 =3). By [4, Theorem 3], N==/\§=l Pi with

some prime ideals P,. Since A/P, 1is completely reduci-

A i
ble, AA/Pi is Artinian for all i. Hence AA/N is
Artinian.
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CHARACTERIZATIONS OF RINGS WITH
TRIVIAL PRERADICAL IDEALS

Hisao KATAYAMA

Let R be a ring with identity and R-mod the category
of all unital left R-modules. A functor ¢: R-mod —> R-mod
is called a preradical if o(M) 1is a submodule of M for
each M € R-mod and o(M)a < 0(N) for each morphism a:

M —> N in R-mod. A preradical o0 1is called an idempotent
preradical (resp. a radical) if o(o(M)) = o(M) (resp.
o(M/o(M)) = 0) for all M ¢ R-mod. A preradical is called
left exact (resp. cohereditary) 1f it is kernel preserving
(resp. epi-preserving). Every left exact (resp. coheredi-
tary) preradical is idempotent (resp. a radical). A pre-
radical is called a cotorsion radical (resp. an exact
radical) if it is an idempotent cohereditary radical (resp.
a left exact cohereditary radical).

We call an ideal I of R a preradical ideal if
there exists a preradical ¢ for R-mod such that o(R) = I.
A preradical ideal of a left exact preradical (resp. a left
exact radical) is nothing but a pretorsion ideal (resp. a
torsion ideal) in the sence of [4]. From now on, we shall
study the rings which have no non-trivial preradical ideals
0(R), where we take O as an idempotent preradical (or an
exact radical, etc) for R-mod, and give several characteri-
zations of those rings. Note that, for a preradical ¢
for R-mod, O(R) = R if and only if O = 1, where 1 stands
for the identity functor for R-mod. Hence we may rephrase
our question as: When the preradical ideals O(R) vanish

for various types of preradicals 0 # 1 for R-mod ?
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To bigin with, we have

Proposition 1. The following properties are equiva-

lent for a ring R:

(1) o(R) = 0 for every preradical O # 1 for R-mod.

(2) o(R) =0 for every radical ¢ # 1 for R-mod.

(3) og(R) = 0 for every cohereditary radical o # 1
for R-mod.

(4) There exist only two cohereditary radicals for
R-mod.

(5) R is a simple ring (i.e. it has exactly two
ideals).

(6) Every nonzero (cyclic) left R-module is faithful.

(7) RK = R for every nonzero right ideal K of R.

Definition 1. A ring R 1is called left G if a(R)

= 0 for every idempotent preradical © # 1 for R-mod.

Theorem 2. The following properties are equivalent
for a ring R:

(1) R 1is a left G-ring.

(2) Every left R-module M with HomR(M, R) # 0 is
a generator for R-mod.

(3) Every nonzero torsionless left R-module is a
generator for R-mod.

(4) Every nonzero submodule of a projective left R-
module is a generator for R-mod.

(5) Every nonzero left ideal of R 1s a generator
for R-mod.

(6) Every nonzero ideal of R 1is a generator for

R-mod.
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Remark 1. (1) A property that a ring is left G is
Morita invariant.

(2) Every (simple) left R-module is a generator for
R-mod if and only if R 1is simple artinian ([6]).

(3) R 1is a left G-ring with nonzero (left) socle if
and only if R is simple artinian.

(4) Every nonzero left ideal of R 1is a progenerator
for R-mod if and only if R is left hereditary left Noth-
erian prime ring without non-trivial idempotent ideals
amn.

(5) If R 1is left hereditary, then R 1is left G if
and only if every nonzero projective left R-module is a
generator for R-mod.

(6) If R 1is a left G-ring, then the maximal left
ring of quotients Qmax of R 1is simple and left self-
injective by [4, Prop. 6.2]. In particular Qmax is also
a left G-ring. If R 1is a left G-ring and the classical
left ring of quotients ch of R exists, then ch is
also a left G-ring.

Now we shall consider some generalizations of left G-

rings.

Definition 2. A ring R 1is called left FGG (resp.
left CG) if every finitely generated (resp. cyclic) left

ideal of R 1is a generator for R-mod.

Proposition 3. The following properties are equiva-
lent for a ring R:

(1) R 1is left FGG.

(2) Every finitely generated left R-module M with
HomR(M, R) # 0 1is a generator for R-mod.
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(3) Every nonzero finitely generated torsionless left
R-module is a generator for R-mod.

(4) Every nonzero finitely generated submodule of a
projective left R-module is a generator for R-mod.

(5) For each positive integer n, the ring Rn of

nxn matrices over R is left CG.

Proposition 4. The following properties are equiva-
lent for a ring R:
(1) R 1is left CG.

(2) Ra1r = R for every nonzero a € R, where a1r
Ann;(Anni(a)).

(3) RK =R for every nonzero annihilator right ideal
K (i.e. K= Ann;(x) for some subset X of R) of R.

(4) Every cyclic left R-module M with HomR(M, R)
# 0 1is a generator for R-mod.

(5) Every nonzero cyclic torsionless left R-module is
a generator for R-mod.

(6) Every nonzero cyclic submodule of a projective

left R-module is a generator for R-mod.

Definition 3. A ring R 1is called left EG (resp.
left SSP [3]) if every essential left ideal of R 1is a

generator for R-mod (resp. cofaithful).

Proposition 5. The following properties are equiva-
lent for a ring R:

(1) R 1is left EG.

(2) Every ideal which is essential in R as a left
ideal is a generator for R-mod.

(3) Every module RQ satisfying that tQ(R) is an

essential left ideal is a generator for R-mod, where t_(R)

Q
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denotes the trace ideal of Q.

Remark 2. (1) Let R =@ be a direct sum of
n
i“1=1°
Ri is left EG.

(2) If R 1is a left EG-ring and the classical left

of R exists, then Qtl is also

n
1=1%1

rings {R Then R is left EG if and only if each

ring of quotients Q
a left EG-ring.

cl

Definition 4. A ring R 1is left R [2] (left SP [4])
(left CIF [4]) if oO(R) = O for every idempotent radical
(left exact preradical) (left exact radical) o # 1 for
R-mOd .

Proposition 6 ([2, Prop. 1.10]), The following pro-
perties are equivalent for a ring R:

(1) R is a left R-ring.

(2) HomR(I, R/I) # 0 for every non-trivial left
ideal I of R.

(3) HomR(I, M) # 0 for every nonzero left ideal I

of R and nonzero M ¢ R-mod.

Proposition 7 ([4, p2], [8, Theorem 1.7], [9, Theorem
2.1] and [1, Prop. 3.2]). The following properties are
equivalent for a ring R:

(1) R is a left SP-ring.

(2) For every finitely generated projective left R-
module P and O # N c P, there exists an embedding
(n)

for some integer n.

(3) Every nonzero left ideal of R 1is cofaithful,

P—> N

(4) Every nonzero left ideal od R generates the

injective hull E(RR) of RR.
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(5) R is a left non-singular prime ring, and every

non-singular quasi-injective left R-module is injective.

Proposition 8 ([2, Theorem 2.4] and [4, p91]). The
following properties are equivalent for a ring R:

(1) R is a left CTF-ring.

(2) For every non—-trivial left ideal I of R, there
exist xe¢ I, y ¢ R~I such that (0:x) < (I:y).

(3) Every nonzero injective left R-module is faithful,

Remark 3. (1) A ring is left G if and only if it is
both left EG and left R.

(2) Every left G-ring R 1is left SP. The converse
holds if R 1is left self-injective.

Example 1. Every simple ring is a left G-ring, but
the converse is not true. The ring Zn of nxn matrices
over the ring Z of integers is a left and right G-ring

which is not simple.

Example 2. Every left G-ring is a left R-ring, but
the converse is not true. For a counter example, we may
take the ring R = Z/(pn), where p 1is a prime and n 1is

an integer greater than 1.

Example 3. Every left G-ring is left FGG. Every left
FGG~-ring is left CG, but the converse is not true. In fact
we shall give an example of a left CG-ring R having a
finitely generated essential left ideal which is not a
generator for R-mod. Let R = K[x,y] be a polynomial ring
over a field K. Then R 1is a (left) CG-ring with an

ideal I = (x,y) generated by x and vy, which is essen-
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tial in R and is not a generator for R-mod.

Example 4. Every left CG~ring is left SP, but the
converse is not true. Let D = ZZ[xl,xz,x3,,,,] be the
free non-commuting Zz—algebra on Xy (i=1,2,3,,,,). Let 1I
be the two-sided ideal in D generated by monomials of the
form xixjxk with i < j < k. As is shown in [4, p9], R =
D/1I 1s left SP. One can check that the cyclic left ideal
A= (Dx3 + I)/I of R 1is not a generator for R-mod.

Example 5. Every left G-ring is left EG, but the con-
verse is not true. In fact, R=Z & Z 1is a (left) EG-
ring, but is not prime. One may expect that, if R 1is a
left EG-ring, then every (essential submodule of a) projec-
tive left R-module is a generator for R-mod. But this is
not true. Once again let R = 2 & Z, and consider the
ideal I = (Z, 0) of R. Clearly RI is projective, but
an easy verification shows that tI(R) = I, which means

RI is not a generator for R-mod.

Definition 5, A ring 1s called left C2 (resp. left
E2) if o(R) = 0 for every cotorsion radical (resp. exact
radical) o # 1 for R-mod.

Definition 6. We shall call that an ideal I of a
ring R 1is left strongly idempotent, if J = IJ holds
for every left ideal J c I.

Proposition 9. The following properties are equiva-
lent for a ring R:

(1) R is left C2 (and hence C2)

(2) There exist only two cotorsion radicals for R-mod.

(3) R has no non-trivial idempotent ideals.
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Theorem 10. The following properties are equivalent
for a ring R:

(1) R 1is a left E2-ring.

(2) There exist only two exact radicals for R-mod.

(3) If a nonzero injective module RE satisfies the
condition that, for a left ideal K, HomR(R/K, E) =0
implies K + AnnR(E) = R, then E 1is faithful.

(4) There are no non-trivial ideals I such that
IN=Nn IM for each RN c RM.

(5) There are no non-trivial (idempotent) ideals I
such that (R/I)R are flat.

(6) R has no non-trivial left strongly idempotent
ideals.

Remark 4. (1) A property that a ring is left E2 is
Morita invariant.

(2) A ring is simple if and only if it is left E2 and
left weakly regular.

(3) Every left E2-ring is indecomposable as a ring.

(4) Put T = {RM | M is projective and completely
reducible}. It is known that T is a TTF-class. Hence
if R 1is left E2, we have T = R-mod or T = {0}. Thus
if R 1is not simple artinian, then every simple left R-

module is not projective.

Example 6. Every left R-ring is C2, but the converse
is not true. For a counter example, consider S = Z x (Q,
where Z 1is the ring of integers and Q the field of ra-
tional numbers. Define the addition on S by component
wise and the multiplication on S by

(zl! ql) * (22, q2) = (zlzz) zlq2 + zqu)
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Then S becomes a commutative ring without non-trivial
idempotent ideals, but as is shown in [2] S is not an R-

ring.

Example 7. Clearly every left strongly idempotent
ideal is idempotent, but the converse is not true. Let R

be the ring of 2x2 upper triangular matrices over a field
0K
‘0K
strongly idempotent. On the other hand, (

K. One can check that ( is idempotent but not left

KK .
0 0) is left
strongly idempotent.

Example 8. There is a right E2-ring which is not left
E2. Let D
{x,y} over a field F. Then DxD = Q;ZOylxD T o

F[x,y] be the free non-commuting algebra on

D
i=0"Dp’
End(DxDD) is right SP ([4, Example 13.2])

and so is right E2. But R contains a non-trivial left
o

i

The ring R

i=0eiR‘ where ei denotes

the matrix with 1 in the (i,i) position, 0 elsewhere,

strongly idempotent ideal K = @&

Example 9. If R 1s a left CTF-ring, then every non-
zero flat right R-module is faithful ([4 Prop. 13.9]). If
R has this property, then R is left E2 by Theorem 10,

But the converse is not true. Let

a0do0
R = {(b col]| a,b,c,d,e € K},
dea

where K 1is a field. One can check that there are only

two non-trivial idempotent ideals

-
]

a0o0 000
{(b 0 0) | a,b,d,e ¢ K} and 12 =|KKO
d ea KKO

000 000
Put J (K 0 0) c Il and J2 =100 0) < Iz. Then Ji #
KKDO Koo



18

Ji (1=1,2). Thus Ii (1=1,2) are not left strongly idem-
potent ideals. This gives an example of left E2-ring which
is not C2. The same argument shows R 1s also a right E2-

ring. Now put

00 0y a00
A=|KK 0) and B = {(o 00] | a,d,e € K}.
000 dea

Then R = A & B, and so AR is flat. But AR is not
faithful. Finally, we remark that R 1s not semiprime.

Example 10. We give an example of a prime ring which
is not left E2, Let VD be an infinite dimensional vector
space over a division ring D. Put R = End(VD). Then R
is a regular and prime ring. Put I = soc(R), then I
consists of f ¢ R such that Im(f)D is finite dimension-
al. Thus I 1is a non-trivial (left) strongly idempotent
ideal. One may remark that RI is not cofaithful, and so
R 1s not a left SSP-ring.

A table of rings

simple

left G
left EG/ ! = left R

left FGG R
It 'r
left CG

\L /ileft SP —

left SSP left CTF 4
l prime ~v left E2

indecomposable




(1]

(2]

[3]
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[5]
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[7]

(8]
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WEAKLY REGULAR MODULES
Tsuguo MABUCHI

This note is an abstract of the author’s paper [2].
The principal objective of [2] is to give the conditions
that some modules in the injective hull of a weakly regular
module become weakly regular modules, and to give ones that
some rings in the injective hull of the endomorphism ring of

a weakly regular module become left weakly regular rings.

l. Preliminaries. Throughout this note, R will
represent an associative ring with identity, and M a unitary
right R-module. We set M*=HomR(M,RR) and S=HomR(M,M).
Every (right or left) module A is unitary, and furthermore
E(A), Z2(A), J(A), TA and d(A) denote the injective hull of
A, the singular submodule of A, the Jacobson radical of A,
the trace ideal of A and the Goldie dimension of A, re-
spectively. T==TM is the trace ideal of M. Next, we set
YM= nKer f, where f runs over all elements in HomR(E(M),
E(M) @E(Ry)) with £(M) =0, and VS = Hom(/M,/M). Finally,
we set Q(M,R) = nKer g, where g runs over all elements
in HomR(E(RR),E(M)@E(RR)) with g(R) =0.

A right R-module M is called a weakly regular module
(abbr. w.regular module) if m e S(m)M*(m) for every m ¢ M,

and a ring Y 1is called a left (right) weakly regular ring

if z € YzYz (z ¢ zYzY) for every z ¢ Y.

2. Weakly regular modules. In this section we state

the main results of [2] without proof.

Proposition 1. If MR is w.regular, then there hold
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the following:
(a) zZ(M)=0.
(b) MT=M and T2=T.
(¢c) mT#0 for every non-zero m ¢ M.
(d) J(sg) =0.
(e) Z(SS) = 0.
(£f) E(Ss) ; HomR(E(M),E(M)) (ring isomorphism), and

£|S 1is an identity map.
(g) J(M) =0.

Proposition 2. Let M.R be a w.regular module, and W
a ring with S c W c E(Ss). Let a be a right W-submodule
in E(Ss). Then there hold the following:

(a) W is a semiprime ring.

(b) dw(aw) = dS (as)'.

() 2z, (W) =0.

Theorem 3. Let MR be a w.regular module, and W a
ring with S ¢ Wc E(Sg). If G(W) ={a e W | dy(aW) < =},
then there hold the following:

(a) G(W) 1is a two-sided ideal of W.

(b) G(W) is a left weakly regular ring.

Corollary 4. Let M.R be a w.regular module with
dR(M) <o, and W a ring with S c We¢c E(Ss). Then W=
WIQ . ewp, where Wi is W-W-simple.

Proposition 5. (a) Q(M,R) is an intermediate ring
between R and its maximal right quotient ring (see
{3, Proposition 1.3]).

(b) YM is a right Q(M,R)-module.
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(c) If N is a right R-module with M c Nc M, then
Hom (N, M) c /S, and especially S c VS.
(d) Homp (,R) < Homy .y oy (H,QQH,R)).

(e) VS= HomQ(M,R) /M, /™).

Furthermore, if W 1is a ring with S c W c /S, then
(£) Mc WM) c VM.

Proposition 6. If W 1is a ring with S c Wc YS, and
Q(W(M)) ={x ¢ QM,R) | W(M)x c W(M)}, then there hold the
following:

(a) Q(W(M)) 1is an intermediate ring between R and
Q(M,R).

(b) W(M) is a right Q(W(M))-module.

(c) Homp (4,R) < Homyy(\s ) (HOD,QEHAN)).

(d) S c Hom W) ,W(M)).

QWM))
Furthermore, if MR is finitely generated projective (abbr.
f.g. projective), then

(e) W(M) =MQ(W(M)).

(f) The trace ideal of W(M) as a right Q(W(M))-module
is Q(W(M))TQ(W(M)).

Theorem 7. Let MR be a w.regular module, and W a
ring with Sc Wc /S. If GWM))={x ¢ W) | dp (XR) < =}
and Q(G(W(M)) ={x ¢ QW) | G(W(M)x  G(W(M))}, then
there hold the following:
(a) G(W(M)) 1is a left W- and right Q(G(W(M)))-module.
(b) G(W(M)) dis a w.regular module as a right Q(G(W(M)))

module.

Corollary 8. If MR is a w.regular module, d(RR) <
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and W is a ring with S c Wec /S, then W(M) is a w.regu-
lar module as a right Q(W(M))-module (see Proposition 6 (b)).

Corollary 9. Let MR be a w.regular module, d(RR) < o,
and W aring with S cWc /5. If W=Hom (WO),W(M)),

then the center of W 1is a regular ring.

Proposition 10. If MR is a f.g.w.regular module and
W is a ring with S ¢ W c vV/S, then the following conditions
are equivalent:

(a) W(M) 4is a w.regular module as a right Q(W(M))-
module (see Proposition 6 (b)).

(b) Q(W(M))TQ(W(M))a=Q(W(M))TQ(W(M))aZ for every
left ideal a of Q(W(M)) (see Proposition 6 (f)).

(c) W is a left weakly regular ring and x ¢
WxQ(W(M))TQ(W(M)) for every x € W(M).
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REGULAR MODULES AND V-MODULES
Yasuyuki HIRANO

The notion of regularity has been extended to modules
by D. Fieldhouse [5], R. Ware [18] and J. Zelmanowitz [19].
In this paper, following Zelmanowitz [19], we call a right
R-module M regular if given any m ¢ M there exists f ¢
HomR(M,R) with mf(m) = m. G. Michler and O. Villamayor
[14] have shown that the following are equivalent: (1)
every simple right R-module is injective, (2) every right
R-module is semisimple and (3) every right ideal of R is
an intersection of maximal right ideals. If a ring R
satisfies these equivalent conditions, R is called a right
V-ring. The notion of V-rings has been extended to modules
by V. S. Ramamurthi [15] and H. Tominaga [17]. In this
paper, following Tominaga [17], we call a module MR a V-
module if every R-submodule is an intersection of maximal
R~submodules. Such a module MR has also been called
"co-semisimple" by K. R. Fuller [8]. The connections be-
tween the class of regular rings and the class of V-rings
are studied by many authors (see the references of [6]).

In this paper, we consider the connections between the class
of regular modules and the class of V-modules, and we study
the relationship between these modules and their endomor-
phism rings.

Throught this paper, R will denote a ring with iden-
tity and all modules considered are unitary right R-modules.
For any module M, M* denotes HomR(M,R), and S = S(M)
denotes EndR(M). We denote by 2(M) and J(M) the sin~
gular submodule of M and the Jacobson radical of M, re-~
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spectively. And we say that M is semisimple if J(M) =
0. We set AnnR(M) = {r ¢ R | Mr = 0}. The homomorphisms
(,) :M*@sM-—)R with (f,m) = f(m) end [ , ] :
M® M¥ —> 5 with [m,f] = mf are R-R-linear and S-S5~
linear respectively. As is well known, (S, M¥, M, R) with
these homomorphisms forms a Morita context. The images
(M*¢,M) and [M,M*¥] will be denoted by T and , respec-
tively. We denote by U(SMR) (resp. U(MR)) the lattice of
S-R-submodules (resp. R-submodules) of M, and by UT(ﬁR)
(resp. UT(RRR)) the lattice of all left ideals (resp.
ideals) I of R with TI = I. Further, UA(SS) (resp.
UA(SSS)) denotes the lattice of all right ideals (resp.
ideals) K of S with KA = K. Given R-modules M and
N, we set T (N) = J{Im(f) | £ ¢ Homy(M,N)}.

1. Preliminaries. Let R' be a ring (with or without
identity). Following Tominaga [17], we say that a right
R'-module M # 0 is s-unital if u e uR' for any u e M.
As was shown in [17], if My, is s-unital then for eny
finite subset F of M there exists an element e in R
such that xe = x for all x ¢ F. Following B. Zimmerman-
Huisgen [22], we say that M is locally projective if M
satisfies the following condition: For all diagrams
!, B

LE:
Fe——M

A — 0

with exact upper row and & finitely generated submodule F
of M there is g' ¢ HomR(M,A) such that g|F = fg'|F.

It is known that M is locally projective if and only if
M is s-unital as a left A-module {see [22]). As is eas-
ily seen, if N is an S-R-submodule of & locelly projec-
tive module M, then M/N is a locally projective R/AnnR
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(M/N)-module. A module M is called a self-generator if
TM(K) = K, for all R-submodules K of M. We also call
a module M a j-self-generator if TM(N) = N, for all R-
submodules N of Mn and all positive integers n (see

[21]). We begin with the following proposition.

Proposition 1.1. The following are equivalent:

1) M is s-unital as a right T-module.

2) The lattice homomorphism UA(SS) -+ U(MR); I > IM,
is an isomorphism.

3) M is a self-generator and MT = M.
If M ,is locally projective, we may add:

4) Every simple homomorphic image of any submodule

of MR is a homomorphic image of MR'

Proof. See the proof of [9, Proposition 1.1].

A ring R 1is said to be fully right idempotent if
12 =1 for every right ideal I of R. And R is fully
idempotent if 12 = I for every ideal I of R. Let us
cell a module M a fully right idempotent (resp. fully
idempotent) module if for every m € M, m € [m,M*]mR (resp.
m e S[m,M*]mR). A ring R is fully right idempotent or
fully idempotent according as RR is so. Here, we give
several characterizations of a fully right idempotent module

and a fully idempotent module.

Proposition 1.2 (ef. [lé, Theorem T]). (1) The
following statements are equivalent:

1) M is a fully right idempotent module.

2) For every R-submodule N of M, N = [N,M*]N.
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3) M, is s-unitael and I°=1 for every I ¢ UA(SS).

4) M, is s-unital and NN IM = IN for every S-R-
submodule N of M and every right ideal I of 8.

5) M, is s-unital and M/N is flat for each S-R-
submodule N of M,

(2) The following statements are equivalent:

1) M is a fully idempotent module.

2) For every S-R-submodule N of M, N = [N,M*]N.

3) The lattice hom;morphism UT(RRR) -+ U(SMR); I+ MI,
is an isomorphism and I® = I for every I ¢ UT(RRR)‘

4) The lattice homomorphism U, (.S.) -+ U(SMR); K -+ KM,

A'S”S

is an isomorphism and K° = K for every K ¢ UA(SSS)'

Proof. See the proof of [9, Proposition 1.2].

The proofs of the following two propositions are
similar to those of corresponding assertions in [13], [29]
and [22] and hence omitted.

Proposition 1.3. (1) M = @aeA Ma is fully right
idempotent (resp. fully idempotent) if and only if each
Ma is fully right idempotent (resp. fully idempotent).

(2) If R is a fully right idempotent ring, then
every locally projective module over R is fully right
idempotent.

(3) If R is a fully idempotent ring, then every
projective module over R is fully idempotent.

Proposition 1.4, If M is fully idempotent, then
there hold the following:
(1) 8 is a semiprime ring.

(2) The center of S is a regular ring.
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(3) 1f s = 8 ® S, ®...0 8 with two-sided simple
rings S;, then M, = S;M is S-R-simple and M= M @ ...
@ M L)

n

If M is finitely generated projective, then A = S.

Hence by Proposition 1.2 we have the following

Proposition 1.5. Let M be a finitely generated pro-
Jective module. If M is fully right idempotent (resp.
fully idempotent), then S_. is fully right idempotent (
resp. fully idempotent).

S

2. Regular modules. We begin this section with the

following characterizations of a regular module.

Theorem 2.1 ([9], [19]). The following statements
are equivalent:

1) M is a reguler module.

2) For every m ¢ M, mR is projective and is a direct
summand of M,

3) For every m m e M, Z§=lmiR is projec-

1 ' 2 Ty
tive and is a direct summand of M.

4) M is locally projective and every homomorphic
image of M is flat.

S) M is locally projective and for any submodule N
of M and any left R-module L, the natural homomorphism
NQ® RL +M® RL is a monomorphism.

6) M 1is locally projective and MI A N

NI for
every submocdule N of M and every left ideal I of R.

Examples of regular modules 2.2, (1) Any locally
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projective module over a regular ring is a regular module
([22]).

(2) Any completely reducible projective module is a
regular module.

(3) An ideal of a ring R is called a regular ideal
if it is regular as a subring. It is known that every ring
possess a unique largest regular ideal. As is easily seen,

every regular ideal is a regular module,

Proposition 2.3 (Zelmanowitz [19]). (1) If M is a
regular module, then J(M) = 0 = Z(M).
(2) M= M is regular if and only if each M
oeh o o

is regular.

A module M is prime (resp. semiprime) if for every
non-zero elements m, m, in M there holds m(M*,ml) #0
(resp. m(M*¥,m) # 0) (see [20]).

The following theorem is an extension of [7, Corollary
1.3] to modules.

Theorem 2.4%. The following are equivalent:

1) M is & regular module.

2) M is locally projective and fully idempotent,
and for each prime ideal P of R, M/MP is a regular
R/P-module.

3) M is locally projective and fully idempotent,
and each prime factor module M/Nﬁ (N g SMR) is a regular
R-module, where R = R/Anng(M/N).

Proof. 1) 2 2). By the definition, a regular module
M is s-unital as a left A-module and hence M is locally

projective. Let I %be an ideal of R. Then, since each
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f ¢ M* induces an element in HomR/I(M/MI,R/I), M/MI is
a regular R/I-module.

2) 23)., If M= M/Nﬁ is prime for an S-R-submodule
N, then AnnR(ﬁ) is a prime ideal by [20, Proposition 1.1].
By Proposition 1.2 (2), it is easy to see that N =
M(AnnR(ﬁ)). Hence M/N is a regular R/AnnR(ﬁ)-module by
2).

3) 3 1). We have to show that for each m ¢ M there
exists an f ¢ M* such that m = mf(m). Assume, to the
contrary, that there exists an m in M such that m =
mx(m) has no solution in M*. Then, by making use of the
fact that M is locally projective and Zorn's lemme, we
can choose an S-R-submodule N of M which is maximal
with respect to the property that m = mx(m) has no solu-
tion in Homs(M,R) where M =M/N and R = R/Anng(i),
i.e. m - mx(m) 4is not in N for every x ¢ M*. By hy-
pothesis, M is not prime. Therefore there exist non-zero

elements El end m, in M such that [ml,HomR(ﬁ,ﬁ)]m2

2
= 0., Since M is fully idempotent, as is easily seen,

the R-module M is also fully idempotent and so semiprime.
Thus, we have SmlR N Sm, R = 0. By the choice of N and

2
the fact that M 1is locally projective, there exist =x

lR + N end m - m(y,m)
€ Sm2R + N. Thus m=-m(x + y - x[m,y])m is in
(SmlR + N) n (Sm2R + N) = N. This contradicts the choice

of N. Consequently M 1is regular and the proof is com-

and y in M* with m - m(x,m) € Sm

plete.

Corollary 2.5. Let R Dbe a ring all of whose prime
factor rings are regular. Then every locally projective
fully idempotent module is regular.
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The endomorphism ring of a regular module need not be
regular. Indeed, Cukerman [3] and Ware [18] have noted that
the endomorphism ring of an infinitely generated free module
over a regular ring R is regular if and only if R is

artinian.

Theorem 2.6 (Ware [18]). If M is a finitely gener-~
ated regular module, then S is a regular ring.

Even if the endomorphism ring of a projective module
M is regular, M need not be regular. The following exam-
ple is due to Ware [18].

Exemple 2.7. A cyclic projective module M which is
not regular but such that S is a field: Let K be a
. _ (KK _tKK
field and R = (O k! Let M = (0 ol* Then gRK is a
cyclic projective module and S ~¥ K., Since (0 0) is a
cyclic submodule of M which is not a direct summand, M

cannot be a regular module.

Proposition 2.8. Let M be a locally projective
module. If S8 1is a regular ring and M is a self-genera-

tor, then M is regular.

Proof. By Proposition 1.1, for any m € M there is
en I in U,(S;) with mR = IM. Then m = Jam with
some a, eI and my; e M If we set I' = ZaiS, it is
easy to see that mR = I'M. Since 8 is regular, the
right ideal I' is generated by an idempotent e. Then
mR (= eM) is a direct summand of M and is projective.

Thus we conclude that M is regular by Theorem 2.1.
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Ware [18, Theorem 3.8] proved that if M is a projec-
tive module over a commutative ring R sasnd S 1is a regular
ring, then M is regular. More generally, we have the

following

Corollary 2.9. Let R be a commutative ring. If M
is a locally projective module eand S is & regular ring,
then M is a regular module.

Proof. A locally projective module M over a commu-
tative ring R is a self-generator by [21, 2.3, 3)].
Thus, by Proposition 2.8 M is a regular module.

3. V-modules., Let M be a right R-module. A right
R-module N is defined to be M-injective in case for each
monomorphism f : Kh > MR and each homomorphism g : Kh >
Nh there is an R-homomorphism g': MR +> NR such that

g = g'f: £
0 TgI;R ~ My
N o3

The following theorem characterizes a V-module.

Theorem 3.1 (Fuller [8]). The following are equivalent:
1) M is a V-module.

2) Every simple right R-module is M-injective.

3) Every finitely cogenerated factor module of M

is completely reducible.

In case we restrict our attension to locally projec~-
tive modules, we obtain the following

Corollary 3.2. Let M he a locally projective module.
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Then the following are equivalent:

1) M is a V-module.

2) M is a self-generator and every simple homomor~
phic imege of M is M-injective.

3) M is a self-generator and for any simple right
R-module X, HomR(M,X)S is injective.

Proof. 1) 2 2). Since every simple homomorphic image
of any submodule of M is a homomorphic image of M (The-
orem 3.1), M is a self-generator by Proposition 1.1.

2) 2 1). Obvious by Theorem 3.1,

2) ¢ 3). Since M is a )-self-generator by [21, The-
orem 2.4], the equivalence of 2) and 3) is a consequence
of [21, Corollary 1.5] and Theorem 3.1.

If 0+M +M~+M'~+0 is exact and a module U is
M-injective, then U is injective relative to both M’
and M". If U is injective relative to each of the R-
modules Ma (¢ £ A), then U is eLeA Ma-injective (see
[1, p.188]). Hence, the following proposition is immediate

from Theorem 3.1.

Proposition 3.3 (1) Every submodule and every homomor-
phic image of a V-module is also a V-module.
(2) e%eA M, is a V-module if and only if every M

is a V-module.
Corollary 3.4. Let R be a commutative ring, and M
a finitely generated V-module. Then R/AnnR(M) is a V-

ring (and hence a regular ring).

The following theorem corresponds to [6, Theorem 1k].
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For the another proof see [9].

Theorem 3.5. If M is a fully right idempotent mod-
ule and l\fl/l\:‘[l’R is a V-module for each primitive ideal P
of R, then M is a V-module. If M is a locally projec-~

tive module, then the converse is also true.

Proof. To prove the first assertion, it suffices to
show that for any submodule N and any m ¢ M\N, there
exists a maximal submodule X of M such that X 2 N and
m¢X. Now, let m ¢ N, and let Y be maximal among the
submodules K of M such that m ¢ K 2 N. Let D denote
the intersection of all submodules Q@ of M with Q3R Y,
Obviously, m is in D, and D/Y is a simple module., By
Proposition 1.2, D = IM for some right ideal I of S.
If we set P = AnnR(D/Y), P is a primitive ideal of R.
Since DAn(Y+MP)=Y+DnMP =Y+ IMP=Y+DP €Y
by Proposition 1.2, we conclude m ¢ Y + MP, By the max-
imality of Y, there holds Y 2 MP. Therefore, M/Y is
naturally considered as an R/P-module. Hence, by hypoth-
esis, ¥ must be a maximal submodule of M.

Next, we assume that M is a locally projective V-
module. If there is an m € M such that m ¢ [m,M*]mR,
then we have a maximal submodule N of M such that
[m,M*JmR ¢ N and mR € N. Since N is a maximal sub-
module, we have M = mR + N, and so A = [M,M*] = [m,M*] +
[N,M*]. Hence we have mR & AmR = [m,M*]mR + [N,M*]mR < N.
This is a contradiction,

The endomorphism ring of a V-module need not be a V-
ring. For example, a left vector space W over a field
K 1is an injective right End.KW-module if and only if
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[W:K} < » ([4, p.88]).

Theorem 3.6. Let M be a finitely generated projec-
tive module. Then the following are equivalent:

1) M is a V-module.

2) M is a self-generator and S is a right V-ring.

Proof. Recall first that every locally projective V-
module is a self-generator (Corollary 3.2). Since M is
finitely generated projective, we have that A = S. Assume
that M is a self-generator. Then, by Proposition 1.1,
the lattice U(SS) is isomorphic to the lattice U(Mh).
Therefore S 1is a right V-ring if and only if M is a V-
module.

Corollary 3.7. If M is a finitely generated pro-
Jective module over a right V-ring R, then the endomor-

phism ring S is a right V-ring.

If M is a projective module such that EndR(M) is
a V-ring, is M a V-module? Example 2.7 shows the answer

is negative. But we have the following proposition.

Proposition 3.8. Assume that M is quasi-projective
or MT =M, If M is a self-generator and S 1is a right
V-ring, then M is a V-module.

Proof. By [21, Theorem 2.4], M is a ]-self-generator.
If a module X is simple then HomR(M,x)s is simple or
. zero by [1, p.191] and by [21, Theorem 4.5], and so, by
[21, Corollary 1.5], X is M-injective. Therefore, M
is a V-module by Theorem 3.1. )
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The next corresponds to Corollary 2.9.

Corollary 3.9. Let R be a commutative ring, and M
a locally projective module. If S 1is a right V-ring, then
M is a V-module.

Proof. This is clear by Proposition 3.8 and the asser-

tion in the proof of Corollary 2.9.

4. Regular modules versus V-modules. First, we shall
extend [6, Theorem 16] to modules. We say that R is a
P.I.-ring if R satisfies a polynomiel identity with coef-
fients in the centroid and at least one coefficient is in-

vertible.

Theorem 4.1. Let R be a P.I.-ring, and M a right
R-module. Then the following are equivalent:

1) M is a regular module.

2) M is a locally projective V-module.

3) M is locally projective and fully right idempotent.

Proof. 1) @ 3) 2 2) are clear by Theorem 3.5 and the
fact that every primitive factor ring of a P.1.-ring R is
simple artinian (Kaplansky [10]).

3) $1). Cleary, if M is fully right idempotent and
N an S-R-submodule, then M/N is a fully right idempotent
R/Ann (M/N)-module. If M/Ng is prime, then R = R/Anny(M/N)
is prime by [20, Proposition 1.1). Hence, according to
Theorem 2.4, it is sufficient to show that a faithful, prime
and fully right idempotent module over a prime P.I.-ring R
is regular., Let C ©be the center of R. First we shall

show that M i1s C-torsion-free. Assume, to the contrary,
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that there exist a non-zero m' ¢ M and a non-zero c¢' ¢ C
such that m'e!' = 0. Since MR is faithful, there is a
non-zero m" ¢ M such that m"c' # C. Thken we have
m'(M¥,m"c') = m'c'(M*,m") = 0. This contradicts the prime-
ness of M. Since M is fully right idempotent, for each
m € M and each non-zero c¢ ¢ C, there are f., ... , fn €
* = =
szfa?z)rrﬁéz...ﬂ, r e¢R such t?at mc_; Emcfi(mc)ri =
i ;)¢”. Hence, we can define mc ~ = szi(m)ri,

and then M has the Q-module structure, where Q is the
ring of central quotients of R. By [16, Corollary 1], Q
is a simple artinian ring. Since MQ is completely reduci-
ble, by Proposition 2.3 we mgy assume that M is an irre-
ducible Q-module. Since End.R(M)mEndQ(M) is a division
ring by Shur's lemma, M is a regular module by Proposition

2.8.

Corollary 4.2. Let R be a P.I.-ring. Then a locally
projective module M is completely reducible if and only
if every completely reducible module is M-injective.

Proof. One wey is clear. To prove the other way,
assume that every completely reducible right R-module is
M-injective. Let m be an arbitrary element of M. Since
M is regular by Theorem 4.1, mR is a regular module and
every completely reducible module is mR-injective. Now,
we shall show that mR contains no infinite direct sum of
non-zero submodules. Assume, to the contrary, that mR
A M, with M& # 0.
Since each M is a V-module, it contains a maximal sub-
module M'. Then N' =@ , M /M' is completely reducible,

aeld "o’ o
and hence mR-injective. Thus the canonical homomorphism

contains an infinite direct sum N = Q%s

NR -+ Nﬁ can be extended to an homomorphism f : mR =+ N'.
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Noting that f£(m) € QLeA' Ma/M; with a finite subset A'

of A, we obtain N' = f(N) ¢ f(mR) €® ., M /M' , which
achA' "o«

is a contradiction. Thus, we see that mR is isomorphic

to a finite direct sum of minimal right ideals by [19, The-

orem 1.8], concluding that M is a sum of simple submodules.

A ring is said to be normal if every idempotent is
central, For example, reduced rings and left and right

duo rings are normal,

Proposition 4.3. Let R be normsl. If M is a reg-
wlar module, then every simple homomorphic image of M is
injective., In particular, M is a V-module.

Proof. If M is regular, then for every m ¢ M, mR
is projective and is a direct summand of M by Theorem 2.1.
Hence we may assume that M is cyclic (and projective).
Since R 1is normel, M 2 eR for some central idempotent e
in R. Since the ring eR is regular and normal, it is a
strongly reguwlar ring, and hence a right V-ring by Chiba-
Tominaga [2]. The second assertion is clear by Corollary 3.2.

For a locally projective module M over a commutative

ring R, we have

Theorem 4.4, Let R be a commutative ring. Then
the following are equivalent:

1) M is a regular module.

2) M is a locally projective V-module.

3) M is fully right idempotent.

k) M is locally projective and every simple homomor-
phic image of M is injective.
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5) M is locally projective and every simple homomor-
phic image of M is M-injective.

Proof. 1) 2). By Theorem k4.1,

2) 2 3). By Theorem 3.5.

3) 1), Since M is fully right idempotent, for each
megM we have that m ¢ [m,M¥]mR. Since R is commutative,
the right multiplication of any element of R is in S.
Therefore m ¢ [m,M*]Sm = [(m,M*Im. Consequently, M is
regular.

1) 3 4). By Proposition L.3.

4) »5), Trivial.

5) 2). Recall thet M is a self-generator (see the
proof of Corollary 2.9). Therefore M is a V-module by
Corollary 3.2.

Remark. ~For a projective module M, Ware [18, Propo-
sition 2.5] has proved 1) = 4), Ramamurthi [15, Theorem 4]
has proved that 4) = 3) % 1), and Maoulaoui [13, Proposition
1] has proved 4) = 1),

In case R is a P.I.-ring, the implication 1) ® 5) in
Theorem 4.4 does not remain valid (in spite of the assertion

in [13, Proposition 2]). Here is an example.

Example 4.5. Ler R be the ring in Example 2.7.
Clearly, R is a P.I.-ring. If we set I=(J2), I isa
minimal right ideal and is a direct summand of RR' Hence
I is a regular module. However, I is not injective,
because the homomorphism £ : (8 §) + I defined by f(g g)
= (g g) can not be extended to a homomorphism of R to 1I.

Finally, we shall improve [9, Proposition 4.5]. We
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shall begin with some preparations. Let M be a right R-
module. An element m of M is called regular (in M)

if there exists an element f of M¥ such that mf(m) = m.
A submodule N of MR is called a regular submodule of M
if every element of N is regular in M. As is easily seen,
if a regular module N is a direct summand of M, then N

is a regular submodule of M. We state here without proof
the following two theorems. (The proofs given in [11, p.1l12]

for rings are available with only minor changes.)

Theorem L4.6. Let Mo be a locally projective module.
Let P N be S-R-sutmodules of M, and R = R/Ann (M/P).
Then N 1is a regular submodule of M if and only if P
is a regular submodule of M and N/P is a regular sub-
module of M/Pﬁ.

Theorem 4.7. Let MR be & module., Then there éxists
2 unique maximal N among the regular submodules of Mh
which are S-R-submodules, and M/N§ has no non-zero regu-
ler R-submodules which is an S-R-submodule, where R =

R/AnnR(M/N).

A module M is said to be semi-artinjan if every non-
zero homomorphic image of M haes the non-zero socle., We
are now ready to prove the following generalization of [9,

Proposition 4.5].

Theorem 4.8, If My is semi-artinian, then the
following are equivalent:

1) M is a regular module.

2) M is a locally projective, fully idempotent module.
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Proof. It is enough to prove that 2) implies 1). Let
N be as in Theorem 4.7. If N # M, then X = Soc(M/NR)
is non-zero. We shall show that X is a regular submodule
of Mg , wvhere M =M/N end R = R/Ann, (). Now, let Y
be a simple submodule of M. Since Mﬁ is semiprime (see
the proof of Theorem 2.4), there exists f ¢ (ﬁﬁ)* such
that Yf(Y) # 0, and hence fY = eR with some idempotent
e in R. Since a projective minimal right ideal fY is
a regular submodule of K= , for each y € Y there is a
g € (ﬁﬁ)* such that fy = (fy)g(fy). Hence we have y =
yef(y) and gf ¢ (Eﬁ)*, and therefore y is regular in
ﬂh. Thus Y is a direct summand of M. Now, we can easily
see that any finite sum of simple submodules is a direct
summand of M. Thus, for each m € X, mR is a direct
sumnand of M, whence it follows that X is a regular sub-
module of Eﬁ'" But this contradicts Theorem 4.7. Hence,
M= N, namely M is regular.

Since every locally projective V-module is fully right
idempotent by Theorem 3.5, we readily obtain the following

Corollery 4.9. If M is a locally projective, semi-
artinian V-module, then M is & regular module,
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ON AUTOMORPHISMS IN SEPARABLE EXTENSIONS OF RINGS
Kozo SUGANO

In order to generalize the theory of Azumaya algebras
we introduced a notion of a special type of separable exten-
sions called H-separable extension, and found that many prop-
erties which hold in Azumaya algebras hold also in this type
of separable extensions (See for example [4], [7], [12] and
[13]). In this report we will summarize and improve the re-
sults which are obtained in [14] and [15]). In §1 we will find
some sufficient conditions for an H-separable extension A of
B to have the property that all automorphisms of A which fix
all elements of B are inner ones. On the other hand, in [15]
we showed that in the case of algebras over a commutative
ring R H-separable Galois extensions of R are same as central
Galois extensions of R (See Prop. 2.2 [15]). In §2 we will
show some necessary and sufficient conditions for Galois ex-
tensions to be H-separable extensions, for H-separable ex-
tensions to be Galois extensions and also for the orders of
Galois groups of H-separable Galois extensions to be units,
It is well known that in the case of central Galois extension
the order of Galois group is always unit. But we can give a

counter example in the case of H-separable Galois extension.

1. Automorphisms in separable extensions.

Throughout this report A is always a ring with 1 and B
is a subring of A which contains 1 of A. For a subset S of A
we will denote by VA(S) the subring {aEAl sa = as for all
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s €S}. Furthermore, we will denote the center of A and VA(B)
by C and D, respectively. We also assume that all A-modules
are unitary, and all two sided A-modules are associative.
For a two sided A-module M, we always let ¥* = (meM | ma =
am for all a€ A}, First we shall recall the definition.

THEOREM 1.1. Let A, B, C and D be as above. Then the
following conditions are equivalent.

Q) A@BA is isomorphic to a direct summand of some
finite direct sum of the copies of A as A-A-module.

(2) D is C-finitely generated projective, and the map
n of A@BA to Hom(CD,CA) defined by n(a®b)(d) = adb, for a, b
€A, d€D, is an A-A-isomorphism.

(3) For any A-A-module M, the map By of DRM " to MB
defined by gM(dem) = dm, for d €D, me.MA, is an isomorphism.

(4) 191 € (AgyA)*D 1n AgA.

Proof. See [3], [8], [6] or [11].

DEFINITION, A is an H-separable extension of B if and
only if A and B satisfy the conditions of Theorem 1.1.

REMARK. Theorem 1.1 (4) shows that A is H-separable
over B if and only if there exist §xij°yij in (A@BA)A and di
in D with 1@l = 1’33"‘13""13’“1' We call {Ix
H-system for A|B.(See [6]).

1j°yij’ di} an

THEOREM 1.2. Let A be an H-separable extension of B.
Then every endomorphism of A which fixes all elements of B
is an automorphism and fixes all elements of B' = VA(VA(B)).

Proof. Let 0 be an automorphism of A which fixes all
elements of B. Since oeHom(AB, B) = DoCA, where the latter
isomorphism was proved in Prop. 3.1 [4], there exists Zdjeaj
in D®.A such that o(x) = Zdjxaj for all x in A. Then 6(1) =
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):djaj = 1, and o(b) = Zdjbaj = bZdjaj = b for any b in B'.
Thus 0 fixes all elements of B'. Since CCB', and A is H-
separable over B' by Theorem 1.3' [8], we can assume that C
CB from the beginning. Let {inj@yij, bi} be an H-system
for A|B. Then, since ¢ 1s a B-B-map, and x@l = Zx(xijeyij)di
= Z(xijoyij)xdi, we have x®l = x90(1l) = injoo(yijxdi) and
ijc(yij)cJ(x)cJ(di). Therefore, o(x) = 0 implies x = O,

and we have that kerc = 0. Now let A = 6(A) and D = o(D).

x = IX

Then A is an H-separable extension of B, and D= VK(B) %,
which are C-finitely generated projective, Furthermore, since
CCB by assumption, the center of A = o(C) = C. Let VA(K) =
C, and m an arbitrary maximal ideal of C. Then, D = v, (B) ¥
E@CVA(K) = D@cé by Theorem 1.1 (3). Hence ﬁ/gﬁec /mélga =
D/mwD, and we have [(_IIEE:C/E] = 1, because D # mD and D # wD.
Thus we see that C = mC+C for any maxmal ideal m of C. On

the other hand, is C-finitely generated, since C = C@c(-l @
ﬁecé % D. Hence
DCA. Now, 1t is easy to see that each injac;.(yij) belongs to
D, since o is a B-B-map, and inj@yije (AQBA) . Then, for
ijo(y“)c(xdi)eDKCK. Thus o(A) =

A, and we have proved that ¢ 1s an automorphism.

alr QI

= C by Nakayama's Lemma, and we have D =

any X In A, we have x = Ix

Now, let ¢ be any automorphism of A which fixes all ele-
ments of B, and Jo = {agA | xa = ac(x) for all x in A}. By
A and o we can construct as usual a new A-A-module Ao’ name-
ly, Ao = A as left A-module, but the right A-module structure
is defined by a:x = ao(x) for a A(J and x A. Then we see
that ()% = J_and ()" = D.

LEMMA 1.1. Let o be an automorphism of A such that olB
= lB' Then, o is inner 1f and only if Jo = Cu for some unit
uof D.
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Proof. Clear.

LEMMA 1.2. Let A be an H-separable extension of B, and
an automorphism of A such that 0|B = 1B Then, we have

(1) The map g, of D@.J, to D defined by go(d@a) = da,
for d€D and aEJU, 1s an isomorphism. Consequently, we have
DJ0 = JoD = D and AJ0 = JoA = A.

(2) Jo is rank 1 C~projective.

3 JOJO'I = JO-IJU = C.

(4) o is an inner automorphism if and only if J, = Cu
for some u (not necessarily unit) in D.

Proof. (1). Clear by (Ao)B =D, (Ao)A =J, and Theorem
1.1 (3). (2). By (1) we have DRI, ¥ D. But D is C-finitely
generated projective, and consequently, C is a C-direct sum-
mand of D. Then it follows that Ja is rank 1 C-projective.
(3). Clearly JoJo'l is an ideal of C. By (1) we have DJ0 =D
and DJoJo'l = DJO-I = D. But C is a C-direct summand of D.
Hence we have JJg-1 = DJoJo-erC = DNC =C. (4). If J, =
Cu for some u€bD, D = DJU = Du. Then, u is a unit. Now, we

can apply Lemma 1,1. The converse is obvious by Lemma 1.1.

Theorem 1.3, Let A be an H-separable extension of B,
and C and C' the centers of A and B, respectively. Then, all
automorphisms which fix all elements of B are inner automor-
phisms, if one of the following conditions is satisfied.

(1) C is a semilocal ring.

(2) C' is a semilocal ring, and VA(VA(B)) = B,

Proof. Suppose (1), and let my, Wy, erHmy be the set
of all maximal ideals of C. Now we can follow the same lines
as the proof of Lemma 1 [5]. Let ¢ be any automorphism of A
such that ¢|B = 1;. Then, for any i (1 ¢4 ¢r) we have m,J .

7651"'91—191+1"'ErJ0’ since J J .1 = C by lemma 1.2 (3).



48

Hence there exists ai in glo-o 'ErJo such that af&

2410141
m,J_. Let a = Ia . Then, a€J_ and aniJo for any i. But J

ii :ank 1 C-proj:ctive by Lemma 1.2 (2). Hence [JolgiJO:C/gi]
= 1, and Jo/giJo = (a+giJ°)C/gi. Thus we have J_ = aC+1lxiJ0
for each maximal ideal m, of C. Hence J0 = aC by Nakayama's
Lemma. Then by Lemma 1.2 (4) ¢ is an inner automorphism.

Next suppose (2), and let J be the radical of C'. Then, we
see that C'/J is semisimple, and C' = VB(B) = DAB = VD(D)
2C. Hence D is finitely generated as C'-module. Then D/JD
is artinean, and we see that JD is contained in every maxi-
mal left ideal of D by Nakayama's Lemma. Hence D is also a
semilocal ring. On the other hand, C is a C-direct summand
of D. Hence we have aDNC = a for any ideal a of C. This im-
plies that every proper ideal of C is contained in at least a
maximal left ideal of D. If m and m' are any two maximal
ideals of C which are contained in a maximal left ideal L of
D, then 1¢m + m'C L. Hence m = m'. Thus we see that C is a

semilocal ring. Then, we can apply (1).

REMARK. The proof of Theorem 1.2 would have been com-
pleted, if it had been proved that 0|C = identity. But the
author gave the complete proof in this report for the con-

venience to readers.

2, On H-separable Galois extensions.

In this section there is no new result, we will only
summarize the results obtaied in §2 [14] and [15].

In this section G is always a finite group of automor-
phisms of A, and A is the crossed product A(A;G) with the
trivial factor set. Thus A = IAU_ with {UO}OGG a left free

base over A such that UC’U.r = Ucrr and an = o(a)U0 for a€A
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and 0,TE€G. Now let us recall the definition of Galois ex-
tension. Let A® = {agA | a(a) = a for any 0 €G}. In case
B(:AG, there is a ring homomorphism j of A to Hom(AB,AB) such
that j(aUc) (x) = ao(x) for a, x€A and 0€G.

DEFINITION. A is a Galois extension of B relative to
G if and only if the following three conditions are satis-
fied. (1) B = AG. (2) A is right B-finitely generated pro-

jective. (3) j is an isomorphism.

Let t, be a map of A to AG such that t.(x) = Z___.o(x)
G c G G 0€G
for every x€A. Clearly tG is an A -A -homomorphism.

LEMMA 2.1. Let-A be a Galois extension of B relative
to G. Then we have

(1) There exists c in C such that tG(c) =1, if and
only if BBB

(2) Suppose furthermore CCB. Then |G|
of C, if and only if BBB@BAB.

Proof. (1). If there is c¢&€C such that tG(c) =1, we
obtain an A-A-map f of A to A such that £(x)
Then (tof)[B = 1g
suppose BBB OBAB. Then since A is right B-fibitely generated

OBAB (B-B~direct summand).

n is a unit

xc for x €A.

, and we see that BBB<QBAB' Conversely,

projective, Hom(AB,AB) is a separable extension of A by Theo-
rem 7 [10}. Hence A is a separable extension of A. But by
direct computations we can see that A is separable over A if
and only if there exists c€C such that tG(c) =1, (2) is
obvious by (1), since tG(c) = 1 with c€C implies nc = 1.

THEOREM 2.1. Let A be an H-separable Galois extension
of B relative to G. Then we have B = VA(VA(B)). Furthermore,

the following three conditions are equivalent.



1) || 1s a unit.

@ @yt

(3) D is a separable C-algebra.

Proof. By Theorem 1.2 each 0 in G fixes all elements
of B' = VA(VA(B))' Hence BCB'CAG = B, and we have B' = B.
Then CCB. Therefore, (1) and (2) are equivalent by Lemma 2.
1. (2)2(3) follows from Prop. 4.7 [4]. Suppose (3). Then,

=2 t =2 = = - e

B=3'=VY,(D Hom(DDD,DAD)@Hom(DuoCDD,DAD) A as B-B
module. Then, we have (2).

THEOREM 2.2. Let A be an H-separable extension of B,
and G, A, and j as above with BCAG. Then we have

(1) j is an isomorphism if and only if D = zozGJo' In
this case we have A® = B' (= v, (v, (3))).

(2) In the case where A is right B-finitely generated
projective, A is a Galois extension of B relative to G, if
and only 1if D = ZOQGGJO.

Proof. Denote the opposite ring of D by Do, and let x°
a {x° | X € X} for XCD. By Prop. 3.1 [4] there is a ring iso-
morphism n. of AQCDO to Hom(AB,AB) such that nr(aodo) (x) =
axd for a, x€A and d €D, while for each o in G we have a
left A-isomorphism gc'r of AQCJg to AU0 such that gé(aodg) =
adUUU for a€ A and doe Jc by Lemma 1.2 (1). Let g = Zgé. g

o

:I.s0 an isomorphism of Z£GAQCJ° to A. Nowosuppo;e thgt D=
zceGJc' Then g is an isomorphism of Ag.D (=X AQCJU) to A
such that jg = M. Hence j is an isomorphism. Conversely, if
j is an isomorphism, we have 2°J°U° = AA s [Hom(AB,AB) ]A =
Hom(AAB’AAB) % D. Next suppose xeAG. Then for any d €D, we
have d :; Edo for dUE Jc’ ang xd = Zxdo = Zdod(x) = chx =dx.
Hence A°C B', and we have A” = B'., Thus we have proved (1).

Since AoCDO = Hom(AB,AB), B' =,Hom(KAD,KAD) is the double
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centralizer of AB. Hence 1if AB is finitely generated projec-
tive, AB' is also finitely generated projective.‘ Then (2)
follows from (1).

REMARK. Note that the 'only if' part of Theorem 2.2 (1)
holds without the assumption that A is H-separable over B.

THEOREM 2.3. Let A be a Galois extension of B relative
to G. Then the following three conditions are equivalent

(1) A is an H-separable extension of B.

(2) The map g, of D@CJO to D defined in Lemma 1.2 (1)
is an isomorphism for each c€G.

(3) Jo‘]o"l = C for each 0 G.

Proof. First note that D = zo%GJo by Prop. 1 [5] or by
the obove remark. Suppose (2). Then from DJ_ = D, we have D
= L et I, CI® = D with J J CJ_ . Hence J J_=J  for
each o, TE€G. Especially, JoJo"l = Jo‘lo = C. Next suppose

(3). Then we have 1 = Zajbj with ajeJo-l, bJ

o€ G. Then if go(Zdieei) = 0 for dié D, eieJo, we have that

Zdieei = Zdi@eiajbj = Zdieiajebj = I0gb = 0, since eiajGC.

Hence kerg c = 0. Clearly g, is onto. Hence we have (3). Thus

eJo' for each

we have proved (2)&(3). Suppose (3). Then each Jo is inver-
tible and C-finitely generated projective of rank 1. Hence D
= 29J° is C-finitely generated projective. On the other hand
by (2), we obtain an isomorphism g of AeCD°(= ZQAQCJ::) to A
such that g(xodg) = xdoUO for x€A, dOE Jo‘ Clearly, jg = n,
with j an isomorphism. Hence n. is an isomorphism. Then by
Corollary 3 [10], A is H-separable over B, since A is right
B~-finitely generated projective. Thus we showed that (3) and
(2) imply (1). Conversely by Lemma 1.2, we see that (1) imp-~
lies (2) and (3).
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COROLLARY 2.1. Let A be a Galois extension of B rela-
tive to G. Suppose that all elements of G are ilnner automor-
phisms. Then A is an H-separable extension of B, and D =

@
zo&cho .
Proof. Let o(x) = u(;'lxu(J for x€A. Then J_ = Cu , and

, where each ug is a unit which induces o.

D = ZQUO = ﬁQCuo. Furthermore since u u__; is a unit of C,
Jch-l = Cucuc’l = C. Hence A is H-separable over B by Theoem
2.3.

EXAMPLE. Let R be an arbitrary ring with 1, A = (R)2

2x2-full matrix ring over R and B = {[ a b | a, b €R}. Put
01 1 0 -b a
I={_ 0] E=lg 1 and let e(A) = A and 0(a) = I7!AI for
A€A. Then G = {g, o} is a group, and B = A%, Furthermore,
for the matrix units ei,j (i, = 1,2) of A, we have Zei,lel,i
= E and Zei 1o(e1 i) = 0., Hence A is a Galois extension of B
» ’
(See Theorem 1.1 [1]). Then by Corollary 2.1, A is an H-sepa-

rable extension of B. Note that |G| = 2 1s not always unit.

3. Separability of trivial extensions.

In this section the author wants to show some results
which he obtained recently and will appear in [16]. But the
proof is different from that which is shown in [16]. For an
A-A-module M we can introduce to A @ M a ring structure by
(a+m)(b+n)=ab +(an + mb) for a, b€A and m, n €M. This
ring i1s called the trivial extension of A with recpect to M.
Now we shall show that any trivial extension can never be a

separable extension. First we will prove the next

PROPOSITION 3.1. Let A be a separable extension of B.
and suppose that A = B @ M for some B-B-submodule M of A such
that M2C.M. Then M is generated by a central idempotent.
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Proof. Since MZC.M, M 1s an ideal of A. Now let R be a
subring of CNB. Then A and B are R-algebras, and AsRAO is a
separable extension of 1(B@RB°) = Im(BQRBO—’; AaRAO) by Prop.
2.7 [2]. Hence A@RAO is a semisimple extension of t(BeRBo)
in the sense of [2] by Prop. 2.6 [2]. Then since M is a left
AQRAO-submodule of A and an 1(B@RB°)—d1rect summand, M is an
A@RAO—direct summand of A. This means that M is an A-A-direct

summand of A.

THEOREM 3.1. Any trivial extension can not be a sepa-
rable extension.

Proof. Let A be a trivial extension of B. Then A= B @
M as B-B-module with M?

of B, M = Ae for some e

0CM. If A is a separable extension
e2€C. Then M2 = M # 0, a contra-

]

diction. Hence A is not a separable extension of B.

COROLLARY 3.1. Let A be a separable extension of B such
that A = B@® M as B-B-module with BDM2, Then we have M = M3,
and M2 is an idempotent ideal of B.

Proof. Let M2 = a. a is clearly an ideal of B, and aA
= Aa = a @ M3 is an ideal of A. Then by Prop. 2.4 [2] A/cA =
B/o® M/M3 is separable over B/a. But (M/M3)2 = 0. Hence M/M3
= 0 by Theorem 3.1. Then M = M3 and M2 = M“.

PROPOSITION 3.2. Let A and B satisfy the same condi-
tions as Corollary 3.1l. Furthermore let B be a local ring and
A be finitely generated as left or right B-module. Then we
have A = B[X,0]/(X2- a) for some automorphism o of B and a
unit a of B such that xa = ao?(x) for all x€B.

Proof. Let J be the radical of B. Since oA =a + M, A =
B + gA. Hence we have 0 # a¢dJ by Nakayama's Lemma. Hence M?
= B. Then M‘B and BM are invertible and free of rank 1, since
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B is local. Then by direct computations we have that M = Bm
= mB and A = B[X,0]/(X2- m2), where bm = mo(b) for all bEB.
See [16] for detail.
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ON SEPARABLE POLYNOMIALS IN SKEW POLYNOMIAL RINGS
ShQichi IKEHATA

Throughout the present paper, every ring has identity
1, its subring contains 1, and every module over a ring
is unital. A ring homomorphism means such one sending 1
to 1. In what follows, B will represent a ring, p an
automorphism of B, D a p-derivation of B (i.e. an
additive endomorphism of B such that D(ab) = D(a)p(b) +
aD(b) for all a, b € B). Let R = B[X; p, D] be the
skew polynomial ring in which the multiplication is given
by aX = Xp(a) + D(a) (a € B). In particular, we set
B[X; p] = B[X; p, 0], B[X; D] = B[X; 1, D]. By R(O)
we denote the set of all monic polynomials g in R with
gR = Rg.

A ring extension B/A 1is called a separable extension
if the B-B-homomorphism of BQQAB onto B defined by
a®b + ab splits, and B/A is called an H-separable
extension if B®AB is B-B~isomorphic to a direct summand
of a finite direct sum of copies of B. As is well known,
an H-separable extension is a separable extension (Hirata).

A polynomial g in R is called a separable (resp.

H-separable) polynomiaioif R/gR 1is a separable (resp.
H-separable) extension of B.

Now, let G be a finite group of automorphism of a
B =(beB| o) =b (s e B} If

there exist x,, y, ¢ B suth that Z:ixiC(Yi) =85 (o ¢

ring B, and A

G), then B/A 1is called a G-Galois extension.
We shall use the following convensions:

C(A) = the center of a ring A.
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VB(A) = the centralizer of A in B for a ring
extension B/A.
u, (resp. ur) = the left (resp. right) multiplication
effected by u e B.
B = {a e B | p(a) = a} , B° = {a ¢ B | D(a) = 0} .
p*¥ : B[X; p] =+ B[X; p] is the ring automorphism
i i
defined by p*(],;X'd) = ], X p(d)).
D*# : B[X; D] » B[X; D] is the inner derivation
i i
* =
defined by D*(}, X'd,) =] X' D(d,).

For several years, separable polynomials in skew
polynomial rings are extensively studied by Kishimoto [9,10],
Nagahara [13,14,15,16,17], Miyashita [12], and by the
author [4,5,6].

The main result of this paper is the following: Let
B be a commutative ring, A = Bp, and f ¢ R(O) = B[X; p](O)'
If R/fR 1is an Azumaya A-algebra, then the order of p
is equal to the degree of f and B/A 1is a Galois extension
with Galois group G = <p>, and f 1is of the from ™+ a,

with a unit a in A (Theorem 2.2). Conversely, if

B/A 1is a Galogs extension with a cyclic automorphism group
G = <p> of order m, then for every unit a 1in A,
B[X; p]/(xm + a)B[X; p] 1s an Azumaya A-algebra (Corollary
2.3). The present study contains also some sharpenings of
G. Szeto[19,20] and Y. F. Wong [21], and some results
concerning skew polynomial rings of derivation type (§ 3).
In our study, H-separable polynomials in skew poly-
nomial rings play important réles. Therefore, §1 is
devoted to giving preliminary results concerning H-separable
polynomials.
We shall use freely the results of [6].
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1. The present section is devoted to giving prelim-
inary results concerning H-separable polynomials in B[X; p]
and B[X; D], which play important réles in the subsequent
study.

First, we shall prove the following

Proposition 1.1 ([7]). Let S be a ring with center
C, and B an intermediate ring of S/C. If S is an

Azumaya C-algebra and SB (or _S) 1is (f.g.) projective,

B
then S/B 1is an H-separable extension.

Proof. Since S/C 1is separable, there exists
Zj. iéba“ in SQD S such that Zi a' " =1 and
Z:ixaiéba; = Zj_ i()a;x for all x ¢ S. Further, since
SB is f.g. projective, there exist a; € S and fi €
Hom(SB ’BB) such that Zj j j(x) =x for all x ¢ S.
Consider the map 6 : S@CS -+ S@CS defined by x®y -+

Zixa ®f (y). Then, for all x ¢ S,

@f (a"x) o(} 1 ai@a'{x)

e(zixaiQaI) = 21 .5 xa' a @f (a"),

zij 1%;

and hence, for all a, x, y € S,
' " = 1 n

Zi,j aiajﬁbfj(aiax)y Zi,j aaiajébfj(aix)y.
This proves the map ¢ : S® S -+ S@ S defined by x®y -+
Zi j a Qbf (a"x)y is an S S—homomorphism. Obviously,
the canonical map @ S()CS -+ SQDBS is an S-S-homomor-
phism and ¢¢ is the identfity map of SQDBS. Hence,
sS®pSg <® sS®cSg-  As 1s well known, there exists a
positive integer m such that SQDCSS <C) sSs . From

those above, it is immediate that <C) , namely

S/B 1is an H-separable extension.
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In the rest of this section, 1let f = ™ + Xm-lam_l

+ o0 + Xal + a, be in B[X; p, D]. Now, we shall state

the following theorem which has been proved by Miyashita in

a different form.

Theorem 1.2 ([12, Theorem 1.9]). Let f be in
R(O) = B[X; p, D](O)’ and I = fR. If f 1is an H-sepa-

rable polynomial in R, then there exist Yir 24 € R

with deg y; <m and deg z, <m such that ay, = ¥43»

m-1 -1 _
p (a)zi =z,a (a € B) and zi.yixm z, = 1 (mod I),

Ziyixkzi 20 (mod I) (0 < k < m-2), and conversely.

As easy consequences of Theorem 1.2, we have the

following usefull lemmas.

Lemma 1.3. If f is an H-separable polynomial in

P -1
R = B[X; p], then a, is a unit in B, pm = (a0 )E(ao)r .

and £ is in C(B”)[X].

Proof. By Theorem 1.2, 1 =) $ yixm-lzi =

-1 m-1 _ -(m-1) m-1
X ) 4 0* (yi)zi ) { yp* (zi)X (mod £fR).
We put here x = X + fR. Then, x is invertible in R/fR.

Hence there exist dj e B (0 <j<£ml) such that
m-1 _ ,.m=1
X dm—l + ... + do) = (x d

gy Foeee + d

x( Jx=1.

0
Since x® = - x® 1 m—l}

-1 = *°° ~ g and {1, %, ... , X
is a free basis of R/fRB , we have —aodm_l =-aop(dm_l)
=1, Then, since aa, = aopm(a) (a e B) ([6, Lemma 1.3

al), a,
p(dm_l) = dm_1 » and therefore, p(ao) = ag. Thus, f

is in C(Bp)[X] by [6, Proposition 3.1].

is a unit in B and pm = (aal)z(ao)r . Hence,

Lemma 1.4. If f is an H-separable polynomial in
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R = B[X; p], then 1, p, ..., p = (e jHom(Byp, Byp))
are linearly independent over B.
Proof. Assume that z ; ijJ =0 (B, € B). Then,

zml\)

it is easily verified that =0 " (B )pj =0 (v >20).

Hence we have X 0 Jp*J 0. Let yi, zi € R be as in

Theorem 1.2. Then we have

I CRRIED L 1’(8J EPICATS
-1
=x" 1" il 0 B Zi_p*j(yi)z
= xmt PO J—o Jp*j(yi))z
=0 (mod fR).
Therefore, we have Bm—l = (., Now, by z jp P 0,

we have Z?;g ij*j+l = 0. By the similar way as above,
we have B , = 0. Repeating this, we conclude that Bj

=0(0 <j<ml).

Next, we consider the case R = B[X; D]. Then it

is easily verified that the condition z yi X 1zi =1

(mod I), Zi.yixkz 0 (mod I) (0 < k < m~2) in Theorem
1.2 is equivalent to the one Zi.D* (yi)z =1 (mod I),
ZiD*k(yi)zi 20 (mod I) (0 <k <m=2). Thus, we have

the following

Lemma 1.5. Let f be in R(O) = B[X; D](O)’ and
= fR. If f is H-separable in R, then there exist
Yi» 24 € R with deg y; <m and deg z, <m such that

= = *m_ l =
ay, = y;a, az z.a (a € B) and zi_D (yi)zi =1

i i
(mod I), z:iD*k(yi)zi

conversely.

0 (mod I) (0 < k < m-2), and
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Corresponding to Lemma 1.4, we have the following

Lemma 1.6. If f 1is an H-separable polynomial in
R = B[X; D], them 1, D, ... , Dm-1 (e BHom(BBD, BBD)) are

linearly independent over B.

Proof. Assume that quJ'B.DJ =0 (B. € B). Then,

for all a B, 0=D([] BjDJ(a)) = Zj_o D(Bj)DJ(a) +
Z B DJ(D(a)). Hence we have } ? D(Bj)DJ = 0. An
easy induction shows that Z n- 1 V(Bj)Dj =0 (v ; 0).
By this fact, we can easily verifled that Z B D*J =
0. Now, let Yio 24 be as in Lemma 1.5. We have then,
m-1 j _
= * =
) 3=0 ¥ 1 ByD (y;)z; = 0 (mod fR).
- P

Therefore, we obtain Bm—l 0. Since Z j= 0 jD 0,
we have Z ?;g BjD*j+1 = 0. By the similar way as above,

we have B 2 = 0. Repeating this, we conclude that
BJ.=0 (0 <23 <m1).
2. Throughout this section, B is a commutative
ring, R = B[X; p], G the cyclic group generated by p,
and A = B° = BP,
Proposition 2.1. Assume that the order of G is
m. If B/A is G-Galois, then X" + b. is an H-separable

0
polynomial in R for every unit bo in A.

Proof. Since B/A 1is G-Galois, there exist a,, B

i
eB suchthat | a8, =1 and ] 6 p k(a B =0 sk
< m-1l). We put here Yy T oy and zg =-Xbo Bi' Obvi-

ously, ayi =y;a and pm-l(a)zi =z;a (a € B). Since
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X® = --b0 (mod (Xm + bO)R), it is easily seen that
-1 k

m = - -
) V4% 2=l and } AL 0 (0 <k <m2). Thus,

o+ b0 is H-separable in R by Theorem 1.2.
We are now in a position to state our first main theorem

Theorem 2.2. Let R = B[X; p]. Let £ =X"+

X a 3+ ¥ Xal + a, be in R(O)’ and S = R/fR.

Then S 1is an Azumaya A-algebra if and only if f 1is an

m-1

H-separable polynomial in R. When this is the case, we
have the following:
(a) The order of p is m and B/A is G-Galois.

(b) f=x"“+a0 (i.e.@a 4 = ... =a =0), and

1 3

a, is a unit in A.
(c) B is a maximal commutative A-subalgebra of S
with B®AS Y Mm(B) and S®AB N Mm(B) .
(d) If m 1is invertible in B, then H = A[X]/fA[X]

is a separable splitting ring for S.

Proof. Assume that S 1is an Azumaya A-algebra.

Since S 2B and S, 1is free, f 1is H-separable in R

B
by Proposition 1.1.
Next, assume that £ is H-separable in R. Then

by Lemmas 1.3 and 1.4, we see that the order of p is m

and a, is a unit in A. Since fR = Rf, we have aa; =
aipm-i(a) (aeB, 0<1i<ml) ([6, Lenma 1.3 a)]). Hence,
a,l - a,p" = =0, which implies a; =0 (1 <1 gml) by

Lemma 1.4. Now, we shall prove that B/A is G-Galois.

Let y = xm-ldm_l + ... +Xd, +d, bein R such that

ay = ya (a € B). Then there holds pm-i(a)di = dia (0

<
<m-l). Hence, by Lemma 1.4, we have di =0 (1<1icz<



63

<mwml), i.e. y=4d.. This shows VS(B) = B, Let z =

0
chm_l 0 be in R such that pm-l(a)z = za (a € B).
Then in the similar way as above, we have z = Xcl. Let
Yi» 25 € R be as in Theorem 1.2. According to the above,

+ ... + ¢

we may assume y = a, and z, = XBi (ai, Bi € B). Since

= -3, (mod fR), we have
- m-l S -
1) i yix z, = zi age;By (mod £R)
and
- k. _ Jktl k+l
0 = I i yix z, F X I i P (ai)Bi (mod £R)

(0 <k <m-2). Then, we have ) i ai(_aOBi) =1 and

) ipkﬂ'(ai)(— agB;) =0 (0 <k £m-2). Thus, B/A is
G-Galois. Since VS(B) = B, it is now clear that C(S)
= A. Hence S 1is an Azumaya A-algebra, because both
S/B and B/A are separable extensions. Now the latter
half of (¢) 1is immediate by [3, Proposition 3.1] or [18,
Lemma 1(3)]. Finally, we shall prove (d). If m is

invertible in B, then f = X" +a, isa separable poly-

0
nomial in A[X] by [6, Theorem 2.2]. Moreover, H may be
considered as an A-subalgebra of S, and then VS(H) = H.
Thus, H 1is a separable splitting ring for S by [2,

Theorem 5.5 p.64]. This complites the proof.

Now, by making use of Proposition 2.1 and Theorem 2.2,
we can improve the results of G. Szeto [19,20] and G. Szeto
and Y. F. Wong [21]. First, the following contains
[20, Lemma 3.1 and Theorem 3.2] (or [19, Lemma 2.1 and
Theorem 2.2]).

Corollary 2.3. The following are equivalent:
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(a) The order of p is m and B/A 1is G-Galois.

(b) R contains an H-separable polynomial of degree

(") <+ a, is an H-separable polynomial in R
for some ao in A.

(" o+ a, is an H-separable polynomial in R
for every unit a, in A.

(c) R(O) contains a polynomial f of degree m
such that R/fR is an Azumaya A-algebra.

(c") R/(Xm + ao)R is an Azumaya A-algebra for some
a, in A.

(c™) R/(Xm + aO)R is an Azumaya A-algebra for every
unit a, in A.

When this is the case, (R/(X" + aO)R)QbAB 0y Mm(B)

and BébA(R/(Xm + ao)R) g:Mm(B) for every unit a, in A.
The following is an sharpening of [20, Theorem 3.5]
(or [19, Theorem 2.5}) and [21, Theorem 3.6].

Corollary 2.4. Assume that the order of p is m.
Let X" + a; bein R.
and B® A(R/ <™ + aO)R) is an Azumaya B-algebra, then
B/A 1is G-Galois.

If m is invertible in B

Proof. Since m 1is invertible in B, A 1is a di-
rect summand of B. Hence, by [2, Corollary 1.10 p.45],
R/(X™ + aO)R is an Azumaya A-algebra. Thus, B/A is
a G-Galois extension by Corollary 2.3.

The next sharpens [21, Theorem 3.5].

Corollary 2.5. Let f=x"+x"'a  +...+a

1 0
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be in A[X]n R(O)' If (A[X]/fA[X])GbA(R/fR) is an
Azumaya A[X]/fA[X]-algebra, then the order of p is m

and B/A is a G-Galois extension.

In the rest of this section, we assume that the
order of p is m > 2, and B/A 1is a G-Galois extension.

Then the following is well known.

Lemma 2.6. Let beB, and 1< j <ml.
If (pJ(a) - a)b=0 for all ae B, then b = 0.

Now, we are able to determine all the separable

polynomials in R.

Proposition 2.7. Let g be any separable polynomial
in R. Then the following hold:
(a) If deg g =1, then g = X.

(b) If deg g > 2, then there exists a separable
k k-1

polynomial go(t) =t +t oo, t ...ty in A[t] such
that c0 is a unit in A, and g = gO(Xm) or g = XgO(Xm).
_on n-1
Proof. Let g=X + X dn 1 + ... + d0 . Since

gR = Rg, we have adi = dipn-i(a) (a £ B). If g=X+ dO’

then g = X by Lemma 2.6. Hence, we may assume n > 2,
By [4, Lemma 1], there exist o, B € B such that d,a -
dOB = 1. Hence we have dl #0 or dO # 0. If d0 #0,
then (pn(a) - a)d0 =0 (a ¢ B) implies that pn =1

(Lemma 2.6), and therefore m|n. We put here n = km.

Then by Lemma 2.6, we can easily see that g = ka +
(k-1)

X" ey *

unit in A. Similarly, Iif dl # 0 then we can write

ces + chl + o (ci = dmi)’ and ¢, is a

g = x(Xmj + Xm(j-l)cj_l + ... + ca), and c6 is a unit
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= mj (j_l) 1
mi+1)' We put here h = X" + = cj_1 +

Then, g = Xh = hX and hR = Rh. Hence, h

in A (ci =d

ees + c6 .
is a separable polynomial in R by [12, Theorem 1.10].

Therefore, we may consider the case g = ka + Xm(k-l)ck_l

+ ... +cy.  We put S = R/fR. Since S/B and B/A are

separable extensions, S 1is a separable A-algebra. It

is easily verified that C(S) = (A[Xm] + gR)/gR g:A[t]/goA[t],
where gy = tk + tk—lck_l + ... + ¢y € Alt]. Since S 1is

a separable A-algebra, S is an Azumaya C(S)-algebra and

c(s) g:A[t]/goA[t] is a separable A-algebra by [2, Theorem
3.8 p.55]. Thus, &g

and c0 is a unit in A.

is a separable polynomial in A[t]

Concerning the converse of Proposition 2.7, we have

the following

Proposition 2.8. Let gy(t) = e+ tk_lck—l + ...

be a separable polynomial in A[t] such that ¢, is

+C0 0

a unit in A. Then, both go(xm) and Xgo(xm) are
separable polynomials in R.

Proof. Obviously, both go(Xm) and Xgo(xm) are
contained in Ry, . Since R/Xgo(Xm)R ~nB @ (R/go(Xm)R),
it suffices to prove the separability of go(xm). We put
g = go(Xm) and S = R/gR. Since ¢y is a unit in A,
us= X"+ gR is also unit in S. It is easily verified
that V. (B) = B[u] ;B[c]/goB[c] and C(S) = Alu] &
A[t]/goA[t]. Let f : B[u] - B[u] be the map defined
by ﬁ(X:luibi) = zj_uip(bi). Then, f is an A[u]-auto-
morphism of order m. Since B/A is G-Galois, B[u]/A[u]
is also a <f>-Galois extension. Consider the skew poly-
nomial ring B[u][Y; 6] defined by BY = YF(8) (8 € B[u]).
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Then, since Y"- u is contained in Blu][Y; 6](0) and

u 1is a unit in A[u], B[u][Y; ﬁ]/(Y - w)B[u][Y; 6] is
an Azumaya A[u]-algebra by Corollary 2.3. It is easily
seen that S is B[u]-ring isomorphic to

Blu][Y; ﬁ]/(Ym- u)B[u][Y; £]. Hence S 1is a separable
Af[u]-algebra. Since A[u] 1is a separable A-algebra, S
is a separable A-algebra. Therefore, S/B 1is a separable
extension, which means that g 1is a separable polynomial
in R.

3. Throughout this section, B will mean a commuta-
tive ring, R = B[X; D], and A = BD. First, we state

the following lemma.

Lemma 3.1. Let f be in R(O)’ deg f = m, and
= R/fR. Then the following are equivalent:
(a) S 1is an Azumaya A-algebra.
(b) f 1is an H-separable polynomial in R.
m-1
(c) There exist Yi» 24 € B such that Xi (yi)zi

=1 and Z pk (y)zg =0 (0 < k < m-2).

When this is the case, B is a maximal commutative

A-subalgebra of S with B®,S x M (B) and s®,B ~ M_(B).

Proof. (a) > (b). Since S 2 B and SB is free,
f 1is an H-separable polynomial in R by Proposition 1.1.

(b)Y € (c). By Lemma 1.6, we can easily see that
VS(B) = B. Hence the assertion is obvious by Lemma 1.5.

(b) > (a). By Lemma 1.6, we have VS(B) = B, and
hence C(S) = A. Then by [18, Lemma 1(3)], AB is f.g.
projective, B@AS N Mm(B) and S®AS s Mm(B)' Since AB
is f.g. projective faithful, A 1is a direct summand of B.

Thus, S 1is an Azumaya A-algebra by [2, Corollary 1.10 p.45].
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As an immediate consequence of Lemma 3.1, we have
the following

Corollary 3.2. Let f be in R(O)' If £ 1is an
H-separable polynomial in R, then so is f + a for every

a e A.
Now, we shall state the main theorem of this section.

Theorem 3.3. Let R = B[X; D]. Then, the following
are equivalent:

(a) R contains an H-separable polynomial of degree

(b) R(O) contains a polynomial £ of degree m
such that R/fR 1is an Azumaya A-algebra.

(c) (0) contains a polynomial f of degree m,
i € B such that z D™ (yi)zi =1
and z p¥ (y)z; = 0 (0 £ k < m-2).

(d) AB is a finitely generated projective module
’AB) = B[D] (i.e. Hom(AB ’AB) is
generated by the set {b2 | b € B} and D as ring).

and there exist Yir 2

of rank m and Hom(AB

Proof. (a) = (b)S (o). These equivalences have
been proved in Lemma 3.1.
(b), (c) >(d). Since fR = Rf, we have D" +
m-1

am_lD + ... + alD =0 and a, € A by [6, Lemma 1.6],

where f = X® + X -la -1 + ... + Xa1 + ao. Then the map

. - | -
f, : B+ B defined by f£,(b) §o i= 0 j+1D (by,) (a_ = 1)
is in Hom(AB, A), since D(fi(b)) 0. According to

(¢), we have

Lifyzg =T, (5 j= 0 J+1Dj(byi))z
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=1y ?-3 2541 b0 QP @ Gz
= m-l 3 Iypd-v v
=1 o0 2541 L 3o QD7 (D)2

-1
amb Zi.Dm (yi)zi =b (beg B).

Hence, B is f.g. projective. On the other hand,

m-1
) 3=0 #j+1

) j;é a0 1y DI pn e
m-1 Jynd=v v
Lo (2 254 (D7 (7))D7 (D).

=V v

£,(b) oI by, )

"

m-1
) v=0 (2 j=v j+1
m~1

= Zicb(zi)fi (¢ € Hom(,B, ,B)), and 1, D, ..., D

are linearly independent over B (Lemma 1.6), we have

Hence, fi = (J)Dj v(y ))D € B[D]. Since

Hom(,B , ,B) = B[D] = BB ® ... ®BD™ L. Now, we shall
show that AB is of rank m. Let P be a prime ideal of
A. Assume that B is of rank n. Let D be the

P
natural extension :1; D to BP (i.e. D = D@1). 'f:eti we
have Hom(APB , APBP) = BP[ﬁ] =B, ® BPD2@ e @BD .
The AP-rank of the left hand side is n~ and that of the
right hand side is nm. Thus, we have n = m, which
means AB is of rank m.
(d) > (b). Since Db = bD + (D(b)) (b € B), the
map ¢ @ B[x D] - Hom(,B, ,B) = B[D] defined by \p(z xid ")
2 (-D)*(d, i), 1s a B-ring epimorphism.  Then we have
R/Ker Y Hom(AB, B). Since AB is projegtive og rank
m, Hom(AB, AB) is an Azumaya A-algebra of rank m .
Hence R/Ker y 1is a projective B-module of rank m (cf. [1]).
Then by [11, Theorem 3], there exist a polynomial f in
R(O) such that Ker y = fR. Now, it is obvious that the

degree of f 1is m. This proves (b).
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Remark 3.4. Assume that B 1is of prime character-
istic p. Let f be an H-separable polynomial in R
of degree m. Then, in virtue of Lemma 1.6, it is easily
seen that m = pe and f 1is a p-polynomial of the form
e P
z 1=0 X bi+1 + b,. Hence, Theorem 3.3 contains the

0
result of S. Yuan [22, Theorem 2.4].

Corresponding to Proposition 2.7 and 2.8, we have

the following theorem.

Theorem 3.5. Assume that R contains an H-sepa-
rable polynomial f = X" + Xm—lam_1 + ... +Xa . Let
v : A[t] > R be befined by W(] , tidi) =1y fidi.

(a) ¥ 1induces a one-to-one correspondence between

A[t](o) and R(O)' .
(b) Let 8¢ be in A[t](o). Then g0 is a sepa-
rable polynomial in A[t] if and only if R/¢(go)R is a
separable A-algebra.
(¢) Let 8o be in A[t](o). Then ¢(go) is an

H-separable polynomial in R if and only if deg 8y = 1.

Proof. Obviously, ¢ induces an injective mapping

Let g be in R Since

int R . R
of A[t](o) nto (0) (0)
g, £ € A[X], there exist h, r € A[X] such that g = hr + r

and drg r < m. We shall show that h ¢ R r € A.

(0) and
Assume that there exists b € B such that bh - hb # 0 .
Since bg = gb and bf = fb, we have (bh - hb)f = rb -
br. However, since f 1is monic and deg r < m, we have
deg (bh - hb)f >m and deg (rb - br) < m, which is a
contradiction. Hence h 1is in R(O)’ and so rc = cr
(c € B). Then since 1, D, D2, cee ™1 are linearly

independent over B (Lemma 1.6) and deg r < m, we have
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r € A. By those above, we can easily verify that there
_ .k k-1

exist c, € A such that g=f + f ¢l + ... + fc1 + 5"
Thus, ¢ maps A[t](o) onto R(O)' This proves (a).

Let 8o be in A[t](o). We put g = w(go), S = R/gR
and u f + gR. Then, it is easily verified that VS(B)
= B[u] B[t]/gOB[t] and C(S) = Alu] & A[u]/gOA[t].
Let D : B[u] » B[u] be the map defined by B(} , uibi) -

Ly uiD(bi). Then, D 1is a derivation of B[u] and

e

B[u]D = A[u]. Consider the skew polynomial ring B[u][Y; D]
defined by BY = YB + B(B) (B € B[ul). Then h =7Y" +
Ym-lam_1 + ... +Ya, - u is contained in Blu][Y; ﬁ](O)'
Since AB is f.g. projective of rank m and Hom(AB, AB)

= B[D] (Theorem 3.3), we see that A[u]B[u] is f.g. pro—
jective of rank m and Hom(A[u]B[u], A[u]B[u]) = B[u] [D].
It is easily seen, S 1is B[u]-ring isomorphic to

B{u][Y; D]/hB[u][Y; DB]. Thus, S 1is an Azumaya A[u]-alge-
bra by Theorem 3.3. Now, assume that go is separable

in A[t]. <Then, since A[u] g,A[t]/gOA[t] and S 1is an
Azumaya A[u]-algebra, S is a separable A-algebra.
Conversely, if S 1is a separable A-algebra, then A[u]

is separable over A by [2, Theorem 3.8 p.55], and so

8o is separable in A[t]. This proves (b). Finally,
(¢) 1is obvious by Corollary 3.2 and Lemma 1.6.
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ON AUTOMORPHISMS OF SKEW POLYNOMIAL RINGS

Kazuo KISHIMOTO

1. Throughout this paper, A will mean a ring with
identity element 1, p an automorphism of A, D a deri-
vation of A, and N the union of all nilpotent ideals of
A. Further, R=A[X;D] (resp. R=A[X;p]) will means the
skew polynomial ring { Z;;O xiA} whose multiplication is

given by aX=Xa+D(a) (resp. ax=Xp(a)) for a ¢ A.

In [3, Th. 1], M. Rimmer proved the following theorem:

The A-linear map A[X;p] > A[X;p] defined by Xk -+

(21;;0 Xiai)k induces an A-automorphism if and only if

(L aip(a)=pi(a)ai for any ae€e A and 1i=0,1,...,n,

(2) a; is a central unit in A,

(3) a, are nilpotent for 1> 2.

In this paper, corresponding to the above, we shall
study on conditions for the A-linear map A[X;D] -+ A[X;D]

defined by Xk -+ (ZILO Xiai)k to be an A-automorphism.

For the details refer to [2].

2. Let S={s;; 1<i<k} be a set of nilpotent elements
_tk
of A. If sAcA = Zj=i Asy, then A,

ideal. Further Ak is a nilpotent ideal. Since l_\i=K§i

is a nilpotent ideal of K=A/Ai+l, we can see that Ai is

is a two-sided

nilpotent, by induction method. In particular, we have
S c N.

Let N be the set of natural numbers. It is known
that (N,N) ={(n,m); n, m ¢ N} has a linear order such
that (1,j) > (4',3') 4if 1) i+j > 1i"+3i" or 2) i+j=
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1'+3j' and i > i'. Thus we have the following

| A

i <k} be a set of

nilpotent elements of A. 1If s/Ac ? =1

Lemma 1. (1) Let S={si; 1

n

s. for all 1,
then S c N.

(2) Let S=={sij; l<i<h, 1<3<k} beasetof
nilpotent elements of A. If s jA c 211'12 p , then
S ¢ N,

3. In the rest of this paper, we assume that ¢ 1s an
A-linear map A[X;D] -+ A[X;D] defined by ¢(Xk) =

(Z:;O Xiai)k. It is easy to see that ¢ induces a ring
endomorphism if and only if ad(X) =¢(aX) for all a ¢ A.

Since

k k 1

ad(X) = i=0 X (Z (a)a ) and

i

¢(aX) = (Xa+D(a)) = X"a;a+D(a),

we have the following

i 0

Proposition 2. ¢ induces a ring endomorphism if and

only if
ky k-1

aja= ( )D (a)a d>1)

aoa+ D(a) =

(1)
i— D" (a)a
Suppose now that ¢ 1s a ring automorphism. Then there

exists Z?=o Xch (c‘_l € A) such that ¢(Z§|‘=O chj) =X.
Then {c,;

i’ j=0,1,...,n} satisfies the same identity as (i).
By (i) we can see that a (and c ) are central. Now

if o(X) = 304-Xal, then X ¢ ¢(X) = a04-c0a14-Xc1al+

2
X czald-...4-x cna1 shows that a; is a unit in A.

Combining this with (i), we can prove the following
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Proposition 3. Let @(X)==a04-Xal. Then ¢ is an

automorphism if and only if a; is a central unit in A

and aoa-aao=D(a)(al-1) for all a € A.

Henceforth, we assume m > 2. By (i), an easy induction

shows
m k k i
ey (D

Since cj also satisfies (ii), we have

(ii) Dr(ai)a= (a)D* (a a) (1>1,r20.

(111) D7(@0(epa= Ih Ihy o ).

. D" (ak)D (c)>»
and hence
m T m r
(iV) Zi=1 AD (ai)’ J =1 AD (C )9 E 12 AD (ai)'
Ds(cj) are twosided ideals (r, s 3_0)

4. In this section, we assume that ¢ i1s a ring
automorphism and D(N) < N. Then, by making use of Lemma 1,
(ii), (iii) and (iv), we can prove the following lemma.

Lemma 3. (1) 1If aicj (1 >1, j >1) are nilpotent

whenever i+j > h, then Dr(ai)Acj €N (r>0).
(2) a, c (1, 3 > 1) are nilpotent whenever i+j > 3).

_Tn m i i
By Lemma 3 and the equality X zj=0( ) 4=0 ¥ ai) <y
we can see that 1—alc1+d with d € N. Hence we obtain

a; and c¢ are units. Again by Lemma 3, we have

1

(aicl) "az =0 in A=A/N for i > 2. Thus we obtain

the following main theorem of this section.

Theorem 4. Suppose D(N) ¢ N. If ¢ is an automorphism
then
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(1) (i) is fulfilled,
(2) a, 1is a unit,
(3) a;, are nilpotent for i > 2, and therefore

1;152}5N'

{a

5. In this section, we assume that ¢ is a ring
endomorphism and D(N) ¢ N. We assume further that a;
is a unit. Then we can easily see that A[X;D]=A[Y;p,E],

where Y=(X-a a+aaa-1 and E is a (p, 1)-

-1
02 P 1%
derivation defined by a + zm Di(a)a a—1 We set d, =
i=1 » R i
a,a;l. Then &(Y)= e xld,. Now, by N we denote the
i"1° i=1 i’ ? 0
ideal gen-rated by {Dr(ai); i>2, r>0}. Then Ny =
© m r
zr=02 =2 AD (ai) by (ii). Hence if a, are nilpotent for

r . o -1
i > 2, then we have D (di)(-D (aial ) D(No) <Ny <

(r > 0). Moreover, for any finite subset {Sj’ Zijit} of
t j. 2%t i u
A,Zj=2 (Y) s Zi=2}(si+zi= xt(yt

dijeN

s,) where

j=2 915

0° Noting these above, we can prove the following

Theorem 5. (1) If a, are nilpotent for i > 2, then

is a monomorphism.

(2) I1f N0 is nilpotent, then ¢ 1is an A-ring

automorphism.

Proof. (1) Let z;_o vds, ¢ R and ¢(z;‘=0 vis )=0

h| ]
Thten we have so—sl'—O and 0= s;+ z
zj=2 (1+d1j)sj for some dij
see that 8y= ... =st=0'

(2) According to (1), it remains to show that ¢(R) =

R. Since RNO is an ideal of R and X=¢(Y) (mod RN

j=2 i:l 537
€N (i > 2). Hence we can

o
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we have R= z:=0 dJ(Yi)A+RN0. Hence it is known that R=

o i
im0 ®(YDA.
Combining L.emma 1 with Th. 5 (2), we obtain

Corollary 6. If A 1is Noetherian and a, are nilpotent

for 1 > 2, then ¢ 1is an A-ring automorphism.

6. In this section, we prove the following proposition.
Proposition 7. If A 1is torsion free, them D(N) < N.

Proof. Let I be an ideal of A with I"=0. Obvi-

ously, D(I)+I is an ideal of A. 1If S1s S5 «ee 5 S

- n = a0
are elements of I, then 0=D (5182"'sn)"n!D(Sl)D(SZ)

D(sn)-s for some s € I. Hence n!D(I)n_g I. Thus, we
3
obtain (D(I)+I)" =o0.

By the aid of Prop. 7, we can prove the following

Theorem 8. Assume that A 1is torsion free. Assume
further that (i) is fulfilled, a

(1 > 2) are central nilpotent elements. Then ¢ is an

1 is a unit and that ai

A-ring automorphism.

Remark. Let A and B be rings with an isomorphism
$:A~+ B, and let p and n be automorphisms of A and
of B, respectively. By making use of the characterization

of an A-ring automorphism of A[X; ], M. Rimmer proved

the following theorem [3, Th. 3]: The map X -+ Z?=0 Xibi
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(bi € B) extends ¢ to an isomorphism A[X;p] =+ B[X;n]
if and only if

#)) b{?p(a) = ni?(a)bi for any ae¢ A and i ="
0,1, ... ,n

(2) b is a unit

1
(3) bi are nilpotent for i = 2.
In a similar way, we can give conditions for the map

X -+ 22;0 Xibi to extend ¢ to an isomorphism A[X;D]

+ B[X;E] where E is a derivation of B. For the details,

refer to [1].
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ON PROBLEMS OF NINOMIYA AND OF TSUSHIMA

Kaoru MOTOSE

Let G be a p-solvable group with a p-Sylow subgroup
P of order pa, K an algebraically closed field of
characteristic p, KG the group algebra of G over K,
and t(G) the nilpotency index of the radical J(KG) of

D. A. R. Wallace [7] proved an inequality: t(G) >
a(p - 1) + 1. Along with this inequality, Y. Ninomiya [3]
presented the next problem: If t(G) = a(p - 1) + 1, then
is P elementary ? Recently, Y. Tsushima [5] presented
the following problem: If E is a p'-subgroup contained
in the center of G, then is t(G) equal to t(G/E) ?

In case p = 2, these problems were answered in the
negative (see [3] and [2]). In this paper, we shall give
negative answers to these problems for every p.

We set q = pr and % = (qp -1)/(q -1). Let F
be a finite field of qp elements, A a generator of the
multiplicative group of F, n = lq-l, and A = <n>. We
define subgroups of the symmetric group on F as follow:

k
H=1{x+ax?! +b|a€A, beF, k=0,1, ... , p - 1}
k
and M={x+ax? [aeA, k=0,1, ..., p - 1}.
The following Proposition 1 gives a negative answer

to Ninomiya's problem [3].

Proposition 1. t(H) = (rp+ 1)(p -1) +1 and a p-
Sylow subgroup of H is not regular.

Let S be a direct product of two cyclic groups <s>

RG.
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and <t> which have the same order . Let ¢ and ¢

be automorphisms of S defined by ¢(sntm) = Sn+mtm

p(s"t™ = 8", Then %=1, P =1 and ¢v = vl

and

Hence vn > ¢, 0> w-l defines a homomorphism of M into
the automorphism group of S, which can be regarded as that
of H. Let G be a semi-direct product of S by H with
respect to this homomorphism.

The next gives a negative answer to Tsushima's problems
[5, Problems 3, 4, 5].

Proposition 2. s 1is a p'-element contained in the

center of G and t(G) - t(G/<s>) > r.
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ON THE COHOMOLOGY OF FINITE GROUPS
Yoshito OGAWA

We shall be concerned with the principal block Bo
of a group algebra kG, where k 1is a field and G is a
finite group. Throughout of this note M means a finitely
generated left kG-module. ﬁi(G,M) will be the Tate group,
while Hi(G,M) the ordinary cohomology. In this note we

shall study three problems on the cohomology of finite

groups:

(A) Suppose M is simple and lies in B Is M

0.
projective, if H'(G,M) = 0 for all i » 07
(B) Is M projective, if Hl(G,Homk(M,M)) =0 for

all i »0?

(C) suppose M is indecomposable and lies in By

Is M projective, if Hi(G,M) =0 for all i »O0?
Main object of this note is to show that the answer
to (A) is affirmative, if G is p-solvable with a Sylow p-
subgroup Gp abelian(Theorem 1). Moreover, given M as
in (A), we shall compute Hi(G,M), when G is an extension
of a eyelic group K by an abelian group A (theorem 2).
Now we explain the background of these problems. Let

R be a finite-dimensional algebra over k and L be a
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finitely generated left R-module. Nakayama [5] proposed

the following conjecture:
(N) If dom dim R = o, then R 1is QF.

Tachikawa [8] proposed another conjecture which would

be a consequence of (N):

(T) If R is QF and Ext;(L,L) =0 forall i >0,

then L 1is projective.

Elementary diagram chasing then tells us

Proposition 1. The answer to (B) is affirmative, if

(T) holds when R =kG and L = M,

1. Now we make a few elementary remarks concerning
(A), (B), (C). We will assume char(k) =p > 0 and Gp #
1, for otherwise M 1is always projective. We recall that
there is a kG-projective resolution lying entirely within
B

0" Therefore, if M is indecomposable and not in BO’ we

have Hl(G,M) = 0 for all integers 1i. From this we obtain

Lemma 1. The following statements are equivalent:

(a) M is projective.

(b) Every indecomposable direct summand of M 1lying
in B0 is projective.

(¢) ﬁ°(c,ﬁomk(M,M)) = 0.
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Consequently we have

Proposition 2. If the answer to (C) is affirmative,

then the same is said of (A) and (B).

Tachikawa [8] showed that (T) is true for R which
has finite representation type. Hence, from Proposition 1,
the answer to (B) is affirmative if Gp is cyclic.

Including this we have

Proposition 3. If Gp is cyclic or generalized

quarternion, the answer to (B) is affirmative.

A proof is given by using the periodesity of the
cohomology of G and Lemma 1.

Further Tachikawa showed that, ExtiG(M,M) = 0
implies that M is projective if G is a p-group. As a

refinement of this we have

Proposition 4. Suppose G is p-nilpotent and M is
indeconposable lying in Bo. If Hl(G,M) = 0 for some

integer i, then M is projective.

To prove this, by the five-term exact sequence of
Hochschild and Serre, we may assume that G is a p-group;

in this case M 1is free.
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Corollary 1. Answers to (A), (B), (C) are affirmative

for a p-nilpotent group.

This follows immediately from Proposition 2. For (A)
see also (3) in Section 2.
In the calculation of cohomology (Theorem 2) we will

need the following.

Lemma 2. Suppose G is an extension of a group K
by a p-nilpotent group A. Let (E,H) be the Hochschild

and Serre spectral sequence such that E;’s = H (A,HS(K,M))

0,s
2

for all 0<£i<n and

and H" = H*(G,M). Given n 21, if E
i,o
2

there is an exact sequence 0-—)Er21’0—) - Eg’n—)

g+l,0 3 Hn+l.

=0 for all

0 < s < n, then we have H'~ E

E
This follows from Proposition 4 and [3, XV, 5.17].

0

Corollary 2. Further, if H~ = 0, then we have H' =

0 forall 0<i<n and H“zEg’“.

2. From now on we consider only (A). k means GF(p)
and M will be given as in (A). (A) is also a restatement
of a problem of Stammbach [6] :

Problem. Is there an i » O such that H*(G,M) # 07

A few results have been known about this problem:
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(1) A theorem of Swan [7] shows that H (G,k) # O
for an infinite number of values of i » 0, where k is

regarded as a trivial kG-module.

(2) Gaschiitz (ef. [6]): If M is an abelian

complemented p-chief factor of G, then Hl(G,M) # 0.

(3) I1f G is p-nilpotent, then B, consists of .k

only and Hl(G,k) ¥ Hom(G,k) # O.

Theorem 1. If G 1is p-solvable with Gp abelian,
then there is an i (1 s 1i < lG:Op,p(G)I) such that
]
H21(G,M) # 0. Further, if Gp is an elementary abelian 2-

group, H21 can be replaced by H*.

Toprove this it suffices to consider the following
typical situation. Given a faithful representation V of
p'-group H over k, let G be the semi-direct product of
V by H. Then M is a simple kH-module. Since V¥ =
Homk(V,k) is a faithful representation of H over k,
there is an i (1 £ i < |H|) such that M* is a kH-sub-
module of Si(V*) a symmetric power of V*, (This was noted
by Professor S.Endo. In fact H is a direct summand of
;ggsi(v*).) It also follows from [2, Theorem 9.2 and Theorem
10.2] that Si(V*) is a kH-submodule of Hzi(V,k). Thus

Homk(M,M) s MY RAMS H21(V,k) oM H21(V,M). Considering
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the set of invariant elements of these groups, we have
0 # HomkH(M,M) € H?I(V,M)H. S%nce V= Gp~d G, there is
an isomorphism H21(V,M)H= H21(G,M) [3] and therefore

w?i(g,M) # o.

Remark. The case where Gp is cyclic shows that the

bound |G:0pr(G)| cannot be improved (see Theorem 2).
]

3. We end this note with the following calculations
of cohomology.

Let G be an extension of a cyclic group K by an
abelian group A. Suppose Kp # 1. Kp/(Kp)p may be
regarded as a l-dimensional kG-module, with G-action given
by inner automorphisms. We denote this by M. Let m be

the least positive integer such that M(J) =M2... 8 M

J
™ k. Then we can directly show that simple kG-modules lying
in B, are M(l), e M(m), vhich is a special case of

0
Basmaji [1].

Theorem 2. Notations being as above, the cohomology

(1) (m)

of G with coefficients in M ™', ... , M is given as
follows:
(i) The case where Ap =1, For 1€ J<m and for

all integers i, we have

“in 3y Tk |i= 25-1,25 (mod 2m)
H(G,M™ ") = {0 [otherwise ]
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(ii) The case where A_ # 1. For 1< J $m-1 we have

ut(6,u09)) ={g ggi éjfl?-"a) and HY(G,k) # O.

To compute Hi(G,M(J)), we may assume K = Kp by the
five-term exact sequence of Hochschild and Serre. From
the definition of the conjugation homomorphism we have the
following isomorphisms of kA-modules: for 1 € J €m and
for all integers 1i, ﬁQi-l(K,M(J)) x ﬁ2i(K,M(J)) & M(t),
where 1< t<m and t = j~i (mod m). Then (i) follows
from [3], since K = Gp 96, If 1<j<ml, (ii) is a
direct consequence of Corollary 2. Finelly Hl(G,k) #0

is clear.

Remark on (ii). If generators and relations of G
are given, Hl(G,k) is easily computed. Also, by using the

(3),

Hamada resolution Dﬂ, ve have determined Hl(G,M for
all 1< j<m and forall 0 £i < 2m-1, vhen A is

cyclic.

Detailed proofs will be given in a subsequent paper.

References

[A] B. G. Basmaji: Moduler representations of metabelian
groups, Trans. Amer. Math. Soc. 169 (1972), 389-399.

[l H. Cartan: Seminare Cartan 1954-55, Algébres d'Eilenberg



90

E]

]

Bl

[l

(8]

Maclane et homotopie, Benjamin, New York, 1967.

H. Cartan and S. Eilenberg: Homological Algebra,
Princeton Univ. Press, Princeton, N.J., 1956.

S. Hamada: COhomolagy of generalized dihedral groups
(in Japanese), Sfigaku 16 (1964/65), 106-10T7.

T. Nakeyama: On algebras with complete homology, Abh.
Math. Sem. Univ. Hamburg 22 (1958), 300-307.

U. Stammbach: Cohomological characterizations of finite
solvable and nilpotent groups, J. Pure and Applied
Algebra 11 (1977), 293-301.

R. G. Swan: The nontriviality of the restriction ﬁap

in the cohomology of groups, Proc. Amer. Math. Soc.

11 (1960), 885-887.

H. Tachikawa: Quasi-Frobenius Rings and Generalizations,
Lecture Note in Math. 351, Springer-Verlag, Berlin,

1973.

Tokyo Metropolitan University



91

ON SOME INVARIANT SUBRINGS OF POLYNOMIAL
RINGS IN POSITIVE CHARACTERISTICS

Haruhisa NAKAJIMA

Introduction, Let k be a field of characteristic
p and G a finite subgroup of GL(V) where V is a finite
dimensional vector space over k. Then G acts naturally
on the symmetric algebra k(V) of V. It is well known
that the ring k(V)G consisting of all invariant polynomials
in k(V) under this action of G is an affine normal domain.
We now consider a chain of conditions
polynomial ring —) hypersurface —) complete intersection
—> Gorenstein —) Cohen-Macaulay —) Buchsbaum
on affine rings. We have already known necessary and suffi-
cient conditions on G for the first, fourth, fifth or sixth
condition to hold for k(V)G if p=0 or (IGIl, p)=1
(ef. [2, 3, 11, 16, 19]). For hypersurfaces or complete
intersections, there are partial results which relate to semi-
invariants of finite groups (cf. [17, 18, 20]). But we do
not have such characterizations in the case where the order
of G is divisible by p. For example there exist many
finite groups G such that k(V)G are not Buchsbaum rings.
In this paper we shall try to study the local properties
and a(*) of invariant subrings in positive characteristics
(for definition of a(+), see [8]).

§1. Cyclic quotient singularities. Let G = (g5%
Z/me be a group of automorphisms of a finite dimensional
vector space V over an algebraically closed field k of
characteristic p>0. Then G acts naturally on an affine
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variety V which is associated with the k-space V and
we denote by V/G the quotient variety of V under this
action of G. Obviously V/G has a singularity if and

only if dim v® £ 4im V - 2. Furthermore we can show the

following theorem :

Theorem 1.1 (cf. [5]). If x is the closed point of
V/G induced from the origin of YV, then

. R .
depth V/G,x " mm{dlm V' + 2, dim V} .

Especially V/G is a Cohen-Facaulay (consequently a Goren-
stein) variety if and only if dim v¢ 2 qim v - 2.

Proof, We show this by induction on dim V., [Let v
be the dual module of V and choose a nonzero element y
from VG. Then, from the short exact sequence
0 — x(V) - k(V) —» k(v') — 0

of kG-modules, we get a long exact seguence
0 — k(T)® —> k(T)f — k(v )* — 1'(c, K(T))

* —B'(G, k(7)) —> H'(G, k(V!)) —> -« - -

of cohomology groups, where V' denotes the quotient module
V/ky. This can be regarded as a sequence in the category
of finitely generated k(V)G-modules. On the other hand,
since G is unipotent, we can construct a transitive action
of Ai on the set consisting of closed points in the closed
subvariety of V defined by the ideal of k(V) generated
by (g - 1)V which is compatible with the action of G.

Here r = dimV - dim (g - 1)V. Thus it is easy to see that

5(e, k(v')), = B, k(v')),, (1% 1)

for w, w'gsupp Hi(G, k(V'))(\{closed points of V/GY and
(G, k(T)), = B (G, K(T)),, (1% 1)
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for 1z, z'€supp Hi(G, k(V))(\{plosed points of V/G}'.
Because Cohen-Macaulay loci are open with respect to Zariski
topology, Hi(G, k(Vv')) and Hi(G, k(V)) (i 2 1) are Cohen-
Macaulay k(V)G-modules. Let us consider the long exact
sequences of local cohomology modules

¢ oo = BE(K(T)) — E(k(T)F) — Bic,) — - - -
)G

. o ——->Hi(c1) — vi k(")) — Hi(cz) —_—

s e = H(C,) —> B(R'(6,k(T)))= HL(C,) —> - - -

with support {x} , where Ci are naturally defined by
cutting the sequence (X). Then our assertion follows from
this, since

depth k(v')° = min {ain V'€ + 2, aim v}
by the induction hypothesis,

Remark 1.2, The completion <§V/C < is a unigue
Ty
factorization domain, if V 1is the regular representation
of G (cf. [6]). Griffith has proved in [ 9] that

c1( q}/H,x) = 01( éiJ/H,x)

if a linearly reductive affine algebraic group H acts
linearly on an affine space U defined over an algebraically
closed field.

Proposition 1.3 (cf. [5]). If H is a finite group
of automorphisms of a vector space V, then
2 *
depth (Bv/H,x £ dim VH + 2,

where x denotes the closed point of V/H induced from the

origin of V.

Proof, It is easy to see that
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Cifa,x © Cvp,y
for any closed point y which is a specialization of the
point of V/H induced from the ideal of k(V) generated by
W, Here V is the dual module of V and W 'is a kH-
submodule of V such that VM is a trivial kH-module with
dim V/W = dim VH. Hence, using the upper semi-continuous
theorem, we deduce from the Serre condition S
variety V/H the inequality of (1.3).

2 of the normal

Recently Almkvist and Fossum (L11) have determined the
Hilbert series of k(V)® when G & 2/p2 and V are inde-

composable,

§2. Unipotent groups. In this section k stands for
the prime field of characteristic p>0 and R denotes the
symmetric algebra k(V) of an n-dimensional vector space
V over k.

(v, G), which is called a couple, means a pair of a
G-faithful kG-module V such that V/VC is a non-zero
trivial kG-module (consequently G is an elementary abelian
p-group). The dimension of a couple (V, G) is defined to
be dim V/VG. We say that (U, H) is a subcouple of (V,
G)y if H is a subgroupof G and U is a kH-submodule
of V. Furthermore, if subcouples (Vi, Gi) (1%i35m)

. G e c G
of (V, G) satisfy G = ® 245, G » VSV, &V J for all

A . . G G
1€i, jfm with i % j and VAV = ® gi8m Vi/V , We say
that (V, G) decomposes to them. The decomposable or
indecomposable couples are defined in the natural way.

Lemma 2.1. If a couple (V, G) decomposes to (Vi,
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G;) (1% i%m), then the following conditions (1), (2) are
equivalent

(1) B isa polynomial ring.

(2) RiGi (12 i%*m) are polynomial rings where each
Ri is the symmetric algebra of Vi.
If (1) and (2) are satisfied, then .

a(8°%) = :E a(B°1) + m(n - 1) - dim V° .
12i%m

Proof. For any couple (U, H), we can easily show
that k(U)H/(UH)H is a polynomial ring. On the other hand
the natural kG,-epimorphism V ——%'Vi induces the commuta-

i
R0 == g Gi
1§ /l
©

of k-algebras, The assertion follows from these facts.

tive diagram

The next theorem, which has been proved in [12] , is
1
fundamental in the theory of invariants of reducible groups

over finite fields.

Theorem 2.2. Let (V, G) be an indecomposable couple.
Then E° is a polynomial ring if and only if (V, G) is one

dimensional.

Using (2.2), we can completely determine abelian groups
G such that RG are polynomial rings (cf. [12]).

Theorem 2.3, Suppose that G is an abelian group ge-
nerated by pseudo-reflections in GL(V) and the order of G
is divisible by p. Then RG is a polynomial ring if and
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only if the ka—module V defines a couple (V, Gp) which
decomposes to one dimensional subcouples. Here Gp denotes
the p-part of G.

Rg is not always a Cohen-Macaulay ring even if G is

an abelian group generated by pseudo-reflections in GL(V).

Example 2.4. Let S = k(@

1515241 Kg) (@2 1) and

let ei3 (i ¥ j) denote elementary matrices in GL2d_1(k).

Suppose that G is a subgroup of GL2d-1(k) generated by
the set

{ed+1 19944227 *** 7 2ao1ae1? Sarrat o0 * C2aqa o

The elements of G act on S in the following way ;

eg(X,) X,
: = (g54) | ¢
&(Xpq_4) X241
for g = (gij) of G. Clearly G is an elementary abelian
p-group generated by pseudo-reflections in GL(®1§iﬁ2d-1 kXi),

but SG is a Cohen-Macaulay ring if and only if d<4., For

the sake of simplicity let us consider the case of d = 4.
We assume that SG is a Cohen-Macauvlay ring and will show
a contradiction, Put P = SX, +SX, and N (resp. H)
denotes the inertia‘group of P (resp. SX, + SX, + SXB)'

It is not difficult to see that SG/PG is normal.  Then
we have SG/?G = (SN/PN)G/N and an exact sequence
o —H'(c/N, P') — H'(c/N, SV)
. t = defi
of cohomology groups Put h e54'+ e64-+ e74 and define

A tobe 1+h+ ...+ 0P, Obviously (1 -h)(PH)p =0

and (1 - h)s*OKer AONPT = (1 - n)PE,  Let U, = XsP -
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X p'1x5, U, = %P - x P‘1x6 and Y=U, -U.. Then Y is

1 2 17 T2
contained in (SH)p and so (1 - h)YE(1 - h)(SH)p('\Ker A

AP, Ve see that (1 = h)Y is non-zero, whion is a contra-

diction.

Proposition 2.5. Let W be a kG-submodule of V
and let H denote the inertia group of (W) under the
natural action of G, If RG is a polynomial ring, then
R and RG/(W)G are polynomial rings and (W)H is genera-
ted by (W)G as an ideal of RH.

Proof. By the definition of H we know that (w)H
is unramified over (W)G. On the other hand we easily see
that (k 2 RH)M > (k 2 RH)N, for any maximal ideals M,

M' of k 2 R which contain (k - W)H, where k denotes

the algebraic closure of k. RH(W)H is a regular local

ring, and hence RII is a polynomial ring. From Hironaka's
lemma, B is a graded free RG—module of rank [G : H].
Clearly H is a normal subgroup of G, Since G/H acts
faithfully on RH/(W)H and RG/(W)G is contained in (RH/
(W)H)G/H, RH/(W)H is also a graded free RG/(W)G-module of
rank [G : H]. This implies that (w)H is generated by
(w)G as an ideal of R', Because H acts trivially on
VAW, RH/(W)H is always a polynomial ring. Therefore RG/

(w)G is also a polynomial ring.

Suppose that G is a p-subgroup of GL(V) and X =
{¥;  1€T } ve a k-basis of V. The set X is said to
be G-admissible, if there is a family {Ij : 1245 n}
of subsets of I with Ij = Ij+1 such that
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) kxi(1sjsn)

i€I,
J

are kG-submodules of V., We introduce order in the set of

all G-admissible k-bases of V defined as ; X #Y if

T|'|Gxi| = T 1oy,

i€l iel
Further we set

ag(V) = - mind T[ jox; : % -{%;} is a mininal '}
i€l G~admissible basis of V

Proposition 2.6, Let V = vn‘.')- . -'3v1 3v° = (0)

be a composition series consisting of kG-submodules. The
following conditions are equivalent :

(1) B isa polynomial ring.

(2) There exists an n-dimensional graded polynomial
subalgebra S = k[f1, cee ,fn] of RG with
deg £. |G|
1£i3n *
such that each (Vi)(\S is generated by {,fj : 138 j= i’}
as an ideal of S, where fi are graded elements.

Using (2.5), we can prove this (cf. [13)).
The purpose of §2 is to state the next result, which
is a generalization of (2.2).

Theorem 2.7. The following conditions on (a p-group)
G are equivalent :

(1) R® is a polynomial ring.

(2) There is a G-admissible k-basis {X, : ier §
of V which satisfies

|| |GX,] =1C] .
i€ i
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In the proof of (2.7), (2.2) plays an essential role
(ef. [13]).

Corollary 2.8. Suppose that RG is a Cohen-Macaulay
ring. Then aG(V) s a(RG) and the equality holds if and

. G . .
only if R 1is a polynomial ring.

This follows immediately from (2.7).

§3. Relative invariants, Let R = @ be a

i®o Ri
noetherian factorial graded integral domain over a field Ro
= k of characteristic p and let G be a finite subgroup
of Aut R whose elements preserve the graduation of R.

For a prime ideal P of R, I(P) stands for the inertia
group of P under the natural action of G. Clearly I(P)
is equal to l(f), where P is the maximal homogeneous ideal
of R contained in P, If ht(P) = 1, T(P) denotes the
maximal subgroup of I(P) which acts trivially on a genera-
tor of P, and let {I& :1%£3i%n7} be the set consisting
of all prime ideals such that ht(Pi) =1 and ;(Pi)/g(Pi)

is non-trivial, The integers e, = ll(Pi)Ag(Pi)l (1$4i¢%

n) are said to be orders of generalized reflections in G.

Exchanging indices of Pi’ we may assume that

) ep, = o) GP, .

1€i%n 1£ifm
Since l(Pi) = Efﬁi) and R is a noetherian factorial inte-
gral domain, we can choose irreducible homogeneous elements

M, from R such that Pi=$i=nm . Let D be the

i i

1=-cocycle of G defined by

g g(1liln Mi)/1J-Isn M,
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and for X€z'(G, x¥) put
f= = | |
X 1£i%n
where ti()_(') = inf{j 20 : j€2, X(g) = D(g)! .for all
gel(Pi) } . PFurthermore we put
Ry = {fen : g(f) = X(g)f for all g€G } ,

whose elements are known as X-invariants (invariants rela-

t, (X)
Mg

tive to X or relative invariants).

Proposition 3.1. The sequence
X
0-— H(G,k*) — 1'(G,K") —* (2/e,2,...2/e 2) — 0

is exact, Here H;(G, k*) denotes the set { X mod B1(G,

A

k*) : Tez'(, x*) with (%) = 0 (1
map t is defined by
t(X) = (t1('f) mod e,Z, ... ,tm(f) mod emZ).

i én)‘} and the

Proof, For an integer 1 = i *m let F be the

—I—'—_ M.
GP.=GP, i
i
Obviously F 1is a relative invariant of G and so it defines

homogeneous element

a 1-cocycle ?(io) of G, Then we can easily show that
g(F) = D(g)F and
{i:1€15n vith £, (¥(1 ) % o} = {i.1.

The assertion follows from this,
By (3.1) we get a generalization of [4].

Theorem 3.2 (cf. [14]). The following conditions on

a 1-cocycle X of G are equivalent :
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(1) Ry is a graded free RC-module.
(2) There is a unit ur of R such that upfy is

contained in Ri .
If (1) and (2) hold, then we have Ry = RGu)—(fi.

Assume that G acts trivially on k and we denote by
Gp a p-Sylow subgroup of G if p>0 and otherwise put
G, = {1). The set A(G) is defined to be the union of

Q(Pi) (1#£i2n) and B(G) denotes the set of all genera-

lized reflections (for definition, see [11]) in G.

Corollary 3%.3. Suppose that Gp is normal in G

and RGP is a Cohen-Macaulay ring. Then we have
G (o
a(R”) £ a(R"P) - [B(G)]| + |a(G)| .
Proof. By the Galois descent we see that RGP is a
factorial domain, and hence Rgp is a Gorenstein ring.
Using (7, 10], we have an isomorphism Ky ¥ (RGP)i,(a(RGP))

of graded RG-modules for some linear character X' of G/Cp
(where Ko is the canonical module of %),  The module
(qu)i' can be embedded in Rfy if X is the linear cha-

racter of G which is associated with Y'. Therefore the
inequality of (3.3) follows from (3.2).

Hereafter we will consider the following special case 3
Let R be the symmetric algebra k(V) of a vector space V
which is finite dimensional over k and let G be a finite

subgroup of GL(V).

Corollary 3.4. Suppose that (|G|, p) =1 if p is
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positive. Then we have
a(RC) £ - (dim Vv + | B(G)] - 1).

The equality holds if and only if RG is a Gorenstein ring.

Proof. By the result of Watanabe [19] we see that
KeG %'Rdet_1(a(R)) as graded RC-modules. But there is a
natural embedding Rdet_1(a(R))C;R(a(R))fdet_1 which preser-

ves the graduations. From the definition of a(RG) and the

equality deg f = | B(G)|] - 1, we deduce that

det-1
a(HG)

113

a(R) - deg fet-1

- (dim v + | B(G)]| - 1).
By (3.2) B¢ is a Gorenstein ring if and only if e

det=1
= Rdet'1' Hence the remainder of this corollary is evident.

In [7] Goto has already obtained (3.4) with the addi-
tional hypothesis that the ground field k is the complex
number field C, using some properties of Hilbert series of

invariant subrings defined over C (his proof is interesting).

Proposition 3.5. Suppose that p is positive and Gp
is normal in G, If G 1is realizable on the prime field of
characteristic p and RGP is a polynomial ring, then the

" following conditions are equivalent :

(1) K is a Gorenstein ring.

(2)  a(R%) = a; (V) - |B(G)] + |A(G)] .
P

Especially in the case where 4A(G) = B(G), R® is a Gorenstein
ring if and only if G is contained in SL(V).

Proof(outline). Clearly Ko is isomorphic to (RGP

)X(a(RGP)) for some linear character X of G/Gp in the
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as a linear

det-1.
G

Exchanging a regular system of homogeneous parameters of R P,

category of graded R°-modules. We regard X
character of G and need only to show that X =

we obtain a natural kG/Gp-isomorphism RGP — k(U) for a

. ~
kG/Cp-module U. Then it follows from Ky % k(U)det-1

that X is equal to det™, (We can also prove (3.5),

extending the action of G/Gp to the fibre of the blowing-
up of Spec R°P  with center Spec k.)

Example 3.6, Assume that dim V = 2 and the order
of G is divisible by p>3. Then we have

| A(G)] = 1B(G)] - ¢(G) if G is irreducible
a(RG) =« - =
|a(e)| - |B(6)| -1 - |Gp| otherwise

where Gp is a p-Sylow subgroup of G and ¢(G) = ISL(2,

pf)l/(pi- pf) + pzf- pf for a maximal subgroup SL(2,pf)
of G generated by transvections (if G is primitive irre-
ducible, then maximal subgroups generated by transvections
in G are conjugate to SL(2,pf)). The equality holds if
and only if RG is a hypersurface, Further, in the case
where A(G) = B(G), B isa hypersurface if and only if G
is contained in SL(V).

Proposition 3%,7. Suppose that p is positive and G
is a p-group. Then RG is a Cohen-Macaulay ring if and

only if RG is a Buchsbaum ring.

Proof. It suffices to prove the %“if" part of this
proposition. So we assume that RG is not a Cohen-Macaulay
ring. Then it is well known that (k 8, RG)E @ gpG 1is not

‘ k "+
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a Cohen-Macaulay local ring, where R+ is the unique homoge-
neous maximal ideal of R. Since G is unipotent, there

is a non-trivial Ga(E)-action on the set of closed points

of Spec(k 2 R) which commutes with the natural action of
G, Therefore G (k) acts transitively on the set of closed
points of Spec(E 2 R ) which are spe01allzat10ns of a
homogeneous prime ideal P of k 2 B with ht(P) = dim R
- 1. Cohen-Macaulay loci of affine rings are open with
respect to Zariski topology and hence we deduce that the
localization of k Qk R at P is not a Cohen-Macaulay
ring. It follows from this that (k 2 R )k g, R gG is not

a Buchsbaum ring. By the faithfully flat descent of noethe-
rian graded algebras, we see that RG is not a Buchsbaum

ring.

Mow we suppose that G is a subgroup generated by
pseudo-reflections and the order of G 1is a unit in k.
Let N be a normal subgroup of G such that the quotient
group G/N is abelian and let T : Hom(G, E*) — GLm(E)
denote the homomorphism defined by

X — diag(E,(X), ..., (X))

where ¥, (X) is the 1mage of t (X) mod e.Z under the fixed
embeddlng Z/e Z C;E as groups.

Lemma 3.8, There is an isomorphism u : Gab e Hom(
G,

(1

and otherwise tj(ﬁ(gG')) = 1 where G®® is the commutator
quotient of G and G' is the commutator subgroup of G.

*) of groups such that for any element g of l(Pi)
i€n) if GP; = GPJ. (1% j%m tj(ﬁ(gG')) = det g

M =1

Proof. Let g, be a generator of I(Pi) and let
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T:1(P)0+ - 0L(P)—> 6> be a homomorphism defined
by
a((19-°-91,93i91900~91)) = giG' (1 54=m),
i=1 times

Since G is generated by pseudo-reflections, d is an iso-
morphism, On the other hand we deduce from the definition
of T that Im T is generated by { diag(det Biolyenesl),
e o o 5 diag(1,s..,1,det gm)} . TLet q :;(P1) @ ¢ o o
® E(Pm) —> Im T be an isomorphism such that

5((? 9-"91,9319190“91)) = diag(1:9---91,det 35_9190"91)-

i-1 times i-1 times

Then =T 63-1 is an isomorphism as desired.

We define a homomorphism v : N — GLm(E) such that
the diagram

Hom(G, k ) -E—) GL (k)

- m-
" I
ab N

—
can,

G

is commutative,

Theorem 3.9. RN is a complete intersection if and
only if Vv(N) coinsides with the group GD(E) in GLm(E)

for some datum D (see [20], for definitions).

Rf is generated by an RN-regular sequence (cf. [2, 3,
16)), and hence, to prove this theorem we consider the arti-
nian ring RN/RERN . RN/R_SRN is an epimorphic image of an
affine normal semigroup ring. This viewpoint is important
in the proof of (3.9) (cf. 114, 15]).

Corollary 3.10. If Hom(G, E‘) is cyclic, then o
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is a hypersurface,

Proof. By (3.1) we see that G acts transitively
on B(G). Let X(N) be a subgroup of Hom(G, k% which

satisfies
() KerX=N
X€xX(N)

and let Y be an element of X(N) such that deg f? is

minimal. Then it is easy to show that RN is generated
G

by fT as an algebra over R,
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INJECTIVE DIMENSION OF GENERALIZED
TRIANGULAR MATRIX RINGS

Kazunori SAKANO

This note is an abstract of the author's paper [7] and
includes the modifications of some results in it.

Throughout this note, let R and S denote rings with
identity, M an (S, R)-bimodule, and A a generalized
triangular matrix ring defined by SMR’ i.e.,

R O
M S

with the addition by element-wise and the multiplication by

r O|[r' O - rr' 0
m s|/|m' s' mr' + sm' ss'j.

For an R-module Up, id(UR) (fd(UR)) denotes the
injective (flat) dimension of Up» respectively.

The estimation of id(AA) in terms of id(RR), id(MR),
and id(SS) is determined by Reiten [6] when id(AA) = 0.
Furthermore, in [8], Zaks shows that the injective dimension
of an n x n lower triangular metrix ring over a semiprimary
ring R is Just equal to id(RR) + 1. An example is
constructed to show that the condition on R being semi-
primary is redundant in his theorem. In this note, we
observe general cases.
Let e = (é 8 € A and e' = [8 g] € A. Then R = eje,

M=~ e'Ae, and S = e'le’'.
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Lemma 1. Let X be a right A-module with X = Xe.

(1) 1r Xg is projective, then X,
i N i

(2) ExtA(XA, AA) ~ ExtR(XR, AeR).

is projective.

Lemma 2. Let Y be a right A-module.
(1) 1Irf Y, is projective, then Ye'y is projective.

i Cr St . iy
(2) ExtA(YA, e'Ae AeA) ExtS(Ye g ss).

has the form of (X g » where K is a right ideal of S and
o e < b
KM R R = |M R

Theorem 4. Assume that fd(SM) is finite. Then we have

Lemma 3 [4, ProTosition 4.1]. Every right ideal of A

max(1id(Rp), 1a(Mp), id(8g) - fa( M) g ia(a,)
max(max(id(RR), id(MR)) + fd(sM), id(SS) -1) +

= A

The following is essentially in [1, p. 3k46].

Lemma 5. Let AS’ SBA’ and CA be modules such that
Ext;(B, C) =0 (i > 0) and Tor?(A, B) =0 (i > 0). Then

there holds

n - n
ExtS(A, HomA(B, c)) = ExtA(A 8y B, C).

The proof of the following lemma is & short proof of
[T, Lerma 6].

Lemma 6. Assume that SM is flat. Let

ff - Exti(f, 1,) : Exti(A/[KS g], A) — Exti([g g]/[xﬁ g], A)

be the induced map by the inclusion map

RO RO RO . . .
f: [M K / KM K] — A/[KM MK where K is a right ideal of



110

# RO '
S. Then Im f; is contained in Ext ([ ] [KM K]’ e'A), a

direct summand of Ext ([ ] [ ]

#

Proof. Since f L ® fi,, where
o Exti(A/[ K], eA) — Ext ([ K] [xﬁ g], eh) and
ffe : Exti(A/[Kﬁ g], e'A) — Ext ([ ]/[Kﬁ g], e'A), and
Exti(A/[KS g , eh) = Extg(S/K, Hom,(e'A, eA))

n

Ext;(S/K, efe') =

we have Im f# = Im f o & Ext ([ ] [Kﬁ g], e'A).

Proposition 7. Assume that SM is flat and put
max(id(Rp), 1d(M))

i.
(1) 1r id(s ) > i, then id(AA) = id(SS).
(2) 1r id(S ) <i # 0, then id(AA) = i if and only if
Extl(M/KM R ® M) 0 for every right ideal K of S.
(3) If id(Sg) =41 # 0 and if Exti(M/KM R& M) =
for every right 1deal K of S, then 1d(A ) =
(4) 1f 1d(SS) i #0 and if Ext (M/KM R) # 0 for
some right ideal K of S, then 1d(AA) =i+ 1.

A

Let K be a right ideal of S. Since
T(S/K, M) = HomS(S/K, HomR(M, M)) = HomR(S/K o M, M),
we have the following spectral sequences

Eg’q = Extg(s/x, Extg(m, M)) 7§»RHT(S/K, M)

and

ﬁg’q = Extg(Tori(S/K, M), M) jf»RnT(S/K, M),
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where RPT is the n-th derived functor of T. Then we have
the edge homomorphisms Eg’o — R"P(S/K, M) and
R'T(S/K, M) —> ﬁg’“ (ef. [1, Chapter XVI]). We define
a Extg(S/K, Homg (M, M)) —> Extg(s/x 85 M, M) as the
composition of the above edge homomorphisms. Let
y:8— End(MR) be the canonical map and

p : S/K 8 M = M/KM end put g = Ext (o, M) a* Ext (S/K, p).

Proposition 8. Assume that gM is flat and let g be
as above. If id(S ) < ma.x(id(R ), id(MR)) i # 0, then
1d(l\ ) = iif a.nd only if Extp (M/KM R) = 0 and
g Ext (S/K S) — Extp (M/KM M) is an epimorphism for

every rlght ideal K of S.

Proof. Let [x g] be a right ideal of A. Considering

the following exact commutative diagrams
1+l i+l 0
(/\/[M K] A) — Ext”, (A/[X K], A)

> Ext [5 g]/[x g] , A
. W
Extl;l((R ® M)/X, R & M) =

and

. g .
Ext;(s/K, S) — Ext;(M/KM, M)

lv
2 Ext;(M/KM, R) ® Ext;(M/KM, M) = Ext;(m/m, R & M)

Bt (/[ 9], ) > mey (8 9]/ [ )+ M

St T eV R R
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where v is the injection map, we conclude that id(AA) =1

iff Extlﬂ(l\/[m K], A) = 0 for every right ideal K of S iff
Exto *(M/KM, R) = O for every right ideal K of S and g is an

s R i+l - i _
epimorphism, for Ext™, (1\/[KM K], A) = ExtS(S/K, s) = 0.

Proposition 9. Assume that (M is flat, Ext;(M, M) = 0
(n > 0), and S = End(M). If id(Sg) s mex(id(Rp), id(Mp))
=1 #0, then ia(A;) = i if and only if id(M®) < i -1,

where M* = HomR(M, R).

Proof. Let [X g] be a right ideal of A. Considering

the following exact commutative diagrams

i+l RO i+l 0
ExtA(A/[M ],A)—»ExtA(A/XK,A)

K
g

i+l((R ® M)/X, R & M) =
and
i i
ExtS(SZ/K, S) ExtS(S/K, End(MR))
Ext (S/K HomA( [M g], e'p)) — Ext;(S/K, HomA( [}?1 g], e'hA))
)|¥r ] ¥2
mi(sz/x 8 ‘3 g] e'h) — Exti(s/x eﬁ [ﬁ g} . e'h)
. 3
Ext (I\/[Kll:i g, e'd) —-—-—»Extll'\( [ﬁ gb K}Ij[ g , e'A)
l R 0) o iaolllao:
Ext(I\/KMK,A) 2 >ExtA([MKW/mKJ,A)—+
Ebcti";\l(n/[ﬁ g] A) —— Ext1+l(l\/ \KS g], A) =0,
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where wl and ¢2 are isomorphisms by Lemma 5, ff as in
Proposition 7, and { the injection map. We conclude that
id(AA) =i if and only if Extlzl(A/[S g], A) = 0 for every

right ideal K of S iff for every right ideal K of S,

Exti([ﬁ g]/[mi g] eh) = Ext;(M/KM, R)

= Extl(S/K, Hom (M, R)) = 0,

X # e i,[RO RO '
since Im f, __ExtA([M K]/[KM K]’ e'A) by Lemma 6.

Proposition 10 [6, Theorem 1.4.1]. Let
u:SsS— End(MR) be the canonical map. Then Ay is
injective if and only if

(1) Rp, Mg,
m € M} are all injective.

and ZS(M) = {s ¢ 8; sm = 0 for every

(2) u is an epimorphism.
(3) HomR(MR’ RR) = 0.

Example 11. Let R be an infinite direct product of
fields, I a maximal ideal containing their direct sum, and
M = R/I. Let

R 0

M End(MR) '

Then RR’ MR and A, is inJective.

A

Example 12. Let A be a 2 x 2 lower triangular matrix
ring over a ring R # 0 with id(RR) = i < =, Then id(AA) =
i+ 1.



114

Example 13. Let

Z 0
A= e Qi ,R=[Z 0}.
' 7 Q Q

Then id(RR) = 2, id(

~ @

Q
Q Q)R) =0, id(ZZ) =1 and id(AA) =2,

Example 14. Let

>
7z Z
where (0O Q)Z cen be_considered as a right R-module via
:, 2" — 2"). Then id(RR) 2, id(ZZ) =1,
ia((o Q)R) = 0 and id(AA) = 3.

c:R— 2 (

Example 15. Let An(n > 2) be an n x n lower triangular

matrix ring over a ring R # 0 with id(RR)

i < w. Since

An cen be considered as

'R :0 L N B O ) 0‘
R, \

< n-1

. !

R |

Then id(A , ) =da(A ., ) = -- =1dd(A,, ) =1+ 1.
n n-1 2
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WEAKLY CODIVISIBLE MODULES AND STRONGLY
n-PROJECTIVE MODULES

Masahisa SATO

In this note, ring R means a ring with unit and
modules mean unital right R-modules.

P.E. Bland [3] has introduced the notion of the
strongly M-projective modules as the generalization of
well known notions of projective modules, quasi-projective
modules and M-projective modules. (For the definitions,
see [1] and [2].) But for the insight of these modules,
we generalize this notion as follows. Let n be a
subclass of R-modules. A module KR is called a strongly
n-projective module if HomR(KR,-) preserves the exactness
of any epimorphism LR———+ HR such that LR =1 Mi for some
Mi € n. Also we call that NR has a strongly n-projective

cover if there is an epimorphism f: KR———+N satisfying

the following properties; !

(1) Kq is a strongly n-projective module.

(2) Ker(f) is small in Ke

(3) For 0 # x € Ker(f), there are R-module Mo in n
and R-homomorphism f: KR———+MR such that f£(x) # 0.

In the case that n = {MR}, it coinsides with the
original definitions of the strongly n-projective module
and strongly n-projective cover due to Bland.

In [3], he has proved that if factor modules of
modules cogenerated by MR are also cogenerated by MR’
then a module NR has the strongly M-projective cover
iff N/(N'Ann(MR)) has the projective cover as an

R/Ann(MR)-module. In the half of this note, we show



117

the above equivalent condition holds without the
assumption for MR' The proof for this result is due to
the method of torsion theories. So we define fundamen-
tal notions of torsion theories. A subfunctor of the
identity functor between the category of right R-modules
is called a preradical. For a preradical t, we denote
r,o={ Ly | t(Lg) = Ly ) and
Fo={ L | t(LR) =0 }
whose elements are called torsion modules and torsion-free
modules respectively. A preradical t is called a radical
if t(Lp/t(Lg)) = O for any R-module L. (Tt,Ft) is called
a pre-torsion theory in the case t is a radicsal.

For a subclass n of R-modules, we define ty by

tn(LR) = N\ {Ker(f) | f¢ HomR(LR’KR)’ Ky en}
for any R-module LR' H. Kataysma [4] has remarked that
for a preradical t, t is a radical iff t = tn for some
class n of R-modules. By this result, we can translate
the notions of strongly M-projective modules and strongly
M-projective covers into the notions of torsion theories.
(See Lemma 1.)

For a preradical t, a module NR is called a
codivisible (resp. weakly codivisible) module with
respect to (Tt’Ft) if HomR(NR,-) preserves the exactness
of an epimorphism h: L—H_ such that Ker(h) € F%
(resp. Lo e Ft)' We call a module N has a weakly
codivisible (resp. codivisible) cover with respect to
(Tt’Ft) if there exists an epimorphism f: K.——N_ such
that (1) KR is weakly codivisible

(resp. codivisible).
(2) Ker(f)R is small in K.
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(3) t(K ) Ker(f), =0
(resp. Ker(f)R £ Ft)'

In the last half of this note, we characterize the
pre-torsion theory with respect to which every weakly
codivisible module is codivisible. It will be shown that
this pre-torsion theory is just coincided with the pseudo-
hereditary pre-torsion theory (i.e. any submodule of
t(RR) is torsion). By this theorem, we can determine, in
Corollary 9, the pre-torsion theory with the condition
that every module is codivisible. (This has been partial-
ly solved by K.M. Rangaswarmy [6. Corollary 15] in the
case (Tt’Ft) is pseudo-hereditary torsion theory.)

Last we characterize a module with the colocalization
for a given torsion theory and we shall show that those
modules are those MR such that t(MR)'t(RR) = t(MR).

1. ON STRONGLY n-PROJECTIVE MODULES.

Lemma 1. Let n be a subclass of R-modules and
t = tn. Then it holds that

(a) A module N
weakly codivisible with respect to (Tt’Ft)'

(b) The property of (3) in the definition of a

is strongly n-projective iff NR is

strongly n-projective cover is equivalent to
t(xR)n Ker(f)R = 0.
(c) t(Ry) = Ann(n) =A{ Ann(M_) | My e n ).

The next lemma plays an important role in this note.
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Lemma 2. For a radical t, it holds that

(a) NR°t(RR)¢: t(NR) for any R-module NR'

(b) 1 NR is weakly codivisible, then t(NR) =
NR't(RR).

(c) Let O——A,——B,——C,—0 be an exact

sequence. If Cp is codivisible, then t(AR) = t(BR){\ Ag-

Next is a slight generalization of [3. Proposition
3].

Theorem 3. For a radical t, the following statements
are equivalent.

(1) A module N
to (Tt’Ft)°

(2) NR/(NR-t(RR)) is a projective R/t(RR)-module.

R is weekly codivisible with respect

The following theorem is & main theorem of this

section.

Theorem 4. Let t be a radical such that t = tn for
some class n of R-modules. Then the following statements
are equivélent for a module NR.

(1) NR has a strongly n-projective cover.

(2) NR has a weakly codivisible cover.

(3) NR/(NR°t(RR))has a projective cover as an
R/t(RR)-module.

The important part of the proof is (2) implies (1),

so we give an outline of the proof.

Let 0——>K—-*Q—-+NR/(NR°t(RR))—>O be a projective
cover of NR/(NR't(RR)) as an R/t(RR)—module and
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j: NR———»-NR/(NR't(RR))R a canonical map. We consider
a fibre product (i. e. pull back) (AR,f,g) of
(i,j,NR/(NR-t(RR))), then we have a commutative diagram

with exact rows and columns;

0

l

Ker(f)R = NR-t(R
lg
"R
f
I
|

0

“—O

R)R

>0

.

G
O «— 4—524—

/(g (R ) ) om0

I

We can show that

(a) Ker(f) = Ap-t(Rp) = t(AL).

(b) AR is weakly codivisible by Theorem 3.

(e) K¥ N t(AR)R = K;f\ Ker(f)R = 0.

(a) K¥ is small in A..
Here we only prove (d). Assume LR-+ K; = AR
for L € A.. Then lq;-t(RR) + I..R't(RR) = Ao "t(Rp).
Since KR°t(RR) = 0, Kg‘t(RR) = 0, hence LR°t(RR) =
AR-t(RR). Thus Ker(f) = AR't(RR) = LR't(RR)C: Lp

On the other hand, f(K¥) + £(I;) = £(A ) = Q..
That is KR + f(LR) = QR' Since K is small in Q as
an R/t(RR)-module, of course as an R-module, so f(LR) =

QR’ that is LR + Ker(f)R = AR. Hence LR = AR.
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2. ON PSEUDO-HEREDITARY PRE-TORSION THEORIES.

Ift= t{E}

case, (Tt’Ft) is well known as a hereditary torsion theory

for some injective module ER’ (in this

), then it is clearly shown that wesakly codivisible
modules coincide with codivisible modules. So in this
section, we determine a pre-torsion theory with respect to
which weakly codivisible modules are codivisible modules.
It turns out that this pre-torsion theory must be pseudo-
hereditary defined as any submodule of t(RR)R is torsion.
Also we consider a following property (*) for a module N
(*) 1f KRcNR’t(RR)R, then Ko € T,.
For a pseudo-hereditary pre-torsion theory, we have

R’

the following theorem.

Theorem 5. Assume t is a radical. The following
statements are equivalent.
(1) (Tt’Ft) is a pseudo-hereditary pre-torsion theory.
(2) Every module has the property (¥*).
(3) Every weakly codivisible module has
the property (¥).
(4) Every codivisible module has the property (*).
(5) A module N. such that t(NR)R = NR-t(RR)R has
the property (¥).
(6) If t(Np)p = N t(Rp)p, then t(K) = Ko A t(Np)p

for any submodule KR of NR.

Next we consider the following property (¥**) for

a module NR.

(**) Any submodule of NR't(RR)R has no non-zero

torsion-free submodules.
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Theorem 6. The following assertions are equivalent
for a radical t.
(1) Every weakly codivisible module is codivisible.
(2) Every module has the property (¥*¥),.
(3) Every cyclic module has the property (**).
(L) BEvery weakly codivisible module has
the property (¥%),
(5) For every codivisible module NR, it holds that
(a) NR has the property (¥%#),
(v) NR/t(l%) is codivisible for any KRC NR.
(6) Every module N_ such that t(NR)R = NR°t(RR)R
has the property (**).

(1) 1f NR is weakly codivisible, then

t(Kp)p = t(Np)p A Ky for eny submodule Ky of No.
(8) If Ny is codivisible, then t(N ) A K = t(K.)
for any submodule KR of NR'

R

Next theorem is a main theorem of this section.

Theorem 7. The properties in Theorem 5 and Theorem 6

are equivalent.

Proof. We only show the properties in Theorem 6
implies those in Theorem 5 since the other part is clear.
Assume IR is a right ideal contained in t(RR)R.

. c .
Since IR/t(IR)R (RR/t(IR)R)R t(RR)R, IR/t(IR)R €T,
by Theorem 6 (2). Hence IR/t(IR) € Tt(\ F_,
SO IR/t(IR)R = 0. This means IR = t(IR)R.
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From the above theorems, we have the next corollary.
This gives a complete solution of the property [8. Theo-
rem 15].

Corollary 8. Assume t is a radical. Then the
following statements are equivalent.
(1) Every module is codivisible.
(2) It holds that
(a) R/t(RR) is a semi-simple artinian ring.

(b) (ZE,F%) is pseudo-hereditary.

An example of a pseudo-hereditary torsion theory is
ones such that t(RR)R = 0. Next example gives a non-
pseudo-hereditary torsion theory and also gives non-
codivisible but weakly codivisible modules.

Example 9. Let Z be a ring of integers and p
& prime number. We put M
Then it holds that

(1) (Tt’Ft) is not pseudo-hereditary.

5 = zz/(p-Z)Z and t =t

(2) Z/t(ZZ) is a semi-simple artinian ring.
(In fact t(ZZ) =p-2Z.)

(3) Every Z-module is weakly codivisible.

(4) 2/(p-2), has not a codivisible cover.

3. THE MODULES WITH THE COLOCALIZATION.

For a radical t, we say that MR has the colocaliza-
tion with respect to (Tt’Ft) if there exists an R-homo-

morphism f: NR———9MR such that
(1) Ker(f)R e F, and Cok(f)R € F,.
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(2) NR is codivisible.

(3) NR is torsion.

Theorem 10. Let t be a radical. Assume for a
codivisible module AR and its submodule BR’ AR/t(BR)R is
codivisible. Then the following statements are equivalent.

(1) My has the colocelization.

(2) HomR(t(MR)R,LR/TR) = 0 for any torsion-free
module LR and its submodule T_.

R
(3) t(MR)R e T, and t(MR)R is weakly codivisible.

(L) t(MR)R't(RR)R = t(MR)R-

Remark: In the above theorem, the equivalences of
(2), (3) and (4) is valid without the assumption for AR'
Also this assumption is equivalent to t(t(BR))R = t(BR)R

by Lemma 2 (c), so if t is idempotent, this assumption is

naturally satisfied.
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