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PREFACE

This volume contains the articles presented
at the 12th Symposium on Ring Theory held at
Hokkaido University, August 31 - September 1, 1979.

The annual Symposium on Ring Theory was founded
in 1968. The main aims of the Symposium are to
provide a means for the dissemination of recent
theories on rings and modules which are not yet
widely known and to give algebraists an opportunity
to report on recent progress in the ring theory.

The Symposium was organized by Professors
Shizuo ENDO ( Tokyo Metropolitan University )

Manabu HARADA ( Osaka City University )
Hiroyuki TACHIKAWA { University of Tsukuba )
Hisao TOMINAGA { Okayama University );

the 12th Symposium itself and this proceedings
were partially supported by the Grant-in-Aid for
Scientific Research from the Ministry of Education,
Science and Culture.

Finally we would like to thank Professor T.
Onodera ( Hokkaido University ) for his unending
patient and kind hospitality to the participants
of the Symposium.

M. Harada
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TRIVIAL EXTENSION OF- A COMMUTATIVE
RING WITH BALANCED CONDITION

Hideaki SEKIYAMA

Throughout this paper, we assume that all rings are
commutative rings with units, and further, all modules
will be assumed unitary. For a ring B and a B-module E,
the direct sum B@ E is turned into a ring by the multi-
plication composition (b, e)(b', e') = (bb', b'e + be') .
This ring will be called the trivial extension of B by E.
An R-module M 1is called balanced if the canonical ring
homomorphism of R into the double centralizer of M is
surjective. Moreover, a ring R is said to be QF-1 if
every faithful R-module is balanced. As 1is easily seen,
every generator is balanced, and in case R 1s a QF ring,
every faithful R-module 1is a generator. Hence, any QF
ring is QF-1. Further, a ring R is said to be PF it
R 1is an injective cogenerator as R-moduie. As is well
known, a ring R is PF if and only if every faithful
R-module is a generator. This implies that any PF ring
is QF-1.

Now, in [1] and [3], it has been proved that any
commutative QF-1 artinian ring is QF. Moreover, in [10],
[13] and [15], this result has been generalized to commuta-
tive QF-1 noetherian (cr perfect) rings. On the other
hand, B. L. Osofsky [9] gave an example of a local commu-
tative PF ring without chain conditions, which is the
trivial extension of the ring of p-adic integers by the
Priifer group for some prime p. As is well known, a PF

ring has a non-zero socle. and the ring of p-adic integers
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is a valuation ring. In this paper, we shall prove that
a trivial extension QF-1 ring of a valuation ring has a
non-zero socle, and that it is PF under some conditions.

At first, we shall give a general information on
commutative QF-1 rings. Any commutative QF~1 ring R has
the principal extension property, that is, every homomor-
phism of an arbitrary ideal of R into R can be extended
to that of R ([2], [12]). Moreover, if a ring R has
the principal extension property then every principal
ideal of R satisfies the annihilator condition, that is,
AnnR(AnnR(Rf)) = Rr for all r in R ([17]). These
facts play an important r8le in our study. Now, in [10],
C. M. Ringel proved that if a commutative QF-1 ring is
local and has a non-zero socle then it is uniform. Our

first study is the following

Theorem 1. A commytative QF-1 ring is local if and

only if it is uniform.

Proof. Let R be a commutative QF-1 ring. First,
we shall prove that if R is local then it is uniform.
We assume that R 1is local. Moreover, by the result of
C. M. Ringel as in the above, we may assume that the socle
of R is zero. Then, the maximal ideal W (= Rad(R))
of R is faithful. We now suppose that R 1is not uniform.
Then, there exist non-zero elements x, vy in R such that
Rx nRy = {0}. Here we suppose that Anrﬁz(x) + Anrﬁz(y) #
R. Then W contains AnnR(x) + AnnR(y). Since WxnWyc
RxnRy = {0}, the R-module R/Wx & R/Wy is faithful and
so balanced. Moreover, since Rx # Wx and Ry # Wy, we

can define a non-zero map ¢ of R/Wx @ R/Wy into itself
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as follows (a, b) - (xa, yb). By using the Camillo’s
criterion [1, Lemma 11], we see that ¢ is an element of
the double centralizer of R/Wx @ R/Wy. Hence ¢ is the
multiplication determined by an element r of R. Then,
the element (1 + Wx, 1 + Wy) in R/Wx @ R/Wy is mapped
on (r+ Wx, r+Wy) = (x+ Wx, y+ Wy). Thus, we have
r-x € W, r-y € Wy, andso, r € Rx nRy~= {0},
a contradiction. Therefore, it follows that AnnR(x) +
AnnR(y) = R. Since R is local, there holds that either
AnnR(x) =R or AnnR(y) = R. This implies that either
x=0 or y =0, which is also a contradiction. We
proved therefore that R is uniform.

Conversely, we assume that R 1is uniform. Then,

every regular element of R 1is a unit by the principal

extension property. Now, let x be an arbitrary non-
unit element of R. Then, for any element r of R,
we have AnnR(rx) n AnnR(l - rx) = {0}. Since R is

uniform, 1l - rx 1is regular, and so, it is a unit ele-
ment. Hence x is contained in the radical of R. This
proves that R is local, completing the proof.

Now, for the purpose of reference, it is convenient

to introduce the following

Definition. A module E 1is called to be uniserial
if the lattice of submodules of E is linearly ordered by
inclusion, and a ring B is called a valuation ring if
B is uniserial as B-module. Moreover, a valuation ring
B 1is said to be maximal if every system of pairwise solv-

able congruences of the form

X = x (mod Ia) (x € A, X, € B, Ia an ideal of B)



has a simultaneous solution in B. We say B 1is almost
maximal if the above congruences have a simultaneous solu-

tion whenever (\a Ia # {0} (cf. C. Faith [4]).

€A

Now, we shall consider the socle condition on a
trivial extension of a valuation ring. The following

theorem is one of our main results.

Theorem 2. Let R be the trivial extension ring of
a valuation ring B by a non-zero B-module E. If R is
QF-1, then the following hold.

(a) E 1is faithful and uniserial.

(b) The socle of R 1is equal to (O, SocB(E)) and

is not zero.

Proof. (a) By Theorem 1, we see that R is a
commutative local ring with the maximal ideal (Rad(B), E),
and it is uniform. Since (AnnB(E), 0) and (0, E) are
ideals with zero intersection, it follows from» the
uniformness of R that AnnB(E) is zero, and whence E
is faithful. For the second assertion, it is sufficient
to show that for any two elements x, y of E, it holds
that either Bx < By or Bx > By. This is easily seen
by using the annihilator condition for two principal ideals
R(0, x) = (0, Bx) and R(0, y) = (0, By).

(b) The first assertion will be easily seen. More-
over, 1in case SocB(B) is not zero, one will easily see
that SocR(R) is also not zero. Hence, to see the sec-
ond assertion, we may assume that SocB(B) is zero. Then,
we can see that E 1is not a cyclic B-module and any proper

submodule of E is not faithful. Now, let W be the



radical of B. Obviously, W is a faithful ideal of B.
We suppose here that SocR(R) is zero. Then the radical
(W, E) of R 1is faithful and has a zero socle. Hence
(W, E) # Rad (W, E) = (wz, WE) by V. P. Camillo [1, Lemma
2). Since WE is a faithful B-module, it is equal to E.
Thus, W 1is generated by one element w. Therefore,
the radical of R 1is generated by (w, 0), which leads
that R has a non-zero socle by applying the proof of

C. M. Ringel [10, Lemma 3], a contradiction.

Next, in order to get more informations on the struc-
tures of B and R, we shall consider the case that E

is injective.

Corollary 3. Let R be the trivial extension ring
of a valuation ring B of an injective non-zero B-module
E. If R is QF-1, then the following hold.

(a) E is the miniaml injective cogenerator, so B
is an almost maximal valuation ring.

(b) If E is cyclic, then B and R are PF.

(c) If B is not an integral domain, then R is PF.

Proof. (a) The assertion follows from Theorems 1,
2 and the result of C. Faith [4, Theorem 20. 49].

(b) If E is cyclic, E 1is isomorphic to B, and
hence, by (a) and B. J. Muller [8, Theorem 101, R 1is PF.

(c) We shall show that the endomorphism ring of E
is canonically isomorphic to B. This implies that R 1is
injective by R. M. Fossum et al. [6, Corollary 4. 37]. Now
let f be any element of the endomorﬁhism ring of E, and

{ea}aeA a set of generators of E. For every e,» a map



of R(O, ea) into R, as follows r(0, ea) - (0, bfea)

for r=(b, e) ¢ R, 1is a well-defined R-homomorphism, so

there exists an element b of B such that fe =b e
a a aa

by the principal extension property. Then we consider the

system of congruences as follows:

ba (mod Ia) (a € A, ba € B, Ia = AnnB(ea) ).

This system is pairwise solvable. There exists a solution

X

of it, since B is maximal ([4, Proposition 20. 46]).

This solution induces ¢£.

As other corollary to Theorem 2, we shall give the
necessary and sufficient condition in order that a trivial

extension QF-1 ring is a valuation ring.

Corollary 4. Let R be the trivial extension QF-1
ring of 2 ring B by a non-zero B-module E. Then the
following are equivalent:

(a) R 1is a valuation ring.

(b) B 1is an integral domain and is a valuation ring.

Now, we shall conclude the study with the following
corollary which is obtained by combining our result with
R. M. Fossum et al. [6, Corollary 4. 37].

Corollary 5 (C. Faith [5, Theorem 6A]). Let R be
the trivial extension of a ring B by a non-zero B-module
E. Then the following are equivalent:

(a) R 1is a PF valuation ring.

(b) B 1is an integral domain and is an almost maximal
valuation ring, E is the injective hull of B/Rad(B) and
B = EndB(E).
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TRIVIAL EXTENSIONS OF ARTIN ALGEBRAS
Takayoshi VRAKAMATSU

1. Introduction. ILet A be an artin algebra with a center
C, I the injective eﬁvelope of C/RadC and O the bi-A-
module HomC (3, I). Then we can construct a new artin
algebra R = AxQ, i.e. R = AN as an additive group and
the multiplication is given by the following:

(a,q)+(a',q') = (aa',aq'+ga') for (a,q),(a',q9')eR.
This ring R 1is called the trivial extension of A by Q.
Our purpose is to study the relationship between representation
types o A and R. This probrem was already considered
by some authers [4],[6]. In this note we shall give a
construction of indecomposable R-modules and, as its result,
it will be shown that n(R)>2-n(A) and n(R) = 2:n(d) if
and only if A is hereditary, where n(R) and n(A) denote
the number of indecomposable R-modules and A-modules
respectively.

2. There are isomorphisms of C-modules

R = AEO)

[}

HomC(HOTnC(A,I) ,I)$Horrb(HOmC(Q,I) ,I)
l-lchlC(Q,I)G)chnC(A,I)

H

1

[t

HomC(QeA,I) = Horrb(P.,I) ’

and it is easily veryfied that the composition of the above
isomorphisms R = Hoa-rt(R,I) is bi-R-module morphism. So
R 1is symmetric and hence R is quasi-Frobenius. For a

primitive idempotent e ¢ A, we have a primitive idempotent
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(e,0) ¢ R. Identifying e with (e,0), we have a projective
(= injective) indecomposable R-module eR. And it is well
known that every projective ihdeoomposable R-module has such
a form.

Since A 1is a subring of R, for a given R-module M
we have the following short exact sequence of A-modules

0+-M~+M+ MM~ 0,

and the operation of Q0 to M is considered as the
epimorphism M/M®,0 + M) + 0 because (M))Q = M»? = 0.
Conversely, for a couple of a short exact sequence of A-
mdules 0+ X-+Y®2 2+ 0 and an epimorphism ZGAQQ)(»O
Y is considered as an R-module by the following:

y(a,q) = yat (p(y)&y) for ye¥, (a,q)eR.
Dually, any R-module M is identified with the couple of
the short exact sequence 0->annMQ+M->M/annMQ-> 0
and the monomorphism 0 -+ M/annHO > HosmA(Q,annMQ) .

At the first we have

Theorem 1. For a projective A-module P and an epimorphism

P&AQ ﬁ:L + 0, the R-module
0+-L>-I8P P> 0
PN SL >0
is indecomposable if and only if
(i) Keryp is indecomposable as A-module and
(ii) Kery is large in PEN.

This result means that we can construct an indecomposable
R-module from a given non-injective indecomposable A-module.
And it is easy to see that any indecomposable projective (=
injective) R-module eR has a form
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D>e)> e »eA > 0
er®) > e » 0.
As the dual of the above result we have

Theorem 2. For an injective A-module E and a moncmorphism

N

O+-E-+BEBK->K->0

0 » K ¥ Hom(Q,E)
is indecomposable if and only if
(i) Coky is indecomposable as A-module and
(ii) X 1is small in HomA(Q,E) .

By Theorem 1 or Theorem 2, we have the following.
Proposition 3. n(R) > 2 n{ad).

If A 1is hereditary then M) is an injective A-module
for any R-module M since M) is a factor of @) and Q
is an injective A-module. So every R-module has the form

O>-E-+BEBQ-+>P->0

0+P - HOTHA(Q,E) ’
where E 1is an injective A-module and P is a projective
A-module. Thus we have

Proposition 4. If A is hereditary, then for a given
indecomposable R-module M

(1) M)=0 (annMn = 0), i.e. M is an indecomposable
A-module, or

(ii) M 1is projective(= injective), or

(iii) M= E®P, E is an injective A-module, P is a
projective small A-submodule of HomA (n,E) and
Homh(Q,E) /P is an indecomposable A-module. Especially,
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R 1is of finite representation type if and only if so is
A, and in this case, n(R) = 2.n(A) holds.

In the above we see that n(R) = 2.n{A) if A is
hereditary. To verify the converse, we give

Theorem 5. For non-projective indecomposable R-modules

0"

(¢):0->L->IBP->P->0,P&AQ—>L—>O and
(P is a projective A-module)

<o
($): 0 > E > BBK > K >~ 0, 0 > Hom, (Q,E),

(E is an injective A-module)

(¢) is iscmorphic to (¢) if and only if inj.dim.Ker¢ = 1,

proj.dim.Coky = 1, HomA(Q,Kercp) = 0, Coky®Q = 0, Coky =
TrD (Ker¢) and Ker¢ = DIr(Coky), where D = H(Inc(—,I)
and Tr is Auslander's functor "transpose".

Using the above result, we can count the number of
projective R-modules and indecomposable A-modules and
indecomposable R-modules constructed by the methods in
Theorem 1 or 2. And we have the following.

Proposition 6. n(R) = 2+n(A) if and only if A 1is
hereditary.

Lastly we remark that the algebras constructed from
Brauver-trees (see [5]) without exceptional vertex can be
seen as the trivial extensions of suitable algebras. So
the class of the symmetric algebras which are the trivial
extensions is more general than one thought.



[1]

[2]

[3]

[4]

[5]

13

References

M. Auslander and I. Reiten: Representation theory of
artin algebras III, Comm. in Algebra 3 (1975), 239-294.
V. Dlab and C. M. Ringel: Representations of graphs and
algebras, Mermoirs Amer. Math. Soc. 173, Providence
(1979).

R. M. Fossum, P. A. Griffith and I. Reiten: Trivial
extensions of abelian categories, Lecture note in math.
456, Berlin-Heiderberg-New York: Springer (1975).

E. L. Green and I. Reiten: On the construction of ring
extensions, Glasgow Math. J. 17 (1976), 1-11.

G. J. Janusz: Indecomposable modules for finite groups,
Ann. of Math. 89 (1969), 209-241.

Depertment of Mathematics
The University of Tsukuba



14

WEAKLY REGULAR MODULES

Tsuguo MABUCHI

This note is an abstract of the author’s paper [5].
Recent years, several authors have been investigating
weakly regular rings, where a ring R 1is called a left
weakly regular ring if a ¢ RaRa for every a ¢ R (see [2]).
In this note we shall define a weakly regular (right) module:
A right R-module M 1is called a weakly regular module if
m e HomR(M,M)(m)HomR(M,R)(m)

{21 si(m)fi(m) | sieHomR(M,M), fieHomR(M,R)}

for every m ¢ M. It is easy to see that R 1is a left
weakly regular ring if and only if RR is a weakly regular

module.

1. Preliminaries

Throughout this note, R will represent an associative
ring with 1, and M a unitary right R-module. Every
(right or left) module is unitary and unadorned x means
*g) unless otherwise stated. We set M% = HomR(M,R) and
S = HomR(M,M). For any S-R-submodule N of M, we set
Ty = Lgeys £W) = Homp GLRY(N). Obviously, T = T, is the
trace ideal of MR' Given _A, US(SN x A) will denote the

R
set of all 'S-submodules of N x A. Further, UT (RA) will
N
denote the set of all R-submodules A' of A with TNA' =

A'. Especially, UT(RR) is the set of all left ideals I
of R such that TI = I. Finally, let PR(M,A) tMx A >

HomR(RM*,RA) be the unique map such that PR(MaA)(m x a) (V)
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= U(m)a for me M, ae€ A and U ¢ M*¥ (see [1]).

A right R-module M 1is called a weakly regular module
(abbr. w.regular module) if m ¢ S(m)M*(m) for every m ¢ M.
A submodule N_ of MR is said to be ideal pure if N n MI

R
NI for every left ideal I of R, or equivalently,

n

i®1:N2R/IT+MRR/I is monic for every left ideal I
of R, where i:N + M 1is the inclusion (see [1]).

2. Weakly regular modules

Theorem 1. The following conditions are equivalent:

1) MR is a w.regular module.

2) MR is l.projective and every S-R-submodule of M
is ideal pure.

3) MR is l.projective and SmRR is ideal pure for
each m e M.

4) For any S-R-submodule N of M, NR is flat and

for each left R-module A the lattices UT (RA) and
N

US(SN ® A) are isomorphic via the inverse assignments

W:UTN(RA) > US(SN'8 A) ; A'» Nx A'

B+~ { Zi fi(ni)ai | fi € M*,

$: US(SN x A) + UTN(RA) g

n, x a; e B}
5) For any S-R-submodule N of M, the lattice

isomorphism U, (,R) - U_.(_N) ; I~ NI, is surjective.
TN R §'S
6) MR is l.projective and J = IJ for each pair

I, Je UT(RR) such that I >J and I 1is a two-sided

ideal of R.
7 MR is l.projective and TI = TI2 for each left

ideal 1 of R.
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Proof. See [5, Theorem 7].

The next corresponds to a theorem of Ware concerning

regular modules (see [3, Corollary 4.2].

Theorem 2. If MR is w.regular, then S is a left

w.regular ring.
Proof. See [5, Theorem 8].

Corollary 3. Let N be an S-R-submodule of M. If
MR is w.regular and M/NR is £.g., then HomR(M/N,M/N)

is a left w.regular ring.

Proof. See [5, Corollary 9].
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STRONGLY SEMIPRIME RINGS AND NONSINGULAR
QUASI-INJECTIVE MODULES

Mamoru KUTAMI

In this paper, we first give several characterizations
of a right strongly semiprime ring. For example, it is
shown that a ring R is such a ring if and only if

(1) Q(R) is a direct sum of simple rings, and

(2) eQ(R)eR = eQ(R) for all idempotents e in Q(R)
where Q(R) denotes the maximal ring of right quotients

of R. Using these conditions (1) and (2), we shall
investigate the following conditions:

(a) Every nonsingular quasi-injective right R-module
is injective.

(b) Any finite direct sum of nonsingular quasi-
injective right R-modules is quasi-injective.

(c) Any direct sum of nonsingular quasi-injective
right R-modules is quasi-injective.

(d) Any direct product of nonsingular quasi-injective
right R-modules is quasi-injective.

It is shown that the conditions (a), (b) and (d)
are equivalent; indeed, the rings satisfying one of these
conditions are determined as rings R such that R/G(R) is
a right strongly semiprime ring, where G(R) denotes the
right Goldie torsion submodule of R. A ring R satisfying
the condition (c) is also'characterized as a ring R such

that R/G(R) is a semiprime right Goldie ring.

1. Preliminaries and Notations.

Throughout this paper all rings considered have
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identity and all modules are unitary.

Let R be a ring. Q(R) denotes its maximal ring of
right quotients. Let M be a right R-module. By ER(M), nM,
Z(M) and G(M) we denotes its injective hull, the direct
product of n-coples, its singular submodule and its
Goldie torsion submodule, respectively. (Note that
Z(M/Z(M)) = G(M)/Z(M).) For a given two right R-modules
N and M, we adopt the symbol N CM to denote the fact
that N is isomorphic to a submodule of M, and use the
symbol N C M to indicate N to be an essential submodule
of M.

Now, for a nonsingular right R-module M, the follow-
ing statements hold:

(1) MG(R) = 0; so M become a right R/G(R)-module
by usual way,

(2) M is also nonsingular as a right R/G(R)-module,
and

(3) M is R-injective (R-quasi-injective) if and
only if M is R/G(R)-injective (R/G(R)-quasi-injective).

Noting that R/G(R) is a right nonsingular ring, we
conclude from [2, Theorem 2.2] that any nonsingular
injective right R-module has a unique right Q(R/G(R))-
module structure compatible with the R-module structure.
So, for a nonsingular right R-module M, we have M &,
MQ(R/G(R)) S E ().

It is well known (e.g. [2, Theorem 3.2]) that every
finitely generated nonsingular right module over a right
self-injective regular ring is both projecti;e and inject-
ive. Therefore, if M is a finitely generated nonsingular
injective right R-module, then M is both Q(R/G(R))-
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projective and Q(R/G(R))-injective.

Lemma 1. Let R be a ring and set R = R/G(R) and
Q = Q(R). If M is a nonsingular right Q-module, then the
following statements hold:

(a) M is nonsingular as a right R-module. (Of course,
M becomes a right R-module by a natural way.)
' (b) M is Q-quasi-injective if and only if M is R-
quasi-injective.

Lemma 2. If M is a quasi-injective right R-module
such that R oM for some positive integer n, then M is

injective,

2. Strongly semiprime rings.

We recall some definitions introduced by Handelman
and Lawrence [4] and Handelman [5]. An right ideal I of
a ring R is insulated if there exists a finite set of I
whose right annihilator in R is zero. A ring R is said to
be a right strongly semiprime ring if every ideal I of R
with I g;lR,as a right ideal is .insulated as a right ideal.

Definition. For an element a in a ring R, we call
a finite set {rl,...,rn; b} CR is a right semi-insulator
of a when RaR A RbR = 0 and the right annihilator of
{arl,...,arn} U bR is zero.

Proposition. For a given ring, the following
conditions are equivalent:

(a) R is a right strongly semiprime ring.

(b) (1) Q(R) is a direct sum of simple rings, and

(2) Q(R)eR = Q(R)eQ(R), or equivalently, eQ(R)eR

= eQ(R) for all idempotents e in Q(R).

(c) (1) R contains no infinite direct sums of ideals,
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(2) every element of R has a right semi-insulator.
(d) Q(R)I = Q(R) for any essential right ideal I
of R.
(e) There exists a ring extention S of R with the
same identity satisfying SI = S for any essential right
ideal I of R.

3. Nomsingular quasi-injective modules.

Lemma 3. If R is a simple ring, then every non-
singular quasi-injective right R-module is injective.

Theorem. For a given ring R, the following
conditions are equivalent:

(a) R/G(R) is a right strongly semiprime ring.

(b) Every nonsingular quasi-injective right R-module
is injective.

(¢) Any finite direct sum of nonsingular quasi-
injective right R-module is also quasi-injective.

(d) Any direct product of nonsingular quasi~injective
right R-module is quasi-injective.

Proof. Set R = R/G(R) and Q = Q(R/G(R)).

(b)=> (d) =)(c) : Obvious.

(a)=>(b). Since R is a right strongly semiprime
ring, Proposition says that Q is a direct sum of simple
rings and eQe§ = eQ for all idempotents e in Q. Now, let M
(+ 0) be a nonsingular quasi-injective right R-module.

In order to show M is injective, we show M = MQ., Let O

+ X € M. Since xQ is Q-projective, there exists an idem-
potent e in Q and an isomorphismy: xQ xz eQ withY(x) = e.
Inasmuch as xQ is Q-injective, ER(M) =xQ@®Y for some
submodule Y. Since M is quasi-injective, this yields M =
(xQA M) @ (YNM). As a result, xQ \ M is quasi-injective.
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Put Z =¥ (xQ N\ M). Inasmuch as xR ger NM <& xQ, we
infer that ER(xQn M) = xQ; whence ER(Z) = eQ. Observing
eQ = eQeR = EndQ(eQ)ei = EndR(eQ)efg_ EndR(eQ)Z = Z, we
see eQ = Z ='Y(xQ N M). Consequently xQ = xQ A M and it
follows xQ C M. Therefore MQ = M. Since M is a nonsingular
quasi-injective right R-module, then MQ is nonsingular Q-
quasi-injective. Hence, by Lemma 3, MQ is Q-injective;
whence MQ = M is R-injective.

(c) =)(a). In view of Proposition, it is enough to
show that eQei = eQ for all idempotents e in Q and Q is
a direct sum of simple rings. Let e = e? € Qand set T =
eQeR @ (1-e)Q(1-e)R. Then T is a nonsingular quasi-
injective right R-module because both eQeR and (1-e)Q(l-e)R
are so. Since R (T, it follows that T is injective;
whence so is eQeE. Thus we get eQeR = eQeQ = eQ. Now,
assume that Q can not be expressed as a direct sum of
prime rings. Then Q itself is not prime. Hence there
exist non-zero two-sided ideals A,B such that AB = 0,
Let A',B' be the injective hull of A,B in Q, then they
are also two-sided ideals and generated by central
idempotents by [3, Corollary 1.10]. Since Q is semiprime,
AN B =0. Then A'"\ B' = 0. Hence there exist orthogonal
central idempotents 'ze i}i such that Zie i = 1. By
assumption, at least one of eiQ, say ejQ, is not prime.
Use the same aregument for the ring e jQ’ then there
exists another set ﬁ_ei}i of orthogonal central idempotents
of Q such that Ziei = 1. Repeating these procedures,
we see that there exist infinite orthogonal non-zero
central idempotents{eil i= 1,2,...} in Q. Since i=1e1Q
is nonsingular Q-quasi-injective, it is also non-singular

R-quasi-injective (Lemma 1).
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Putting T = (l-el)Q‘X (fg;e1Q), T is then a nonsingular
qgasi—injective right R-module, since both (l-el)Q and
;éleiQ are so. As a _tj‘esult, it follows from R g T that

T is injective and ii‘;].eiQ @Q, a contradiction.

Hence Q must be written as a direct sum of prime rings,
say Q = Ql@ oo B Q_ - Let X be a non-zero ideal of Q.
Then X is a nonsingular quasi-injective right Q-module
and hence it is nonsingular R-quasi-injective by Lemma 1.
Take a non-zero idempotent e in X and consider X x (1-e)Q.
Since both X and (1-e)Q are nonsingular quasi-injective
right R-module, so is X x (1-e)Q. Inasmuch as RCX % (1-e)qQ,
it follows that X x(1-e)Q is injective; whence X@Qi.

Since Qi is a prime ring, this shows X = Q,. Accordingly

each Qi is simple. t

Boyle and Goodearl [1] showed that every nonsingular
quasi-injective right R-module over a semiprime right
Goldie ring is injective. However, as is easily seen,
a semiprime right Goldie ring is a right and left strongly
semiprime ring, since every essential ideal of the ring
has a regular element. Thus, by Theorem, we have

Corollary 1. If R is a semiprime right Goldie ring,
then every nonsingular quasi-injective right R-module is
injective and every nonsingular quasi-injective left R-
module is also injective.

Corollary 2. For a given ring R, the following
conditions are equivalent:

(a) R/G(R) is a semiprime right Goldie ring.

(b) Any direct sum of nonsingular quasi-injective

right R-module is quasi-injective.
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COMMUTATIVE RINGS ALL OF WHOSE MODULES
ARE QF-3!

Koichiro CHTAKE

ILet R be a ring with identity and Mod-R the category
of unital right R-modules. A subfunctor of the identity
functor of Mod-R is called a preradical. Then a preradical
t is called a radical if t(M/t(M)) = 0 for all M ¢ Mod-R,
and is called idempotent if t(t(M)) =0 for all M ¢ Mod-R.

Also we can define precoradicals, coradicals and idempotent
precoradicals. For example, an endofunctor r of Mod-R is
called a coradical if there exists an idempotent preradical
t of Mod-R such that r = 1/t. '

Proposition 1. ([5]). Let ©® be a class of right R-
modules. Let r be a functor such that
rg(M) =ni{Ker £ |f ¢ Homy(M,C), C}
for M e Mod-R. Then re is a radical. Conversely every
radical in Mod-R is obtained like this.

Remark. In general ¥ is not a set. Sowe have to make
clear the meaning of re(M). Put @ = {t’.‘c”6| €' is a set}.
Let = {r%'(M)l g'e @ }- Then I is a set since re,‘(M)
is a submodule of M. So re(M) is defined via r\{r,c,(M) |
re,(M) € 7’ }.

Proposition 1'. ([5]). Let ¥ be a class of right R-
modules. Let te be a functor such that

tg(M) = I{Im f| ¢ HomR(C,M), Ce B}
for M e Mod-R. Then tg is an idempotent preradical.

Conversely every idempotent preradical is obtained like this.

A torsion theory (r ,?) in Mod-R is a couple of classes
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of right R-modules with the following properties:

(1) TNF = {0}.

(2) 7 is closed under direct sums, factor modules and

group extensions.

(3) & is closed under direct products, submodules and

group extensions.

Ir (7,%) is a torsion theory, then to = re (by Pro-
positions 1 and 1'). Hence teg is an idempotent radical.
Conversely let t Dbe an idempotent radical and put Sy =
{M ¢ Mod-R| t(M) = M} and ¥ = (M ¢ Mod-R| t(M) = 0}. Then
(7 ,%) is a torsion theory and t = tg= rg holds. Hence
it is an easy ccnsequence that there is a bijective corre-
spondence between torsion theories in Mod-R and idempotent
radicals in Mod-R. A torsion theory (7 ,%) is called hered-
itary if 77 is closed under submodules, and this is equiv-
alent to say that the corresponding idempotent radical is
left exact. This is also equivalent to say that ¥ is closed
under injective envelopes. In fact a left exact .radical is
also idempotent.

In [3] Bronowitz and Teply offered a problem to charac-
terize rings R such that:

(*) Every torsion theory in Mod-R is hereditary.

To approach this problem there appeared another problem to
characterize rings R such that:

(*#) Every radical in Mod-R is left exact.

A torsion theory (r, <) is said to be cohereditary if
jk is closed under factor modules (in this case ¥ is called
a TTF class ([4])).

Since (#*) and (**) are categorical properties. the dual
problems exist, namely:

(*)' Every torsion theory in Mod-R is cohereditary.

(#*)' Every idempotent preradicsl is epi-preserving.



26

The property (*¥*)' has come from the equivalent property:

every coradical (in the sense [11]) is right exact.

In [3, Theorem 3] rings with (*)' were determined, while
it is easy to determine rings with (**)'. In fact R is a
ring with (**)' if and only if R 1is semisimple artinian.

To characterize rings with either (*) or (**) are still
open. On the other hand, two iﬁplications hold: (**) = (%)
and (*)'=y (*). But these properties are not equivalent.

Example 1. Every torsion theory over a proper homo-
morphic image of 2Z 1is hereditary. But there exists a radi-

cal which is not left exact.

The other half of examples will be given at the end of
this report. A module QR is said to be QF-3' if QR co~-
generates its injective envelope E(QR). This definition is
equivalent to say that rQ

Proposition 1) is left exact. Thus it is clear that (¥*¥)

(a particular case defined in

implies that every right R-module is QF-3'. In fact the con-
verse holds ([5]).

Ve know that a simple module is QF-3' if and only if it
is inJective. Hence (**) implies that R is a right V-ring
(i.e. every simple right R-module is injective).

Récently H. Katayama has proved the following:

Proposition 2.([5]). Suppose that R is either left

or right semi-artinian. Then the following assertions are
equivalent.

(1) Every right R-module is QF-3'.

(2) R is a right V-ring.

(3) Every left R-module is QF-3'.

(4) R is a left V-ring.

Here R 1is said to be semi-artinian if every nonzero
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right R-module has a nonzero socle. Also we get the follow-
ing.

Proposition 3. The implications (1)=> (2)&>(3) =» (k)
hold.

(1) R is right semi-artinian and a right V-ring.
(2) Every right R-module is an essential extension of a
'~ direct sum of injective modules.
(3) Every nonzero right R-module has a nonzero injective
submodule.
(4) Every right R-module is QF-3'.

If R 1is commutative we have the implication (4) = (3).
This fact follows from the so called Kaplansky's result:
if R is commutative, R is a V-ring if and only if R is
(von Neumann) regular. 1In fact if R 1is commutative, the
statements in the preceding proposition are equivalent. 1In

order to obtain it we need some lemmas.

Lemma 4. Let MR be a nonzero QF-3' module with S =
End(MR). Suppose S 1is regular. Then MR has a nonzero

injective submodule.

Lemma 5. Let I be an idesl of R such that RR/I

is flat. Let M be a right R/I-module. Then MR is injee=-

tive if and only if M is injective.

R/I
Lemma. 6. (Osofsky [9]). Let R be a right self-injec-

tive regular ring with an infinite set of orthogonal idem-

potents {eA| AeA}. Put I=,Ef eR. Then R/I is not

A e A
an injective right R-module.

Finally we state a useful lemma.

Lemma 7. ([6]). The following conditions are equiv-

alent.



28

(1) Every right R-module is QF-3'.
(2) Every cyclic right R-module is QF-3'.

A ring R 1is called a right QF-3' ring if RR is a
QF-3' module. Left QF-3' rings are defined similarly. R
is called a QF-3' ring if it is both left and right QF-3'.

Now we are ready to state our main result.

Theorem 8. Let R be a commutative ring. Then the

following assertions are equivalent.

(1) Every R-module is QF-3',

(2) Every nonzero R-module contains a nonzero injective sub-
module.

(3) R is regular and every factor ring of R is a QF-3'
ring.

(4) R is regular and every factor ring of R has a nonzero
injective ideal.

(5) R is regular and semi-artinian.
Finally we give an example indecated by Katayama.

Example 2. Let K %be a field and KI a direct pro-
duct of copies of K with an index set I. Let R be a
(1) and the identity of KI.

Then R 1is regular and semi-artinian.

subring of KI generated by K
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SEPARABLE POLYNOMIAL AND FROBENIUS POLYNOMIAL
Shiiichi IKEHATA

‘ Throughout, K will represent a ring with 1, p an
automorphism of K, and b a p-derivation of K (i.e. an
additive map of K into itself such that D(ab) = D(a)p(b)
+ aD(b) for all a, b < K). Let R = K[X; p, D] be the
skew polynomial ring, in which the multiplication is given
by aX = Xp(a) + D(a) (a 7 K). A monic polynomial £ in
R 1is called a separable (resp. Frobenius) polynomial, if
Rf = fR and R/Rf is a separable (resp. Frobenius)
extension of K.

In case R 1is a usual polynomial ring over a commuta-
tive ring K, separable polynomials were studied by G. J.
Janusz [2] and T. Nagahara [7, 8 and 9]. Concerning
Frobenius polynomials, Y. Miyashita [5] proved that any
monic polynomial in R 1is Frobenius,

In case R = K[X; p] or R = K[X; D], separabie poly-
nomials of some special type have been studied by K.
Kishimoto [3, 4], and T. Nagahara [10, 11] has made a
thorough investigation of polynomials of degree 2.

In his paper [6], Miyashita posed the following
question: Is any separable polynomial Frobenius? Some
arguments concerning the question have been done in [6, § 3].
Our present intention is to give some sufficient conditions
for a separable polynomial to be Frobenius, and sharpen the
results of Miyashita [6, Theorems 3.4 and 3.5].

1. 1In what follows, we use the following convention:

Let £ = X® - Xm_la1 - e - Xam_l - a (m > 1) be a monic
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polynomial in R with Rf = fR, and let

: .1 m-2

Y0 = X | X a1 - ces - Xam_2 - am_1
‘ _ =2 m-3

Y, =X X Ca; - .-a

Ym—2 =X - a1

Ym-l =1 .

First, we state the following important results of
Miyashita:

Theorem 1 ([6, Theorem 1.8]). If f 1is separable,
then there exists y - R with deg y < m such that

m-1 j
Y.yX
Zj_o 37

a .. K, and conversely.

1 (mod Rf) and pm-l(a)y = ya for all

Theorem 2 ([6, Proposition 1.13]). If f 1is
Frobenius, then there exists r ¢ R with deg r <m such
that r + Rf is invertible in R/Rf and pm-l(a)r = ra

(or rpm'l(a) = ar) for all a ¢ K, and conversely.

, If R = K[X; D], then any monic polynomial f in R
with Rf = fR 1is Frobenius. (Take 1 as r in Theorem
2.) More generally, if p 1s an inner automorphism
effected by an invertible element u in K, then any
monic polynomial £ in R = K[X; p, D] with Rf = fR 1is
Frobenius. (Take um-1 as r in Theorem 2.) However,

for general R, the same need not be true.

Example. Let K be a field with an automorphism p
of order 2, and R = K[X; p]. Then f = X2 is not a
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Frobenius polynomial. In fact, assume that r = XCl + o
is an element of R such that .p(a)r = ra (a -~ K). Since
2 _ 2,2
0° 0 and r° = (Xcl) = X p(cl)c1 < fR.

Hence, r + Rf cannot be invertible in R/Rf. According

p # 1, we have ¢

to Theorem 2, this implies that f is not Frobenius.

Now, we shall prove the following

Theorem 3. Let R = K[X; p]. Assume that there
exists an invertible element u in K and a positive
integer n such that p(u) = u and o™(a) = uau-1 (a =2 K).
If n is invertible in K, then any separable polynomial
f in R commuting X 1is a Frobenius polynomial.

Proof. By Theorem 1, there exists y -~ R with deg y
?23 ijxJ =1
(mod Rf). We consider the mapping §: R + R defined by
ﬁ(Ek Xkdk) zk X p(dk), which is easily seen to be a ring
automorphism of R such that o Th) = uhu (h € R).

Since Xf = fX, we have p(ai) =a, (1<41i<m), and

therefore $(f) = f and #(Y,) =Y, (0<j <ml). We

<m such that p™ (a)y = ya (a ¢ K) and

J ]
put r = ].zn 1 5V(y). Since " (y) = uyu_1 = pm"]‘(u)yu-1
=yuu =y, we have g(r) = r, and therefore rX = Xr.

Moreover, recalling that ‘p(ai) = a,, we obtain

len-1 v
- (ai)y) nlynt
and hence Y.r = rYj. Now in view of p(f) = £ and
5(Yj) = Yj, it follows that

v —
\)=0 (yai) = rai)

r(2j=0 ijj = (I5 i=0 ijj = {j 0 erx

'1(2v=0 *“(Xv=0 jij)) = 1 (mod Rf).
Thus, f is Frobenius by Theorem 2.
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2. Throughout this section, we assume that D = 0,
namely R = K[X; p]. Then the condition Rf = fR implies
that af = fp™(a) (a ¢ K). Hence, we have aa; = aipi(a),
whence it follows that Kai = ayK. This fact will be used
freely in the subsequent study.

First, we prove the following key lemma of this section.

Lemma 1. Let f be separable, and y = xm-lcn_1 +
eee + Xc1 + o be as in Theorem 1. Then there exiéts

d ¢ K such that amd - a 1.

m-1%0 °

Proof. There exists a polynomial g in R 'such that

m-1
3=0

both sides, we readily obtain - a

ijxJ = 1 - fg. Comparing the constant terms of the

1-10 =1- amd with

some d - K.

Remark. In Lemma 1, we can easily see that a 1%

is in the center of K, since pm_l(a)y = ya (a € K).

Theorem 4 ([1, Theorem 1]). (a) 1If a4

or am is
invertible, then f is Frobenius.
(b) 1If f 4is separable and if a1

the Jacobson radical rad(K) of K, themn f is Frobenius.

or a is in
m

Proof. (a) 1If a 4 is invertible, we can take

a as r 1in Theorem 2. 1If a is invertible, then

m-1

a = X(Xm-1 - Xm—zal - eee = am-l) (mod Rf) implies that

X + Rf is invertible in R/Rf, and therefore we can take
m-1
X as r in Theorem 2.

(b) By Lemma 1, rad(K) + am

_lK = K or rad(K) + amK
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= K. Then am or

~1
a is invertible. Hence, f 1is Frobenius by (a).

K=K or amK = K, and therefore a

Corollary 1 (cf. [6, Theorem 3.4 (1)]). If rad(K)
is a maximal ideal of K, then every separable polynomial
f 1is Frobenius.

Proof. By Lemma 1, we have a K + a K = K. Since

m m-1
rad(K) 1is the unique maximal ideal of K, it follows that
amK =K or am_lK = K. Now, the conclusion is immediate

by Theorem 4.

Taking the above remark into mind, we can easily see

Corollary 2. If the center C of K 1is a local ring,

then every separable polynomial f is Frobenius.

In the rest of this section, we assume that K is the
direct sum of (directly) indecomposable rings Ki (i=1, 2,
, ¥). Obviously, the center C of K is the direct
sum of the center Ci of Ki' Let e be the identity of
K;- Then p induces a permutation Tt of {1, 2, ... , r}

such that p(ei) = eT(i). Let Yy Yor cee s Yy be the

eeiwj Ky (=1, 2, ..., K.

orbits of T, and set A,

(S N

Then there holds R = + =1 Aj[X; pj], where pj is the
restriction of p onto Aj.
Under the above hypothesis and notations, there holds

the following

Lemma 2. If 1 is a cycle of length r > 1, then

every separable polynomial f of R is Frobenius.
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Proof. Without loss of generality, we may assume that

t=4(, 2, ... , ). If r does not divide m - 1, then
m-1 _ m-1 _ m=1
p (el) # e, Hence, ea =3, 1P (el) =p (el)am_l,

whence it follows eja, 1= 0. Similarly, we can prove

that e = 0, and therefore a_q = 0. Hence f |is

a
i"m-1
Frobenius by Theorem 4. On the other hand, if r divides

m-1, then pm(ei) = p(ei) = e with the convention

i+1
€1 T ©1° m - m®i+1 T i+1%n

a = 0. Then f 1is Frobenius by Theorem 4.

Hence, e.a , whence it follows

Now, let eg be the identity of Aj' According to
Theorem 1 (resp. Theorem 2), one can easily see that h is
a separable (resp. Frobenius) polynomial in R if and only
if each he* is a separable (resp. Frobenius) polynomial
in Aj[X; pj]. Hence, as a combination of Lemma 2 and

Corollary 1, we readily obtain the following which includes
[6, Theorem 3.5]:

Theorem 5 ([1, Theorem 2]). Assume that K is the
direct sum of indecomposable rings Ki, and that each
rad(Ki) is a maximal ideal of K,. Then every separable

i
polynomial in R is Frobenius.

As is well known, every commutative Artinian ring is
a direct sum of local rings. This together with Lemma 2

and Corollary 2 yields the following

Theorem 6 ([l, Theorem 3]). If the center of K is
an Artinian ring, then every separable polynomial in R is

Frobenius.



36

Corollary 3. If K 1is a commutative Artinian ring,

then every separable polynomial in R is Frobenius.

3. DNow, we return to the general case, and prove

the following slight generalization of [6, Theorem 3.4 (2)].

Theorem 7. Assume that K is a (two-sided)

simple ring and f 1is separable. Let y = X <, + X 1 c-1
+ ... + o (cn # 0) be as in Theorem 1. If either n=40

or (m, n) =1, then f is Frobenius.

Proof., If n = 0, then ;)In_l(a)co = cpa (a ¢ K). Since
K 1is simple, < is invertible, and therefore £ is

Frobenius by Theorem 2, Henceforth, we assume that (m, n)

1, and choose positive integers r, s such that mr - ns

- i
1. As is easily verified, § zi*O oip (v>1) is
a p-derivation (see, e.g. [12]). The condition Rf = fR
implies af = fpm(a) (a  K). Comparing the coefficients
of XFPI in the both sides, we obtain

s _ (0" @) - " H@)a) = - a,0"(@).

m
Hence, putting c¢ = p (-a), we have anl(c) = alp(c) -

ca,, which means that sm-l is an inner p-derivation. Next,

since pm—l(a)y = ya (a - K), there holds that pm+n-1(a)cn

min-2 min-2
-1 (P (a)c c 13-

Recalling that c_ # 0 and K is sinple, we see that c,
is invertible. Hence it follows that

mn-2 -1 mn-2
Gn_l(p (a)) = Ch-13C, P (a)cn_lcn

=ca and § (a))cn +p =

~lminelo s w2y -1

= Ch-1 n . n-1"n
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Now, putting d = pm+n-2(a), we have § (d) = ¢ c_lp(d)
_1 n-1 n-1"n
- dc _,c ., and therefore § , is an inner p-derivation.
Then, it is easy to see that

zr-l km ~km _ p(zs-l n -ln)p—l = D.

k=0 ° Op-1° =0 P Sp-1°
Since p16 p_i and piG p_i are inner p-derivations
m-1 n-1 ’
we see that D 1is also an inner p-derivation. Hence,
there exists u K such that D(a) = up(a) - au (a K).
Now, we have K[X; p, D] = K[Y; p] for Y = X + u, and
therefore f is Frobenius by Corollary 1.

Corollary 4. If K 1is a simple ring, every separable

polynomial of prime degree in R 1is Frobenius.
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UNITS IN INTEGRAL GROUP RIMGS

Katsusuke SEKIGUCHI

Introduction. Let G be a finite group and let
2G be its integral group ring. Let U(2G) denote the
unit group of 2G and put V(ZG) = { ueU(2G) | e(u) =1}
where ¢ : ZG—>%Z is the augmentation map of 2G.
Then U(2G) = V(2G) x {1 }. A unit of 2ZG is called
trivial if it is of the form +g, ge€G. In (3],
Higman showed that, if G is a finite abelian group,
every unit of finite order in 2G 1is trivial. He also
showed that every unit in 2G 1is trivial if and only if
G is

(1) abelian and its exponent is 1, 2, 3, 4 or 6, or

(2) the direct product of the guaternion group of
order 8 and an elementary abelian 2-group.

However, if G is not an abelian group, there
exists very few results concerning U(ZG).

In this paper, we will study the following problems

Problem 1. °~ Is there a torsion free normal subgroup

F of V(3G) such that V(2G) = F.G ?

Problem 2. How many conjugate classes are there

in V(2ZG) of subgroups of V(ZG) isomorphic to G ?

Problem 3. Construct nontrivial units in ZG.
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Let Sn (resp. An) denote the symmetric group
(resp. alternating group) on n symbols, Dn the dihedral
group of order 2n and Cn the cyclic group of order n.
To begin with, we shall state the results concerning

Problems 1 and 2 which are obtained until now.

(1) Hughes and Pearson [4] : There is 1 conjugate
class in V(ZS3) of subgroups of V(ZS3) isomorphic to
53.

(2) Polcino [7] : There are 2 conjugate classes
in V(ZD4) of subgroups of V(ZD4) isomorphic to D4.

(3) Dennis [l1) : There is a torsion free normal
subgroup F of V(ZS3) such that V(ZS3) = FcSB.

(4) Miyata ([6) : If n is odd, there is a torsion
free normal subgroup F of V(ZDn) such that V(ZDn) = F-Dn.

If n and the order of the class group of ZDn are
odd, then there are ¢(n)/2 conjugate classes in V(ZDn)
of subgroups of V(ZDn) isomorphic to Dn' where ¢(.)

denotes Euler's totient function.

On the other hand, concerning Problem 3, nontrivial
units were constructed in the following cases :

G = S3 (1, 6= D4([7]) etc.

In § 1, we shall consider Problem 1 in the case
where G 1is a metabelian group, and in § 2, the number

of conjugate classes will be determined in each of the
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cases : G = A4 and S4. Finally, in §3, we will
give a method of construction of nontrivial units in ZG
of an arbitrary finite groupr G. For the proofs of theo-

rems in §1 and §2, see [9].

§1. For N<G, denote bv €6 N the natural map

’

from 2G to 2(G/N) and let I(G,N) = Ker ¢ For an

G,N’
ideal J of 2G, we write U(1+J) = U(ZG)N (1+J), where
143 is the set of all elements of the form 1+j, je J.
Note that €6.G is the augmentation map of 2G and

’

V(ZG) = U(1+ I(G,G)). Write € = €5 .G and I(G) = I(G,G).

The following results are useful.

Proposition 1.1 ([5]). Let G be a finite group
and let ge&G. Then g -1¢€ I(G)2 if and only if ge G'.

Proposition 1.2 ([13]). Let G be a finite group
and let N «G. Then

N/N' 2 I(G,N)/I(G)I(G,N)

under the map nN'— 5 n-1 + I(G)I(G,M), ne N, where

N' denotes the commutator subgroup of N.

Define the map U(1+I(G,N))—>I(G,N) by l+k~—- —>k,

k<I(G,N). This map induces a group isomorphism
U(1+I(G,N))/U(1+I(G)I(G,N)) ~- >I(G,N)/I(G)I(G,N).

Thus we get

Corollary 1.3. Let G be a finite group and let
N <«G. Then
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N/N' = U(1+I(G,N))/U(1+I(G)I(G,N)).
By (1.1),(1.2) and the theorem of Higman, we get

Proposition 1.4. Let G be a finite abelian group.
Then U(l+I(G)2) is a torsion free subgroup and V(2G) =
G x U[1+X (G)z) .

The purpose of this section is to state the following

Theorem 1.5. Let G be a finite metabelian group
such that the exponent of G/G' is 1, 2, 3, 4 or 6.
Then there is a torsion free normal subgroup F of V(2ZG)
such that V(2ZG) = F.G.

Remark. Let G be a finite group of order n.
By the regular representation of G, there is a ring
monomorphism T : ZG-———-a-Mn(Z), where Mn(Z) denotes

the ring of nx n matrices over 2. Then the restriction

of T to U(ZG) vyields a group monomorphism U(2G) >
GL(n,2), which is denoted by the same symbol T. For an
odd prime p, define the natural map ¢ p : GL(n,2)—>
GL(n,z/p2). Then it is easy to see that Ker ¢ is a
torsion free normal subgroup of GL(n,2) of fingte index
in GL(n,2). Set F = T-l(Ker_¢p), then F is a torsion
free normal subgroup of U(2G) of finite index in U(2G).
Thus, for any finite group G, U(2G) has a torsion free

normal subgroup of finite index.
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§2. Let A4 be the alternating group on 4 symbols

1, 2, 3 and 4. Set N = { 1, (12)(34), (13)(24), (14)(23))

<1A, and define N =1 + (12)(34) + (13)(24) + (14) (23)

4

i .
n ZA4

Hereafter, the unit group of a ring R will be

denoted by U(R).

Consider the pullback diagram

—— > Z(A,/N)

A
] I
| |
; J
ZA4/(ﬁ) — 3 (2/42) [(123)].

Z

4

From this diagram we get the exact sequence (e.g. [8] ).

1—-> U(ZA4) —>0 (ZA4/ (N))—>U((2/42) [(123)]) /<-1, (123)> —>1.
Define the representation of ZA4/(ﬁ) to M3(Z) by

1 0 o) e 1 o

(12) (34)—> {0 -1 0 and (123)—0 0 1 .

lo o -1, 1 0 0
Here, for :ceZA4, x denotes the image of x under the
natural map ZA4n~4*~—>ZA4/(§).
U(ZA4/(ﬁ)) is embedded in GL(3,2).
classification of finite subgroups of GL(3,2) ([10}]),

By this representation
Making use of the
we

obtain

Theorem 2.1. There are 4 conjugate classes in

V(ZA4) of subgroups of V(ZA4) isomorphic to A4.
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By more complicated computations, we further obtain

Theorem 2,2. There are 16 conjugate classes in
V(ZS4) of subgroups of V(ZS4) isomorphic to S4.
§3. In this section, we will give a method of
construction of nontrivial units. Our main result in

this section is as follows :

Theorem 3.1. et G be a finite group. Take a

unit u in 2G of finite order n and f&2G such that
g+ D o e gD g vhere £ o ulenE,
et ¢ be a unit in 2G such that ¢ is commutative
(1)

with £ and u, and set v = v(u,f,c) = £ + (f + clu +
f(2)u2 L R f(n-l)un-l. Then v = cn. In part-
icular, v 1is a unit in Z2ZG.
n-1 i
Proof. For fi , 9.€2G, put x= I fiu and
] i=0
n-1 .
y= ¥ g.uj. Then
J=0
n=1 n=1
= + +
Xy (fo flu + + fn-lu )(go glu + + gn_lu
_ (1) (n-1)
= fogo + flgn_l S P fn-lgl
(1) (n-1)
+ (fogl + flg0 P + fn_lg2 u
F iereccscccrectrsetatsaseccseoroneae
(1) (n-1), n-1
+ (fogn_1 + flgn_2 + tiiee. + fn_lgo Ju

)
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= (fo, fl’ ....... . fn—l) W 1 W . where
L u
L n-1
u »
W= qo gl g2 ........ gn_1 Y
(1) (1) (1) (1)
190-1 % 91 e In-2
i
_(n-1) (n-1) (n-1);
%1 9y  reeseees 9%
Hence, for v =f + (f(l) + ¢clu + f(z)u2 +  ieineee

+ f(n—l)un-l' we have

n (1) (2)

v = (f, £ + ¢, £ goeee ¢ E Y .
u
n-1
u
~ 7
where
v={f P4 2 .. ... g1} )
e £ 2, gD
f(n-l)+
i _
| £+e g1 2 . g(p7D)
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put H= (£ £33 ...
£ f(l) -
Lf f(l)
and c= f0 c o .....
0 0 c ceen
0 0 ....
Lc 0
Now, we will show that
(f, f(1)+c, f(z), -
k 1
=c (f, f( ), ceees o
s REY e L
(1)

+c

for every k, 0=k=n-1,
with

If

f when k=n-1.

k = 0, the assertion is

the following equation holds

(L) (2)

(£, £ ""4¢c, £

(1)

’

KL, £

ceses f(n_lr
..... g (0-1)
(n-1)
...... f )
oy .
0
0
r
ceen s f(n'l)) {u+ )X
f(k+l)+c, o f(n-l))
...... , £072),
............ , gnk-1)y
(n)

where we identify £
We use the induction on k.

clearly valid. Suppose that

..... , £y gy 4 gkt
, f(k)+c, oo 4 f(n_l))
e eeeeaaeas , £072),



47

+ (f 4 eeecencceesreanennes , £ )
Since £ + f(l) + ciee.... + f(n~l) = 0 and cf(j) = f(j)
for every j, 0 £ j =n-1, by assumption, we get
(g Al (. , 0 and
(f(n—i)' ..... ) f(n-i-l)) c = c(f(n—J.—l) ) ) f(n—i-2)

for every i, 0 < i g n-1.

Therefore we get

£, £ Puc, ... , e Dy cpa K
&N, M, L, e, LYy (R o)
g KLeD) e ,£72)y twy o)
P T ek e o)
ke e gkl SRR
I  g(n=2),

+ k(f(n k)' f(n—k+l)' ......... ) f(n—k—l))

as desired. When k = n-1, the equation (1) implies
that

(1) f(n—l)

£, £ Ve, ..., y{H+cr =" 0, ..., 0.
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Kence

W= g, £, L., gD

-
o
+
(9]
o
=]
!
(=]
e =
[
(o]

n-H

This completes the proof.

We here use the same notation as in (3.1). Now,

we will give some examples.

Example 1. G = sn' the symmetric group on n symbols

1, 2, ..... , N. Write

An ={gll gzl ) qtl ‘Jt+l:--:gt+sr (12)9t+1(12): -------

ces (l2)gt+s(12)} where {gl, e 0 9 ) is the set of

all elements of An commutative with (12). Put u = (12),

s s
c=1 and f = .Z Teni = (12) ( 'Z gt+i)(12). Since
i=]1 i=1
£+ (12)£(12)7T = 0, v=v(12),£f,1) is in U(zS ) and
2
v = 1.
Example 2. G = Dn'
Write Dn =<g, 1 o = 12 =1, 101-1 = o-l >.
Set u=1, ¢=1 and
. _-1 (n-1)/2_ _-(n-1)/2,
f = al(o 0 )+ ceven. . + a(n-l)/2(° -0 } :n odd
] -1 {n-2)/2 -(n-2)/2
- + cieeecot - :
\ al(o g ) a(n—2)/2(° o ) :n even

Then £ + TfT-l =0, hence v = v(r,f,1) is in U(ZDn)



49

2
and v = 1.

Suppose that n is odd and ai = 1 for each 1i,

lgig (n-1)/2. Then
v = (0-0-1) S S + (o(n-l)/z_o-(n—l)/2)
+ {1 - (o-o-l) R (o(n_l)/z—o_(n_l)/z)}T .

Consider the natural map ¢ : V(2D )—— V((2/22)D ).
Since Y(v) =0 + ... + on_l + (1 2 o+ ...+on_l)T . nw(v)
is in the center of V((Z/2Z)Dn). Therefore, T and v
are nat conjugate in V(ZDn). Hence the number of conju-
gate classes in V(ZDn) of subgroups of V(ZDn) of order

2 are more than two.

Remark. Recently, Problem 2 has been solved in
each of the following cases((2])
(i) G = Dn' n an arbitrary positive integer.
(ii) G = Cth , (gq,m) =1, the semidirect product of Cm
by Cq such that Cq acts faithfully on each Sylow sub-

group of Cm.
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ON FROBENIUS EXTENSIONS OF QF-3 RINGS
Yoshimi KITAMURA

Let A be a ring and G a finite group of ring
automorphisms of A, and let AG denote the fixed subring of
A relative to G; AG = {a € A; o(a) = a for all o in G}.
Then a question arises whether AG inherites the property
of being QF-3 from A. Here a ring is said to be left QF-3
if it has a unique minimal faithful left module; that is,

a faithful module which is isomorphic to a direct summand
to every faithful module. In general, the answer is
negative obviously, so some hypothesis about the relation-
ship between A and AG is needed. 1In this note we restricte
ourself to the case where A is a G-Galois extension of AG;
that is, there exist {xl,...,xn], {yl,...,yn} C A such that
Zi xio(yi) = 50,1 for all o in G, where the symbol 80’1
denotes the Kronecker’s delta (see [4]). Then we obtain

the following.

Theorem. Assume that A is a G-Galois extension of AG.
Then A is left QF-3 iff B is left QF-3.

Remark. Under the same assumption as the theorem, A

is QF if AG is QF but the converse is not necessarily true.

It is the aim of this note to show the above theorem.
Throughout this paper, all rings have a 1, which acts
unitally and is preserved by homomorphisms and subrings.

We begin with recalling some definitions which will be
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employed in the sequel. A left R-module RM is said to be
co-finitely generated (co-f.g. in brief) provided that for
every set {Mi; i ¢ I} of submodules of M if the intersect-
ion ; M; = 0, then there exists a finite subset FC I
such that Ng My = 0. It is well known that M is co-f.g.
iff Soc(M),the socle of RM is f.g. and essential in M (see
e.g. [8]). Let A/B be a ring extension. Following
Kasch [2], A/B is called a Frobenius extension provided
that BA is f.g.projective and AAB= AHom(BA,BB)B. It is
known that A/B is a Frobenius extension iff there exist
{rl,...,rn}, {11,...,1n} C A and a B-B-homomorphism h of A
to B such that x = 21 h(xri)li = 21 rih(lix) for all x in
A (see Onodera [6]). Following Miiller [5], A/B is called
a left QF extension provided that BA is f.g.projective and
AAB|AHom(BA,BB)B, where the notation AXBIAYB denotes the
fact that X is isomorphic to a direct summand of a direct
sum of a finite number of copies of Y as an A-B-module. A
right QF extension is defined symmetrically. A Frobenius
extension is obviously a left and right QF extension. 1In
case A/B is a left or right QF extension, BA and AB are
both f.g.projective.

The following is well known (see e.g. [1] or [7]).

Lemma 1. For a ring R, the following statements are
equivalent.

(1) R is left QF-3.

(2) There exist non-isomorphic, simple left ideals
Li (1 =1,...,t) in R such that the injective hull E(G)i Li)
of the module Qi Li is a faithful left ideal of R.

(3) There exists a left R-module which is f.g.proj-

ective, co-f.g.injective and faithful.
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Definition. A wodule which has the proprrty (3)

above is called a *-module for convenience.

The next lemma can be seen easily by the definition of

co-f.g. module.

R
Let £: X > Y be an additive injection such that f carries

Lemma 2. Let _X and SY be R and S-modules, respectively.

every R-submodule of X to an S-submodule of Y. If SY is
co-£.g., then so is RX.

Proposition 3. Let A/B be a ring extension. Assume
that there exist al,...,an € A such that A = Xi Bai,
(i =1,...,n). Then the following statements hold.

aiB = Bai-
1) 1If BM is co-f.g., then so is Hom(BA,BM) as a
B-module (and hence as an A-module).
2) 1In case A/B is a left or right QF extension, A is
left QF-3 iff B is left QF-3.

Proof. 1): Set Ki = Bai and xi = Hom(BKi’BM) (i =
1,...,n). For each i, considering a mapping
¢i: Xi -+ M, ¢i(f) = f(ai)
Lemma 2 implies that each Xi is co-f.g. as a B-module.
Hence Hom(BA,BM) is co-f.g. as a B-module because the
epimorphism
& Ky A (x) > x
induces a monomorphism
Hom(BA,BM) - Hom(BQi Ki,BM) (= 61 Xi).
2): Let A/B be a left or right QF extension. Assume
that A is left QF-3. Let AU be a *-module. Then U is

obviously f.g.projective, injective and faithful as a
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B-module. To see that U is co-f.g. as a B-module, let
{Si}iel be a complete set of representatives for the
distinct isomorphism classes of simple left B-modules.
Setting X = eieI E(Si)’ X is faithful, and so Y = Hom(BA,BX)
is faithful as an A-module. Thus we have AulAY' But, BA
being f.g., AY is isomorphic to QieI Hom(BA’BE(Si))'

Hence there exists a finite subset F< I such that U can be
imbeded in QieF Hom(BA,BE(Si)). Thus U is co-f.g. as a
B-module by 1). It follows that U is a *-module as a
B-module, which implies that B is left QF-3 by Lemma 1.
Conversely assume that B is left QF-3. Let BV be a *-module.
Then V = Hom(BA,BV) is clearly an injective left A-module.
Moreover V is co-f.g. by 1). If A/B is a left QF extension,
then AA f Blev’ and so, to be easily seen, AA f l-3V is a
*-module. If A/B is a right QF extension, then AV|AA Q BV,

and so, V is a *-module. It follows that A is left QF-3.

Corollary. Let R be any ring and G any finite group.
Then the group ring R[G] is left QF-3 iff R is left QF-3.

The following is known or can be seen easily.

Proposition 4. Let e be an idempotent of a ring R
such that RRe and eRR are both faithful R-modules. If R is
left QF-3, then so is eRe.

Proposition 5. Let A/B be a Frobenius extension. Let
{rl""’rn}’r{ll""’ln} C A and let h be a B-B-homomorphism
of A to B such that x = zi h(xri)li = 21 rih(lix) for all

x in A. Then the following statements hold.
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1) H= (h(lir ) is an idempotent of the n x n

j*°i,3
matrix ring (B)n over B. Moreover, (B)nH and H(B)n are
both faithful as left and right (B)n-modules, respectively.

2) If B is left QF-3, then so is End(AB).

Proof. One can see 1) by a direct computation. Noting
End(AB) = H(B)nH, 2) is a consequence of Proposition 4 and
1).

Let A be a ring and G a finite group of ring
automorphisms of A. Let A = A(A;G) be the trivial crossed
product of A relative to G: A = & Au_, {u_}

is
0eG o oeG
free generator for A over Aj; auo.buT = ao(b)udT. Then A is

a

embeded in A as a subring by the mapping a —+ au, . It is
easy to see that
d = Eo h(duo)uo_1 = Zo uoh(uo_ld) for all d e &

where h: A + A is defined by h({aouo) = a Therefore 4A/A

is a Frobenius extension. Furthermore A ian be viewed as
a left A-module by the mapping

j: &+ End(AB), j(Zaouo)(x) = Zaco(x) (x € A)
and B is isomorphic to End(AA) in a natural way, where B =
AG. If A/B is a G-Galois extension, then the above mapping
j is an isomorphism and A/B is a Frobenius extension (see
{4]). Noting the mention above, the following is a direct

consequence of Proposition 3.
Proposition 6. A is left QF-3 iff A is left QF-3.

We are now ready to prove the theorem.
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Proof of Theorem. Assume that B is left QF-3. Since
A/B is a Frobenius extension, A(= End(AB)) is left QF-3 by
Proposition 5. Thus A is left QF-3 by Proposition 6.
Conversely assume that A is left QF-3. Then A is left QF-3
by Proposition 6. Let AU be a *-module. Then we can see
that Hom(AA,AU) is a *-module (see [3] for details).

B
Hence B is left QF-3.

We shall close this note giving two examples which
show some hypothesis about the relationship between A and
AG needed as far as we examine the inheritance of QF-3

property between A and AG.

Example 1. Let
Q0O
A=1|Qz0o0

QQQ
be the subring of the 3 x 3 matrix ring (Q)3, where Q
denotes the field of rational numbers and Z the ring of
integers. Let o be the inner automorphism of A determined
by the element [é g _§], and let G = <o>. Then it is easy

to see that

QOO
a® = [qz o’
00Q
As mentioned in Tachikawa [7], A is left QF-3 as well as

right QF-3 but AG is neither left QF-3 nor right QF-3.

Example 2. Let A be the subring of the 2 x 2 matrix
ring (R), consisting of all elements of the form (; :),
x € Q, ¥y € R, where R denotes the field of real numbers.

Then A is a commutative ring without idempotents other than
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0 and 1, but not self-injective. Thus A is not QF-3. Let
b . X0y _(Xxo0

o be the automorphisg of A given by o[y x) (-y x)’ and

let G = <g>. Then A" coincides with the field consisting

of all elements of the form [: i), x £ Q.
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ON QF-2 ALGEBRAS WITH COMMUTATIVE RADICALS

Shigemoto ASANO and Kaoru MOTOSE

Group algebras (of finite groups over an algebraically
closed field) with commutative radicals have been studied
by several authors: D. A. R. Wallace [6, 7, 8], S. Koshitani
[1] and K. Motose and Y. Ninomiya [3]. In particular, Wallace
has given, in [8], a result which determines the structure
of blocks of group algebras of this type. The most important
part of his result may be stated in the following form:
Let A be a block of a group algebra of the type
mentioned above. If the radical N of A 1is such that
N2 # 0, then A is a commutative completely primary algebra.
In this note we shall extend this result to the case
of QF-2 algebras in the sense of R. M. Thrall [4], over an
arbitrary field K. Besides, in connection with this, we
shall also generalize Y. Tsushima's result [5, (2) & (3) of

Theorem 4].

Theorem 1. Let A be a QF-2 algebra over a field K
and let A be itself a block. Assume that the radical N
of A is commutative and N2 does not vanish. Then A
is a completely primary almost symmetric algebra over K
such that the residue class algebra A/N is a (commutative)
field. Moreover, if the base field K is perfect, then A
is a commutative completely primary symmetric algebra over K.
We can show that A 1is not necessarily commutative

unless K 1is perfect.

Corollary. Let A be a weakly éymmetric algebra over
a field X and let A be itself a block. Assume that the

radical N of A 1is commutative. Then A 1is of one of
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the following three types:

(1) A 1is a simple algebra over K.

(2) A 1is a full matrix ring over a completely primary
weakly symmetric algebra B over K such that the square
of the radical N' (= Na B) of B vanishes. (In this case
B/N' 1is a division algebra and N' is one-demensional as
a left B/N'-space as well as a right one.)

(3) A 1is a completely primary almost symmetric algebra
over K such that the residue class algebra A/N 1is a field.
If, in the corollary, we assume moreover that K 1is

perfect, we can say something more: (a) When A 1is of

type (2), there exists a division subalgebra D of B such
that D = B/N'. B 1is expressible as a direct sum D & Dm
(as a left D-space), where m 1is any (fixed) nonzero element
in N'; furthermore, the multiplication in B is given by
the rule m2 =0 and ma = g(a)m (a & D), 0 being an
(algebra) automorphism of D. (b) When A 1is of type (3),
then, by Theorem 1, A 1is a commutative completely primary
symmetric algebra.

How let K be an algebraically closed field and let
A be an algebra satisfying the hypothesis of Corollary.

Then A satisfies the hypothesis of the next Theorem 2, too.
An algebra satisfying this (latter) condition is said to be
of LC-type (see [5]). This theorem generalizes [5, (2) -+ (3)

of Theorem 4].

Theorem 2. Let A be a finite dimensional algebra
over an algebraically closed field and let A be itself
a block. If the radical of A 1is generated over A (3. e.
as an ideal of A) by the radical of its center, then A

is a full matrix ring over the center of A.
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The theorem has been also obtained independently by

B. Kiilshammer [2].

(1]

(2]

(3}
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