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PREFACE

This volume contains the articles presented at the
1ith Symposium on Ring Theory held at Yamaguchi University,
July 28, 1978.

The main aims of the Symposium are to provide a means
for the dissemination of recent theories on rings and
modulesrwhich are not yet widely known and to give
algebraists an opportunity to report on recent progress in
the ring theory.

The 1lth Symposium itself and this proceedings were
partially supported by the Grant-in-Aid for Scientific
Research from the Ministry of Education, Science and
Culture.

Finally we would like to thank Prof. Y. Kurata for
unending patient and kind hospitality to the participants
of the Symposium.

T. Nagahara






ON REGULAR RINGS AND n-REGULAR RINGS

Yasuyuki Hirano

1. Intoruction. Firstly, the notions of right p.p.
rings, right CPP-rings and right CPF-rings, introduced
primarily for rings with identity, will be defined for
s-unital rings. Using these notions, we shall characterize
(von Neumann) regular rings (possibly without identity).
Furthermore, we shall present a characterization of an
s-unital right CPP-rings, which will deduce the main theorem

in [5]. Next, we shall consider n-regular rings. In his

paper [9], H. Tominaga proved that if A is a n-regular
ring of bounded index then (A)n is strongly m-regular for
any positive integer n. We shall show that the same is
true for N-rings, and give several equivalent conditions
for an N-ring and for a CI-ring to be strongly m-regular.
Throughout A will represent a ring (possibly without

identity), NO the set of all nilpotent elements of A, N

the prime radical of A, and J the Jacobson radical of A.



If M is a right (resp. left) A-module and S is a subset
of A, then we set lM(S) = {u eM |us = 0} (resp. rM(S) =

{u €M l Su = 0}). As usual, we write f£(8) = QA(S) and

r(s) = rA(S).

1. Regular rings. Following [10), a non-zero right

(resp. left) A-module M is said to be s-unital if u ¢ uA

(resp. u € Au) for each u &€ M. If A,

(resp. AA) is s-
unital, A is called a right (resp. left) s-unital ring.

In case A is right and left s-unital, we merely say s-
unital. If F is a finite subset of a right s-unital ring
(resp. an s-unital ring) A, then there exists an element e
€ A such that ae = a (resp. ea = ae = a) for all a ¢ F.

A right A-module M is said to be p-injective if for

any principal right ideal |a) of A and f:la)A -)-MA
there exists an element u € M such that f(x) = ux for

all x € |a). Let A be a right s-unital ring, and M,

an s-unital module. If MA is p-injective then, for each

a € A there holds .QM(r(a)) = Ma, and conversely. In par-

ticular, for a domain A with 1, a unital module MA is



p-injective if and only if MA is divisible. As is well
known, A 1is a regular ring if and only if every right A-

module is p-injective.
A right s-unital ring A 1is called a right p.p.ring

if every r(a) is a direct summand of AA' A right s-uni-

tal ring A is called a right CPP-ring (resp. CPF-ring) if
for each non-zero right ideal R of A either R is a

direct summand of AA (resp. R is a s-unital ring) or

A/R, is p-injective (see [11]). As was noted in [10,

A
Proposition 1], it is well known that a non-zero right
ideal R of A with 1 is a left s-unital ring if and
only if A/RA is flat. It is easy to see that every regu-
lar ring is a right CPP-ring and every s-unital right CPP-

ring is a right CPF-ring. Moreover, every homomorphic

image of right CPP-ring (resp. CPF-ring) is also a right

CPP-ring (resp. CPF-ring). If A is an s-unital, right
CPP-ring then A 1is a fully right idempotent, right p.p.
ring (see [7]). Now, we shall present some characteri-

zations of regular rings.



Theorem 1. ([7]). The following are equivalent:
1) A is a regular ring.

2) A is a right CPP-ring and AA is p-injective.

3) A is a right p.p.ring and A, is p-injective.

4) A is a right s-unital ring such that AA and

every singular homomorphic image of AA are p-injective.

5) Every essential right ideal of A is a left s-
unital ring.

6) A is an s-unital, right CPF-ring such that every
principal right ideal is either a direct summand of AA or
the right annihilator of an element.

7) A is an s-unital ring such that for each essntial
right ideal R either R is a left s-unital ring or A/RA

is p~injective, and that every principal right ideal is
either a direct summand of AA or the right annihilator of

an element.

2') = 7') The left-right analogues of 2) - T).

Let A Ye a non-regular, right CPP-ring. If

with right ideals R, and R,, then R, or

A=R ®R 1 2° 1

2

R, is completely reducible (see [T]). Using this fact,



we obtain the following

Theorem 2. ([7]). The following are equivalent:

1) A is an s-unital, right CPP-ring.

2) A is a regular ringor A=S@®T vwhere S is
a right (and left) completely reducible, semi-prime ring

and T is a simple domain (not a division ring) all of

whose proper c¢yclic right modules are divisible.

In [8], B. Osofsky proved that if every cyclic right

A-module is injective, then A is Artinian, semi-primitive.
Also, C. Faith [L] proved that if each proper cyclic right

A-module is injective, A 1is either Artinian, semi-primi-

tive or a right semi-hereditary, right Ore domain. Using

these results, we obtain [5, Theorem] as a Corollary of

Theorem 2.

Corollary 1. If A contains 1, then the following
are equivalent:

1) Every cyclic right (unital) A-module is injective



or projective.

2) A=S®T where S is an Artinian, semi-primi-

tive ring and T 1is O or a simple, right semi-hereditary,
right Ore domain (not a division ring) all of whose proper

cyclic right modules are injective.

2, w-regular rings. A is said to be R-regular if
for each a in A +there exists an x in A and a posi-

tive integer n such that a” = aPxa”. A 1is called right

(resp. left) M-regular if for each a in A, there exists
an x in A and a positive integer n such that a® =

att 1y (resp. a® = xan+1). A ring which is both left and

right R-regular is called strongly W-regular. Recently,

F. Dischinger [2] has proved that every right (or left) M-
regular ring is strongly T-regular. He has also announced
the following ; For each integer n 21, (A)n is strongly

X-regular if and only if A has the property that injective
endomorphisms of finitely generated right (left) A-modules

are isomorphisms (see [1]).

If N coincides with NO’ or equivalently, if A/N



is a reduced ring, then A is called an N-ring. As was

noted in [10], every P,-ring is an AC-ring, and every A0-

1l
ring is an N-ring. Following [3], A is called a CN-ring

(resp. CI-ring) if every nilpotent (resp. idempotent) ele-

ment of A 1is central. As is easily seen, every CN-ring
is a CI-ring (and an N-ring), but not conversely.
M. P. Drazin gave the following sufficient condition for

A to be a CN-ring.

Proposition 1. ([3, Theorem 2]). 1If for each x, ¥
in A there exists some z in A such that [x - x2z, y]

= 0, then A is a CN-ring.

Theorem 3. ([6]). If A is an N-ring then the
following are equivalent:

1) A is strongly w®-regular.

2) A is R-regular.

3) J is nil and A/J 1is R-regular.

4) A/I is R-regular for some nil ideal I.

5) A/N 1is strongly regular.
6) Every proper prime ideal of A is a maximal one-

T



sided ideal.
T7) Every proper completely prime ideal of A is a
maximal one-sided ideal.

8) (A)n is strongly m-regular (n =1, 2, ...).

Next, as a combination of Theorem 3 and Proposition 1,

we obtain the following

Corollary 2. ([6]). The following are equivalent:
1) A is a strongly R-regular CN-ring.

2) A is a CN-ring whose proper.prime ideals are

maximal one-sided ideals.

3) For each x € A there existsAsome ¥y such that
X - x2y is a central nilpotent element.

4) A is a WM-regular ring such that for each x, ¥y

€ A there exists some z with [x - x2z, y] = 0.

Corresponding to Corollary 2, we have the next

Theorem 4. ([6]). If A is a CI-ring, then the

8



following are equivalent:

1) A is strongly R-regular.

2) A is m-regular.

3) J is nil and A/J is W-regular.

L) A/I is R-regular for some nil ideal I.

5) Every prime factor ring of A is either a nil

ring or a local ring with Jacobson radical nil.

6) J is nil and every element of A is either T-

regular or quasi-regular.

7) Every non-nil right ideal of A contains a non-
zero idempotent and every element annihilated by some non-

zero idempotent is N-regular.

Any PI-ring contains a unigue maximal R-regular ideal

and, more generaly, we have the following result.

Theorem 5. (see [6], [9]). If A 1is a ring such that

each prime factor ring of A 1is of bounded index, then A

contains a unique maximal R-regular ideal M and A/M has

no non-zero gt-regular ideals.
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NOTES ON DECOMPOSITIONS OF INJECTIVE MODULES

HIDEKI  HARUI

Let R be a commutative ring with a unit, Spec(R) the
set of all prime ideals in R and let F(R) be the set of
all elements P in Spec(R) such that the localization RP
of R at P is a noetherian ring. Let P be an element in
F(R). We shall denote by G(P) the generalization of P.

A non-empty subset X of F(R) is said to be of open type
if, for any P in X, G(P)&X. Let X be a subset of F(R) of
open type. We shall denote by N'[X] the set of all R-mo-
dules such that MP = 0 for all P in X and by N[X] the set
of all R-modules L such that HomR(M, L) = 0 for all M in
N'[X].

Now, we state the following conditionms.

(I). Every injective R-module in N[X] can be expressed as
a direct sum of indecomposable injective R-modules in N[X]
of the form ER(R/P), P& X, where ER(R/P) is the injective
hull of R/P.

(II). A direct sum of any family of injective R-modules
in N[X] is injective as an R-module.

If R is a noetherian ring, then, for any subset X of
Spec(R) of open type, the conditions (I) and (II) hold in
N[X]. 1In this note, we shall study decompositions of in-
jective R-modules in N{X], and observe the conditions for
R and X such that the conditions (I) and (II) hold in N[X].
Among others, if X satisfies the maximal condition, then
we shall have such decompositions are characterized by the

injectivity of 2 @ ER(R/P), where S is the set of all
PES



13

maximal elements in X.
We shall say that R satisfies the condition H[X] if,
for any proper ideal A of R such that

we have that Ass(R/A)[\ﬁ # 0.

Let X be a subset of F(R) of open type. Then, in § 1
we shall observe basic properties of injective R-modules
in N[X] provided that R satisfies the condition H[X].

In § 2, we shall study properties of ideals A of R such
that R/A belongs to N[X], and in § 3 we shall observe in-

decomposable decompositions of injective R~modules in N[X].

1. Basic properties. Throughout this note, we shall
denote by R a commutative ring with a unit, by X a subset
of F(R) of open type, and assume that F(R) is not empty
for R considered in this note. We shall also denote by
ER(M) the injective hull of an R-module M.

For X, we are easy to see that N[X] contains a non-
zero R-module. Furthermore, if an R-module M belongs to

N[X], then every submodule of M belongs to N[X].

PROPOSITION 2.1. Let M be an R-module. Then, M be-
longs to N[X] if and only if ER(M) belongs to N[X].

PROOF. Assume that M belongs to N[X]. For any sub-
module M' # 0 of ER(M), we have M'r\M # 0. Moreover, if
an R-module N belongs to N'[X], every submodule of N be-
longs to N'[X]. Thus any non-zero submodule of ER(M) does
not belong to N'([X], and so ER(M) belongs to N'[X].

REMARK. Using Proposition 2.1, we have that
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N[X]) becomes a hereditary torsion theory.

LEMMA 1.2. Let R satisfies the condition H[X] and M
a non-zero R-module in N[X]. Then, Ass(M)nX # 0.

PROOF. Let O # x be an element of M and set AnnR(x)
= A. Then, it is easily seen that
A ,
f 7 obex Y
P2A
Since R satisfies the condition H[X], Ass(R/A)ﬂX # 9. As
R/A = RxCM, we have Ass(R/A) & Ass(M){\X + @.

THEOREM 1.3. The following conditions are equivalent.
(1). R satisfies the condition H[X].
(2). Any non-zero injective R-module in N[X] contains
an indecomposable injective R-module isomorphic to ER(R/P)

for some P in X.

PROOF. (1)—>(2). Let M be a non-zero injective R-
module in N[X]. Then, by Lemma 1.2 there exists an ele-
ment P in X such that M2M' = R/P. Since M is injective,
M'__%ER(M')’E’ ER(R/P), which is an indecomposable injective
R-module by Theorem 2.4 of [6]. Hence M contains an in-
decomposable injective R-module isomorphic to ER(R/P).

(2)—>(1). Let A be any proper ideal in R such that

A = ﬂ (ARPmR).

PeX
P> A

Then, it is easy to see that R/A is contained in N[X] and
by Proposition 1.1 ER(R/A)eN[X]. Thus, by the assumption
ER(R/A) contains a submodule E' isomorphic to ER(R/P) for
some P in X. Hence, as Ass(R/A) = Ass(ER(R/A)), we have

that Ass(R/A)gAss(E') = Ass(ER(R/P))aP, and so, Ass(R/A)



15

mx#ﬂ.

PROPOSITION 1.4. Assume that R satisfies the condi-
tion H[X]. Then, every injective R-module in N[X] is the
injective hull of a direct sum of indecomposable injective
R-modules in N[X], each of which is isomorphic to ER(R/P)

for some P in X.

PROOF. Let M be any injective R-module in N{X] and

(Ei)ie;l the set of all submodules of M which are indeco-
mposable injective R-modules. Now, set K = {J&1I E
i€d

E, is a direct sum}. Then, by Theorem 1.3, K is not empty
if M is not zero. By Zorn's Lemma, there exists a maximal
element Jo in K with respect to the canonical inclusion.
Then, we infer that M = ER(M ), where M_ = Z E,.
o o i
ied
o
C .

For, if ER(Mo)=FM’ then ER(MO) is a proper diect summand
of M, that is, M = ER(MO) ® M' and M' is a non-zero inje-
ctive R-module belonging to N{X]. Thus, by Theorem 1.3,
M' contains an indecomposable injective R-module which is
isomorphic to ER(R/P) for some P in X and this contradicts

to the maximality of Joe Hence M = ER(MO).

COROLLARY. If R satisfies the condition H[X], then
any indecomposable injective R-module in N[X] is of the
form ER(R/P), Pe X.

LEMMA 1.5. Let P and P' be prime ideals of R such
that PSP'. Then, we can regard ER(R/P) as an Rj,-module

and it is an indecomposable injective RP,-module.

PROOF. It is easy to see that the mapping Tr: ER(R/P)
—————QER(R/P) defined by Tr(x) = rx for x ER(R/P) is an
automorphism for every r in R - P. Thus, ER(R/P) can be

4
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regarded as an RP,-module and the indecomposablity of
ER(R/P) as an RP,—module follows from that of ER(R/P) as

an R~-module.

Assume that R satisfies the condition H[X] and let M
be an injective R-module in N[X]. Then by Theorem 1.3
Ass(M) # § if M # 0 and by Proposition 1.4 M can be ex-—
pressed as follows;

(a) M = E ( E ® E ),
iel
where each of Ei(ié I) is isomorphic to ER(R/P:I.) for some
Pi in X; let us call such an expression of M, an expres-
sion of M. For each P in Ass(M), let us set
M(P) = E(2__ @E),

iel

Pi= P

NP] = Bp(S—— @ M)
P'e€ Ass(M)
P'C P

We shall then call M(P) the P-component of M and M[P] the
local component of M at P, with respect to the expression
(a) of M. For convenience, let us set M(P) = 0 and M[P]

= 0 when P& X - Ass(M) and G(P)(\Ass(M) = §, respectively.

We infer that M(P) = 2 ®E
iel

Pi= P

summand of M. By Lemma 1.5,

i and it is a direct

M' = Z @ M(P')
P'€ Ass (M)
P'¢ P
can be regarded as an R.P-module and for each ie1I, Ei’

which appears in M', is injective as an RP—module. Thus
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M' is injective as an RP- module because RP is a noethe-
rian ring. Therefore, M' is injective as an R-module,
that is,

P P'e Ass(M)
P'CP
B Z ®E,.
iel
P,cP
1=

By Corollary 4.2 of [/d ro by Theorem 6 of [2], the P-co-
mponents of M with respect to any two expressions of M
are isomorphic. From these facts, we obtain the following

proposition.

PROPOSITION 1.6. Assume that R satisfies the condi-
tion H[X] and let M be an injective R-module belonging to
N[X]. Then we obtain the followings.

(1). For each element P in Ass(M), the P-component of M
and the local component of M at P, with respect to an ex-
pression of M, can be written as direct sums of indecom-
posable injective R-modules belonging to N[X].

(2). For each element P in Ass(M), the P-components of
M with respect to any two expressions of M are isomorphic
and the local components of M at P with respect to any
two expressions of M are isomorphic.

(3). Let M(P')(P'e Ass(M)) be the P'~components of M
with respectto an expression of M. We then obtain

M = ER( > & M(P')).

P'c Ass (M)

Let M be an injective R-module belonging to N[X] and

suppose that R satisfies the condition H[X]. For an ele-
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ment P in X, let us set (Ei)ie]:the set of all submodules
of M each of which is isomorphic to ER(R/P') for some P'
in X which is contained in P and set V= {L|LEI,2

' iel
E; is a direct sum}. By Zorn's Lemma, there is a maximal
element Lo in V with respect to the order by the canonical
inclusion. Then, let us call M' = > @ E; a local

ieLo
component of M at P. By Lemma 1.5, we infer that M' is
injective as an R-module. Furthermore, it is easy to see
that G(P){]Ass(m" ) =@, where M = M' @ M". Since M" is
injective as an R-module and belongs to N[X], by Proposi-
tion 1.4 M" can be expressed as
M" = ER(Z:e Ej'),
je€d

where E__; (j€ J) are indecomposable injective R-modules be-

longing to N[X]. Thus, we have that

M= (T o) er (T o E}
i€l jE€J
o
is an expression of M and the local component M[P] of M
at P is equal to M'. Thus, by Proposition 1.6, any two
local components of M at P are isomorphic ( we also denote
by M[P] a local component of M at P). From these facts,

we obtain the following proposition.

PROPOSITION 1.7. Assume that R satisfies the condi-~
tion H[X] and let M be an injective R-module in N[X].
Then, we have the followings.

(1). For each element P in Ass(M), a local component of
M at P is a direct summand of M.

(2). Any two local components of M at P are isomorphic.
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2. N[X]-ideals. An ideal A of R is called an N[X]-
ideal if R/A belongs to N[X]. We shall study , in this

section, properties of N[X]-ideals of R.

PROPOSITION 2.1. (1). An ideal A of R is an N[X]-

[\ (R AR).
PeX RP[\
(2). For any family {Aj }j ¢ of N[X]-ideals of R,

/ "\ A, is an N[X]-ideal.

jeg 3

(3). If P is an element in X, then every P-primary ideal
of R is an N[X]-ideal.

ideal if and only if A

PROOF. (1) is immediate. (2) Since R/Aj € N[X] for

all j&€J, we obtain that

' (R/A;)€ NIX] and

ey ﬂ Aj = AnnR((lj)jeJ)’

jeJ

vhere 1, is the canonical image of 1 in R/A.. Thus, /ﬁ\
J J jE€J
Aj is an N[X]-ideal of R.
(3) Let Q be an arbitrary P-primary ideal of R. Then
since QRP is PRP—primary and since RP is a noetherian ring,

QRP has an irredundant irreducible decomposition;

QR, = QiﬂQ.';.{\ . -[\Qr'l,
and it is easily seen that Qi is irreducible PR, -primary.

Thus, by Theorem 2.3 and Proposition 3.1 of [{], we have
that

By (Rp/QRp) = Ep (Rp/Q]) @ ... @ Ep (%/Q)

ERP(RP/PRP) ®...0 ERP(RP/PRP)
which is isomorphic to ER(R/P) ® ... @ ER(R/P). Moreover,

it is easy to check that ERP(RP/QRP) = ER(R/Q). Hence,

8
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ER(R/Q) belongs to N[X] because ER(R/P)G;N[X], and this
implies that R/Q belongs to N[X] or Q is an N[X]-ideal.

COROLLARY. For any R-module M in N[X], AnnR(M) beco-
mes an N[X]-ideal.

PROPOSITION 2.2. If P is in X, then an ideal Q of R
is an irreducible P-primary ideal if and only if Q = AnnR
(x) for some x # 0 in ER(R/P).

PROOF. It is clear that an ideal A of R contained in
P is irreducible P-primary if and only if A = ARP(\R and
ARP is irreducible PRP-primary. Since RP is a noetherian
ring, by Lemm 3.2 of [6] an ideal B of RP is irreducible
PR,-primary if and only if B = AnnRP(y) for some 0 # ye

E (RP/PRP)' Thus we obtain Ehe result because ER(R/P) =

Rp
ER.P(RP/PRP) and AnnR(z) = AnnRP(z)ﬂR, for zeER(R/P).

PROPOSITION 2.3. If R satisfies the condition H[X],
then every N[X]-ideal of R is the intersection of irre-
ducible primary ideals of R each of which belongs to some

prime ideal belonging to X.

PROOF. Let A be an N[X]-ideal of R. Then, R/A belongs
to N[X] and by Proposition 1.1 ER(R/A) belongs to N[X].
Thus, by Proposition 1.4, ER(R/A) can be expressed as
E,(R/A) = E_ (> ®E),
R R i€l 1
where for each 1i€1, Ei g’ER(R/P) for some P in X.

Since ER( > ® Ei) can be regarded as a submodule

ie]
of ‘l Ei’ for 1(=the canonical image of 1 in R/A) =
i€l

(xi)i el in ER(R/A) R
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A = AnnR(I) = AnnR(xi),
iel

m

and by Propostion 2.2 AnnR(xi) is an irreducible primary
ideal belonging to some prime in X whenever X; # 0. This

is the required result.

PROPOSITION 2.4. If A is any N[X]-ideal of R, then
(A : B) is an N[X]-ideal for every ideal B of R.

PROOF. It is easy to see that (A : B) = AnnR(A + B/A)
and (A + B)/A belongs to N[X] because it is s submodule
of R/A. Thus (A : B) is an N[X]-ideal of R.

PROPOSITION 2.5. Suppose that R satisfies the ascen-
ding chain condition on N[X]-ideals of R. Then, if Q is
an irreducible N[X]-ideal of R, Q is a primary ideal and
its radical belongs to X.

PROOF. Assume that Q is not primary. Then, there are
elements a, b in R such that abegQ, a¢Q and bn¢ Q for all
nzl. Then, by Proposition 2.4, (Q : Rbn) is an N[X]-

ideal for all n and
Q: RB)S(Q : RBHE(Q : R & * ",

As R satisfies the ascending chain condition on N[X]-ideals,
there is an integer m such that

Q: ™ = (q: R = -,

Under these situations, we infer that
Q@ = (Q: RN + R,
Q & (Q:RY, (Q+RbY,
and this contradicts to the irreducibility of Q. Hence

Q is primary. Since (R/Q)P, = Q if P'%EQ and R/Q # 0 be- -~
longs to N[X], (R/Q)P # 0 for some P in X and this implies

10
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that QS P or the radical of Q belongs to X because X is

of open type.

Assume that X satisfies the maximal condition with re-
spect to the canonical inclusion. Then, we shall denote
by S the set of all maximal elements in X. Now, we have
the following theorem.

THEOREM 2.6. If > ] ER(R/P) is injective as an

PES
R-module, then R satisfies the ascending chain condition

on N[X]-ideals of R.

PROOF. Let AlgA2q= 3._,_ .++ be a strictly ascending

chain of N[X]-ideals of R and A = \V/ Ai' Then in
R/AiGN[X] for all i and Ax, # 0 for all i. Set M=) @&

ER(in) and let g be an R-homomorphism of A into M defined

by
g(r) eri, reA.

For each i, since //\\ (AiRP/\F) = Ai by Proposition 2.1

P&S
and Ai%A’ there exists an element Pi in X such that A %
. C
(AiR.Pi/\R). Let s, €A - (AiRP Then, (A; : si)____.__Pi.

Therefore, there is the canonical homomorphism
" .
£1 : (Rsy + A)/A———R/P,
defined by fJ!.(rsi + Ai) = rIi, r& R, where Ii is the ca-
nonical image of 1 in R/Pi and fi can be extended to an

R-homomorphism f, of ER(R/Ai) into ER(R/Pi). Let h; be
the canonical projection of > & ER(R/A ) onto ER(R/A1)°

: h|
J
Then, we obtain an R-homomorphism of A into > __® ER(R/Pi)
. i
defined by
f = Ei fihig

11
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whose image is not contained in a direct sum of any finite

number of ER(R/Pi), i=1, 2, 3, ... by the construction
of f. Thus, f can not be extended to an R-homomorphism of

R into 2 o ER(R/Pi) and this contradicts to the injec-
i

tivity of > @ ER(R/Pi) obtained by the following Lemma
i
2.7. Thus we have the result.

LEMMA 1.7. If S ) ER(R/P) is injective as an R-
PE S
module, then for any subset S§' of S, > @ J(P) is in-
PES'
jective, where J(P) is a direct sum of arbitrary copies

of ER(R/P).

PROOF. It is easy to see that for each PeS', J(P) is

injective as an R-module. Now, if > @& J(P) is not
Pes!
injective, there esist an ideal B of R and an R-homomor-

phism £ of B into > @ J(P) such that the image of £
PES'
is not contained in a direct sum of any finite number of

J(P), PE€S'. Moreover, if the canonical projection hP of
of £(B) to J(P) is not zero, then the canonical projection
of J(P) to ER(R/P) for some component is not zero and let

us denote this map by 8p- Now, > g h f is an R-homo-

pe s’
(R/P) whose image is not con-

PhP
morphism of B into E ® E

Pe s’
tained in a direct sum of any finite number of ER(R/P),

R

PE€S'C S. This is impossible and we obtain the result.

3. Decompositions of injective modules in N[X]. As-
sume that X satisfies the maximal condition and let S be
the set of all maximal elements of X. Then, we obtain the

following theorem.
THOREM 3.1 (Proposition 3.5 of [4]). For N[X], the

12
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following conditions are equivalent.

). > @ ER(R/P) is injective as an R-module.
PeS
(2). For any coutable subset S' of S, > & E
PE S’

g (R/P)

is injeétive as an R-module.

(3). R satisfies the ascending chain condition on N[X]-
ideals of R.

(4). Every N[X]-ideal of R can be written as the inter-
section of a finite number of irreducible primary ideals
of R each of which belongs to some prime in X.

(5). Every injective R-module in N[X] can be expressed
as a direct sum of indecomposable injective R-modules in
N[X] each of which is isomorphic to ER(R/P) for aome P in
X.

(6). A direct sum of any family of injective R-modules
belonging to N[X] is injective as an R-module.

(7). A direct sum of any countably many injective R-mo-
dules belonging to N[X] is injective as an R-module.

REMARK. The injectivity of > __ & E_(R/P) characte-

PEeSs R
rrizes that the conditions (I) and (II) hold in N[X].

Let Y be a non-empty subset of F(R) and let us set

Y = u G(P). Then, we shall say that Y is the open
PeY

closure of Y. A subset Y of F(R) is said to be of finite
type if there is a finite subset of F(R) such that its
open closur contains Y. For any non-empty subset Y of X,
it is easy to see that Nf?]g;_N[X]. Thus, we have the

following corollary.

COROLLARY. 1If X is of finite type, then the condi-~
tions (I) and (II) hold in N[X].

13
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Let A be an ideal of R and f an R-homomorphism of A
into ER(R/P) (P€ Spec(R)), and assume that A %u-l(O),
where u : R———_—f>RP is the canonical homomorphism. Then,
it is easily seen that f is trivial. Using this fact, we
infer the following theorem.

THEOREM 3.2 (Theorem 2.3 of [4§]). Assume that R sa-
tisfies the condition H[X] and X satisfies the maximal
condition. Let S be the set of all maximal elements of X.
Then, if the set {Pe&S \AR.P # 0} is a finite set for any
proper ideal A of R, the conditions (I) and (II) hold in
N[X].

Let A be an ideal of R and f an R-homomorphism of A
into ER(R/P) (P&Spec(R)). Then, it is easy to see that
f is trivial whenever Ker(f)LP. From this fact, we infer
the following theorem.

THEOREM 3.3 (Theorem 2.4 of [5]). Assume that X sa-
tisfies the maximal condition and every non-zero ideal of
R is contained in only a finite number of maximal elements
in X. Then, we have the following facts.

(1). R satisfies the condition H[X].
(2). The conditions (I) and (II) hold in N[X].

Let R be a Krull domain and set X' = {P& Spec(R) | the
height of P<1}. Then, X' is of open type. I. Beck in-
vestigated in [!] the structures and the decompositions
of injective R-modules in N[X'], and completely determined
these. We can obtain his results as the corollary of Th-
eorem 3.3 because R and X' satisfy the conditions of The-

orem 3.3.

COROLLARY. Let R and X' be as above. Then, we have

14
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the following facts.

(1). R satisfies the condition H[X'].

(2). Every indecomposable injective R-modules in N[X']
is of the form ER(R/P), peX'.

(3). The conditions (I) and (II) hold in N[X'].

Let r be an element of R and set V(r) = {P& Spec(R)
P?r}. Then, Spec(R) becomes a topological space with
{V(r), reR } as the system of basic open sets. This to-
pology is known as the Zariski topology. Let Y a subset
of Spec(R). Then, a point P in Y is called an isolated
point 1f there is an element r in R such that V(r)[\Y =
{P}, and Y is said to be a discrete subset if every point
of Y is isolated. For commutative regular rings (von Ne-

umann), we have the following propositions.

PROPOSITION 3.4 (Proposition 2.1 of [3]). Let R be
a commutative regular ring. Thne, the following condi-
tions are equivalent.
(1). R satisfies the condition H[X].
(2). Every non-empty subset of X contains an isolated

point.

PROPOSITION 3.5. Let R be a regular ring and assume
that every non-empty subset of X contains an isolated po-
int. Then, we have the followings.

(1). Every injective R-module in N[X] is a injective
hull of semi-simple module in N[X].

(2). Let M be an injective R-module in N[X] and (M(P) (
(P& Ass(P)) the P-components of M. Then,

M = [T ue.

PE€ Ass(M)

15



27

Let R be a ring which is the direct product of a family

(Ki)ieI of fields Ki' Then, F(R) = Spec(R) since R is a

regular ring. Let P be a prime ideal in R. Then, we shall
call P "of first kind" when P is generated by an idempotent

and P "of second kind" when P contains > ] Ki' We sh-
iel

all denote by X. the set of all prime ideals of R of first

kind and by X

1
the set of all prime ideals in R of second

2
kind. Since Xl is a discrete subset of Spec(R), any non-
empty subset of Xl is discrete. Thus we infer the follo-

wings for any non-empty subset X of Xl.

(1). R satisfies the condition H[X].

(2). Every injective R-module in N[X] is a injective hull
of a semi-simple R-module in N{[X].

(3). Lét M be any injective R-module in N[X] and M(P)

(P& Ass(M)) the P-components of M. Then, M = [ [ M(P).
PE Ass(M)

We can show that X, contains no isolated points if X2

2
is not empty. From this we obtain the following proposi-

tion.

PROPOSITION 3.6. If X
following facts.

2 is not empty, then we have the
(1). R does not satisfy the condition H[XZ]' In parti-
cular, R does not satisfy the condition H[Spec(R)].
(2). There exists an injective R-module in N[xz] such
that it can not be expressed as the injective hull of any

semi-simple R-module in N[XZ]’

16
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30
ON MAXIMAL QUOTIENT RINGS OF QF-3, 1-GORENSTEIN

RINGS WITH ZERO SOCLE

Hideo Sato

This note is an abstract of the author's papers [12]
and [13], and includes historical notes of study of 1~
Gorenstein rings. A ring is said to be right 1-Gorenstein
if it is left and right noetherian and its right self-injective
dimension at most one. A left and right 1-Gorenstein ring
is called 1-Gorenstein in short. As for such rings, Jans
[5] gave a characerization. T. Sumioka posed a problem
whether an artinian QF-3, l-Gorenstein ring has a QF (Quasi-~
Frobenius) maximal quotient ring or not, at Azumaya Symposium
held at Tokyo University of Education, September 1-2, 1975.
(See his paper [15, Theorem 1].) The problem is unsettled
even now. So we convert its artinian condition, the
definition of QF-3 ring, into a noetherian one defined below.
A ring R is said to be left QF-3 if every finitely generated

submodule of E(RR) is torsionless.

Remark 1. If R is a noetherian ring, then it is left
QF-3 if and only if it is left QF-3 in the sense of Morita
[8], that is, E(RR) is flat. So R is right QF-3 in this

case (see [11l, Theorem 1.1]). On the other hand, if R is
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left and right perfect, then it is left QF—é if and only
if it has a minimal faithful left module. The latter
result was obtained by T. Sumioka, who has shown moreover
that a right l-Gorenstein ring is QF-3 if and only if its
maximal right quotient ring is its left quotient ring [17].
So we have
Generalized Sumioka's Problem. Has any QF-3, 1-

Gorenstein ring a QF maximal (two-sided) quotient ring ?
We showed in [11],

Theorem. Let R be a l-Gorenstein ring and Q its left
maximal quotient ring. Then the following statements are
equivalent.

QD) The canonical inclusion R Q is a two-sided flat
epimorphism.

(2) R is either left or right QF-3 and Q is a QF ring.
When the above statements hold, R is (left and right) QF-3

and Q is at the same time a right maximal quotient ring of R.

However it is difficult to verify whether a l-Gorenstein
ring satisfies the criterion (1) or not. So it is of much
interest to find a sufficient condition for a QF-3, 1-
Gorenstein ring to have a QF (two-sided) quotient ring.

On the other hand, the following theorem holds.
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Theorem ([4], [11]) Let R be a 1-Gorenstein ring and

E the injective hull of RR. Then the following statements
hold.

(1) E & E/R is an injective cogenerator.

2) E is a cogenerator if and only if R is its own
maximal left quotient ring if and only if R is a QF ring.

3) E/R is a cogenerator if and only if Soc R = 0.

Remark 2. A (left and right) noetherian ring R has
the largest artinian left ideal which is at the same time
the largest artinian right ideal. We denote it by A(R)
or by A, and call it the artinian radical of R. So for
a noetherian ring R, Soc(RR) = 0 if and only if Soc(RR) = 0.

(See [6] and [12].)

In view of the above theorem, it is of much interest
to study maximal quotient rings of QF-3, 1-Gorenstein rings
with zero socle. Noetherian rings with zero socle are,
so to say, purely noetherian (see [2]).

Now we can state our first theorem as follows.

Therem A. Any QF-3 right 1-Gorenstein ring with zero

socle is a two-sided order in a QF ring.

But we can deduce the above theorem from a more

general theorem. For this purpose we shall give some
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definitions and auxiliary results. A family of left ideals
is said to be a topology if it is a Gabriel topology in the
sense of StenstrBm's book [14]. Thus a perfect topology
in this note is corresponding to a perfect Gabhriel topology
in [14]. As for Krull dimension of modules, refer [3].
Let G be a left topology on a ring R. Then we have
the notion of G-dimension of R-modules and elementary
properties for it, Proposition 1, Corollary 2 and Corollary 3.
(A1l of them are in the author's paper [13].) A chain
of submodules of a left R-module M ;
MO‘_:_)MlQMZQ... :_>Mr

is called a G-chain if each Mi—l/M is not a G-torsion module.

i
A G-chain is said to be maximal if it has no proper refinement

of G-chain.

Proposition 1. If RM has a finite maximal G-chain
of length r, then any G-chain of M has a finite length s

and s < r.

Hence we can give a definition of G-dimension of M
which is denoted by G-dim M, as follows. Define G-dim M
= r if M has a finite maximal G-chain of length r, and

define G-dim M = » otherwise.

Corollary 2. For any exact sequence of R-modules ;
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0+M >M>M" >0,

we have G-dim M = G-dim M' + G-dim M’

Corollary 3. Let G G' be topologies on R, and M

a left R-module. Then G-dim M > G'-dim M .

In the remainder of this note, we assume that R is a

left noetherian ring with left Krull dimension «.

Proposition 4. ({12, Theorem 3.1]) For any B < a,

the family Fg = { RICR | K-dim R/I < B } is a topology.

Let D be the topology of dense left ideals of R. Our

interest lies in the connection between F, and D. We say

B

that a ring R satisfies the B-restricted minimum condition

for left ideals if QQEB . If B =0, we omit the letter f.

Remark 3. If R is non-singular, our notion of
restricted minimum condition coincies with Chatters' omne
in [1]. We should remark that Chatters deals with this

notion only in the theory of non-singular rings.

Denote by radB(RR) the largest left ideal of R whose

Krull dimension is not more than B. Then we have

Proposition 5. ([12, Proposition 3.2]) For any B < a,

B _ .
rad (RR) = 0 if and only if BQEB .

5
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By [16, Proposition 1], a QF-3 noetherian ring has
finite left D-dimension. Any right 1-Gorenstein ring
satisfies the restricted minimum condition for left ideals

(see [10, Theorem 2.4] and [12, Theorem 5.2]). Thus we have

Proposition 6. ({12, Theorem 5.3]) Any QF-3 1-

Gorenstein ring has left Krull dimension at most one.

S0 we generalize Theorem A as follows.

Theorem B. ([13, Theorem 9]) Let R be a QF-3 noetherian

ring satisfying the restricted minimum condition for left
ideals. Denote its artinian radical by A. Then R/A has
a QF classical two-sided quotient ring which is isomorphic

to RF , the quotient ring with respect to the topology F ,

where F = EO .

In order to prove the above theorem, we shall apply

the following theorem of Lenagan.

Lenagan's Theorem ([6, Theorem 3.6], [7, Theorem 3.2])
Let R be a noetherian ring with left Krull dimension one,
and A its artinian radical. Let R = R/A and denote by x
the canonical image of x € R. Let S={se¢R | s is a
regular element in R } and £(S8) = { Rs | s € S }. Then

(1) Z(S) is cofinal in F (= ) and (2) R has a classical

F,
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two-sided quotient ring Q(ﬁ).

Remark 4. In fact, Lenagan has established this
theorem by showing that R satisfies the regularity condition
of Small. Therefore Q(i) is artinian. But we can show
in our case that the existence of Q(ﬁ) implies its artinianness,

by using the notion of G-dimension.

Lemma 7- ([13, Lemma 7, Lemma 8]) RF is isomorphic

to Q(R) and F is a perfect topology.

From the above lemma, we can show that RF satisfies

Rutter's condition [9, Corollary 6]. So it is a QF ring.

Finally we have a characerization of noetherian two-
sided orders with left Krull dimension one in QF rings,

from Therem B and [2, Theorem 10].

Theorem C. ([13, Theorem 10]) For a noetherian ring R,
the following statements are eqivalent.
(1) R is a two-sided order in a QF ring and K-dim RR =1,
(2) R is a ring direct sum, say R = A & B, where

A is a QF ring and B is a QF-3 ring with zero socle satisfying

the restricted minimum corndition for left ideals.
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BICOMMUTATORS OF LOCALLY PROJECTIVE MODULES
Kenji Nishida

The bicommutator of a (finitely generated) projective
module was studied by many authors [1][2][5][7]. 1In this
peper, we extend some results to the bicommutator of a
locally érojective module. Here, following Zimmermann[10],

a2 module U is called locally projective, if, for all

— U
|

f
> Y

with exact rows and V a finitely generated modules, there

diagrams;

0 > V

X

> 0

exists g'eHom(U,X) such that glv=fg'|v. She characterized
locally projective modules by many ways. Locally projective
modules are flat by [10]. We shall collect the facts

which are necessary for this paper from [10].

Theorem 1. The following conditions are equivalent
for a module UR'
(1) U is locally projective.

(2) For each element ueU, there exist x ..,xneU and

1"
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[x,,f,]m, where [x,f]e

1" 37377
S=End(U) is defined by [x,fly=x(fy) for x,yeU and feU¥*,

£ .,fneU*=Hom(U,R) such that m=I
(3) For every S-submodule V of U, there exists a left
ideal A of R such that TA=A and V=UA, where T is a trace
ideal of UR'
(4) U=UT and (S/A)S is flat, where A={£[xi,fi] 3 xieU,
fieU*} is an ideal of 8.

Proof. This follows from [10, Theorem 2.1 and 3.1].

Now, we state some notation and definitions. Through-
out this paper, let U be a locally projective right R-
module over a ring R with 1, S=End(UR) an endomorphism ring
of U, C=End(SU) a bicommutator of U, T a trace ideal of U,
T={pX ; TX=0}, Fh{RY ; Ty=0, er==;y=o},ge={RIcR ; Tcll}.
Then (T,F) forms a hereditary torsion theory over the
category of all left R-modules with its filter f and the
quotient ring of R with respect to (T,F) is C[6]. For the
torsion theory and related topics, the reader is referred
te [8]. Firstly, we study the case when a ring homomorphism

p:R + C is a finite left localization.

Theorem 2. The following conditions are equivalent.
(1) (7,F) is a perfect torsion theory.

(2) A ring homomorphism p:R + C is a finite left
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locelization.

(3) RT is finitely generated and projective relative
to the class of epimorphisms (X » Y + 03X,YeF}.

(L) SU is finitely generated proJjective.

(5) c=cCT.

Proof. For the proof, see [6], however it is noted
that the equivalence (L4)&(5) is ﬁell-known, since S=
End(U,) and CT is the trace ideal of U.

The following lemma is fuﬁdamental in this paper and
this is also obtained in [4] under the assumption of U to

be projective.

Lemma 3. It holds that all simple factor modules of
SU can be embedded into SU if and only if CT is & minimal
dense left idesl of C.

Proof. We can conclude that E( Homg(U,X))=Hom(U,
E(SX)) as left C-modules for a left S-module X by Theorem
1, (4) and [9, Lemma 2.3 and Theorem 2.4]. However, we
state the direct proof for the later application. Since
UR is flat and U@RC=U, UC is also flat. By the adjoint
relation Homc(-,HomS(U,E(SX)))=HomS(U®C-,E(SX)), we
conclude that HomS(U,E(SX)) is injective as a left C-module.

Taeke any nonzero ¢eHomS(U,E(X)). Then there exists ueU

3
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such that OFu¢eX. Let u=Z[xi,fi]u for x, €U, f,€U* by
Theorem 1. It holds that 0#[ui,fi](u¢)=ui((fiu)¢) for some
i. For any u'eU, u'((fiu)¢)=[u',fi](u¢)ex implies 0#(fiu)¢
eHomS(U,X), that is, CHomS(U,E(X)) is an essential exten-
sion of ,Homg(U,X). Hence E(Homg(U,X))~Homs(U,E(X)).
Putting X=U we have E(CC)=HomS(U,E(U)). Now, assume that
all simple factor modules of SU are embedded into SU. Then

E(SU) cogenerates all the modules of the form U@CX for any

S
left C-module X by a routin computation. Therefore, A is a
dense left ideal of c<=>HomC(C/A,HomS(U,E(U)))=o¢=>uomS(Us
C/A,E(U) )=0&U8C/A=06U=UAC ASCT which implies that CT
is a minimal dense left ideal of C. Conversely, let U' be
a simple factor module of SU. Then U'=U/V for an S-sub-
module V of U, where V=UA for a left ideal A of R with TA=
A by Theorem 1, and then U'=U®CC/CA. Thus HomS(U',E(SU))z
Hom (UeC/CA,E(U) ) =Hom, (C/CA ,Homg (U, E(U)) )=Hom, (C/CA,E(C)) .
If HomS(U',E(U))=0, then CA is a dense left ideal of C
wvhich implies CA>CT by hypothesis. We conclude that V=UA=
UCASUCT=U which is a contradiction. Hence HomS(U',E(U))#O,
that is, U' can be embedded into SU.

A ring D is called a left S-ring, if DD is lower
distinguished. It is well-known that D is a left S-ring if

and only if D has no proper dense left ideal [8, Ch. XI,

4
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Lemma 5.1].

Combining Tﬁeorem 2 with Lemma 3 we get the following.

Theorem 4. C is a left S-ring if and only if all

simple factor modules of SU can be embedded into SU and SU
is finitely generated projective.

For the injectivity of CC’ we have the following.

Theorem 5. The following conditions are equivalent.

(1) C is a left self-injective ring.

(2)

CT is quasi-injective as a left C-module.
(3) U is a quasi-injective left S-module.

Proof. (1)=3(2); Since CT is an idempotent ideal,

we have Hom,(CT,C)=Hom,(CT,CT). Hence (1)=5(2) holds.

(2) =2(3); Let d:gUA » (U vhere A is a left ideal of R

such that TA=A. Consider the following diagram:

U*@SUA —led U*e_U

+ = +S

CA ———— CT,

where U*=Homc(U,C), the vertical maps are canonical ones,

and 4 is defined by (¢u)d=¢(ud) for ¢®ueU¥®UA. Ve can

extend d to c:cCT -> CCT by hypothesis, that is, c satisfies

(¢u)e=¢(ud) for any ¢®ucU*@UA. Tensoring with U, ve get
1ec:Ue

CCT > U@CCT, however the flatness of UC implies SU@CT

5
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2SU, and then we get a homomorphism c':SU > SU. For any
u(fu')eUA=UTA(ueU,feHomR(U,R),u'eUA), we have (u(fu'))c'=
u{(fu')e)=u(f(u'd))=[u,flu'd=([u,flut)d=(u(fu'))d. Hence

e¢' is an extension of 4. (3)==(1) follows from [11].

Corollary 6. C is a left injective cogenerator ring
if and only if all simple factor modules of SU can be em-

bedded into SU and SU is quasi-injective finitely generated
projective.

Proof. This follows from Theorem 4 and 5.

Suppose that U is faithful locally projective. Then
U is torsionless by Theorem 1 and we have E(RC)=E(RR) by
[3, Theorem 6]. Thus A is a dense left ideal of R if and
only if HomR(R/A,HomS(U,E(U)))=0 by the proof of Lemma 2.
Therefore, we conclude that all simple factor modules of
SU can be embedded into SU if and only if T is a minimal
dense left ideal by the same way as Lemma 2. Moreover, in
this case, the torsion theory (7,F) is the Lambek torsion

theory, and then C is the maximal left quotient ring of R.

Then we get the followings.

Corollary 7. The maximal left quotient ring of R is

a left S-ring and a finite left localization of R if and

6
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only if there exists a faithful locally projective module
UR such that SU is finitely generated projective and all

simple factor modules of _U can be embedded into SU, where

8

S=End(UR). Moreover, the bicommutator of U, equals the
maximal left quotient ring of R.
Proof. This follows from Theorem 2, 4 and [7, Theorem

2.3].

Corollary 8. The maximal left quotient ring of R is
a left injective cogenerator ring and a finite left locali-
zation of R if and only if there exists a faithful locally
projective module UR such that SU is finitely generated
projective quasi-injective and all simple factor modules
of SU can be embedded into SU. Moreover, the bicommutator

of UR equals the maximal left quotient ring of R.
Proof. This follows from Theorem 2, 5, Corollary 6,

and [7, Theorem 2.3 and Corollary 2.8].
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REMARKS ON ADJOINTS AND TORSION THEORIES

. Takayoshi WAKAMATSU

J. Lambek and B. A. Rattray viewed localization func-~
tors as equalizers of suitable norphisms. In fact, they
showes [2] that the ordinary localization functor with
respect to a hereditary torsion theory can be seen as a
kind of their functor. Such a view point is recobnized
in K. Morita [4] or [5]. Since Lambek-Rattray's localiza-
tion is categorical, it yields automatically the concept
of colocalization as it dual. On the other hand, torsion
theoretical colocalization is treated in K. Ohtake [6],
and he proved that the corresponding torsion theory is co-
hereditary, i.e. a torsion theory whose torsion-free class
is closed under taking factor modules. And, also in this
case, the torsion theoretical colocalization is one of
Lambek-Rattray's colocalizations. So it is natural to
search for the case when Lambek-Rattray's localization or
colocalization coincides with the torsion theoretical one,
and this is the main purpose in our present paper.

Let R, S be rings and RUS a unitary bimodule.
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Then we can consider the following functors and canonical

natural transformations.

T=(Ums-)
R-Mod S-Mod R
—
H=HomR(U,—)

D=Homs(-,U)

R-Mod E Mod-S , and
—>
D=HomR(-,U)
€ n L )
TH + 1 yoq * Ysmog ~ HT emd 1. . . =D . And let us
denote by TH 2 C, L ¥ HT and T ¥ D? , the cokernel of
eTH-THe NHT-HTN
(TH)2——> TH , the kernel of HT — > (HT)? and the
2 2
nD-Dm
kernel of D? ——= D" . Then eg,n and w factor

through p,t and w respectively:

T™MS51=TH®cS1,
1%ur=1%1%ur, ana
13p2=1¥r¥p?

In this paper, we shall consider the condition for U
. [4 L Y .
under which C 1, 1+ L and 1+ T are the torsion
theoretical enloculization functor or localization functor.
We begin with the consideration of the torsion theories

determined by €,n and w .

A preradical is a subfunctor of an identity functor.
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As its dual, we call a factor functor of an identity func-
tor a precoradical. It is obvious that any preradical

t» 1 determines a precoradical 1 #t° , and conversely,
any precoradical 1 s determines a preradical s®» 1 .
For each pair of preradicals t,,t, , a preradical (t,:t;)
is defined as follows:

0 —>t; —> (t1:t2) —» t2t§ —> 0

0 — t, 7 1 > t¢ 20 ,
and a preradical t is a radical if (t:t)=t. Dually, a
precoradical (sj:s;) is defined for a pair of precoradi-

cals s1,S2:

0—=2s§——=21—>5—»0

!

0 —» s28] —> (s1:52) —>»s,;—> 0 .

And we call a preradical s a coradical if (s:s)=s. For.
a preradical t and a precoradical s, we associate the
classes of modules as follows:

™(t)={ X | t(X)=x 1},
F(t)={ x | t(x)=0} ,
T(s)={ x | s(x)=0} , and

F(s)={ X | s(x)=x 1} .

Lemma 1. For a preradical t and a precoradical s,

the following hold.
(a) (T(t),F(t)) is a torsion theory if and only if t

3.
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is an idempotent radical.

(v) (T(t),g(t)) is a hereditary torsion theory if
and only if t 1is a left exact radical.

(c) (7(s),F(s)) is a torsion theory if and only if
s is an idempotent coradical.

(@) (1(s),F(s)) is a cohereditary torsion theory if

and only if s 1is a right exact coradical.

Lemma 2. The following hold.
(a) Kerm is a radical and T(kerm)=Ker(D) and
F(Kern)= { X | Ty is a monomorphism }.

(b) Coke is a coradical and T(Coke)= { X | €y is

an epimorphism } and F(Coke)=Ker(H).
(¢) Kern is a radical and T(Xern)=Ker{(T) and

F(Kern)= { X | ny is a monomorphism }.

Definition.

(1) gU is pseudo-injective(self-pseudo-injective) if D

satisfies the following condition: For any monomorphism

0> A 3 gB (with ™ is a monomorphism), if D(u)=0

Coku
then D(A)=0.

(2) U is pseudo-projective(self-pseudo-projective) if

H satisfies the fdollowing condition: For any epimorphism

p
RB 5+ g > 0 (with €

Cokp 1S &P epimorphism), if H(p)=0



then H(A)=0.

(3)

the following condition: For any monomorphism 0 - _A ¥ B

(with

51

US is pseudo-flat(self-pseudo-flat) if T satisfies

S

Proposition 3. The following are equivalent.

(a) (Ker(D),{X| T, is mono }) is a torsion theory.
(b) Kerm is an idempotent radical.

(¢) _U 1is self-pseudo-injective.

R

Proposition 4. The following are equivalent.

(a) ({x] €y is epi },Ker(H)) is a torsion theory.
(b) Coke is an idempotent coradical.
(¢) _U is self-pseudo-projective.

R

Proposition 5. The following are equivalent.

(a) (Ker(T),{X| Ny is mono }) is a torsion theory.
{b) Kern is an idempotent radical.

(c) Ug 1is self-pseudo-flat.

Theorem 6. The following are equivalent.

(a) (Ker(D),{x]| m, is mono }) is a hereditary

torsion theory.

{(b) Ker T is a left exact radical.

5.

S

Coku 1S @ monomorphism), if T(u)=0 then T{(A)=0.



(¢) For any diagram 0 -+ gP ¥ B,

R
£+
gU
it holds that Kerf2 AN\ m Kerh.
heD(B)

(d) For any monomorphism 0 - gU L gE » there exists
a morphism RE X HRU such that the composition
¥ 5Ynu 1 -
RU RE HRU is a monomorphism.

(e) For any diagram 0 + A ¥ B, there exist

odtfy F
U
U% U anda B2 U such that a-r=B-ufo.
R® R R° R
(f) gU is pseudo-injective.

(g) E(RU)C)HRU, where E(RU) is the injective
envelope of RU.
Remark. This theorem is essentially proved in

G. M. Tsukerman [ §].

Theorem 7. The following are equivalent.

(a) ({x] €y is epi },Ker(H)) is a cohereditary
torsion theory.

(b) Coke is a right exact coradical.

(¢) For any diagram

>
TN
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it holds that ImfC %  Im(peg).
geH(B)
(d) For any epimorphism RP 2 RU + 0 , there exists

a morphism &_U X RP such that the composition

R
X 4 , . .
QRU RP RU is an epimorphism.

(e} For any diagram Rgf*o

RB -+ RA + 0 , there exist
Y
g E . —3 L ]
RU RU and RU RA such that fe.o=p*B+0.

(f) -y is pseudo-projective.

(g) I+U=U, where I= I Imf is the trace ideal.
feH(R)

Theorem 8. The following are equivalent.

(a) (Ker(T),{x] ny is mono } is a hereditary
torsion theory.

(b) Kern is a left exact radical.

(c) Ug is pseudo-flat.

(a) SHomR(RUS’Rw) is pseudo-injective for an injec-
tive cogenerator Rw.

(e) For any left ideal J Q;Ss, if Ua(S/J) is
zero in U@SE(SS/J) then 0=UQS(S/J), where E(SS/J) is

the injective envelope of _S/J.

S

For a torsion theory (T,F) 1in a category of left
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modules over some ring, a module X in this category is
said to be T-injective if Hom(-,X) 1is exact on all exact
sequences 0 =+ Y' =+ Y »+ Y" + 0 with Y"EE , and the
F-projectivity is defined as its dual. Similarly, a right
module Z over the same ring is said to be g-flat if

(zm-) is exact on all exact sequences 0 =+ Y' + Y + Y" + 0
with Y"eT .

Theorem 9.

(a) 1f gV is self-pseudo~injective and Ker(D)-

X
injective, then _X —— RI‘(X) is the localization of any

R
R-module X, with respect to (Ker(D),{X|‘ﬂ,x is mono}).

(b) 1If gU is self-pseudo-projective and Ker(H)-
c
X

projective, then RC(X) —+ X is the colocalization of

any R-module X, with respect to ({X|€x is epil},Ker(H)).

(c¢) 1If Ug is self-pseudo-flat and Ker(T)-flat, then
L
x X sL(X) is the localization of any S-module _X,

S
with respect to (Ker(T),{Xlnx is mono}).

S

K.Ohtake [ 6 ] proved that a torsion theory (T,F) is
cohereditary (resp. hereditary) if and only if each module
has its (T,F)-colocalization (resp. (T,F)-localization).

Thus, in the above theorem, the terms "self-pseudo-injec-

tive","self-psseudo-projective” and "self-pseudo-flat"” may

be replaced by "pseudo-injective","pseudo-projective" and

"pseudo-flat".



55

Next we consider the conditions under which T(X)=
D3(X), C(X)=TH(X) and L(X)=HT(X). From the definitions
of Y, ¢ and &, it is obvious that these are repectively

i 2 _p? = =
equivalent to D X—D “X ’ ETHX THex and nHTX HTnx

Proposition 10. The following are equivalent.

2_12
(a) ﬂDx D Ty

(v) ™D, is an isomorphism.

(¢) 72 is an isomorphism.

Proposition 11. The following are equivalent.

(a) eTH,=THe,.
(b) nH, is an isomorphism.

(e) ETHx is an isomorphism.

Proposition 12. The following are equivalent.

(a) nHT,=HTN,.
(b) ETX is an isomorphism.

(c) nHT, is an isomorphism.

Proposition 11 and 12 show that if C(X)=TH(X) and
L(X)=HT( X) hold for any R- or S-module X, then T and H
induce an equivalence between Im(T) and Im(H). So in

order to investigate the conditions under which C=TH and

9.
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L=HT, we have to study the condition Im(T) =Im{H).

Let End(RU)=§-, S ¢ S be the canonical ring morphism

, and -T—=(Ua§—): S-Mod + R-Mod, ﬁ'=HomR(U,-): R-Mod + S-Mod,
== €
TH * 1p Moa® 15

=1

AT .

Lemma 13. The following statements (a) and (b) are
equivalent.

(a) T and H induce an equivalence Im(T) =Im(H).

(b) (i) T and H induce an equivalence Im(T) = Im(H),

and(ii) RUis 5% gYs -

Moreover, if (a) and (b) are satisfied, then the following
(c) and (d) also hold.

(¢) Im(T)=Im(T).

(a) (Sgix- -) and Hom_(

5 s SSg;—) induce an equivalence

Im(H) = Im(H).

Definition.

U is pseudo-small if for any morphism R f > @ RU there
o
B)

is an epimorphism % u B U + 0 such that Im(f-p-i

is contained in a flnlte direct sum @& U(: @ U for each
(1

B-th injection U’*gg U (we call such a morphlsm to be

R

finitary).

10.



Theorem 14. The following are equivalent if g 1is

pseudo-small.
() T and H induce an equivalence Im(T)™~Im(H).

(b) For any gU-presented R-module _X, there exists

R

an epimorphism 6_U B gX * 0 such that H(p) is an

R

epimorphism and _Kerp is RU-presented.

57

R
(c) For any _U-presented R-module _X, _Kery, is
R w R R X
also _U-presented, where & _U +X X is the canonical (epi)
R EICOR
morphism.

The following proposition gives the examples of

pseudo-small modules.

Proposition 15.

(a) A self-generator is pseudo-small.
(b) A pseudo-projective module is pseudo-small.

(e) Ir Ug 1is pseudo-flat and T and H induce an

equivalence Im(T)=1Im(H), then gU 1is pseudo-small.

Proposition 16. If gU is pseudo-projective, then

Im{T) and Im(H) are equivalent by T and H.

Combine Theorem 9 with Lemma 13 and Proposition 16,

1l.
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then we have the following.

Proposition 17.

£

TH > lR Mod is the colocalization functor with respect to

some cohereditary torsion theory if and only if

(i) RUmSSS Vs (this is equivalent to Im(T) =Im(H) under

the assumption (ii)) and (ii) gU is pseudo-projective and

Ker(H)-projective.

Proposition 18.

n

1S_Mod =+ HT is the localization functor with respect to

some hereditary torsion theory if and only if
(i) Im(T) = Im(H) and (ii) Ug is pseudo-flat and

Ker(T)-flat.
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THE THIRD SEMINAR ON RINGS

At the time when Prof. F. Kasch was visiting Japan the third
seminar was held at Tokyo University of Education.
This note consists of abstracts of lectures presented at

this seminar, September 28 - 30, 1970.

On Categories of Indecomposable Modules

By Manabu Harada, Osaka City University

It is natural to consider that the idea of categories is a
generalization of idea of modules. From this point of view,
there are many results which are generalizations of well known
results in the case of modules. However, unfortunately, the
author does not know any method po thain some results in modules
which is not contained in the ordinal one in modules, but con-
tained in ideas of categories.

“In this lecture, the author would like to show one method
to obtain results in modules via method of categories.

Let R be a ring with identity. An R-module M is called
completely indecomposable if EndR(M) is a (non commutative)
local ring.

We define an additive category A as follows:

The objects in A consist of all directsums of completely
indecomposable modules.

The morphisms in A consist of all R-homomorphisms of objects
in A.

We can define ideals in an additive category and its factor

category.
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We shall denote I a subfamily of morphisms in A such that
for any object M = § + M, N = ¥+ N, in A; M, NB are complete-
ly indecomposable, I n [M, N]R = {f | e[M, N], pria: M ——’NB
is not isomorphic for every a, B where ia and pB are injJjection
and projection, respectively}.

We can easily show from the assumption that I is an ideal
in A. Then we have

Theorem. Let A and T be as above. Then A/I is a completely
reducible C3—abelian category.

As corollaries of that theorem, we can prove easily Krull-
Remek-Schmidt-Azumaya’s theorem. Furthermore, we can generalize
above theorem (see [1]).

If we restrict ourselves to cases of projective or injective
modules, we can find easily prdof for many well known theorems

(see [1]).

[1] M. Harada and Y. Sai, On categories of indecomposable
modules I, II, to appear in Osaka J. Math.

Retracts and Corestracts of Categories of Modules
By Yutaka Kawada, Kyoto Technical University

Let A and B be rings with identity, AM amd BM categories of
all (unitary) left A-modules and all left B-modules respectively.
Suppose that there exist covariant functors S:MA _—’EM and T:
BM — AM such that T is a right adjoint of §. If ST a 1 (resp.
1 s TS), then ﬂﬂ will be called a retract (resp. coretract) of
AH. Recently retracts of AM have been characterized by K. Morita
[2]. The purpose of the present paper is to discuss the case of
coretracts.

At first let U be a left B-module. For a left B-module Y,
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we shall say that U-dimension of Y is 2 n if there is an exact
sequence

Yn—> —>Yl—»Y —0
such that each Y, (i =1, ... , n) is a direct sum of copies
of U. Next a right A-module U will be called a weak generator
in MA if it holds that X = 0 whenever UQDAX = 0. Then the
main theorem is stated as follows: BM is a coretract of AM if
and only if there exists a B-A-module U such that U is a weak
generator in MA’ A= End(BU) and that AM:\:P(BU), where P(BU)
denotes the full subcategory of BM consisting of all left B-
modules of U-dimension 2 2, and End(BU) denotes the opposite
ring of endomorphism ring of BU.

As for the Grothendieck category P(BU) obtained in the main
theorem, we get further (1) B ¢ P(BU) if and only if BU is a
finitely generated, projective generator, and (2) P(BU) is an
exact subcategory of BM in the sense of P. Freyd [1] if and
only if U-dim Y = «» for every Y ¢ P(BU).

Finally it is shown that if there is a left B-module M of
type FP (in the sense of [2]) with A = End(BM), then BM is a
coretract of AM, while MA is a retract of MB as was proved by
Morita [2].

[1] P. Freyd, Abelian Categories, Harper and Row, New York,
196k.

[2] K. Morita, Localization in categories of modules, I,
Math. Z. 114 (1970), 121-14k.
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Localizations in Category of Modules

By Kiiti Morita, Tokyo University of Education

Let A be a ring with an identity and AM the category
of all unitary left A-modules. For a finitely cogenerating,
injective left A-module V, let D(V) (resp. T(V)) be the
full subcategory of AM consisting of all X ¢ AM such that
V-domi.dim. X > 2 (resp. HomA(X,V) = 0). In a previous paper
(Localizations in categories of modules. I, Math. Zeitschr. 11k
(1970), 121-144), the author proved that AM/T(V) ~D(V) and
that the quotient ring of A obtained by Gebriel’s process of
localization with respect to T(V) coincides with the double
centralizer of V. Thus the subcategory 0D(V) plays an impor-
tant role in the theory of localization. Corresponding to a
characterization of T(V) as a localizing subcategory, the
author gives a necessary and sufficient condition for a full
subcategory of AM to be expressed as D(V) with a suitable
V. As an application of this characterization of D(V) he
proved that for any ring A there exists a maximel left flat
bimorphism A -+ M(A) in the category of rings; for the case of
A being commutative this result has been obtained recently by
D. Lazard.

On Cofinitely Generated Modules
By Takeshi Onodera, Hokkaido University

A left R-module

for every non-empty set {Nu}ueA of submodules of M such that

&M is called "cofinitely generated', when

naeA NOl = 0 there exist finitely many Gys Qpy eee 5 O such
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that n .. N = 0.
i=l oy

This notion, which is considered as natural dual of a
finitely generated module, was first introduced by F. Kasch
with the terminology "durchschnittendlicher Modul”.

Theorem 1. A left R-module _M is cofinitely generated

R

if and only if the socle of RM is finitely generated and

large (= essential) in _M.

Let R and S be r?ngs with identies. Regarding to the
duality between the category of finitely generated R-modules
and that of cofinitely generated S-modules by the use of two-
sided cogenerator RQS we have the following

Theorem 2. For a two-sided R-S-module following

R%
conditions are equivalent:

(1) RQ, QS are cogeneators, S = End(RQ) (= the endomor-
phism ring of RQ) and R = End(QS).

(2) gQ and Qg are injective cogenerators, § = End(RQ)

and R = End(Q.).

S
(3) (i) For every finitely generated left R-module M
* = [ - - . —
MS HomR(M,Q)S is coizzltely generated and M is Q
reflexive, that is, M~ RHomS(HomR(M,Q),Q).

(ii) For every cofinitely generated left R-module

M', M'g is finitely generated and RM' is Q-reflexive.

(iii) For every finitely generated right S-module

R

NS, RN* is cofinitely generated and NS is Q-reflexive.

(iv) For every cofinitely generated right S-module

N'* igs finitely generated and N' is Q-reflexive.

]
Vs R s
Corollary. For a ring R following conditions are
equivalent: ’

(1) R 1is two-sided cogenerator (= both gR and Rp are

cogenerators ).
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(2) R is two-sided injective cogenerator.

(3) For every cofinitely generated left R-module RM,
M§ = HomR(M,R)R is finitely generated and M is (R-)
reflexive, and conversely, for every finitely generated right
R-module NR’ RN* is cofinitely generated and NR is reflex-
ive.

(4) For every finitely generated _M', M'¥ is cofinitely

R R

generated and RM' is reflexive, and conversely, for every

cofinitely generated N'R, RN'# 4is finitely generated and N'R

is reflexive.

Artinian Classical Quotient Rings

By Hiroyuki Tachikawa, Tokyo University of Education

Let R be a ring having a regular element ry and W a
right R-module. We shall call that W is ro—torsion free,
if xr = 0, x e W implies x=0. If W 1is ro-torsion
free, injective, then a family F, consisting of right ideals
D of R such that HomR(R/D,W) = 0, becomes an idempotent
topologizing filter and we can define the localizing functor H

in the following way: H(X) = 1im HomR(D,X/XF), where X is a
DeF
right R-module and X = {x e X | Amng x € F}. H(R) has a

ring-structure and H(X) becomes a right H(R)-module. With
these notations we can prove that the following statements I to
ITI are equivalent:

I. R has a right Artinian right classical quotient ring.

II. There exists a faithful, ro-torsion free, injective
right R-module W such that the following conditions are
satisfied:

(a) For every right ideal J of H(R) there is a right
ideal I of R such that H(I) = J.
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(b) The descending chain condition holds for the right
annihilators of subset of W in R.

(¢) The prime radical of R coincides with the set
consisting of all elements r of R such that r annihilates
H(V), where V is a large R-submodule of W.

III. There exists a faithful, ro—torsion free, injective
right R-module W such that the following conditions are
satisfied:

(a) The double centralizer Q of W is right Artinian.

(b) W is a cogenerator in the category of right Q-
modules. »

(¢) The prime radical of R coincides with the inter-

section of R and the radical of Q.

Brauer Groups of Algebraic Function Fields
and Their Ad2le Rings
By Yutaka Watanabe and Kenji Yokogawa, Osaka University

In the 1968 Symposium at Norikura, G. Azumaya showed that

the Brauer group of an adéle ring A, of an algebraic number

field K is isomorphic to the direcf sum & . B(K¢) of all
local Brauer groups. Here, we will consider the Brauer group
of an adele ring of an algebraic function field.

Let F be an algebraic function field of one variable over
a perfect field k and AF = AF/k be its adeéle ring. Tensor-~

ing over AF an A_-central separable algebra A with Fg, ve

F —
get a group homomorphism ¢  : B(AF) > TTS B(FS) [ A=+
(... s Ay

over k. But we can prove that Ag has an unramified (i.e.

» --.)], vhere p runs over all prime divisors of F

separable) maximal order over the valuation ring 0c of § for

almost all § . Therefore, combining the following exact
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sequence of Witt and Auslander-Brumer

12
B(kg)

we obtain a homomorphism ¢: B(AF) e-GDS X(GS)' (X(G}) denotes
the character group of the decomposition group of § and k;
denotes the residue class field 0 /% .) The homomorphism

is indeed an epimorphism.

To compute the kernel of ¢, we must prove a few fact.

One of these is the injectivity of ¢o. The proof of this
fact is slightly complicative. By much the same argument we can
also prove that the canonical mapping o : B(][ KI) -~ ]—TB(KI)
[Kl’s are fields and the cardinal number of the index set I =
{1} is utterly arbitrary] is monomorphic. And we get the fol-
lowing commutative diagram:

0> TT, Blkg) » TTB(Fg) > TT x(Gg) >0
T @ :mono T¢o:mono T mono (of course!)

B(TTsks) +  B(Ag) 3 @y x(6g) >0 .

Using this diagram, we can show that the kernel 'of ¢ is just
B(!_[gky). Accordingly, if the constant field k 1is finite, ¢
gives an isomorphism B(AF) ~ @3_ x(G}) = @y B(Fg).

Secondly we will mention about the canonical mapping ¢ :
B(F) - B(AL).

A consequence is that the kernel of ¢ is isomorphic to
Hl(EE) [the first Galois cohomology of the ideal class group of
F = F-k]. So, if k is a {-adic number field, ¥ is injective
by Theorem of Tate. Furthermore, the exact sequence

0 + H'(CT) > B(F) » B(Ay)
can be imbedded in the following commutative diagram with exact

raws and columns
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‘ : 0
} } l

o—m%?ﬁﬁnﬁyvmﬂgﬁ)
} ) 1

0=+ H(CT) — B(F) — B(AL)

1 é = Y

oﬁﬁ(D)ﬂH(Hrv@ﬂﬂGQ
|2 l 3L )
: 0

The Center of (*)-Rings

By Friedrich Kasch, MUnchen University

A ring R with identity is called a (*)-ring if for every

¢ in the center of R the chain
¢R > c2R; c3Ra_

is ultimately constant. Then the main theorem states that the
center of a (*)-ring is a w-regular ring (in the sense of N. H.
McCoy). As special cases we conclude the following results.

1) The center of a semi-primary ring is semi-primary;

2) The center of a perfect ring is perfect;

3) The center of an Artinian ring is perfect and has nil-
potent radical.

The last result can not be improved since by an example of
U, Oberst there exist Artinian rings for which the center is not

Artinian (even not Noetherian).

Note on Endomorphism Ring of Projective Modules

Kazuhiko Hirata, Chiba University

1. Let T be a ring with a unit, M a left unitary TI-

module which is finitely generated and projective over T. It
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is well known that Homr(M,I‘)@rM is isomorphic to @ =

End(rM) by the map f ® x + (z + £f(2)x) where f® x ¢
Homr(M,I‘) ®I'M and z e M. Let } ril=l f; ® x; be the
element in Homr(M,F) G>FM which corresponds to the identity
1, in 0. Then x ’s generate M over T: x = ) ?=l fi(x)xi,
X ¢ M, and f.°s generate Homr(M,F) over TI': f =

¥ 2=1 fif(xi)’ f e Hom,(M,T). @ acts on the left side of M
by wx =w(x) .and M becomes a left Q-module, and then
Homr(M,F) becomes a right Q-module. With these notations

we have

Lemma 1. For any w e @ we have x, = ) ?=1 f‘i(u.»x)x'j
and fjm =3 ?=l £,f (wx,).

Assume further that M 1is a T-generator. Then there are
elements g, ¢ Homr(M,F) and ¥y € M,j=1,2, ... , m, such
that ) ?=l gJ(yJ) = 1.

Lemma 2. For any y e T , 8@ Yy = ) E___l (gk®xi) ®
(8,0 vy) and 7 (g,@ w)(f;0 vy) = ;7@ v,

Let T' Dbe the subset of T consisting of fj(wxi), 1<
i, J<n,w ¢ 9, and let A be the subring of Q generated by
gj® YYy» 1<Jj,k<gm vyeTl' and lM' Then we have

Theorem 1. ! is a separable extension of A.

Proof. With above notations the element ) 1.3 (g‘j ® xi) ®
(fi® yj) in ®AQ provides the separability of Q over A.

2. The endomorphism ring of a finitely generated projective
module over a commutative ring C is a Frobenius algebra over
C. Bven if C is not commutative, the total matrix ring Mn(C)
(the endomorphism ring of a free module of rank n) is a
Frobenius extension of C. These facts are unified in the fol-
lowing theorem.

Theorem 2. Let T be a ring, M a left TI-module which is

finitely generated projective and a generator over T. Let A

10
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M). Then Q is a Frobenius exten-

r) ~ Hom( M, A)P A? and

be a subring of Q = End(P

sion of A if and only if Hom( Ma gl
M is finitely generated projective.

r,a
A

On Cyclic Extension of Rings

By Kazuo Kishimoto, Shinshu University

Let B be an algebra over GF(p) (p =a prime) without
central idempotents except O and 1, G a cyclic group of order
p with a generator .

The purpose of this lecture is to give a necessary and
sufficient condition for B to have a G-cyclic extension A
without central idempotents except O and 1 such that B is a
B-direct summand of A. The result depends on [1], [3] and [4],
and the details of the proof will appear in forthcomming paper
[2].

The theorem can be stated as follows:

Theorem. In order that B have a G-Galois extension A,
it is necessary and sufficient that there exist an element bo
in B and a derivation D in B satisfying

1) p®-D=(b_). - (b)), snd D(b) =0

2) xXP.-x- b, is indecompossble in B[X;D].

More precisely, if there exist bo’ D satisfying 1) and
2), then M= (XP - X - b )BIX;D] is a two-sided ideal of
B{X;D] and A¥* = B[X;D]/M is a G¥-Galois extension of B,
vhere G* is a cyclic group of order p with a generator o%*
defined by o*(y) =y + 1 and y is the residue class of X
modulo M. Conversely, if A is a G-cyclic extension of B,
then we can find such bo, D satisfying 1) and 2) that there
holds a B-isomorphism ¢¥* : A¥ ~ A with the following com-

mutative diagram

11
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¢*
A¥ - ———5 3

o*[ . lo

A¥ — 5 A

Corollary. Let B be a local ring (domain). If A is
a G-Galois extension of B such that A 1s a local ring
(domain), then, for each positive integer e, there exists a
local ring (domain) T such that T is an H-Galois exten-
sion of B satisfying T 2 A and 11B = ¢, where H is a
cyclic group of order pe with a generator T.

[1] K. Kishimoto, On abelian extensions of simple rings,
J. Fac. Sei. Hokkaido Univ., 20 (1967), 53-78.

[2] K. Kishimoto, On abelian extension of rings I (to
appear in Math. J. Okayama Univ.)

[3] G. J. Janusz, Separable algebras over commutative
rings, Trans. Amer. Math. Soc., 122 (1966), L461-479.

[4] Y. Miyashita, Finite outer Galois theory of non-com-
mutative rings, J. Fac. Sci. Hokkaido Univ., 19 (1966), 114-13k,

On Galois Theory of Primitive Rings

By Takasi Nagahara, Okayama University

Ln 1952, T. Nakayama presented a Galois theory of simple
(artinian) rings and in 1955, A. Rosenberg and D. Zelinsky suc-
ceeded in generalizing it to primitive rings with non-zero
socles (cf. [1]). They are about the Galois extensions of finite
dimension. Since, in 1955-1956, N. Nobusawa and N. Jacobson
found a key of the treaty of Galois theory of infinite dimen-
sion for division rings, a number of important developments have
taken place in this direction for division rings and simple rings
(cf. [2]). Recently, we found the fact that Galois theory of

12



73

infinite dimension for simple rings is lifted to primitive
rings with non-zero socle. .

Let A be a closed, right primitive ring with a non-zero
socle S. A subring T of A will be called regular if T
is a right primitive ring with non-zero socle such that A/T
has a right height and a right index, and the centralizer of
T in A 1is a simple ring. Moreover, a group H of automor-
phisms in A will be called regular if the fixring U of H
in A is regular and H contains all the inner U(-ring)
automorphisms of A. Now, let B be a subring of A, V the
centralizer of B in A, and G the group of all B (-ring)
automorphisms of A. The extension A/B will be called Galois
if B 1is a regular subring of A and it is the fixring of G
in A. Moreover, the notion of right locally finiteness of
A/B is defined in some way, and on A and G we may place
a topology induced by the finite topology of SS. Then, our
lifting, for example, contains the following theorem:

Let A/B be Galois and right locally finite. Then, G
is locally compact if and only if V is finite over the center
of A. In this case, there exists a 1-1 dual correspondence
between closed regular subgroups of G and closed regular
intermediate rings of A/B.

In general, the following theories are lifted to primi-
tive rings with non-zero socle: h-Galois theory, gq-Galois
theory, and ; theory of generating elements of Galois exten-
sions which were considered for simple rings (cf. [2]).

[1] N. Jacobson, Structure of Rings, Providence (1956).

[2] H. Tominaga and T. Nagahara, Galois Theory of Simple
Rings, Okayama Math. Lectures (1970).
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