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PREFACE

This volume contains the articles presented at the 10th
Symposium on Ring Theory held at Shinshu University, August
18-20, 1977.

The annual Symposium on Ring Theory was founded in 1968.
The main aims of the Symposium are to provide a means for the
dissemination of recent theories on rings and modules which
are not yet widely known and to give algebraists an opportunity
to report on recent progress in the ring theory.

The 10th Symposium itself was supported by the Scientific
Research Grant of the Educational Ministry of Japan (Subject
No. 230601).

The existence of the proceedings is due to the assistance
and cooperation of the authors; the final typescript the
efforts of the staff of the Department of Mathematics, Okayama
University.

Finally we would like to thank Prof. K. Kishimoto for his
unending patient and kind hospitality to the participants of

the Symposium.

S. Endo
M. Harada
H. Tachikawa

H. Tominaga
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ON FREE CYCLIC EXTENSIONS OF RINGS

Takasi NAGAHARA
Okayama University
and
Kazuo KISHIMOTO

Shinshu University

Throughout this paper, B will mean a (non-commutative)
ring with identity element which has an automorphism p. As is
[2), (3], [5] and [6], by BI[X;p], we denote the ring of all
polynomials  }. Xibi (b, ¢ B) with an indeterminate X whose
multiplication is defined by bX = Xp(b) for each b ¢ B.
Moreover, by B[x;p](z) (resp. B[X;p](n*)), " we denote the
subset of B[X;pl of all polynomials f = x2- Xa - b with
fB[X:;p] =B[X;p]f and Xa=aXx (resp. £=x"- b with fB(X;p] =
B[X;plf). A polynomial £ ¢ B[X:o](z) v B[x;p](n,) is called
to be separable (resp. Galois) if the factor ring B[X;p]/fBI[X;p]
is a separable (resp. Galois ) extension of B in the sense of
[4]. The purpose of this note is to study (separable)
polynomials f in B[x;p](z) u B[x;p](n*) and the factor rings
B[X;pl/fBI[X;pl. Qur results are all contained in [2], [3],
[5] and [6]. However, the proofs contain some simplifications
which are somewhat interest in alternative verifications.

In what follows, we shall summarize the notations which

will be used very often in the subsequent study, and we shall



use the fo{lowing conventions:

Z = the center of B.

By ={b ¢B|p(b) =b}, 2z, =20 B,.

B(p™) = {b ¢B|cb = bp"(c) for all ¢ ¢ B}, where n
is any integer, and Bl(pn) =B 0 B(p™).

U(B) = the set of all inversible elements in B.

U(By) = U(B) 0 B;, U(Z)) = U(B) 0o 2.

ll
bZ (resp. br) = the left (resp. right) multiplication ef-

fected by b €¢B, and b = bzl

Moreover, for a ring extension A/B and a set G of

br for any b ¢ U(B).

automorphisms in A, J(G,A) denotes the subring {a ¢ A |
ola) =a for all ¢ ¢ G}, and A/B is called G-Galois if G

is a group, J(G,A) = B, and there are elements al, A - T

n
* * =
a;*, ... , a_* such that I; ajo(a;*) 8§y, (Kronecker's
delta) for all ¢ in G (cf. (4]).
1. On B[X:p](z). First, we shall prove the following

Lemma 1.1. Let A be a ring extension of B with A =
xB + B, and assume that there is a B-ring automorphism o in
A such that x-o0(x) is inversible in A. Then {x, 1} is

a right free B-basis of A, and J(¢,A) = B.

Proof. Let 0 = xb, + b where bl’ bo € J(g,A). Then

1 o

0= (xbl + bo) - o(xb1 + bo) = (x - c(x))bl. Since x - o(x)
is inversible, we have b1_=0, and so, bo= 0. Thus {x, 1}
is right J(o,A)-free. Since B < J(¢g,A) and A = xB + B,

it follows that {x, 1} is a right free J(g,A)-basis of A,



and B = J(g,A).

Lemma 1.2. Let A be a G-Galois extension of B such
that A = xB + B = Bx + B # B. Then G is of order 2, and
for 0 #1 in G, x - o(x) is inversible in A. Moreover,

{x, 1} is a right free B-basis of A and is also a left free

B-basis of A.

Proof. Since A is G-Galois over B, there exist elements

Upr see 0 Upy Vi eee y Vo in A such that

Iy wytivy) = 8§y, forall 1 ca.
Hence J r-l(ul)vi =6, . forall T ¢G, that is,

Zi T(ug)v, = 61,1 for all 1 ¢ G.
Now, we set v, = bix + c; (bi, c; € B,i=1], ... , n), y=
Ij ujbyjr and z = J.uccy. Then, for 1 ¢ G, we have
1 u;tvy) = yri(x) + z. Let T # 1 be an arbitrary element
of G. Then 1 =yx + 2z - (yr({x) + 2) = y({x - 1(x)). This

implies that x -t1(x) has a left inverse. By a similar method,
we see that x - 1(x) has a right inverse. Hence x-T(x) is

inversible in A, and x - t(x) = y_l. Thus, for any 71, in

G with .3 #1, we have X - T(x) = y_l = x'-Tl(x), and so,
T(x) = Tl(x). Since A = xB+B, it follows that T = Ty and
whence G is of order 2. The other assertions are direct

consequences of Lemma 1.1.

Lemma 1.3. Let A be a ring extension of B such that

A=xB +B=Bx+B, ({x, 1} is right B-free, and x2 =xa + b

(a, b ¢ B). Assume that xB = Bx, and ax = xa. If a2-+4b



is inversible in B then A 1is Galois over B.

Proof. Let B be an arbitrary element of B. Since
xB = Bx, we may write Bx = xB8* for some B* ¢ B. Then

B(xa + b) = (xB%)a + Bb = x(B*a) + Bb, Bx> = (XB*)x = x2B** =
(xa + b)p** = x(ap**) + bR**, This implies B*a = aB**. Since
{B*|B ¢ B} = B, it follows that Ba = ap* for all 8 ¢ B.

Hence we obtain that for any B ¢ B, B(a - x)=(a - x)B*, and

a(a-x) = (x-a)a. Moreover, we have (a-—x)2 = az- 2xa + x2 =
a2 - 2xa + xa + b = (a - x)a + b. Hence the mapping

g xb1 + bo + (a - x)b1 + bo (bl, bo € B)
is a B-ring automorphism of A. Now, we assume that a2 + 4b
is inversible in B. Then, since (o(x) -~ x)2 = (a - 2x)2 =
az--4xa+4x2 = a2-+4b, the difference o(x) -x is inversible
in A, Hence o # 1, 02 =1, and J(o,A) =B by Lemma 1.2.
Now, we set u, = (a - 2x) "L - x), u, = (a-2x)"1, vy =1,

and v, = -x. Then [, u.t(v,) = 8§y, forall 1t el{1, al.
Hence, it follows that A 1is a Galois extension of B with

Galois group {1, o}.

Now, as in [5, p.69), one will easily see the following

x2_ Xa - b ¢ B[x;p](z), we denote the factor

For any f
ring BI[X;p)/fB[X;p] by BIx; p, a, b] where x = X+ £B[X;p],

and we denote a2 + 4b by &(f).

Next, we shall prove the following



Lemma 1.4. Let f = x2 - Xa~-b ¢ B[X:p](z). Then f |is

separable over B if and only if there exist elements bl’ b2,

b3 and b4 in B such that

(ii) l= bb1 + b4 (iii) ab1 + b2 + b3 =0
(iv) bby = ab, + p(b,) (v) by B (o~ %)

(vi) b, € Blo™) (vii)  p(by) = by

(viii) b, € 2.

Moreover, in this case, the subring 2[a, b, bl' D(bl),
b2' b3, b4, p(b4)] of B is a commutative ring, and in which

there exist elements b5 abd b6 in B such that

(*) 4 = G(f)b5 = b56(f), and a = G(f)b6 = b66(f).
Proof. We set A = B(x; p, a, bl and assume f is
separable over B. Then, the (left)A-(right)A-homomorphism

¢ : A@_ A > A (];a;@®b, > ], asb;)
splits. Hence there exists an element e in A @ p A such
that ¢(e) =1 and (c® l)e = e(1 ® ¢) for all c €A,

Since A ® B A

(x®@x)B+ (x®1)B+ (1® x)B+ (1& 1)B, we
may write

e= (x@ x)b1 + (x© l)b2 + (1 @ x)b3 + (1 ® l)b4
where bi €eB,i=1 .. ,4. Then, we have that x2b1 + xb2 +
xb3 + b4 =1, (x® l)e = e(l @ x), and (c @ 1)e = e(l @ a)
for each o ¢ B. Since {x® x, x®1, 1 ®x, 1& 1} is a right

free B-basis of A ® B A, one will easily see that

(a) 1l = bbl + b4 (b) ab1 + b2 + b3 = 0
(c) abl + b3 = ao(bl) + p(bz) (a) ab2 + b4 = bo(bl)
(e) bbl = ao(b3) + p(b4) (f) bb2 = bo(b3)



2 F—3 —
(9) p"(a)b; = bja (h) p(@)b, = by
(i) p(a)b3 = b3a (3) ab4 = b4a
where o runs over all the elements of B. Conversely, if

there exist elements bl’ b2, b3 and b4 in B which satisfy
the conditions (a-3j) then the map ¢ (stated earlier) splits,
that is, A 1is separable over B, Hence it suffices to prove
that the system of conditions (ii -viii) is equivalent to that

of conditions (a - j). Assume (ii - viii). Then, (vi, vii)

imply that for each a in B, p(a)b3 = p(a)p(bz) = p(abz) =
p(bzp_l(a)) = p(by)a = bia. Hence we have (i), that is,
(ix) by, by B(p™1).

Moreover, (v -ix, i -1iii) imply (g-3j, a, b) and that for each
i=1, --141

(x) ab, = b.a = ap(bi) = p(abi)

p(bsa) = p(b;)a

1l

(xi)  bb, = b.b = bpz(bi) = pz(bbi) pz(bib) = pz(bi)b

bb, =1 -b, =1 = pz(b4).

17 4

As is easily seen, (iii, vii, x) imply ab1 +p(b2) +p(b3) =0 and
(xii) p(b,) = by, p(b3) = b,, ab, = ap(b,) = ab, = ap(by).
Further, (x - xii, iv) imply (¢ - £f). Thus, (a - j) are

contained in (ii - viii). Conversely, assume (a - j). Then

(g = j) imply (v, vi, viii - x). As is easily seen, (x) and
(b, ¢) imply (xii) which contains (vii). Clearly, (xii) and
(e) imply (iv). Hence (ii - viii) are contained in (a - j).

Thus we obtain the first assertion. Now, by (ix, xii) and (xi),

we have

(xiii) b2 = b.b, = b2 = b,b
X111 2 T P2P3 = PB3 T B3hy
(xiv) p?(b,) = b



This and (v, xii) imply

= o2 = C -
(xv) blbi =p (bi)bl = bibl (i =1, .. , 4).
Moreover, by (ii, viii, xi), we have 1 = bp(bl) + p(b4),
p(b4) ¢ 2, and bb1 = blb' Hence 0 = bl(bo(bl) f D(b4)) -

(bp(bl) + O(b4))b1 = bblp(bl) - bp(bl)bl, that is, bblp(bl) =

bp(bl)bl. This and (v, x) imply that D(bblo(bl)) = D(bp(bl)bl)
p(bbyp (b)) = bo(by)by = bbyp(b)),  02(h2) = o2 (bp 2 (b))

2 =
p"(by)b; = byb

iv, xii), 1+b

1
1

2 ‘s
= bl’ and p(abzbl) = abzbl. By (ii, xiv,

is written as

_ _ 2
b1 (bb1 + b4)b1 = (bb1 + p (b4))b1

(bb1 + bp(bl) - ap(bz))b1 = bb

2

1t bo(bl)b1 - ab.b..

271

Hence, it follows that

(xvi) pz(bl)

= bl’ and p(bl)bl = b

-1 =
1P (by) = bD(bl).

We set here S = {a, b, bl’ p(bl), b,. b3, b4, p(b4)}. Then,

by (viii, x - xvi), we have

(xvii) uv = vu for each pair u, v ¢S, and p(S) = S.

Hence the subring Z(S]) of B is a commutative ring. Moreover,

from (iii, xii
s 2

(xviii) a

Now, we set

(xix) G(f)b5

{xx) a

),

by

by

we see the following

a( - b2 - b3) = - ab2 = - 2ab3.

b1 + p(bl). Then
2
(a“ + 4b)(bl + D(bl))
a(ab1 + ap(bl))+ 4(bb1 + bp(bl))

2a%b; + 4(bb; + 1 - p(b,)) (by (x, ii))
2(- 2ab2) + 4(ab2 + 1) = 4 (by (xviii, iv))
a(bb, + b,) = a(bb, + pz(b4)) (by (ii, xiv))
a(bb, + bp(by) - ap(b,)) (by (iv))

2
2abb1 - a’b, {(by (x))



it

2 2
2(2abb, - a’b,)bb, - a’b,
2.2 .
1ab®p? - a2(2bb1b2 + by) (by (xvii))

2.2
4ab b1

8(£) (bgab’bs = (1 = bgb) (2bbyby + by))  (by (xix)).

- (8(f) - 4b)) (2bb,b, + b2)

This completes the proof.

Now, we shall prove the following theorem which is one of

the main results of this note.

Theorem 1.5. For f ¢ B[x;p](z), f 1is Galois over B

if and only if &(f) 1is inversible in B.

Proof. Let f = x2 - Xa-b ¢ B[x:p](z), and set A =

B(x; p, a, b}. If 86(f) is inversible in B then, by Lemma 1.3,
A is Galois over B, and hence, f 1is Galois over B. To see
the converse, we assume that f is Galois over B. Then, by

Lemma 1.2, A is a Galois extension of B with Galois group of

order 2, whose group will be written as {0, 1}. Now, we
set ¢ = x + o(x). Then o(c) = ¢, and so, ¢ € B. Since
x> - xa-b=20, wehave 0 = (0(x))% - a(x)a-b = (c - x)° -

(c = x)a-b=x(2a -c¢c - plc)) + cz - ca, which shows

c + p{c) = 2a, and c2 = ca.

By Lemma 1.2, x - o(x) is inversible in B, and

2

(x - 0(x))% = (2x - €)% = 4x% - 2x(c + p(c)) + ¢

= 4x® - 4xa + ca = b4 + ca = 4b + ap(c).
By [4, Th.1.5], A is separable over B, and so is f. Hence,
by Lemma 1.4, &6(f) is a left and right divisor of 4 and a,

and so is of (x - c(x))z. Thus, d&6(f) is inversible in A.



Since A has a (left and right) free B-basis {x, 1}, it follows

that §(f) is inversible in B.

Next, we consider the following conditions.

(Cl) 2 1is inversible in B.
(C2) p|2 (the restriction p to 2) =1
(C3) B[X;p](z) contains a Galois polynomial.

Now, we shall prove the following

Theorem 1.6. Assume one of the conditions (Cl) - (C3).
Then, for an element f ¢ B[X;p](z), the following conditions

are equivalent.

(a) f 1is Galois over B.
(b) §(f) 1is inversible in B.
(c) f is separable over B.

Proof. In virtue of Th.l1l.5 and (4, Th.l1.5]), it suffices
to prove that (c) implies (b). Let f = x2 - Xa-b bea
separable polynomial in B[x;p](z), and set A = B(x; p, a, bl.

Case (Cl). Set y=x-(1/2)a, and b' = (a2 + 4b)/4

Then y2 =b' and A = yB + B. Clearly Y2 - b' ¢ B[Y;p](z)r

and this is separable over B. Hence by Lemma 1.4, there exist

elements bl' b2 and b4 such that 1=b'b1+b4, b'b1=h1b',

b'bl = D(b4), and b'p(bl) = pz(b4) = b4 (by (ii, iv, xi));

hence 1 = b'b +b'p(b1) = b'(bl-Fp(bl)) = (b1-+p(b1))b'. Thus

1
b' is inversible in B, and so is a2 + 4b = §(f).

Case (C,). Let {bl' b,, by, b,} be a system of elements



10

of B which satisfies the conditions (ii - viii). Then, by

(ii, iv), we have that 1l = bb1 + b4 = bb1 + bb1 - ab
2

2=

(2bb1 - ab = 4b2bi - 4abb1b2 + azbg. Hence, it follows from

2)
Lemma 1.4(*) that &6(f) is inversible in B.

Case (C3). In virtue of the case (Cl), we assume that 4
is not inversible in B, that is, B # 4B. By our assumption,
there is a Galois polynomial g = x2 - Xu -v in B[x:p](z).
Then, by Th.1.5, &(g) = u2 + 4v is inversible in B, and hence
1l = ru2 + 4rv for some r ¢ B. Now, since f = x2 - Xa - b
is separable over B, by Lemma 1.4 there exists a system
{bl, by, by, b4} of elements in B which satisfies the
conditions (ii - viii). In the rest of the proof, h =k

denotes the congruence h = k modulo 4B in B. Then, noting

b4 € 2, we have p(b4) = ruzp(b4) = rub4u = ru2b4 = b4. Since
l = bb1 + b4 and bb1 = ab2 + p(b4), we obtain
l= bb1 + b4 = bb1 + D(b4) = bb1 + bb1 - ab2 = 2bb1 - ab2

2 22
(2bb1 - abz) = a bz.

Hence, it follows from Lemma 1.4 (*) that

l eaB + 4B ¢ 6(f)B = B6(f).

This shows that 6(f) 1is inversible in B.

Remark. Let £ = x2 - Xa - b be a polynomial of B(X;p]

such that fB[X;p] = B{X;p)f. Then, as is easily seen, we have
(1) a eB(p), b B (p?), and ba = bp(a).

This implies the following

(2) ba = ab = bp{(a) = p(a)b

(3) a? = ap(a) = pla)pla) = pla®) «B,.

We shall here assume that f 1is separable over B, that is,
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the factor ring BI[X;:;p)/fB[X:;p] is separable over B. Then,
by making use of the same methods as in the proof of Lemma 1.4,
we see that there exist elements bl, b2 and b4 in B which

satisfies the following

(4) 1 =1bb) +b, (5) ab, + b, = bp(b,) (6) b, « 2.

Then, it follows that

p(a) = o(a(bb1 +b,)) = p(abb,) + p(ab,) (by (4))
= p(a)bp(b;) + pla)p(b,) {by (1))
= abo(b)) + p(a)o(bp(b;) - ab,) (by (2) and (5))
= bap(b;) + p(a)e’ (b)) - pla)pfa)p(b,)  (by (1) and (2))
= bbya + abo®(b;) - aap(b,) (by (1) and (2))
= (1 - b,)a + bap’(b;) - ab,a (by (4), (2) and (1))
= a(l-b,) + bp(bj)a - (bp(b;) -b,y)a (by (6), (1) and (5))
= abb1 + b4a = abb1 + ab4 (by (4) and (6))
= a(bb; + b,) = a. (by (4))

Hence, it follows that f ¢ B[x;p](z). Therefore, by Th.l.5,
we see that for f = xz- xa-b ¢ B[X;p] with fB[X:p] =B[X;:plf,
f 1is Galois over B if and only if f ¢ B[X:p](z) and 6(f)

is inversible in B.

In the rest of this section, we shall deal with the set of
B-ring isomorphism classes of the factor rings B[X:pl/fB[X;p]
(f ¢ B[X;p](z)). For elements g and 9, ¢ B[X;p](z), if the
factor rings B[X;pl/gB[X;p] and B[X;p]/ng[x;p] are B-ring
isomorphic then we write g -~ g;- Clearly, the relation . is
an equivalence relation in B[x;p](z). By le’°]Z2)' we

denote the set of equivalence classes in B[x;p](z) with respect
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to the relation . , and we write C = <g> if C ¢ B[x;p](z)

and g ¢ C.

First, as apreliminary lemma, we shall prove the following

Lemma 1.7. Let B be an arbitrary element of B(p).
Then, the subalgebra of B generated by Z v By(p) v Bﬁpz) v {B}
is a commutative ring. Moreover,

(i) for any a ¢ Z, aB = p(a)B, and for any u, €

Bl(p). u,B = Bul = ulp(B) = p(B)u1 = p(Bul).

(ii) If p(B)B = Bo(B) then Bo(B) = BZ = p(B)o(B).
Proof. If b ¢B) and B B(p™ (m =1, 2) then
me = Bmpm(b) = me. From this, we obtain the first assertion.

To see (i), let o ¢Z and u, € Bl(p). Then oB =Bp(a) =p(a)B,
and u,B = Bp(u;) = Bu; = ulp(B) = p(B)p(u;) = p(Blu; = p(Bul).
Moreover, if p(B)B=Bp(B) then B> = Bp(B) = p(B)p(B). This
completes the proof.

2 2

Lemma 1.8. Let g = X" - Xu - v, g9; = X" = Xu, - v

1 1 ¢
B[x7°](2)' Then, g -~ 9, if and only if there exist elements
o, B in B such that a € U(Z), B8 «B{(p), u = ou,+ B + p(B),
and v = up(a)v1 - uBu1 - 82. In this case, there holds that

0(B)B = Bp(B) = 8% = p(B)o(B).

Proof. We consider B[X:pl/gB[X;p] = XB + B and
B{X;pl/g;B[X;p] = yB + B, where x = X + gB(X;p] and y = X +

ng[x;Dl. First, we assume that there are elements a, B ¢ B
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such that a ¢ U(2), B ¢ B(p), u = auy + B + p(B), and v =
ap(u)v1 - afu, - 82. Then, for any c¢ ¢ B,

c{ya + B) = yp(c)la + cB = yap(c) + Bp{c) = (ya + B)p(c),

(yo + 8)% = y20(a)a + y(p(Bla + aB) + B2
= y(u,o(a)o + p(B)a + aB) + v pla)a + g2
= ylau; + o(8) + Bla + (v + au, + g%) + 82
= yua + v + B(uu1 + B + p(B))
= yua + v + Bu = (ya + Blu + v.
Hence, noting a € U(2), the mapping Xc, + ¢, » (ya + B)c1 +

c, (cl, c, ¢ B) is a B-ring isomorphism of xB + B to yB + B.
Thus we obtain g - g;- Conversely, we assume that there is a
B-ring isomorphism ¢ : XB + B - yB + B. Then ¢(x) = ya + B
for some a, B ¢ B. Since y = (ya + B)cl + c, for some ¢

and c, € B, the element a 1is inversible in B. Now, for

any ¢ ¢ B, p{cx) = ¢(xp(c)) = (ya + B)p(c) = yap(c) +Bp{c),
and ¢(cx) = cp(x) = c(ya + B) = yp(c)a + cB. Hence apl(c) =
p(c)a and Bp(c) = cB (c e B). This implies o ¢ U(Z) and

B ¢ B(p). Next, we note

¢ (x%)
6 (x2)

d(xu + v) = (ya + B)u + v = yoau + fu + v, and

602 = (ya + 8)% = y%0(a)a + y(p(B)a + aB) + B2

= y(up(a)a + o(B)a + aB) + vyp(ala + B2

= y(u;p(a) + p(B) + Blo + vyap(a) + 82,
Then au = (ulp(a) + p(B) + B)a, and Bu + v = vlap(a) + 82.
Since a € U(2) and u;, B € B(p), it follows

au, + p(B) + B, and

u 1

vian(a) + 82 = Bu = ap(a)v, + B2 - Blau; + 0(8) + B)

v

n

up(a)v1 - aBul - 82.
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Moreover, by Lemma 1.7, we have

Bp (8)

B(u - au; - B) = Bu - Bau, - B2

up - auIB - 82 = (u - au, - B)8

0(B)B = 8% = p(B)o(B).

This completes the proof.

Now, for fi = x2 - in - vy with u;, Vo€ B (i=1, 2)

and for s ¢ B, we write
_ g2 _ 2 2
fl x f2 = X" - Xulu2 (ulv2 + vy u, + 4v1v2)

_ 2 _ 2 - 2 _ &2
fl x g = X" = Xuls vysT, and s x fl = X Xsu1 s vy

Next, let R be the subring of B generated by Z v Bﬁp) v Bﬁpz).
Then, by Lemma 1.7, R 1is a commutative ring. From this, one

will easily see that for fi = X% - Xui - vy with u;, vyoe€ R

(i =1, 2, 3) and for € R,

51, S2
fl x f2 = f2 x fl, (f1 x fz) x f

3 = F) x (£ x £3),

fl X §) = 8§ X fl, (f1 x sl) X 8, = f1 x (5152)'

(£, x £5) x sy = £, x (£, x 57) = (£} ¥ 57) *x £,.

S(E, x £,) = 8(£,)8(F)), &(F, x 51) = 8(£,)s2.
where 8(f,) = ul + v, (i =1, 2).

Moreover, throughout the rest of this section, p will
mean the restriction of p to 2. Then, one will easily see
that for p ¢ Z, P ¢ Z(p") if and only if zp = pn(z)p for

all z ¢ Z, where n 1is any integer.

Lemma 1.9. Let g ¢ B[x;o](z), £ ¢ U(Zl), and h 'hl €
z[x;B](z). Then g x £, g x h ¢B[X;pl 5, 9 ~gx§& and
gxh-~gx hl'
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2 2
Proof. Let g =X"=Xu-v, h = X" « Xr - s, and

2

h, = X -« Xr Then

1”51
g x £ = x% - xug - vg?
g x h = X2 + Xur - (uzs + vr2 + 4vs)

_ 2 _ 2 2
g x h1 = X" + Xur1 (u sl+ vry + 4VSl).

Clearly uf, ur « Bl(p), vsz and uzs + r2v + 4vs € Bﬂpz).
Hence g x E, g x h ¢ B[x;p](z). If we set a=§( and B =0
then uf = au + B + p(B) and sz = ap(a)v - afu - Bz. Hence
by Lemma 1.8, we obtain g x § ~ g. Now, since h ~ hl’ by
Lemma 1.8, there exist elements o, B in B such that |
a e€U(2), B ¢ B(p),

r = ary + B8 + p(B), and s = ap(a)s1 - aBrl - 82

ur = uar, + ug + up(B) = our, + uf + p(uB), uB € B(p)

uzs + vrl 4 4qvs = uz(ap(a)s1 - afr, - 82) +

v(ar1 + B + p(B))2 + 4v(ap(a)s1 - aBrl - Bz)

= ap(a)(uzs1 + vr2 + 4vsl) - a(uB)ur1 - (uB)z.

1
This implies that g x h ~ g x hl'

Lemma 1.10. Assume p2 = ezler for some B8 ¢ U(B;). Let

g9, 9, and 9, be elements of B[X;p](z), and g9, ~ 95- Then

(i) B(pzn) = o"z for any integer n.
(i) gxg;x 07l camBl, (i=1,2, 5 =1, and
-1 -1
gxgy x8 ~ g xg,x8",
Proof. (i). If u ¢ B(pzn) then, for any ¢ ¢ B,
c(ué™ ™) = uezn(c)e’“ = ud "co™e™™ = ue™™c, and hence ub " ez,
that is, u ¢ ohz. Conversely, if u ¢ 8"z then u = 8%z for

some u = e"z for some 2z ¢2, and for any ¢ ¢B, cu=<cb'z =
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enpzn(c)z = enzp2n(c) = upzn(c), and whence u ¢ B(pzn). This

implies (1i). (ii). Clearly p2|Z =1, and so, 5% = 1.

Now, let g = x2 - Xu - v and g9; = x2 - Xui - vy (i=1, 2).

-1 _ 2 -1 2 2 -2

Then g x gy x ] = X° - qule (u vy + vuy o+ 4vv1)6 .
-1 1

. 2 -1 _ .
Since uu, € Bl(p V. we have uule € (ezl)e = Zl by (i).

For any a ¢ Z, ouu,8 1. up(a)ule_l

uule_lp(a). Hence we

obtain uule-1 € zl(S). Moreover, one will easily see that
(uzvl-i-vui-i-4vvl)e'2 € 131(;34)8"2 = 2,. Therefore, it follows

that g x g, x o1 . Z[X:El(z). Since g, ~9g,, by Lemmas 1.8
and 1.7, there exist elements «, B ¢ B such that
a ¢ U(2), B e Blp),
u, = au, + B + p(B), and v, = ap(a)v2 - aBu2 - 82,
uule_l = u(auz + B + D(B)e-l = auuze-l + 2Bue-1, and
Bue-l € 21(5).

Next, we note

u2v1 + uiv + 4vvl = uz(ap(a)v2 - aBu2 - 82) +
viau, + 8 + p(8))% + 4v(aplalv, - adu, - 8% = uap(a)v, -

uzaBu2 - u262 + v(auzau2 + Bau2 + p(B)au2 + auzﬁ + 62 + p(B)B +
au,p (B) + Bp(B) + p(B)p(B) + V(dap(a)v, - 4aBu, - 482).

Then, by Lemmas 1.7 and 1.8, we obtain

2 2 -2 _ 2 2 -2
(u vy + vuy + 4vv1)9 = ap(a) (u vy + vu, + 4vv2)e -

1 =-1,2

a(eue'l)(uuze' ) - (pue~1)2.

This implies that g x g, x oL . g x g, x o1, completing the

proof.
Lemma 1.11. Assume that there is a Galois polynomial f
in B(X:ol 5 Then o2 = §(£);Y6(f)_, and 8(F) < U(B)).
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Moreover, if o =ez 8, for some 6 ¢ U(B;) then, for any

g ¢ B(X;p] (2)*

gx £x £x8 L . g.

Proof. Let f = X> - Xa - b.  Then, by Th.1.5, &(f) is

inversible in B, and §(f) ¢ Bl(pz). From this, one will

easily see that p2 = G(f)zld(f)r. Now, let 02 = e;ler for

some 6 ¢ U(Bl), and let g = Xz-xu - v be an arbitrary ele-

ment of B[X:D](z). Then, by Lemma 1.10(i), we have 6(f) =

6z for some 2 ¢ U(zl). Hence, by Lemma 1.9, we obtain
gx fx f x o 1 . gx f£fx fx 67l x 271 = gx £ x £ x 6(f)-1.
Hence it suffices to prove that
g ~ £x £xgx6(g) L.
Now, we set & = 6(f) ( = a> + 4b ). Then,
(f x £) x g) x 671 = x% - xa%us™? - (a%b+ (2a%b + 4p?)u? +
a(2a%b + 4b2)v)672 = %2 - xa2us”! - (a2 +4p)? + 2(a? + ab)bU? -

41:>2u2)cs'2 = x2 - xa%s"1

- (v - (-2bus " Hu - (-2bus™1)?),
Moreover, since a26”! 4+ gps~? = 1, we have
a?us™l = u + 2(-2bu6-1), and -2bus”l ¢ B, (p).

This implies f x f x g X 6_1 ~ g.

Corollary 1.12. The set Z[x;E]}z) forms an abelian semi-

group under the composition <h><k> = <h x k>. If there is a
Galois polynomial e in z[X:Bl(z) then p2=1 and zlx;B]}z)

has the identity element <e x e>.

Proof. If h ~ h' and k ~ k' in Z[X;E](z) then, by

Lemma 1.9, h xk -~ h' xk « h'! x k', Hence the composition
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<h><k> 1is well defined. Moreover, this composition is asso-

ciative and commutative. Hence this makes Z[X;E]Iz) into an

abelian semigroup. Now, let e be a Galois polynomial in
2

Z[X;E](Z). Then, by virtue of Lemma 1.11, we have that p° =
-1 _ T
6(e)Z 6(e)r =1, and for any h ¢ Z[X,p](z),
<h><e x e> = <h x e X e> = <h X e X e X 1—1> = <h>.
Hence <e x e> is the identity element of BIX’B]IZ)‘

Corollary 1.13. Assume p2 = ezler for some 6 ¢ U(B,),

and let g be an element of B[X;p] Then, the set B[X;p]}z)

(2)°
forms an abelian semigroup under the composition <91><92> =

<g) x g, x g x o~ 1>,

Proof. Let g, ~ gi and g, -~ gé in B[X;ol(z). Then,

by Lemma 1.10, we have g, xg x g1 1

1

’ gJ!_nge- € Z[X;E] )’

and 9; %9 xe”L . gi xgx8 - (i=1, 2). Hence by Lemma 1.9,

we obtain

1) - glx(géxgxe-l) =

..1 -
glxgzxgxe =glx(gzxgxe

-1 -1 -1

géx(glxgxe )..géx(gixgxe )=g]‘.xgéxgxe .
Hence the composition <g1><g2> is well defined. Moreover,
this composition is associative and commutative. This completes

the proof.
Now, we shall conclude this section with the following

theorem which is one of our main results.

Theorem 1.14. Agsume that there is a Galois polynomial

£ in B[X;p](z). Then the set B[X;p]zz) forms an abelian
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semigroup under the composition <g,><g,> = <g, xg, *f x §(£) 1>

with the identity element <f>, and the subset {<g>e¢ B[X;p]}2)|
g 1is separable over B} coincides with the set of all inver-
sible elements in the semigroup B[X;p]}z) which is a group of
exponent 2. Moreover, the polynomial £ xf x 8(£)"1  in

Z[x;p](z) is Galois, and the semigroups B[x;p](z) and Z[x:p](z)

are isomorphic under the mapping <g> ~+ <gXxf xG(f)-1>.

-~

Proof. By Lemma 1.11 and Cor.1.13, B[x;p](z) forms an
abelian semigroup under the composition
<gy><g,> = <g; X g, X £ x 5(f)_1>,
Now, let g be a separable polynomial in B[x;p](z). Then,

by Th.1.6, g is Galois over B. Hence, by Lemma 1.11, we have

-1
91*9X9x6(f) ~ 9

for any g, € B[x;p](z), and in particular

g x £x£x8mt - g

grxgxExsH) l=gxgxgxant . £
Thus, we obtain <gl><f> = <g9,>, and <g><g> = <f>., Therefore,
it follows that <f> is the identity element of B[X;p]}z) and
<g> is an inversible element of B[X;O]}z) which is of order
2. Conversely, let <g> be an inversible element of B[x;p]}z).
Then <g><h> = <f> for some h ¢ B[X:D](z) and

gxhx£x8H)F - £

which are Galois over B. This shows that

§(g x h x £ x 8(£)71) =8(g)8(n) 8 (£)8(£) 2
is inversible in B by Lemma 1.5, and so is d(g). Hence g
is Galois over B. Thus, g is separable over B. Next, by

Lemmas 1.9, 1.10 and 1.11, we have the mappings
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gt BIXinl py » ZIXiBl 57 g(<g>) = <g x £x 6(5)7 1>
Ye i Z[x:El(z) + BIXipl(5)i WYgl<h>) = <h x f>.
Then, by Lemma 1l.11, we see
¢f¢f(<g>) = <g x f x 5(f)_1 x £> = <g>,
Since S(f x £ x §(£)™1) = s(E)8(E)6(F)"%2 = 1, by Th.1.5,

1

f x f x §(f) - 4is a Galois polynomial in z[x;B](z). Hence by

Lemma 1.11 and Cor.1l.12, we have

<{h x £) x £ x 5(f)-1>

¢f¢f (<h >)

<(h x £) x (Ex £ x £ x §(6)" %) x &)~ 1>

1 1

<h x (£ x £ x §(£)" ) x (f x £ x §(£)"

)> = <h>,

Thus, ¢ is bijective. Moreover, we have

1 1

x £ x 5(f)- >

¢f(<g1><g2>) <9, *x g, x £ x §(f)

1

<lgy x £ x (67T x (g, x £ x §(6) 7>

b (<g,>)0:(<g,>).
Therefore, it follows that ¢f is an isomorphism of the semi-
group B[x;plzz) onto the semigroup Z[x;B];Z), completing the

proof.

2. On BIXip) (puy- In this section, we assume that

ol = uzlur for some u € U(B;), n ¢ U(Z;), and U(Z;) contains

an element ¢ so that cn =1 and 1 - ;i € U(Zl) (i=1, ...
r n - 1). Moreover, G will mean a cyclic group of order n
with a generator o¢. As to nota£ions, we use the following
conventions: LNp(b; n) = pn-l(b)pn_z(b) ... p(b)b (b ¢B), and
LN, (B; n) = {IN (b; n) | b € B}.

As is easily seen, if X" - b € B[x’pl(n*) then b ¢

Bl(pn), and conversely. Hence B[x;p](n*) ={x"- b |b e Bﬂpn)}.
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For future reference, we put
Q,(B) = {B[X;p]/(x" - B)BIXip) | b € B (™},
= n _ . =
A=2a and X+ (X b)B[Xip] = xp
for each A = B[x;p]/(xn - b)BI[X;p] ¢ QD(B).
Noting that xg==b € B. Ab can be regarded as a BG-module

n-lody ) = 22_1

i
i=o *pPi =0 (xbc) bi' In all that follows, we

via o( ]

understand each A, ¢ QD(B) as a BG-module in the sense above.

b
Given A ¢ np(B), the BG-ring isomorphism classes of A in np(B)
will be denoted by <A>, and we set P (B) = {<a> | A € Q,(B)}.

Now, we shall begin our study with the following

Lemma 2,1. If Ab' Ac € QJB), then the following are
equivalent:

(1) <Ab> = <Ac>.

(2) There exists a B-ring isomorphism ¢ of Ab into
Ac such that ¢(xb) = xcu for some a € U(Z).

(3) b = cLNp(B; n) for some B € U(2Z).

Proof. (1) - (2). Let ¢ be a BG-ring isomorphism of
. . _ en-1 i
Ay into A, and ¢(x) = Ei=o xb, (b €B). Then
n-1 i _ _ _ vh-1 i i . . -
Diog Xolby = 00(x ) = ad(x) = 77~ (x £)'b; implies  ¢(x,)
xcbl' Noting that xcp(d)b1 = d(xcbl) = d¢(xb) = ¢(dxb) =

¢(xbp(d)) = xcblp(d) and ¢_1(xc) = xbbi with some bi ¢ B,
we can easily see b; ¢ u(z).
(2) » (3). This is obvious by b= (xb)n=¢(xg) = (xcm)n =
n -— .
xcLNp(a, n) = cLNp(a, n).

(3) + (1). Let ¢ be the mapping of Ay into Ac defined
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by 1721 xb, - ITTL (x8)'b;. Then ¢m) = o 0xp) = (x B =
cLNp(B; n) =b and ¢ 1is a B-ring isomorphism. Moreover,

o¢(xb) = o(x B) = x Lo ¢o(xb) shows that ¢ is a BG-ring

isomorphism.
Remark. If n = 2, then <A = <A if and only if
Ay and A, are B-ring isomorphic. For if ¢ 1is a B-ring

isomorphism of Ab into Ac and ¢(xb) = x.Q + B for some
o, B ¢ B, then xcp(Y)a + YB = Y(xca + B) = Y¢(xb) = ¢(be) =

¢(xbp(Y)) = xcap(y) +8ply) for each Y ¢ B show that a ¢ U(Z)

and YB = Bply). Hence 82 = Bp(B). On the other hand, b =

0(x2) = pixa + 82 = szNp(a; 2) + x_(a(B + 0(8)) + 8% yields

that B8 + p(B) = 0, and hence, 0 = 82 + Bp(B) = 282. Conse-

quently, we have 82 = 0. Therefore, the map ¢' of Ab
into Ac defined by ¢'(xb) = x.a is a B-ring isomorphism.

Let b be an element of Bl(pn). Then cb = bpn(c) =
bulcu for all ¢ ¢ B show that bu } ¢ 32 n B, = 2. Since
uZ1 c Bl(pn) is obvious, we have the following

Lemma 2.2. Bl(pn) coincides with uzl.

Now, we are ready to prove the following

Theorem 2.3. (1) PD(B) is an abelian semigroup with

the identity element <A> under the composition * defined by

<Ab>*<Ac> = <Abcu'1>f Moreover, <Ab> is an element of
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U(PD(B)) is and only if b € U(B).
(2) Pp(B) is isomorphic to the factor semigroup
Zl/LNp(U(Z); n). In particular, U(Pp(B)) is isomorphic to

U(Zl)/LNp(U(Z); n).

Proof. (1) Since <Ap> = <Ac> if and only if b =
cLNp(a; n) with some o ¢ U{(2Z) (Lemma 2.1), the assertion is

evident by Lemma 2.2.
(2) By Lemma 2.2, the mapping F: z -» <A,z (z eZl) is a
semigroup epimorphism of z1 onto PJB). Then Zl/LNp(U(Z); n)

is isomorphic to Pp(B) by Lemma 2.1, and the rest is obvious.

Proposition 2.4. If Ab € QD(B) then the following are
equivalent:
(1) A, is a separable extension.

(2) Ab/B is a strongly G-cyclic extension.

(3) b is inversible in B.

Proof. Since (2) ~ (1) is known and (3) ~ (2) is
evident by o(xb) = xbc {(see [11), it remains only to prove
(1) ~ (3). Now, we assume (l). Write here A=Ay and X =%
Then, the (left)A-(right)A-homomorphism ¢ : A Q@ g2 ~ A
(a®b -+ ab) splits. Hence there exists an element e in
A® A such that ¢(e) =1 and (c ® l)e = e(l ® c) for every
c € A. We may write

e= I xrexhaen,.
Then, we have

_en-1 Lit§,  _ i+ 143
(1) 1= 5 520X Byj = bog * LitgenX Pig * Liiquo,nX Pij
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N = bOO + bzi+j=nbij' and . .
@ I exh e - (x®1)(z'i‘:;=o(x1®xn,(1®bij”
- n-l i j _ n_l i j+1
= (1], 520X ®x) (1@b; 1)) (18x) = [i'5_ (x"®x7" 1) 1@p(by4)).

Comparing the coefficients of x® 1 in (2), we obtain boo =

bp (b Hence, it follows from (1) that l=bc=p "(c)b,

1,n-1'"
where ¢ = Xi+j=nbij +°(b1,n-1)' Thus b is inversible in B.
This completes the proof.

Now, let A/B be a strongly G-cyclic extension with

Ap @ B Then, A is BG-ring isomorphic to A« Qp.(B)

B*
for some automorphism p' and b ¢ U(B) ([1]). Thus, if A/B
is a strongly G-cyclic extension of p-automorphism type and
AB @> BB R then A is BG-ring isomorphic to some Ab with

<Ab> € U(Pp(B)). Conversely, if <A > is in U(Pp(B)). then

b
Th.2.3 and Prop.2.4 show that C/B is a strongly G-cyclic
extension of p-automorphism type for any C ¢ <Ab>. Summarizing

those above, we obtain the following

Corollary 2.5, U(Pp(B)) ={<A> ¢ P, (B) | A/B is separable}
represents the set of all BG-ring isomorphism classes of strong-

ly G-cyclic extensions A of p-automorphism type with AB®> BB.

The next is also an easy consequence of Th.2.3.

Corollary 2.6. If the restriction p|2 of p to 2

coincides with the identity then P_(B) 2/U(2)" 2P)(B) 2P, (2).

In particular, (1) if p 1is inner then Pp(B) = Pl(B), and

(2) if B is commutative then Pl(B) = B/U(B)n (see [7]1).
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Remark. Let D be a derivation of B so that D(a + b) =
D(a) + D{b) and D(ab) = D{(a)b + aD{(b) (a, b ¢ B). Then, we
have a skew polynomial ring BlX;D} whose multiplication is
defined by bX = Xb + D(b) for each b ¢ B. As to the poly-
nomials in B[X:D], we have some studies [2, §3], [3, §2] and
(5, §3] whose results are similar to that of this paper.
However, this is somewhat complicated. Hence, the present

paper was devoted only to study the polynomials in B[X;p].
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NOTE ON HERMITIAN FORMS OVER A NON COMMUTATIVE RING

Teruo KANZAKI
Osaka Women’s University
and
Kazuo KITAMURA

Osaka University of Education

An aim of these notes is to give a characterization of a
hermitian form over a non commutative ring by a matrix which is
a generalization of a well known and basic fact over a field.
We suppose that A is a non commutative ring with identity,
and has an involution A + A; aw* a which satisfies a+b =

atb, ab =ba and a =a for all a, b ¢ A.

1. Hermitian left A-module (M,h,U). Let U be an 2a-

bimodule. If U has an involution U =+ U; x~+ x which is an
additive homomorphism satisfying X = x and axb = bxa for
every x ¢ U and a, b ¢ A, then U 1is called an A-bimodule

with involution. For an A-bimodule U with involution and a

left A-module M, amap h : M x M+ U 1is called a hermitian
formof M to U, if h satisfies h(m+m',n) = h(m,n) +
h{m',n), h{am,bn) = ah(m,n)b and h{m,n) = h{n,m) for all

m, m' and n in M, and a, b ¢ A. We call (M,h,U) a

hermitian left A-module. If U = A, we denote (M,h,A) by

(M,h). If amap © : M -+ HomA(M,U); m~+ h(-,m) 1is bijective,

then (M,h,U) is called non-degenerate. Suppose that I is
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I

a finite or infinite set of indices. By U~ (resp. U(I)), we

denote the set of I-row vectors (xi)ieI with i-th component

X4 in U for i ¢ I (resp. the set of I-row vectors (xi)ieI

with i-th component xX; € U and x; = 0 for almost all

i e I). As usual, UI and U(I)

A-submodule. By tyl (resp. tU(I)), we denote the set of I~

are a left A-module and its

t . :
column vectors (xi)i€I which are transposes of (xi)i€I in
UI (resp. in U(I)). Then we regard tUI and tU(I) as a
right A-module and its A-submodule. Especially, A(I) is a

free left A-module and tA(I) a free right A-module. By

H= (hij) (i, 5)eIx1

i * = -
component hij in U, and by H (hlj)(l 3)eIxI an IxI

matrix with (i,j)-component Eji' If an IxI-matrix H

we denote an IxI-matrix with (i,j)-

satisfies H = H*, H is called a hermitian matrix. For a
(I)

H = {(al)1€I =

e A1)}, ana hy aA@y x a

(), .
) i, el alhljb_. Then A'"'H is a

left A-submodule of UI, and h defines a hermitian form of

A(D) yE =

given hermitian IxI-matrix H, we put A

I
Clier 2iPig5e1 € U (@g)y g

+ U; ((ai)ieIH' (bi)ieIH)w»

(1)

1,3e1 2ihisP5 = (@) g

)J*. By <H>, we denote the hermitian left A-

H) ((b;)

H to U, since | eI
(a,)

i :|.eI((b )1eI
module (AN H,h,U). If (M,h,U) is any hermitian left A-

module and M has a generator {m,}

itiexr 1-©- M= Z ieI Am

il

then H = (h(m, is a hermitian IxXI-matrix. We

i3 (4, 9)e1xr

consider a map Ey ' M= ) jep Amg -+ A(I)H; x =7 jeT 31~

(h(x,m, ))1€I = (ai)ieIH' The map EM is an epimorphism and

defines a homomorphism of hermitian left A-modules (M,h,U)

to <H>», i.e. the following diagram is made to commute;
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We denote such a homomorphism EM by EM : (M,h,U) » <H>,

For a left A-module M =} eI Am,, we put Ann(A(I);{mi}ieI)

(1)

= {(a,). e a(D) = 0} and Ann(tUI: ann(A

i'iel ) ier 2i™i
_ (t t, I,
{mi}-eI)) = { (xi) € U H Z iGI aixi

1
)}. Then we have an A-isomorphism ¢:

ielI = 0 for all (ai)i€I €
(1),
ann (A '{mi}ieI

HomA(M,U) > Ann(tUI;Ann(A(I):{m.}. I): fwr (f(mi))ieI’ For an

i'ie
IxI-matrix H with components in U, we put Ann(A(I);H) =
A(I)

{(ag)jeg ©

The following lemma is easy.

H (ai)ieIH = 0}.

Lemma 1. Let (M,h,U) be a hermitian left A-module,

Am, and H = (h(m, The following

Dijer Ay iP5 (4, ) eTx1”
conditions are equivalent:

M=

1) 8 : M~ HomA(M,U); m= h(-,m) is injective.

(1)

2) Ann(A(I);{mi} = Ann{(A :H) .

ieI)
3) EM : (M,h,U) » <H> is an isomorphism.

Theorem 1., Let (M,h,U) be a hermitian left A-module,

M= Am. and H = (h(mi,mj))(i,j)eIxI' Then (M,h,U) 1is

X iel i
non-degenerate if and only if EM t (M,h,U) » <H> is an iso-
I

morphism and Ann(tU Ann(A(I);H)) = HtA(I).

Proof. Using the isomorphism ¢ : HomA(M,U) - Ann(tUI;

Ann(A(I);{mi}iel)), we get that 0 : M~ HomA(M,U); m~+ h(-,m)
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is surjective if and only if Ann(tUI; A""(A(I)’{mi}ieI) c
HtA(I). By Lemma 1, 60 is an isomorphism if and only if EM
is an isomorphism and Ann(tUI; Ann(A(I);H)) c Ht (I).

2. The case U = A.

Theorem 2. Assume that (M,h) is a non-degenerate

)) jer Am; and H =

Then M 1is A-projective if and only

hermitian left A-module, M =

(hm;,m3)) (5, 5)exxa”

if there is a column finite IxI-matrix K (i.e. all the
tA(I))

columns of K are contained in such that HK is a

row finite matrix (i.e. all the rows of HK are contained in

ATy anda @wK)H = H.

Proof. Under the assumption of (M,h), we suppose that

M is A-projective. By the isomorphism Eye A(I)H
A(I)-* A(I)

is A=~
projective, and an A-~epimorphism My : H; (ai)ieI
-+ (ai). H is split. Hence there is an A-homomorphism v :

iel
A(I)H -+ A(I) such that EHov = I. Taking a j-projection pj :
I . . s s
A( ) . A; (ai)ieIw» aj; () ¢ I), we consider a composition
Pj°“°EM which is contained in HomA(M,A). By the isomorphism
. T (1), _ t, I
¢ : HomA(M,A) + Ann( A" : Ann(A '{mi}ieI)) = Ann{ A";
ann a1 ;m)) = 85T, we get o(pyovagy) = Bipyovebym));
t t t, (1) =
H (aij)icI for some (aij)iEI ¢ A . If we put K =
(aij)(i,j)eIXI' then K is a column finite IXI-matrix.

Since the i-th row of HK is (pjovogM(mi))jEI = v(EM(mi))
(I)

and is contained in A for each i ¢ I, the matrix HK =

(pj°v°£M(mi))(i,j)eIXI is row finite. Since MoV = I and



30

the i-th row of H is (h(mi,mj))jEI = EM(mi) = uH(uogM(mi))

(pjov° M(mi))jeIH' we get H = (HK)H. The converse is easy

: AT (I);

from the fact that an A-homomorphism v H~+A

(a )ieIH"* (ai)ieI(HK) = ((ai)

c Al a(Dy

i i€IH)K satisfies MgoV = I, i.e.

+ A is split.

ot
Theorem 3. Assume that (M,h} is a hermitian left A-

module such that M is finitely generated over A, and put

I = =

M=1] (. amy and H = (h(mm;)) o 5 ;.40 where I

{1, 2, ... , n}. Then (M,h) is both non-degenerate and A-

projective if and only if Ey ¢ (M,h) » <H> is an isomorphism

and H 1is avon Neumann regular element in the matrix ring An

of degree n, i.e. there is K in An such that HKH = H.

Proof. If (M,h) is both non-degenerate and A-projec-
tive, then by Theorems 1 and 2, EM is an isomorphism and
there is K in A, such that HKH = H. Conversely, suppose
that there is K ¢ Al such that HKH = H. We denote the unit
matrix in A, by E. Then we have (HK - E)JH = 0, and so all
the rows of (HK - E) are contained in Ann(A":H). Hence
every element x in Ann(tAn; Ann(An;H)) satisfies (HK - E)x

= 0, and so x = H(Kx) 1is contained in HtAn. Therefore, we

get ann(*a"; ann(a®;n)) = ut

A". Ssince EM is an isomorphism,
it follows that (M,h) is non-degenerate from Theorem 1 and

is A-projective from Theorem 2.

Corollary 1. Let H be a hermitian matrix in An. Then

<H> 1is both non-degenerate and A-projective if and only if



31

H is a von Neumann regular element in An.

3. A-submodule of (M,h).

Theorem 4. Let (M,h) be a hermitian left A-module.
Suppose that X = ] 2=1 Axi is an A-submodule of M such
that the nxn-matrix H = (h(xi,xj)) is a von Neumann regular
element in A . Then there is an A-submodule X' of X
which satisfies the following conditions;

1) (X',h) is both non-degenerate and A-projective,

2) x' =17 Ax{ and H= (hix;,x;)) = (h(x},x:)),

3) X=X'® X", where (X",h) is totally isotropic and

x" = x' n x.

Proof. Since H is a von Neumann regular element in An’
<H> is both non-degenerate and A-projective, and so an A-

. : . n,. = n =
epimorphism £, : X + A'H; X )} i=1 3iXi™ (ay,...,a )H
(h(x,xl),...,h(x,xn)) is split. Namely, there are A-sub-
modules X' and X" of X such that X = X' ® X" and X" =

- 1 n 13 1] " " E4 =
Ker gx. Put X = x; + x7 for xX{ € X and x{ e X", i 1,

n ' "
i=1 A¥is X

2, «.. , n. Then it follows that X' = J
I 11 Ax} = X" a X and h(x;,x;) = hixj,x}) for i, j =1,

2, ... , n. Furthermore, = Ex' : X' » A" is an

Ex xl
isomorphism, and so (X',h) (~ <H>) is both non-degenerate

and A-projective.

Theorem 5. Let (M,h) be a hermitian left A-module.

Suppose that X = § 2=1 Axy is a totally isotropic A-sub-
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module of M and there is an A-submodule Y = J 0 1 Ay of

i=
M such that an nxn-matrix L = (h(xi,yj)) with the (i,j)-

component h(xi,yj) is avon Neumann regular element in A,.

Then there are A-submodules X' = 2=1 Axi c X and Y' =
) ’i'=1 Ay} < ¥ such that L = (h(x},y})) and X =X'®

(X + Y)l n X, and (X' + ¥Y',h) becomes a metabolic left A-

module which is both non-degenerate and A-projective.

Proof. If L is a von Neumann regular element in An’

i.e. there is K ¢ A satisfying HKH = H, then A"L is a-
projective. Because, a map My @ At -+ AnL; (al,...,an)~+
(al,...,an)L is split by a map Mg AL - a"; (al,...,an)L
~+ (a;,...,a )LK. The map £, : X - AL x = ) 2=1 a;x v
(al,...,an)L = (h(x,yl),u..,h(x,yn)) is also split. Hence,
it follows that there is an A-submodule X' such that X =
X' + Ker E*, Ker £, < X n(Xx + Y)' and §x|x, : X' » AL is
an A-isomorphism. Put x; = xi + x; for xi e X' and xg €
Ker gx. Then we have L = (h(xi,yj)) = (h(xi,yj)). Since
L* = (h(yi,xi)) is also regular, i.e. L*K*L* = L* is
satisfied, an A-epimorphism £, : Y » AlL*; y = 7 ?=1 a y -
(al,...,an)L* = (h(y,xi),...,h(y,xﬁ)) is also split, in fact
A-homomorphisms Mpwt AL o An; (al,...,an)L**~ (al,...,an)L*K*
and Ny ¢ A" -+ y; (al,...,an)w* 2=1 a;y,; satisfy EY°“Y°“K*
=1 on APL*, Then we have Y = Y' @ Ker Ey, where Y' =
nYouK*(AnL*), and Eyly. : ¥Y' +» AM'L* ig an A-isomorphism
whose inverse is NyoMygx- Put y; = yi + y{ for yi € Y

and y; ¢ Ker Ey. Then it follows that L* = (h(yi,xi)) =
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n
(h(yi,xi)), ¥ = ! j= Ay} and y! = Nyolgaby (¥]) =
nY((h(yJ'..,xi),...,h(yi,xﬁ))) for i =1, 2, ... , n. Put B =
(h(y]!_,yé)) an nxn-matrix with (i, j)-component h(yi,yé).
Then we have B = L*K*B, Now, we consider an A-submodule
x'+y' =] 0 axi+ ] 7, Ay] of (M,h). Then a 2nx2n-
. 0 L . . .
matrix F = is the matrix of (X' + Y¥', h) with
L* B

respect to the generator xj, ... , x"), yi, e 2 y"1. We show

» . n n
that £y, 00 ¢ (X' +Y', h) > <F>; [ [, a;x} + ) j=1 bi¥i—
(ays...,ap,by,eee,b )F is an isomorphism. If } ?=l agx; +

) xi1=l b;y! is in Ker £y, .., then we have %;Y(Z 2=l b;y}) =
(by,..., b )L* = 0 and &, (] §_; a;x}) + (h(] 1o1 byYievi)s
oo o h(I T, biyli¥l)) = (ag,...,a )L + (by,...,b )B = 0.
Since '€Y|Y' and £x|x, are isomorphisms, we get Z xi1=l biy'i
=0 and g, (] §_; ayx!) = -(h(] I boyliyy), on

h(] iy byy}.¥\)) = 0, and so [ §_; a;x} = 0. Hence

Ker Ex'+¥' = 0, that is, 5x'+¥' is an isomorphism. Using
=K% * y

L*K*B = B, we get 0 L)(KBK x)(o L)___(O‘ L)_
L* B K B L* B L* B

Hence, F is a von Neumann regular element in A2n’ and

(X* + ¥', h) is both non-degenerate and A-projective. Since
EYIY' is an isomorphism, we have X'* n ¥' = 0. From the

fact X' n ¥Y' ¢ x'? n ¥' =0, it follows that X' + ¥' = X' ® Y'

and x't n (X' + ¥Y') = X' + (x" n Y') = X', Therefore,

(X' + ¥', h) is metaboli¢c., Since X = X' & Ker Ex. Ker EX <
X+ a X e +¥) ax and X' n (X' + YL =0, x =

X*'® (X + Y)J' n X is concluded.
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Corollary 2. If A is a von Neumann regular ring, then
a non-degenerate hermitian left A-module (M,h) with maximum
{or minimum) condition for non-degenerate  A-submodules has

the following split:
(M,h) =~ <a;> 1 ... L <a> 1((0 b%) L e.. 1( 0 bs)
fod r - - ,
bl 0 bS 0

where a; and bi are some elements in A with a; = a;.

If A is a semi-simple Artinian ring, then every non-

degenerate hermitian left A-module has the above split.

Proof. See [1].

4. A-submodule of a hermitian module over the maximal

quotient ring of A. 1In this section, we consider a maximal

left quotient ring Q of A, and suppose that Q has an
involution which is an extension of the involution of A. 1If
Q 1is a classical quotient ring, the involution of A can be
extended to an involution of Q.

Suppose (M,h) is a hermitian left Q-module. For an
A-submodule X of M, the submodule S(X) generated by
{hi(x,y); %, y ¢ X} will be called the scale of X. The scale
S{X) becomes an A-sub-bimodule of ¢Q, and is stable by the
involution of Q, i.e. 81X}y = S(X). Then (X,h,S(X)) is

regarded as a hermitian left A-module in the sense of §1.

Theorem 6. Suppose that A is a left non-singular ring

(cf. (2], p. 76), Q@ 1is a left maximal quotient ring of A,
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and that (M,h) 1is a hermitian left Q-module. If X =
) 2=1 Ax, is an A-submodule of M such that, for the nxn-

A, X, ~*

. - . n,, . _gtn
matrix H = (h(xi,xj)). Eg ¢ X+ ATH; x ) i=1 1%

(al, cee o an)H = (h(x,xl),...,h(x,xn)) is an isomorphism,
then it follows that X 1is A-projective if and only if there

is a matrix K in Q such that HK ¢ An and HKH = H.

n
Proof. If X is A-projective, then so is a"H. Then

n n
My ¢ A" + A'H; (al,...,an)~» (al,...,an)H

is split, hence there is an A-homomorphism v : A" + A"

an A-epimorphism
such that MoV = I. Since Qn is A-injective, there is an
A-homomorphism A : Q" + Q" making the following diagram

commute;

Since W 1is a rational extension of A (c¢cf. [2], p. 8l), so is
Qn also of An, because, for any x = (xl,...,xn) and y =
(yl,...,yn) # 0 in Q", there is a ¢ A such that ax =
(axl,...,axn) e A" and ay = (ayl,...,ayn) # 0 (cf. [2],

p. 79). Put A{(0;...,0,1,0,...,0)) = (Q.7+-.-,9,_) for
(i-D~times i1 in

qij € Q, and K = (qij) an nXn-matrix with (i,j)-component

G4 Then A((al,...,an)) = (al,...,an)K is satisfied for

all (al,...,an) ¢ A". We consider an A-homomorphism f :

Q" + Q% (X, eei%p) = A(Xgseeix)) = (Xg,....% )K which

carries all the elements of A" to O. By the rationality of

n

Q over AP, we get £ =20, i.e. x((xl,...,xn)) =(x1,...,xn)K
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for every (xl,...,xn) € Qn. Therefore, we have A"HK = A(AnH)

[]

v(A"H) ¢ A", i.e. HK ¢ A", and HKH = H from the fact m,.v

I. The converse is obvious.

Theorem 7. Under the same assumption on A, Q and (M,h)
as in Theorem 6, let X = 2=1 Axi be an A-submodule of M,
and H = (h(xi,xj)) the nxn-matrix with (i,j)-component
h(xi,xj). Then (X,h,S(X)) is both non-degenerate and A-
projective if and only if Ex ¢ (X,h,S(X)) » <H> is an iso-

morphism and there is an nxn-matrix K in Qn such that

S(X)".K ¢ A" and HKH = H.

Proof. Suppose that (X,h,S(X)) is both non-degerated
and A-projective. By Theorem 6, there is K ¢ Q, such that

HK ¢ An and HKH = H. Since HK is an idempotent in Qn'

we have Ann(A";H) = AM(E - HK) and Ann(Ys(X)"; Ann(a";H)) =

HK-tS(x)n. Furthermore, by Theorem 1 we have Hx.ts(x)n =

H-tAn. K' = K*HK satisfies identities HK'H = H and K'* =

K', and so K'*.'s(x)" = K*uk-*s ()" = k*H.*A" anda s(xX)"k' =
aA"HK < AP, Namely, K' is a required matrix in Q,- Converse-
ly, suppose that K is a matrix in Qn such that S(X)"K ¢

A" and HKH = H. Then every row of HK 1is contained in
s(X)"K, and so HK ¢ A_. Put K' = K*HK. Then S(X)"K' =
S(X)PK*HK = S(X)"(HK)*K < S(X)?K < A" and Ann(a";H) =

A"(E - EK'). Hence, we get Ann(Ys(x)™; Ann(a";H)) =

t

HK'-tS(X)n = H(S(X)"K')* < H. al. By Theorems 1 and 2,

(X,h,s(X)) is both non-degenerate and A-projective.
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S-S-BIMODULE STRUCTURE OF S/R-AZUMAYA ALGEBRA

AND 7-TERMS EXACT SEQUENCE

Kenji YOKOGAWA

Nara Women’s University

Introduction. Let R be a commutative ring, and § a
commutative R-algebra which is a finitely generated faithful
projective R-module. An R-Azumaya algebra A is called an
S/R-Azumaya algebra if A contains S as a maximal commuta-
tive subalgebra and is left S-projective. A(S/R) denotes
the isomorphism (compatible with the maximal commutative embed-
dings of §S) classes of S/R-Azumaya algebras. Then we have
the following exact sequences [3]:

o - ul(s/rR,u) + pic(R) + HY(S/R,Pic) - HZ(S/R,U)~

+ Br(S/R) - H!(S/R,Pic) + H>(S/R,U),

pic(s)E89(s/R) + Br(s/R) -+ 0
where Hi(S/R,U) and Hi(S/R,Pic) denote the i-th Amitsur’s
cohomology groups of the extension S/R with respect to the
units functor U and Picard group functor Pic respectively,
and Br(S/R) denotes the Brauer group of R-Azumaya algebras
split by S.

The first exact sequence is obtained concretely in (5]
when S/R 1is a separable Galois extension and in (8] when
S/R 1is a Hopf Galois extension. From the exact sequences, we
know that an S/R-Azumaya algebra is related to the l-cocycle

(with respect to the functor Pic), especially to the rank one
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S@RS-projective module. But we remark that S/R-Azumaya
algebras are not necessarily S@RS-projective (viewed as S-S~
bimodule) [8].

We shall investigate the S®Rs—modu1e structure of S/R-
Azumaya algebras and construct the 7-terms exact sequence
concretely. The details will be omitted and will be found in
[9].

Throughout each & , End, etc. are taken over R unless
otherwise stated, and repeated tensor products of S are
denoted by exponents; s9 = 5®@...8& 5 with g-factors. We shall
consider $9 as an S-algebra on the first term. In order to
indicate the module structure, we write if necessary, Sl® 52

2 2

instead of S° = s®s, M instead of S§° = S,® S, -module
s,'s, 1¥°2

M etc.

1. Sz-module structure of S/R-Azumaya algebras

Lemma 1.1. Let M be a projective S-module of rank
one, then
End (M) ~ (M@S)@Sz(SQM*) @Sand(S)

as Sz-modules, where M* = Homs(M,S).

Proof. ¥ : (M®S)®SZ(S®M*)®SzEnd(S) + End(M) defined
by ¢(im(m®s)® (tR£)® g)(n) = tg(f(sn))m gives a desired

Sz—isomorphi sm.

Now, let A be an S/R-Azumaya algebra then A is split

by S. Hence there exists a projective Sz—module M of rank
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one such that S®A ~ Endg(M) as S-algebras. From Lemma 1.1

Endg (M) = (M @gS%) B (s° @) B 3Bndg(s7) = (g Mg 8S3) By

2 =
(SLM*S9S2)®83EndS(S ). Let P = ((SIMS?S3) ®Sa(SIM*Sa®S2))

2 _ 2
@Sgs = ((M ®stl)® SZ)QSZSIM*SZ' where S is regarded as

3

s3—module by u®l : 87 =+ 82, u is the multiplication of S.

Then we have an Sz—isomorphism A~P ®SzEnd(S) , P is a pro-

jective Sz—module of rank one.

Let ¢ be the composite of Sz-isomorphisms End
5,®S,

(5 Mg ©5;) = S| @ABS, = 5,@5,0A 2 Bndg g 5 (5,8 Mg ),

where the middle isomorphism is the one induced by the twisting
homomorphism A®@ S, = 5,8 A. Then there exists a projective

2

S°-module Q of rank one such that (SIMS?S2)®S@SZS,QSZ =
3

Sl®SZM83 as EndSIQSZ(Slaszmsa)-modules, hence as s

3

-modules.

Tensoring with S over S (regarding 82 as an S
3

-module
by 1®u : 87 =+ Sz), we get an S3-isomorphism M®Szo ~S®
(M ®SzS). Using these isomorphisms, we can easily prove that
P 1is a l-cocycle of the extension §/R with respect to the
functor Pic (we call simply l-cocycle).

Let S®A = End (N) for another projective s?-module N
of rank one. Then we can easily prove that the l-cocycles
obtained from M and N are Sz-isomorphic.

In order to prove the uniqueness of l-cocycle P, we pre-

pare the following

Lemma 1.2 (cf. [6] I.4.2). Let T be a commutative R-

algebra which is a finitely generated faithful projective R-
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module, and let P, Q be finitely generated projective T-
modules of rank one. Then
Homy .. (P® Q,Q®P) = Hom, . .. (End(P),End(Q)) .

(P@ Q,Q®P) corresponds to Iso (End (P),

Especially, Iso T® T

T T
End(Q)).

Let P, P' be l-cocycles such that A ~ P @42End(s)
P'®,End(S) as s2-modules. Then Endg (P*) ~ Endg(P'*) as
S3—modules by Lemma 1.1 and cocycle conditions of P, P'.
From Lemma 1.2, we get an S3-isomorphism

* [ = * ~ '
PrOgP'* = (g P*g®S5;) @galg P'*5®S,) = P'* ®gP*

=(Sl ®S)®a( s@S)
* ~
Thus (SIP 52083)® a(SP ®5,) (SP ®S)®Sa( SOS),
the left side is isomorph:.c to S@P and the right side is

isomorphic to S®P'. Hence P ~ P' as Sz-modules.

Summing up, we get

Theorem l1.3. Let A be an S/R-Azumaya algebra, then
there exists a unique l-cocycle P such that A is isomorphic
to P@SzEnd(S) as Sz-modules and S®A is isomorphic to

1.=:ndS (P*) as S-algebras, where P* = Homsz (P,Sz).

Next we shall start from a l-cocycle P and an S3-iso-
. 2 * = ~ * *
morphism ¢ : S OSP SIP*S?SZ -~ (Sl®SZP S,)®33(Slp 82®S3)‘
Define the Sq—isomorphism ¢l as follows; ¢l = 1®¢ :

~ * * i i
S ® 2 ?Sa fod (Sl® 82953P S“)®S"(SI®SZP 5?54), identity

on Sl' and similarly we define $,, ¢3. Let ule) € Ends,,
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. -1 -1
(SIP*SPSZQS3) be the composite ¢3 .¢1 ®S..1-1 ®S.,(¢ ® 1) ¢2

4

and consider u(¢) as a unit of S by homothety. As is

easily checked, u(¢) is a 3-cocycle (w.r.t. functor U) and

u(a¢) is cohomologous to u(¢) for any unit a ¢ S3.

Theorem 1l.4. Let P be a l-cocycle with an 53-isomor—

5,

P@SzEnd(S) has an S/R-Azumaya algebra structure, if and

hism : P* @S, ~ (S, ® . P*_ )@ _ (. P* _®S,). Then A =
P ¢ s85; 215,95 775 )P gals PT5®5;

only if wu(¢) is a coboundary.

Proof. First we assume A = P®szEnd(S) is an S/R-
Azumaya algebra., Then S®A ~ Ends (P*) as S-algebras.
Define the Sz-algebra isomorphism

. * =
¢ Endslgsz (slP S;@SZ) Sl®A®Sz

~ = *
Z5,98,8A E"dspsz(sle’szp s,)

by the twisting homomorphism A® S2 - 528 A. Then ¢ is a

descent homomorphism, that is, if we define ¢, = 1®9 :

1
Sl® EndS(P*)®S ~ Sl® s EndS(P*) , identity on 51’ and ¢2,
¢3 similarly, then ¢, = ¢1-¢3. Since ¢ 1is an Sz-algebra

2-module Q of rank

isomorphism, there exists a projective S
L}
* ~ * =
one such that slP S,®52 ~ (Sl®szp 53)®51®5251Q52
3 s s
* -

(Sl®SZP 53)853(51052653) as S -modules and ¢ is induced
by this isomorphism ¢'. From the cocycle condition of P,
Q z P*. Then ¢, = ¢,-¢; claims that 3-cocycle u(¢') is a
coboundary. -Hehce u(¢) is a coboundary. Conversely, let

u(¢) be a coboundary then we may assume u($) = 1@1®131.
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Let ¢* be the isomorphism S&P ~ (P*® S) @s;(s‘Ps@Sz)
induced from ¢ by duality pairing. We consider S®A =

2 =
(s@p) ®SgEnds(S ) equals Ends(P*) = (P*@ S) ®s°(s‘Ps§°sz’
®ngnds(sz) by ¢* ®s31' Then S®A has an S-algebra
structure. Define ¢ : S@AQR®S - S®S®HA by the twisting
homomorphism, then @2 = ¢l-d>3. From the theory of faithfully
flat descent, if ¢ 1is an Sz-algebra isomorphism (this can
be proved by localization) then the descent module A has an

R-algebra (necessarily an S/R-Azumaya algebra) structure.

2. 7-terms exact seguence

In this section we make homomorphisms el, ees o 66 of
the exact sequence
L ®) 8, o ° %4
0 + H (S/R,U) + Pic(R) » H"(S/R,Pic) + H°(S/R,U) =~
(2.1) 6 e

51 6 5
+ Br(S/R) - H!(S/R,Pic) ~ H3(S/R,U)

The verifications of the well-defineness, exactness, etc. are

all omitted.

2

et p = Zixi@ y; € S° be a l-cocycle (w.r.t. functor U).

We make a new End(S)-module pS as follows;

pS =S as S-module, f.s =} ixif(yis) , £ e¢End(S), seS.
In reality, pS is an End(S)-module. Define 81 as the
homomorphism induced by the one which carries p to HomEnd(s)
(S, S). Define 92 as the homomorphism induced by tensoring
with S over R.

Let P be a 0-cocycle (w.r.t. functor Pic) with Sz-

isomorphism &§ : S@P = P®S. Define l;l as follows; Cl =
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1®¢ : 5,980P 2 5,8 PQS, identity on S,, and similarly
define g,, {5. Put vig) = I;;l-;3-l;l ¢ Endg,; (S®S®@P) and

consider v(g) as in S3.

Then v(z) 1is a 2-cocycle. We
define 03 as the homomorphism induced from the one which
carries 0-cocycle P, { : S@P ~ P@S to v(z),.

Let ¢ = ):ixie Y;®2; be a normal 2-cocycle (w.r.t.
functor U), and define a new multiplication "«" on End(S)
by setting

(fxg) (s) = Xixif(yig(zis)), s € S, £, g ¢ End(S).
This algebra A(c) is an S/R-Azumaya algebra. We define 64
as the homomorphism induced from the one which carries o to
A(g). We define 05 and 66 as the homomorphisms induced
from Theorem 1.3 and Theorem l.4 respectively.

Theorem 2.2. The homomorphisms el, e s 96 defined

above make the sequence {(2.1) exact.
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ON LONG'S H-AZUMAYA ALGEBRA")

Mitsuhiro TAKEUCHI

The University of Tsukuba

Introduction. Let k be a field. Let H be a commutative
and cocommutative Hopf algebra over k, and n: H®H » k be a
Hopf pairing. Let A and B be H-comodule algebras. Then,
A®B is a k-algebra with multiplication defined by

(a®@b) (x@y) = Z(b) (x) "X (1) ® P (yy)@%(a)® b (py¥Y
and is denoted by A#nB. An H-comodule algebra A is called n—
Azumaya, if it is non-zero finite dimensional over k and there
are an H-comodule algebra B and H-comodules V and W which
are non-zero finite dimensional over k such that
A#nB = End V, B#nA = End W

as H-comodule algebras. The set of equivalence classes of n-
Azumaya algebras form a group Bn(k,H) with multiplication
induced by #n.

Let F be a commutative and cocommutative Hopf algebra
over k, and w: F®@H+ k a Hopf pairing. Define a Hopf pairing

: (FOH)® (F®H) + k

by Q{(peg)® (u®v)) = w{ip@v)e(g)e{(u). If A and B are F®H-
comodule algebras, then A#QB = A#mB as algebras., An {-Azumaya

algebra is called an F-H-Azumaya algebra (with respect to w),

*) This is derived from the author’s article [9] which includes all

the proofs omitted here.
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and we write
Bn(k,FQH) = Bw(k,F,H).

Let H° be the dual Hopf algebra of H, and consider the

canonical Hopf pairing y: H°®H +» k given by y(X®x) = X(x).
Then finite dimensional H~-dimodule algebras in the sense of Long
[4) are identified with finite dimensional H°® H-comodule algebras.
Long’'s smash product # coincides with #Y . and H-Azumaya
algebras are the same as our H°-H-Azumaya algebras. Hence we
have a group isomorphism BD(k,H) = By(k,H°,H).

Let SpH be the commutative affine k-group scheme
represented by H. An H-comodule algebra is identified with a
pair (A,p) where p: Sp H > Auf(A) is a homomorphism of group
sheaves., If A 1is Azumaya, we obtain the following central
exact sequence of affine k-group schemes

"(A): 1 -y +X->SpH~+1.

Let Extcent(Sp H,p) denote the abelian group of isomorphism
classes of central extensions of Sp H by u. The map A =
n(A) induces the following split exact sequence of abelian
groups:

1 > B(k) » BC(k,H) ¥ Ext__ . (Sp H,u) > 1
where B(k) denotes the usual Brauer group of k. Beattie [1]
constructs a similar exact sequence in a different manner.

Suppose the following condision:

. If A 1is an Azumaya F-comodule algebra and B an Azumaya
™) H-comodule algebra, then A#mB is Azumaya.

Then the set of equivalence classes of Azumaya F ® H-comodule

algebras BC(k,F®H) is a monoid with multiplication induced
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by #w and we have

1 » B(k) + BC(k,F®H) ¥ Ext (Sp Fx SpH,p) + 1.

cent

Hence Extcent(Sp FxSp H,u) has a quotient monoid structure.

The purpose of this paper is to describe the monoid structure.

l. Notation and Definition. Let k be a commutative ring

with unit. We write ® and End instead of ®, and Endk.
If V is a k-module, V* denotes Homk(V,k). The group of
units of a ring R 1is denoted by U(R). If a and b are
objects of a category A, we denote by A(a,b) the set of A-
morphisms of a to b. We refer the reader to [5] for the
theory of coalgebras and Hopf algebras. The structure maps of
a k-coalgebra C are denoted by A: C + C®C and ¢€: C + k.
We use the sigma notation A(c) = [(c)c(l)e C2yr © ¢ C. 'The
set of group-like elements in C is denoted by grk(C) or
gr(C). If V is a right C-comodule with structure x:V + V®C,

we use the notation:
x(v) = Z(V)V(V)Q Vieyr (1®8)x(v)= Z(V)V(V)ev(c,l)sv(c,l)

v ¢ V. The antipode of a Hopf algebra is denoted by S. A
right H-comodule algebra, where H is a Hopf algebra, is a k-
algebra and a right H-comodule A whose structure map x: A -+
A®H is an algebra map.

To denote the multiplication of an abelian group, we use
the additive notation most of the paper. But the multiplicative
notation is also used here and there. Let Gj and Hi be
abelian groups. A homomorphism £: G, % ... xGn-> H, x ,..xH

1l 1l m

is identified with an mxn matrix A = (aij) with aij: Gj + Hi
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by the rule:

f(xl,. cerX ) = (¥yreee ,ym)
if and only if

' %y Ejalj(xj)

Dl =at] = :

Yo X Ejamj(xj)

Let gk be the category of commutative k-algebras. A k-

functor (resp. a k-group functor) is a functor from M into

the category of sets E (resp. of groups). They forma category
ME (resp. Gr,). The affine k-functor of R ¢ M, is denoted
Sp R. Amap o: A+ B of M is an fppf-covering if B is a

faithfully flat A-algebra of finite presentation. It determines

i
an equalizer diagram in M: A $p3 B®,B where i(b) =be®l,
J
j(b) = 1® b. A k-functor is called a k-sheaf if it preserves
all finite products and all such equalizer diagrams as above.

A k-group sheaf means a k-group functor which is a k-sheaf as a

k-functor.
Let V be a k-module and A a k-algebra. The following
k-group functors are k-group sheaves:
A
GL(V):T~+ GLT(TOV) ¢ W :T+U(T@A), Aul(A):T~+ AutT_alg(TQA) .

If V and A are k-finite projective, they are affine algebraic

(3, II, 51, 2.4 and 2.6]. We write X = y.

Let G be a commutative k-group functor. We denote by G
the Cartier dual [3, II, §1, 2.10] of G. It is the k-group

functor: T + GrT(G ). It is a k-group sheaf, since p is

T’ ¥
]
{3, III, §5, 1.6]. There is a canonical homomorphism: G + G

Each homomorphism of commutative k-group functors f£f: G + E
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~ ~

induces a homomorphism £: £+ G.
Let G and U be commutative k-group functors, and

Bimk(Gx D,u) the group of bimultiplicative morphisms: Gx D -

pu. It is naturally identified with ggk(G,D) or ggk(D,G).
Thus
Bim (G x D,u) = Gr, (6,9) = 6z, (9,5).

If ¢: GxV » 1 is bimultiplicative, we denote by ¢': 0 » G
and ¢": G » D the corresponding homomorphisms. Hence

'y (x) = ¢"(X)(y) = ¢(x,¥),  x € G(T), y € D(T), T € M.
If G+ G, then ¢' =¢". If D =D, then 4" = ¢'.

For the theory of k-sheaves and k-group sheaves, we refer
to [3, III] and [6, §1].

Let ¥ be a commutative k-group sheaf and $ a k-sheaf.

A D-torsor over S [3, III, §4] is an epimorphism of k-sheaves

X+ 8, where D acts on X so that 0xX = X xsx. The
isomorphism classes of D-torsors over S form an abelian group

ﬂl(s,v) [3, ITI, 54, 4.1] with addition given as follows: If X

and Y are D-torsors over S, then X VDV is a 0O-torsor

over S$x8, where X va is the cokernel k-sheaf of

$=xI

XxDxyY —2XxY

Ixy
with the actions ¢: xX + X and y¢: OxVY + Y., Let X ng
be the pullback of X VDV along the diagonal map A4: S - $x S
Then cl(X vO¥) = cl(X) + c1(¥) in HY(S,D).

Let 0P be a commutative k-group sheaf and G a k-~group
sheaf. An exact sequence of k-group sheaves
a: 1 D+ X+G6G~+>1

is a central extension of G by p if the subgroup p(T) is
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central in X(T) for each T ¢ M, . (The sequence is exact if
Xib #G with the notation of [3, p.324])). The isomorphism classes
of central extensions of G by D form an abelian group,

which we denote by Ext (G,D) (3, III, 56, 1.5). If f:

cent
G' » G is a homomorphism of k-group sheaves, we denote by

af: 1 + D+ Xx45,6> 6" +1
the central extension of G' by D obtained by pullback along
f. The map
Ext, one (6.0) + Ext . (G',D), cl(a) » cl(af)

is a homomorphism of abelian groups. Let
B: L > D +VYV +>G~+~1
be another central extension. Then
avB: 1+0+X vy s6x6 1
is a central extension, where X VDV is a quotient group sheaf
of XxV. If A: G+ GxG denotes the diagonal map, then
cl((av B)A) = cl{a) + cl(B)

in the group Ext (G,D).

cent
With a and X as above, consider the commutator map
[, 1: XxX X, (x,y)» xyx"ty~L.
Since [xa,yb] = [x,y] for each a,b ¢ P(T), this induces a
morphism
3(a): GxG6 » X, (x,y) » [x,yl.

Assume G is commutative. Then [X,X] ¢ ? and 3(a) induces

a bimultiplicative morphism 3(a): GxG ~ D. It is alternating

in the sense of 3(a) (x,X) = 0, hence
3(a)" = =3(a)': G ~ G.

Let W, be the category of cocommutative k-coalgebras, and

k
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ﬂl'c the full subcategory of those coalgebras which are colimits

of k-finite projective cocommutative k-coalgebras. If C,D ¢ !l'(

then C®D ¢ HWy. If k is a field, Wy = W, . Foreach C ¢ Hee
we define a k-functor

Sp*C: My * E, T gr,(T®C)
where ng(TQC) denotes the set of group-like elements of the

T-coalgebra T®&C. Sucha k-functor is called a formal k-scheme.

They are k-sheaves.

Group objects in ¥, are the same as cocommutative k-Hopf
algebras. Hence, if H is a cocommutative k-Hopf algebra, then
Sp*H is a k-group sheaf. Such k-group sheaves are called formal
k-groups.

For the theory of formal schemes and groups, the reader

can refer to [7, (1.1)) and ([8].

2, The #-product of group sheaf extensions. Let G and

? be commutative k-group sheaves where G = & ana v =19
under the canonical homomorphisms. Let
w: GxD + g

be a bimultiplicative morphism and

w: G~ 0, w': D+ 6
the corresponding homomorphisms. Let

a: 1 +pu+X=+G6G-~+1,

B: 1 +u=+VY-+0-+1
be central extensions. We define a central extension

alB: 1 +u + X4y > GxD =+ 1

where X#V = X vM¥ as a p-torsor over GxD. We write xfy =
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XVY, X eX(T), Yy eV(T), T e M

M, . The product of X#V is

defined by

(x#y) (u#v) = w(3(a)'(u),d(B)(y))xudyv
x,u ¢ X(T), y,v ¢ Y(T), T ¢ M. Then X#Y 4is a k-group sheaf
with this product and with unit 1#1, and that a8 is a
central extension. We define

€=k, = (Lvyay ” 1) 6x0 + 6x0

If «(a,B) 1is an isomorphism, we put

a#g = (a0B)k(a,B8) L.

Under the above notations we can prove the following

Theorem 2.1. Let w.: GxG - p be a bimultiplicative

0
morphism. Assume that «k(a,B) (with respect to mo) is an

isomorphism for each a,8 ¢ Ext (G,u). Then the product

cent
a.B = (a#B)d

where A = (i): G+ GxG, 1is associative with unit 0.

Theorem 2.2. Let k be a field and 6,0 be commutative
affine k-group schemes. Then the following are equivalent:

i) «(a,B) is an isomorphism for each a ¢ Extcent(G,u),

and B € Extcent(D,u).
ii) w'd9(B) w"3(a) : G + G is nilpotent, for each a ¢
Extcent(G'“)' and B ¢ Extcent(v,u).

iii) Such data as follow do not exist: G = Glx K, D=

0;x L in Gr,, G; and D, are finite affine 0, 0 ¢

Ext o (G, n), £"3(0) : G, = D), where £ =u |(Glx D).
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3. Azumayva algebras. The following theorem is a sheaf

theoretical version of the well-known Noether-Skolem theorem

(2, p.110, Th.1].

Theorem 3.1. Let A be an Azumaya k-algebra. Then uA
and Aut(A) are smooth affine algebraic k-group schemes, and
the following is a central extension of k-group sheaves:

P
e(A): 1 » pu » o ~— Aut(a) - 1

where 4nn(a)(x) = axa-l, a eu®(T), x e TOA, T ¢ M

Let G be a (non-commutative) k-group sheaf. A G-module
algebra means a couple (A,p) where A is a k-algebra and p:
G + Aut(A) a homomorphism of k-group sheaves. A G-module means
a couple (M,0) where M is a k-module and o: G - GL(M) a
homomorphism of k-group sheaves. When G = Sp R is an affine
k-group with a commutative Hopf algebra R, G-module algebras

are identified with R-comodule algebras, and conversely. When

G = Sp*H be a formal k-group with a cocommutative Hopf algebra
H, H-module algebras are identified with Sp*H-module algebras,
and conversely.

Long's Brauer groups BM(k,H)[4, p.564]1 and BC(k,R)I[4, p.
574] are generalized as follow:

Let M be a k-finite projective G-module. Then the map

p: G + Aut(End(M))

given by p(g)(f) = o(g)fa(d ™ , g ¢ G(T), £ ¢« T End(M), where
¢ is the structure map of M and T ¢ M, is well defined.

With the structure, End(M) is a G-module algebra. If N is
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another G-module which is k-finite projective, then we have
End (M) ® End(N) = End(M®N)

as G-module algebras. Let A be a G-module algebra which is

k-finite projective. If the canonical homomorphism A® A% o

End(A) of G-module algebras is an isomorphism and A is k-

faithful, then A 1is called an Azumaya G-module algebra. 1In

the category of Azumaya G-module algebras, we define A ~B if
there exist G-modules M and N which are finite projective
and faithful as k-modules such that
A ® End(M) = B®End(N)
as G-module algebras. This is an equivalence relation and the
quotient set is a commutative group with multiplication induced
by & . The group is denoted by B(k,G). If H ¢ gﬁ, then we
have
B(k,Sp R) = BC(k,R) and B{k,Sp*H) = BM(k,H).
If A is an Azumaya G-module algebra with structure o,

we have a central extension

m{A) = e(A)p ¢ Ext (G,u) .,

and hence we have a homomorphism of abelian groups

(G,u)

cent

n: B(k,G) ~» Extcent

which is induecd by A » e(A)o.

Theorem 3.2, Let G = Sp R be an affine k~group scheme.
If k is a field or if R is finite projective as a k-module,
then 7 is surjective. Hence we have a split exact sequence
of abelian groups

1+ B(k) *Bck,R) ¥ Ext_ . (Sp R,u) » 1,

cent
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where B(k) is the usual Brauer group of k and i is the

canonical inclusion.

Let F and H be commutative and cocommutative k-Hopf
algebras. A k-linear map w: F®H + k is called a Hopf pairing
if it measures F to k and H to k [5, §7.0].

Let A be an F-comodule algebra and B an H-comodule
algebra with structure maps Xp? A+ A®F and Xyt B+ B®H.

The smash product algebra A#B of A and B is defined as

follows: A#B = A@B as a k-module. We write a#b = a®b.
The multiplication is defined by

(agb) (x#y) = Z(x)(b)w(x(F)Q b(H))ax(A)#b(B)y
a,Xx ¢ A, b,y ¢ B, where the comodule structures of A and B
are denoted by xp(a) = X(x)x(A)ex(F) and X (b) = z(b)b(B)Q b(H)‘
This is an associative k-algebra with unit 1#1.

The F-comodule algebra A is an H-module algebra with

structure

hia) = [, ulaE @hlag,
h ¢ H, a ¢ A. Our smash product A#B coincides with the smash
product of the H-module algebra A and the H-comodule algebra
B define by Long [4, (3.2)]. Long’s theory of H-comodule
algebras [4] can be generalized.

If A is an H-comodule algebra which is finite projective
as a k-module, there are two homomorphisms of H-comodule algebras
{4, (4.1)]

I': A#A ~ End(A), A: E$A + End(a)°P
where

F(a#b) (©) = 1p) (c) % m)® P (m) 2% )P (a) *
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A(3db) (c) = Z(a)(c)wo(a(ﬂ)® C(H))a(A)c(A)b'

and wy: HO®H + k is a Hopf pairing. An wo-Azumaya algebra

is an H-comodule algebra which is finite projective and faithful
as a k-module and for which T,A are isomorphisms [4, (4.2)].
End(M) is wy-Azumaya, if M is an H-comodule which is finite
projective and faithful as a k-module. If A and B are Wy~
Azumaya algebras, then so are A#B and A [4, (4.3)]. In the
category of wy-Azumaya algebras, we define A ~ B if there
exist k-finite projective and faithful H-comodules M, N such
that
A8End (M) = B#End(N)
as H-comodule algebras. The equivalence classes of mo—Azumaya
algebras form a group Bwo(k,H) with multiplication induced by
#“’o and inverse induced by A v A [4, (4.4), (4.5)].
Consider the Hopf pairing

2: (FOH)® (FOH) + k

given by R(a®x®b®y) = w{a®yle(x)e(b). An Q-Azumaya algebra

is called an F-H-w—-Azumaya algebra, or simply an F-H-Azumaya

algebra. We denote Bn(k,Fe H) = Bm(k,F,H).

If A and B are F® H-comodule algebras, then A#QB =
A#MB with respect to the underlying F-comodule and H-comodule
structures. Each F-comodule algebra is an F® H-comodule algebra
with the trivial H-coaction, and this construction trapsforms
into #, and Azumaya F-comodule algebras into F-H-Azumaya
algebras, hence induces a homomorphism of groupoid BC(k,F) +
Bw (k,F,H) which is injective [4, p.589]. A similar injective

homomorphism BC(k,H) -+ Bw(k,F,H) also exists, and we have
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B(k) < BC(k,F) n BC(k,H).

If k is a field, finite dimensional H-dimodule algebras

are identified with finite dimensional H°@® H-comodule algebras.
Thus H-Azumaya H-dimodule algebras are the same as our H°-H-
Azumaya algebras, and we have the isomorphism

BD(k,H) = BY(k,H°,H)
where y: H°®H + k 1is the canonical Hopf pairing.

Let k be a field. Then w: F®H + k induces two Hopf
algebra maps w': H + F® and w”: F + H°. The Hopf algebra map
w'®1l: FRH + H°® H makes each F @H-comodule algebra an H° ®H-
comodule algebra. This construction transforms the smash product
#w into g . and preserves the T'- and A-homomorphisms. Hence
F-H-Azumaya algebras are W-H-Azumaya algebras, and a homomorphism
of groups

Bw(k,F,H) + BY(k,H°,H) = BD(k,H)
is induced.

The structure of F-H-Azumaya algebras are as follows.

Theorem 3.3. Let k be a field, and let one of SpF and

Sp H be prosmooth. Then F-H-Azumaya algebras are semisimple.

Theorem 3.4. Let k be a field. Suppose that one of the
affine groups Sp F and Sp H is prosmooth and the one or the
other is connected. Then all F-H-Azumaya algebras are central

simple.

Since F-H-Azumaya algebras are H°-H-Azumaya and F-F-Azumaya,

we have the following:
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Corollary 3.5. Let k be a field. Suppose that a

prosmooth group and a connected group appear in the four affine
groups Sp F, Sp F°, Sp H, Sp H°. (We include the case when
one group is prosmooth and connected.) Then all F-H-Azumaya

algebras are Azumaya algebras.

Assume that all F-H-Azumaya algebras are Azumaya k-algebras.
If A is an Azumaya F-comodule algebra, and B an Azumaya H-
comodule algebra, then A#B is an Azumaya algebra, since
BC(k,F) v BC(k,H) < Bw(k,F,H). Hence the class of Azumaya F ®H-
comodule algebra are closed under the product #. Since the
product is compatible with the Brauer equivalence, a monoid
structure is induced on BC(k,F®H). Similarly, if all wo"
Azumaya algebras are Azumaya, the class of Azumaya H-comodule
algebras are closed under #wo, hence BC(k,H) is a monoid

with multiplication induced by #w .
0

Proposition 3.6. With the above hypothesis, the group

Bw(k,F,H) is the group of units of the monoid BC(k,F®H).
The group B(k) is contained in the center of it. Similarly,

the group B, (k,H) 1is the group of units of the monoid BC(k,H).
0

Theorem 3.7. Suppose that the class of Azumaya H-comodule

algebras are closed under #w and that «(a,B) (with respect
ol

to wo) is an isomorphism for each a,B ¢ Ext (Sp H,u).

cent

Then the map w: BC(k,H) + Ext (Sp H,u) 1is a homomorphism

cent
of monoid, with kernel B(k).
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Applying the above to £: (F®H) ® (F®H) + k, we have the

following

Theorem 3.8. Assume the following two conditions are
satisfied:

i) If A 1is an Azumaya F-comodule algebra and B an
Azumaya H-comodule algebra, then A#NB is an Azumaya algebra.

ii) «x(a,B) (with respect to w) is isomorphic, for each

a € Ext t(Sp F,u) and B8 ¢ Ext (Sp H,u).

cen cent

Then, we have an exact sequence of monoids

1+ B(k) * Bc(k,F@H) ¥ BExt (Sp FxSp H,ul.

cent
If all F-H-Azumaya algebras are Azumaya, then i) follows and

the above induces an exact sequence of groups

1+ B(k) 3B (kFH ¥ vt (SpFxSp H,m)

cent
where U(M) denotes the group of units of the monoid M.

If k 1is a field, then the condition i) implies ii) there.
In [1l) Beattie constructs a split exact seguence
1l +» B(k) » BM(k,H) + Gal(k,H) » 1
where H is a k-finite projective, commutative and cocommutative
Hopf k-algebra, Gal(k,H) the group of Galois H-objects. Since
Gal(k,H) = Extcent(Sp*H,u) and BM(k,H) = BC(k,H*), the above

gives an exact sequence

1 » B(k) - BC(k,H*) ¥ Ext (Sp H*,u) > 1.

cent
Then we can show that =#' = -m with the notation of Th.3.2.
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ON DOMINANT MODULES AND DOMINANT RINGS

Yutaka KAWADA

Kyoto Technical University

In [l11] Kato introduced a notion of dominant modules: Let
A be a ring, Wy a faithful, finitely generated projective

module, and B = End(WA) the endomorphism ring of W Then

A
he called wA dominant if Bw is lower distinguished, i.e.

contains a copy of each simple right B-module, and further
obtained a categorical characterization of a dominant module
[11] and a structure theorem for a ring having a dominant
module [12]. Rutter [26] also obtained another characteriza-
tion on a dominant module.

In this paper we shall cast its finite generation out of
the definition of dominant modules; that is, a faithful pro-

jective module W with B = End(wA) is called a dominant

A

module provided every simple factor module of Bw is embedded

into S(BW), the socle of Bw (and at the same time, in fact,
each simple component of S(BW) is isomorphic to a simple

factor module of W). Our definition coincides with the

B
original for the case where Wy is finitely generated, because

then W is a generator and so is upper distinguished, i.e.

every simple right B-module is isomorphic to a simple factor
module of g¥- A ring A will be called right{resp. left)
dominant if there exists a dominant right (resp. left) A-module.

In particular, in case A has a finitely generated, dominant
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module, A will be called a right (resp. left) dominant ring
of finite type.l)
The reguirement to extend the definition of dominant

modules has been motivated by the next:

Theorem 5.7. Let A be a ring. Then A is an endomor-
phism ring of a generator-cogenerator, say L if and only if
A satisfies the next three conditions:

(i) A =10, the maximal left gquotient ring of A itself.

(ii) A is a right dominant ring of finite type.

(iii) A is a left ®-QF 3 ring. (Its definition will
be stated later and of course A is a left dominant ring.)
Moreover, B has only finitely many isomorphism classes of
simple left B-modules if and only if A becomes a left QF 3

ring in (iii) above mentioned.

This theorem is a generalization of a result of Ringel and
Tachikawa [24] concerning the endomorphism ring of a linearly
compact generator-cogenerator.

The purpose of this paper is to investigate not only
dominant modules but also dominant rings in our sense. To do
so, as a preliminary §1 is devoted to establish Theorem 1.1l
concerning locally projective modules, which will play an
important r8le on characterizing dominant modules, and which

will be interesting by itself.

1) A right (resp. left) dominant ring differs from a dominant ring

defined in [28, p. 226].
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In §2, main results obtained by Kato [11, 12] and Rutter
[26] will be extended to our case. In particular we shall
establish two criteriaon dominant modules: The first (Theorem
2.1) contains an extension of the characterization due to
Rutter, which asserts that a projective module W is dominant

A

if and only if Tr(wA), the trace ideal of WA' is the smallest

dense left ideal of A. The second (Theorem 2.2) contains an
extension of the categorical characterization due to Kato,

which asserts that a projective module WA
is dominant if and only if the functor Hom

with B = End(WA)
g{pg¥as =) and

BNAQ - induce an equivalence G(BW) ~ D(E(AA)), where E(AA)
denotes the injective hull of AP and G(BW) (resp. D(E(AA))
denotes the full subcategory consisting of all left B-modules
generated by Bw (resp. of all left A-modules with E(AA)—
dominant dimension > 2).

In § 3, we shall state an intrinsic characterization of
right dominant rings (Theorem 3.1) and show that the property
of rings to be right dominant is Morita-invariant (Proposition
3.3).

In §4, we shall treat a special but a useful right (resp.
left) dominant ring: A ring A will be called right pseudo-
perfect provided there are pairwise non-isomorphic, local
idempotents {eA | A € A} of A such that [Zfs e,Al, is
dominant. Then it is remarkable that, in the above, Zf5 e,A
is dominant if and only if er e,A is faithful and the

distinct simple components of S(AA) coincide with

{AeA/JeA | A ¢ A} up to multiplicity where J = J(A), the
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Jacobson radical of A (Theorem 4.1), and that ZAQ eAA is
minimal dominant, i.e. is isomorphic to a direct summand of
any dominant module and so is uniquely determined up to
isomorphism (Proposition 4.3). A property of rings to be
right pseudo-perfect is Morita-invariant (Proposition 4.5).

The class of right pseudo-perfect rings contains semi-
perfect rings with essential left socle (and so right perfect
rings) as well as right QF 3 rings, and another example will
be given by the endomorphism rings of upper distinguished
cogenerators (Theorem 4.7).

In §5, we shall treat a more special right(resp. left)
pseudo~-perfect ring: A ring A will be called right y*-QF 3
if there exist pairwise orthogonal and pairwise non-isomorphic,
X ¢ A} of A such that each e A

A l A
(A ¢ A) 1is an injective module with a simple socle, and that

local idempotents (e

[ZA e,Al, is faithful. Similarly left R -QF 3 rings are
defined. In case the cardinal of A is finite, this is
nothing else a right (resp. left) QF 3 ring.

Then, in the above, ZA e,A is minimal dominant and the
simple components of S(AA) as well as S(AA) are completely
determined up to multiplicity (Theorem 5.1), and an analogue
of Colby and Rutter ([5] concerning right QF 3 rings holds good
(Proposition 5.4). Of course a property of rings to be right
K -QF 3 is Morita-invariant. As an important example of right
(resp. left) #-QF 3 rings we have the endomorphism ring of a
generator-cogenerator (Theorem 5.7) as was stated before.

Throughout this paper rings and modules will be assumed
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to be unitary, and for a right A-module M we shall denote
by E(MA), J(MA), S(MA), Tr(MA), End(MA) and by Biend(MA)
respectively the injective hull, the Jacobson radical, the
socle, the trace ideal, the endomorphism ring and the bi-~
endomorphism ring (i.e. the double centralizer) of MA. For
subsets X ¢« A and Y < MA we shall denote by rx(Y) and
QY(X) respectively the right annihilator of Y in X and
the left annihilator of X in Y, i.e.
rx(Y)={xeX|Yx=0} and R.Y(X)={YeY|yX=0}.
Similarly these notations will be used for a left A-module M.
M (resp. MA) will always denote the category of all left

A
{(resp. right) A-modules.

1. Preliminary (locally projective modules). The present

section is devoted to establish Theorem 1.1 concerning locally
projective modules, which will play an important rfle on
characterizing dominant modules, and which will be interesting

by itself.

Theorem l.i. Let wA be a locally projective module with
B = End(wA), and set T = Tr(wA), R = Tr(BW) and W*x =
HomA(wA,AA). Denote by S(AA) and S(BB) respectively the
family consisting of all isomorphism classes of simple left
A-modules M with TM = M, and of simple left B-modules N
with RN = N. Then there exists a bijection between S(AA)
and S(gB), via

AM — BWiSAM, M e S(AA)
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aW* @pN/J (| W* ® pN) &— N, N e S(B) .

B
Moreover, S(AA) and S(BB) respectively coincide with the
families consisting of all isomorphism classes of simple factor
modules of ATw*, and of simple factor modules of Bw.

2. Dominant modules. As was stated in the introduction,

we shall extend the definition of dominant modules as follows:

A faithful projective module WA with B = End(WA) is said to

be dominant provided every simple fator module of Bw is embed-

ded into S(BW). In case W, is finitely generated this

coincides with the original. 1In this section we shall estab-
lish two characterizations of dominant modules (Theorems 2.1
and 2.2) and prove several properties of dominant modules,
which contain the extensions of the results of Kato [11l, 12,

13] and Rutter ([26].

Theorem 2.1l. Let WA be a projective module with B =

End(wA) and set respectively T = Tr(wA) and R = Tr(BW).
Then the following statements are equivalent:

(a) WA is dominant.

(b) WA is faithful, and RN

left B-modules N.

N=N o S(BW) for simple

(c) WA is faithful, and TM

left A-modules M.

M=M g S(AA) for simple

(d) wA is faithful, and rA(x) = 0=>W = WX for maximal

left ideals X of A.

(e) T 1is the smallest dense left ideal of A.
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Moreover, in the above statements (b), (¢) and (d}, "=" may
be replaced by "&".

Remark. In case W is finitely generated projective,

A
Rutter obtained (a)¢> (e) [26, Theorem 1.4].

Following Kato [13], for a right ideal I of A, we shall
call a left A-module M I-injective if the functor
HomA( -,AM) is exact on all short exact sequences (in
0+ X' +X»X"+0 with IX" = 0. Evidently AM is 1I-
injective if and only if Exti(x,M) = 0 for every left A-
module X with IX = 0.

Following Tachikawa [30], for an injective module E,
a left A-module M is said to be E-dom.dim M 2 n if there
exists an exact sequence

0+ M~ El * e > En

where each Ei (i=1, ... , n) is a direct product of copies
of E.

Now, we can state the second criterion on dominant modules.

Theorem 2.2. Let wA be a projective module with B =
End(wA), and set T = Tr(wA) and R = Tr(gW) respectively.
Then the following statements are equivalent:

(a) W is dominant.

A
{b) D(E(AA)) = TL' where D(E(AA)) and L denote
respectively the full subcategory of AM such as

D(E(AA)) = {AM | E(jA)-dom.dim M 2 2}
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and
ot = {AM | aM is T-injective and ry(T) = 0}.
{c) The functors HomB(BWA, -): BM > AM and gTA® -
AM - BM induce an equivalence

G(BW) ~ D(B(AAJ),
where G(BW) denotes the full subcategory of BM generated

by W, i.e. G(gW) = (N | RN = N}.

Remark. 1In case Wa is (faithful) finitely generated

projective, G(BW) = M and Kato obtained (a)& (c) (11,

B

Theorem 1] and observed (a)<> (b) (cf. [13, Corollary 7.3]).2)

From Theorem 2.1 several properties on dominant modules
will be deduced. The next is an extension of Kato [10,

Corollary 5].

Corollary 2.3. Let WA be a dominant module with Q =

Biend(wA). Then Q 1is the maximal left quotient ring of A.

For left (or right) A-modules L, and L,, define
L, ot L, (resp. Ll ~ L2) if each of Ll and L, is isomorphic
to a direct summand of a direct sum (resp. a finite direct

sum) of copies of the other. Then the next is an extension

2) Recently I have received a preprinit [22] from K. Nishida. He
also has obtained {a')=> (¢) independently. Here (a') implies the case
vhere WA
module of Bw is embedded into S(BW). {However, replacing (a) by (a'),

Theorem 2.1 is valid and so is Theorem 2.2 for a locally projective HA.)

is faithful, locally projective and where every simple factor
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of Rutter [26, Corollary 1.6].

Corollary 2.4. Let wA be a dominant module and VA

given module. Then VA is dominant if and only if Va ¥ WA.

a

The following is also an extension of Kato [12, Remark 2].

Corollary 2.5. Let wA be a dominant module. Then

A[E(S(AA))] is faithful.

Finally, for a projective module Wa with a dual basis

{u,, £, | A ¢ A} , we shall call {MA £,(W) the right

pretrace ideal of W, associated with {u,, f, | A ¢ A},

This depends on the choice of its dual basis.

Proposition 2.6. Let W be a dominant module with a

A

right pretrace ideal Ty and Q the maximal left quotient

= ZlA + T

ring of A, and set A 0 where Z denotes the ring

0
of rational integers. Then, for any subring ¢ of Q con-
taining Ay, Wo is a dominant module with CTo = Tr(wc) and
with Q = Biend(wc), and hence CT0 is the smallest dense left
ideal of C, Q@ 1is a maximal left quotient ring of C and Qc

is torsionless.

3. Dominant rings. As was stated in the introduction, a

ring A is said to be right (resp. left) dominant if there

exists a dominant right (resp. left) A-module. 1In particular

A is called a right (resp. left) dominant ring of finite type
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if there exists a finitely generated, dominant right (resp.
left) A-module.

As for dominant rings it seems to the author until
hitherto there is no intrinsic characterization (cf. [12,
Theorem 1]}). But using (e) in Theorem 2.1 it is readily

obtained.

Theorem 3.1. A ring A is right dominant if and only if
A has the smallest dense left ideal T and there exist
elements t)\u in T, (A, ) ¢ A x A, with an index set A,

satisfying the next three conditions:

(i) For each u ¢ A, t)\u = 0 for almost all X ¢ A.
(ii) ZucA tutw = i for every (A, v) ¢ A x A,
(iii) T = X?\,uel\ At, A.

In particular, A is right dominant of finite type if and only

if there exists a finite index set A in the above.

The next is a direct consequence of Proposition 2.6.

Corollary 3.2. Let A be a right dominant ring, T the

smallest dense left ideal of A, and t (A, w) ¢ A x A, the

Au’
elements of T satisfying (i), (ii) and (iii) in Theorem 3.1l.

Purther let Q be the maximal left quotient ring of A, and

set respectively T, = leu €y A and Aj =21, + To. Then

any subring C of @ containing A is a right dominant

ring, and further CT is the smallest dense left ideal of C,

0
Q is the maximal left quotient ring of C and Qc is

torsionless.
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Proposition 3.3. A property of a ring to be right (or

left) dominant is Morita-invariant.

4, Pseudo-perfect rings. Recall that an idempotent e

of a ring A is said to be local provided eAe 1is a local
ring; that is, eAe/eJe 1is a division ring where J = J(Aa),
the Jacobson radical of A. As is well-known, e is local&
Ae/Je 1is simple &> eA/eJ is simple.

Two idempotents e and £ in A are said to be isomor-
phic to each other provided eA ~ fA. As is well known,
eA ~ fA&> Ae ~ Af<> RAe/Je ~ Af/Jf¢> eA/ed ~ fA/£fT.

Now, in this section we shall treat a special but a
useful right (or left) dominant ring: A ring A is defined to

be right pseudo-perfect if there are pairwise non-isomorphic,

local idemporents {e, | A ¢ A} of A such that [Z)‘GAQ e,Al,
is dominant. Similarly left pseudo-perfect rings will be
defined.

Such a dominant module is characterized by the next

Theorem 4.1. Let A be a ring and {e, | A ¢ A} pair-
wise non-isomorphic, local idempotents of A. Then the follow-
ing statements are equivalent:

(@) (],@ e,Al, is dominant.

(b) [Zf@ e\Al, is faithful and Re,/Je,s S(,A) for
every X ¢ A, i.e. [, ,® Ae,/Je, ¥ S(A) .

() LIE(S(;A))] is faithful, and [, ,® Be,/Je, ¥ S(,A).



Remark. In case A is a finite set, the equivalence

(a) & (c) was essentially obtained by Kato [12, Corollary].

As the equivalence (a) 4> (b) in the above is useful, we

shall restate it as follows:

Corollary 4.2. A ring A is right pseudo-perfect if and

only if there exist pairwise non-isomorphic, local idempotents

w
{e A e Al of A such that S(,A) ~ zlde Ae,/Je, and

x|
[erAelA]A is faithful.

In view of Corollary 4.2, the implication below is valid:
right perfect rings = semiperfect rings with essential left
socle = right pseudo-perfect rings (of finite type), which will
justify the denomination of "right pseudo-perfect".

In case A is a right (or left) dominant ring, a dominant

module is called minimal dominant provided it is isomorphic to

a direct summand of any dominant module.

Proposition 4.3. Let A be a right (or left) pseudo-

perfect ring., Then A has a minimal dominant module. More-
over a minimal dominant module is uniquely determined within

isomorphism.

As for the endomorphism ring of a minimal dominant module

we have the next

Proposition 4.4. Let A be a right pseudo-perfect ring

with the minimal dominant module W, = ZA€N$ e,A where
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{ex | A ¢ A} are the same as in the definition, and assume
w -
S(4A) ~ Zhhe S(he,). Let us set B = End(W,). Then B is a
right pseudo-perfect ring with a minimal dominant module
w
ZAEA® E,B and with S(gB) ~ ZAEAG’ S(BE,), where {E, | A ¢ A}

are pairwise non-isomorphic, local idempotents of B.

Apparently we may send away local idempotents out of the
definition of right pseudo-perfect rings, which will be done

by using the notion of a projective cover (cf. [3]).

Proposition 4.5. A ring A is right pseudo-perfect if

and only if there are pairwise non-isomorphic, simple right

A-modules M, (A ¢ A) such that each M has a projective

A A

cover P, and [erAe P,1, is dominant. Accordingly, a
property of a ring to be right pseudo-perfect is Morita-

invariant.

Proposition 4.6. Let A be a right pseudo-perfect ring

with the minimal dominant module ZA€A$ e,A stated in the
definition. Denote by Ay and Q respectively the ring
z1, + erA e,A and the maximal left quotient ring of A. Then

any subring C of Q containing Ao is right pseudo-perfect.

Now following Azumaya [2], a left B-module N is called
upper distinguished if every simple left B-module is isomor-
phic to a simple factor module of BN. Then we have the next

Theorem 4.7. Let BW be an upper distinguished cogener-
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ator with A = End(Bw). Then A is a left pseudo-perfect ring.

5. &-QF 3 rings. As was stated in the introduction, in

order to establish an intrinsic characterization of the endo-
morphism ring of a generator-cogenerator we shall extend the
notion of a right (resp. left) QF 3 ring: A ring A is defined

to be right \-QF 3 if there exist pairwise orthogonal and

pairwise non-isomorphic, local idempotents {eA IAeA} of A

such that each e,A (A ¢ A) 1is an injective module with a

3)

A
simple socle, and that [er 2 €A1, is faithful.”’ similarly
left \N\-QF 3 rings will be defined.

As for the structure of a right {{&-0QF 3 ring we have the

next

Theorem 5.1. Let A be a right N -QF 3 ring. Then the
following assertions are valid.

(i) A right &N-OF 3 ring is a right pseudo-perfect
ring. More precisely, [ZAeAeAA]A stated in the definition is
nothing else a minimal dominant module and is uniquely
determined within isomorphism.

(1)  S(A) = ], @he /Je,, S(A,) ~ [, ,@S(eA) ¢
r,(J) where J = J(A), and S(eAA) z S(eAA) if X # u.

(iii) E(S(jA)) is faithful, E(A,) is torsionless, and
Q_«c Ql where Q. (resp. Ql) denotes the maximal right

r
(resp. left) gquotient ring of A.

3) M represents the cardinal (finite or infinite) of A.
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Remark. In case A is a right QF 3 ring, Qr.c Qz in

(iii) was first obtained by Ringel and Tachikawa (24, Lemma 1.4].

Recall that a ring A is called right QF 3 if it has a
minimal faithful right A-module; that is, a faithful module
which is isomorphic to a direct summand of every faithful
module. Obviously a right &€ -QF 3 ring of finite type is noth-
ing else a right QF 3 ring (cf. [5, Theorem 1l]), and then a
minimal dominant module coincides with a minimal faithful
module (cf. (26, Corollary 1.2], [12, Example 11).

The next means a "minimal faithfulness" of a minimal

dominant module.

Corollary 5.2. Let A be a right & -QF 3 ring and W,

a minimal dominant module. Then,
(i) W G-MA for every faithful module Mp.
(ii) Any deletion of a non-zero direct summand out of

W, amounts to a loss of its faithfulness.

The former half of the following is well known for

artinian QF 3 rings.

Corollary 5.3. Let A be both a right and a left N-QF 3

ring (i.e. \-QF 3 ring), and let ], , e,A and } £

ver Afy
be respectively the minimal dominant module stated in the
definition. Then there is a bijection ® of A onto T
such that

S(eAA) ~ fn(A)A/fw(A)J and S(Af“(x)) = AeA/JeA,
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and Q.= Q, where Q  (resp. Q;) denotes the maximal right

(resp. left) quotient ring of A.

The following gives a criterion on a right =QF 3 ring,

which is an analogue of Colby and Rutter ({5, Theorem 1].

Proposition 5.4. Let A be a ring. Then A is a right

S -QF 3 ring if and only if there are pairwise non-isomorphic,
simple right A-modules {M, | e A} such that [ZAGNQ E(M,)],
is faithful and projective. Furthermore, in this case S(AA)

w
~ erAe M, holds.

Corollary 5.5. The property of a ring to be right (resp.

left) &*-QF 3 is Morita-invariant.

The next is a slight extension of a portion of Tachikawa

[32, Proposition 4.3].

Proposition 5.6. Let A be a right &-QF 3 ring and Q,

the maximal right quotient ring of A. Then any subring C

of Q_  containing A is a right M-QF 3 ring.

Remark. Compare this with Proposition 4.6. The distinc~

tion between them will imply a peculiarity of &*-QF 3 rings.

At last we shall establish a structure theorem on endo-
morphism rings of generator-cogenerators, which is a natural
generalization of Ringen and Tachikawa [24, Theorem 2.1], and

which will supply us many examples of left (or right) A*-QF 3
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rings.

Theorem 5.7. Let A be a ring. Then A is an endomor-
phism ring of a generator-cogenerator, say s if and only if
A satisfies the following three conditions:

(i) A= Qz, the maximal left quotient ring of A.

(ii) A is a right dominant ring of finite type.

(iii) A is a left & -QF 3 ring.

Moreover, B has only finitely many isomorphism classes of
simple left B-modules if and only if A becomes a left QF 3

ring in (iii) above mentioned.

Remark. Another characterization on endomorphism rings
of generator-cogenerators was obtained by Tachikawa [30,
Theorem 4], Kato [11l, Example 3] and by Morita [21, Corollary
8.4) respectively. Their characterizations are rather

categorical than ours.

In Theorem 5.7 BW is not uniquely determined in view of

Corollary 2.6. However the next holds:

Corollary 5.8. Let B,W' as well as W be a generator-

B
cogenerator with A = End(BW) ~ End(B.W'). Then there is an

equivalence F: BM ~ B,M with F(W) = W',

The following are direct consequences of Theorem 5.7, and

Corollary 5.9 has been observed by Kato, too.
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Corollary 5.9. Let B be a semiperfect ring and BW a

generator-cogenerator. Then A = End(BW) is a left QF 3 ring.

Corollary 5.10 (cf. Sugano [29]). Let A be a ring.

Then A? is a cogenerator if and only if A is a left §-QF 3
ring with a lower distinguished, minimal dominant module.
Moreover, in this case A = Q. the maximal left quotient ring

of A itself.

This is an abstract of the paper "On dominant modules and

dominant rings", which will be published elsewhere.
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ON EQUIVALENCES BETWEEN MODULE CATEGORIES

Masahisa SATO

The University of Tsukuba

Introduction. Let AUB be an A-B bimodule, and T =
- @AU : Mod-A + Mod-B, H = Homg (Up,-) : Mod-B + Mod-A additive
functors with canonical natural transformations ¢ : TH - 1, . o
and VY : lMod—A - HT. 1In a previous paper [5], we have studied
the conditions of UB' under which T and H induce category
equivalences Mod-A ~ Im(T) and Mod-A ~ Gen(UB) respectively.

In the present paper, we shall study the equivalences
between certain full subcategories of Mod-A and Mod-B
respectively. G. Azumaya has given an important example of this
kind of equivalence, which says that if AUV is a projective
A-module and B = End(,U), then Im(T) = Gen(Up) = Gen(Uy) and

d, ¢ TH(MB) - M is an isomorphism for any MB € Gen(UB)

M B
[Azumaya Symposium held at Tokyo University of Education,
September 1-2, 1975].

In this paper, we shall study more in detail two kinds of
equivalences Im(H) ~ Im(T) and Im(H) ~ EEH(UB) respectively
which are induced by functors T and H. In §1, we shall
study the equivalence Im(H) ~ Im(T) induced by functors T
and H, that is, there exist natural isomorphisms u : TH -+
and v : 1 + HT. But we shall show the above

Im(T) Im(H)
equivalence Im(H) ~ Im(T) holds if and only if one of the

1

following conditions is satisfied. (1) There exists a natural
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isomorphism u : TH + lIm(T)' {2) There exists a natural iso-
morphism v lIm(H) + HT., (3) ¢ : TH + lIm(T) is an iso-
morphism. (4) ¥ : llm(H) + HT is an isomorphism. These proofs
are categorical and enable us to see that they holds only under
the situation T : C+ P , H : ? + ¢ are functors between
categories ¢ and P provided T 1is a left adjoint of H.

In many papers, even when there exists a natural isomorphism

u : TH + it seems that Im{(H) and H(Im(T)) are

lIm(T)'
distinguished. We remark they are equal and for the criterion
of the equivalence Im(H) ~ Im(T), it is required only to
calculate ¢ or ¥. As the categorical characterization of
Im(H) ~ Im(T), we prove Im(H) (resp. Im(T)) is a coreflective
subcategory (resp. reflective subcategory) of Mod-A (resp.
Mod-B) with coreflector HT : Mod-A - Im(H) (resp. reflector
TH : Mod—? + Im(T)).

In §2, we shall study the equivalence Im(H) ~ Gen(Up).
As the generalization of Morita’s results [3, Theorem 1.1] that
T and H induce a category equivalence Im(H) ~ Mod-B if and
only if al is of type FP and B = End(AU), we get the fol-
lowing result:; Let C = End(UB). T and H induce a category

equivalence Im{(T) ~ Gen{(U if and only if CC ®AU

B B=c’s
(canonically) and UB generates any submodule of direct sums
of UB. Furthermore several equivalent conditions using the

property Im(H) ~ Im(T) will be given in the theorem.

l. The equivalence of Im(H) ~ Im(T). Throughout this

paper, a ring means an associative ring with unit and Mod-R
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denotes the category of unital right R-modules. For a bimodule
aUps we consider two additive functors, T = - @kU : Mod-A -+
Mod-B and HomB(UB,-) : Mod-B -+ Mod-A. We can consider their

canonical natural transformations ¢ : TH - 1 and V¥ :

Mod-B
] f(u) for any f ¢

lyog-a * HT defined by ¢M({ f®u)

HomB(UB,MB) and u ¢ U, (?N(n))(u)

n

n®u for any n ¢ N and
u e U, Por functors T and H, we can also coensider a natural
isomorphism n : n(NA,MB) : HomB(T(NA),MB) > HomA(NA,H(MB))

defined by {n(f)(n)}(u) = £f(n®u) for any f ¢ HOmB(T(NA)’MB)’

n e NA and u ¢ UB'

Lemma 1.1. The notations are as above. The following

relations hold for any N, ¢ Mod-A and M, ¢ Mod-B.

A

(1) n(N,,T(N,)} (1 ) =¥ and
A A T(NA) N,

B

-1 _
n (H(MB),MB)(IH(MB)) = ¢MB .

(2) ¥ = H(n'l(f))-wNA for any £ ¢ Hom, (N, H(MJ)), and
g = ¢M +T(n(g)) for any g ¢ HomB(T(NA)'MB)°
B .
(3) ¢ T(Y,) =1 and H(d, )-¥ =1 .
T(NA) N T(NA) Mp H(MB) H(MB)

Proof. Thesecan be proved by routine calculations.

A B-module MB is called "UB-codominant dimension 2 n"
if there exists an exact sequence:

Xy > Kg ™ ceeeeeneeens > Ky 2 X My > 0

where xi’s are isomorphic to direct sums of U_’s; denoted by

B

- 4 ” * -
"UB codom. dim. M, 2 n". Let U HomB( UB’QB) where QB

B A A

is an injective cogenerator. An A-module NA is called
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"U*A-dominant dimension z n" if there exists an exact seguence:

0 » NA -+ Yl > Y2 P ceesssssee ¥ Yn-l -+ Yn

where Yi's are direct products of U*A; denoted by "U*A—dom.
dim. NA 2 n". So we put Gen(UB) = {MB |UB—codom. dim. MB 2 1},

_ _ . * ) = * .
C(Ug) (Mg | Ug-codom. dim. My 2 2}, L(U*,) = (N, |U a-dom. dim.

B

N, 2 2} , Im(T) = {MB |MB is isomorphic to N(&AU for some

N, ¢ Mod-A}, Im(H) = {NA | N, is isomorphic to HomB(UB,MB)
for some My ¢ Mod-B}, and EEH(UB) the smallest subclass of
Mod-B which contains Gen(UB) and closed under taking sub-
modules, factors and direct sums. By the same notations as
above, we will often mean the full subcategory of Mod-B or
Mod-A whose objects are modules in each class if there is no
confusion.

Although we are only concerned with the eguivalences between
module categories, the following fact will be described in
general situation since it is very conspicuous in the theory of

equivalences between any categories. The notations n, ¢, V¥

denote usual ones similarly defined as above.

Lemma 1.2, Let C, P be any categories and T : C - D ,
H: P+ functors where T is a left adjoint functor of H.
If H considered as H : Im(T) - Im(H) is a full functor, then

¢T(N) : THT(N) + T(N) is an isomorphism for any object N in

¢ . Dually, if T : Im{H) » Im(T) is a full functor, then

wH(M) is an isomorphism for any object M in 7D.

Proof. Since € Homc(HT(N),HTHT(N)), there exists

Yur (v)
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g ¢ HomD(T(N),THT(N)) such that H(g) = ¥ for any NeC .

HT (N}

By Lemma 1.1 (which is satisfied by replacing the modules NA

and Mg with the objects of ¢ and P respectively),

n(g-¢T(N)) = H(g-@T(N))-WHT(N) = H(g)-H(aT(N)).WHT(N) =
B9 - lyrny = B9 = Yypony = "Qpyp(ny’ - Hence  g-opy,
lTHT(N)' so °T(N) is a monomorphism, thus it is an isomorphism

by Lerma 1.1. Dually we can prove the latter statement.

Theorem 1.3. Let AUB be an A-B bimodule. Other

notations are as above. The following assertions are equivalent:

(1) T = —@AU : Im(H) » Im(T) and U = HomB(UB,—) : Im(T)
- Im(H) are mutually inverse category equivalences.

(2) T : L(U*A) > C(Ug) and H : C(Up) - L(U*A) are
mutually inverse category equivalences.

(3) There are natural isomorphisms wu : THT - T and
v ¢ H -+ HTH.

(3)* ¢T +: THT - T and WH : H > HTH are isomorphisms.

(4) There is a natural isomorphism u : THT -+ T.

(4)* ¢T : THT + T 1is an isomorphism.

(5) There is a natural isomorphism v : H -+ HTH.

(5)* TH : H-> HTH is an isomorphism.

{(6) Cok(\PN) @AU = 0 for any NA

(7) HomB(UB,Ker(QM)) = 0 for any Mp € Mod-B.

¢ Mod-A.

(8) The functor HT : Mod-A -+ Im(H) is a left adjoint
functor of the inclusion functor I : Im(H) -+ Mod-A.
(8)* The functor TH : Mod-B - Im(T) is a right adjoint

functor of the inclusion functor J : Im(T) - Mod-B.
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Proof. We claim that in general Im(T) c C(UB) and
Im(H) < L(U*A).

(2) implies (1). Since C(UB) < Im(T) and L(U*A) c
Im(H), (1) holds.

(1) implies (2). We prove only C(UB) c Im(T) and L(U*A)

£
c Im(H). Let My ¢ C(Up), and J@ Uy — [@ Uy > My »~ 0 an

B
exact sequence. Since Z@ Ug ¢ Im(T), we have a commutative

diagram:
TH(f)
TH(]@ Ug) ——— TH(]g Uy) - TH(Cok (H(f))) ~» 0
| v, | 5o 0y
Y by
l@ Vg — o U > My » 0

where u : TH - 1 is a natural isomorphism. Thus MB is

Im(T)

isomorphic to T(Cok(H(f))), and hence M, ¢ Im(T). Similarly,

B
we have L(U*A) c Im(H).

(3)* implies (3), (4*) implies (4) and (5)* implies (5)
evidently, and the converses are particular cases of Lemma 1l.2.

The equivalence of (1) and (3) is also clear by Lemma 1.2,
and the equivalences of (4)* and (6), (5)* and (7) are clear by
Lemma 1.1 (3). Evidently, (3)* implies (4)* and (5)*.

(5)* and (7) imply (3)*. We prove only that QT(N) is a
monomorphism for any N ¢ Mod-A. Since Im(T) < C(UB) c

Gen(UB), Ker (¢ ) = Cok(\i’N)®AU is generated by Uy, but

T (N)

HomB(UB,Ker(¢T(N))) = 0, so Ker(oT(N)) =0 by Lemma 1.1 (3).
(4)* and (6) imply (3)*. For any MB ¢ Mod-B, 0 =

Cok(‘l’H(M))®AU = HomB(UB,Ker(th)) ®AU' Thus Cok(‘l’H(M)) =

HomB(UB,Ker(oM)) = 0, so WH(M) is an epimorphism, and there-

fore an isomorphism by Lemma 1.1 (3).
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(3)* implies (8)*. Since T : Im(H) - Im(T) is full and

faithful, we have isomorphisms for any KB e Im(T) and M_ ¢

B
Mod-B:
-1
Hom_ (¢ . ,TH(M )) T
Homy, (K, TH (M) ) g e T > Homy (TH (Kp) , TH (Mg) ) ——>
n(K) M) Homy (0 21, 0.)
> Hom, (H(Ky) ,HUL)) -

Homg (TH(Kp) ,Mp)

+ Homg (J(Kp) ,Mp)

where T l(f) is defined by T(T Y(f)) = £ for any £ ¢

HomB(TH(KB),TH(MB)). The composition map is HomB(KB,¢MB) by

routine calculations, and hence it satisfies the naturality.
Thus TH is a right adjoint functor of J.

(3)* implies (8). Similar as above.

(8) implies (4). Im{(H) is a coreflective subcategory of
Mod-A with coreflector HT : Mod-A + Im(H), so that there

exists a natural isomorphism u : TH.J + 1 Hence u

Im(T) "
THT(NA) - T(NA) is an isomorphism for any N, ¢ Mod-A.

T(N)

A
(8)* implies (4)*. Similar as above.

This completes the proof of the theorem.

Example. If one of the following properties is assumed
then there holds (6) or (7) in Theorem 1.3:

(1) B = End(,U) and I.U=U where I is the trace
ideal of U.

{(2) = End(UB) and U+J = U where J 1is the trace

(=T

ideal of B*
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Corollary 1.4. 1If UB is a weakly self-generator and T

and H induce an equivalence Im(H) ~ Im(T), then Im(T) =

Gen(UB). Here, U is called "a weakly self~-generator" if

B

HomB(UB,MB) = 0 implies Mp = 0 for any My ¢ Gen(UB).

Proof. We consider an exact sequence:

)
M
0 -+ Ker(oM) - HomB(UB’MB)—’ MB

Clearly, if Mgz ¢ Gen(Up) then ¢, is an epimorphism. By

Theorem 1.3, HomB(UB,Ker(¢M)) = 0 for any MB € Gen(UB), but
UB is a weakly self-generator and Ker(¢M) € Gen(U
Ker(oM) = 0. This means ¢

B)' Hence

is an isomorphism for any M

M B ©

Gen(UB).

2. The equivalence Im(H) ~ Gen(UB). The main theorem

of this section is due to the next lemma, which has been shown
in [6, Lemma 1l.4].

Lemma 2.1. Let be a C-B bimodule, and C = End(UB).

cUs
The following statements are equivalent:

(1) HomB(CUB,MB)QDCUB = My canonically for any My €
Gen (Up) .

(2) Gen(Uy) = Gen(U

(3)

B) B) -

CU is a flat C-module and the functor HomB(UB,-) :

Gen(UB) + Mod-C is full and faithful.

Theorem 2.2. Let AUB be an A-B bimodule, and C =

End(UB). The following statements are equivalent:
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(1) T : Im(H) -+ Gen(UB) and H : Gen(UB) + Im(H) are
mutually inverse category equivalences.
(2) T : L(U*A) + Gen(UB) and H : Gen(UB) -+ L(U*A) are

mutually inverse category equivalences.

(3) There exists a natural isomorphism u : TH » lGe_n(UB) .

(3)* Py ¢ TH(Mp) » Mg is an isomorphism for any My e
Gen(uy) .

(4)  Gen(Up) = Gen(Up) and C®,U =~  Ug.

(4)* Gen(uy) = EEH(UB) and C®,Up x .Uy canonically.

(5) Gen (Up) = EEH(UB) and ¢ : THT(N,) > T(N,) is

T(N)
an isomorphism for any N ¢ Mod-A.

(6) CU is flat, UB is a weakly self-generator and

°T(N) : THT(NA) . T(NA) is an isomorphism for any NA € Mod-A.

Proof. The equivalence of (1) — (3)* is clear by
Theorem 1.3, and (1) implies (4) evidently.
3 3 * - —
(4) implies (4)*. Let h : CC ®AUB + CUB be a C-B
homomorphism obtained by assumption, s : AUB -+ AC ®AUB an A-B

homomorphism, and ¢t : CC @AU a C-B homomorphism defined

B~ cYs
by s(u) =1.®u and t(] c®u) =] c-u respectively, where
ueU and c ¢ C. Clearly t is an A-B homomorphism and

tes =1 y_+ SO AC ®AUB = Im(s) @ Ker(t) as A-B bimodule.

A™B
Thus AUp = h(Im(s)) @ h(Ker(t)) as A~B bimodule. Put e, :
AUB + h(Im(s)) and e, : AUp ™ h(Ker(t)) projections onto
each component. Then they are elements of C. Now, f = t-h-l :
CUB - CUB is a C-B epimorphism, so fel = elf and fe2 = ezf.

But fe,(Uy) = th™l(h(Ker(t)) = t(Ker(t))

0, so that 0

0, which means ¢t

ezf(U) = ez(U) = h(Ker(t)). Thus Ker(t)
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is an isomorphism.
(4)* implies (3)*. For any My e Gen(UB), Gen(UB) =
eyl I I3 ’ » * N
Gen(UB) induces a canonical isomorphism ¢M : HomB(cUB,MB)69CUB
. N -
+ My defined by ¢E(£®u) f(u) for any £ e Homy( Ug,Mp)
and u ¢ U (Lemma 2.1). Let t : C®,U, + Uy be a canonical

isomorphism. Then we have a commutative diagram:

HomB(CUB,MB)G.O t
Homy ((Up/Mp) ® C @, Uy » Homg (Up,Mp) @ Uy

*
1 nat. P l OM

HomB(AUB’MB) AUB MB

A\ 2

where vertical maps are isomorphisms. Hence ¢M is an isomor-
phism for any Mg e EEH(UB).

(1) implies (5) and (5) implies (6). These are obvious by
Theorem 1.3 and Lemma 2.1.

(6) implies (1). By Corollary 1.4, H : Gen(Ugp) » Mod-A
is full and faithful. First, we show that the functor
HomB(cUB,—) : Gen(Up) + Mod-C is full. Choose any D ¢
Homc(HomB(CUB,MB),HomB(cUB,NB)), which can be regarded as an
A-homomorphism. Thus there is a unique B-homomorphism h :
My > Ny such that D(g) = h.g for any g ¢ HomB(AUB’MB)'
But Homp (,Ug,Mp) = Hom,(.Uy,M;), and hence D(g) = h.g for
any g ¢ HomB(CUB,MB). Similarly we can see that HomB(CUB,-)
igs faithful. Now, recalling that CU is flat, Gen(UB) =
EEH(UB) = Im(T) by Lemma 2.1. This completes the proof of

the theorem.

Corollary 2.3 (K. Morita [3, Theorem 1.1]). Let AUB be
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an A-B bimodule, and C = End(UB). Then the following state-~

ments are equivalent:

(L) T = -Q9Au Im(H) ~ Mod-B and H = Homg(Uy,-) : Mod-B
+ Im(H) are mutually inverse category equivalences.

(2) 7T : L(U*A) + Mod-B and H : Mod-B -+ L(U*A) are
mutually inverse category equivalences.

(3) There is a natural equivalence u : TH -+ 1Mod-B'

(4) ¢ : TH =+ 1, . n is an isomorphism.

(5) Up is a generator and C®,U; ~ .Up.

(6) Up is a generator and C®,U, ~ .Uy canonically.

(7) AU is of type FP and B ~ End(AU) canonically.
Here, AU is said to be of type FP if sU is finitely

generated projective over the bicommutator S of AU and

s ®Ur = gUx canonically provided R = End(,U) (and s =

End(UR))

Proof. The equivalence of (1) — (6) is a direct con-
sequence of Theorem 2.2.

{6) implies (7). Since Ug is a generator, CU is
finitely generated projective and B ~ End(CU) canonically.
Hence it remains to show B ~ End(,U) canonically. In fact
the composition map of the following isomorphisms is canonical:
B z End(,U) ~ Hom.(.C&,U,.U) ~ Hom, (,U,Hom.(.C,,.0)) 2
HomA(AU,AU).

(7) implies (6). Since C 1is the bicommutator of u,

A
B ~ End(CU) canonically. Thus UB is a generator, since CU

is finitely generated projective.
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Corollary 2.4 (G. Azumaya). Let AU be a projective A-

module, and B = End(AU). Then T and H induce a category

equivalence Im(H) ~ Gen(UB).

Proof. Let I and J be the trace ideals of AU in A
and of UB in B, respectively. Since I.U = U and

(Cok(WN))-I =0 for any N, ¢ Mod-A, T and H induce an

A
equivalence Im(H) ~ Im(T) by Theorem 1.3 (6). Furthermore,
for any x ¢ U, x ¢ XxJ by dual basis lemma. Hence Gen(UB) =

Gen(Uy), since Gen(Up) = {My ¢ Mod-B | Mg+d = Mpl.
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ENDOMORPHISMS OF MODULES OVER MAXIMAL ORDERS

Kanzo MASAIKE

Tokyo University of Art and Science

Throughout this note R is a right order (cf. [4]) in a
right Artinian ring Q. Let M be a right R-module, T =

End(MR) and M* = Hom(MR,RR). Then, there exists a derived

Morita context ( , ) : M* ®TM +R and [, 1 : MQRM* -7
such that £f[m, £'] = (£, m}f' and m(f, m') = [m, £flm*' for
all m, m' ¢ M, £, £' ¢ M* ([1], (7]). 1In the following the

images (M, M*) and (M, M*] are denoted respectively by I
and U. Let PI and PU be the smallest Gabriel filters
(additive topology [9]) of R and T respectively which
contain I and U. Then, B. Miller [7] showed that there
exists an equivalence between quotient categories determined
by PI and PU' One of the purposesof this paper is to apply
the above result of Miiller to endomorphism rings of modules
over maximal orders in Artinian rings.

A right R-module M is said to be torsion free in the
sense of Levy [5] if no non-zero element of M is annihilated
by a regular element of R. Let C_ = {M_ ¢ Mod-R | m is
(isomorphic to) a submodule of a right R-module W such that
W 1is a direct product of copies of RR and W/M is torsion
free in the sense of Levy)}. We shall say that a right R-
module M satisfies the condition (A), if M is isomorphic

to a direct summand of a right R-module K such that K c
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n _ n . o
®i=l R and KQ =6 j=1 9- If Q is semi-simple, every
finite dimensional torsionless right R-module satisfies (a).
In [6], it is proved that if M satisfies (A) then T =

End (M is a right order in S = End(M @RQQ) .

R)

Lemma 1. If MR satisfies (A), then
3 * = *
(1) M ®TS (M@RQQ) .
(ii) The trace ideal I contains a regular element, if

and only if M@RQ is a progenerator as a Q-module.

Let us denote by LI( ) the quotient functor (localiza-
tion functor) with respect to PI.

Lemma 2. Assume R is a maximal right order, Mp is
torsionless, I contains a regular element and T has a

classical quotient ring S = End(M@RQQ). If Y ¢ CR' then

LI(Y) =Y and Hom(MR, YR) € C'r’

Proposition 1. If Q and S are Morita equivalent

right Artinian rings and R is a maximal right order in Q,
the:re exists a maximal right order T in S such that the
following statements hold:

(i)  There exists a faithful right R-module M < @';:1 R
and a faithful right T-module N c @';_:1 T such that T ~
End(Mp) and R  End(Ng).

(ii) There exists a category equivalence between (

R
and CT.
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Remark. Even if we replace the notion of maximal right
order by maximalﬂgright order, Proposition 1 (i) remains true,
generalizing and sharpening the results of €. Faith [3] and

J. Robson [8].

Theorem 1. Let Q be a quasi-Frobenius ring. Then a
ring T is a maximal right order whose classical right gquo-
tient ring is Morita equivalent to Q, if and only if T is
isomorphic to an endomorphism ring of a right module M over
a maximal right order R in 0, where M satisfies the
following conditions:

(a) M e cR and is finite dimensional.

(b) M®RQ is Q-projective.

Proposition 2. Let R be a maximal two-sided order in

a quasi-Frobenius ring Q, and M a finite dimensional
faithful right R-module such that hﬁ@RQ is QO-projective.

Then, M is R-reflexive if and only if M ¢ CR.

In [2] J. H. Cozzens has proved that if R is a maximal
two-sided order in a semi-simple ring Q and M is a finite
dimensional reflexive faithful right R-module then End(MR)
is a maximal order. 1In this case M = LI(M) € CR by Lemma 2
and Proposition 2. Now, by making use of a hereditary torsion
theory induced by the trace ideal of M, we can prove the

following
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Theorem 2. Let R be a maximal right order in a gquasi-
Frobenius ring Q, and M a finite dimensional torsionless
faithful right R-module such that M@RQ is Q-projective.
Then the following conditions are equivalent:

(i) T = End(MR) is a maximal right order.

(ii) LI(M) € CR, and every f ¢ Hom(JR, MR) is extended
to an element of T, provided J is a submodule of MR such
that M/J is a PI—torsion module.
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ON FINITE DIMENSIONAL QF-3' RINGS

Takeshi SUMIOKA

Osaka City University

This note is a revised version of the part of finite
dimensional QF-3' rings in [11]. Let R be a ring with unity.
An R-module means a unital R-module and "torsion theory"
means the Lambek torsion theory, whose torsion radical is
denoted by t. Let M be a right R-module. Then a chain

see € Mi—l < Mi < Mi+l S e

of submodules of M is called a t-chain of M if Mi+l

not a torsion module for each i. M is called finite dimen-

/Mi is

sional if both any ascending and any descending t-chains of M

terminate. R 1is called right finite dimensional if RR is

finite dimensional (refer Goldman [3] for these definitions

and properties). We say the dimension of M is equal to n
and denote it by dim M = n, if M has a t-chain of length n
but no t-chains of length more than n. In particular dim M =
0 if M is a torsion module. We define dim M = « if M
has a t-chain of length n for any number n.

A submodule N of M is called closed if M/N is

torsion-free. Let E be an injective hull of R For a

R*
submodule X of M (resp. HomR(M,E)), we denote its annihi-
lator in HomR(M,E) {resp. M) by &(X) (resp. r(X)). Then
we note that N is a closed submodule of M if and only if

N = r{(X) for some X « HomR(M,E) (see Shock [9, Theorem 3.2]),
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since for a submodule L of M such that N < L, L/N is a
torsion module<> HomR(L/N,E) = 0¢> L(N)L = 063 L ¢ r2(N). We
denote the set of closed submodules of M by C(M).

See Faith [2, § 3 Proposition 1] for the equivalence of
(2) and (4) in the next lemma and Shock [9, Corollary 3.3] for

that of (1) and (2).

Lemma 1. The following properties for a right R-module
M are equivalent:

(1) Every ascending t-chain of M terminates.

(2) (M) is noetherian.

(3) For every set of right R-modules La (¢ ¢ A) and
every R-homomorphism £ :eaeA La + M, there exists a finite
subset B of A such that Im £f/Im £fi is a torsion module,
where i is a canonical injection & BeB LB + @ oy La'

(4) For every submodule N of M, there exists a finite-
ly generated submodule I of N such that N/L is a torsion

module.

Proof. (1) => (3) =» (4). Those are clear.

(3) = (2). Let M) ¢ M, < ... be a chain of closed sub-
modules of M. Consider a natural map f : @ ';=1 M; M. Then
there is an integer n such that Ucin=l Mi/Mn ( =
(D, M)/(@T,, M;)) is a torsion module. Since M is
closed, Mi = Mi+1 for each i = n.

(2) =» (1), Let M; < My ¢ ... be a t-chain of M. If

M:!./Mi is the torsion submodule of M/Mi, Mi is closed in M
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and Mi i M! Thus the above t-chain terminates.

i+l”
(4) = (l1). Let My 5

put N = L):=1 Mi. Then there is a finitely generated sub-

module L of N such that N/L is a torsion module, and so

c M, c ... be a t-chain of M. We

L is contained in some M, which implies that the above t-

chain terminates.

We can similarly show the following lemma.

Lemma 1°'. For a right R-module M, the following
properties are equivalent:

(1) Every descending t-chain of M terminates.

(2) ¢(M) is artinian.

(3) For every set of torsion-free right R-modules L,
{(a ¢ A) and every R-homomorphism £ : M -+ TTaeA L,s there
exists a finite subset B of A such that Ker f = Ker pf,

where p is a canonical projection T[T _.L =+ TTg.p Lga-

The following lemma is immediate from the fact that for
an exact sequence 0 + A+ B+ C + 0 of R-modules, B is a

torsion module if and only if A and C are torsion modules.

Lemma 2. Let .0 +L-+M~>+N+0 be an exact sequence
of right R-modules. Then ((M) is noetherian (resp. artinian)
if and only if so are (C{(L) and (C(N). Moreover we have

dim M = dim L + dim N.

By Lemma 2, we see easily that if M is finite dimensional,
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dim M = n for some n. A right R-module M is called FI

if M is imbedded in some finitely generated right R-module.
Let E be an injective hull of RR‘ R is called right QF-3'
if every finitely generated (or FI) submodule of E is torsion-
less. Such a ring is investigated by Masaike [5], and under
some conditions by Sato [7, 8]. If M 1is a right R-module,

we denote HomR(M,R) and Exti(M,R) by M* and M,, respect-

ively. The next lemma will be clear.

Lemma 3. Let R be a right QF-3' ring.

(1) For an FI right R-module M, M is & torsion module
if and only if M* = 0.

(2) For a right ideal I of R, I 1is closed in R if

and only if I 1is a right annihilator ideal.

See [11l] for the following theorem and corollary.

Theorem 4. Let R be a right finite dimensional ring.
Then the following conditions are equivalent:

(1) R is QF-3'.

(2) dim M = dim M* for every FI right and every FI left

R-module M.

Corollary 5. Let R be a finite dimensional QF-3' ring.
(1) For a finite dimensional right R-module M, M* is
reflexive.

{(2) For a finitely generated right R-module M, M, is
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a torsion module.
(3) For a finite dimensional torsion-free right R-

module M, M is torsionless if and only if dim M = dim M*.

Sato has shown that (1) implies (2) in the following

proposition.

Proposition 6. Let Q be the maximal right quotient

ring of R. Then the following conditions are equivalent:
(1) Q is a left quotient ring.
(2) For every finitely generated torsion right R-module

M, M, is a torsion module.

Proof. Let I be a dense right ideal of R and consider
an exact sequence 0 + R+ Q - Q/R + 0. Then we have an
isomorphism HomR(R/I,Q/R) ~ (R/1),, since HomR(R/I,Q) =0
and Ext;(R/I,Q) = 0 (see Stenstrdém [10]).

(1) = (2). It suffices to show that M, is a torsion
module for every cyclic torsion right R-module M = R/I. We
have a monomorphism Homp(R/I,Q/R) + Hom(R,Q/R) ~ Q/R, which
is derived from an exact sequence ¢ + I + R + R/I. Thus
(R/I), is a torsion module, since Q/R is a torsion left R-
module.

(2) =» (1). Let q be an element of Q/R. Then R/I ~
gR for some dense right ideal I of R and hence we can
regard g as an element of HomR(R/I,Q/R). Since HomR(R/I,Q/R)
(~ (R/I),) is a torsion module. Rg is also a torsion module.

Thus Q/R 1is a torsion left R-module, which implies that Q
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is a left quotient ring.

Lemma 7. Let R be a ring satisfying the descending
chain condition on annihilator right ideals. If R is right

QF-3' then E (= E(RR)) is flat.

Proof. By Lemma 3, C(RR) is artinian. Let M be a
finitely generated submodule of E. Then M is torsionless
and by Lemma 1’ M is imbedded in a free right R-module.

Thus E is flat by Rutter [6, Lemma 2).

We call a ring R right QF-3 if R has a minimal faithful

right R-module.

Theorem 8. Let R be a ring., Then the following state-
ments are equivalent:

(1) R is a right QF-3' and right perfect ring satisfying
the ascending chain condition on annihilator right ideals.

(2) R is semi-primary QF-3.

Proof. Assuming (1), by Faith [2, § 4 Proposition 1), R
is semi-primary and hence C(RR) is artinian, since C(RR) is
noetherian. Therefore by Lemma 7 E is projective and then
by Jans [4, Theorem 3.2] R 1is right QF-3. Thus by Colby and
Rutter [l, Theorem 1l.3] and Faith [2, §3 Proposition'3], R is
QF-3. The converse is followed by Colby and Rutter [1, Theoreﬁ

1.3], Faith [2, § 3 Proposition 3] and Tachikawa [12, p. 47].
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NILPOTENCY INDICES OF THE RADICALS

OF MODULAR GROUP RINGS

Shigeo KOSHITANI

The University of Tsukuba

Let K be a field, G a finite group, KG the group
algebra of G over K, and J(KG) the radical of KG. We
are interested in relations between ring-thecoretical properties
of KG and the structure of G. Particularly, in the present
note we shall study the nilpotency index t(G) of J(KG),
which is the least positive integer such that J(KG)t(G)
(cf. Remarks of R. Brauer [19, p. 144, Problem 15]).

Since KG/J(KG) 1is a separable K-algebra (cf. [12,
Proposition 12.11]), we may assume that K is algebraically
closed. To begin with we shall state the results concerning

the nilpotency index of the radical of KG which are obtained

until now.

(1) Maschke [2, (15.6)]: ¢t(G) =1 if and only if
char(K) = 0, or char(K) =p > 0 and pt|G]|.

Hence assume that char(K) = p > 0 and p||G| throughout

this note.

(2) Jennings [8]: If P is a p-group of order pr, then

(i) t(P) idi(p—1)+1, where K, = {x e P |

=12 a
x-1e¢dkp)?') and [K/K.,. | =p .

(ii) r(p-1)+1 < t(P) < p¥ (cf. [25, Lemma 2.3]).
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(3) Morita [13), Clarke [1]: If G is a p-solvable
group of p-lengﬁh 1l with a p-Sylow subgroup P, then ¢t(G) =

t(P).

(4) wWallace [24]: t(G) = 2 if and only if p = 2 and

G has a 2-Sylow subgroup of order 2.

(5) Dade [3] (cf. [15, Remark 1}):

(i) If B 1is a block of KG with a cyclic defect
group D, then t(B) < |D|, where t(B) is the nilpotency
index of the radical J(B) of B,

(ii) If G has a cyclic p-Sylow subgroup P, then

t(@G) < |P|.

(6) Wallace and Dade (cf. [15, Remark 2]): If p = 3

and G has a 3-sylow subgroup of order 3, then t(G) = 3.

(7) Tsushima [21], Passman [18): If G is a p-solvable

group with a p-Sylow subgroup P, then t(G) s |P].

(8) WwWallace [25]: If G is a p-solvable group with a

p-Sylow subgroup of order p*, then t(G) = r(p-1)+l.

{9) Kupisch [1ll1l], Janusz [7] (cf. [10, Theorem 3] and
[17, Theorem 2]):

(1) When B 1is a block of KG with a cyclic defect
group D, B 1is a serial (generalized uniserial) ring if and
only if t(B) = |D].

(ii) If KG is serial, then t(G) = |P|, where P is

a p-Sylow subgroup of G. It is to be noted that when G is
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a p-solvable group with a cyclic p-Sylow subgroup, then XG
is serial (cf. {13, Theorem 8], [20, Theorem 3] and [22,

Theorem 3]).

(10) Holvoet ([5]): Let P be a p-group of order pr

(r 2 2) of the following types;

(i) P is an abelian group of type (pr l,p),

(ii) P=2,r=3 and Pz Dy or Qi

2, rz4 and P

(iii) p

it

Dr' Qr’ Sr or Mr(2),
(iv) p#2, rx3 and P> M (pP),

where Dr’ Qr and Sr are a dihedral group, a generalized

quaternion group and a semi-dihedral group of order 2r,

; - P . Pt t -1, _
respectively, and M_(p) = <a, b | af = b =1, a "ba =

r-2 -
bPT"“*l,  (ce. (4, Chap. 2 and Chap. 5}). Then () = p* 1 4+
p - 1.

(11) Motose [l4]: For two finite groups G1 and G2,

t(Gl x G2) = t(Gl) + t(Gz) - 1.

(12) Ninomiya [16]:

{i) Let G be a p-solvable group of p-length 1 with
a p-Sylow subgroup P of order pr. Then t(G) = r(p=~1)+1
if and only if P is elementary abelian, and t(G) = pr if
and only if P 1is cyclic.

(ii) When G is a p-solvable group with a p-Sylow sub-
group P, then t(G) = 3 if and only if p =3 and |P| = 3,

or p=2 and P is an elementary abelian group of order 4.

K. Motose {16] showed that for a p-solvable group G the
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first part of (12) (i) does not hold in general. On the other
hand, the last part of (12) (i) holds for any p-solvable group

G. That is to say.

(13) Tsushima [23], Koshitani [10]: Let G be a p-
solvable group with a p-Sylow subgroup P. Then ¢t(G) = |P]|

if and only if P is cyclic.

(14) (Cf. [9, Remark 3)). If P is a semi-direct
product of two cyclic p-groups P, and Py, then ¢t(P) =

t(Pl) + t(Pz) - 1.

It is to be noted that for two p-groups P1 and Pz,

(14) does not hold in general.

Now, let P be a p-group of order pr (r 2 2). All p-
groups P such that ¢t(P) are the lower bound r(p-l)+l1 or
the upper bound pr are determined by (12). So in this note
we shall consider p-groups P such that ¢t(P) are not equal
to r(p-1)+l or pr. The main result of this note can be

stated as folloes:

Theorem. Let P be a p-group of order pr (r 2 2).

Then the following conditions are equivalent:

(i) t(P) = pr Ltep-1.

(i) ptt

< t(P) < p~.
(iii) P 1is not cyclic and has a cyclic subgroup of
index p.

(iv) P is one of the following types (cf. (10));
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(a) P is an abelian group of type (pr_l,p).

(b) p=2, r=3 and P =~ Dy or Qg

(¢) p=2,r=24 and P>D, Q. S, or M. (2),
(d) p#2, r23 and P =~ Mr(P).

It follows from Theorem that pr-1+p-1 is the secondarily

highest nilpotency index of J(KP).

Proof of Theorem. (i) => (ii) is trivial. (iii)e (iv)

is obtained by (4, Chap. 5, Theorem 4.4]. (iv) = (i) is
proved by (10). Therefore it suffices to prove the next lemma

by (12) (i).

Lemma. Let P be a p-group of order pr {(r 2 1). 1If

t(P) > p° !, then P has an element of order p° l.

Proof. We use induction on r. It is clear for r =1
or 2. Assume that r = 3. When P is abelian, it is trivial
from (11). When P is nonabelian, by [6, I.14.10 Satz], P
is one of the following types;

(1) pP=2 and P~ D; or Qg

(1i) p#2 and P ~My(p) or M(p) =<a, b, c | a® =

lya = be, b tcb = c, alca = o>

bP = cP =1, a”
Suppose that p # 2 and P = M(p). Put x=a -1, y=b -1
and z =c¢c -1 in KP. Since yx = xyz + xz + yz + xy + 2,

zx = xz2 and zy = yz, we have

ytxs € ) leszk for all s and t
i+j+2kzs+t
Osiss
s t_u

by induction. Hence it follows that G, = {x°y z | 0 s s, t,
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s p-1, s+t+2u 2 i} is a K-basis of J(kP)' by induction.
This implies that t(P) = (p-1l)+(p-1)+2(p-1)+1 = 4p-3 < p2.
This is a contradiction. So the assertion is proved for r =

3. Assume that r 2 4 and it is proved for p-groups of orders

P Pz, cae o pr_l. There is an element c ¢ Z(P) of order p,

where 2z (P) is the center of P. Put C = <c>. Since ¢t(P) >

p*1, by (25, Theorem 2.4], it follows that t(P/C) > pt 2.

Hence P/C has an element bC (b ¢ P) of order pr-z. Now,

r-1

suppose that P has no elements of order p So |b| =

pr—2 and P/C is not cyclic. By [4, Chap. 5, Theorem 4.4],

P/C 1is one of the following types;

r-2

Case 1. P/C is an abelian group of type (p /P)-

Case 2. p =2 and P/C ~ Do

Case 3. p=2 and P/C Q. ;-

Case 4. p=2, r=2>25 and P/C~ S ;.

Case 5. p=2 and rz 5, or p#2 and P/C ~ Mr_l(p).

P pr-2
Case 1. We can put P/C = <aC, bC | (aC)¥ = (bC) = C,
abC = bac>. |a|] = p or p2. If |a| = p2, we may put aP =
c. 8Since P/C is abelian, P is a semi-direct product of

r-2 r-1

<a> by <b>. Hence, by (14), t(P) = pF 24p2-1 s p

p. 1f b lalpa=1, p

is an abelian group of type (pr'z,p,p). So t(pP) = pr-2+2p-2

s p© 1 from (11). Hence we can put b la"lba = c. Thus P

1

, and

I

this is a contradiction. Thus |al

cb

r-2 - - -
<a, b, ¢ | aP = bP =cP=1, alba =bc, alca=c, b
c>. By the same method as calculating t{(M(p)), we know t(P)
= (p-l)+(pr—2-1)+2(p—1)+l = pr'2+3p-3 < pr_l. So we have a

contradiction in Case 1.
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The proofs in Cases 2, 3 and 4 are similar to that in
Case 5. Henceforth we shall restrict our attention to Case 5.

-2
Case 5. Put P/C = <aC, bC | (a®)P? = (bC)P""° = ¢,

_ r=-3
a"lbac = bP “*lcs, |a] = p or p?. Put f = ptt3

-f -1
a

1 +1. If

b ba =1 and |a| =p, P is a direct product of M__, (p)

and a cyclic group of order p. It follows from (10) and (11)
that t(P) = p* 242p-2 s p* L. 1f b falpa=1 ana |a| =
pz, we may put aP = ¢, and so P is a semi-direct product

of <b> by <a>. Hence, by (14), t(P) = pr-2+p2-1 < pt L.

1f b falba # 1 and |a] = p, we can put b falpa = c.

1 1

r-2 - -
Thus P = <a, b, ¢ | aP = bP =cP =1, a~lba = bfe, a7lea =

c, b_lcb =¢>. Since f£f =24 and f = 1 (mod p), as in the

calculation of t(M(p)), t(P) = pr_2+3p—3 < pr—l. 1f b falpa

#1 and |a| = p%, we may set aP = c and b falpa = &P

for some h (1 < h s p-1). Hence P = <a, b, c | aP = c,

£ h 1 1

r-2 - - -
bP =cP = 1, a 1ba = b ¢, a "ca=c¢, b cb=c> 8ince

£f24,£f=1(modp) and (a - 1)P = ¢ - 1, as calculating

r-1

r-2,52.1 ¢ pt L.

t(M(p)), t(P) = (p-L)+(p* 2-1)+p(p-1)+1 = p
Thus we obtain a contradiction in Case 5. We have therefore

verified Lemma.

From (3) we have

Corollary. Let G be a p-solvable group of p-length 1
with a p-Sylow subgroup P and |P| = pf (r = 2). Then the
following conditions are equivalent:

(1) t(G) = p' Lep-1.
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(ii) p < t(G) < p .

(iii) P is not cyclic and has a c¢yclic subgroup of index

(iv) P 1is one of the following types:

(a) P is an abelian group of type (pr—l,p).

{b)

o]
|

=2, r=3 and P ~ Dy or Q,.
(¢) p=2,rz4 and P=D, Q. S, or M.(2).

(d) p#2, r23 and P = Mr(p).

Remark. For a p-solvable group G of p-length 2 2, the
same statement as Corollary does not held in general. Assume
that p =2 and that G is the symmetric group of degree {.
G is a 2-solvable group of order 24 of 2-length 2. On the
other hand, t(G) = 4 # 22+2-1 by [16, Proposition] and a

2-Sylow subgroup of G 1is a dihedral group of order 8.

References

[1] R. J. Clarke: On the radical of the group algebra of a
p-nilpotent group, J. Austral. Math. Soc. 13 (1972),
119-123.

[2] C. W. Curtis and I. Reiner: Representation Theory of
Finite Groups and Associative Algebras, Interscience,
New York, 1962,

{31} E. C. Dade: Blocks with cyclic defect groups, Ann. Math.
84 (1966), 20-48.

[4] D. Gorenstein: Finite Groups, Harper and Row, New York,

1968.



114

[5]

{61

(71

[81]

[91

[10]

[11]

[12]

[13]

[14]

[15]

R. Holvoet: De groepalgebra van een eindige p-groep over
een veld met karacteristiek p, Natuurkundig Tijdschrift
42e Jaargang IV (1969), 157-170.

B. Huppert: Endliche Gruppen I, Springer, Berlin, 1967.
G. J. Janusz: Indecomposable modules for finite groups,
Ann. Math. 89 (1969), 209-241,

S. A. Jennings: The structure of the group ring of a
p-group over a modular field, Trans. Amer. Math. Soc. 50
(1941), 175-185.

S. Koshitani: Group rings of metacyclic p-groups, Proc.
Japan Acad. 52 (1976), 269-272.

S. Koshitani: On the nilpotency indices of the radical of
group algebras of p-solvable groups, Proc. Japan Acad.
53A (1977), 13-16.

H. Kupisch: Projektive Moduln endlicher Gruppen mit
zyklischer p-Sylow-Gruppe, J. Algebra 10 (1968), 1-7.

G. O. Michler: Blocks and centers of group algebras,
Lectures on Rings and Modules, Lecture Notes in Math.
246, Springer, Berlin, 1972, 429-563.

K. Morita: On group rings over a modular field which
possess radicals expressible as principal ideals, Sci.
Rep. Tokyo Bunrika Daigaku A 4 (1951), 177-194.

K. Motose: On C., Loncour’s results, Proc. Japan Acad. S50
{1974), 570-571.

K. Motose: On radicals of principal blocks, Hokkaido Math.
J. 611977), 255-259.



115

[16] K. Motose and Y. Ninomiya: On the nilpotency index of the
radical of a group algebra, Hokkaido Math. J. 4 (1975),
261-264.

[17] K. Motose and Y. Ninomiya: On generalized uniserial blocks,
Math. J. Okayama Univ. 19 (1977), 141-145.

[18] D. S. Passman: Radicals of twisted group rings, Proc.
London Math. Soc. 20 (1970}, 409-437.

[19] T. L. Saaty (ed.): Lectures on Modern Mathematics I,
Interscience, New York, 1963.

[20] B. Srinivasan: On the indecomposable representations of a
certain class of groups, Proc. London Math. Soc. 10
(1960), 497-513.

[21) Y. Tsushima: Radicals of group algebras, Osaka J. Math.

4 (1967), 179-182.

[22] Y. Tsushima: A group algebra of a p-solvable group, Osaka
J. Math. 5 (1968), 89-98.

[23) Y. Tsushima: Some notes on the radical of a finite group
ring, to appear.

[24] D. A. R. Wallace: Group algebras with radicals of square
zero, Proc. Glasgow Math, Assoc. 5 (1962), 158-159.

[25] D. A. R. Wallace: Lower bounds for the radical of the
group algebraof a finite p-soluble group, Proc. Edinburgh

Math. Soc. 16 (1968/69), 127-134.



116

PROBLEMS ON THE RADICAL OF A FINITE GROUP RING

Yukio TSUSHIMA

Osaka City University

Throughout we shall use the following notation: p 1is a
fixed prime number, G a finite group with a Sylow p-subgroup
of order pa, and k 1is a field of characteristic p contain-
ing the |G|-th roots of unity. We denote by J the Jacobson

radical of the group ring kG.

1. As was posed by Brauer [1l]), there has been the follow-

ing problemn.

Problem 1. How can we characterize by group-theoretical
properties the following numbers?

(1) the dimension of J over k.

(2) the exponent of J, namely the smallest integer t

such that Jt = 0.

The first question in the above will be connected with
Problem 2. Suppose we find some non-equivalent irredu-

cible k-representations of G. Then how can we check whether

or not they are all the non-equivalent ones?

Of course, one method is to find the number of the p-

regular classes of G. On the other hand, if {¢l, ¢2, ...,¢r}
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igs the full set of distinct Brauer characters of G and if u,
is the degree of the principal indecomposable Brauer character
corresponding toQ ¢i for each i (1 < i £ r), then we have

Z r f.u., where fi = ¢i(l). Hence, it seems natural to ask

i=1 "i"i

Problem 3. Can we find u, if fi were known?

For a p-solvable group, a complete answer to the above is

given by Fong.

Theorem 1 (Fong [3]). Suppose G is p-solvable. Then
we have u; = pafi, where fi is the p'-part of fi’

2. Nextly, we are concerned with the second question of
Problem 1. For an artinian ring R, we denote by t(R) the
exponent of the radical of R. If R = kG, then we put ¢t(G) =
t(R).

If G 1is a p-group, then t{(G} may be computed from a
knowledge of certain normal series of G (Jennings {4]).

Another intersting result is the following, which was
first noted by Clarke [2], but the proof is direct from a

result of Morita [5].

Theorem 2 (Clarke [2]). Suppose G is a p-solvable

group of p-length one. Then there holds t(G) = t(P).

Here we dare to ask
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Problem 3. 1Is it true t(G) = t(G/H) for any normal p'-

subgroup of G?

If G is p-solvable, this is equivalent to

Problem 4. Let B be a principal p-block (ideal) of

kG. Then, is it true t(B)

t(G)?

Recall that if G* 1is a representation group of G over
k then kG* is the direct sum of the non-isomorphic twisted
group rings of G over k. Therefore, if H is restricted

to be a central subgroup of G, Problem 3 is equivalent to
Problem 5. Is it true t(G) 2 t(A) for any twisted
group ring A of G over k?
Concerning with a bound for t(G), we know that t(G) s pa

if G is p-solvable (Tsushima [6]). In addition, we get

Theorem 3 (Tsushima [7])). Suppose G is p-solvable.

If t(G) = pa, then P is cyclic.

3. As far as the radical is concerned, the following
problem seems most proper.
Problem 6. How can we characterize the elements of J?

For X € kG, we let 0(X) be the sum of the coefficients

of G which appear in A.
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Theorem 4 (Tsushima ([7]). If X ¢ J, then o(gd) = 0 for

all g ¢ G. The converse is true, provided G 1is p-~solvable.

Finally, we mention

Theorem 5 (Tsushima [7]). The following statements are
equivalent:

(1) J 1is generated over kG by central elements.

(2) JB is generated over kG by central elements,
where B is the principal block (ideal) of kG.

(3) G is p-nilpotent and P is abelian.
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