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Abstract. In this article, we investigate the relationships among various homological
properties for commutative noetherian local rings. As an application, we prove that there
exist a Gorenstein local UFD A having an isolated singularity such that TorA>0(M,N) = 0
does not imply depth(M⊗AN) = depthM+depthN−depthA, and a Cohen–Macaulay
local UFD B having an isolated singularity such that Ext>0

B (M,B) = 0 does not imply
that M is totally reflexive.
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1. Main result

Throughout this article, let R be a commutative noetherian local ring and denote by m
the unique maximal ideal of R. Huneke and Jorgensen [6] introduce the notion of an AB
ring: the local ring R is said to be an AB ring if R is Gorenstein and there exists an integer
n such that whenever one has Ext≫0

R (M,N) = 0 for finitely generated R-modules M,N it
holds that Ext>n

R (M,N) = 0. Auslander conjectured that any finite dimensional algebra
over a field is AB. However, Jorgensen and Şega [9] constructed, for a field k that is not
algebraic over a finite field, an artinian Gorenstein equicharacteristic local ring (A,mA, k)
which is not AB. We say that R satisfies (dep) if all finitely generated R-modules M and
N with TorR>0(M,N) = 0 satisfy Auslander’s depth formula [1], i.e.,

depth(M ⊗R N) = depthM + depthN − depthR.

Huneke and Wiegand [7] proved that every local complete intersection satisfies (dep),
and it was extended to AB rings by Christensen and Jorgensen [4]. On the other hand, it
has been an open question for several decades now whether every local ring, or even every
Gorenstein local ring, satisfies (dep), and much work has been put towards providing
sufficient conditions for (dep) to hold; see the introduction of [3] for an overview on the
history of this problem. In this work, we provide a negative answer to this question. Our
result in this direction comes as a consequence of the following theorem.

Theorem 1. A Gorenstein local ring of positive dimension satisfies (dep) if and only if
it is an AB ring.

We say that R satisfies (tr) if a finitely generated R-module M is totally reflexive
whenever Ext>0

R (M,R) = 0; recall that M is called totally reflexive if the natural map
M → M∗∗ is an isomorphism and Ext>0

R (M,R) = Ext>0
R (M∗, R) = 0, where (−)∗ is the
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R-dual functor. The property (tr) is the same as the weakly Gorenstein property in the
sense of Ringel and Zhang [12]. A (chain) complex of projective R-modules is called
totally acyclic if it and its R-dual are both acyclic. We say that R satisfies (tac) if every
acyclic complex of finitely generated projective R-modules is totally acyclic. This is a
finitely generated module version of the property studied by Iyengar and Krause [8]. The
following describes the relationships between (tr), (tac) and (dep).

Theorem 2. A local ring satisfying (tac) satisfies (tr). A Cohen–Macaulay local ring of
positive dimension satisfying (dep) satisfies (tr).

Jorgensen and Şega [10] construct, for a field k that is not algebraic over a finite field, an
artinian equicharacteristic local ring (B,mB, k) which does not satisfy (tr). (This shows
that the second assertion of Theorem 2 does not necessarily hold without the assumption of
positive dimension.) By considering the lifting of properties of local rings to higher Krull
dimension, we obtain the following theorem. Here, we note that Heitmann’s existence
theorem [5] plays a crucial role in the proof.

Theorem 3. Let k be a field which is not algebraic over a finite field.

(1) For every d ≥ 2, there is a d-dimensional Gorenstein equicharacteristic local
unique factorization domain (R,mR, k) with an isolated singularity which does not
satisfy (dep).

(2) There exists a 1-dimensional Gorenstein equicharacteristic local domain (S,mS, k)
that does not satisfy (dep).

(3) For every integer d ≥ 2, there exists a d-dimensional Cohen–Macaulay equichar-
acteristic local unique factorization domain (R,mR, k) with an isolated singularity
which does not satisfy (tr). Therefore, R does not satisfy (tac). Moreover, R is
a non-Gorenstein ring that does not satisfy (dep).

(4) There is a 1-dimensional Cohen–Macaulay equicharacteristic local domain (S,mS, k)
which does not satisfy (tr). Hence, S does not satisfy (tac). Also, S is a non-
Gorenstein ring that does not satisfy (dep).

It is claimed in [13, Theorem 1.1] that every generically Gorenstein ring satisfies (tac),
and it is claimed in [13, Corollary 1.3] that every generically Gorenstein ring satisfies (tr).
Here, a generically Gorenstein ring is defined as a ring which is locally Gorenstein on the
associated prime ideals. Since every domain is a generically Gorenstein ring, these claims
turn out to be incorrect in any positive dimension.

2. Comments on proofs of the main results

We give an outline of the proof of Theorem 1, that is, we want to prove that any
Gorenstein local ring satisfying (dep) is AB. Actually, the following more general assertion
holds true.

Theorem 4. Let (R,m, k) be a Cohen–Macaulay local ring of dimension d > 0 with a
canonical module ω. If R satisfies (dep), then for all two finitely generated R-modules M
and N such that Ext≫0

R (M,N) = 0 one has Ext>d
R (M,N) = 0.



Let M be a finitely generated R-module. Take a minimal free resolution · · · ∂3−→ F2
∂2−→

F1
∂1−→ F0 → M → 0 of M . The image of the ith differential map ∂i is called the ith syzygy

of M and denoted by ΩiM (or Ωi
RM to specify the base ring R). We set Ω0M = M and

ΩM = Ω1M .

Sketch of Proof of Theorem 4 Assume that R satisfies (dep). Let n ≥ 0 be an
integer, and let M and N be finitely generated R-modules such that Ext>n

R (M,N) = 0
and ExtnR(M,N) ̸= 0. We claim that if M and N are maximal Cohen–Macaulay R-
modules, then n = 0. If this claim is established, we can replace the two R-modules with
their maximal Cohen–Macaulay approximations to obtain the conclusion of the theorem.
Assume n > 0. Let x = x1, . . . , xd be a system of parameters of R. This is a regular
sequence on K := Ωn−1M . Since Ext>1

R (K,N) = 0 and Ext1R(K,N) ̸= 0, it can be
proved that Ext>d+1

R (K/xK,N) = 0 and Extd+1
R (K/xK,N) ̸= 0. The dth syzygy L =

Ωd
R(K/xK) is a maximal Cohen–Macaulay R-module such that Ext>1

R (L,N) = 0 and
Ext1R(L,N) ̸= 0. As L is locally free on the punctured spectrum of R and d > 0, we
get TorRi (L,Hom(N,ω)) ∼= HomR(Ext

d+i
R (L,N),ER(k)) = 0 for all i > 0, where ER(k)

is the injective hull of k. Since R satisfies (dep), we have depth(L ⊗R HomR(N,ω)) =
depthL + depthHomR(N,ω) − depthR = d, and hence L ⊗R HomR(N,ω) is maximal
Cohen–Macaulay. We can see that ExtiR(L,N) = 0 for all integers 1 ≤ i ≤ d. This
contradicts the fact that Ext1R(L,N) ̸= 0; recall that d > 0. Thus we must have n = 0.
The claim follows. □

We state some comments on the second part of Theorem 2. The key point is the
following characterization of local rings of positive depth that satisfy (tr).

Theorem 5. Let R be a local ring with depthR > 0. Then the following are equivalent.

(1) Every finitely generated R-module M with Ext>0
R (M,R) = 0 is totally reflexive,

that is, R satisfies (tr).
(2) Every finitely generated R-module M with Ext>0

R (M,R) = 0 satisfies depthM > 0.

To show the theorem above, we need the following lemma. For a finitely generated
module M over a ring R we denote by GdimR M the G-dimension of M . Note that M is
totally reflexive if and only if GdimR M ≤ 0. We denote by modR the category of finitely
generated R-modules. A resolving subcategory of modR is by definition a full subcategory
of modR containing R and closed under direct summands, extensions and syzygies. For
the details of G-dimension and resolving subcategories, we refer the reader to [2].

Lemma 6. Let (R,m) be a local ring with depthR > 0. Let M be a finitely generated R-
module such that depthM > 0 and GdimM = ∞. Then there exists a finitely generated
R-module N such that N is locally free on the punctured spectrum of R and contained in
the smallest resolving subcategory of modR containing the module M , depthN > 0 and
GdimN = ∞.

We denote by projR the full subcategory of modR consisting of projective modules,
and by (−)∗ the R-dual functor HomR(−, R). The first cosyzygy Ω−1M of a finitely
generated R-moduleM is defined as the cokernel of a left projR-approximation (or projR-
preenvelope) f : M → F , that is, f is a morphism in modR with F projective such that



f ∗ : F ∗ → M∗ is surjective. For an integer n ≥ 2 the nth cosyzygy Ω−nM is defined
inductively by Ω−nM = Ω−1(Ω−(n−1)M).

Proof of Theorem 5 Assume that (1) does not hold but (2) does. Then there is an R-
module M which is not totally reflexive but satisfies Ext>0

R (M,R) = 0, so GdimM = ∞.
By (2) we have depthM > 0. Also, M belongs to the full subcategory X of modR
consisting of modules X with Ext>0

R (X,R) = 0. As X is resolving, by Lemma 6 we find
an R-module N ∈ X which is locally free on the punctured spectrum, depthN > 0 and
GdimN = ∞. Then there is an exact sequence 0 → N → F 0 → Ω−1N → 0 with F 0 free.
This exact sequence implies GdimΩ−1N = ∞ and Ext>0(Ω−1N,R) = 0. By (2) again we
have depthΩ−1N > 0 and get an exact sequence 0 → Ω−1N → F 1 → Ω−2N → 0 with
F 1 free. Iterating this procedure yields an exact sequence

0 → N → F 0 ∂1

−→ F 1 ∂2

−→ F 2 ∂3

−→ · · ·
such that for each i > 0 we have that F i is free, the image of ∂i is Ω−iN , and Ext>0(Ω−iN,R) =
0. Applying the functor (−)∗ gives rise to an exact sequence · · · → (F 2)∗ → (F 1)∗ →
(F 0)∗ → N∗ → 0, and applying (−)∗ again restores the original exact sequence. This
shows that N is totally reflexive. However, this contradicts the fact that GdimN = ∞.
We now conclude that (2) implies (1). □

No counterexample has been found so far to each of the implication (tac) ⇒ (tr). Once
a counterexample of an artinian equicharacteristic local ring is found, one can lift it to a
counterexample of a (unique factorization) domain with an isolated singularity. Finally,
we give some comments on [13].

Remark 7. Theorem 3 says that the assertions of [13, Theorem 1.1 and Corollary 1.3]
are both incorrect. In their proofs, [13, Theorem 8.5] plays an essential role, and the
authors wonder if the proof of [13, Theorem 8.5] contains gaps. On the other hand, the
ring R produced by Theorem 3 is not excellent. So, even if the proof of [13, Theorem 8.5]
contains gaps, the assertion itself may be true in the case where the base ring is excellent.
However, the theory developed in [13] does not seem to be related to the excellence of
the base ring, so even if the assertion of [13, Theorem 8.5] is true for excellent rings, we
would need another approach to show it.
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