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Abstract. For an algebraically closed field k of positive characteristic p and a finite
group G, we give a sufficient condition for a group algebra kG to be τ -tilting finite in
terms of a p-hyperfocal subgroup of G. Moreover, we show that this condition is also
necessary in some cases.

1. Introduction

This report is based on [10]. Throughout this report, k denotes an algebraically closed
field and algebras mean finite dimensional k-algebras. Modules are assumed to be left
and finitely generated.

τ -Tilting finiteness of algebras, introduced by Demonet–Iyama–Jasso in [7], has been
actively studied in recent years since it relates to many properties concerning certain
finiteness: brick finiteness, functorially finiteness of all the torsion classes, completeness
of g-fans, and silting-discreteness (see [7] for the first two, [5, 7] for the third, and [4] for
the last). Especially in the study of symmetric algebras, τ -tilting finiteness is considered
to be important because it is conjectured that over symmetric algebras τ -tilting finiteness
is equivalent to tilting-discreteness, i.e., the property that any tilting complexes can be
obtained from the given tilting complex by iterative irreducible mutations (see [2, 3]).
Indeed, this conjecture was verified for symmetric algebras of polynomial growth [12] and
Brauer graph algebras [1]. For these reasons, it is significant to consider τ -tilting finiteness
of algebras, particularly symmetric algebras.

In this report, we shall consider τ -tilting finiteness of group algebras. Assume that k
has a positive characteristic p and let G be a finite group. Given the classical result that
the representation type of a group algebra kG is determined by a p-Sylow subgroup of G,
it is natural to ask what structure of G controls τ -tilting finiteness of kG. As a positive
answer to this question, we will give a sufficient condition for kG to be τ -tilting finite
in terms of a so-called p-hyperfocal subgroup of G. Furthermore, we will show that this
condition is also necessary in the case G is a semidirect product P ⋊ H of an abelian
p-group P and an abelian p′-group H, where a p′-group means a finite group of order not
divisible by p.
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2. Main results

2.1. τ-Tilting finite algebras. First, we recall the definition of τ -tilting finite algebras.
Let Λ be an algebra. We say that Λ is τ -tilting finite if one of the following equivalent
conditions is satisfied:

• There exist only finitely many isoclasses of basic support τ -tilting modules over Λ.
• There exist only finitely many isoclasses of bricks over Λ.
• Every torsion class in the module category over Λ is functorially finite.

See [7] for more details. For simplicity, we shall only define bricks. We say that a Λ-module
M is a brick if EndΛ(M) is isomorphic to k. It can be easily shown that every surjective
algebra homomorphism reflects τ -tilting infiniteness. Hence, it is the basic method of
proving τ -tilting infiniteness to construct a quotient algebra already known to be τ -tilting
infinite, such as a path algebra of an extended Dynkin quiver.

2.2. A sufficient condition for τ-tilting finiteness of kG. In the rest of this section,
we assume that k has a positive characteristic p and let G be a finite group. We shall give
a sufficient condition for kG to be τ -tilting finite in terms of a p-hyperfocal subgroup of
G.

Definition 1. A p-hyperfocal subgroup of G is the intersection of a p-Sylow subgroup
of G and Op(G), where Op(G) denotes the smallest normal subgroup of G such that its
quotient is a p-group.

Proposition 2 ([10, Proposition 2.15]). Let R be a p-hyperfocal subgroup of G. Then kG
is τ -tilting finite if one of the following holds:

(1) R is cyclic.
(2) p = 2 and R is isomorphic to a dihedral, semidihedral, or generalized quaternion

group.

Note that Proposition 2 is a direct consequence of [11, Theorem 3.10] and [8, Theorem
16]. We expect that the converse of Proposition 2 also holds.

2.3. The main theorem. In this subsection, we consider the case whereG is a semidirect
product P ⋊ H of an abelian p-group P and an abelian p′-group H. We shall give a
necessary and sufficient condition for τ -tilting finiteness of kG in terms of the (unique)
p-hyperfocal subgroup R of G, which verifies that the converse of Proposition 2 holds in
this case.

Theorem 3 ([10, Theorem 3.10]). Let P be an abelian p-group, H be an abelian p′-group
acting on P , and G := P ⋊H. Denote by R the p-hyperfocal subgroup of G. Then a group
algebra kG is τ -tilting finite if and only if one of the following holds:

(1) p = 2 and R is trivial or isomorphic to C2 × C2.
(2) p is odd and R is cyclic.

Remark 4. In the setting of Theorem 3, the converse of Proposition 2 holds since C2×C2

is exactly the dihedral group of order 4. We should also remark that the p-hyperfocal
subgroup R of G cannot be nontrivial and cyclic when p = 2.



3. Sketch of the proof of Theorem 3

In this section, we keep the notation and the setting in subsection 2.3. We only need to
show the “only if” part of Theorem 3 thanks to Proposition 2. In the setting of Theorem
3, the Gabriel quiver and relations of kG are completely known. We will show τ -tilting
infiniteness of kG by constructing a surjective algebra homomorphism from kG to a path

algebra of an extended Dynkin quiver of type Ã.

3.1. The Gabriel quiver and relations of kG. By [9, Theorem 2.2 in Chapter 5], we
can decompose P into H-invariant homocyclic summands, that is, we can assume that
P =

∏
i≥1(Cpi)

ti for some ti ≥ 0 and h(Cpi)
tih−1 = (Cpi)

ti for all h ∈ H and i ≥ 1. Then

let Pi := (Cpi)
ti ≤ P and we regard Mi := JkPi

/J2
kPi

as a ti-dimensional kH-module by
conjugation. We denote by IrrH the set of ordinary irreducible characters of H and by
Sχ the simple kH-module corresponding to χ ∈ IrrH.

Proposition 5 (See [6] or [10, Proposition 3.3]). Let Mi
∼= ⊕ti

j=1Sχij
as a kH-module for

some χij ∈ IrrH. Then kG is isomorphic to kQ/I, where a quiver Q and an admissible
ideal I are given by the following:

• The vertex set of Q is IrrH.
• The arrow set of Q is {αijλ : λ → χij ⊗ λ}i≥1, 1≤j≤ti, λ∈IrrH .

• I = ⟨αijαi′j′ − αi′j′αij, α
pi

ij | i, i′ ≥ 1, 1 ≤ j ≤ ti, 1 ≤ j′ ≤ ti′⟩, where the relations
mean that the following equations hold for all λ ∈ IrrH:

(λ
αi′j′λ // χi′j′ ⊗ λ

αij,χi′j′⊗λ

// χij ⊗ χi′j′ ⊗ λ) = (λ
αijλ // χij ⊗ λ

αi′j′,χij⊗λ
// χi′j′ ⊗ χij ⊗ λ),

(λ
αijλ // χij ⊗ λ

αij,χij⊗λ
// χ⊗2

ij ⊗ λ
α
ij,χ⊗2

ij
⊗λ

// · · ·
α
ij,χ

⊗(pi−1)
ij

⊗λ

// χ⊗pi

ij ⊗ λ) = 0.

Example 6. Let p = 3, P := (C3)
2×C9 with generators a, b ∈ (C3)

2, c ∈ C9, andH := C4

with a generator d. Recall that H has four irreducible characters χi (i = 0, 1, 2, 3) sending
d to ζ i, where ζ denotes a primitive fourth root of unity in k. We define G := P ⋊H via
the following action of H on P :

dad−1 = ab, dbd−1 = ab2, dcd−1 = c8,

which is represented by the following matrix with respect to the generators a, b, c:1 1 0
1 2 0
0 0 8

 .

Hence the action of d ∈ H on M1⊕M2 is represented by the following matrix with respect
to a k-basis {1− a+ J2

kP , 1− b+ J2
kP , 1− c+ J2

kP}:1 1 0
1 2 0
0 0 2

 ,



which is congruent over k to the matrixζ 0 0
0 ζ3 0
0 0 ζ2

 .

Therefore, by Proposition 5, kG is isomorphic to kQ/I, where

χ0

α10

��

α20

��

α30 // χ3
α13

oo

α23

��

α33

��

Q :=

χ1

α11 //

α21

@@

α31

OO

χ2

α12

OO

α22

^^

α32

oo ,

I := ⟨αj,i+lαil − αi,j+lαjl, α
3
1l, α

3
3l, α

9
2l | i, j, l ∈ Z/4Z⟩.

3.2. Sketch of the proof. Let R be the p-hyperfocal subgroup of G. Then the crucial
fact is that as far as we consider τ -tilting finiteness of kG, we can assume P = R (see [10,
Corollary 3.6 and Lemma 3.9]). Moreover, the Gabriel quiver of kG has no loops in the
case P = R (see [10, Lemma 3.7]).

If p is odd and P = R has rank ≥ 2, then we can take distinct pairs (i, j) ̸= (i′, j′)
(i, i′ ≥ 1, 1 ≤ j ≤ ti, 1 ≤ j′ ≤ ti′) and consider the following sequence of arrows in the
Gabriel quiver Q of kG starting from any λ ∈ IrrH:

λ
αij // χij ⊗ λ χ∗

i′j′ ⊗ χij ⊗ λ
αi′j′oo

αij // · · · ,

where χ∗ means the dual character of χ ∈ IrrH. Since Q has no loops, we obtain a zigzag
cycle γ of length ≥ 2 with distinct vertices as shown in the following figure.

· ·
ai′j′oo

��

· ·
ai′j′oo

��

λ

aij

;;

ai′j′
##

... λ

aij

;;

...

��
· ·aij
oo

OO

·
aij

cc

ai′j′
// ·

zigzag cycle of even length zigzag cycle of odd length

Then by annihilating all vertices and arrows outside γ, we can obtain from kG a quotient

path algebra of an extended Dynkin quiver of type Ã since a2ij does not vanish after taking
the quotient (see [10, Proposition 2.18] for more details).

Example 7. Let p = 5, P := C5×C5 with generators a, b, and H := C3 with a generator
c. We define G := P ⋊H via the following action of H on P :

cac−1 = b, cbc−1 = a−1b−1.



Then by Proposition 5, kG is isomorphic to kQ/I, where

χ0

α

��

β

��

Q :=

χ1

α //

β

FF

χ2

α

XX

β
oo ,

I := ⟨αβ − βα, α5, β5⟩.
We can obtain a quotient path algebra of the following extended Dynkin quiver of type

Ã2:
χ0

α

��
χ1 χ2.

α

YY

β
oo

If p = 2, then the above argument does not work because a2ij can be zero. In the proof
of [10, Theorem 3.10], we construct a zigzag cycle of even length by considering the action
of the Frobenius map on the vertex set of the Gabriel quiver. We omit the detail since it
is just a case-by-case proof.
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