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Abstract. A uniformly dominant local ring is defined as a commutative noe-
therian local ring with an integer r such that the residue field is built out of
any nonzero object in the singularity category by direct summands, shifts and at
most r mapping cones. In this article, we provide sufficient conditions for uniform
dominance, by which it turns out that Burch rings and local rings with quasi-
decomposable maximal ideal are uniformly dominant. For a uniformly dominant
excellent equicharacteristic isolated singularity, we also give an upper bound of the
Orlov spectrum of the singularity category.

Throughout the present article, let R be a commutative noetherian local ring with
unique maximal ideal m and residue field k = R/m. All subcategories are assumed
to be strictly full.

First of all, we want to state a celebrated theorem of Ballard, Favero and Katzarkov
[2]. For this purpose, we need to recall several definitions.

Definition 1. (1) Assume that R is complete and equicharacteristic (i.e., the char-
acteristics of R and k are equal). Then by Cohen’s structure theorem R is
isomorphic to a factor ring

S = k[[x1, . . . , xn]]/(f1, . . . , fc)

of a formal power series ring over the field k. Then the Jacobian ideal of R is
defined as the preimage in R of the ideal of S generated by h× h minors of the
Jacobian matrix

∂(f1, . . . , fc)

∂(x1, . . . , xn)
=

(
∂fi
∂xj

)
1⩽i⩽n, 1⩽j⩽n

where h = ht(f1, . . . , fc) = n− dimS. We denote this ideal of R by jacR.
(2) We say that R is a hypersurface if the (m-adic) completion of R is isomorphic to

a factor ring S/(f) of a regular local ring S by a principal ideal (f).

The detailed version [8] of this article has been submitted for publication elsewhere.



(3) We say that R has an isolated singularity if for every prime ideal p of R that is
different from m, the localization Rp of R at p is a regular local ring.

(4) For a finitely generated R-module M , we denote by ℓℓ(M) the Loewy length of
M , that is,

ℓℓ(M) = inf{n ∈ N | mnM = 0}.
(5) The singularity category Dsg(R) of R is defined to be the Verdier quotient of

the bounded derived category Db(modR) of finitely generated R-modules by
the bounded homotopy category Kb(projR) of finitely generated projective R-
modoules. Thus, by definition, the singularity category Dsg(R) is a triangulated
category.

(6) Let T be a triangulated category.
(a) For two subcategories X ,Y of T we denote by X ∗ Y the subcategory of T

consisting of all objects E that fits into an exact triangle of the form

X → E → Y → X[1],

where X and Y are objects in X and Y , respectively.
(b) Let C be a subcategory of T . We set ⟨C⟩0 = 0 and denote by ⟨C⟩ the smallest

subcategory of T which contains all objects in C and is closed under taking
finite direct sums, direct summands and shifts. For an integer r ⩾ 1 we set

⟨C⟩r = ⟨⟨C⟩r−1 ∗ ⟨C⟩⟩.

When C consists of a single object X, we simply write ⟨X⟩r instead of ⟨C⟩r.
(c) For an object T of T , we set

gtT = inf{n ∈ Z⩾−1 | ⟨T ⟩n+1 = T },

and call it the generation time of T in T .
(d) We set

Ospec T = {gtT | T ∈ T , gtT < ∞},
and call it the Orlov spectrum of T .

(e) The (Rouquier) dimension dim T of T and the ultimate dimension udim T
of T are defined by:

dim T = inf(Ospec T ), udim T = sup(Ospec T ).

Now we can state the theorem of Ballard, Favero and Katzarkov which is mentioned
above.

Theorem 2 (Ballard–Favero–Katzarkov [2]). Let R be a complete equicharacteristic
local hypersurface of (Krull) dimension d such that k is algebraically closed and of
characteristic 0. Suppose that R has an isolated singularity. Put J = jacR and



l = ℓℓ(R/J). Then, for all the nonzero objects X of the singularity category Dsg(R),
one has

gtX ⩽ 2(d+ 2)l − 1,

that is, the equality Dsg(R) = ⟨X⟩2(d+2)l holds. In particular, one has

udimDsg(R) ⩽ 2(d+ 2)l − 1,

and OspecDsg(R) is a finite set.

Here we introduce the notion of a uniformly dominant local ring.

Definition 3. We put

dx(R) = inf{n ∈ Z⩾−1 | k ∈ ⟨X⟩n+1 for all nonzero objects X of Dsg(R)}
and call this the dominant index of R. We say that R is a uniformly dominant local
ring if it has finite dominant index.

When the local ring R is uniformly dominant, it is a dominant local ring in the sense
of [7], whence R is Tor-friendly and Ext-friendly in the sense of [1], in particular, the
Auslander–Reiten conjecture holds for R, and furthermore, the thick subcategories
of Dsg(R) are classified completely under some assumptions. We refer the reader to
[7] for the details.
To state our main result, we need to recall some more definitions.

Definition 4. (1) Let M be a finitely generated R-module.
(a) We denote by depthM the depth of M , namely,

depthM = inf{n ∈ N | ExtnR(k,M) ̸= 0}.
(b) We denote by ν(M) the minimal number of generators of M , namely,

ν(M) = dimk(M/mM).

(c) For each n ∈ N, we denote by ΩnM the nth syzygy of M in a minimal free
resolution of M . Note that ΩnM is uniquely determined up to isomorphism,
since so is a minimal free resolution of M .

(2) We denote by edimR the embedding dimension of R, that is to say,

edimR = ν(m) = dimk(m/m2).

(3) We denote by annDsg(R) the annihilator of Dsg(R), that is,

annDsg(R) =

{
a ∈ R

∣∣∣∣ the multiplication morphism

X
a−→ X is zero in Dsg(R)

}
.

It is easy to observe that annDsg(R) is an ideal of R.

Now we can state the main result of this article.



Theorem 5. Let R be a local ring of depth t. Put

s =

{
1 if t = 0,

2edimR if t > 0.

Then the following statements hold true.

(1) (a) If the syzygy Ωt+1k is a direct summand of a finite direct sum of copies of
Ωt+2k, then R is a uniformly dominant local ring with

dx(R) ⩽ s(2t+ 3)− 1.

(b) If the syzygy Ωtk is a direct summand of a finite direct sum of copies of
Ωt+2k, then R is a uniformly dominant local ring with

dx(R) ⩽ s(2t+ 4)− 1.

(2) Assume that R is excellent (e.g., complete), equicharacteristic and has an isolated
singularity. Let J be an ideal of R such that

mr ⊆ J ⊆ annDsg(R)

for some integer r > 0. Put

m = ν(J), l = ℓℓ(R/J).

Suppose that R is uniformly dominant with dominant index n. Then every
nonzero object X of Dsg(R) is such that

gtX ⩽ (n+ 1)(m− t+ 1)l − 1.

In particular, the Orlov spectrum OspecDsg(R) is a finite set, and

udimDsg(R) ⩽ (n+ 1)(m− t+ 1)l − 1.

Here it is necessary to recall two definitions.

Definition 6. (1) We say that R is a Burch ring if there exist an R̂-regular sequence
x = x1, . . . , xn, a regular local ring S with maximal ideal n, and an ideal I of S
such that

R̂/(x) ∼= S/I, n(I : n) ̸= nI.

Here, R̂ stands for the completion of R, while I : n = {a ∈ S | na ⊆ I}.
(2) We say that m is quasi-decomposable if there exists an R-regular sequence x =

x1, . . . , xn in m such that m/(x) is decomposable as an R-module.

It is a basic fact that if a local ring R of depth t is a singular (i.e., non-regular)
hypersurface, then Ωtk is isomorphic to Ωt+2k. Relating to this, Dao, Kobayashi
and Takahashi [3] show that if R is a hypersurface, then it is Burch and that if
R is a singular Burch ring, then Ωtk is a direct summand of Ωt+2k. One can also
show that Ωt+1k is a direct summand of Ωt+2k if m is quasi-decomposable. Thus,



the assumption of Theorem 5(1a) is satisfied if m is quasi-decomposable, and that
of Theorem 5(1b) is satisfied if R is a singular Burch ring, paticularly if R is a
singular hypersurface. As such an ideal J as in Theorem 5(2), one can always take
annDsg(R), and can even take jacR if R is a complete Cohen–Macaulay local ring
and k is perfect. Therefore, Theorem 5 considerably extends Theorem 2 in terms of
providing a finite uniform bound of the generation times of nonzero objects of the
singularity category (the bound is itself looser).
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