Classification of locally free sheaf bimodules of rank 2 over a projective line

Izuru Mori

Shizuoka University, JAPAN

第 56 回環論および表現論シンポジウム Sept. 18 2024, 東京学芸大学

Contents:

- 1 Motivations
- $\fbox{2}$ Commutative \Bbb{P}^1 -bundles (review)
- $\boxed{3}$ Noncommutative \mathbb{P}^1 -bundles
- 4 Classification
- 5 Conjecture (if time permits)

$$k = \overline{k}$$
, char $k = 0$.

X,Y: smooth projective schemes over k.

 $scheme \longrightarrow ring$

 $sheaf \longrightarrow module$

Based on a joint work with Shinnosuke Okawa and Kazushi Ueda (MOU).

1 Motivations

Let A be a noetherian graded algebra.

- ullet $\operatorname{grmod} A$: the category of finitely generated graded right A-modules.
- $\bullet \ \mathrm{GKdim} \ M := \min \left\{ d \in \mathbb{N} \middle| \lim_{n \to \infty} \frac{\sum_{i=0}^n \dim_k M_i}{n^d} \ \mathrm{converges} \right\}.$

For $i \in \mathbb{N}$, $(\operatorname{grmod} A)_i := \{M \in \operatorname{grmod} A \mid \operatorname{GKdim} M \leq i\}$ is a Serre subcategory of $\operatorname{grmod} A$.

 $\operatorname{Proj_{nc}} A := \operatorname{grmod} A/(\operatorname{grmod} A)_0$ is the noncommutative projective scheme associated to A.

 $\operatorname{Proj}_{\operatorname{nc}}A$ is a noncommutative (integral) surface if $\operatorname{GKdim}A=3$ (and A is a domain).

 $\operatorname{Proj_{nc}} A$ and $\operatorname{Proj_{nc}} B$ are birationally equivalent : \iff

- (1) GKdim A = GKdim B = d, and
- (2) $\operatorname{grmod} A/(\operatorname{grmod} A)_{d-1} \cong \operatorname{grmod} B/(\operatorname{grmod} B)_{d-1}$.

Artin's conjecture (1997)

Every noncommutative integral surface ${\cal Z}$ is birationally equivalent to either

- (1) a noncommutative projective plane (classified),
- (2) a noncommutative ruled surface, or
- (3) a noncommutative surface finite over its center.

Aim

To classify noncommutative ruled surfaces $\mathbb{P}_X(\mathcal{E})$:

- (1) Classify commutative curves X (classified).
- (2) Classify locally free sheaf bimodule $\mathcal E$ of rank 2 over each commutative curve X.

Focus on the case $X = \mathbb{P}^1$.

2 Commutative \mathbb{P}^1 -bundles

- ullet $\operatorname{Mod} X$: the category of quasi-coherent sheaves on X.
- $\bullet \mod X$: the category of coherent sheaves on X.

If R is a noetherian commutative ring and $X = \operatorname{Spec} R$, then

- $\operatorname{Mod} X \cong \operatorname{Mod} R$: the category of R-modules.
- ullet $\mod X \cong \mod R$: the category of finitely generated R-modules.

Definition

- (1) Z is a \mathbb{P}^1 -bundle over $X:\iff \exists \mathcal{E}\in \operatorname{mod} X$ locally free of rank 2 s.t. $Z\cong \mathbb{P}_X(\mathcal{E}):=\operatorname{Proj} S_X(\mathcal{E})$ where $S_X(\mathcal{E})$ is the symmetric algebra of \mathcal{E} over X.
- (2) Z is a ruled surface $:\iff Z$ is a \mathbb{P}^1 -bundle over a curve X.
- (3) Z is a Hirzebruch surface $:\iff Z$ is a \mathbb{P}^1 -bundle over \mathbb{P}^1 .

 $\mathcal{E} \in \operatorname{mod} X$ is locally free of rank $2 :\Leftrightarrow \mathcal{E}_p \cong \mathcal{O}_{X,p} \oplus \mathcal{O}_{X,p} \ \forall p \in X$

Example

If $\mathcal{E} = \mathcal{O}_X \oplus \mathcal{O}_X$, then

$$\mathbb{P}_X(\mathcal{E}) := \operatorname{Proj} S_X(\mathcal{O}_X \oplus \mathcal{O}_X) = \operatorname{Proj} \mathcal{O}_X[x,y] \cong X \times \mathbb{P}^1.$$

In particular, if R is a commutative ring, $X = \operatorname{Spec} R$ and $\mathcal{E} = \mathcal{O}_X \oplus \mathcal{O}_X = R \oplus R$, then

$$\mathbb{P}_X(\mathcal{E}) := \operatorname{Proj} S_X(\mathcal{O}_X \oplus \mathcal{O}_X) = \operatorname{Proj} S_R(R \oplus R) \cong \operatorname{Proj} R[x, y].$$

 $\mathcal{L}\in \operatorname{mod} X$ is invertible $:\iff -\otimes_X \mathcal{L}:\operatorname{Mod} X o \operatorname{Mod} X$ is an autoequivalence

 $\operatorname{Pic} X := \{ \mathcal{L} \in \operatorname{mod} X \mid \mathcal{L} \text{ is invertible} \}$

Theorem

Let $\mathcal{E}, \mathcal{E}' \in \operatorname{mod} X$ be locally free of rank 2.

 $\exists \mathcal{L} \in \operatorname{Pic} X \text{ s.t. } \mathcal{E}' \cong \mathcal{E} \otimes_X \mathcal{L} \iff \mathbb{P}_X(\mathcal{E}) \cong \mathbb{P}_X(\mathcal{E}').$

Lemma

- (1) $\operatorname{Pic} \mathbb{P}^1 = \{ \mathcal{O}_{\mathbb{P}^1}(a) \mid a \in \mathbb{Z} \}.$
- (2) $\mathcal{E} \in \operatorname{mod} \mathbb{P}^1$ is locally free of rank $2 \Longleftrightarrow \exists a, b \in \mathbb{Z}$ s.t. $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$.

Corollary

Z is a Hirzebruch surface $\iff Z \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(d)) \; \exists d \in \mathbb{N}.$

Definition

 $\mathbb{F}_d := \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(d))$: Hirzebruch surface of degree d.

$$\mathbb{F}_0 = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}) \cong \mathbb{P}^1 \times \mathbb{P}^1.$$

3 Noncommutative \mathbb{P}^1 -bundles

Let R, S be commutative rings.

- $\operatorname{Mod} R$: the category of R-modules
- BiMod(R-S): the category of R-S bimodules

There are two ways to characterize an R-S bimodule:

- (a) $\operatorname{BiMod}(R-S) \cong \operatorname{Mod}(R \otimes S) \cong \operatorname{Mod}(\operatorname{Spec}(R \otimes S)) \cong$ $\operatorname{Mod}(\operatorname{Spec} R \times \operatorname{Spec} S)$
- (b) $\operatorname{BiMod}(R-S) \cong \{-\otimes_R M : \operatorname{Mod} R \rightleftarrows \operatorname{Mod} S : \operatorname{Hom}_S(M,-) \}$ adjoint pair of functors

Definition

- (a) Let $\mathcal{E} \in \operatorname{mod}(X \times Y)$, and $W := \operatorname{Supp} \mathcal{E} = \{ p \in X \times Y \mid \mathcal{E}_p \neq 0 \} \subset X \times Y$. \mathcal{E} is a sheaf X-Y bimodule if the restrictions of the projections $u := pr_1|_W : W \to X, v := pr_2|_W : W \to Y$ are both finite.
- (b) ${\mathcal E}$ is an X-Y bimodule if ${\mathcal E}$ is an adjoint pair of functors

$$-\otimes_X \mathcal{E}: \operatorname{Mod} X \rightleftarrows \operatorname{Mod} Y: \mathcal{H}om_Y(\mathcal{E}, -).$$

- $\operatorname{bimod}(X-Y)$: the category of sheaf X-Y bimodules
- $\operatorname{BiMod}(X-Y)$: the category of X-Y bimodules

Theorem [Van den Bergh (2012)]

There exists a fully faithful functor $\operatorname{bimod}(X-Y) \to \operatorname{BiMod}(X-Y)$.

$$\mathcal{E} \mapsto - \otimes_X \mathcal{E} := pr_{2*}(pr_1^*(-) \otimes_{X \times Y} \mathcal{E})$$
 (Fourier-Mukai transform)

Definition

- (1) Z is a noncommutative \mathbb{P}^1 -bundle over $X:\iff \exists \mathcal{E}\in \mathrm{bimod}(X\text{-}X)$ locally free of rank 2 s.t. $Z\cong \mathbb{P}_X(\mathcal{E}):=\mathrm{Proj}_{\mathrm{nc}}S_X(\mathcal{E})$ where $\mathrm{Proj}_{\mathrm{nc}}S_X(\mathcal{E})$ is the noncommutative projective scheme associated to the "noncommutative symmetric algebra" $S_X(\mathcal{E})$ of \mathcal{E} over X.
- (2) Z is a noncommutative ruled surface $:\iff Z$ is a noncommutative \mathbb{P}^1 -bundle over a curve X.
- (3) Z is a noncommutative Hirzebruch surface : $\iff Z$ is a noncommutative \mathbb{P}^1 -bundle over \mathbb{P}^1 .

$$\mathcal{E} \in \operatorname{bimod}(X-X)$$
 is locally free of rank $2 :\iff (\mathcal{O}_X \otimes_X \mathcal{E})_p \cong \mathcal{O}_{X,p} \oplus \mathcal{O}_{X,p} \ \forall p \in X$

Example

The only locally free sheaf of rank 2 on $X = \operatorname{Spec} k$ is k^2 , so the \mathbb{P}^1 -bundle over $X = \operatorname{Spec} k$ is

$$\mathbb{P}_k(k^2) = \operatorname{Proj}_{S_k}(k^2) \cong \operatorname{Proj}_k[x,y] \cong \mathbb{P}^1 \cong \operatorname{Proj}_{\operatorname{nc}}\Pi(\bullet \rightrightarrows \bullet)$$

where $\Pi(ullet \rightrightarrows ullet)$ is the "preprojective algebra" of the 2-Kronecker quiver.

$$S_X(\mathcal{E})\cong\Pi\left(\mathcal{O}_X\stackrel{\mathcal{E}}{ o}\mathcal{O}_X
ight)$$
 is the "preprojective algebra" of a quiver $\mathcal{O}_X\stackrel{\mathcal{E}}{ o}\mathcal{O}_X$

Theorem

Let $\mathcal{E}, \mathcal{E}' \in \operatorname{bimod}(X-X)$ be locally free of rank 2.

 $\exists \mathcal{L}_1, \mathcal{L}_2 \in \operatorname{bimod}(X \text{-} X) \text{ invertible s.t. } \mathcal{E}' \cong \mathcal{L}_1 \otimes_X \mathcal{E} \otimes_X \mathcal{L}_2 \Longrightarrow$

 $\mathbb{P}_X(\mathcal{E}) \cong \mathbb{P}_X(\mathcal{E}')$. (Converse??)

 $\mathcal{L} \in \operatorname{bimod}(X-X)$ is invertible $:\iff -\otimes_X \mathcal{L} : \operatorname{Mod} X \to \operatorname{Mod} X$ is an autoequivalence

4 Classification

Setup

 $\mathcal{E} \in \operatorname{bimod}(X-Y)$ locally free of rank 2, $\iota: W := \operatorname{Supp} \mathcal{E} \to X \times Y$ embedding, $u := pr_1|_W: W \to X, v := pr_2|_W: W \to Y.$

ullet $\operatorname{CM}(W) := \{ \mathcal{U} \in \operatorname{mod} W \mid \mathcal{U} \text{ is maximal Cohen-Macaulay} \}$

Lemma

 $\exists ! \mathcal{U} \in \mathrm{CM}(W) \text{ s.t. } \iota_* \mathcal{U} \cong \mathcal{E}.$

Aim

Classify $(W, \mathcal{U} \in CM(W))$ instead of $\mathcal{E} \in bimod(X-Y)$.

Theorem [MOU]

If $\mathcal{U} \in \mathrm{CM}(W)$ such that $\iota_*\mathcal{U} \cong \mathcal{E}$, then one of the following cases occur:

W	u, v	\mathcal{U}	
integral	u,v: isom.	$\operatorname{rank} \mathcal{U} = 2$	
integral	$\deg u = \deg v = 2$	$\operatorname{rank} \mathcal{U} = 1$	
$W=W_1\cup W_2$ reduced	$u _{W_i}, v _{W_i}$: isom.	$\operatorname{rank}\left(\mathcal{U} _{W_i}\right) = 1$	
irreducible, non-reduced	$u _{W_{red}}, v _{W_{red}}$: isom.	$rank (\mathcal{U} _{W_{red}}) = 1$	

Except for the second case, $X \cong Y$.

From now on, we focus on the case $X=Y=\mathbb{P}^1$.

For $W, W' \subset \mathbb{P}^1 \times \mathbb{P}^1$, we define $W \sim W' :\iff \exists \tau_1, \tau_2 \in \operatorname{Aut}\mathbb{P}^1 \text{ s.t. } (\tau_1 \times \tau_2)(W) = W'.$

Lemma

Let $\mathcal{E} \in \operatorname{bimod}(\mathbb{P}^1 - \mathbb{P}^1)$ be locally free of rank 2, $W = \operatorname{Supp} \mathcal{E} \subset \mathbb{P}^1 \times \mathbb{P}^1$. $W' \sim W \Longrightarrow \exists \mathcal{E}' \in \operatorname{bimod}(\mathbb{P}^1 - \mathbb{P}^1)$ locally free of rank 2 s.t.

$$\operatorname{Supp} \mathcal{E}' = W' \text{ and } \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}').$$

Aim

To classify noncommutative Hirzebruch surfaces $\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$:

- (1) Classify $W \subset \mathbb{P}^1 \times \mathbb{P}^1$ up to \sim .
- (2) Classify $\mathcal{U} \in \mathrm{CM}(W)$ such that $\iota_*\mathcal{U} \in \mathrm{bimod}(\mathbb{P}^1 \times \mathbb{P}^1)$ is locally free of rank 2 for each W.

Theorem [Patrick (1997), MOU]

 $\forall \mathcal{E} \in \operatorname{bimod}(\mathbb{P}^1\text{-}\mathbb{P}^1)$ locally free of rank 2, $W = \operatorname{Supp} \mathcal{E} \subset \mathbb{P}^1 \times \mathbb{P}^1$ is a Cartier divisor of bidegree (1,1) or (2,2). In fact, it is equivalent to one of the following types:

Type P Type EC Type NC Type CC Type S Type T Type WL

If W is not of Type P, then $\mathcal{U} \in \operatorname{Pic} W \subset \operatorname{CM}(W) \Rightarrow \iota_* \mathcal{U} \in \operatorname{bimod}(\mathbb{P}^1 - \mathbb{P}^1)$ is locally free of rank 2.

Type	EC	NC	CC	S	T	WL
$\operatorname{Pic} W$	$W \times \mathbb{Z}$	$k^{\times} \times \mathbb{Z}$	$k \times \mathbb{Z}$	$k^{\times} \times \mathbb{Z}$	$k \times \mathbb{Z}$	$k \times \mathbb{Z}$

Type P

Since $W \sim \Delta_{\mathbb{P}^1} := \{(p,p) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid p \in \mathbb{P}^1\}, \, \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \cong \mathbb{F}_d \, \exists d \in \mathbb{N}$ (commutative Hirzebruch surface)

For the rest of the types, we define the non-invertible locus of $\mathcal{U} \in \mathrm{CM}(W)$ by

$$\operatorname{Ninv}(\mathcal{U}) = \{ p \in W \mid \mathcal{U}_p \ncong \mathcal{O}_{W,p} \} \subset \operatorname{Sing}(W).$$

We classify $\mathcal{U} \in CM(W)$ by analyzing $IndCM(\mathcal{O}_{W,n})$ (or $IndCM(\widehat{\mathcal{O}}_{W,n})$) for $p \in \text{Ninv}(\mathcal{U})$.

Type EC (smooth)

Since $\operatorname{Sing}(W) = \emptyset$, $\mathcal{U} \in \operatorname{CM}(W) = \operatorname{Pic} W \cong W \times \mathbb{Z}$.

Type NC, CC, S, T (singular, reduced)

For $p \in \text{Sing}(W)$, $\widehat{\mathcal{O}_{W,n}} \cong k[[x,y]]/(y^2-x^{n+1})$ for n=1,2,3. Using the classifications of $\operatorname{IndCM}(\mathcal{O}_{W,p})$, we can show that $\mathcal{U}_p \cong \operatorname{End}_{\mathcal{O}_{W,p}}(\mathcal{U}_p)$ viewed as an $\operatorname{End}_{\mathcal{O}_{W_n}}(\mathcal{U}_p)$ -module.

Theorem [MOU]

If $\mathcal{U} \notin \operatorname{Pic} W$, then $\exists \mathcal{U} \in \operatorname{Pic} W$ s.t. $\nu_* \mathcal{U} \cong \mathcal{U}$ where $\nu: W := Spec \ \mathcal{E}nd_W(\mathcal{U}) \to W.$

Туре	\widetilde{W}	$\operatorname{Pic}\widetilde{W}$
NC, CC	\mathbb{P}^1	\mathbb{Z}
S, T	$\mathbb{P}^1 \cup \mathbb{P}^1$	$\mathbb{Z} \times \mathbb{Z}$
S, T	$\mathbb{P}^1\sqcup\mathbb{P}^1$	$\mathbb{Z} \times \mathbb{Z}$

Type WL (non-reduced)

For $p \in \mathrm{Sing}(W) = W$, $\mathcal{O}_{W,p} \cong k[x,y]_{(x)}/(y^2)$. Using the classification of $\mathrm{IndCM}(\mathcal{O}_{W,p})$, we can show that $\mathcal{U}_p \cong (x^n,y) \lhd k[x,y]_{(x)}/(y^2)$ for some $n \in \mathbb{N}$.

Theorem [MOU]

 $\sharp(\operatorname{Ninv}(\mathcal{U}))<\infty$ and $\exists\mathcal{L}\in\operatorname{Pic}W\cong k\times\mathbb{Z}$ s.t.

$$0 \to \mathcal{U} \to \mathcal{L} \to \mathcal{O}_{\mathrm{Ninv}(\mathcal{U})} \to 0$$

is exact.

5 Conjecture

Definition

Z is a q- \mathbb{F}_d (noncommutative Hirzebruch surface of degree d): \Longrightarrow $Z\cong\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})\ \exists \mathcal{E}\in \mathrm{bimod}(\mathbb{P}^1-\mathbb{P}^1)\ \mathrm{s.t.}$ $\mathcal{O}_{\mathbb{P}^1}(k)\otimes_{\mathbb{P}^1}\mathcal{E}\cong\mathcal{O}_{\mathbb{P}^1}(k)\oplus\mathcal{O}_{\mathbb{P}^1}(k+d)\ \forall k\in\mathbb{Z}.$

Conjecture (next year?)

Z is q- $\mathbb{F}_0 \iff Z \cong \operatorname{Proj_{nc}} A$ where A is an AS-regular algebra of dimension 3 and of Gorenstein parameter 2 over the path algebra $A_0 = k(\bullet \rightrightarrows \bullet)$ of the 2-Kronecker quiver??

Example

If A is an AS-regular algebra of dimension 2 and of Gorenstein parameter 1 over $A_0 = k(\bullet \rightrightarrows \bullet)$, then $A \cong \Pi(\bullet \rightrightarrows \bullet)$, so $\operatorname{Proj}_{\operatorname{nc}} A \cong \operatorname{Proj}_{\operatorname{nc}} \Pi(\bullet \rightrightarrows \bullet) \cong \mathbb{P}^1$.

Theorem [MOU]

There exists a semi-orthogonal decomposition

$$\mathcal{D}^b(\operatorname{mod} \mathbb{P}_{\mathbb{P}^1}(\mathcal{E})) = \langle \mathcal{D}^b(\operatorname{mod} \mathbb{P}^1), \mathcal{D}^b(\operatorname{mod} \mathbb{P}^1) \rangle$$

with the "dual gluing functor" $-\otimes_{\mathbb{P}^1}^{\mathbf{L}} \mathcal{E}: \mathcal{D}^b(\operatorname{mod}\mathbb{P}^1) \to \mathcal{D}^b(\operatorname{mod}\mathbb{P}^1).$

Conjecture (in 2 years?)

$$\mathcal{D}^b(\operatorname{mod}\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})) \cong \mathcal{D}^b\left(\operatorname{mod}\begin{pmatrix}\mathcal{O}_{\mathbb{P}^1} & \mathcal{E}\\ 0 & \mathcal{O}_{\mathbb{P}^1}\end{pmatrix}\right)??$$

Example (Beilinson)

$$\mathcal{D}^{b}(\operatorname{mod} \mathbb{P}^{1}) \cong \langle \mathcal{D}^{b}(\operatorname{mod} k), \mathcal{D}^{b}(\operatorname{mod} k) \rangle$$
$$\cong \mathcal{D}^{b}(\operatorname{mod} k(\bullet \rightrightarrows \bullet)) \cong \mathcal{D}^{b}\left(\operatorname{mod} \binom{k \quad k^{2}}{0 \quad k}\right).$$