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• k: an algebraically closed field of characteristic 0.
• A: a connected graded algebra over k, finitely generated in degree 1.

A = k ⊕A1 ⊕A2 ⊕ · · · , k ∼= A/A≥1: a graded right A-module.

A = T (A1)/(R): a quotient of the tensor algebra T (A1) of A1.

If {x1, . . . , xn} is a basis for A1, then A = k⟨x1, . . . , xn⟩/(R).

• Pn−1: the n− 1 dimensional projective space over k (n ≥ 2).

Definition 1.1 (Artin-Schelter, 1987)

A connected graded algebra A is called a d-dimensional Artin-Schelter
regular (AS-regular) algebra if

1 gldimA = d < ∞,

2 ExtiA (k,A) ∼=

{
k (i = d)

0 (i ̸= d).
(Gorenstein condition)

Remark

If A is commutative, then
A: d-dimensional AS-regular algebra ⇔ A ∼= k[x1, . . . , xd].
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• A: 0-dimensional AS-regular algebra ⇐⇒ A ∼= k.
• A: 1-dimensional AS-regular algebra ⇐⇒ A ∼= k[x].
• A: 2-dimensional AS-regular algebra ⇐⇒ A is isomorphic to
k⟨x, y⟩/(xy − λyx) or k⟨x, y⟩/(xy − yx− x2) where 0 ̸= λ ∈ k
([Artin-Schelter, 1987]).

• ([Artin-Schelter, 1987]) Every 3-dimensional AS-regular algebra is
isomorphic to one of the following algebras:

k⟨x, y, z⟩/(f1, f2, f3) or k⟨x, y⟩/(g1, g2)
where f1, f2, f3 ∈ k⟨x, y, z⟩2 (quadratic) and g1, g2 ∈ k⟨x, y⟩3 (cubic).
• ([Artin-Tate-Van den Bergh, 1990]) Every 3-dimensional AS-regular
algebra determines and is determined by a pair (E, σ).

E = P2 or E is a cubic curve in P2 (quadratic).

E = P1 × P1 or E is a curve of bidegree (2, 2) in P1 × P1 (cubic).

• ([Itaba-M., 2021], [Itaba-M., 2022], [M., 2021]) We give a complete list
of defining relations f1, f2, f3 and classify them up to graded algebra
isomorphism and graded Morita equivalence.

• d ≥ 4: Unknown in general.
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Twisted superpotentials

Definition 2.1 ((Bocklandt-Schedler-Wemyss, 2010), (Mori-Smith, 2016))

Let s ∈ N+. Let V be a finite dimensional k-vector space.
Define a linear map ϕ : V ⊗s → V ⊗s by
ϕ(v1 ⊗ v2 ⊗ · · · ⊗ vs−1 ⊗ vs) := vs ⊗ v1 ⊗ · · · ⊗ vs−2 ⊗ vs−1.

1 w ∈ V ⊗s is called a superpotential if ϕ(w) = w.

2 w ∈ V ⊗s is called a twisted superpotential if

(τ ⊗ id⊗s−1)ϕ(w) = w

for some τ ∈ GL(V ).

3 The i-th derivation quotient algebra of w ∈ V ⊗s is defined by

D(w, i) := T (V )/(∂iw)

where ∂iw is the “i-th left partial derivatives” of w (i ≥ 1).
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Example 1

Let V be a k-vector space with basis {x, y, z}. Let
w = xyz + yzx+ zxy − (xzy + yxz + zyx) ∈ k⟨x, y, z⟩3. Since

ϕ(w) = zxy + xyz + yzx− (yxz + zyx+ xzy)

= xyz + yzx+ zxy − (xzy + yxz + zyx) = w,

w = xyz + yzx+ zxy − (xzy + yxz + zyx) is a superpotential.

w = xyz + yzx+ zxy − (xzy + yxz + zyx)

= x(yz − zy) + y(zx− xz) + z(xy − yx)

= x∂xw + y∂yw + z∂zw

∂xw, ∂yw, ∂zw: the left partial derivatives of w w.r.t. x, y, z

D(w, 1) = k⟨x, y, z⟩/(∂xw, ∂yw, ∂zw)
= k⟨x, y, z⟩/(yz − zy, zx− xz, xy − yx) = k[x, y, z].
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Example 2

Let V be a k-vector space with basis {x, y, z}. Let
w = xyz + yzx− zxy + xzy − yxz + zyx ∈ k⟨x, y, z⟩3. Since

ϕ(w) = zxy + xyz − yzx+ yxz − zyx+ xzy

= xyz − yzx+ zxy + xzy + yxz − zyx ̸= w,

w = xyz + yzx− zxy + xzy − yxz + zyx is not a superpotential. If we

set τ :=

1 0 0
0 −1 0
0 0 −1

 ∈ GL3(k), then

(τ ⊗ id⊗ id)ϕ(w) = xyz + yzx− zxy + xzy − yxz + zyx = w,

so w is a twisted superpotential. In this case,

D(w, 1) = k⟨x, y, z⟩/(yz + zy, zx− xz, xy − yx).
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Theorem 2.2 (Dubois-Violette, 2007)

For every d-dimensional “m-Koszul” AS-regular algebra A of
“Gorenstein parameter” ℓ, there exists a unique twisted superpotential
w ∈ V ⊗ℓ such that A ∼= D(w, ℓ−m).

Theorem 2.3 (Mori-Smith, 2016)

Let w ∈ V ⊗ℓ be a twisted superpotential such that A = D(w, ℓ−m) is a
d-dimensional “m-Koszul” AS-regular algebra of Gorenstein parameter ℓ.
Then A is “Calabi-Yau” if and only if ϕ(w) = (−1)d+1w

Remark

Every 3-dimensional quadratic AS-regular algebra is a 3-dimensional
2-Koszul AS-regular algebra of Gorenstein parameter 3.

Every 3-dimensional cubic AS-regular algebra is a 3-dimensional
3-Koszul AS-regular algebra of Gorenstein parameter 4.

If A = D(w, 1) is a 3-dimensional AS-regular algebra, then
A is “Calabi-Yau” if and only if w is a superpotential.
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Classification of 3-dimensional AS-regular algebras

Theorem 2.4 (Mori-Smith, 2017)

Superpotentials w such that D(w, 1) are 3-dimensional quadratic
AS-regular algebras are classified.

Theorem 2.5 (Mori-Ueyama, 2019)

Superpotentials w such that D(w, 1) are 3-dimensional cubic AS-regular
algebras are classified.

Theorem 2.6 ((Itaba-M., 2021), (Itaba-M., 2022), (M., 2021))

Twisted superpotentials w such that D(w, 1) are 3-dimensional quadratic
AS-regular algebras are classified.

Our aim

Classify twisted superpotentials w such that D(w, 1) are 3-dimensional
cubic AS-regular algebras.
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Geometric algebras

V : a k-vector space with basis {x1, . . . , xn} (n ≥ 2).

A = k⟨x1, . . . , xn⟩/(g1, . . . , gs): a cubic algebra (s ≥ 1).
▶ g1, . . . , gs ∈ k⟨x1, . . . , xn⟩3: homogeneous elements of degree 3.

ΓA := {(p, q, r) ∈ (Pn−1)×3 | g1(p, q, r) = · · · = gs(p, q, r) = 0}.
A pair (E, σ) is called a geometric pair if E ⊂ Pn−1 × Pn−1 is a
projective variety and σ is an automorphism of E satisfying π1σ = π2
where πi : Pn−1 × Pn−1 → Pn−1 is the i-th projection (i = 1, 2).

Definition 3.1 ((M.-Saito, 2023), cf.(Mori, 2006))

A cubic algebra A = k⟨x1, . . . , xn⟩/(g1, . . . , gs) is called geometric if there
exists a geometric pair (E, σ) such that
(G1) ΓA = {(p, q, (π2σ)(p, q)) ∈ (Pn−1)×3 | (p, q) ∈ E},
(G2) (g1, . . . , gs)3 = {f ∈ k⟨x1, . . . , xn⟩3 | f(p, q, (π2σ)(p, q)) = 0, ∀(p, q) ∈ E}.
In this case, we write A = A(E, σ) and E is called the point scheme of A.
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Example 1

Let A = k⟨x, y⟩/(xy2 − y2x, x2y − yx2) and
p = (p1, p2), q = (q1, q2), r = (r1, r2) ∈ P1. Then

(xy2 − y2x)(p, q, r) = p1q2r2 − p2q2r1 = (p1r2 − p2r1)q2,

(x2y − yx2)(p, q, r) = p1q1r2 − p2q1r1 = (p1r2 − p2r1)q1.

It follows that

(p, q, r) ∈ ΓA ⇐⇒ r = p.

We define an automorphism of P1 × P1, denoted by ν, by ν(p, q) = (q, p).
In this case, we have that

ΓA = {(p, q, (π2ν)(p, q)) ∈ P1 × P1 × P1 | (p, q) ∈ P1 × P1}.
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Example 2

Let A = k⟨x, y⟩/(xy2 − y2x, x2y − yx2) and p, q, r ∈ P1.
Since (p, q, r) ∈ ΓA ⇐⇒ r = p, it is clear that

(xy2 − y2x, x2y − yx2)3 ⊂ {f ∈ k⟨x, y⟩3 | f(p, q, p) = 0, ∀p, q ∈ P1}.

Conversely, let g ∈ {f ∈ k⟨x, y⟩3 | f(p, q, p) = 0, ∀p, q ∈ P1} and write

g = a1x
3 + a2x

2y + a3xyx+ a4yx
2 + a5xy

2 + a6yxy + a7y
2x+ a8y

3.

If p = q = (1, 0) ∈ P1, then a1 = g(p, q, p) = 0.
If p = (1, 0), q = (0, 1) ∈ P1, then a3 = g(p, q, p) = 0.
Similarly, we have that a6 = a8 = 0. If p = q = (1, λ) ∈ P1 where λ ̸= 0,
then (a2 + a4)λ+ (a5 + a7)λ

2 = g(p, q, p) = 0, so a2 + a4 = a5 + a7 = 0.
Therefore, we have that
g = a2(x

2y − yx2) + a5(xy
2 − y2x) ∈ (xy2 − y2x, x2y − yx2)3. Hence,

A = k⟨x, y⟩/(xy2 − y2x, x2y − yx2) = A(P1 × P1, ν) is geometric.
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Theorem 3.2 (M.-Saito, 2023)

Let A = A(E, σ) and A′ = A(E′, σ′) be geometric algebras.
Then A ∼= A′ if and only if there exists an automorphism µ of Pn−1 such
that µ× µ restricts to an isomorphism µ× µ : E → E′ and

E
µ×µ //

σ
��

E′

σ′

��
E

µ×µ
// E′

commutes.

Remark

1 We say that E and E′ are 2-equivalent if there exists µ ∈ Autk Pn−1

such that µ× µ restricts to an isomorphism µ× µ : E → E′.

2 Let A = A(E, σ) be a geometric algebra. If E is 2-equivalent to E′,
then there exists σ′ ∈ Autk E

′ such that A ∼= A(E′, σ′).
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Let A and A′ be connected graded algebras. We say that A and A′ are
graded Morita equivalent if GrModA and GrModA′ are equivalent.

Theorem 3.3 (M.-Saito, 2023)

Let A = A(E, σ) and A′ = A(E′, σ′) be geometric algebras.
Then A and A′ are graded Morita equivalent if and only if there exists a
sequence of automorphisms µn of Pn−1 such that µn × µn+1 restricts to
an isomorphism µn × µn+1 : E → E′ and

E
µn×µn+1 //

σ
��

E′

σ′

��
E

µn+1×µn+2

// E′

commutes for every n ∈ Z.
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Theorem 4.1 (Artin-Tate-Van den Bergh, 1990)

Every 3-dimensional cubic AS-regular algebra A is geometric. Moreover,
when we write A = A(E, σ), the point scheme E of A is either P1 × P1 or
a curve of bidegree (2, 2) in P1 × P1.

Remark

Let A = A(E, σ) be a 3-dimensional cubic AS-regular algebra where E is
a curve of bidegree (2, 2) in P1 × P1. Then the point scheme E of A is
one of the following types:

reduced nonreduced

reducible S, T, S′, T′, FL TWL

irreducible NC, CC, EC (?) WL

([Artin-Tate-Van den Bergh, 1991]) When E = (Type TWL), the
classification of A is completed.

([M.-Saito, 2023]) When E is either P1 × P1, (Type S), or

(Type T), the classification of A is completed.

Masaki Matsuno (Tokyo Univ. of Science) Def. rel. of 3-dim. cubic AS-regular algebras September 18th, 2024 19 / 23



Main Theorem 1 ([Itaba-M.-Saito])

Let A = A(E, σ) be a 3-dimensional cubic AS-regular algebra. Assume

that E is either (Type FL), (Type S′), (Type T′), or

(Type WL). For each case, we give a complete list of defining

relations of A and classify them up to isomorphism and graded Morita
equivalence in terms of their defining relations.

Remark

• For Type FL, S′ and T′, Theorem is proved by the following five steps:
(1) Classify E up to 2-equivalence. (2) Find all σ ∈ Autk E satisfying
π1σ = π2. (3) Calculate defining relations of A = A(E, σ) and a twisted
superpotential w such that A = D(w, 1). (4) Check AS-regularity of A.
(5) Classify them up to graded algebra isomorphism and graded Morita
equivalence by using geometric conditions.
• For Type WL, we use the notions of “twisting system” and
“twisted algebra” to prove Theorem.
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TSPs of 3-dimensional cubic AS-regular algebras

Type Potentials w τ ∈ GL2(k)

FL1 x2y2 − αyx2y + αxy2x+ α2y2x2

(
α−1 0

0 −α

)
FL2 −αβx4 + βxyxy + βyxyx− y4

(
1 0

0 1

)
S′ x2y2 + yx2y − xy2x+ y2x2 − 2y4

(
−1 0

0 1

)
T′

1 x2y2−yx2y−xy2x+y2x2−αy2xy+
αyxy2

(
−1 −α

0 −1

)
T′

2 x2y2 − yx2y−xy2x+ y2x2 +2xy3 +
αyxy2 − αy2xy − 2y3x+ (α+ 2)y4

(
−1 −(α+ 2)

0 −1

)
WL1 α4x2y2+α2yx2y+α2xy2x+ y2x2−

2α3xyxy − 2αyxyx

(
α2 0

0 α−2

)
WL2 x2y2+yx2y+xy2x+y2x2−2xyxy−

2yxyx+ 4yxy2 − 4y2xy + 2y4

(
1 4

0 1

)
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Classification up to graded algebra isomorphism
Type defining relations (α, β ∈ k) condition

FL1

{
xy2 + αy2x,

x2y − αyx2 (α ̸= 0)
α′ = α,−α−1

FL2

{
−αx3 + yxy,

βxyx− y3 (αβ ̸= 0, α ̸= β)
(α′, β′) = (α, β)
in P1

S′

{
xy2 − y2x,

x2y + yx2 − 2y3
——————

T′
1

{
xy2 − y2x,

x2y − yx2 + yxy − xy2
——————

T′
2

{
xy2 − y2x+ 2y3, (α ̸= 0)

x2y − yx2 − αxy2 + αyxy + 2y2x− (α+ 2)y3
α′ = α

WL1

{
α2xy2 + y2x− 2αyxy,

α2x2y + yx2 − 2αxyx (α ̸= 0)
α′ = α±1

WL2

{
xy2 + y2x− 2yxy,

x2y + yx2 − 2xyx+ 4xy2 − 4yxy + 2y3
——————
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Classification up to graded Morita equivalence

Every Type FL1 algebra is graded Morita equivalent to a Type FL2
algebra.

Every Type T′
2 algebra is graded Morita equivalent to a Type T′

1

algebra.

Every Type WL2 algebra is graded Morita equivalent to a Type WL1
algebra.

Type defining relations (α, β ∈ k) condition

FL

{
−αx3 + yxy,

βxyx− y3 (αβ ̸= 0, α ̸= β)
(α′, β′) = (α, β), (β, α) in P1

S′

{
xy2 − y2x,

x2y + yx2 − 2y3
———————————

T′

{
xy2 − y2x,

x2y − yx2 + yxy − xy2
———————————

WL

{
xy2 + y2x− 2yxy,

x2y + yx2 − 2xyx
———————————
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