On the center of a wreath product of truncated polynomial algebras

小西正秀

September 16, 2024

第56回環論および表現論シンポジウム@東京学芸大学

小西正秀 $Z(A\wr S_n)$ 1/26

目次

1 準備

- ② truncated polynomial algebras の wreath 積
- 3 主結果

目次

1 準備

- ② truncated polynomial algebras の wreath 積
- 3 主結果

基本の確認

n 次対称群 S_n

 $\{1,\ldots,n\}$ から $\{1,\ldots,n\}$ への全単射すべてのなす集合に、積を写像の合成として与えた群.

cycle 分解における各 cycle の表記は以下の通り「左から右」に行う.

各 cycle の表記法

 S_3 の元 σ が $\sigma(1)=2$, $\sigma(2)=3$, $\sigma(3)=1$ として与えられたとき, σ の cycle 表記は $(1\ 2\ 3)$ か $(2\ 3\ 1)$ か $(3\ 1\ 2)$. この場合は σ の cycle 分解は 1 つの cycle からなり, その長さは 3 である.

注意

 S_n の元 σ の cycle 分解の表記は一意ではないが、今回の発表における議論はその表記に依らず行える. cycle 分解の表記において、長さ 1 の cycle は混乱が生じない限り省略する.

小西正秀 $Z(A \wr S_n)$ 4/26

共役な元の cycle 表記

 S_n の元 σ の cycle 分解の表記が $(\gamma_1 \ldots \gamma_t)$ であるとする. このとき, S_n の任意の元 τ に対し, $\tau \sigma \tau^{-1}$ の cycle 分解の表記として $(\tau(\gamma_1) \ldots \tau(\gamma_t))$ が得られる.

上記の命題は σ の cycle 分解の表記が複数の cycles となる場合にも同様に成り立つ.

n の分割

正の整数の単調非増加な列 $\lambda=(\lambda_1,\dots,\lambda_t)$ を分割と呼ぶ.分割 λ に対し $\sum_{i=1}^{i=1}\lambda_i$ を $|\lambda|$ と記

す. $|\lambda|=n$ であるとき, λ を n の分割と呼ぶ. また, 0 の分割を \emptyset で表す.

0の分割は以下の多重分割を定義する際に必要となる.

小西正秀 $Z(A \wr S_n)$ 5/26

n の多重分割

t 個の分割の列 $\hat{\lambda}=(\lambda^{(1)},\dots,\lambda^{(t)})$ を t-多重分割と呼ぶ. $\sum_{i=1}^t |\lambda^{(i)}|=n$ であるとき, $\hat{\lambda}$ を n の t-多重分割と呼ぶ.

注意

多重分割においては非負整数の列 $(|\lambda^{(1)}|,\ldots,|\lambda^{(t)}|)$ が単調非増加である必要はない.

多重分割の例

2 の 2-多重分割は $((2),\emptyset),((1,1),\emptyset),((1),(1)),(\emptyset,(2)),(\emptyset,(1,1))$ の 5 個ある. 2 の 3-多重分割は 9 個, 9 の 9-多重分割は 9 の 9-8 の 9-9 の 9-8 の 9-9 の 9

小西正秀 $Z(A \wr S_n)$ 6/26

集合 $I_{m,r}$

m,r を 1 以上の整数とする。集合 $\{0,\ldots,r-1\}^m$ を $I_{m,r}$ で表す。 $I_{m,r}$ の元 $\alpha=(\alpha_1,\ldots,\alpha_m)$ に対し, $\sum_{k=1}^m \alpha_k$ を $|\alpha|$ と記す.

$I_{m,r}$ に対する操作

 $I_{m,r}$ の元 $lpha=(lpha_1,\dots,lpha_m)$ と 1 以上 m-1 以下の整数 p に対し、 $lpha_p< r-1$ かつ $lpha_{p+1}>0$ のとき、 $(lpha_1,\dots,lpha_{p-1},lpha_p+1,lpha_{p+1}-1,lpha_{p+2},\dots,lpha_m)$ もまた $I_{m,r}$ の元である。 $|lpha|=a(r-1)+b\ (0\leq a\leq m,0\leq b< r-1)$ とすると、lpha に上記の操作を繰り返すことで $(r-1,\dots,r-1,b,0,\dots,0)$ が得られる.これを lpha の左詰めと呼ぶ.

証明は帰納法により行われる.

小西正秀 $Z(A \wr S_n)$ 7/26

以下, R を単位元を持つ可換環とし, A を有限生成自由 R-代数とする. 即ち, R-加群としては $A=\bigoplus_i Ra_i \ (i\neq j$ ならば $a_i\neq a_j)$ と表せると仮定する.

R-代数の wreath 積

有限生成自由 R-代数の S_n による wreath 積 $A \wr S_n$ を以下のように定義する.

- 集合としては $A^{\otimes n} \otimes RS_n$ (テンソル積は R 上でとる)
- $(a_1 \otimes \cdots \otimes a_n) \otimes \sigma$ と $(b_1 \otimes \cdots \otimes b_n) \otimes \tau$ の積を $(a_1b_{\sigma^{-1}(1)} \otimes \cdots \otimes a_nb_{\sigma^{-1}(n)}) \otimes \sigma \tau$ で定め, R-線形に拡張する.

このとき, R-加群として $A \wr S_n = \bigoplus R\left((a_{i_1} \otimes \cdots \otimes a_{i_n}) \otimes \sigma\right)$ である. ただし直和は $1 \leq i_k \leq t \ (1 \leq k \leq n), \ \sigma \in S_n$ を走る.

小西正秀 $Z(A \wr S_n)$ 8/26

arepsilonを S_n の単位元, 1_R を R の単位元 1_A を A の単位元とする. $s_i~(1 \leq i < n)$ を S_n の元 (i~i+1) とする.

- A の元 a に対し $A \wr S_n$ の元 $(a \otimes 1_A \otimes \cdots \otimes 1_A) \otimes 1_B \varepsilon$ を \hat{a} と書く.
- S_n の元 σ に対し $A \wr S_n$ の元 $(1_A \otimes \cdots \otimes 1_A) \otimes 1_R \sigma$ を $\hat{\sigma}$ と書く.

以下では混同が生じなければ 1_R 及び 1_A を共に 1 と略記し, 1_R σ は σ と略記する.

wreath 積の積による生成性

 $A=\langle a_1,\cdots,a_u\rangle_R$ であるとする。このとき、 $A\wr S_n=\langle \hat{a_1},\ldots,\hat{a_u},\hat{s_1},\ldots,\hat{s_{n-1}}\rangle_R$ である。ただし、 $\langle a_n\rangle_R$ は積及び和による生成を表す。

証明の概要: 定義から例えば $\hat{s_1}\hat{a_k}\hat{s_1}=(1\otimes a_k\otimes 1\otimes \cdots \otimes 1)\otimes \varepsilon$ であり, これを繰り返し用いることで任意の $(a_{i_1}\otimes \cdots \otimes a_{i_n})\otimes \sigma$ が得られる.

小西正秀 $Z(A \wr S_n)$ 9/26

目次

準備

- ② truncated polynomial algebras の wreath 積

n と N を 1 以上の整数とする. r_1,\ldots,r_N を 1 以上の整数とする. 以下, A は truncated polynomial R-algebra $R[x_1,\cdots,x_N]/\langle x_1^{r_1},\cdots,x_N^{r_N}\rangle$ とし, $A \wr S_n$ を A_n で表す. 混同が生じない限り, $\hat{\sigma}$ を単に σ と書くこととする.

 $1 \leq i \leq N$ に対し $(x_i \otimes 1 \otimes \cdots \otimes 1) \otimes \varepsilon$ を $x_{i,1}$ で表す.

 $1 \le p < n$ に対し $s_p x_{i,p} s_p$ を $x_{i,p+1}$ で表す.

注意

 $x_{i,j}$ はテンソル積の j 番目が x_i , その他は全て 1 という元である.

 A_n は $x_{i,j}$ $(1 \le i \le N, 1 \le j < n)$ と s_k $(1 \le k < n)$ で生成される. このとき, A_n における関係式は次の通りとなる.

小西正秀 $Z(A \wr S_n)$ 11 / 26

- $x_{i,j}^{r_i} = 0 \ (1 \le i \le N, 1 \le j \le n)$
- $x_{i,j}x_{i',j'} = x_{i',j'}x_{i,j} \ (1 \le i, i' \le N, 1 \le j, j' \le n)$
- $s_k^2 = 1_{A_n} \ (1 \le k < n)$
- $s_k s_{k'} = s_{k'} s_k \ (1 \le k, k' < n, |k k'| > 1)$
- $s_k s_{k+1} s_k = s_{k+1} s_k s_{k+1} \ (1 \le k < n-1)$
- $x_{i,j}s_k = s_k x_{i,j} \ (1 \le i \le N, 1 \le j \le n, 1 \le k < n, j \ne k, k+1)$
- $x_{i,k}s_k = s_k x_{i,k+1} \ (1 \le i \le N, 1 \le k < n)$
- $x_{i,k+1}s_k = s_k x_{i,k} \ (1 \le i \le N, 1 \le k < n)$

注意

$$\sigma x_{i,j} = x_{i,\sigma(j)} \sigma$$
 である.

小西正秀 $Z(A \wr S_n)$ 12 / 26

$$R$$
-加群として $A_n = \bigoplus_i R \prod_{\substack{i,j \ 1 \leq i \leq N \\ 1 \leq j \leq n}} R \prod_{\substack{i,j \ 1 \leq i \leq N \\ 1 \leq j \leq n}} x_{i,j}^{d_{i,j}} \sigma$ となる. ただし直和は $0 \leq d_{i,j} < r_i, \sigma \in S_n$ を走る.
$$\left\{ \prod_{\substack{1 \leq i \leq N \\ 1 \leq j \leq n}} x_{i,j}^{d_{i,j}} \sigma \mid 0 \leq d_{i,j} < r_i, \sigma \in S_n \right\}$$
 を $\mathcal B$ で表す.

 A_n の元を $\sum_{b\in\mathcal{B}}c_bb\;(c_b\in R)$ と表した際、それが中心の元であるときに c_b がどのような条件を

満たすかを観察する。

G. Macdonald, Symmetric functions and Hall polynomials において, 群の wreath 積 $S_m \wr S_n$ の元に導入される type の概念を拡張する.

小西正秀 $Z(A \wr S_n)$ 13/26

type

 $b=\prod x_{i,j}^{d_{i,j}}\sigma\in\mathcal{B}$ に対し, σ の cycle 分解 $\gamma_1\cdots\gamma_t$ を取る.

各 cycle
$$\gamma_i=(\gamma_{i,1}\ \dots\ \gamma_{i,l(\gamma_i)})$$
 と $1\leq j\leq N$ に対し, γ_i の x_j に関する次数を $\sum_{1\leq k\leq l(\gamma_i)}d_{\gamma_{i,k},j}$

で定め, $\delta_{i,j}$ で表す.

 γ_i の次数を $(\delta_{i,1},\ldots,\delta_{i,N})$ で定め, $\Delta(\gamma_i)$ で表す.

各 cycles に対し、cycle の長さと次数を組にして得られる multiset $[(l(\gamma_i),\Delta(\gamma_i))]_{1\leq i\leq t}$ を b の type と呼び、type(b) で表す。

注意

各 cycle の次数は和を取っているので, cycle の表し方に依らず well-definded である. b の type は multiset を用いているので, σ の cycle 分解に依らず well-definded である.

小西正秀 $Z(A \wr S_n)$ 14/26

積の単射性(1)

 $b, b' \in \mathcal{B}, 1 \leq k < n$ とする. このとき, $s_k b = s_k b'$ または $b s_k = b' s_k$ ならば, b = b' である.

積の単射性(2)

 $b, b' \in \mathcal{B}, 1 \le i \le N, 1 \le j \le n$ とする. このとき, $x_{i,j}b = x_{i,j}b' \ne 0$ または $bx_{i,j} = b'x_{i,j} \ne 0$ ならば, b = b' である.

type の S_n 不変性

 $b \in \mathcal{B}, 1 \leq k < n, \sigma \in S_n$ とする. このとき, $\operatorname{type}(b) = \operatorname{type}(s_k b s_k)$ である. また, $\operatorname{type}(b) = \operatorname{type}(\sigma b \sigma^{-1})$ である.

概説: $(2\ 3)(1\ 2)x_{1,2}(2\ 3) = (1\ 3)x_{1,3}$ のように, cycle と変数の添え字は同時に変化する.

小西正秀 $Z(A \wr S_n)$ 15 / 26

 A_n の中心を $Z(A_n)$ 或いは単に Z で表す.

type 毎の係数比較

$$\sum_{b\in\mathcal{B}}c_bb\in Z$$
 とする.このとき, $b,b'\in\mathcal{B}$ に対し, $ext{type}(b)= ext{type}(b')$ ならば $c_b=c_{b'}$

概説: $b=\prod x_{i,j}^{d_{i,j}}\sigma$ と $b'=\prod x_{i,j}^{d'_{i,j}}\sigma'$ に対し, type が等しいという仮定から $\sigma= au\sigma' au^{-1}$ とな る $\tau \in S_n$ が存在する. $b'' = \tau b' \tau^{-1}$ とすると. 中心の元であることと τ との可換性から $c_{b'} = c_{b''}$ なので. $c_b = c_{b''}$ を示せば良い.

以下の例のようにして各 $x_{i,j}$ との可換性を用いて係数が等しいものを辿る.

- $(1\ 2)x_{1\ 1}$ に右から $x_{1\ 2}$ を掛けると $(1\ 2)x_{1\ 1}x_{1\ 2}$ であり、
- $(1\ 2)x_{1,2}$ に左から $x_{1,2}$ を掛けると $(1\ 2)x_{1,1}x_{1,2}$ なので, $c_{(1\ 2)x_{1,1}}=c_{(1\ 2)x_{1,2}}$ を得る. これを繰り返すと各 cycles 内での左詰めが行える.

 $Z(A \wr S_n)$ 16 / 26 $\mathrm{Type}(\mathcal{B})$ を $\{\mathrm{type}(b) \mid b \in \mathcal{B}\}$ で定める.

各 T $\in \text{Type}(\mathcal{B})$ に対し、 \mathcal{B}_T を $\{b \in \mathcal{B} \mid \text{Type}(b) = T\}$ で定める.

Central type

 $\mathtt{T} \in \mathrm{Type}(\mathcal{B})$ に対し、 $\mathtt{T} = [l_i, (\delta_{i,1}, \ldots, \delta_{i,N})]_{1 \leq i \leq t}$ の形で表した際,各 $1 \leq j \leq N$ 及び各 $1 \leq k \leq t$ に対し以下が成り立つとき,T を central type と呼ぶ。 $(l_k-1)(r_i-1) < \delta_{i,k} < l_k(r_i-1)$

注意

各 cycle γ_k の x_j に関する次数の最大値が $l_k(r_j-1)$ であり、それとの差が r_j-1 以下である範囲に収まっていることが定義の肝である.

Central type が為す Type(B) の部分集合を TypeC(B) で表す.

小西正秀 $Z(A \wr S_n)$ 17 / 26

係数 () の部分

 $\sum c_b b \in Z$ とする. $T \in \text{Type}(\mathcal{B}) \setminus \text{TypeC}(\mathcal{B})$ とする. $b \in \mathcal{B}$ このとき. tvpe(b) = T ならば $c_b = 0$ である.

概説: 仮定から $\delta_{i,k} < (l_k-1)(r_i-1)$ となる j と k が存在するので, その cycle と変数に着目 して $c_b = 0$ を示す.

以下の類似として示される。

 $(1\ 2)$ に右から $x_{1,1}$ を掛けると $(1\ 2)x_{1,1}$ を得るが,

左から $x_{1,1}$ を掛けると $x_{1,1}(1|2) = (1|2)x_{1,2}$ により必ず $x_{1,2}$ が出てくるため,

左から $x_{1,1}$ を掛けて $(1\ 2)x_{1,1}$ となる元は存在しない, 即ち $c_{(1\ 2)}=0$ である.

 $Z(A \wr S_n)$ 18 / 26

Central type $\ensuremath{\mathbf{\mathcal{Z}}}$

$$\mathtt{T} \in \mathrm{TypeC}(\mathcal{B})$$
 とすると, $\sum_{b \in \mathcal{B}_\mathtt{T}} b \in Z$ である.

概説: central type の定義から, 各 s_k 及び各 $x_{i,1}$ との可換性を確かめる.

$n=2, N=1, r_1=2$ の場合

$$\begin{aligned} &\operatorname{Type}(\mathcal{B}) = \left\{ \left[(2,0) \right], \left[(2,1) \right], \left[(2,2) \right], \left[(1,0), (1,0) \right], \left[(1,1), (1,0) \right], \left[(1,1), (1,1) \right] \right\} \\ &\operatorname{TypeC}(\mathcal{B}) = \left\{ \left[(2,1) \right], \left[(2,2) \right], \left[(1,0), (1,0) \right], \left[(1,1), (1,0) \right], \left[(1,1), (1,1) \right] \right\} \\ &x_{1,j} \, \boldsymbol{\epsilon} \, x_j \, \boldsymbol{\epsilon} \, \mathbf{s} \, \mathbf{t} \, \mathbf{s} \, \mathbf{t} \, \mathbf{t} \, \mathbf{s} \, \mathbf{t} \, \mathbf{t} \, \mathbf{t} \, \mathbf{t} \\ &Z = \left\{ (1 \, 2) x_1 + (1 \, 2) x_2, (1 \, 2) x_1 x_2, 1, x_1 + x_2, x_1 x_2 \right\} \end{aligned}$$

小西正秀 $Z(A \wr S_n)$ 19/26

$n=2, N=1, r_1=3$ の場合

```
Type \mathbf{t}[(2,0)], [(2,1)], [(2,2)], [(2,3)], [(2,4)],
[(1,0),(1,0)],[(1,1),(1,0)],[(1,2),(1,0)],[(1,1),(1,1)],[(1,2),(1,1)],[(1,2),(1,2)].
その内 central type は [(2,2)], [(2,3)], [(2,4)],
[(1,0),(1,0)], [(1,1),(1,0)], [(1,2),(1,0)], [(1,1),(1,1)], [(1,2),(1,1)], [(1,2),(1,2)] の 9 個.
各 central type に対応する Z の元は、
(1\ 2)x_1^2 + (1\ 2)x_1x_2 + (1\ 2)x_2^2
(1\ 2)x_1^2x_2 + (1\ 2)x_1x_2^2
(1\ 2)x_1^2x_2^2
x_1 + x_2
x_1^2 + x_2^2
x_1x_2
x_1^2x_2 + x_1x_2^2
```

$n=3, N=1, r_1=2$ の場合

```
Type \mathcal{L}[(3,0)], [(3,1)], [(3,2)], [(3,3)],
[(2,0),(1,0)],[(2,1),(1,0)],[(2,2),(1,0)],[(2,0),(1,1)],[(2,1),(1,1)],[(2,2),(1,1)],
[(1,0),(1,0),(1,0)],[(1,1),(1,0),(1,0)],[(1,1),(1,1),(1,0)],[(1,1),(1,1),(1,1)].
その内 central type は [(3,2)], [(3,3)],
[(2,1),(1,0)],[(2,2),(1,0)],[(2,1),(1,1)],[(2,2),(1,1)],
[(1,0),(1,0),(1,0)],[(1,1),(1,0),(1,0)],[(1,1),(1,1),(1,0)],[(1,1),(1,1),(1,1)] の 10 個.
各 central type に対応する Z の元は.
((1\ 2\ 3) + (1\ 3\ 2))(x_1x_2 + x_1x_3 + x_2x_3), ((1\ 2\ 3) + (1\ 3\ 2))x_1x_2x_3,
(1\ 2)(x_1+x_2)+(1\ 3)(x_1+x_3)+(2\ 3)(x_2+x_3), (1\ 2)x_1x_2+(1\ 3)x_1x_3+(2\ 3)x_2x_3,
(1\ 2)(x_1+x_2)x_3+(1\ 3)(x_1+x_3)x_2+(2\ 3)(x_2+x_3)x_1, ((1\ 2)+(1\ 3)+(2\ 3))x_1x_2x_3,
1, x_1 + x_2 + x_3, x_1x_2 + x_1x_3 + x_2x_3, x_1x_2x_3.
```

小西正秀 $Z(A \wr S_n)$ 21/26

目次

● 準備

- ② truncated polynomial algebras σ wreath 積
- 3 主結果

$Z(A_n)$ 及び多重分割との対応 [K]

$$Z(A_n) = \bigoplus_{\mathtt{T} \in \mathrm{TypeC}(\mathcal{B})} R(\sum_{b \in \mathcal{B}_\mathtt{T}} b)$$

 $|TypeC(\mathcal{B})|$ は n の $\prod r_i$ -多重分割の個数と等しい.

概略: 前半については今までの内容を纏めることで得られる.

後半については central type の定義において,

$$(l_k - 1)(r_j - 1) \le \delta_{j,k} \le l_k(r_j - 1)$$

を満たす $\delta_{j,k}$ は k に依らず r_j 個あることを用いて $\prod r_i$ -多重分割に帰着する.

Central type と多重分割との対応

$$n=2, N=1, r_1=2$$
 の場合、central type $[(2,1)]$, $[(2,2)]$, $[(1,0),(1,0)]$, $[(1,1),(1,0)]$, $[(1,1),(1,1)]$ はそれぞれ、 2 の 2 -多重分割 $((2),\emptyset)$, $(\emptyset,(2))$, $((1,1),\emptyset)$, $((1),(1))$, $(\emptyset,(1,1))$ と対応する.

小西正秀 $Z(A \wr S_n)$ 23 / 26

Central type と多重分割との対応 (続き)

```
n=2, N=1, r_1=3 の場合、
central type \mathbf{t}[(2,2)],[(2,3)],[(2,4)],
[(1,0),(1,0)],[(1,1),(1,0)],[(1,2),(1,0)],[(1,1),(1,1)],[(1,2),(1,1)],[(1,2),(1,2)] はそれ
ぞれ.
2 の 3-多重分割 ((2),\emptyset,\emptyset),(\emptyset,(2),\emptyset),(\emptyset,\emptyset,(2)),
((1,1),\emptyset,\emptyset),((1),(1),\emptyset),((1),\emptyset,(1)),(\emptyset,(1,1),\emptyset),(\emptyset,(1),(1)),(\emptyset,\emptyset,(1,1)) と対応する.
n=3, N=1, r_1=2 の場合.
central type \[ \mathbf{t} \[ (3,2) \], [(3,3) \], [(2,1), (1,0) \], [(2,2), (1,0) \], [(2,1), (1,1) \], [(2,2), (1,1) \],
[(1,0),(1,0),(1,0)],[(1,1),(1,0),(1,0)],[(1,1),(1,1),(1,0)],[(1,1),(1,1),(1,1)] はそれぞれ
3 の 2-多重分割 ((3),\emptyset),(\emptyset,(3)),((2,1),\emptyset),((1),(2)),((2),(1)),(\emptyset,(2,1)),
((1,1,1),\emptyset),((1,1),(1)),((1),(1,1)),(\emptyset,(1,1,1)) と対応する.
```

小西正秀 $Z(A \wr S_n)$ 24/26

参考文献

 G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, second edition, 1995

小西正秀 $Z(A \wr S_n)$ 25 / 26

ご清聴ありがとうございました.