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e
Statement of Main Theorem

Today we will discuss

semibrick complexes over silting discrete algebra

Let A be a finite dimensional C-algebra.
Definition
S € DP(A) := DP(mod A).
e S is brick if Ext*(S,S) = 0 for i < 0 and End(S) = C.
e S is semibrick (complex) if
(a) Ext®(S,S8) =0 for i < 0 and
(b) S~ @, S;, where {S;} is a collection bricks with
Hom(Si, Sj) = C(s”
e S is a simple-minded collection (smc) if

(a) S is a semibrick (complex), and
(b) S generates DP(A).
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(Semi)bricks are generalisation of (sum of) simple modules.

semibricks (simples) <> presiltings (projectives)

P € Perf(A).
e P is presilting if Ext*(P, P) = 0 for i > 0.
e P issilting if
(a) P is presilting, and
(b) P generates Perf(A).

y

{S1,:+-,Sn} is the full collection of simple modules over A.

e S=@; ,S;isan SMC and any nonzero summands are
semibricks.

e A is silting, and all projective A-modules are presilting.

\
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Theorem (Koenig-Yang)

There is a bijection among
e silt A := {siltings in Perf A}/~ C {presiltings}
e smc A := {smcs in DP(A)}/~ C {semibricks}
e {bdd t-strs. on DP(A) with length ©} C {bdd t-strs. }

KY-bij is (partial-)order-preserving.
e PP csilt A
P> P :< Ext!(P,P’) =0foralli >0
e 5,8 e¢smcA
S > 8 := Ext’(S’,8) =0foralli <0
E.g. P> P[1] and S > S[1].
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What kind of control exits for

{presiltings}, {semibricks}, and {bdd t-strs.}?

A. They behaves very well when A is silting discrete.

Definition (Aihara-Mizuno)

A is silting discrete if for any P € silt A,
HQ €siltA | P> Q > P[]} < oc.

P >Q > P[1] & Q is 2-term w.r.t. (D corresponding to) P.

silting discrete “=" everywhere 7-tilting finite.
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Let A be a silting discrete algebra.

Main Theorem (H-Wemyss)

For x € DP(A), the following hold.
(1) Ext<%(z,zx) = 0 iff 3 length © on DP(A) sit. = € H.

(2) x is semibrick cpx. iff 3z’ s.t. B ' € smc A.
(any semibrick can be completed to an smc)

Other Known Results

e (Aihara-Mizuno) P is presilting iff 3Q s.t. P @ Q € silt A.
e (Adachi-Mizuno-Yang, Pauksztello-Saorin-Zvonareva)

(1) All bdd ¢-str have length hearts.
(2) The space of Bridgeland stability conditions Stab DP(A) is
connected.

These results classify (semi)bricks, presiltings, and ¢-structures.
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Examples and Contraction Algebras

Let us see examples of silting discrete algebras.

(1) Preprojective algebras of Dynkin type Ay, A2, D2y, E7, Eg
are silting discrete.
e A; and A, have the small rank (easy to study).
o D, , E;, Eg have trivial Nakayama involution.

Are all type A, silting discrete? (especially Ag !!)

2-term semibricks and presiltings over type A preprojective
algebras are studied by
Barnard-Hanson, Mizuno, lyama-Williams, etc.

(2) Brauer graph algebra whose Brauer graph has at most one
odd length cycle and no even length cycle.
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(3) (3-fold) contraction algebras (Main Example today).
Let f: X — Spec R be a 3-fold flopping contraction s.t.
e R is complete local (o € Spec R the max ideal) and
e X has at worst Gorenstein terminal singularities.
Then it is known that
(@) £71(0)rea = U C; is a tree of projective lines C; ~ P
(b) R ~ Clx,y, z,w]/(f + wg) (isolated cDV singularity),

f € C[zx,y, z] is simple ADE and
where
g € Clz,y, z,w] is arbitrary.

SFQCR

) £
() O



Semibricks and Spherical objects

Michel Van den Bergh tells us:
e 3 (canonical) NC R-algebra A such that
DP(coh X) ~ DP(mod A).
e A~Endr(R® M) for M € CM R.

Definition (Donovan-Wemyss)
The contraction algebra Acon = Acon,f associated to the
contraction f: X — Spec R is
Acon,f = EndR(M)
= Homgr(M,M)/{M — P — M | P € proj A}.

(a) (August) Acon is silting-discrete.
(b) (DW) Acon represents NC-deformation of £~ (0)req-
(c) (Toda) dim Aoy is related to Gopakumar-Vafa invariant.
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Example (c.f. Smith-Wemyss)

If Ry := Clu,v,x,y]/(uv — xy(x* + y)), all resols. look like

-0

e One resol. f: X7 — Spec Ry, gives

—
Acon,f = e L

~~ —
b
with relations (ab)ka = 0 = b(ab).
e Another resol. g: X2 — Spec Ry, gives
a
—
Acong = ® S =t
b
with relations y* = ba and ay = 0 = yb.
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Another important aspect of contraction algebras is
(d) For f: X — Spec R, define the null category C by
C := {z € D°(coh X) | Rf.(x) = 0}.

e C is triangulated subcategory of DP(coh X).
e C is Hom-finite.
e If X is regular, then C is 3-CY.

Under VdB's equivalence DP(coh X) ~ DP(mod A),
A:=CNmodA=CNcohX = (Oc¢,(—1) | i)ex CC
is called the standard heart, and A ~ mod A¢on.

e Oc,(—1) plays important role in both RT and AG.
e The universal line bundles O¢, (—1) for each C; ~ P! gives
the full collection of simple objects in .A.
e Each Oc¢,(—1) is an example of (fat-)spherical object.
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S

If f: X — Spec R is the Atiyah flop,
e R= Cl[il), Y, =z, w]]/(:cy - zw)'
° f_l(o) = C ~ P!,
. C ifz=0,3, and
e Ext% (Oc(—1),0¢c(-1)) = { ’ :
0 else.
Thus O¢(—1) is 3-spherical, and
To(-1)(y) := Cone (RHomX (Oc(-1),y) ® Oc(—1) = y)

defines the spherical twist Tp(—1) € Auteq DP(coh X).

4

In general case, by Donovan-Wemyss, the NC-deformation of
Oc(—1) gives the NC twist T (—1) € Auteq DP(coh X)
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The category C contains MORE (fat-)spherical objects.
Slogan

Classification of (fat-)sphericals in C <+ structure of AuteqC

(Fat-)spherical objects are also related to
e space of Bridgeland stability conditions, and

e Lagrangian submfd. of the A-side under the mirror symmetry.

Theorem (H-Wemyss)

The realisation functor DP(Acon) — C of the standard heart
(1) is NEVER an equivalence, but

(2) gives a bijection between brick complexes in DP(Acon) and
bricks (= fat-spherical objects) in C, and

(3) gives a bijection between t-structures.

This gives more context to the main theorem!!
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Contraction algebras have more and more aspects.

(e) Donovan-Wemyss conjecture (proved by Muro-Jasso-Keller)

ot fl: X1 — SpeC Ry
f2: X9 — Spec R,

Assume that X7 and X2 are regular. Then

DP(Acon,f1) =~ DP(Acon,f,) iff R1 ~ Ra.

L be two 3d flopping conts.

D-equiv. class of contraction algebras classify smooth 3d flops.

(f) Brown-Wemyss conjecture (on f.d. Jacobi algebra, still open)
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Proof of Main Theorem

Recall that the main theorem is

Main Theorem (H-Wemyss)

For € DP(A), the following hold.
(1) Ext<%(x,x) = 0 iff IH length Q on DP(A) st. x € H.
(2) « is semibrick cpx. iff Iz’ s.t. x B «’ € smc A.

(2) follows from (1). The proof of this is routine.

By (1), 3H length © on DP(A) s.t. = € H.

KY-bij gives P € silt A s.t. H ~ B := End 4 (P).
Silting-discreteness of A shows B is 7T-tilting finite.
Using Asai's result gives a 2-term smc x @ =’ € smc B.

real: DP(B) — DP(A) sends the 2-smc = @ =’ € smc B
to an smc x @ real(z’) € smc A.
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Proof of (1).
e By KY-bij, § € smc A associates Ag C DP(A) (bdd Q).

Forz € DP(A), S € smc A, anda < b € Z,
x € [a,b]s :& Hj‘ts(ac) =0forallt <aandb<1

o Let z € DP(A) be a complex with Ext<%(z,x) = 0.
Assume for some S € smc A, x € [a, b]s.
e Put
Ag(x):={T €smcA|S>T > S[1],x € [a,b|r}.
e Since A is silting discrete, Ag(x) is FINITE POSET.

If S” € Ag(x) is maximal, then € [a + 1, b]gs/. \

Repeating this shows
38" € smcAst. x € [b, b]s//<:> T € Agn [—b]
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e
(More) geometric counterpart

Important set: {T" | S > T > S[1]} = 2-term smcs w.r.t. S.

(A part of) HomMMP by Wemyss

One can visualise the set
2-smc Acon ~ {P € silt Acon | Acon Z P 2 ACOH[]']}

using Dynkin hyperplane arrangement.

3-fold flops associate marked Dynkin data: general g € R gives
Y « VA

175 |

Spec R «—— Spec R/g,

e R/g is Kleinian singularity (= surface ADE singularity).
e Y is a partial crepant resolution of R/g.
e Z is the minimal resolution of R/g.
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A = J N J€ marked Dynkin data

h=@D;caRai Dby :=D;c;Rey
wy: h — By natural projection.
Define the set of positive restricted roots by

{B = mj(a) | @ € b positive root, wy(a) # 0}
The associated hyperplane arrangement is

{Hpg = B+ C ©;:=b}}s
In the previous example, positive restricted roots are

{(1,0),(0,1),(1,1),(2,1),(2,2)}

and the hyperplane arrangement is

For g-vector aspect of this, see lyama-Wemyss tits cone paper.
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3-fold flopping contraction f: X — Spec R associates
e the contraction algebra Acon.

e the hyperplane arrangement (© s, { Hg}).

HomMMP by Wemyss

There exist natural bijections among
e 2-silt Acon = 2-smc Acon.
e Chambers of (© 5, {Hg}).
o (lterated) flops of X

Flop of X = another 3d flopping contr. g: X’ — Spec R
e obtained by modifying some Ps in £71(0) eq-
e By Bridgeland-Chen, 3 derived equivalence
DP(coh X) ~ DP(coh X”)

e Repeating flops give many other models (and all are D-equiv)
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Let f: X — Spec R be a 3d flopping contraction.

Theorem (August)

For any Q of a bdd ¢-str. A C DP(Acon,f), there exists another
model g: X’ — Spec R such that

e A~modAcong.

e The realisation functor D?(Acon,g) — DP(Acon,f) of A s
an equiv.

Thus for P € silt Acon, s, there exist g: X’ — Spec R s.t.
End(P) ~ Acon,g and

bij c
{Q| P >Q > P[1]} < 2-silt Acon,g

-
< Iterated flops of X’
= lterated flops of X

LY, Chambers of (®5,{Hz}).
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g: X’ — Spec R corresp. to D C ©5 \ J Hp.
The partial order on 2-silt Acon,g can be visualised as:

3:)(’_%5}%12 §:X_>SP¢R
C

b3 PG 2-sily Acmlg
EW:J(P) = Acou,{

Qe i—sil*rﬁm,% End(@) 2 A 4
DDF Qm@[ﬂ € 9-silt Acmg

<ﬁcw,a >P>Q > A (1] in 2-sikt f%m,g )

Col, 3
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e By August, for two models
g: X' — Spec R and h: X" — Spec R,
there exists an equivalence
®,n: DP(Acon,g) — DP(Acon,n)
defined by P € 2-silt Acon,g with End(P) ~ Acon,h-
e There is a similar equivalence between null categories
\I’g,h: Cg — Ch
where C := {x € DP(coh X) | Rf.(x) = 0} st.
D" (Acon,g) =25 C,
e The diagram J,q)-"’h J/\I,g’h commutes

Db(Acon,h) Lal) Ch

e W, is a composition of Bridgeland-Chen equivalences.
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Main Theorem (geometric version)

Let f: X — Spec R be a 3d flopping contraction
(1) For x € DP(Acon,f) (resp. Cy), TFAE

(a) Exti(xz,z) = 0 forall i < 0.
(b) There exists another f’: X’ — Spec R and an equivalence
P Db(Acon,f) — Db(Acon,f/) (resp. W Cf — Cfl) s.t.

o ®(x) (resp. ¥(x)) € mod Acon, s/ [12] for some n € Z.
e & (resp. W) is a comp. of @y, (resp. ¥g.n).

(2) If £ € DP(Acon,s) (resp. Cy) satisfies
Hom(z, ) = C and Ext*(x,z) = 0 for all i < 0,
there exists another f’: X’ — Spec R and an equivalence
®: DP(Acon,r) — DP(Acon, /) (resp. ¥: Cy — Cy/) sit.

e ®(x) (resp. ¥(x)) is a (shifted) simple module.
e ® (resp. W) is a comp. of @, p, (resp. Yy p).
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Further remarks

® (2) of the theorem also extends to semibricks.

e Compare the geometric theorem with non-geometric one.

Main Theorem (non-geometric version)

For x € DP(A), the following hold.
(1) Ext<°(zx,x) = 0 iff 3% length © on D?(A) s.t. « € H.
(2) « is semibrick cpx. iff 3z’ s.t. * B =’ € smc A.

e A similar technique also classifies all bdd. t-strs. on C.
e As corollaries, theorems yield
e Stab C is connected.
o Auteq™ C =~ the associated pure braid group.
e Geometric theorem also holds for the null category C of
partial crepant resolutions of 2d ADE singularities.
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e 2d contraction algebras are more complicated than 3d.

e They are (contracted) preprojective algebras, and silting
discreteness is still open in many cases.

e There are less equivalences than 3d cases, and no
commutative diagram for ®4; and ¥y .

e Once the homological mirror for the null category C is proved,
main theorem gives a lot of dynamical and topological
corollaries in symplectic geometry.

e HMS for Ry, := Clu, v, z,y]/(uv — zy(z* + y)) is known
(Smith-Wemyss), for example.

e Bricks corresponds to Lagrangian submfds. via the realisation
functor and HMS.

e In Smith-Wemyss, techniques in silting-discrete world
(implicitly but actually) contribute to prove results in
symplectic geometry!!

Corollary (Smith-Wemyss)

Let L C W), be a closed Lagrangian submfd. with vanishing Maslov
class. Then +[L] € {(1,0),(0,1),(1,+1)} € H3(Wp;Z) ~ Z D Z.




