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ON TRIVIAL TILTING THEORY

TAKUMA ATHARA

ABSTRACT. We explore when an algebra has only trivial tilting module/complex.

INTRODUCTION

In mathematics, trivial cases are regularly trivial (insipid and uninteresting). For in-
stance, we study that in group theory, a group with only trivial subgroup is a cyclic group
of prime order, and in ring theory, a commutative ring with only trivial ideal is a field.
These are first exercises for beginners. Neverthless, we cannot turn away from them.

In this note, we discuss trivial tilting thoery for a finite dimensional algebra A over an
algebraically closed field. Tilting theory deals with (classical) tilting modules, one-sided
tilting complexes, two-sided tilting complexes (derived Picard groups), support 7-tilting
modules, Wakamatsu tilting modules and so on. For example, A, is a trivial tilting
module and the one-sided stalk complexes Aj[m] are trivial tilting complexes. We will
give answers to the question “when does A have only trivial tilting module/complex”.

1. MODULE VERSION

The right finitistic dimension r.fin.dim A of A is defined to be the supremum of the
projective dimensions of right modules with finite projective dimension. Dually, we define
the left finitistic dimension 1.fin.dim A of A. Note that r.fin.dim A and Lfin.dim A do not
necessarily coincide. As is well-known, r.fin.dim A = 0 if and only if there is a non-zero
homomorphism from every simple module to A in mod A° [4]. Here, A°P stands for the
opposite algebra of A.

A module T is said to be tilting if it has finite projective dimension satisfying Exty (T, T) =
0 for any positive integer n and there exists an exact sequence 0 — A — Ty — 171 —
-« — Ty — 0 with T; € add T; this is also called Miyashita tilting. When proj.dimT < 1,
we often call T' classical tilting.

We state the first observation of this note; it seems to be well-known (or easy to show)
for researchers who are familiar with tilting theory.

Theorem 1. The following are equivalent for an algebra A:

(1) rfindim A = 0;
(2) The module A is the only (basic) Miyashita tilting module;
(3) It is the only (basic) classical tilting module.

The detailed version of this paper will be submitted for publication elsewhere.



Remark 2. An affirmative answer to the finitistic dimension conjecture, which states that
the dimension is always finite, would give us the fact that r.fin.dim A = proj.dim T for
some (possibly infinitely generated) tilting module 7' [3, Theorem 2.6].

2. COMPLEX VERSION

A tilting complex T is defined to be a perfect complex satisfying Homgs o a) (1, T'[0]) =
0 for every nonzero integer n and KP(projA) = thick 7. We denote by tilt A the set of
isomorphism classes of (basic) tilting complexes of A. In this section, we explore when A
has only trivial tilting complex. First, one gives well-known examples; (1) [6], (2) [1] and
(3) by Ringel (unpublished paper).

Example 3. The following algebras have only trivial tilting complexes:

(1) local algebras;
(2) selfinjective algebras with cyclic Nakayama permutation;
(3) radical-square-zero algebras satisfying Ext*(S, S") # 0 for all simple modules S, S’.

All algebras above have left and right finitistic dimension zero. However, even if A
satisfies the property, it does not necessarily hold that A admits no nontrivial tilting
complex; many selfinjective algebras satisfy both the property and tilt A # A[Z], so we
should give an example of nonselfinjective algebras.

Example 4. Let A be the radical-square-zero algebra presented by the quiver:

yCl—m>2QZ.

It is easy to check that r.fin.dim A = 0 = Lfin.dim A.

As is seen in [2, Example 5.10], we have only three indecomposable pretilting complexes
up to shift: P, P, and X := P, 5 P,. This tells us that there precisely exist two types
of nontrivial tilting complexes:

Py Py
T .= @ ) U = @
Py —— P Py —— P
So, we obtain tilt A = A[Z] U T[Z] U U[Z]. Moreover, each component admits the endo-
morphism algebra isomorphic to A, T or T'°? (mutually nonisomorphic). Here, I is given
by the following quiver with relations afa = ay = vy8 =+2 = 0:

1¥237.

We say that a complex T is two-term provided it is of the form 7! — T°. The subset
of tilt A consisting of two-term tilting complexes is denoted by 2tilt A.

A full subcategory of mod A is said to be a torsion class if it is closed under extensions
and factors. We say that a torsion class is v-stable provided it is closed under taking the
Nakayama functor v := — ®, DA. Here is a useful observation.

Proposition 5. [5, Proposition 5.5] Let T' be a two-term perfect complex of A and put
X 1= H(T). Then T is tilting if and only if Fac X is a v-stable functorially finite torsion
class of mod A.



An Iwanaga—Gorenstein algebra is defined to have finite left and right selfinjective
dimension. We can get a result similar to Theorem 1.

Theorem 6. The following are equivalent for an Iwanaga—Gorenstein algebra A:

(1) A is a selfinjective algebra with cyclic Nakayama permutation;
(2) tiltA = {A[m] | m € Z};
(3) 2tilt A = {A, A[1]}.
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ON INTERVAL GLOBAL DIMENSION OF POSETS:
A CHARACTERIZATION OF CASE 0

TOSHITAKA AOKI, EMERSON G. ESCOLAR, AND SHUNSUKE TADA

ABSTRACT. We study the relative homological algebra of posets with respect to the
intervals. We introduce our recent research on the properties of the supports of interval
approximations and interval resolution global dimension. We also provide necessary and
sufficient conditions on a poset to ensure that any representation is interval-decomposable
(i.e. a characterization of the case where interval resolution global dimension is equal to
0).
Key Words:  Representation, Relative homological algebra, Persistence module, In-
terval module
2000 Mathematics Subject Classification:  16G20, 55N31, 18G25, 16E05

1. INTRODUCTION

We refer the reader to [3] (arXiv:2308.14979) for details on the contents of this article.

Topological data analysis is a rapidly growing field applying the ideas of algebraic
topology for data analysis. One of its main tools is persistent homology [1], which can
compactly summarize the birth and death parameters of topological features (e.g. con-
nected components, rings, cavities, and so on) of data via the persistence diagram. This
allows us to analyze hidden structures in data. Algebraically, one part of the persistent
homology analysis can be formalized by using the so-called one-parameter persistence
modules, which are just (“pointwise”) finite dimensional modules over the incidence al-
gebra of a totally ordered set. In this point of view, one-parameter persistence modules
are guaranteed to decompose into the indecomposable modules called interval modules,
which provide a multiset of intervals that are encoded by the persistence diagram.

As a generalization, multi-parameter persistence modules are proposed, understood as
representations of n-dimensional grids, and are expected to provide richer information
than the one-parameter setting. When dealing with multi-parameter settings, however,
there are some difficulties with adapting the same techniques.

Recently, there has been an interest in the use of relative homological algebra in persis-
tence theory. Especially, the notion of right minimal approximations and resolutions by
interval-decomposable modules are developed, and the finiteness of the interval resolution
global dimension has been confirmed [2].

The aim of this article is to introduce the properties of right minimal approximations
and resolutions by interval-decomposable modules studied in [3].

The detailed version of this paper will be submitted for publication elsewhere.



2. PRELIMINARIES

Let A be a finite dimensional algebra over a field k. We denote by mod A the category of
finitely generated right A-modules. Throughout this article, we assume that all modules
are finitely generated. For morphisms f: X — Y and g: Y — Z of A-modules, we denote
their composition by gf: X — Z.

2.1. Approximations and resolutions. We recall the basic terminology of relative
homological algebra. We consider the full subcategory & := add X of mod A for a fixed
finite collection X of (isomorphism classes of) indecomposable A-modules including all
the indecomposable projective modules.

Definition 1. For a morphism f: X — M of A-modules, we say that

(1) f is right minimal if any morphism g : X — X satisfying fg = f is an isomorphism.

(2) [ is a right X-approzimation of M if X € X and Homy(Y, f) is surjective for any
YeX.

(3) [ is a right minimal X -approximation of M if it is a right X-approximation which is
right minimal.

(4) A right minimal X-resolution of M is an exact sequence

--~—>Jmﬂ>---£>J1i>Joi>M—>0,
such that f is a right minimal (add X)-approximation of M, and for each 1 < i, the
morphism g; is a right minimal (add X)-approximation of Im ¢g; = Ker ¢;_;.
(5) If M has a right minimal X-resolution of the form

0 — Jy 22 oo 25 g 2 g0 L M — 0,
then we say that the X-resolution dimension of M is m and write X-res-dim M = m.
Otherwise, we say that the X-resolution dimension of M is infinity. We set

X-res-gldim A := sup{X-res-dim M | M € mod A}
and call X-resolution global dimension of A. Notice that it can be infinity.

2.2. Partially ordered set and its representations. Let P be a finite poset. We
recall that the Hasse diagram of P is a directed graph whose vertices are in bijection with
elements of P and there is an arrow  — y for z,y € P if x < y and there is no z € P such
that © < z < y. The incidence algebra k[P] of a poset P is defined to be the quotient of
the path algebra of the Hasse diagram of P modulo the two-sided ideal generated by all
the commutative relations. The module category mod k[P] can be described in terms of a
functor category as follows. Firstly, we regard P as a category whose objects are elements
of P, and morphisms are defined by relations in P, i.e., there is a unique morphism a — b
for a,b € P if and only if a < b. We denote by rep, (P) the category of (covariant) functors
from P to the category of finite dimensional vector spaces over k. For V' in rep,(P), the
subset supp V' := {a € P |V, # 0} is called the support of V.

It is well-known that there is an equivalence of abelian categories between rep, (P) and
the module category mod k[P] of the incidence algebra of P. In this sense, we identify
objects V' of rep, (P) and k[P]-modules, and the support of a k[P]-module M is the subset



supp(M) = {a € P | Me, # 0}, where ¢, is a primitive idempotent of k[P] corresponding
to the element a € P.
In our study, the following class of full subposets called interval is basic.

Definition 2. A full subposet of P is a subset P’ C P equipped with the induced partial
order. Notice that it is completely determined by its elements. We say that

(1) P'is conver in P if, for any z,y € P’ and any z € P, x < z < y implies z € P,

(2) P'is an interval of P if P is connected as a poset and is convex in P.

We denote by I(P) the set of intervals of P.
The following special class of modules plays an important role in this article.

Definition 3. For an interval I of P, let k; be a k[P]-module given as follows.

(2.1) (kz)a—{k ifacl, k}(agb)_{lk ifa,bel,

0 otherwise, 0  otherwise.

An interval module is a k[P]-module M such that M = k; for some interval I € I(P).
Clearly, every interval module is indecomposable.

We denote by Ji, p the set of isomorphism classes of the interval k[P]-modules, which
is in bijection with I(P) by I — k;. Notice that Ip and Jpy are finite since so is P. Each
module in add Jp, is said to be interval-decomposable. In other words, a given k[P]-module
M is interval-decomposable if and only if it can be written as

M= @ kY

I€l(P)

for some non-negative integers m(I). We will write Jp instead of J; p when the base field
k is clear.

Since Jp contains all indecomposable projective k[P]-modules by definition, one can
consider resolutions by interval modules. By interval covers over P (resp., interval res-
olutions over P), we mean right minimal (add Jp)-approximations (resp., Jp-resolutions)
of k[P]-modules. When the poset P is clear, we may omit it. In addition, we will write

int-res-dim M := Jp-res-dim M and int-res-gldim k[P] := Jp-res-gldim k[P],

and call them the interval resolution dimension of a module M and the interval resolution
global dimension of k[P] respectively. It has been shown in [2, Proposition 4.5] that the
interval resolution global dimension is always finite. To show that, the next proposition
is a key.

Proposition 4. [2, Lemma 4.4 and its dual] The subcategory add Ip is closed under both
submodules and quotients of indecomposable modules.

Then, we can apply [10, Theorem in § 5](cf. [8]) and obtain the following.
Theorem 5. [2, Proposition 4.5] For any finite poset P, int-res-gldim(k[P]) < oco.



3. RESULTS

In this section, we will give three results on interval covers and interval resolution
dimensions (Theorems 6, 8, and 9). These results are motivated by topological data
analysis, and they would be interesting from the perspective of representation theory of
finite dimensional algebras.

3.1. Result 1. We show the following result.

Theorem 6. Let P be a finite poset and Jp the set of isomorphism classes of interval
modules. For a gwen k[P]-module M, we take its interval cover f: X = @", X; — M,
where all the X;’s are interval modules. Then, the following holds.

(1) f is surjective.
(2) flx,: Xi = M is injective for every i € {1,...,m}.
(3) supp X = supp M.

In particular, every X; can be taken as an interval submodule of M.

An importance of Theorem 6 is that it provides one way to reduce the computational
burden for computing interval resolutions. We note that [5, Proposition 4.8] show Theo-
rem 6 in essentially the same way.

Example 7. We consider the Dy-type quiver D,(b) displayed below:
1

l

2<—3—4.

Then, the incidence algebra is just a path algebra of type D,. The Auslander-Reiten
quiver is given by

\/\/\

2} 1 3 ; 0 ; 1 3 1
111 111 M 010 010 000>
/ \ % \ /

0 1

where all indecomposable modules except for M are interval, but M is

k
‘1]

<o [10] p2 01 [01] k.

Looking at the Auslander-Reiten quiver, we find that an interval resolution of M is

tb1,b2,b3] [a1,a2,a3]
. 0 bbsl - o 1 0 ,a2,43], ;
0 111 011@111@110 M 07



and hence
int-res-dim M = 1.

Consequently, the interval resolution global dimension for Dy(b) is 1. One can also show
that any D4-type quiver has the interval resolution global dimension 1.

3.2. Result 2. We give a complete classification of posets whose modules are always
interval-decomposable. This result generalizes the one-parameter settings of persistent
homology.

Theorem 8. Let P be a finite poset and k[P] the incidence algebra of P. Then, the

following conditions are equivalent.

(a) int-res-gldim k[P] = 0.

(b) Every k[P]-module is interval-decomposable.

(¢) Each connected component of the Hasse diagram of P is one of A,(a) for some ori-
entation a or Cp, ¢ displayed below, where the symbol < is either — or < assigned by
1ts orientation a:

An(a) 1+—2— .-t —>n,
1 (5] . Qm—1 m

1
B Be—1

Ry
In particular, these conditions do not depend on the characteristic of the base field k.

We note that equivalences among (a) and (b) in the statement are trivial.

3.3. Result 3. Finally, we study a relationship between the interval resolution global
dimensions of different posets. Our result is the following.

Theorem 9. Let P be a finite poset and k[P] the incidence algebra of P. For any full
subposet P’ of P, we have

(3.1) int-res-gldim k[P'] < int-res-gldim k[P].
For the usual global dimension, we do not have the above monotonicity in general.

Example 10. Let P and P’ be posets given by

[ ] [ ]
v N
.\ {. d P/ [ ] [ ]
P an :
N | >
[ ) [} [ ] [ )
N N
[ ) [}



respectively. Then, P’ is a full subposet of P, which is obtained by removing the point
in the center. The global dimension of k[P] is 2 but that of k[P'] is 3 (over an arbitrary
field), see [7, Section 3].

On the other hands, we have int-res-gldim k[P'] = 2 < 3 = int-res-gldim k[P] over a
field with two elements.

In the rest, we give a sketch of a proof of Theorem 9. The main ingredient for its proof
is a functor ©, defined as follows. Let A be a finite dimensional k-algebra. For a given
idempotent e € A, we consider the idempotent subalgebra B := eAe. It is well-known
that the functors

Rese(—) :== (—)e, Ind.(—) := — ®p eA, Coind.(—) := Homp(A4e, —),
respectively called the restriction, induction, and coinduction functors, provide a diagram
Inde

(3.2) mod A — 4 mod B.

\/

Coinde
which gives an adjoint triple. Then, the identity 1,; is associated to the map 6, by
Hom 4 (Ind, (M), Coind.(M)) <=— Homp (M, M)

w w

91\4 f 1M7

and an A-module
O.(M) :=Im 0y C Coind.(M).

It gives rise to a functor ©, called intermediate extension in [9, Proposition 4.6], and
prolongedment intermédiare in [4]. We have Res, 0 O, = lynodB-

Let P be a finite poset and P’ a full subposet of P. In this setting, the incidence algebra
k[P’] can be obtained as an idempotent subalgebra. In fact, we have an isomorphism
k[P'] = ek[Ple of algebras, where e := ) _p e,. Due to the previous paragraph, we can
define the functor ©.: mod k[P'] — mod k[P].

The following is a key observation on interval modules.

Proposition 11. The functor ©. sends interval modules to interval modules. More ez-
plicitly, for a given interval I € I(P'), we have Oc(kr) = keonv(r), where conv(I) is the
smallest interval of P containing I.

Consequently, we find the exact functor Res, and the functor ©, provides the diagram

66
mod k[P] — Res. _ modk[P']
U Ocladd s U

addJp = Rescluar, _ addJp,



where Jp (resp., Jp/) is the set of isomorphism classes of interval modules over P (resp.,
P’). Then, we can directly compare interval resolutions via these functors and obtain the
following.

Proposition 12. For any module M € k[P'], we have the following inequality
(3.3) Jpr-res-dim M < Jp-res-dim ©,(M).
Now, we are ready to prove Theorem 9.

Proof of Theorem 9. Since M is an arbitrary module in (3.3), we obtain the desired in-
equality (3.1) by Proposition 12. O
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FACES OF INTERVAL NEIGHBORHOODS OF SILTING CONES

SOTA ASAT AND OSAMU IYAMA

ABSTRACT. In the study of silting complexes for a finite dimensional algebra over a field,
silting cones in the real Grothendieck group play an important role. The first named
author defined the interval neighborhood of each silting cone so that it is compatible
with 7-tilting reduction of Jasso. The closure of the interval neighborhood is a rational
polyhedral cone in the real Grothendieck group. We have obtained many important
properties of the faces of this rational polyhedral cone, and explain some of them in this
proceeding.

1. INTRODUCTION

The representation theory of a finite dimensional algebra A over a field K studies the
categories mod A and proj A of finitely generated (projective) A-modules, and its derived
categories D”(mod A) and K" (proj A).

Derived equivalences of algebras are characterized by the existence of tilting complezes
in the category KP(proj A) introduced by Rickard [20]. Keller-Vossieck [17] generalized
tilting complexes to silting complexes, and silting complexes are equipped with the opera-
tion called mutation exchanging one indecomposable direct summand of a silting complex
to obtain another one [3].

Among silting complexes, 2-term silting complezes are strongly related to functorially
finite torsion pairs [1, 5, 11], which is known as part of 7-tilting theory. It is natural to also
consider direct summands of 2-term silting complexes, which are called 2-term presilting
complexes.

In the study of (pre)silting complexes, the Grothendieck group Ko(proj A) is important.
Actually, Ko(projA) is nothing but the free abelian group @;_, Z[P;] whose canonical

basis is given by the isoclasses of indecomposable projective modules Py, P, ..., P,.
Aihara-Iyama [3] proved that the indecomposable direct summands 51, S5 . . ., S, of each
basic silting complex S = @, S; give another free basis [S1], [Sa], ..., [Sn] of Ko(proj A).

Then, for each basic 2-term presilting complex U = @, U; with U; indecomposable, we
have a silting cone

Co(U) := ZRM[UZ-],

in the real Grothendieck group Ko(proj A)g. The silting cone C°(U) is m-dimensional.

By [12], silting cones give a fan in Ko(proj A)g so that the intersection C'(U)NC(U’) of
the silting cones of basic 2-term presilting complexes U and U’ coincides with the silting
cone C(U") of the maximum common direct summand U” of U and U’.

The detailed version of this paper will be submitted for publication elsewhere.

-12-



In general, this fan is not necessarily complete. In other words, there can be a region
in Ky(proj A)g where no silting cones exist. To understand such a region more, it is
helpful to consider semistable subcategories Wy of King [18] and semistable torsion pairs
(To,Fs), (To, Fo) of Baumann-Kamnitzer-Tingley [9] in mod A, given by certain linear
conditions on subfactors of modules in mod A for elements 6 in Ky(proj A)g.

By using semistable subcategories, Briistle-Smith-Treffinger [10] introduced the wall-
chamber structure in Ko(proj A)gr whose walls are @y := {6 € Ky(projA)r | M € Wy}
for all nonzero modules M € mod A\ {0}. Similarly, by semistable torsion pairs, the first
named author [6] defined an equivalence relation called TF equivalence so that 6 and 7
are TF equivalent if (T, Fo) = (T, F,) and (T, Fo) = (T, Fy)-

Based on results of Briistle-Smith-Treffinger [10] and Yurikusa [21], the first named
author [6] proved that the silting cone C°(U) for each basic 2-term presilting complex U
is a TF equivalence class. The semistable torsion pairs for § € C°(U) are the functorially
finite torsion pairs for U which have already been considered in [1, 8].

Sometimes, it is difficult to deal with all 2-term (pre)silting complexes at once. Then,
one of the useful methods is 7-tilting reduction introduced by Jasso [16]. For a fixed basic
2-term presilting complex U, Jasso constructed a finite dimensional algebra B = By, and
obtained that the basic 2-term (pre)silting complexes which have U as direct summands
in KP(proj A) are in bijections with the basic 2-term (pre)silting complexes in K (proj B).
Moreover, Jasso also proved that W, for 8 € C°(U) is equivalent to the module category
mod B.

The first named author introduced a subset Ny of Ky(proj A)gr which connects the wall-
chamber structure, TF equivalence and the 7-tilting reduction at U in [6]. The set Ny
is an open neighborhood of the silting cone C°(U), so we decided to call Ny the interval
neighborhood of C°(U).

By the constrution, the closure Ny is a rational polyhedral cone in Ky (proj A)g, so we
are currently studying the faces of Ny. We will state some of our results on the faces of
Ny in this proceeding.

1.1. Notation. In this proceeding, K is a field, and A is a finite dimensional K-algebra.
The symbol proj A denotes the category of finitely generated projective A-modules, and
mod A denotes the category of finitely generated A-modules.

As usual, Ko(C) is the Grothendieck group of an exact category C. The real Grothendieck
group means the R-vector space Ky(C)r := Ko(C) ®z R.

The Grothendieck group Ko(projA) is nothing but @), Z[F;], where P, P,,..., P,
are the pairwise nonisomorphic indecomposable projective modules. Thus, Ky(proj A)g is
the Euclidean space @), R[P;]. Similarly, Ko(mod A) = @), Z[L;] and Ky(mod A)r =
., R[L;] hold, where L; is the simple top of P;.

With respect to the Euler form, Ky(proj A)r can be seen as the dual R-vector space of
Ky(mod A)r up to scalar multiples. Namely, each § = > | a;[P;] € Ko(proj A)g gives the
R-linear map Ko(mod A)g — R such that

i=1
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2. SILTING CONES AND TF EQUIVALENCE

We first recall some terminology on silting cones and TF equivalence.

Let U be a complex in the homotopy category KP(proj A) of bounded complexes in
proj A. Since KP(proj A) is Krull-Schmidt, U is isomorphic to a direct sum of the form
@, U with Uy, Us, . .., U, indecomposable and pairwise nonisomorphic and all s; > 1.
In this case, we set |U| := m, and say that U is basic if all s; = 1.

Then, we can define (pre)silting complexes as follows.

Definition 1. [17, 5.1][3, Theorem 2.27] Let U € KP(proj A).
(1) We say that U is presilting if Homb oo 4)(U, U[>0]) = 0.
(2) We say that U is silting if U is presilting and |U| = |A|.

Aihara [2, Proposition 2.16] proved that any presilting complex U is a direct sum-
mand of some silting complex S. By this and [3, Theorem 2.27], if U = @, U; with
each U; indecomposable is presilting, then [Ui], [Us], ..., [Un] € Ko(proj A)g are linearly
independent.

We say that U € KP(proj A) is 2-term if the terms of U except the —1st and the Oth ones
are zero. The result [2, Proposition 2.16] also says that any 2-term presilting complex U
is a direct summand of some 2-term silting complex S.

We set 2-silt A (resp. 2-psilt A) as the set of basic 2-term (pre)silting complexes in
KP(proj A). Thus, it is natural to consider the following notions.

Definition 2. Let U = @}", U; € 2-psilt A with U; indecomposable. Then, we set the
silting cones C°(U),C(U) C Ko(proj A)r as

Co(U) = ZR>0[U,-], CU) = ZREO[UZ-].

We will characterize the silting cone C°(U) by semistable torsion pairs, which are
defined as follows.

Definition 3. Let 6 € Ky(proj A)g.

(1) [9, Subsection 3.1] We set the semistable torsion pairs (T g, Fs), (Ts, Fs) in mod A
by

To:={M cmodA |0
Fy:={M emodA |6

N) > 0 for any factor module N of M},
L) < 0 for any submodule L # 0 of M},
To:={M € mod A | §(N) > 0 for any factor module N # 0 of M},

Fo:={M €modA |6(L) <0 for any submodule L of M}.
(2) [18, Definition 1.1] We set Wy := T4 N Fy, and call it the semistable subcategory.

~—~ o~ —~

The semistable subcategory Wy is a wide subcategory of mod A; that is, closed under
taking kernels, cokernels, and extensions in mod A. Therefore, the interval [Ty, 7| in the
poset tors A of torsion classes is a wide interval in [7]. Moreover, W, is an abelian length
category, and hence has the Jordan-Holder property [14, Theorem 6.2].

Then, we can define TF equivalence.
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Definition 4. [6, Definition 2.13] Let 6,7 € Ko(proj A)g. We say that ¢ and n are TF
equivalent if (T, Fy) = (Ty, Fy) and (To, Fo) = (Ty, Fo)-

The following result based on [10, Proposition 3.27] and [21, Proposition 3.3] is funda-
mental in our study.

Proposition 5. [6, Proposition 3.11] Let U € 2-psilt A. Then, C°(U) is a TF equivalence
class. For any 0 € C°(U), we have

(To,Fo) = (FH*(vU),Sub H*(vU)), (Ty, Fo) = (Fac H°(U), H(U)™).

The torsion pairs in the right-hand sides are classical functorially finite ones which were
in [8, Theorem 5.10]. In the terminology of [1], the module H~!(vU) is 7~ !-rigid, and the
module H°(U) is 7-rigid. See [1, 8] for details including the definitions of the symbols.

Definition 6. Let U € 2-psilt A. Then, we set
(Tv, Fu) = (FH Y (vU),Sub H ' (vU)), (Ty, Fu) = (Fac H*(U), H*(U)™b),
Wy = T—U n ?U-

Thus, Wy = W, for 6 € C°(U) holds, so Wy, is a wide subcategory of mod A. This was
shown by [16, Theorem 3.8] without using semistable torsion pairs. See also [13, Theorem
4.12).

3. INTERVAL NEIGHBORHOODS OF SILTING CONES
For each U € 2-psilt A, we set
2-psilty A:={V € 2-psilt A | U € add V'}.

This is the subset of 2-psilt A consisting all V' € 2-psilt A which have U as direct summands.

To study 2-psilt;; A, the first named author introduced the following set.
Definition 7. [6, Subsection 4.1] Let U € 2-silt A. Then, we define the interval neighbor-
hood Ny of C°(U) by

Ny == {0 € Ko(proj A)r | H'(U) C To, H '(VU) C Fp}
={6 € Ky(proj A)r | To C To, Fu C Fo}-
We first observe the following properties.

Lemma 8. Let U,V € 2-psilt A.

(1) [6, Lemma 4.3] The set Ny is an open neighborhood of C°(U).
(2) The set Ny is given by finitely many linear strict inequalities.
(3) [6, Lemma 3.13] The following conditions are equivalent:

(a) V € 2-psilt; A;

(b) Tv D Ty and Fy D Fy;

(¢) C°(V) C Ny;

(d) Ny C Ny.

Moreover, Ny satisfies the following minimality.
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Lemma 9. Let U € 2-psilt A. Then, Ny is the smallest set satisfying both the following
conditions:

(a) Ny is a neighborhood of C°(U);
(b) Ny is a union of TF equivalence classes.

We also focus on the closure Ny C Ko(proj A)g.

Lemma 10. Let U,V € 2-psilt A.

(1) We have Ny = {0 € Ky(proj A)g | H'(U) C Ty, H *(vU) C Fg}. In particular,

Ny is a union of TF equivalence classes.
(2) We have Ny > C(U).
(3) The set Ny is a rational polyhedral cone in Ko(proj A)g.
(4) The following conditions are equivalent:

(a) U@V is (not necessarily basic) presilting;

(b) NU n NV 7é @,’

(c) C(V) C Ny.

In this case, Nyay = Ny N Ny holds.

4. FACES OF INTERVAL NEIGHBORHOODS

Let U € 2-psilt A. Since Ny is a rational polyhedral cone, we study the set Face Ny of
its faces. If U = @:’;1 U; with U; indecomposable, we set U := @iel U; for each subset
I c{1,2,...,m}. We have obtained the following properties in our study.

Definition-Proposition 11. Let U € 2-psilt A and F € Face Ny. Set Ip = {i €
{1,2,....,m} | [U;] & F}.

(1) We have FNC(U) =C(U/Uy,).

(2) If dimg FF'=n—1, then #Ir = 1.

(3) For any I C {1,2,...,m}, we define

Face; Ny := {F € Face Ny | Ir = I}.
Then, we have a (not necessarily convex) subset
61:2 U F:NiU\UN[LCNiU
FeFace; Ny €l

To explain our main results, we need to recall some results in 7-tilting reduction.

Fix U € 2-psilt A. Then, we take the unique S € 2-silt A such that T¢ = 7. This S is
called the Bongartz completion of U. We define a finite dimensional algebra B = By by
B := Endgb(proj 4)(S)/(€), where e is the idempotent S — U — S.

Jasso [16] proved the following results. See also [13, Theorem 4.12] and [4, Theorem
4.9,

Proposition 12. Let U € 2-psilt A.

(1) [16, Theorem 3.8] There exists a category equivalence

® := Hompp (mod 4) (S, 7): Wy — mod B.
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(2) [16, Theorems 3.16, 4.12] There uniquely exist bijections
p: 2silty A — 2-silt B, p: 2-psilt; A — 2-psilt B
such that
(@(Tv N W), 2(Fu N Wy) = (Tow), Fow)),
(2(To NWo), ®(Fu N Wu)) = (Tyw), Fow)):
In particular, p(S) = B.
The first named author found the corresponding results in Ky(proj A)g.

Definition-Proposition 13. [6, Lemma 4.4, Theorem 4.5] Let U € 2-psilt A. Then, there
exists an R-linear surjective map m: Ky(proj A)g — Ko(proj B)r satisfying the following
conditions.

(a) The kernel Ker is the R-vector subspace RC(U) generated by C(U).

(b) The resriction 7|y, : Ny — Ko(proj B)r is still surjective.

(c) For any 0 € Ny, we have ®(Ty N Wy) = Tre) and ®(Fo "1 Wy) = Frpy. In
particular, ™ induces a bijection

{TF equivalence classes in Ny} — {TF equivalence classes in Ky(proj B)r}.
(d) For any V € 2-psilt; A, we have m(C°(V)) = C°(p(V)).
Then, we can state our first main result.
Theorem 14. Let U = @), U; € 2-psilt A with U; indecomposable, and I C {1,2,...,m}.
We set
S :={n(F) | F € Face; Ny/}.
(1) We have a bijection Face; Ny — X; sending F to w(F). The inverse is given by
o 1Y o)N .

(2) For any F € Face; Ny, we have dimg 1(F) = dimg F — #1.
(3) X5 is a finite complete rational polyhedral fan in Ko(proj B)g.

Before stating our second main result, we prepare some notions. Since (74, F3), (Ta, Fo)
are torsion pairs in mod A, for any M € mod A and 6 € K,(proj A)g, we have unique short
exact sequences

0—=tgM — M =M =0 (t¢M € Ty, faM € Fp),
0—=tgM — M — M =0 (teM € Ty, faM € Fp)

with t¢M C t¢M C M. Moreover, we set woM := tyM/tyM € Wy. Then, we introduce
the following equivalence relation.

Definition 15. Let M € mod A, and 6,1 € Ky(proj A)g. Then, we say that § and 7 are
M-TF equivalent if the following conditions hold:

(a) toM = t,M and wyM = w, M and fyM = f, M;

(b) the composition factors of woM = w, M in Wy and W, coincide.
Moreover, we set X(M) as the set of the closures of all M-TF equivalence classes.
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The condition (b) seems complicated, but it is necessary to make the following property
hold.

Proposition 16. Let M € mod A. Then, (M) is a finite complete rational polyhedral
fan in Ko(proj A)g.

We remark that (M) coincides with the complete rational polyhedral fan 3(N(M))
in [4, Theorem 5.22] constructed from the Newton polytope N(M) of M in Ky(mod A)g.
Now, we can state our second main result.

Theorem 17. Let U = @, U; € 2-psilty A with U; indecomposable. Then, there ex-
ist My, My, ..., M,, € modB such that, for any subset I C {1,2,...,m}, the rational
polyhedral fans (D, ., M;) and Xy in Ky(proj B)r coincide.

We sketch the construction of My, My, ..., M, above. We take the unique S, T € 2-silt A
such that Tg = Ty and Fg = Fy. Then, we can prove that T is the left simultaneous
mutation of S at S/U. Thus, we can decompose S,T as S = @, S; and T = P, T;
so that

(a) for any ¢ € {1,2,...,m}, we have S; = U; = T;; and

(b) for each j € {m +1,m +2,...,n}, there exists a triangle S; — Uj — T; — Sj in

K" (proj A) with S; — Uj a minimal left (add U)-approximation.

Next, we take the 2-term simple-minded collections X = @, X; and Y = @Y,
in D’(mod A) corresponding to 5,7 under the bijection in [19, Theorem 6.1] and [11,
Corollary 4.3]. Then, we have proved that, for each i € {1,2,...,m}, there exists a
triangle X;[—1] — W; — ¥; — X; in D’(mod A) with X,;[—1] — W; a minimal left Wy -
approximation by using [15, Proposition 4.8]. Now, M; := ®(W;) is the desired B-module.

iel
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THE SPECTRUM OF THE CATEGORY OF MAXIMAL
COHEN-MACAULAY MODULES

NAOYA HIRAMATSU

ABSTRACT. We introduce a topology on the set of isomorphism classes of finitely gener-
ated maximal Cohen—Macaulay modules over a commutative complete Cohen—Macaulay
ring, which is analogous to the Ziegler spectrum. We then calculate the Cantor-Bendixson
rank of this topological space for rings of CM-finite representation type.

1. INTRODUCTION

The Ziegler spectrum of an associative algebra is a topological space whose points
are the isomorphism classes of indecomposable pure-injective modules, whose topology is
defined in terms of positive primitive formulas over the algebra. Many studies of Ziegler
spectrums are given in the context of the representation theory of algebras [1, 2, 5] and so
on. In this note, we consider an analog of the Ziegler spectrum for the (stable) category of
maximal Cohen-Macaulay (abbr. MCM) modules over a complete Cohen-Macaulay local
ring.

Let R be complete Cohen-Macaulay local ring with algebraic residue field k. We denote
by C the category of MCM R-modules. We denote by mod(C) the category of finitely
presented contravariant additive functors and also denote by mod(C) the full subcategory
of mod(C) consisting of functors with F(R) = 0. We denote Sp(C) the set of isomorphism
classes of the indecomposable MCM R-modules except R and 0.

For a subset X of Sp(C), we denote by X(X) the subcategory of mod(C) formed by the
functors F such that F'(X) = 0 for all X € X. For a subcategory F of mod(C), we denote
by v(F) the subset of Sp(C) satisfying F/(X) = 0 for all F' € F.

Theorem 1. Then the assignment X +— v o %(X) is a is a Kuratowski closure operator
on Sp(C). In particular, it induces a topology on Sp(C).

For some specific C, we calculate a Cantor-Bendixson rank of Sp(C) with respect to
the topology. The Cantor-Bendixson rank measures the complexity of the topology. It
measures how far the topology is from the discrete topology.

We say that a Cohen-Macaulay local ring is C,-finite if there exist only finitely many
isomorphism classes of indecomposable MCM modules that are not locally free on the
punctured spectrum [7].

Theorem 2. If R is C.-finite then CB(Sp(C)) < 1.

In this talk, we consider only finitely generated modules. Previous studies have also
considered infinitely generated modules, which is different from our consideration.

The detailed version of this paper will be submitted for publication elsewhere.
The author was partly supported by JSPS KAKENHI Grant Number 21K03213.
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2. THE SPECTRUM OF THE CATEGORY OF MAXIMAL COHEN-MACAULAY MODULES

In this note, R is a commutative complete Cohen—Macaulay local ring with algebraic
residue field £ and all modules are "finitely generated” R-modules. We denote by C the
category of maximal Cohen-Macaulay (MCM) modules.

C ={M | Extiy(k, M) =0 for i < dim R}

We denote by C the stable category of C. The objects of C are the same as those of C, the
morphisms of C are elements of Homp (M, N) := Homy(M,N)/P(M,N) for M,N € C,
where P(M, N) denote the set of morphisms from M to N factoring through free R-
modules. Since R is complete, C, thus C are Krull-Schmidt categories. That is the
endomorphism ring of the indecomposable module is local.

Let us recall the full subcategory of the functor category of C which is called the Auslan-
der category. The Auslander category mod(C) is the category whose objects are finitely
presented contravariant additive functors from C to a category of abelian groups and
whose morphisms are natural transformations between functors. We denote by mod(C)
the full subcategory mod(C) consisting of functors F' with F(R) = 0. The important fact
is that mod(C) and mod(C) are abelian categories.

Remark 3. Tt is nothing but mod(C) is the Aunslander category of C mod(C). Actually,
the category mod(C) is equivalent to mod(C);

mod(C) — mod(C); F i+ Fou,

where ¢ : C — C. See [8, Remark 4.16]. So in the rest of this note, we denote mod(C)
instead of mod(C).

Note that every object F' € mod(C) is obtained from a short exact sequence in C.
Namely we have the short exact sequence 0 - N — M — L — 0 such that

0 — Hompg( , N) - Hompg( ,M) — Homg( ,L) - F — 0
is exact in mod(C).

Definition 4. We denote by Sp(C) the set of isomorphism classes of the indecomposable
MCM R-modules except R and 0. Namely,

Sp(C) := {the indecomposable MCM R-modules except R and 0}/ = .
The following assignments are introduced by Krause [2].
Definition 5. The assignments
Y :Sp(C) = mod(C), ~:mod(C)— Sp(C)

are defined by
Y(X):={F emod(C) | F(X) =0 for VX € X},
Y(F):={M € Sp(C) | F(M) =0 for VF € F}.

We state several basic properties of the assignments > and I'.

Lemma 6. Let X, Y be subsets of Sp(C) and F and G be subcategories of mod(C). For
the assignments > and vy, the following statements hold.

(1) X CY=5(X) 2 5().
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This is the main theorem of this note.

Theorem 7. The assignment X — ~y o 3(X) is a Kuratowski closure operator. That is,
(1) yox(0) =0,
(2) X CyoX(X),
(3) Yo X(XUY)=70X(X)U~vyoX()),
(4) 7o X(y 0 X(X)) =70 X(X)
hold for all subsets X, Y in Sp(C).

Proof. The assertions (i), (ii), and (iv) follow from the definition and the lemma above.
To show (iii), we now notice that Homgz(—, M) € mod(C) for VM € C. The inclusion
YoX(XUY) D yoX(X)UvyoX(Y)) follows from the fact that Z(XUY) = Z(X)NE(Y),
and the equality is clear. To show another inclusion, we take M € v o X(X UY). Note
that M is indecomposable. Assume that M ¢ v o X(X) U~y o 3()). Then there exist
F e ¥(X) and G € 2(Y) such that F(M) # 0 and G(M) # 0. We construct the functor
H € ¥(X U)Y) such that H(M) # 0 by using F' and G. If such a functor exists we have
a contradiction because M annihilates all functors in (X U )Y). By Yoneda’s Lemma,
we have nonzero morphisms f : Homp(—, M) — F and g : Homp(—, M) — G. Take a
pushout diagram in mod(C):

Homp(—, M) —Im f —0

l l

Im g H 0
l l
0 0.

Since X(X) and 3(Y) are Serre subcategories, Im f € £(X), Im g € £()). This im-
plies that H € (X U Y). From the push out diagram we obtain the exact sequence
Homgp(—, M) - Im f@®Im g - H — 0. Since Endp(M) is local, Endg(M) is an inde-
composable End ,(M)-free module. Moreover Im f(M) and Im g(M) are cyclic modules.
This concludes that H(M) must be nonzero. Therefore we have H € (X U )Y) such
that H(M) # 0. This gives the contradiction that M € v o S(X U Y), so that M is in
Yo X(X)UvoX(Y). O

Corollary 8. The assignment X — 7 o X(X) defines a topology on Sp(C). That is a
subset X of Sp(C) is closed if and only if v o X(X) = X.

For a locally coherent category G, a bijective correspondence between closed subsets
in Sp(§) and Serre subcategories in mod(§) is given in [1, 2]. In our setting, for a Serre
subcategory F C mod(C), F = ¥ o y(F) does not hold in general.

Example 9. Let R = k[[z,y]]/(2?). The indecomposable MCM R-modules are R,
I =(z)R and I, = (z,y™)R for n > 0. Since y(Homp(—, I,)) = 0, X oy(Homp(—, I,,)) =
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¥(0) = mod(C). However S(Homy(—, I,,)) # mod(C). Here we denote by S(Homy(—, I,,))
the smallest Serre subcategory which contains Hom p(—, I,,). Since KGdim Homp(—, I,,) =
1 [6, Proposition 3.8], KGdim S(Homp(—,,)) = 1. Note that KGdim Homp(—,I) = 2.
[6, Proposition 3.11]. Hence Homp(—,!) ¢ S(Homp(—,1,,)), so that S(Homp(—, I,,))
mod(C).

Lemma 10. Let X,Y € Sp(C) with X 2 Y. Suppose that Homgz(X,Y) # 0. Then
Y & ~voX(X).

By the lemma above, one can show the following.
Proposition 11. We have yo X(X) = {X} for all X € Sp(C). Hence Sp(C) is T}-space.

Proof. Let Y € Sp(C) which is not isomorphic to X. Suppose that Homg(X,Y) # 0.
Then Y ¢ v o X(X) by the lemma. Suppose that Hom(X,Y") = 0. Then Homy(—,Y) is
contained in X(X) Assume that Y € vy 03(X), and in the case Homy(Y,Y) = 0. So that
Y is 0 or R. This never happens since Sp(C) does not contain 0 and R. O

Proposition 12. Let M € Sp(C). M is an isolated point, that is {M} is open, if and
only if there exists an Auslander-Reiten (AR) sequence ending in M.

Proof. If there exists an AR sequence ending in M we can consider the functor Sy, which
is obtained from the AR sequence. Then v(Sy) = Sp(C)\{M} is closed, so that {M} is
open.

Suppose that M is isolated, and then Sp(C)\{M} is closed. Notice that Z(Sp(C)\{M})
is not empty, and take F' € X(Sp(C)\{M}). Then F(M) # 0 and F(N) = 0if N 2
M. By Yoneda’s lemma, we have a nonzero morphism p : Homp(—, M) — F. Since
Imf is finitely presented and a subfunctor of F', by considering Imp instead of F', we
may assume that F has a presentation: Homp(—, M) — F — 0. Take a generator
fi,-++, fm of radr(M, M) as an R-module. Then the image of Hom gz (M, (f1, -, fm)) :
Homp (M, M®™) — Hompy (M, M) is radz(M, M). Consider the diagram:

0 0
Hy, —— F/Impof —— 0
Hompy(—, M) —2— F — 0
f:=Homp (=,(f1,+,fm))

Homp(—, M®™) —— Impof —— 0

0.

We should remark that F/Imp o f is finitely presented since Imp o f is so. By the
construction, we have Hy (M) = Homp (M, M)/radp(M, M) = k. Moreover p(f(M)) =
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p(radz(M, M)) C radgF(M), so that F/Impo f(M) = F(M)/mF(M). This yields that
F/Tmp o f is a simple functor and we conclude that M admits an AR sequence. ]

Corollary 13. Let R be an isolated singularity. Then the topology of Sp(C) is discrete.

The author thanks Tsutomu Nakamura for telling him the remark below.

C

Remark 14. Let GProj(R) be a category of Gorenstein-projective R-modules and GProj(R)
the full subcategory consisting of compactly generated modules. It has been studied in [5]
that the Ziegler spectrum is defined by using the functor category of the stable category
of GProj(R)°. Suppose that R is Gorenstein. Then it is shown in [5, Theorem 2.33] that
we have the triangulated equivalence C = GProj(R)¢. So if R is Gorenstein, the spectrum
Sp(C) is nothing but the Ziegler spectrum which is considered in [5] restricted to finitely
generated ones.

3. CANTOR-BENDIXSON RANK

In this section, we calculate a Cantor-Bendixson rank of Sp(C).

Definition 15 (Cantor-Bendixson rank). Let 7 be a topological space. If x € T is an
isolated point, then CB(z) = 0. Put 7’ C T is a set of the non-isolated point. Define
the induced topology on T7. Set 7O = 7, 7MW = 7O ... 70O+) — 70 We define
CB(x) = n if v € TW\T®*D If In such that T+ = @ and 7™ # @, then CB(T) = n.
Otherwise CB(T) = oc.

Example 16. Let R be a DVR (e,g. R = k[[z]]). Then CB(SpecR) = 1 concerning the
Zariski topology. Note that SpecR = {(0),m}. (0) is an isolated point since D(f) = {(0)}
for some f € R\{0}. Thus SpecR’ = {m} = SpecR("), and m is isolated in the induced
topology. In the case R = k[[z,y]], you can show that CB(SpecR) = co. Note that
SpecR’ = SpecR.

By the corollary, we know Sp(C) is a discrete topology if R is an isolated singularity.
Corollary 17. Let R be an isolated singularity. Then CB(Sp(C)) = 0.
The definition of CM, -finite is introduced in [7].

Definition 18. We say that a Cohen—Macaulay local ring R is CM -finite if there exist
only finitely many isomorphism classes of indecomposable MCM modules that are not
locally free on the punctured spectrum.

Example 19. The following rings are CM -finite.

(1) A ring which is an isolated singularity. (Thus a ring which is of finite CM-
representation type.)
(2) A hypersurface ring which is of countable CM-representation type.

Here we say that R is of finite (countable) CM-representation type if there exists only
finitely (countably) many isomorphism classes of indecomposable MCM modules.

Theorem 20. If R is CM, -finite then CB(Sp(C)) < 1.
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Proof. We denote by Cy the subset of Sp(C) consisting of modules that are locally free on
the punctured spectrum and put C; as Sp(C)\Cy. For all M € Cy, M is an isolated point
since M admits an AR sequence. Thus CB(Cy) = 0.

On the other hand, for all M € C;, M is not isolated. Since R is CM_-finite, C; is a
finite set. Hence, for each M € C,,

finite
VM = U Yo E(X)
X#AM,X€Cs
is closed in Sp(C). Thus [C;]N[Sp(C)\Vi] = {M} is open in C, N Sp(C). Therefore
CB(Sp(C)) < 1. O
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QUANTUM PROJECTIVE PLANES AND BEILINSON ALGEBRAS OF
3-DIMENSIONAL QUANTUM POLYNOMIAL ALGEBRAS
FOR TYPE S’

AYAKO ITABA

ABSTRACT. Let A = A(E, o) be a 3-dimensional quantum polynomial algebra where F
is the projective plane P2 or a cubic divisor in P?, and ¢ € Aut,E. In this report, we
prove that, for a Type S’ algebra A = A(E, o), where E C P? is a union of a line and a
conic meeting at two points, and o € Auty E, the following conditions are equivalent: (1)
The noncommutative projective plane Proj,.A is finite over its center. (2) The Beilinson
algebra VA of A is 2-representation tame. (3) The isomorphism classes of simple 2-
regular modules over VA are parametrized by P2.

Key Words:  Quantum polynomial algebras, Quantum projective planes, Calabi-Yau
algebras, Beilinson algebras.
2020 Mathematics Subject Classification:  16W50, 16537, 16D90, 16E65.

1. QUANTUM POLYNOMIAL ALGEBRAS AND QUANTUM PROJECTIVE SPACES

This report is based on [7]. Throughout this report, let k& be an algebraically closed
field of characteristic 0, and all algebras are defined over k. Unless otherwise described,
let A be a connected graded k-algebra finitely generated in degree 1.

In noncommutative algebraic geometry, a quantum polynomial algebra defined by Artin
and Schelter [2] is a basic and important research object, which is a noncommutative
analogue of a commutative polynomial algebra.

Definition 1 ([2]). A right noetherian graded algebra A is called a d-dimensional quantum
polynomial algebra if

(i) gldim A = d < o0,
ko ifi=d,
0 ifi#d,
(iil) Ha(t) := D oioo(dimy At = (1 — )= (Hilbert series).
A right noetherian graded algebra A is called a d-dimensional AS-reqular algebra if the
above conditions (i) and (ii) hold.

(ii) Exty(k, A) = (Gorenstein condition)

Artin and Schelter [2] gave the classifications of low dimensional quantum polynomial
algebras as follows: For a 1-dimensional quantum polynomial algebra A, A is isomorphic
to k[z] as graded algebras up to isomorphism. For a 2-dimensional quantum polynomial
algebra A, A is isomorphic to

The detailed version of this paper has been submitted for publication elsewhere.
The author was supported by Grants-in-Aid for Young Scientific Research 21K13781 Japan Society
for the Promotion of Science.
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k(z,y)/(—2® + zy — yz), or kx[z,y] = k{z,y)/(zy — Ayz) (A € k\{0})
as graded algebras up to isomorphism, where ky[z,y] = ky[z,y] if and only if N = \FL.
Moreover, Artin and Schelter [2] proved that every 3-dimensional quantum polynomial
algebra is isomorphic to one of the following algebra as graded k-algebras:

A= k<x,y,2>/(f1,f2,f3), or A= k<x5y>/(91792)7

where, f; € k{x,y,2)s and g; € k{x,y)3. Note that A is a 3-dimensional quantum poly-
nomial algebra if and only if A is a 3-dimensional quadratic AS-regular algebra ([2]).

Artin, Tate and Van den Bergh [3] found a nice correspondence between 3-dimensional
quantum polynomial algebras and geometric pair (E, o), where E is the projective plane P?
or a cubic divisor in P2, and o € Aut,E. So, this result allows us to write a 3-dimensional
quantum polynomial algebra A as the form A = A(FE, o). This result convinced us that
algebraic geometry is very useful to study even noncommutative algebras.

Let A be a right noetherian graded algebra. The category of finitely generated graded
right A-modules is denoted by grmod A, and the full subcategory of grmod A consisting
of finite dimensional modules over k id denoted by tors A.

Definition 2 ([5]). (1) The noncommutative projective scheme associated to A is de-
fined by Proj,. A = (tails A,mA) where tails A := grmod A/tors A is the quotient
category, m : grmod A — tails A is the quotient functor, and A € grmod A is
regular.

(2) If A is a d-dimensional quantum polynomial algebra. Then Proj,. A is called a
quantum P?1. In particular, if A is a 3-dimensional quantum polynomial algebra,
then Proj,. A is called a quantum projective plane.

Note that, if A is commutative, then Proj,. A = (mod X,Ox), X = ProjA. If A is a
2-dimensional quantum polynomial algebra, then Proj,. A = (coh P, Op1).

2. CHARACTERIZATION OF QUANTUM PROJECTIVE PLANES FINITE THEIR CENTERS

For a 3-dimensional quantum polynomial algebra A = A(FE, o), Artin-Tate-Van den
Bergh [4] gave the following geometric characterization when A is finite over its center

Z(A).

Theorem 3 ([4]). For a 3-dimensional quantum polynomial algebra A = A(E, o), then
A is finite over its center Z(A) if and only if the order |o| of o is finite.

To prove Theorem 3, “fat points of a quantum projective plane Proj,. A”plays an es-
sential role. By Artin [1], if A is finite over its center and E # P2, then Proj,. A has a fat
point, however, the converse is not true.

Definition 4. Let A be a graded algebra.

(1) A point of Proj,. A is an isomorphism class of a simple object of the form 7#M €

tails A where M € grmod A is a graded right A-module such that lim dimy M; <
1—00

00.

(2) A point 7M is called fat if lim dimg M; > 1 In this case, M is called a fat point

1—00

module over A.
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To check the existence of a fat point, the following was introduced by Mori [12].
Definition 5 ([12]). For a geometric pair (E,0) where E C P"~! and o € Aut,FE,
Auty(P"1 E) := {d|x € AutyF | ¢ € Aut,P" '}
and ||o| := inf{i € Nt | 0 € Aut,(P" ', E)} = 7|g for some 7 € Aut;P" "'}, which is
called the norm of o.
For a geometric pair (F, o), ||o|| < |o| holds in general.

Lemma 6 ([12], [1]). Let A = A(E,0) be a 3-dimensional quantum polynomial algebra.
Then the following hold:

(1) |le|| = 1 if and only if E = P2.

(2) 1 < |lo|| < oo if and only if Proju. A has a fat point.

For a d-dimensional quantum polynomial algebra, the following holds in general:

Lemma 7 ([13], [12]). Let A and A’ d-dimensional quantum polynomial algebras “satis-
fying the condition (G1), where P(A) = (E,0) and P(A") = (E',0")”, respectively. Then
the following hold:
(1) If A= A, then EX E' and |o| = |0'].
(2) If grmod A = grmod A’, then E = F', ||o|| = |||

In particular, when d = 3, if Proju. A = Projy. A', then E 2 E' and ||o|| = ||o']].

We remark that Lemma 7 (2) tells us that, for a 3-dimensional quantum polynomial
algebra A = A(E, o), the norm ||o|| of ¢ is a categorical invariant in Projy. A.

Definition 8 ([12], [10]). Let A be a d-dimensional quantum polynomial algebra. We say
that Proj,. A is finite over its center if there exists a d-dimensional quantum polynomial
algebra A’ finite over its center such that Proj,. A = Proj,. A’

For a 3-dimensional quantum polynomial algebra A = A(F, o) the author and Mori
[10] proved that the following results: This is a categorical analogue of Theorem 3.

Theorem 9 ([10]). If A = A(E,0) is a 3-dimensional Calabi-Yau quantum polynomial
algebra, then ||| = |o®|, so the following are equivalent:

(1) |o| < 0.

(2) [o] < oco.

(3) A is finite over its center.

(4) Proj,. A is finite over its center.

Theorem 10 ([10]). If A = A(E,0) is a 3-dimensional quantum polynomial algebra such
that E # P?, and v € Aut A the Nakayama automorphism of A. Then ||o| = |v*o3|, so
the following are equivalent:

(1) |v*o?| < oo.

(2) flol| < oo.

(3) Proj,. A is finite over its center.

(4) Proj,. A has a fat point.

We apply the above results of the author and Mori [10] to representation theory of finite
dimensional algebras.
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Definition 11 ([6]). Let R be a finite dimensional algebra of gldimR = d < co. An auto-
equivalence vy € Aut D’(modR) is defined by v4(M) := M ®@% DR[—d] where D*(mod R)
is the bounded derived category of mod R and DR := Homy(R, k). If v;*(R) € mod R for
all 7 € N, then R is called d-representation infinite. In this case, we say that a module
M € mod R is d-regular if v4(M) € mod R for all i € Z.

In Minamoto-Mori [11], for a d-dimensional quantum polynomial algebra A, the Beilin-
son algebra VA of A is defined by

Ay Ar - Aga
0 Ay --- Ag
VA:: . '.O . %2
0 0 - A

Theorem 12 ([11]). If A is a d-dimensional quantum polynomial algebra A and the
Beilinson algebra VA of A. Then V A is extremely Fano of global dimension of d—1, and
there exists an equivalence of triangulated category DP(tails A) =2 D*(modVA).

The Beilinson algebra is a typical example of (d — 1)-representation infinite algebra in
the sense of Herschend-Iyama-Oppermann [6] ([11]). To investigate representation theory
of such an algebra, it is important to classify simple (d — 1)-regular modules.

Remark 13. (1) If A is a 2-dimensional quantum polynomial algebra, then

2
VA & (IS I;;) %k(.*)o),
that is, VA is isomorphic to a 2-Kronecker algebra, so VA is a finite dimensional
hereditary algebra of tame representation type. It is known that the isomorphism
classes of simple regular modules over VA are parameterized by P! (cf. [12]).
(2) For a 3-dimensional quantum polynomial algebra A, VA is a finite-dimensional
algebra,

VA =k ( o— >e— >0 )/ (the same relations of A).

Corollary 14 ([10]). Let A = A(FE,0) be a 3-dimensional quantum polynomial algebra

with the Nakayama automorphism v € Aut A. Then the following are equivalent:

(1) [ e®l(=llo]l) = 1 or oo.

(2) Projuc A has no fat point.

(3) The isomorphism classes of simple 2-reqular modules over VA are parameterized by
the set of closed points of E C P2.

In particular, if A = A(F,0) is one of the following types, then A satisfies all of the
above conditions.

Type P (E = P?) Type T (E=>X) Type T (E=C))
Type OC (B=<) Type TL (E=——) Type WL (E=—5)

More precisely, if E is of Type P, then ||o|| = 1 by Lemma 6, and if F is of Type T,
Type T’, Type CC, Type TL or Type WL, then ||o|| is infinite. The following types of
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3-dimensional quantum polynomial algebras A = A(FE, o) have the case that ||o|| is finite.

Type S (E=_X)  TypeS (E=(/))  Type NC (E=X)  Type EC (E=C)

In [10], for a 3-dimensional quantum polynomial algebra A, the author and Mori expect
that the following are equivalent:

(1) Proj,. A is finite over its center.
(2) VA is 2-representation tame in the sense of Herschend-Iyama-Oppermann [6].
(3) The isomorphism classes of simple 2-regular modules over VA are parameterized
by P2.
Note that these equivalences are shown for Type S in [12, Theorem 4.17, Theorem 4.21].
Do these equivalences in the above conjecture hold for Type S’ in particular?

3. MAIN RESULTS

In this report, we prove the following results for Type S’ algebra A = A(FE, o), where
E C P? is a union of a line and a conic meeting at two points, and o € Aut,E.

Let A= A(F,0) = k{z,y,z)/(f1, f2, f3) be a 3-dimensional quantum polynomial alge-
bra of Type S’ where

fi=yz —azy + 2%,
f2 = ZI—szv

fgIIy—/jyI (01756]4?, aﬁ27é0a1)

(see [8, Theorem 3.2], [9, Table 1 in Proposition 3.1]). For a 3-dimensional quantum
polynomial algebra A = A(E,0) of Type S’, there exists the 3-dimensi onal Calabi-
Yau quantum polynomial algebra A’ of Type S’ such that grmod A = grmod A’ so that
Proj,. A = Proj,. A’ where A’ = A(E,o') = k{x,y,2)/(g1, g2, g3) is a 3-dimensional Calabi-
Yau quantum polynomial algebra of Type S’

g1 = yz — azy + 2,
Go = 22 — a2,
gs=ay —ayr (a®#0,1)

(see [9, Table 2 in Theorem 3.4]).

Proposition 15 ([7, Proposition 3.2]). Let A = A(E,0) = k(z,y,2)/(91,92,93) be a
3-dimensional Calabi- Yau quantum polynomial algebra of Type S’

g1 =yz —azy +a?,
where { gy = 2T — a7, Define g := xyz + (1 — o®)712® € As.

g3 =xy —ayr (a3 #£0,1).
(1) If A is finite over its center Z(A) (that is, |a| is finite), then Z(A) = k[zlol ylol 2ol g].
(2) If A is not finite over its center Z(A) (that is, |a| is infinite), then Z(A) = k[g].

Theorem 16 ([12]). Let A = A(FE, o) be a 3-dimensional quantum polynomial algebra. If
the Beilinson algebra VA of A is not 2-representation tame, then the isomorphism classes
of simple 2-regular modules over VA are parametrized by the set of points of E C P2,
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Theorem 17 ([7, Theorem 4.3]). Let A = A(E,0) be a 3-dimensional quantum polyno-
mial algebra of Type S’. If the Beilinson algebra VA of A is 2-representation tame, then
the isomorphism classes of simple 2-reqular modules over VA are parametrized by the set
of points of P2

By using Proposition 15 and Theorems 16, 17, we have the following result:

Theorem 18 ([7, Theorem 4.4]). For a 3-dimensional quantum polynomial algebra A of
Type S’, the following are equivalent:

(1) The noncommutative projective plane Proj, A is finite over its center.

(2) The Beilinson algebra VA of A is 2-representation tame in the sense of Herschend,
Iyama and Oppermann [6].

(3) The isomorphism classes of simple 2-reqular modules over VA are parameterized by
P2,
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THE AUSLANDER-REITEN CONJECTURE FOR NORMAL RINGS

KAITO KIMURA

ABSTRACT. In this article, we consider the Auslander—Reiten conjecture, which is a
celebrated long-standing conjecture in ring theory. One of the main results of this article
asserts that the conjecture holds for an arbitrary normal ring.

Key Words:  Auslander—Reiten conjecture, Ext module, Serre’s condition.
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1. INTRODUCTION

We refer the reader to [7] (arXiv:2304.03956) for details on the contents of this article.
Throughout this article, we assume that R is a commutative noetherian ring and that M
is a finitely generated R-module.

Auslander and Reiten [3] proposed the generalized Nakayama conjecture, which is rooted
in the Nakayama conjecture [9] and asserts that for any artin algebra A, any indecompos-
able injective A-module appears as a direct summand in the minimal injective resolution
of A. In addition, they proposed another conjecture, characterizing the projectivity of a
module in terms of vanishing of Ext modules, which is called the Auslander-Reiten con-
jecture, and proved that this conjecture is true if and only if the generalized Nakayama
conjecture is true.

The Auslander—Reiten conjecture remains meaningful for arbitrary commutative noe-
therian rings for formalization by Auslander, Ding, and Solberg [2]. The conjecture is
known as follows: if Ext’% (M, M @ R) = 0 for all i > 1, then M is projective. This conjec-
ture is known to hold true if R is a complete intersection [2], or if R is a locally excellent
Cohen-Macaulay normal ring containing the field of rational numbers Q [6], or if R is a
Gorenstein normal ring [1], or if R is a Cohen-Macaulay normal ring and M is a maximal
Cohen—Macaulay module of rank one [5], or if R is a Cohen-Macaulay normal ring and M
is a maximal Cohen—-Macaulay module such that Hompg(M, M) is projective [4]. Recently,
Kimura, Otake, and Takahashi [8] proved the conjecture for every Cohen-Macaulay nor-
mal ring. Even if R is not Cohen—Macaulay, it is known that R satisfies the conjecture
if it is a normal ring and either Ext’%(Hompg(M, M), R) = 0 for all 2 < i < depth R or
Hompg(M, M) has finite G-dimension [10], or if it is a quotient of a regular ring and is a
normal ring containing Q [4].

We give the following answer to this conjecture. We say that R satisfies Serre’s condition
(S2) if depth R, > inf{2, ht p} for all prime ideals p of R.

The detailed version [7] of this article will be submitted for publication elsewhere.
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Theorem 1. Suppose that R satisfies (Sz). Then the Auslander—Reiten conjecture holds
for R if it holds for R, for all prime ideals p of R such that htp < 1. In particular, the
Auslander—Reiten conjecture holds true for every normal ring.

The above result is discussed in Section 2. It is worth noting that we shall prove the
result of Kimura, Otake and Takahashi [8] without assuming Cohen-Macaulayness of the
ring. We extend the method over Cohen—Macaulay rings to the general case, using the
dualizing complex instead of the canonical module.

2. COMMENTS ON THEOREM 1

In this section, we provide sufficient conditions for finitely generated modules over
a commutative noetherian ring to be projective in terms of vanishing of Ext modules
and prove the theorem stated in the Introduction. We prepare several lemmas to state
Theorem 1. See [7] for proofs.

Lemma 2. Let N be an R-module, and let I be an injective R-module. Then there is an
isomorphism Tor® (M, Hom(N, I)) = Hom(Exth (M, N), I) for every integer i > 0.

Lemma 3. Let F' be an R-linear functor on the category of R-modules. Let p be a prime
ideal of R and Egr(R/p) the injective hull of R/p. If F(Er(R/p)), is the zero module,
then so is F(Er(R/p)).

We denote by (—)* the R-dual Homg(—, R). Let R be a local ring, and let F = (--- —

Fy, — F1 = Fy — 0) be a minimal free resolution of M. The (Auslander) transpose Tr M
of M is defined as Coker(a*).

Lemma 4. Let (R,m, k) be a local ring, and let N be an R-module such that k ®r N is
nonzero. Suppose that Torf(Tr M, M @x N) = 0. Then M is a free R-module.

This Lemma 4 also played an important role in the proof of the main result of [8].
However, compared to [8, Proposition 3.3(1)], the assumption that N is finitely generated
is removed by assuming k @z N # 0.

One of the main results of this article is the theorem below.

Theorem 5. Let (R, m, k) be a local ring of depth t. Suppose that Exty(M, R) = 0 for
all1 <i <t and Extgl(Tr M, M*) = 0, and that M is locally free on the punctured
spectrum of R. Then M is free.

Proof. Put d = dim R. We may assume that R admits a dualizing complex D = (--- —
0—D%— ... 5> Dt 5 DI 0—...) Set K =Ker(D"! — D). It follows
from Lemma 2 that Toer(Tr M, M ®p D?) = 0. Lemma 3 implies that for any i # 0 and
j #d, Torf(Tr M, M ® D7) = 0. From the above, we have Torf(Tr M, M @ K) = 0 by
Lemma 2. Noting that k ® g K # 0, we see that Lemma 4 concludes that M is free. 0O

Below is a direct corollary of Theorem 5.

Corollary 6. Let R be a local ring of depth t > 2. Suppose that M s locally free on the
punctured spectrum of R. Then M is free in each of the two cases below.

(1) Exth(M, R) = 0 = Extly '(M*, M*) for all 1 <i <t.

(2) Exth(M, R) = 0 = Extly '(M, M) for all 1 <i <2t+1.
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We obtain Theorem 1 as a corollary of Corollary 6. Indeed, applying the case (2) of
Corollary 6, we can prove by induction on ht p that M, is free for any prime ideal p of R.

3. COMPARISON WITH PREVIOUS STUDIES

The results obtained in this article refine (or recover) a lot of results in the literature.

Remark 7. (1) Corollary 6(2) is a non-Gorenstein version of [1, Corollary 10]. Indeed,

(2)

(3)

(4)

(5)

let R be a Gorenstein ring of dimension d > 2. It is seen that Ext’ (M, R) = 0 for
all + > d and that M is maximal Cohen—Macaulay if and only if for all 1 < j <d,
Ext},(M, R) = 0.

The Auslander-Reiten conjecture is known to hold for every Cohen-Macaulay
normal ring by virtue of [10, Corollary 1.3]. Theorem 1 shows that the conjecture
also holds for an arbitrary normal ring, i.e. it refines [10, Corollary 1.3].

The Auslander-Reiten conjecture holds true if R is a quotient of a regular local
ring and is a normal ring containing Q [4, Theorem 3.14]. In particular, every
complete normal local ring of equicharacteristic zero satisfies the conjecture. Note
that since the normality is not necessarily stable under completion, it is not easy
to remove from these results the assumption that R is a quotient of a regular local
ring or R is complete. Theorem 1, however, does make it happen.

As mentioned in the introduction, besides (2) and (3) above, there are many results
that show that the Auslander—Reiten conjecture holds in normal rings when some
conditions are imposed; see [1, 4, 5, 6, 10] for instance. Theorem 1 improves all of
them.

The Auslander—Reiten conjecture is known to hold true if R is a complete in-
tersection [2, Proposition 1.9]. Using this result, we see that if R is a complete
intersection, then R satisfies (S2) and the Auslander—Reiten conjecture holds for
R, for all prime ideals p of R such that htp < 1. In this sense, Theorem 1 refines
[2, Proposition 1.9].
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ON INDUCTIONS AND RESTRICTIONS OF
SUPPORT 7-TILTING MODULES OVER GROUP ALGEBRAS

RYOTARO KOSHIO AND YUTA KOZAKAI

ABSTRACT. Let G be a finite group, k£ an algebraically closed field of characteristic
p > 0, and N a normal subgroup of G. Support 7-tilting modules over group algebras
are under the one-to-one correspondences with many kinds of important objects for the
representation theory. We will compare a certain subset of the support 7-tilting modules
over kN and that of kG, and give a poset isomorphism between these two sets. Moreover,
we introduce two applications of the results.

1. MOTIVATION

Since 7-tilting theory was introduced by Adachi-Iyama-Reiten in [2], classifications and
features of the support 7-tilting modules have been given for many kinds of algebras. In
particular, for group algebras and their block algebras, the considerations of the support
7-tilting modules are equivalent to those of two-term tilting complexes which control
derived equivalences, hence they are expected to help the solution of the Broué’s Abelian
Defect Group Conjecture. For that perspective, it is important to consider the support
7-tilting modules for group algebras and their block algebras.

Let k£ be an algebraically closed field of characteristic p > 0, G a finite group, N a
normal subgroup of G, and X a support 7-tilting kN-module. In [4], the authors showed
that if N has a cyclic Sylow p-subgroup and if the index of N in G is a power of p, then
the induction functor Indf, = kG ®gn — gives a poset isomorphism between the set of
support 7-tilting modules over kN and that over kG. Also, in [3], the first author showed
that if X is G-invariant, then Ind%X is a support 7-tilting module over kG.

Naturally, we consider the following two questions.

e For the restriction functor Res](f,, when is Resjc\",M a support 7-tilting kG-module
for support 7-tilting kG-module M?

e Without the assumption that N has a cyclic Sylow p-subgroup and that the index
of N in G is a power of p, can we determine the image of G-invariant support
7-tilting modules over kN under the induction functor Ind$?

In this report, we give some results as positive answers of the above questions. Moreover
we give applications of the results.

2. MAIN RESULTS

In this section, let k be an algebraically closed field of characteristic p > 0, G a finite
group and N a normal subgroup of G. Moreover Indg means the induction functor and

The detailed version of this paper will be submitted for publication elsewhere.
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Res§ means the restriction functor. For A € {kN,kG} and A-module M, we denote by
add M the set of all A-modules which are direct summand of M®" for some integer r € Z.

First, we recall the definition of support 7-tilting modules introduced by Adachi-Iyama-
Reiten [2]. For a finite dimensional algebra A and an A-module M, we denote by |M| the
number of pairwise non-isomorphic indecomposable direct summands of M and by s(M)
the number of pairwise non-isomorphic composition factors of M.

Definition 1 ([2]). Let M be an A-module.
(1) We say that the A-module M is 7-rigid if Hom (M, 7M) = 0, here 7 means the
Auslander-Reiten translation.
(2) We say that the A-module M is a support T-tilting module if M is 7-rigid and if
| M = s(M).
Here we remark that the above definition is different from the original one, but it is
equivalent definition to the original one (see [1]).

Remark 2. Let M be a A-module. If A is a symmetric algebra, then 7M is isomorphic to
Q2M. In particular, if A is a group algebra or a block algebra of a group algebra, then
the isomorphism holds.

2.1. Restricted support 7-tilting modules. As a answer to the first question in Sec-
tion 1, we have one result. We recall that the relative projectivity of kG-modules.

Definition 3. Let G be a finite group, H a subgroup of G, and M a kG-module. We say
that M is relatively H-projective if it holds that M is a direct summand of InngeSle .

Now we state the first result.

Theorem 4. Let k be an algebraically closed field of characteristic p > 0, G a finite group,
N a normal subgroup of G, and M a support T-tilting kG-module. If M is relatively N -
projective and it holds that Ind§Res§M € add M, then the restricted module Res§ M is
a support T-tilting kNN -module.

Before stating the second result, we recall G-invariances of kN-modules.
Definition 5. Let G be a finite group, N a normal subgroup, and M a kN-module. For
g € G, we construct a kN-module gM by the following data.
o Asaset gM = {gm|m e M}.
e For z € N and gm € gM, the action of z is given by x(gm) := g(g~'zgm).
We say that M is G-invariant if M is isomorphic to gM as kN-modules for any g € G.

The next theorem explains how strong the assumption in Theorem 4 is in a sense.

Theorem 6. Let k be an algebraically closed field of characteristic p > 0, G a finite
group, N a normal subgroup of G, and M a support T-tilting kG-module. The following
conditions are equivalent:
e The support T-tilting kG-module M 1is relatively N-projective and it holds that
Ind§Res§G M € add M.
e add M = add Ind%X for some G-invariant support T-tilting kN -module X .
e For each simple k(G /N)-module S, it holds that S @ M € add M.
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2.2. The image of the induction functor Ind%. As a answer to the second question
in Section 1, we introduce one result.

For A € {kG,kN} and A-modules X and Y, we say that X is add-equivalent to Y if
add X = add Y, and we denote the set of add-equivalence classes of support 7-tilting A-
modules by s7-tiltA. Moreover we denote the set of add-equivalence classes of G-invariant
support 7-tilting kN-modules by (s7-tiltkN)¢.

We know that the induction functor Ind$ gives a well-defined map from (s7-tilthN )<
to sT-tiltkG by the following result.

Theorem 7 ([3, Theorem 3.2]). For M € (st-tiltkN)®, the induced module Ind$ is a
support T-tilting kG-module.

As we stated in Section 1, we wonder if we describe the image of (s7-tiltkN) by the
induction functor explicitly. The following is one answer to this question.

Theorem 8. Let (s7-tiltkG)* be the set of add-equivalence classes of support T-tilting kG-
modules satisfying the equivalent conditions in Theorem 6. Then the induction functor
Ind§ M gives a poset isomorphism between (sT-tiltkN) and (sT-tilthG)*:

Ind§ : (s7-tilthN)E = (s7-tilthG)* (M — Ind§ M).
In particular, the image of (sT-tiltkN)Y by the induction functor is (sT-tiltkG)*

2.3. Applications. We consider the case that the quotient group G/N is a p-group.
Then the only simple k(G/N)-module is the trivial k(G/N)-module up to isomorphism,
here trivial k£(G/N)-module means one dimensional vector space on which any element
g € G/N acts trivially. Moreover we can easily check that for any kG-module M and the
trivial k(G /N)-module k¢/n, the isomorphism kg/n ®r M = M holds. By using these
facts and Theorem 6, we have the following.

Theorem 9. Let G/N be a p-group. Then we have the following isomorphism of the
partially ordered sets by the induction functor Ind% :

Ind% : (ST-tiltk;N)G = sT-tilthG (M — IndgM)'

As a further application, we consider the vertex of an indecomposable 7-rigid kG-
module. We recall the definition of the vertices of the indecomposable kG-modules.

Definition 10. Let M be an indecomposable kG-module. We say that a subgroup H of
G is a verter of M if H is a minimal subgroup of G with the property that M is relatively
H-projective.

It is known that a vertex is unique up to conjugacy, and a p-subgroup of G. Also,
a vertex of the trivial kG-module is a Sylow p-subgroup. We consider vertices of in-
decomposable 7-rigid kG-modules, and we have the following result by using Theorem
9.

Theorem 11. Let G be a finite group and k an algebraically closed field of characteristic
p > 0. Then any indecomposable T-rigid kG-module has a vertex contained in a Sylow
p-subgroup properly if and only if G has a proper normal subgroup of p-power index.
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CLASSIFICATION OF TWISTED ALGEBRAS OF
3-DIMENSIONAL SKLYANIN ALGEBRAS

MASAKI MATSUNO

ABSTRACT. A twisting system is one of the major tools to study graded algebras, how-
ever, it is often difficult to construct a (non-algebraic) twisting system if a graded algebra
is given by generators and relations. In this paper, we show that a twisted algebra of a
geometric algebra is determined by a certain automorphism of its point variety. As an
application, we classify twisted algebras of 3-dimensional Sklyanin algebras up to graded
algebra isomorphism.

1. INTRODUCTION

This paper is based on [5]. The notion of twisting system was introduced by Zhang in
[8]. If there is a twisting system 6 = {0, },cz for a graded algebra A, then we can define
a new graded algebra A’ called a twisted algebra. Zhang gave a necessary and sufficient
algebraic condition via a twisting system when two categories of graded right modules
are equivalent ([8, Theorem 3.5]). Although a twisting system plays an important role
to study a graded algebra, it is often difficult to construct a twisting system on a graded
algebra if it is given by generators and relations.

Mori introduced the notion of geometric algebra A(F, o) which is determined by a
geometric data which consists of a projective variety E, called the point variety, and
its automorphism o. For these algebras, Mori gave a necessary and sufficient geometric
condition when two categories of graded right modules are equivalent ([6, Theorem 4.7]).
By using this geometric condition, we can easily construct a twisting system.

Cooney and Grabowski defined a groupoid whose objects are geometric noncommuta-
tive projective spaces and whose morphisms are isomorphisms between them. By studying
a correspondence between the morphisms of this groupoid and a twisting system, they
showed that the morphisms of this groupoid are parametrized by a set of certain auto-
morphisms of the point variety ([1, Theorem 28]).

In this paper, we focus on studying a twisted algebra of a geometric algebra A(E, o).
For a twisting system 6 on A, we set ®(0) := (01|4,)* € Auty P(A}) by dualization and
projectivization. We find a subset M(E, o) of Aut, P(A}) parametrizing twisted algebras
of A up to isomorphism. We show that a twisted algebra of a geometric algebra is
determined by a certain automorphism of its point variety. As an application, we classify
twisted algebras of 3-dimensional Sklyanin algebras up to graded algebra isomorphism.

The detailed version of this paper is [5].

- 40 -



2. TWISTING SYSTEMS AND TWISTED ALGEBRAS

Throughout this paper, we fix an algebraically closed field %k of characteristic zero and
assume that a graded algebra is an N-graded algebra A = @, A; over k. A graded
algebra A = @, Ai is called connected if Ay = k. Let GrAut, A denote the group of
graded algebra automorphisms of A. We denote by GrModA the category of graded right
A-modules. We say that two graded algebras A and A’ are graded Morita equivalent if
two categories GrModA and GrModA’ are equivalent.

Definition 1. Let A be a graded algebra. A set of graded k-linear automorphisms
0 = {0, }nez of A is called a twisting system on A if

O (b (b)) = 6(a)0n4m (D)

for any I,m,n € Z and a € A,,, b € A;. The twisted algebra of A by 6, denoted by A%, is
a graded algebra A with a new multiplication % defined by

a*xb=ab,,(b)

for any a € A, b € A;. A twisting system 0 = {6, },,¢z is called algebraicif 6,1, = 0,,00,
for every m,n € Z.

We denote by TS(A) the set of twisting systems on A. Zhang [8] found a necessary and
sufficient algebraic condition for GrMod A = GrModA'.

Theorem 2 ([8, Theorem 3.5)). Let A and A’ be graded algebras finitely generated in
degree 1 over k. Then GrModA = GrModA’ if and only if A’ is isomorphic to a twisted
algebra A% by a twisting system 6 € TS(A).

Definition 3. For a graded algebra A, we define
TSo(A) :== {0 € TS(A) | 6p = ida}
TSag(A) := {0 € TSp(A) | 6 is algebraic }
Twist(A) := {A% | € TS(A)}/~
Twistag(A) := {A? | § € TSae(A)}/~.

Lemma 4 ([8, Proposition 2.4]). Let A be a graded algebra. For every 6 € TS(A), there
exists 0 € TSy(A) such that A? = A7

It follows from Lemma 4 that
Twist(A) = {Ae | 0 € TSo(A)}/~,

so we may assume that § € TS(A) to study Twist(A). By the definition of twisting
system, it follows that 6 € TS,,(A) if and only if 6, = 67 for every n € Z and 6, €
GrAut; A, so

Twistag(A) = {A? | ¢ € GrAut, A}/=~
where A% means the twisted algebra of A by {¢"},cz.
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3. TWISTED ALGEBRAS OF GEOMETRIC ALGEBRAS

Let V' be a finite dimensional k-vector space and A = T(V)/(R) be a quadratic algebra
where T'(V') is a tensor algebra over k and R is a subspace of V ® V. Since an element of
R defines a multilinear function on V* x V*, we can define a zero set associated to R by

V(R) ={(p,q) e (V") x P(V") | g(p,q) = 0 for any g € R}.

Definition 5. Let A = T(V)/(R) be a quadratic algebra. A geometric pair (E, o) consists
of a projective variety E C P(V*) and o € AutxE. We say that A is a geometric algebra
if there exists a geometric pair (F, o) such that

(G1) V(R) = {(p,o(p)) e P(V") x P(V") | p € E},

(G2) R={geVaV]glpop)=0foral pec E}.
In this case, we call F the point variety of A, and write A = A(FE, o).

We use the following notations introduced in [1]:
Definition 6. Let E C P(V*) be a projective variety and ¢ € Aut, E. We define
Aut,(E1+P(V*)) :={r € Auty E | 7 = 7|p for some 7 € Aut, P(V*)},
Aut,(P(V*) | E) := {7 € Aut, P(V*) | 7|g € Auty E'},
Z(E,0) :={r € Aut,(P(V*) | E) | o7|go ™! = 7|&},
M(E,0) = {1 € Aut,(P(V*) | E) | (7|go)'oc™" € Aut,(E 1+ P(V*)) Vi € Z},
N(E,0) = {1 € Auty(P(V*) L E) | o7|go " € Aut,(E T P(V*))}.
Note that Z(E,0) C M(E,0) C N(E,0) C Aut,(P(V*) | E), and Z(FE,0), N(E,0)
are subgroups of Autg(P(V*) | E).
Let A = A(F,0) be a geometric algebra. The map & : TSg(A) — Aut, P(A) is

defined by ®(0) := (61|4,)*. This map plays an important role to study twisted algebras
of geometric algebras.

Lemma 7 ([5, Lemma 3.3 and Lemma 3.4]). Let A = A(E,0) be a geometric algebra.
(1) D(TSe(A)) = M(E, 0).
(2) ®(TSag(A)) = Z(E,0).

The following is one of the main results.

Theorem 8 ([5, Theorem 3.5]). Let A = A(FE,0) be a geometric algebra.
(1) Twist(A) = {A(E,7|go) | T € M(E,0)}/=.
(2) Twistag(A) = {A(E,7|go) | T € Z(E,0)}/=.

4. TWISTED ALGEBRAS OF 3-DIMENSIONAL SKLYANIN ALGEBRAS

In this section, we classify twisted algebras of 3-dimensional Sklyanin algebras. A 3-
dimensional Sklyanin algebra is a typical example of 3-dimensional quadratic AS-regular
algebras. It is known that every 3-dimensional Sklyanin algebra is a geometric algebra
A(FE,0) where E is an elliptic curve in P? and ¢ is a translation by some point p € E.

First, we recall some properties of elliptic curves in P2. Let E be an elliptic curve in
P2, We use a Hesse form

E=V(@®+y°+2° — 3\ayz)
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where \ € k with A3 # 1. It is known that every elliptic curve in P? can be written in
this form (see [2, Corollary 2.18]). The j-invariant of a Hesse form E is given by

8 =T

(see [2, Proposition 2.16]). The j-invariant j(FE) classifies elliptic curves in P? up to
projective equivalence (see [3, Theorem IV 4.1 (b)]). We fix the group structure on E
with the zero element o := (1,—1,0) € E (see [2, Theorem 2.11]). For a point p € FE,
a translation by p, denoted by o, is an automorphism of E defined by o,(q) = p + ¢
for every ¢ € E. We define Auty(E,0) := {c € Aut, E | 0(o) = o}. It is known that
Autg(E, o) is a finite cyclic subgroup of Auty, E (see [3, Corollary IV 4.7]).

Lemma 9 ([4, Theorem 4.6]). A generator of Auty(E,o0) is given by

(1) tg(a,b,c) == (b,a,c) if j(E) # 0,123,

(2) Tg(a,b,c) := (b,a,ec) if A=0 (so that j(E) =0),

(3) 75(a,b,c) := (2a+eb+c,ea+e?b+c,a+b+c) if A\ =1+/3 (so that j(E) = 12%)
where € is a primitive 3rd root of unity. In particular, Auty(F,0) is a subgroup of
Autk.(E T PQ) = Autk(PQ l, E)

Remark 10. When j(E) = 0,123, we may fix A = 0,1 4 /3 respectively as in Lemma 9,
because if two elliptic curves E and E’ in P? are projectively equivalent, then for every
A(E, o), there exists an automorphism ¢’ € Auty, E such that A(E, o) = A(E',0’) (see
[7, Lemma 2.6]).

It follows from [4, Proposition 4.5] that every automorphism o € Auty E can be written
as o = 0,75 where o, is a translation by a point p € E, 75 is a generator of Auty(E,0)
and ¢ € Zj,. For any n > 1, we call a point p € E n-torsion if np = 0. We set
En] :={p € E | np = o} and T[n] := {0, € Auty E | p € E[n]}. It follows from [4,
Theorem 4.12 (3)] that every automorphism o € Auty(P? | F) can be written as o = 0,75
where g € E[3] and i € Zj,.

Let E = V(2 + 4 + 2° — 3\zyz) be an elliptic curve in P? and p = (a,b,c) € E\ E[3].
Then A(E,0,) is called a 3-dimensional Sklyanin algebra, and

A(E,0,) = k(x,y,2)/(ayz + bzy + ca®, azx + brz + cy?, axy + byx + c2°).

Lemma 11 ([5, Lemma 4.10]). Let A = A(FE,0,) be a 3-dimensional Sklyanin algebra
where p € E '\ E[3].

(1) For o,mi; € Auty(P? | E), 0,75 € Z(E, 0,) if and only if p — 7i(p) = o.

(2) For o,mi: € Auty(P? | E), 0,75 € N(E,0,) if and only if p — 75(p) € E[3].

(3) M(E,0,) = N(E,0).

By Theorem 8, to classify twisted algebras of 3-dimensional Sklyanin algebras A(E, o)
up to isomorphism of graded algebras, it is enough to classify subsets Z(E,o,) and
M(E,0,) of Auty(P? | E).

Theorem 12 ([5, Theorem 4.11]). Let A = A(E,0,) be a 3-dimensional Sklyanin algebra.
Then the following table gives Z(E,0,) and M(E,0,);
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‘Type‘ J(E) ‘Z(Evo'p) ‘M(Evo'p)

j(E) £0 123 T3] if p ¢ E[2] T3] if p ¢ E[6]
’ Auty (P2 | E) if p € E[2] Auty(P? L E) if p € E[6]

- B~ T[3] if pg £U E6]
. 1,
EC | j(E)=0 U T % (r2) if pee
T3] % (r3) i p€ B2 s
T3] % (%) if p € E6]
(3] if p & B[2) (3] if p ¢ Bl6]
J(E) =12? T % (12)  if pe BRIN((LLA) | {TBI x (r3) i p€ Bl6]\ F
Auty(P? L E) if p=(1,1,)) Aut, (P> L E) ifpeF

where € := {(a,b,c) € E|a® =1 ="} C E[9]\ E[6] and F := ((1,1,))) & E[3].
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THE CLASSIFICATION OF 3-DIMENSIONAL CUBIC AS-REGULAR
ALGEBRAS OF TYPEP, S, T AND WL

MASAKI MATSUNO AND YU SAITO

ABSTRACT. Classification of AS-regular algebras is one of the most important projects
in noncommutative algebraic geometry. In this paper, we extend the notion of geometric
algebra to cubic algebras, and give a geometric condition for isomorphism and graded
Morita equivalence. One of the main results is a complete list of defining relations of 3-
dimensional cubic AS-regular algebras corresponding to P* x P! or a union of irreducible
divisors of bidegree (1,1) in P! x P1. Moreover, we classify them up to isomorphism and
up to graded Morita equivalence in terms of their defining relations.

1. ARTIN-SCHELTER REGULAR ALGEBRAS

Throughout this report, let k be an algebraically closed field of characteristic 0, A a
graded algebra finitely generated in degree 1 over k. That is, A = k(xy,- -, x,)/I where

degx; =1 for any i =1,--- ,n, and I is a homogeneous two-sided ideal of k(xy, -, x,)
with Ip = I; = 0. We call A = (x1,--- ,z,)/I a cubic algebra if I is an two-sided ideal
of k(zy, -+ ,x,) generated by homogeneous polynomials of degree three. We denote by

GrMod A the category of graded right A-modules and graded right A-module homomor-
phisms preserving degrees. We say that two graded algebras A and A’ are graded Morita
equivalent if the categories GrMod A and GrMod B are equivalent.

Let A be a graded algebra. We recall that

GKdim A :=inf{o € R | dim(}_; , A;) < n® for all n > 0}
is called the Gelfand-Kirillov dimension of A. In noncommutative algebraic geometry,
Artin-Schelter regular algebras are main objects to study.

Definition 1 ([1]). A graded algebra A is called a d-dimensional Artin-Schelter reqular
(simply AS-regqular) algebra if A satisfies the following conditions:

(1) gldim A = d < o0,

(2) GKdim A < oo,

- k ifi=d

3) Exty(k,A) = ’

(3) Exty(k, 4) {0 ifi+d.

It follows from [1, Theorem 1.5 (i)] that a 3-dimensional AS-regular algebra A finitely
generated in degree 1 over k is one of the following forms:

A= k<I,y>Z>/(f17f2>f3)

where f; are homogeneous polynomials of degree 2 (quadratic case), or
A =k(z,y)/(91,92)

The detailed version of this paper has been submitted for publication elsewhere.
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where g; are homogeneous polynomials of degree 3 (cubic case). In this report, we focus
on studying 3-dimensional cubic AS-regular algebras.

2. 3-GEOMETRIC ALGEBRAS

Artin, Tate and Van den Bergh [2] found a nice one-to-one correspondence between
3-dimensional AS-regular algebras and pairs (E,0) where E is a scheme and o is an
automorphism of E. Focusing on pairs (E, o), Mori introduced the notion of geometric
algebra which determines and is determined by a pair (E, o) (see [3, Definition 4.3]). In
this report, we extend the notion of geometric algebra to cubic algebras.

Let A= k(xy,--- ,x,)/(R) be a cubic algebra where R is a subspace of k{xy, -+, x,)3.
We denote by P"~! the projective space of dimension n — 1 over k. We define the zero set
of R by

V(R) :={(p,q,r) € (B" )| f(p,q.7) =0 Vf € R}.

Let E C P! xP"! be a projective variety and m; : P*~! xP"~! — P"~! j-th projections
where 7 = 1,2. We set the following notation:

Autf B := {0 € Auty B | mo(p,q) = m(p.q) Y(p,q) € E}.
We say that a pair (E, o) is a 3-geometric pair if 0 € Aut{ E.

Definition 2. Let A = k(xy,---,z,)/(R) be a cubic algebra. We say that A is a 3-
geometric algebra if there exists 3-geometric pair (F, o) such that
(G1) V(R) = {(p, ¢, m0(p.q)) | (p,q) € E},

(Gz) R = {f € k<[E1, e 7:En>3 | f(p7Q77r20(p7 q)) =0 V(pa(J) € E}
In this case, we write A = A(E, o).

The following theorem tells us that classifying geometric algebras is equivalent to clas-
sifying 3-geometric pairs.

Theorem 3 (cf. [4, Lemma 2.5]). Let A = A(E,0) and A" = A(E',0") be 3-geometric
algebras.

(1) A= A’ as graded algebras if and only if there exists an automorphism T of P!
such that (1 x 7)(E) = E’ and the diagram

Ul l(,/

E —— F

TXT
commutes.
(2) GrMod A = GrMod A’ if and only if there exists a sequence {T;}icz of automor-
phisms of P! such that (7; X 7,41)(E) = E' and the diagram

Ti XTi41

E E

Ul l"’

E— F

Tit+1 XTi+2

commutes for all i € Z.

- 46 -



Definition 4. Let E and E’ be projective varieties in P"~1 x P71,

(1) We say that E and E’ are equivalent, denoted by E ~ E'  if E' = (11 X 12)(F) for
some 1y, Ty € Aut, P L.

(2) We say that E and E' are 2-equivalent, denoted by E ~o F' | if E' = (17 x 7)(E) for
some 7 € Aut,P* L.

It is clear that if F and E’ are 2-equivalent, then they are equivalent. Let A = A(E, o)
and A’ = A(F’,¢’) be 3-geometric algebras. If A = A’ (resp.GrMod A = GrMod A’), then
E and E’ are 2-equivalent (resp.equivalent) by Theorem 3. As the first step of classification

of geometric algebras up to graded algebra isomorphism (resp.graded Morita equivalence),
we need to classify projective varieties up to 2-equivalence (resp.equivalence).

3. MAIN RESULTS

In [2], Artin-Tate-Van den Bergh found a nice geometric characterization of 3-dimensional
AS-regular algebras finitely generated in degree 1 over k. In this report, we focus on the
cubic case.

Theorem 5 ([3]). Every 3-dimensional cubic AS-requar algebra A is a 3-geometric algebra
A= A(E,0). Moreover, E is P* x P! or a divisor of bidegree (2,2) in Pt x P!,

In this report, we study two cases when F = P! x P! and F is a union of two irreducible
divisors of bidegree (1,1) in P! x P'. For each case, we

(I) give a complete list of defining relations of 3-dimensional cubic AS-regular algebras,

(IT) classify them up to isomorphism as graded algebras in terms of their defining
relations, and

(I1I) classify them up to graded Morita equivalence in terms of their defining relations.

We first treat the case E = P! x P!. We denote by v an automorphism of P! x P!
defined by v(p,q) = (q,p) for (p,q) € P* x PL.

Lemma 6. Aut{(P' x P') = {(id x p)v | p € Aut, P'}.
Example 7. For p € Aut,P!(= PGLy(k)), we set
A, = AP x P, (id x p)v).
By Theorem 3 (1), A, = A, if and only if there exists 7 € Aut, P! such that the diagram
P! x Pt s Px P
(idxp)ul l(idxp’)u

P! x P! —— P! x P!

TXT

commutes if and only if there exists 7 € AutyP' such that p'r = 7p. Hence, 4, is
isomorphic to A,, or A,, where A € k\ {0}, px = (é g\) and py = <(1) }) Moreover,
A, =2 A, if and only if X = A*L.

We next treat the case when FE is a union of two irreducible divisors of bidegree (1, 1)
in P! x PL.
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Lemma 8. Let C = V(f) C P! x P! where f € k[zy,y1] o k[xa, ya]. Assume that C is
irreducible. Then C is a divisor of bidegree (1,1) if and only if there exists T € AutyP*!
such that C' = C, :={(p,7(p)) | p € P'}.

By Lemma 8, if £ is a union of two irreducible divisors of bidegree (1,1) in P* x P!,
then £ = C,, UC,, for some 7; € Aut, P! (i = 1,2). The following result is one of our
main results.

Theorem 9. Let E = C,, UC,, be a union of two irreducible divisors of bidegree (1,1)
in Pt x PL. Then one of the following statements holds:

(1) |Cr, N Cry| =2 (if and only if 75 ' ~ <(1) 2\) for some A € k\ {0,1}),

1
D

(3) |Cr, N Cyy| = o0 (if and only if 75 ' = <(1) (1)>)

(2) |Cr, N Cry| = 1 (if and only if 75 7 ~

In this report, we define the types of 3-geometric pairs (F, o) as follows:

(1) TypeP: E = P! x P! and 0 = (id x 7)v € Aut{ (P! x P') (TypeP is divided into
TypeP; (i = 1,2) in terms of the Jordan canonical form of 7).

(2) TypeS: E = C, U, is a union of two irreducible divisors of bidegree (1,1) in
P! x P! such that |C,, N C,,| = 2. TypeS§ is divided into TypeS; (i = 1,2); TypeS;: o
fixes each components and Type S,: o switches each components.

(3) TypeT: E = C,, U, is a union of two irreducible divisors of bidegree (1,1) in
P! x P! such that |C,, N C,,| = 1. TypeT is divided into TypeT; (i = 1,2); TypeT;: o
fixes each components and TypeT,: o switches each components.

(4) Type WL: E = C;, Uy, is a union of two irreducible divisors of bidegree (1,1) in
P! x P! such that |C,, NC,,| = co. Type WL is divided into Type WL, (i = 1,2) in terms
of the Jordan canonical form of 71 (= 72).

The following theorem lists all possible defining relations of algebras in each type up
to isomorphism of graded algebra.

Theorem 10. Let A = A(E,0) be a 3-dimensional cubic AS-reqular algebra. For each
type the following table describes

(1) the defining relations of A, and

(II) the conditions to be isomorphic in terms of their defining relations.
Moreover, every algebra listed in the following table is AS-reqular. In the following table,
if X #£Y ori#j, then Type X; algebra is not isomorphic to any Type Y; algebra.

Type (I) defining relations (II) condition to be
(a, € k) graded algebra isomorphic
22y — ayx?
P ‘ SO o = at!
! {:cgﬂ —ay’r (a#0)
P z*y — ya® + yay,
2 22 — 12 3
Y Yty
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afz?y + (o + B)zys + ya?,

5 aBry? + (a + Byry +y’x {o/, 8} = {a, 8}, {a7, 371}
(0B #0, o® # 3°)
xy? + y?x + (a + B)ad, o o\
5 vy +ya’ + (a7 + 57y g <ﬁ)

(af #0, o® # )

2%y — 2zyx + yr? — 2(28 — 1)yxy
T +2(28 — Day® +26(8 — 1)y°, g=p1-p
xy? — 2yxy + yiw

{x2y + 2zyx + ya® + 293,
T,

xy? + 2yxy + yix

a?ry? + yir — 2ayxy,
Wi, yx? + o?2?y — 2azyx o=
(0 #0)

xy? + y*r — 2yry,
WL dey? + 23 vy’ 42>y |
—4dyxy — 2xyx

The following theorem lists all possible defining relations of algebras in each type up
to graded Morita equivalence.

Theorem 11. Let A = A(FE,0) be a 3-dimensional cubic AS-reqular algebra. For each
type the following table describes

(1) the defining relations of A, and

(III) the conditions to be graded Morita equivalent in terms of their defining relations.
Moreover, every algebra listed in the following table is AS-reqular. In the following table,
if X #£Y, then Type X algebra is not graded Morita equivalent to any Type Y algebra.

Type (I) defining relations (III) condition to be
(a, € k) graded Morita equivalent

r?y — ya?,
P .Z'”Q—’Q”' 7777777
v’ -y

afz’y + (a + B)zyx + ya?, / o\ £

s afry® + (a+ Blyry + yx 7 <>

(aB #0, o # 5°)
x2y + ya:2 + 2Iy2

T —2ryr - 2yy, | —————

zy? + y’r — 2yxy
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WL

ry? + yir — 2yay
yx? + 2y — 2zyx
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QUIVER HEISENBERG ALGEBRAS AND THE ALGEBRA B(Q)

HIROYUKI MINAMOTO

ABSTRACT. This is a report on ongoing joint work with Martin Herschend about quiver
Heisenberg algebras (QHA) and the algebra “B(Q). In this note, we mainly investigate
QHA of Dynkin type. The first main result tells that QHA YA(Q) of Dynkin type is
finite dimensional if and only if the weight v € kQ is regular (see Definition 1), and
moreover that if this is the case, YA(Q) is a symmetric algebra. In the case chark = 0,
the “if” part of the first statement is proved by Etingof and Rains [10], and the second
is verified for a generic weight by Etingof, Latour and Rains [11].

Compare to the preprojective algebras II(Q) which are only Frobenius in general,
QHA YA(Q) can be said to be well-behaved, since they are always symmetric. Making
use of this, we investigate silting theory of QHA of Dynkin type. We obtain results which
are analogous to the results for II(Q) by Aihara-Mizuno [3].

1. INTRODUCTION

Throughout this note k is an algebraically closed field and @ is a finite acyclic quiver.
For k@-module M, the dimension vector dimM is regarded as an element of kQy =
k x -+- x k (not of ZQy).

For an element v € k@Qy, which we call weight, we define the weighted dimension of M
to be

*dim M := Z v; dim e; M.
1€Qo
Definition 1. A weight v € kQy is called regular if
‘dim M #0 (VM € ind Q)

Remark 2. In the case @) is Dynkin and char k = 0, the vector space k@)y may be identified
with the Cartan subalgebra h of the semi-simple Lie algebra g corresponding to (). By
Gabriel’s theorem the dimension vectors of indecomposable k@-modules are precisely the
roots of g, so the regularity given here coincides with that are used by Etingof-Rains [10].

Example 3. Let Q be a directed Asz-quiver.

Q:1 - 2 3.

The dimension vectors of indecomposable modules are

The detailed version of this paper will be submitted for publication elsewhere.
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Thus, regularity of a weight v = (vy,ve, v3)" is
01#0702#07'03#07
v +v9 £ 0, vg+v3 £0, vy +v9 + vz # 0.

Looking the weighted dimension of simple modules S; (i € Qp), we obtain
Lemma 4. A regular weight v is sincere i.e., v; # 0 (Vi € Qo).

Let @ be the double of Q.

(@] i i

For ¢ € Qq, p; denotes the mesh relation at ¢

pi = Z oo’ — Z a*a.

a€Qr:t(a)=i a€Qq:h(a)=1i
Definition 5. The quiver Heisenberg algebra "A(Q) with the weight v € kQy is defined
to be .
v k[z]Q
A@) = -

(pi —vize; | i € Qo)
Remark 6. This algebra is a special case of algebras studied in [6, 7, 10].

Remark 7. If v is sincere, then “A(Q) is isomorphic to the algebra which was given in
previous talks of QHA, via the isomorphism
kQ
nQ) = __ oy
(la,*p] | a € @)
where % := 3. v; ' p; the “weighted mesh relation” and [a,%p] = a’p — *pa is the commu-
tator.

We recall an indecomposable decomposition of YA(Q) as kQ-module.

Theorem 8 ([12]). If v is regular, then as kQ-modules
’UA(Q) ~ @Mdimj\i.
M
where M runs over representatives of isomorphism class of indecomposable preprojective
modules.

In particular, in the case @ is Dynkin, if v is regular, “A(Q) is finite dimensional. One
of our main result asserts that the converse holds and moreover, if this is the case, YA(Q)
is symmetric.

Theorem 9 ((1) [12], (2) [13]). Let Q be a Dynkin quiver. The followings hold.
(1) A weight v is reqular if and only if "A(Q) is finite dimensional.
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(2) If a weight v is reqular, then "A(Q) is symmetric.

Remark 10. In the case chark = 0, Etingof-Latour-Rains [11] showed that “A(Q) is sym-
metric for a generic weight v.

In the next section, we explain keys of proofs. In the third section, we discuss silting
theory of A(Q).

2. PROOF OF THEOREM 9

2.1. Proof of Theorem 9(1). We only have to prove “if” direction. We do this by
proving the contraposition. Namely, we show that if v is not regular, then “A(Q) is
infinite dimensional. In the case v is not sincere, using an explicit presentation of “A(Q)
by a quiver with relations, we can directly check that dim“A(Q) = oco. Thus we may
assume that v is sincere (and not regular). In that case, we conclude dim "A(Q) = oo by
the following proposition.

To state the proposition, we recall that “A(Q) acquires a grading that counts the number
of extra arrows o, which we call the x-grading. Let "A(Q),, denote the x-degree n-part
of "A(Q). Tt is clear that "A(Q)o = k@ and "A(Q), has a canonical structure of kQ-
bimodule.

Proposition 11 ([12]). Assume that v is sincere but not reqular. Let M be an indecom-
posable kQ-module such that * dim M = 0. Then for any n > 0, M is a direct summand
of "A(Q)n, kg M as kQ-module.

In particular "A(Q), # 0 for all n > 0.

The case n = 0 is clear. For the case n = 1, we recall that there is a canonical exact
triangle which is obtained from analysis of QHA and preprojective algebra

M —"NQ)1 ®ko M — v M —,

in the derived category DP(kQmod) where “A(Q) is the derived quiver Heisenberg algebra
given in the next section. We can show that *dim M = 0 if and only if the above exact
triangle splits. We note that in the case *dim M # 0, the exact triangle is an almost split
exact triangle.

The case n > 2 uses the following exact triangle

I @ Ay @ M — Ay @ A,y @ M — A, @ M
Please see [12] for details.
2.2. Proof of Theorem 9(2). Main ingredients of our proof is the followings:
(i) A general result about derived preprojective algebra of d-representation finite alge-
bra.

(74) The algebra “B(Q).
(731) A direct computation of the cohomology algebra of derived QHA.
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2.2.1. Let A be a d-representation finite algebra. Iyama-Oppermann [15] showed that
the d + l-preprojective algebra II := II;.1(A) is Frobenius. Let v be the Nakayama
automorphism of II, i.e., IT = ,D(II) as II-bimodules.

Theorem 12 ([13]). Let IT be the d + 1-derived preprojective algebra of A. Then, the

cohomology algebra H(IT) of the derived d + 1-preprojective algebra 11 is isomorphic to the
skew polynomial algebra [u; v

H(ﬁ) = [u; V]
as cohomologically graded algebras, where u is a formal variable of cohomological degree
—d and

au =uv(a) (Va € 1I).
This theorem connects the Nakayama automorphism v to the algebra structure of H(ﬁ)

2.2.2. We introduce a finite dimensional algebra "B(Q).

Definition 13. For a quiver () and a regular weight v, we define
v o kQ vA(Q)l
5= (NG

the bypath algebra (a.k.a., 2-path algebra) of Q.

The algebra “B(Q) has various properties that are 1-dimension higher version of that
of the path algebra k(). Among other things, we have a 1-dimension higher version of
Gabriel’s dichotomy of representation types.

Theorem 14 ([13]). The followings hold.
(1) "B(Q) is 2-representation finite if and only if Q is Dynkin.
(2) "B(Q) is 2-representation infinite if and only if Q is non-Dynkin.

Recall that the derived QHA ”7\(@) is a DGA explicitly defined by the quiver

i ticlw*j\/j

the differential is defined by
d(a) = 0,d(a*) :=0,d(a®) :== —[a*, "], d(a®) := |a, "],
d(t;) = Z eila, a’le; + Z eila*, a¥le;.
acQ1 a€Q1
If chark # 2, ”/N\(Q) is the Ginzburg dg-algebra G(Q, W) where
W= —%“pp = —% > vl

1€Qo
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Lemma 15 ([13]). The 3-derived preprojective algebra of *B(Q) and the 2-ed quasi-
Veronese algebra of "A(Q) are isomorphic

II5('B(Q) = "N(Q)®.
2.2.3. By (more or less) direct computation we have

Theorem 16 ([12]). Assume that Q is Dynkin and v is regular. Then,
H(MQ)) = "A(Q)[u]
where u is a formal variable of cohomological degree —2.

Comparing the right hand sides of the isomorphisms given in Theorem 12 for “B(Q)
and Theorem 16 via Lemma 15, we conclude that vy = idy up to inner automorphisms.

3. SILTING THEORY OF QHA OF DYNKIN TYPE

Compare to the preprojective algebras I1(Q)) which are only Frobenius in general, QHA
YA(Q) can be said to be well-behaved, since they are always symmetric. Making use of
this, we investigate silting theory of QHA of Dynkin type. Before doing this, first we
introduce a general construction of a tilting complex.

3.1. In this subsection, @) denote a quiver which is not necessarily Dynkin.
Let i € Q. We define a complex T over “A to be

; (£ ) aen—1(
T(t) = UA(l - BZ') S5 “Aei —G}l()> @ ”Aet(a)
a€h—1(3)
where the right factor is a complex placed in —1, 0-th cohomological. degree.

This complex is a “family version” of the tilting complex of Crawley-Boevey-Kimura
[8]. The reduction IT ®.y T is the tilting complex introduced by Baumann-Kamniter [4]
and Buan-Tyama-Reiten-Scott [5].

Let r : Wg m kQo be the dual action. Let r; be the action of the Coxeter generator s;.
Theorem 17 ([13]). The complex T is a tilting complex and

Endu (T®)oP 22 i@ A

3.2. From now we assume that ) is Dynkin. We note silt’A = tilt"A by Theorem 5.

Then, it is straightforward to check that 7 is the left silting mutation of A:

T = i ("0).
Thus, taking iterated mutations
wEp o Endea (pg, -+« g, ("A))°P

where w = s;, -+ 5;;.

There are following bijections,

Wq —— sttiltTI(Q) ——— 2siltII(Q).

the first is established by Mizuno [14], the second is a consequence of a general result due
to Adachi-Iyama-Reiten [1]
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The weighted mesh relation % is central in YA(Q) and we have a canonical isomorphism
AQ)/(%p) = TI(Q). Applying a general result by Eisele-Janssens-Raedschelders [9], we
obtain bijections

Wo —2 sttilt’A(Q) ——— 2silt*A(Q)
which is given by
W= i, sy gt (A)
By general criteria due to Aihara-Mizuno [3], we conclude that "A(Q) is silting discrete.
As a consequence of the preceding consideration, we obtain the following results which
are analogous to the results for II(Q) by Aihara-Mizuno [3].

Theorem 18 ([13]). Assume that Q) is Dynkin and v is regular.

(1) The algebra "A(Q) is silting discrete.
(2) A silting complex T is a tilting complex and

EndvA(Q)(T)Op = w(U)A(Q)
for some w € Wy.

Theorem 19 ([13]). Let Bg be the braid group of Q). There is a bijection
Bo == silt'A(Q), b m(*A(Q)).
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WALL-AND-CHAMBER STRUCTURES OF STABILITY PARAMETERS
FOR SOME DIMER QUIVERS

YUSUKE NAKAJIMA

ABSTRACT. It is known that any projective crepant resolution of a three-dimensional
Gorenstein toric singularity can be described as the moduli space of representations
of a quiver associated to a dimer model for some stability parameter. The space of
stability parameters has the wall-and-chamber structure and we can track the variations
of projective crepant resolutions by observing such a structure. In this article, we consider
dimer models giving rise to projective crepant resolutions of a toric compound Du Val
singularity. We show that sequences of zigzag paths, which are special paths on a dimer
model, determine the wall-and-chamber structure of the space of stability parameters.

1. INTRODUCTION

The moduli space of representations of a quiver, introduced in [10], is defined as the GIT
quotient associated to a stability parameter. For some nice singularities, resolutions of
singularities can be described as moduli spaces of representations of a quiver. For example,
any projective crepant resolution of a three-dimensional Gorenstein quotient singularity
C3/G defined by the action of a finite subgroup G' C SL(3,C) on C?® can be described
as the moduli space of representations of the McKay quiver of G (see [2, 14]). Also, any
projective crepant resolution of a three-dimensional Gorenstein toric singularity can be
described as the moduli space of representations of the quiver associated to a dimer model
(see [9]). Tt is known that the space of stability parameters associated to a quiver has the
wall-and-chamber structure, that is, it is decomposed into chambers separated by walls.
The moduli spaces associated to stability parameters contained in the same chamber
are isomorphic, but a stability parameter contained in another chamber would give a
different moduli space. Thus, it is important to detect the wall-and-chamber structure
of the space of stability parameters to understand the relationships among projective
crepant resolutions of the above singularities. The purpose of this article is to detect the
wall-and-chamber structure for a particular class of three-dimensional Gorenstein toric
singularities called toric compound Du Val (¢DV) singularities. In particular, we will see
that the combinatorics of a dimer model associated to a toric cDV singularity control the
wall-and-chamber structure.

2. PRELIMINARIES ON DIMER MODELS AND ASSOCIATED QUIVERS

2.1. Dimer models. We first introduce dimer models and related notions which are
originally derived from theoretical physics (e.g., [4, 6]).

The detailed version of this paper will be submitted for publication elsewhere.
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A dimer model T on the real two-torus T := R?/Z? is a finite bipartite graph on T
inducing a polygonal cell decomposition of T. Since I' is a bipartite graph, the set I'y of
nodes of T' is divided into two subsets I'd, Iy, and edges of I' connect nodes in I'j with
those in I'y. We denote by I'; the set of edges. We color the nodes in I'j white, and those
in I’y black throughout this article. A face of I' is a connected component of T\I';. We
denote by I's the set of faces. In the rest of this article, we assume that any dimer model
satisfies a certain nice condition called the consistency condition, see e.g., [8, Section 6]
for more details. For example, Figure 1 is a consistent dimer model on T, where the outer
frame is a fundamental domain of T.

FIGURE 1. An example of a dimer model

We say that a path on a dimer model is a zigzag path if it makes a maximum turn to
the right on a black node and a maximum turn to the left on a white node. For example,
the paths (displayed in thick lines) in Figure 2 are all zigzag paths on the dimer model
given in Figure 1.

N
~

FIGURE 2. Zigzag paths on the dimer model given in Figure 1

We fix two 1-cycles on T generating the homology group H;(T), and take a fundamental
domain of T along such two cycles. Since we can consider a zigzag path z on I' as a 1-cycle
on T, we have the homology class [z] € H;(T) = Z?, which is called the slope of z. Note
that for a consistent dimer model T', any edge of I' is contained in exactly two zigzag
paths and any slope is a primitive element. Then, for a consistent dimer model T', we
assign the lattice polygon called the zigzag polygon (cf. [8, Section 12]). Let [z] be the
slope of a zigzag path z on I'. By normalizing [z] € Z?, we consider it as an element of the
unit circle S'. Then, the set of slopes has a natural cyclic order along S'. We consider
the sequence ([zz})le of slopes of zigzag paths on I' such that they are cyclically ordered
starting from [z;], where k is the number of zigzag paths. We note that some slopes may
coincide in general. We set another sequence (w;)¥_; in Z? defined as wy = (0,0) and

wi+1:wi+[2i+1]l (210,17711571)

Here, [2;11]' € Z? is the element obtained from [z;11] by rotating 90 degrees in the anti-
clockwise direction. One can see that wy = (0,0) since the sum of all slopes is equal to
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zero. We call the convex hull of {w;}*_, the zigzag polygon of T' and denote it by Ar.
Note that there are several choices of an initial zigzag path z;, but the zigzag polygon is
determined uniquely up to unimodular transformations. By definition, we see that the
slope of a zigzag path is an outer normal vector of some side of Ar, and the number
of zigzag paths having the same slope v € Z? coincides with the number of primitive
segments of the side of Ar whose outer normal vector is v.

Example 1. We consider the dimer model in Figure 1 and its zigzag paths as in Figure 2.
Then, we have the cyclically ordered sequence of slopes

((07 71)7 <07 71)a (07 71)7 (15 1)7 (07 1)7 (05 1)7 (71? 0) )7
where we take a Z-basis of H;(T) = Z? along the vertical and horizontal lines of the
fundamental domain of T. Thus, we have the zigzag polygon as in Figure 3.

FIGURE 3. The zigzag polygon of the dimer model given in Figure 1

On the other hand, any lattice polygon can be described as the zigzag polygon of a
consistent dimer model as follows.

Theorem 2 (see e.g., [5, 8]). For any lattice polygon A, there exists a consistent dimer
model I' such that A = Ar.

2.2. Toric rings associated to dimer models. Let I' be a consistent dimer model.
We next consider the cone or over the zigzag polygon Ar, that is, or is the cone whose
section on the hyperplane at height one is Ar.

Let N := Z3 be a lattice and M := Homgz(N, Z) be the dual lattice of N. We set Ng :=
N®zR and Mg := M®zR. We denote the standard inner product by (, ) : Mg xNg — R.
For the vertices 0y, ..., 0, € Z? of Ar, we let v; := (0;,1) € N (i = 1,...,n). The cone or
over Ar is defined as

or = Rzovl + -+ Rzovn C NR.
Then, we consider the dual cone
of i={r € Mg | (x,v;) >0 foranyi=1,...,n}.
Using this cone, we can define the toric ring (toric singularity) Rr associated to T' as
Ry := Cloy. N M] = C[¢1"t5%t5° | (a1, a2, a3) € ofs N M,

which is Gorenstein in dimension three. We note that any three-dimensional Gorenstein
toric ring can be described with this form. Precisely, let o be a strongly convex rational
polyhedral cone in Ng which defines a three-dimensional Gorenstein toric ring R. Then,
it is known that, after applying an appropriate unimodular transformation (which does

not change the associated toric ring up to isomorphism) to o, the cone o can be described
as the cone over a certain lattice polygon Ag. We call the lattice polygon Ag the toric
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diagram of R. By Theorem 2, there exists a consistent dimer model I" such that Ar = Ag
for any three-dimensional Gorenstein toric ring R, in which case we have R = Rr.

2.3. Quivers associated to dimer models. Let [' be a dimer model. As the dual of T,
we obtain the quiver Qr associated to I, which is embedded in T, as follows. We assign a
vertex dual to each face in I's and an arrow dual to each edge in I';. We fix the orientation
of any arrow so that the white node is on the right of the arrow. For example, Figure 4 is
the quiver associated to the dimer model in Figure 1. We simply denote the quiver Qr by
@ unless it causes any confusion. Let Q = (Qo, Q1) be the quiver associated to a dimer
model, where Q) is the set of vertices and @) is the set of arrows. Let hd(a),tl(a) € Qo
be respectively the head and tail of an arrow a € Q1. A path of length r > 1 is a finite
sequence of arrows v = ay - -+ a, with hd(a;) = tl(a;41) for i = 1,...,r — 1. We define
tl(a) = tl(a1),hd(a) = hd(a,) for a path v = ay---a,. A relation in Q is a C-linear
combination of paths of length at least two having the same head and tail. We especially
consider relations in () defined as follows. For each arrow a € 1, there exist two paths
v, 4. such that hd(7F) = tl(a), tI(yF) = hd(a) and ;" (resp. 7, ) goes around the white
(resp. black) node incident to the edge dual to a clockwise (resp. counterclockwise), see
e.g., [12, Figure 6]. We define the set of relations Jg := {7, — 7, | a € @1} and call the
pair (Q, Jo) the quiver with relations associated to T'.

/N

/

NN

FIGURE 4. The quiver associated to the dimer model given in Figure 1

We then introduce representations of a quiver with relations. A representation of
(@, Jg) consists of a set of C-vector spaces {M, | v € (o} together with C-linear maps
®a + Mu(ay = Mha(a) satistying the relations Jo, that is, ¢+ = ¢~ for any a € ()1. Here,
for a path v = a;---a,, the map ¢, is defined as the composite @q, - -, of C-linear
maps. (Note that in this article, a composite fg of morphisms means we first apply f then
g.) In the rest of this article, we assume that the dimension vector of any representation
M = ((My)veqy, (Pa)acg,) of (Q,Tg) is 1 := (1,...,1), that is, 1 = (dim¢ M, )yeq,. For
representations M, M’ of (Q), Jg), a morphism from M to M’ is a family of C-linear maps
{fo : My = M},cq, such that ¢, fra@) = fuw)e, for any arrow a € Q1. We say that
representations M and M’ are isomorphic, if f, is an isomorphism of vector spaces for all
v € Qo. A representation N of (Q, Jg) is called a subrepresentation of M if there is an
injective morphism N — M.

Next, we introduce moduli spaces parametrizing quiver representations satisfying a
certain stability condition. We consider the weight space

0(Q) == {9 = (0)oecqn €2 | Y6, = o}

vEQo

-6l -



and let O(Q)r = O(Q) ®z R. We call an element 0 € O(Q)r a stability parameter.
Let M be a representation of (Q), Jg) of dimension vector 1. For a subrepresentation
N of M, we define 0(N) :=>_ o 0,(dime N,), and hence 6(M) = 0 in particular. For a

stability parameter § € ©(Q)g, we introduce #-stable representations as follows.

Definition 3 (see [10]). Let 6 € ©(Q)r. We say that a representation M is -semistable
(resp. O-stable) if O(N) > 0 (resp. O(N) > 0) for any non-zero proper subrepresentation
N of M. We say that 6 is generic if every #-semistable representation is 6-stable.

By [10, Proposition 5.3], for a generic parameter 8 € ©(Q)g, one can construct the fine
moduli space My(Q, Jo, 1) parametrizing isomorphism classes of f-stable representations
of (Q,Jg) with dimension vector 1 as the GIT (geometric invariant theory) quotient.
In the following, we let My = My(Q, Jg,1) for simplicity. This moduli space gives a
projective crepant resolution of a three-dimensional Gorenstein toric singlarity as follows.

Theorem 4 (see [7, Theorem 6.3 and 6.4], [9, Corollary 1.2]). Let T" be a consistent dimer
model, and Q) be the associated quiver. Let Rr be the three-dimensional Gorenstein toric
ring associated to T'. Then, for a generic parameter 6 € O(Q)gr, the moduli space My is
a projective crepant resolution of Spec Rr. Moreover, any projective crepant resolution of
Spec Ry can be obtained as the moduli space Mg for some generic parameter § € ©(Q)g.

It is known that the space ©(Q)g of stability parameters has a wall-and-chamber struc-
ture. Namely, we define an equivalence relation on the set of generic parameters so that
6 ~ ¢ if and only if any @-stable representation of (Q), Jg) is also €'-stable and vice versa,
and this relation gives rise to the decomposition of stability parameters into finitely many
chambers which are separated by walls. Here, a chamber is an open cone in O(Q)g con-
sisting of equivalent generic parameters and a wall is a codimension one face of the closure
of a chamber. Note that any generic parameter lies on some chamber (see [9, Lemma 6.1]),
and My is unchanged unless a parameter # moves in the same chamber of ©(Q)g.

3. WALL-AND-CHAMBER STRUCTURES FOR TORIC CDV SINGULARITIES

In the following, we detect the wall-and-chamber structure of ©(Q)r for the quiver @
associated to a dimer model giving rise to projective crepant resolutions of a toric com-
pound Du Val singularity. Compound Du Val (¢cDV) singularities, which are fundamental
pieces in the minimal model program, are singularities giving rise to Du Val (or Kleinian,
ADE) singularities as hyperplane sections. It is known that toric ¢cDV singularities can
be classified into the following two types (e.g., see [3, footnote (18)]):

(cAasp-1) : Clz,y, 2, w]/(zy — 2"w”),

(eDy) : Clz,y, z,w]/(zyz — w?),
where a, b are integers with @ > 1 and @ > b > 0. Note that the former one is a ¢cDV
singularity of type cA,ip—1 and the latter one is of type cDy. Since these are three
dimensional Gorenstein toric rings, they can also be described as the form explained in
Subsection 2.2. In particular, we can take the toric diagram of the toric ¢cDV singularities

of type cA,p-1 as the trapezoid, which will be denoted by A(a,b), whose vertices are
(0,0), (a,0), (b,1), and (0,1). For example, Figure 3 shows A(3,2). By Theorem 2, there

-62 -



exists a consistent dimer model whose zigzag polygon is A(a,b), see [11, Subsection 1.2],
[12, Section 5] for the precise construction. In general, such a dimer model is not unique,
thus we choose one of them and denote the chosen one by I', ;. By construction, the dimer
model I'y;, has n := a + b faces. We label one of the faces with 0, and label the face right
next to k with k£ +1 (mod n) for k =0,1,...,n — 1. Also, we will use these labels as the
names of vertices of the associated quiver Q).

We here focus on the toric cA,_; singularity R, := Clz,y, z,w]/(zy — 2°w’) where
n = a + b, and the associated dimer model I'y;. Let ) be the quiver obtained as
the dual graph of I',;,. By Theorem 4, the quiver () gives rise to projective crepant
resolutions of Spec R,; as moduli spaces. By the definition of the zigzag polygon, we
have the set {uy, ..., u,} of zigzag paths on I'y; such that [uy] is either (0,—1) or (0,1)
for k =1,...,n, and a = #{k | [ug] = (0, =1)}, b = #{k | [wx] = (0,1)}. We rearrange
ug, . . ., Uy, if necessary, and construct the sequence (u1, . .., u,) of the zigzag paths so that
uy, consists of the edges shared by the faces £ — 1 and & (mod n) for any k =1,...,n.
Also, we define a total order < on {u1, ..., u,} as Uy < Up_1 < -+ < Uy < Uy.

By [12, Lemma 5.2], we see that any pair of zigzag paths (u;,u;) on Iy, divide the
two-torus T into two parts (see Figure 5). We denote the region containing the face 0
by R~ (u;,u;), and the other region by R*(u;,u;). By abuse of notation, we also use
the notation R*(u;, u;) for the set of vertices of @ contained in R*(u;,u;). Since we
essentially use one of R* (u;, u;), we let R(u;, uj) := R (u;, uy).

7 G
* *
* *
4 *
s »
- -~
- -
- -
-
R (wisuj) > R (ug,uy) ~> R (us,uy)
.
* 4
* 4
£l LA
- -
- -
- -
Q‘ 5‘
Uj ’u]'
FIGURE 5

For the quiver @ associated to Iy, any 0 € ©(Q)r satisfies 0y = — >, 6. When we
consider O(Q)r, we employ the coordinates 6, with v # 0. Then, the wall-and-chamber
structure of ©(Q)gr can be determined by zigzag paths of the dimer model I',;, as follows.

Theorem 5 (see [12, Theorems 6.11, 6.12, and Corollary 6.13]). Let the notation be the
same as above. Then, there exists a one-to-one correspondence between the following sets:

(a) the set of chambers in O(Q)g,
(b) the set {Zw = (Uu(1)s - - - Uu(m)) | W € Gn} of sequences of zigzag paths,
such that under this correspondence, if a chamber C' C ©(Q)r corresponds to a sequence
Z,, then for any k=1,...,n — 1, we have the following:
(1) We see that Wy, == {0 € O(Q)r | X _yer, O = 0} is a wall of C, where Ry, =
R (U k), U(kr1)) 5 the region determined by the zigzag paths Uy, Uwgsr) (See
Figure 5).
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(2) Any parameter 0 € C satisfies >, cp 0y > 0 (resp. 3 cp by < 0) if uyp) <
Uy (k+1) (resp. U (k+1) < uw(k))~

(3) Suppose that C' is the chamber separated from C by the wall Wy. Let 6 € C
and 0" € C'. If [uymw)) = —[Uw@sr)], then Mg and Mg are related by a flop. If
[U(k)) = [Uw(e+1)], then we have My = My

(4) The action of the adjacent transposition s, € &, swapping k and k + 1 on Z,
induces a crossing of the wall Wy, in ©(Q)r. In particular, the chambers in Or(Q)
can be identified with the Weyl chambers of type A,_1.

For the case ¢Dy, we have similar results as shown in [12, Theorem 8.1], although some
modifications are required. Note that the homological minimal model program [13] also
detects the wall-and-chamber structure of ©(Q)g, whereas our method provides a more
combinatorial way to observe it.

In addition, it is known that the projective crepant resolution My can also be described
as the toric variety associated to the toric fan induced from a triangulation of A(a,b) (see
e.g., [1, Chapter 11]). For the sequence Z,, corresponding to a chamber C' C ©(Q)g, there
is a certain way to obtain the triangulation of A(a,b) giving rise to the projective crepant
resolution My with 6 € C, see [12, Subsection 6.1] for more details.

Example 6 (The suspended pinch point (cf. [9, Example 12.5])). We consider the dimer
model T" shown in the left of Figure 6. We can see that the zigzag polygon of T is A(2,1).
We also consider the zigzag paths uy, ug, us shown in the right of Figure 6. In particular,
the slopes of these zigzag paths are [u;] = [uz] = (0, —1), and [us] = (0,1). We fix a total
order ug < ug < Ug.

us

Uy U2

FIGURE 6. The dimer model I" whose zigzag polygon is A(2,1) (left), the
zigzag paths uy, ug, uz on I' (right).

Let @ be the quiver associated to I'. Then the space of stability parameters is
O(Q)r = {0 = (00,01,05) | 0y + 01 + 05 = 0}.

By Theorem 5, we have the wall-and-chamber structure of ©(Q)r as shown in Figure 7.
For example, the sequence (ug, ug,u;) corresponds to the chamber C' described as

C={0cO(Q)z|b >0, 6, >0}

Indeed, since R(ug,uz) = {2} and uz < ug, any parameter in C' satisfies the inequality
0y > 0. Also, since R(uz,u;) = {1} and us < uy, any parameter in C also satisfies the
inequality 6; > 0. A crossing of the wall 6, = 0 of C' corresponds to a swapping of us and
ug. Also, a crossing of the wall #; = 0 of C' corresponds to a swapping of us and ;.
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(U3,u1,u2)
(U3, Uz, Ul)

(Uh usg, UZ)

y 01
(ug, uz,up)
(Ul, Uz, u3)

(uQa u, uS)

FIGURE 7
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THE MODULI OF 4-DIMENSIONAL SUBALGEBRAS OF THE FULL
MATRIX RING OF DEGREE 3

KAZUNORI NAKAMOTO AND TAKESHI TORII

ABSTRACT. We describe the moduli Molds 4 of 4-dimensional subalgebras of the full
matrix ring of degree 3. We show that Molds 4 has three irreducible components, whose
relative dimensions over Z are 5, 2, 2, respectively.

Key Words:  moduli of subalgebras, full matrix ring.
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1. INTRODUCTION

Let k be a field. We say that k-subalgebras A and B of M3(k) are equivalent (or A ~ B)
if P7LAP = B for some P € GL3(k). If k is an algebraically closed field, then there are
26 equivalence classes of k-subalgebras of M3(k) over k ([4]).

Definition 1 ([2, Definition 1.1], [3, Definition 3.1]). We say that a subsheaf A of Ox-
algebras of M,,(Ox) is a mold of degree n on a scheme X if M, (Ox)/A is a locally free
sheaf. We denote by rank.A4 the rank of A as a locally free sheaf.

Proposition 2 (]2, Definition and Proposition 1.1], [3, Definition and Proposition 3.5]).
The following contravariant functor is representable by a closed subscheme of the Grass-
mann scheme Grass(d,n?):

Mold, 4 : (Sch)®” — (Sets)
X — {A‘AisamnkdmoldofdegreenonX }

We consider the moduli Molds 4 of rank d molds of degree 3 over Z. Ford =1,2,3,6,7,8,9,
we have the following theorem:
Theorem 3 ([4]). Letn =3. If d <3 ord > 6, then
Moldsy = SpecZ,
Moldz, = P7 x P3,
Molds 3

Moldy§ U Mold3% U Mold3, where the relative dimensions of

Wd?f%, Moldgfg, and Moldgf3 over Z are 6,4, and 4, respectively,
Molds ¢ Flags :== GL3/{(a;;) € GL3 | a;; =0 fori > j},
Molds 7 P2 TIP3,
Moldss = 0,
Molds 9 = SpecZ.

The detailed version of this paper will be submitted for publication elsewhere.

12

12
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The cases d = 4,5 remain. In this paper, we describe the moduli Molds 4 of rank 4
molds of degree 3. We introduce several rank 4 molds of degree 3 on a commutative ring

R.

Definition 4 ([4]). For a commutative ring R, we define

* % 0
(1) By x DY) =4 [ 0« 0 | ey},
0 0 =
a b c
(2) N3(R) = 0 a d a,b,c,d e R 3,
0 0 a
a ¢ d
(3) S¢(R) = 0 a 0 a,b,c,d € R 3,
0 0 b
a 0 ¢
(4) S7(R) = 0 a d a,b,c,de R 3,
0 0 b
a ¢ d
(5) Ss(R) = 0 b 0 a,b,c,d € R 3,
0 0 b
a 0 c
(6) So(R) = 0 b d a,b,c,d € R
0 0 b

There are 6 equivalence classes of 4-dimensional subalgebras of M3(k) over an alge-
braically closed field k: (By x Dq)(k), N3(k), Se(k), S7(k), Ss(k), and So(k).
The following theorem is our main result in this paper.
Theorem 5 (Theorem 19, [4]). When d = 4, we have an irreducible decomposition
Moldss = Mold5y™* J] Mold§y, JT Mold$,

such that irreducible components are all connected components. The relative dimensions
of MoldngDl, Mold§f4, and Moldgf4 over Z, are 5, 2, and 2, respectively. Moreover, both
Mold§f4 and Moldgf4 are isomorphic to P, and

Mold5%*P* = Mold§2*P* U Mold5®, U Mold3% U Moldy

is isomorphic to Flagy xpz Flagg xpz Flagy = {(L1 C Wa, L1 C Wy, Ly C W1) € Flagy x
Flag, x Flags}. In particular, Molds 4 is smooth over Z.

Remark 6 ([1]). We need to say the relation between Moldy, and the variety Alg, of
algebras defined by Gabriel in [1]. Let V = ke @ kea® - - - @ keg be a d-dimensional vector
space over a field k. For ¢ € Homy(V @, V, V), put @(e; @ e;) = >/, ci;e;. We say that
@ determines an algebra structure on V with 1 if the multiplication e; - e; = céjel defines
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an algebra V over k with 1. Then we define the variety Alg, of d-dimensional algebras in
the sense of Gabriel by

@ determines an )
Alg, = ¢ ¢ € Homg(V @, V, V) algebra structure C Az .
on V with 1

Then we can define a morphism ¥, : Alg; — Moldy 4 by
e {p(v® —) € Endg(V) = My(k) |veV}.

If we could prove that Uy = {A C My(k) | A is a d-dimensional tame algebra } is open in
Mold, 4 for any d, then U (U;) = {A| d-dimensional tame algebra } would also be open
in Alg,, which gives an affirmative answer to “Tame type is open conjecture”. Hence, we
believe that Mold,, 4 is an important geometric object. This is one of our motivations to
investigate Mold,, 4.

2. SEVERAL TOOLS

In this section, we introduce several tools for describing Molds 4. Let A be an associative
algebra over a commutative ring R. Assume that A is projective over R. Let A° = AQr A%
be the enveloping algebra of A. For an A-bimodule M over R, we can regard it as an A°-
module. We define the i-th Hochschild cohomology group HH'(A, M) of A with coefficients
in M as Ext’y. (A, M).

Let A be the universal mold on Mold,, 4. For z € Mold, 4, denote by A(z) = A®o,,.
k(x) C M, (k(z)) the mold corresponding to x, where k(z) is the residue field of z. As
applications of Hochschild cohomology to the moduli Mold,, 4, we have the following tools.

Theorem 7 ([3, Theorem 1.1}). For each point x € Mold,, 4,
dimk(z) TMoldn,d/Z,z = dimk(z) HHl(,A(x), Mn(k(a:))/A(x)) + n2 — dimk(z) N(A((L’)),
where N(A(z)) = {b € M, (k(z)) | [b,a] = ba — ab € A(z) for any a € A(z)}.

Theorem 8 ([3, Theorem 1.2]). Let x € Mold, 4. If HH*(A(z), M, (k(x))/A(x)) = 0,
then the canonical morphism Mold,, ¢ — Z is smooth at x.

For a rank d mold A of degree n on a locally noetherian scheme S, we can consider a
PGL, s-orbit {P7'AP | P € PGL, s} in Mold,. 4 ®z S, where PGL, s = PGL,, ®z S.
For z € S, put A(z) = A Qoq k(z), where k(z) is the residue field of x. By using
HH'(A(x), M, (k(x))/A(x)), we have:

Theorem 9 ([3, Theorem 1.3]). Assume that HH'(A(x), M, (k(z))/A(x)) = 0 for each
z € S. Then the PGL,, g-orbit {P~'AP | P € PGL, s} is open in Mold, 4 ®z S.

These tools are useful for investigating Molds 4. For each rank 4 molds of Ms(R) over
a commutative ring R, we obtained the following table:
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TABLE 1. Hochschild cohomology HH*(A, M3(R)/A) for R-subalgebras A

of M3(R) (cf.

[3, Table 2))

A d =rankA | H* = HH*(A, M3(R)/A) A N(A) dim Tyiold, /7,4
* % 0
(Bszl)(R)—{(o * 0)} 4 Hi=0fori>0 (B2 x D1)(R) | (Bs x D1)(R) 5
0 0 =x
a b ¢ . )
\f _ / i R’ (i=0) 5
N3(R) = { ( 8 g Z ) } 4 Hi = { R (1> 1) N3(R) Bs(R) 5
a ¢ d
Se(R) = { ( 0 a0 ) } 4 Hi=Rfori>0 Se(R) Si3(R) 5
00 b
a 0 ¢ .
_ , [ R® (i=0) .,
() = { ( 0 0 d ) } S T B R e M 2
a ¢ d .
_ , , R (i=0) f
S(R) = { ( 0 b0 ) } o= {N Y | sw | paw 2
a 0 ¢
So(R) = { ( 0 b d ) } 4 H'=Rfori>0 Se(R) Su(R) 5
00 b

3. DESCRIPTION OF Molds 4

In this section, we describe Molds 4. Let V' be a free module of rank 3 over Z. Fix a
canonical basis {e1, ez, e3} of V over Z. We define schemes P*(V), P.(V), and Flag(V)
over Z as contravariant functors from the category of schemes to the category of sets in

the following way:
P*(V)(X)
P.(V)(X)
Flag(V)(X)

for a scheme X.

{ w ‘ W is a rank 2 subbundle of Ox ®z V on X } ,
{ L| Lisarank 1 subbundle of Ox ®zV on X },
{ (LW)e P(V)xP*(V))(X)|LCW }

Remark 10. If we consider the case over a field k, then P*(V'), P.(V), and Flag over k are

regarded as

Flag(V)

respectively.

Let us consider rank 4 molds

(By x Dy)(Z)

O O *
* O O

O % ¥
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€ Ms(Z)

)

{W C V| W is a 2-dimensional subspace of V'},
{L C V| L is a 1-dimensional subspace of V'},
{(L,IW)eP(V)xP*(V)|0C LCW CV},




a 0 c

S/(Z) = 0 a d a,b,e,d€Z 3,
000
a c d

Ss(Z) = 060 a,bc,d €7
00 b

over Z. Let A =By x Dy, Sy, or Sg. Then HH'(A(k), M3(k)/A(k)) = 0 for any field k by
Table 1. The image of the morphism ¢4 : PGL3 — Molds 4 defined by P — P~'A(Z)P
is open by Theorem 9.

Definition 11 ([4]). We define open subschemes of Molds 4 by
Moldy3™" = Tm ¢p,p,,

Mold§74 = Imgsg,,

Mold%, = Imds,.
Remark 12. Let A = By x Dy, Sy, or Sg. Then HH?(A(k), M3(k)/A(k)) = 0 for any field
k by Table 1. By [3], the canonical morphism Moldfi 4+ — Z is smooth.
Theorem 13 ([4]). The subschemes Mold§f4 and Moldgfi1 are open and closed in Molds 4.
Moreover, Moldgf4 =~ P*(V) and Mold??4 =P, (V).

Outline of proof. For simplicity, here we only consider the case over a field k. For
W e P*(V), set

Aw = {f € Endg(V) = M3(k) | f(W) C W and f|W is scalar } C M3(k).
Let us define a morphism

vs, © P*(V) — Moldy),

We can verify that ¢, is an isomorphism.
For L € P,(V), set

Ap ={f € Endg(V) = Ms(k) | f(L) C L and f:V/L — V/L is scalar }.
Let us define a morphism

vs, © Pu(V) — Moldsy
L — AL-

We can verify that ¢, is an isomorphism. O

Definition 14. We define
Q(V) = Flag(V) xp,(v) Flag(V) xp«(v) Flag(V')
= {(L17W2;L17W1;L27W1) | dimk Lz = 1,din1k WZ = 2}
{(Ll,LQ,Wl,WQ) | Ly C Wl,Ll C WQ,LQ C Wl}
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Let us define the projection 7 : Q(V) — Flag(V') by
(L1, Lo, Wi, Wa) = (Ly, Wh).
We can verify that 7 is a fiber bundle with fiber P! x P!.
For (L17L27W13 WQ) € Q(V)a set

_ f(L )cLl,f( ) CW; (i =1,2), and
A(L1,L2,W1,W2) - { f S M3( ) L o~ /Ll V/WQ as k[f] modules }

Let us define a morphism

¢B2><D1 : Q(V) — M01d3’4
(L17L27 W17W2) = A(L17L23W17W2).

Theorem 15 ([4]). The image of ¥p,xp, s open and closed in Molds 4. Moreover, 1p,xp,

gives an isomorphism between Q(V') and the closure Moldgrj‘XD1 of MoldgiXDl.

Outline of proof. It can be verified that ¥p,«p, is @ monomorphism. By a long discus-
sion, we can also prove that ¥p,«p, is formally étale. Hence, ¥p,xp, gives an isomorphism

between Q(V') and an open subscheme of Molds 4 which coincides with MoldgiXDl. 0

Definition 16 ([4]). Let A = N3, Sg, or Sg. We define
Moldg, = {a € Moldsy | A(x) ®u) k(z) ~ A(k(z))},

where k(x) is an algebraic closure of k(x).

We can also prove the following theorems.

Theorem 17 ([4]). For the closure W of MoldBQXDl, we obtain
Mold5P" = Mold§3 P T | Molds, ] ] Mold3, ] ] Mold3s.

Theorem 18 ([4]). By the isomorphism W =~ Q(V), we have

Mold§3*Pt = {(Ly, Ly, Wi, Wa) € Q(V) | Ly # Lo, Wy # Wa},

Mold3%, = {(Li, Lo, Wy, Wa) € Q(V) | Ly = Ly, Wy # Wa},
Molds®, = {(Liy, Lo, Wi, W) € Q(V) | Ly # Lo, Wy = Wa},
Mold}% {(Ly, Lo, Wi, W3) € Q(V) | Ly = Ly, Wy = Wa}.

By using Theorem 18, let us describe a deformation of 4-dimensional subalgebras of
Mj. We define a 2-dimensional closed subscheme Q* (V') of Q(V) = MoldgiXD L

For simplicity, let us consider the case over a field k. Set Lt = ke; and W3t = ke, Dkes.
Put * = (L', W;*) € Flag(V). Then we have the following fiber product:

QI(V) = Q)
4 +
* —  Flag(V).
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Note that Q% (V) 2 P}, x P;.

1 1 0
Let La(sy) = < —51 > and Wa(sg) = < 01,1 > Then
0 0 52

{(s1,52) € AR} = (P \ {oo}) x (P}, \ {o0})
gives an affine open subscheme of Q* (V) by considering (L3, La(sy), W3, Wa(s2)). We

write
a+sb b c

A(sy, 82) = 0 a d a,b,c,d € k
0 0 a+ sod

for ¥p,xp, (51, 52) € Mold§3*"".
Note that
): Bax Dy type if s1#0,82 #0,
A(0, s9) : Se type if s5 £ 0,
) Sg type if 57 #0,
) N3 type.

Summarizing the discussions above, we obtain the main theorem.
Theorem 19 ([4]). We have an irreducible decomposition
Molds 4 = Moldg2 ™t T MoldgT, J] Moldsy,

whose irreducible components are all connected components. Moreover, Mold33*" =
:

Q(V), MoldT, = P2, and Mold¥, = P% over Z.

By considering the PGLg-orbits in Molds 4 over a field k, we have:

Corollary 20 ([4]). Let k be an arbitrary field. Then there exist 6 equivalence classes of
4-dimensional subalgebras of M3 (k) over k: (Ba x Dy)(k), N3(k), Se¢(k), S7(k), Ss(k), and
So(k).

Remark 21. Let S be a 4-dimensional subalgebra of M3(k) over a field k. Let A be one
of (By x D1)(k), N3(k), Se(k), S7(k), Ss(k), or Se(k). If S ®; K is equivalent to A ®; K
for an extension field K of k, then S is equivalent to A over k& by Corollary 20.
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GOVOROV-LAZARD TYPE THEOREMS, BIG COHEN-MACAULAY
MODULES, AND COHEN-MACAULAY HEARTS

TSUTOMU NAKAMURA

ABSTRACT. Let R be a Cohen-Macaulay local ring with a canonical module and let A
be an R-order. We report that a Govorov-Lazard type theorem holds for the category
of weak (balanced) big Cohen—-Macaulay modules over A. This theorem, which is a
generalization of a result due to Holm for the case R = A, enables us to show that
every complete pure-injective big Cohen-Macaulay A-module is a direct summand of a
direct product of finitely generated CM A-modules, provided that R is complete. This
fact is well known if R is artinian. We also study big Cohen—-Macaulay modules over a
non-Cohen—-Macaulay local ring R, using the Cohen-Macaulay heart of R.

1. INTRODUCTION

Let A be a ring and denote by Mod A (resp. mod A) the category of (right) A-modules
(resp. finitely presented A-modules). Let C be an additive subcategory of Mod A closed
under direct limits. It is a delicate problem in general whether every module in C can
be presented as a direct limit of modules in C N mod A. If this is possible, we say that a
Govorov-Lazard type theorem holds for C, and write

lim(C Nmod A) =C.

For example, it is well known that limmod A = Mod A.  Govorov [3] and Lazard [4]
independently proved that hg proj A = Flat A, where Flat A (resp. proj A) denotes the cat-
egory of flat (resp. finitely generated projective) A-modules. Moreover, for an Iwanaga—
Gorenstein ring A, Enochs and Jenda [2] showed that a Govorov—Lazard type theorem
holds for the category GFlat A of Gorenstein-flat A-modules, where (GFlat A) N mod A
coincides with the category of finitely generated Gorenstein-projective A-modules. If A is
not Iwanaga—Gorenstein, a Govorov—Lazard type theorem may not hold for GFlat A; this
is due to Holm and Jgrgensen [6].

2. RESULTS

Let R be a commutative noetherian local ring. An R-module M is called (balanced) big
CM (=Cohen—-Macaulay) if every system of parameters of R is an M-regular sequence. We
call an R-module M a weak big CM if every system of parameters of R is a weak M-regular
sequence (cf. [5]). We denote by WCM R the category of weak big CM modules. Then
WCM R N'mod R = CM R, where the right-hand side denotes the category of (maximal)
CM modules. Holm [5] showed that hg CM R = WCM R holds for any CM local ring R
with a canonical module. Our first result extends this to orders over a CM local ring R

This is a partial summary of [8]. The detailed version of this paper will be submitted for publication
elsewhere.
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with a canonical module. Recall that a (possibly noncommutative) R-algebra A is said
to be an R-order if A is CM as an R-module. We denote by CM A (resp. WCM A) the
category of A-modules being CM (resp. weak big CM) as R-modules.

Theorem 1. Let R be a CM local ring with a canonical module and let A be an R-order.
Then we have
ligl CM A = WCM A.

If R is artinian, then A is an Artin R-algebra, and then It is well known that every pure-
injective module over a A is a direct summand of a direct product of finitely generated A-
modules. Using the above theorem, we can extend this fact to an order A over a complete
CM local ring R. Note that a CM (resp. big CM) A-module means an A-module which
is CM (resp. big CM) as an R-module.

Corollary 2. Let R be a complete CM local ring and let A be an R-order. Then every
pure-injective complete big CM module is a direct summand of a direct product of CM
A-modules.

By André’ noble work [1], every commutative noetherian local ring R admits a big
Cohen—Macaulay module. On the other hand, it is still an open question if every complete
noetherian local ring R admits a (finitely generated) CM R-module. This question is
known as the small CM conjecture. Then there might be little hope that we could have
limp CM R = WCM R in general. So we would like to give another formulation.

Assume that R is a homomorphic image of a CM local ring. We use the Cohen—Macaulay
heart Hem of R introduced in [7]. This is the heart of some compactly generated generated
t-structure in the (unbounded) derived category D (R). There are several remarkable
facts: Hcewm is a locally coherent Grothendieck category and derived equivalent to Mod R.
Furthermore, we have

Hem N Mod R = WCM R.

Denote by fp(Hcwm) the subcategory of finitely presented objects in Hey. The locally
coherence of Hcy implies that a Govorov-Lazard type theorem holds for Hey, that is,
each object in Hcy is a direct limit of objects in fp(Hcm):

hﬂfp(’HCM) =Hcwm-
Hence we have:

Proposition 3. Let R be a homomorphic image of a CM local ring. Then every weak big
CM module is a direct limit of finitely presented objects in Hem -

Remark 4. When R admits a dualizing complex D (such that inf{i | H(D) # 0} = 0),
there is an equivalence

RHom g(—, D) : (mod R)*® = fp(Hcwm ).
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Ky OF WEAK WALDHAUSEN EXTRIANGULATED CATEGORIES

YASUAKI OGAWA

ABSTRACT. We modify the axiom of the Waldhausen structure so that it matches better
with extriangulated categories. It enables us to define an abelian group Ky(C) of a weak
Waldhausen category € which generalizes that of an extriangulated category. As one
might expect, it behaves nicely in the context of Quillen’s localization and resolution
theorems. We obtain two applications: the first one generalizes exact sequences of the
Grothendieck groups associated with the Serre/Verdier localization to some types of
“one-sided” exact localizations; the second one reveals close relations between Quillen’s
theorems and Palu’s index.

1. INTRODUCTION

The higher algebraic K-theory for an exact category € was introduced by Quillen,
which is now called Quillen’s @-construction [18]. Such a construction makes € to be the
simplicial category BC by inverting certain morphisms and the K-theory is defined via its
geometric realization |B€|. The first foundational result in [18] is the localization theorem
which extracts a long exact sequence of K-groups from the Serre quotient. The second
one is the resolution theorem which shows that if we can identify a suitable subcategory X
of an exact category C, then K(C) = K(X). However, not all K-groups can be recovered
as those of some abelian/exact categories. It turned out that Quillen’s K-theory for
exact categories does not possess satisfactory generality that K-theorists had in mind,
where triangulated categories come in. To tackle this problem, Waldhausen introduced a
generalization of exact categories, now called the Waldhausen category, in which K-theory
still exists [21]. As applications of his abstract localization theorem, Thomason-Trobaugh
established a K-theory of the derived categories [20] and Schlichting generalized it to any
algebraic triangulated category [19].

On one hand, the notion of extriangulated category was introduced by Nakaoka-Palu
[13] as a simultaneous generalization of exact categories and triangulated categories. A
localization theory of them was also developed in [12] which contains many quotient pro-
cesses in algebraic contexts as well as the Serre/Verdier quotient. In this article, focusing
only on the Grothendieck groups, we generalize a part of the Waldhausen theory on exact
categories to the extriangulated case, more specifically, we define the weak Waldhausen
extriangulated category (€, C, W) together with its Grothendieck group Ky(C, C, W).

First, as a benefit of introducing the weak Waldhausen structure, we obtain an exact se-
quence of Grothendieck groups associated with some localizations such as the Serre/Vedier

This article is a part of ongoing joint work with Amit Shah (Aarhus University). Some parts of
this article has been already appeared in [15]. The detailed version of this paper will be submitted for
publication elsewhere.
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quotient (Theorem 12), which contains an extriangulated counter part of Quillen’s local-
ization theorem. The above assertion for the Serre/Verdier quotient goes back to Heller
and Grothendieck, respectively. Furthermore, it can apply to abelian localizations of tri-
angulated categories which can be traced back to hearts of t-structures in the sense of [2].
Since then, abelian localizations have been found using cluster tilting subcategories [10].
These constructions were unified in [1] and placed in an extriangulated context in [11].
A generalization from cluster tilting to rigid subcategories was initiated in [3, 4], and has
been further developed in the literature.

Our second aim is to reveal a close relation between the resolution theorem and abelian
localization. To this end, we establish the extriangulated version (Theorem 14) and it
provides a slight generalization and a better understanding for Palu’s index which was
introduced in connection with the Caldero-Chapoton map [16]. Let triangulated category
€ and a 2-cluster tilting subcategory X C € be given. For each object C € €, Palu’s index
indx(C) of C' with respect to X is defined as an element of the split Grothendieck group
KP(X). Recently, it is interpreted and generalized via a certain relative extriangulated
structure of € naturally defined by a given subcategory X [17, 9]. We prove that such
results indeed come from the resolution theorem.

Notation and convention. All categories and functors in this article are always assumed
to be additive, and subcategories will always be full. For a category €, we denote the
class of all morphisms in € by MorC, and modC is the category of finitely presented
contravariant functors from € to the abelian category Ab of abelian groups.

2. LOCALIZATION OF EXTRIANGULATED CATEGORIES

This section is devoted to recall the localization theory of extriangulated category
by a suitable thick subcategory, which was introduced in the pursuit of unifying the
Serre/Verdier quotient [12]. We also recall a specific case, namely, a localization of trian-
gulated category by an extension-closed subcategory [14].

Nakaoka-Palu’s extriangulated category is defined to be an additive category € equipped
with

e a biadditive functor E: C° x € — Ab, where Ab is the category of abelian groups,
and
e a correspondence s that associates an equivalence class s(0) = [A ANy ; RN C]

of a sequence A L4 B2 Cin € to each element § € E(C, A) for any A,C € C,

where the triplet (C,E,s) satisfies some axioms. We refer the reader to [13] for an in-
depth treatment, see also [15, §2,3]. It turns out that an extriangulated category (C,E, s)

is equipped with the class of sequences of the form A s B %5 € which is called an
s-conflation. The pair of an s-conflation and the corresponding element § € E(C, A)

is called an s-triangle and denoted by A JyB % ¢ %5, In contrast to triangu-
lated/exact categories, if we state the axiom for extriangulated category, the realization
s is indispensable.

Let us introduce an exact sequence of extriangulated categories as a generalization of
the Serre/Verdier quotient. We denote by ET the category of extriangulated categories
and exact functors.
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Definition 1. A sequence (N,E' s') i) (G, E,s) @) (D,F,t) in ET is called an ezact
sequence of extriangulated categories, if the following conditions are fulfilled.
(1) F is fully faithful.
(2) Im F' = Ker @ holds.
(3) For any map (G,¢): (C,E,s) = (D', F',¥) in ET with G o F = 0, there uniquely
exists an exact functor (G',v¢'): (D,F,t) — (D', ', ¢) such that (G,v¥) = (G',¢')o
(@, ).

Let us remind a construction of the Verdier quotient: given a triangulated category C
and a thick subcategory N C €, we associate the class Sy of morphisms in € to N, namely,
Sxi={s€MorC|3A> B — N — A[l] with N € N}. Then the Verdier quotient €/N is
defined to be the Gabriel-Zisman localization C[85'] and it gives rise to an exact sequence
N — € — CG/N in the category of triangulated categories and exact functors.

Similarly to the case of the Verdier quotient, we associate the class Sy to the pair (C,N)
of an extriangulated category € and a thick subcategory N C €. The following is a basic
machinery to establish an exact sequence in ET, see [12, Thm. 3.5] for a detailed setup.

Theorem 2. Let (C,E,s) be an extriangulated category with a thick subcategory N. Sup-
pose Sy satisfies conditions (MR1)~(MR4) in [12, Thm. 3.5]. Then there is an extriangu-
lated category (C/N,E,8) together with an ezact functor (Q,u): (C,E,s) — (¢/N,E,5).
Furthermore, the following natural sequence forms an exact sequence in ET.

inc (Q,)
(2'1) (NaE|N75|N) (G,E,ﬁ) —

(€/N,E,3)

Unfortunately, it is not easy to check the conditions (MR1)-(MR4). Except for the
Verdier /Serre quotient, just a few examples of subcategories which yields (2.1) are know,
e.g. biresolving subcategories [12, §§4.3] and percolating subcategories [12, §§4.4].

We now specialize to the case when (€, E, s) corresponds to a triangulated category and
recall the localization theory from [14] that we need.

Setup 3. We fix a triangulated category € (with suspension [1]) and an extension-closed
subcategory N C C that is closed under direct summands. We denote by (C,E,s) the
extriangulated category corresponding to the triangulated category C.

As an application of the relative theory for extriangulated categories [8], we know any
extension-closed subcategory N determines relative structures on €. As pointed out in [5,
Prop. A.4], these relative structures are natural from the viewpoint of constructing exact
substructures of an exact category.

Proposition 4. [14, Prop. 2.1] For A,C € €, define subsets of E(C, A) = C(C, A[1]) as
follows.

EX(C,A) := {h: C — A[l] | Vo: N = C with N € N, we have hx € [N[1]]}
EX(C, A) == {h: C — A[l] | Vy: A— N with N € N, we have y o h[—1] € [N[-1]]}

Then both EX and ER give rise to closed subfunctors of E. In particular, putting Ey =
EL NEL, we obtain extriangulated structures

GRL\I = (evEJI\}vﬁlL\f)a GJ}\%f = (G,Eﬁ,ﬁﬁ), Cx = (evENvgN)v
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all relative to the triangulated structure (C,E,s).

With respect to the relative structure Cy, the pair (€, N) yields a class Sy of morphisms
in C satisfying the needed conditions to obtain an exact sequence in ET.

inc

Theorem 5. [14, Thm. A, Lem. 2.4, Cor. 2.11] We have an exact sequence (N, E,s) —

(C, Ex, 5n) @ (C/N,Ey,3y) in ET. Furthermore, if Cone(N,N) = € holds in the trian-
gulated category (C,E,s), the following are true.
(1) The quotient category €/N = (€/N,Ex,3y) is abelian.
(2) The quotient functor (Q,p) induces a right exact functor Q: (€, EX si) — €/N
and a left exact functor Q: (€, EL sk) — €©/N. In addition, it induces a cohomo-
logical functor Q: (C,E,s) — C/N.
We call the case Cone(N,N) = € in which we have the resulting abelian category C/N the
abelian localization of C by N.

We can think of hearts of t-structures in the sense of [2] as a prototypical example of
the abelian localization. Since then, it has been found and generalized via cluster tilting
subcategories [10], rigid subcategories [4, 3] and cotorsion pairs [1]. In turn, Theorem 5
can apply to these phenomenon. To clarify our point of focus, we record the following
immediate result.

Example 6. Let (C,E,s) be a triangulated category and X C C be a contravariantly
finite rigid subcategory. We consider an extension closed subcategory N = X10 = {C €
C| (X,C) = 0}. Since Cone(N,N) = C is true, Theorem 5 provides a right exact functor
Q: G — C/N. Furthermore, we can verify that there exists a natural exact equivalence
C/N = modX. Thus we have a right exact functor @ = (X, —) with the kernel N as
below.

(2:2) (N, Elx, s|x) —"— (€, EL, 55

Note that this sequence does not sit in ET any more.

mod X

3. WEAK WALDHAUSEN CATEGORIES

We introduce the notion of weak Waldhausen category. This is a simultaneous gener-
alization of the (classical) Waldhausen category and extriangulated category. Also, we
define its Grothendieck group.

Definition 7. Let C be an additive category equipped with a class Seq of distinguished
sequences of the form

(3.1) A—t-p—toc

in C, and a class W of morphisms in €. Denote by C (resp. F) the class of morphisms f
(resp. g) appearing in a distinguished sequence (3.1). The morphisms in C (resp. F) are
called cofibrations (resp. fibrations) and denoted by — (resp. —). The morphisms in W
are called weak equivalences and are denoted by =».
(1) The triplet (C,Seq,W) is called a weak Waldhausen (additive) category if the
following axioms are satisfied.

- 80 -



(WCO0) The class C is closed under composition and contains all isomorphisms.
(WC1) Seq contains all split exact sequences and is closed under isomorphism. Any
distinguished sequence (3.1) is a weak cokernel sequence.

(WC2) Any pair (f,c) of a cofibration A 2 B and a morphism A — C yields

(L)

a cofibration A ~—% B @ C. Furthermore, the associated distinguished

(L)

sequences of the foorm A —= B @ C I p satisfy that f’ belongs to C.
(WWO0) The class W is closed under composition and contains all isomorphisms.
(WW1) (Gluing axiom) Consider a commutative diagram of the form

(3.2) o4t p
in which all vertical arrows are weak equivalences and the feathered arrows
are cofibrations. Then from a distinguished weak cokernel of ( J C) to a distin-

guished weak cokernel of ( _f;,), there is an induced morphism that is also a
weak equivalence.
(2) The triplet (C, Seq, W) is called a weak co Waldhausen category if the triplet (C°P, Seq®®, W°P)
is a weak Waldhausen additive category.
(3) The triplet (C,Seq, W) is called a weak biWaldhausen category if (C,Seq, W) is
both weak Waldhausen and weak coWaldhausen.

Example 8. Let (C,E,s) be an extriangulated category. Define Seq, to be the class of
all s-conflations, and W, to be the class of all isomorphisms in €. Then (€, Seq,, W,) is a
weak biWaldhausen category.

We introduce some concepts for weak Waldhausen categories by analogy to the classical
theory.

Definition 9. Let (€,Seq, W) and (€', Seq’, W') be weak Waldhausen categories.

(1) An additive functor F' : € — €' is called an ezact functor if it preserves distin-
guished sequences and weak equivalences, namely, F'(Seq) C Seq’ and F(W) C W’
hold.

(2) Suppose (€, Seq, V) is a weak Waldhausen category with V. C W. Then the identity
functor ide: (C,Seq, V) — (C,Seq, W) is exact. An object C' € € is W-acyclic if
the zero map 0 — C belongs to W. We denote by N the full subcategory of all
W-acyclic objects in (C,Seq, V). In this case, the subcategory admits a natural
weak Waldhausen structure (N, Seq’, V') which is a restriction of (€, Seq, V).

We denote by wWald the category of weak Waldhausen categories and exact functors.
Analogously to the case of extriangulated category, we introduce their exact sequence.

Definition 10. The natural sequence

(3.3) (NW, Seq, V') 25 (€@, Seq, V) - (€, Seq, W)
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in Definition 9(2) is called a localization sequence. Moreover it is called an ezact sequence
in wWald if the functor (€, Seq,V) e, (©,Seq, W) is universal among exact functors
F: (C,Seq,V) — (D,Seq’, W) with Flyw = 0, where (D, Seq’, W) is a weak Waldhausen
category satisfying the saturation and extension axioms (see [21, p. 327]).

The Grothendieck group for weak Waldhausen categories is defined as follows.

Definition 11. Assume that (€, C, W) is a weak Waldhausen category. The Grothendieck
group Ky(C) = Ky(C, C, W) is defined to be the abelian group freely generated by the set
of isomorphism classes [C] of each object C' € €, modulo to the relations:

e [C] = [C"] for each weak equivalence C' = C’; and

e [B] = [A] 4 [C] for each distinguished sequence A — B — C.

To state our abstract localization theorem we define subclasses of Mor C:
o L =CNW; R* =FNW,; and
e R = {g € Mor Clg is a retraction and Kerg € N}.
The first result can be regarded as a version of Shclichting’s theorem [19, Thm. 11].

Theorem 12 (Localization Theorem). Consider a localization sequence of weak Wald-
hausen categories as (3.3). If we assume that

(1) W consists of finite compositions of morphisms from £2U R3S UV, or

(2) W consists of finite compositions of morphisms from L2*UR*UV and C is a weak
biWaldhausen,

then it becomes an exact sequence in wWald which induces a right exact sequence in Ab
as follows.

Ko(inc) Ko(id)

(34)  Ko(NW, Seq, V') Ko(€,Seq, V) Ko(€,Seq, W) ———0

The second one is an extriangulated version of Quillen’s resolution theorem at the level
of Ky, see [15, Thm. 4.5] for more details.

Definition 13. Let (C,E,s) be an extriangulated category, let X C € be a subcategory
and fix an object C' € €. A finite X-resolution (in €) of C is defined to be a complex

(3.5) X, Db sl xRy o o

where X; € X for each 0 < i < n, and Cj,4 L) X; 2% C; is an s-conflation for each
0 <i<n-—1with (Cy,C,) = (C,X,). In this case, we say that the X-resolution is of
length n.

Theorem 14 (Resolution Theorem). Let (C,E,s) be an extriangulated category. Suppose
X is an extension-closed subcategory of (C,E, s), such that X is closed under taking cocones
of s-deflations in (C,E,s). If any object C' € € admits a finite X-resolution, then we have
an isomorphism

Ko(€ E,5) — Ko(X,Elx,s|x)

€] — >V
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where we consider an X-resolution (3.5) of C' € C.

4. APPLICATIONS

Lastly we demonstrate some usages of our localization and resolution theorem. As
expected, an exact sequence in ET induces an exact sequence in wWald. In such a case,
we may apply the localization theorem to get a right exact sequence of the Grothendieck
groups in Ab, recovering Enomoto-Saito’s extriangulated localization theorem [6, Cor.
4.32]. A benefit of weak Waldhausen structures sits in the fact that such a construc-
tion still holds for the abelian localization in the sense of Theorem 5. Exact sequences
appearing in this article are related to each other as summarized below.

‘ Verdier quotient ‘ ‘ Serre quotient ‘

[la\ /62} Exact sequence of
Waldhausen categories

Exact sequence of
extriangulated categories

Exact sequence of
weak Waldhausen categories

Abelian localization of

triangulated categories Thm. 12

Right exact sequence of
Grothendieck groups

Thus, although the “right exact” sequence (2.2) does not exsist in ET, it induces a
natural exact sequences (N, Seq’, V') == (€, Seq, V) LN (€,Seq, W) in wWald to which
Theorem 12 can apply. Thus, like the case of Enomoto-Saito’s theorem, it also induces a
right exact sequence in Ab as below.

Ko (inc) Ko(id)

KO(NaE‘NvﬁlN) K0(65E£75§)

Furthermore, thanks to the assumption Cone(N,N) = € in Theorem 5, (the dual of) the
resolution theorem applies to the inclusion N C (C,EX, s%). It shows the leftmost arrow

KO(G,Seq,W) > ()

is an isomorphism Ko(N, E|y, s|x) — Ko(€, EE, s8). This isomorphism has been already
appeared in the literature, which we now describe.

Example 15. (cf. Example 6) Let (C,E,s) be a triangulated category and X C € a 2-
cluster tilting subcategory. Put N := X[1] = X*°. Then the aforementioned isomorphism
can be described as follows,

o

KO(G7E§75§) — Kgp(x)
[C] +— [Xo] = [Xi]
where we consider a triangle X; — Xy — C' — X;[1] comming from the defining cotorsion
pair (X,X). This isomorphism is known as the index isomorphism [17]. In the case of

X = X[1], by a closer look at this isomorphism, Fedele interpreted the Grothendieck group
Ky(C) of the triangulated category as that of the 4-angulated category X [7, Thm. C].
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Due to the very generality of our abstract theorems, we expand their results to wider
setup containing the n-cluster tilting subcategory case.
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EMBEDDINGS INTO MODULES OF FINITE PROJECTIVE
DIMENSIONS AND THE n-TORSIONFREENESS OF SYZYGIES

YUYA OTAKE

ABSTRACT. Let R be a commutative noetherian ring. In this article, we find out close
relationships between the module M being embedded in a module of projective dimension
at most n and the (n + 1)-torsionfreeness of the nth syzygy of M. As an application, we
consider the n-torsionfreeness of syzygies of the residue field k over a local ring R.

Key Words:  n-torsionfree module, n-syzygy module, projective dimension, Goren-
stein ring.

2000 Mathematics Subject Classification: — 13D02, 13D07.

1. INTRODUCTION

Throughout this article, let R be a commutative noetherian ring. We assume that
all modules are finitely generated ones. It is a natural and classical question to ask
when a given R-module can be embedded in an R-module of finite projective dimension.
Auslander and Buchweitz [2] proved that over a Gorenstein local ring any module admits
a finite projective hull, which is a dual notion of a Cohen—Macaulay approzimation.

Theorem 1 (Auslander-Buchweitz). Let R be a Gorenstein local ring and M an R-
module. Then there exists an exact sequence 0 — M — YM — XM — 0 of R-modules
such that YM has finite projective dimension and X™ is mazimal Cohen-Macaulay.

In particular, every module over a Gorenstein local ring can be embedded in a module of
finite projective dimension. Conversely, Foxby [5] proved that if R is a Cohen—Macaulay
local ring and every R-module can be embedded in an R-module of finite projective
dimension, then R is Gorenstein. Takahashi, Yassemi and Yoshino [13] succeeded in
removing from Foxby’s theorem the assumption of Cohen-Macaulayness of the ring R.

Theorem 2 (Foxby, Takahashi—Yassemi—Yoshino). Let R be a local ring of depth t. Let
k be the residue field of R. Then the following are equivalent.
(1) The ring R is Gorenstein.
(2) Any R-module can be embedded in an R-module of finite projective dimension.
(3) The module Tr Q'k can be embedded in an R-module of finite projective dimension.

Here, we denote by Tr(—) and Q"(—) the (Auslander-Bridger) transpose and n-th
syzygy, respectively. In the present article, for a fixed integer n, we consider embedding a
given module in a module of projective dimension at most n. Our answer to this question
is Theorem 3, which says that the question is closely related to the (n+ 1)-torsionfreeness
of nth syzygies. The notion of n-torsionfree modules was introduced by Auslander and

The detailed version [11] of this article has been submitted for publication elsewhere.
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Bridger [1] as a generalization of the notion of torsionfree modules over integral domains:
An R-module M is called n-torsionfree if Extly(Tr M, R) = 0 for all 1 < i < n. Various
studies on the n-torsionfreeness have been done so far; see [1, 3, 4,6, 7, 8,9, 10, 11, 12, 13].
As an application of Theorem 3, we can recover Theorems 1 and 2.

Next, let us consider the case where R is local with residue field k, and has depth
t. Recently, Dey and Takahashi [3] studied the torsionfreeness of syzygies of k. They
especially proved in [3, Theorems 4.1(2) and 4.5(1)] that Q'k is (¢ + 1)-torsionfree, and
it is a (¢ 4+ 2)nd syzygy if and only if the local ring R has type one. Motivated by their
results, as another application of our main theorem, we consider the n-torsionfreeness of
syzygies of the residue field k.

2. MODULES EMBEDDED IN MODULES OF FINITE PROJECTIVE DIMENSION

The following theorem is the first main result of this article. The following theorem
gives an answer to the question of when a given R-module can be embedded in an R-
module of projective dimension at most n, under the assumption that the given module is
locally of finite Gorenstein dimension. Let M be an R-module. We denote by Gdimg M
the Gorenstein dimension of M; see [1] for details.

Theorem 3. Let M be an R-module and n a nonnegative integer. Consider the following
conditions.

(1) The module Q"M is (n + 1)-torsionfree.
(2) There ezists an exact sequence 0 — M — Y — X — 0 of R-modules such that Y
has projective dimension at most n and Extm(X, R) =0 for all 1 <i <n+1.
(3) The module M can be embedded in an R-module of projective dimension at most
n.
Then the implications (1) <= (2) == (3) hold. If Gdimg, M, < oo for all prime ideals
p of R with depth R, < n, then all the three conditions are equivalent.

Let us consider an application of the above theorem. We can deduce Theorem 2 due
to Foxby [5] and Takahashi, Yassemi and Yoshino [13] directly from Theorem 3.

Proof of Theorem 2. Assume that R is Gorenstein. Then for any R-module M the tth
syzygy Q'M is maximal Cohen-Macaulay, in particular, (¢ + 1)-torsionfree. The impli-
cation (1) = (2) follows from Theorem 3. The implication (2) = (3) is clear. Suppose
that Tr 'k is a submodule of an R-module of finite projective dimension. It follows from
Theorem 3 that Qf Tr Qk is (¢ + 1)-torsionfree. In particular, Ext'(Qf Tr Qf Tr Qk, R) =
Ext™ (Tr Q! Tr @'k, R) = 0. Since Ext'(Q'k, R) is a direct summand of

Ext!(Q Tr O Tr Q'k, R), we have Ext™ (k, R) = Ext'(Q'%, R) = 0 and the implication
(3) = (1) holds. O

Grades of Ext modules are one of the main subjects of the theory of Auslander and
Bridger; see [1, Chapters 2 and 4]. Recall that the grade of an R-module M is defined to
be the infimum of integers ¢ such that Extjé(M ,R) # 0, and denoted by gradep M. We
state the relationship between Theorem 3 and the grade condition given by Auslander
and Bridger.
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Corollary 4. Let n > 0 be an integer and M an R-module. If Q"M is (n—+1)-torsionfree,
then grader Exty (M, R) > i for all integers 1 < i < n.

3. THE n-TORSIONFREENESS OF SYZYGIES OF THE RESIDUE FIELD OF LOCAL RINGS

Let M and N be R-modules. By M =~ N we mean that there are projective modules
P and @ such that M @ P2 N & Q.

The following corollary is necessary to prove Theorem 7, which is one of the main
theorems in this article. For a local ring (R, m, k) we denote by r(R) the ¢ype of R, that
is, r(R) is the dimension of the vector space Ext$P"(k, R) over the residue field & of R.

Corollary 5. Suppose that R is local and with depth t. Let k be the residue field of R.
Then the following hold.
(1) [3, Theorem 4.1(2)] The module Q'k 1is (t + 1)-torsionfree.
(2) There exists an evact sequence 0 — k — Y* — X* — 0 such that Y* has
projective dimension t and X* ~ Tr Q™' Tr Q'k. Moreover, if t > 0, then Y* =~
Tr Q1 (kETUR),

Proof. We note that the residue field k£ can be embedded in a module of finite projective
dimension. Hence, by Theorem 3, the module Q' is (¢ + 1)-torsionfree, and there exists
an exact sequence 0 — k — Y* — X* — 0 such that Y* has projective dimension at
most ¢ and X* ~ Tr Q! Tr Q'k. We assume that ¢ is positive. Then since Ext’(k, R)
0 = BExt/(X* R) for all 1 < i < t—1, so does Y*. Also, we have Ext'(Y* R)
Ext!(k, R) = k®*(®)_ By the following lemma, we obtain that Y* ~ Tr Q' Ext'(Y* R)
Tr Q1 (k@)

Lemma 6. [9, Theorem 2.7] Let Y be an R-module and s > 0 an integer. If Exth(Y, R) =
0 foralll <i < s andY has projective dimension at most s, thenY ~ Tr Q*~' Ext} (Y, R).

Theorem 7. Let (R, m, k) be local and with depth t. The following hold.

(1) The local ring R has type one if and only if the module Q'k is (t + 2)-torsionfree.
(2) The local ring R is Gorenstein if and only if the module Q'k is (t 4 3)-torsionfree,
if and only if one has Exty(Tr Q'k, R) = 0 for some integer i >t + 3

CI IR IR

Proof. We only need to prove the case where ¢t > 0. In this case, by Corollary 5, there exists
an exact sequence 0 — Tr X* — TrY* — Trk — 0, and we have Tr X* ~ Q' Tr Q'k
and TrY* ~ Q=1 (k%)) So we obtain the long exact sequence

0 — Ext'(Trk, R) — Ext'(Tr Y*, R) — Ext!(Tr X*, R) — Ext*(Trk,R) — --- .

Since the module Tr k& has projective dimension one, the assertions follow. O
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THE FIRST EULER CHARACTERISTIC AND THE DEPTH OF
ASSOCIATED GRADED RINGS
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ABSTRACT. The homological property of the associated graded ring of an ideal is an
important problem in commutative algebra. In this talk, we explore the structure of the
associated graded ring of m-primary ideals in the case where the first Euler characteristic
attains almost minimal value in a Cohen-Macaulay local ring.
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1. INTRODUCTION

Throughout this report, let A be a Cohen-Macaulay local ring with maximal ideal m
and d = dim A > 0. For simplicity, we may assume the residue class field A/m is infinite.
Let I be an m-primary ideal in A and let

R=TR(I):= A[It] CA[t] and R =R'(I):=A[It,t"] CA[t,t""]
denote, respectively, the Rees algebra and the extended Rees algebra of I. Let
G=G(I):=R/tT'R=1/T"
n>0

denotes the associated graded ring of I. Let M = mG 4 G be the graded maximal ideal
in G. Let £4(N) denote, for an A-module N, the length of N.

Let Q = (a1,a9, -+ ,aq4) C I be a parameter ideal in A which forms a reduction of I.
Then, we set

x1(ait,ast, ..., aqt; G) := U(G/(a1t,ast, . .., aqt)G) — e(art, ast, . . ., aqt; Gpr)

and call it the first Fuler characteristic of G relative to ait,ast, ..., aqt (c.f. [1, 2, 11]),
where e(ait, ast, . . ., agt; Gpr) denotes the multiplicity of Gy with respect to ait, ast, . . ., agt.
It is well-known that xi(a1t, ast, ..., aqt; G) > 0 holds true, and the equality

x1(ait,ast, ... aqt : G) =0

holds true if and only if the associated graded ring G is Cohen-Macaulay. The aim of this
talk is to explore the structure of the associated graded ring G with x1(a1t, ast, . . ., aqt; G) =
1 and, in particular, we prove that depthG =d — 1.

The detailed version of this paper will be submitted for publication elsewhere.
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In this report we will also study the Hilbert series and coefficients of m-primary ideals.
We set the power series

HS;(z) =Y la(I"/1")2"

and call it the Hilbert series of I. It is also well known that this series is rational and
that there exists a polynomial h;(z) with integer coefficients such that h;(1) # 0 and

h,[(Z)
(1=2)"

HS[(Z) =

As is well known, for a given m-primary ideal I, there exist integers {ex(I)}o<k<aq such
that the equality

Ca(A)IY) = eo(1) (” ;‘ d) — ey (1) (” ;f; 1) Foee (1) %eq(D)

holds true for all integers n > 0. For each 0 < k < d, e(I) is called the k-th Hilbert
coefficient of I.
The main result of this report is the following.

Theorem 1. The following conditions are equivalent to each other.
(1) Xl(a1t7 G’Qta e 7adt; G) = 17
(2) eo(I) = La(A/T) + 3,5y La(I"/QI" ™+ I"H1) — 1,
(3) the Hilbert series HS1(z) of I is given by

CLA(AJD) + 3L (I QINT A I ) —

HS](Z) (l—z)d

for some s > 0.
When this is the case we have the following.
(1) s=min{n > 1| QI" ' NI +£QI"},

Tr

(i) ex(I) = <Z) CA(I"/QIMY 4 7Yy - (Z) for1 <k <d,

(i) a1 (G) = sup{n € Z | [HE (@] # (0)} = s — d, and C([HE (G)]sa) = 1,
(tv) depthG =d — 1.

We can get the following result as a corollary of Theorem 1.

Corollary 2. Suppose that x1(ait, ast, ... aqt;G) < 1, then depthG > d — 1.

2. THE STRUCTURE OF SALLY MODULES

In this report we need the notion of Sally modules which was introduced by W. V.
Vasconcelos [12]. The purpose of this section is to summarize some results and techniques
on the Sally modules which we need throughout this report. Remark that in this section
m-primary ideals I are not necessarily stretched.
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Let T = R(Q) = A[Qt] C A[t] denotes the Rees algebra of (). Following Vasconcelos
[12], we consider

S =So(I)=IR/IT =PI /Q"I
n>1
the Sally module of I with respect to Q.
We give one remark about Sally modules. See [5, 12] for further information.

Remark 3 ([, 12]). We notice that S is a finitely generated graded T-module and m"S =
(0) for all n > 0. We have Assy S C {mT} so that dimy S = d if S # (0).

From now on, let us introduce some techniques, being inspired by [3, 4], which plays
a crucial role throughout this report. See [7, Section 3] (also [6, Section 2] for the case
where I = m) for the detailed proofs.

We denote by F(m), for a graded module E and each m € Z, the graded module whose
grading is given by [E(m)], = Epn4, for all n € Z.

We have an exact sequence

0KV 3PS @ R/IIR+T =0 (t_1)
of graded T-modules induced by tensoring the canonical exact sequence

05 T<%R—R/T—0

of graded T-modules with A/I where ¢, = A/I®i, K™Y =Kerp_;, and F = T/IT =
(A/D)[X7, Xo, -+, X4 is a polynomial ring with d indeterminates over the residue class
ring A/1.

Lemma 4. ([7]) There exists an exact sequence
0= KO(—1) = ([R/IIR+ T, @ F)(—=1) B R/IR+T — S/IS(-=1) = 0 (to)
of graded T-modules where K© = Ker .

Notice that Assy K™ C {mT} for all m = —1,0, because ' = (A/I)[X1, Xy, -, X4]
is a polynomial ring over the residue ring A/I and [R/IR+T]; ® F is a maximal Cohen-
Macaulay module over F'.

We then have the following proposition by the exact sequences (t-1) and (o).

Proposition 5. (7, Lemma 3.3]) We have

faI/ I = €A<A/U“’+Q}>(n§fl1)‘%(1/[1%@])(”;322)

+ La([S/1S]0 1) — La(KED) — 4(KD)

for allm > 0.

We also need the notion of filtration of the Sally module which was introduced by M.
Vaz Pinto [13] as follows.

Definition 6. ([13]) We set, for each m > 1,
Stm) — prgm= R/ M IT(=2 [ R/T™T (—m + 1)).
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We notice that SO = S, and S are finitely generated graded T-modules for all
m > 1, since R is a module-finite extension of the graded ring 7'
The following lemma follows by the definition of the graded module S(™).

Lemma 7. Let m > 1 be an integer. Then the following assertions hold true.
(1) m™S™ = (0) for integers n > 0; hence dimyS™) < d.
(2) The homogeneous components {Sﬁm}nez of the graded T-module S™ are given
" S(m)g{ 0) fn<m-—1,
n ]n+1/anm+1Im an >m.
Let L™ = TS be a graded T-submodule of S™ generated by S&" and
D™ = (I /QI™) ® (A/ Anna(I™/QI™)) (X1, Xa, -+, X4
= (I QIM Xy, X, e, X
for m > 1 (c.f. [13, Section 2]).
We then have the following lemma.
Lemma 8. ([13, Section 2]) The following assertions hold true for m > 1.
(1) S /LM 2= §m+D) g that the sequence
0— LM — g  gtm+l) g

is exact as graded T-modules.
(2) There is a surjective homomorphism 0,, : D™ (—m) — L™ graded T-modules.

For each m > 1, tensoring the exact sequence
0— LM — §tm — gtm+l) g
and the surjective homomorphism 6, : D™ (—m) — L™ of graded T-modules with A/1,
we get the exact sequence
0 — K™ (—m) — D™ /1D (—m) &% 5™ /1§tm) — g+ /pgtm+l) 0 (4,,)

of graded F-modules where K™ = Ker ¢,),.

Notice here that, for all m > 1, we have Assp K™ C {mT} because D™ /ID(™) =~
(Im*H1/QI™ + I™+2)[ X, X, - -+, X4] is a maximal Cohen-Macaulay module over F.

We then have the following result by Proposition 5 and exact sequences (1,,) for m > 1.

Proposition 9. The following assertions hold true:

(1) We have
rr—1
LA™Y = {La(A/ P+ Q) + mX:: CA(T™)QI™ + I 2)} <n ﬁ 1 1)
s rr—1
e S 8 (e (0
k=1 m=k—1

rr—1

- Z fA(KéﬂfZH)

m=—1
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for all n > max{0,r; —d + 1}.

rr—1 rr—1
(2) eoI) = Ca(A/PHQ)+ Y La(I™ QI +1™2) = 3 4y, (KSY) where P = mT.
m=1 m=—1

3. PROOF OF MAIN THEOREM

In this section, let us introduce a proof of Theorem 1.
Let us begin with the following remark, where e(at, ast, - - - , aqt; G) denotes the mul-
tiplicity of G with respect to aqt, ast,- - -, aqt, and
x1(ait,ast, - aqt; G) = LA(G/(art, ast, -+ ,aqt)G) — e(ait, ast, - -+ ,aqt; G) > 0
is called the first Euler characteristic of G with respect to ait, ast, - - - , ag4t.

Remark 10. We have, by Proposition 9,
xi(ait,ast, -+, aqt; G) = Z Cry (K5

m>—1
because e(ait, ast, - ,aqt; G) = eo(I) and [G/(art,ast, - ,a4t)G], = I"/QI"! + [}
for all n > 1.

The following corollary seems well known by the basic properties of Cohen-Macaulay
rings.

Corollary 11. The following conditions are equivalent to each other;
(1) X1 (a‘lta a’Qta e 7adt; G) = 07
(2) eoll) = €alA/T) + Xy €a(I7/QI"1 4 ),
(3) the Hilbert series HS{(z) of I is given by

La(A/T)+ 000, AT /QIM L 4 [ HL)

HSi(z) = -2 ,

(4) G is Cohen-Macaulay.

Let B=T/mT = (A/m)[X;, Xy, -, X4| which is a polynomial ring with d indetermi-
nates over the field A/m.
The following proposition plays an important role for our proof of Theorem 1.

Proposition 12. The following conditions are equivalent to each other, where s = min{n >
1] QI+t £ QI
(1) xa(ait,ast, -+ ,aqt; G) =1,
(2) K™ = B(—u) as graded T-modules for some —1 <m < s—2and 1 < u <s,
and K™ = (0) for all n # m.

When this is the case we have the following.
rr

(i) ex(D) =" <Z> Ca(I")QIM + I — (Z) for1 <k <d,

n=k
(1) the Hilbert series HSy(z) of I is given by
CLA(AJT) 4 3T A (I QI 4 I —

HS(z) 1= 2) :
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(i11) ag_1(G) = s —d, and Lo([HI N (D)]sea) = 1,
(tv) depthG =d — 1.

4. APPLICATIONS FOR STRETCHED IDEALS

In this section let us introduce some applications of Theorem 1 for stretched ideals.

The notion of stretched Cohen-Macaulay local rings was introduced by J. Sally to extend
the rings of minimal or almost minimal multiplicity.

We say that the ring A is stretched if £4(m? + Q/m3 + Q) = 1 holds true, i.e. the ideal
(m/Q)? is principal, for some parameter ideal @ in A which forms a reduction of m ([10]).
We note here that this condition depends on the choice of a reduction @ (see [9, Example
2.3)).

In 2001, Rossi and Valla [9] gave the notion of stretched m-primary ideals. We say that
the m-primary ideal I is stretched if the following two conditions

(1) QN I?=QI and
2) *+Q/P+Q)=1
hold true for some parameter ideal ) in A which forms a reduction of /. We notice that
the first condition is naturally satisfied if I = m so that this extends the classical definition
of stretched local rings given in [10].
The following lemma which was essentially given by Rossi and Valla.

Lemma 13. ([9, Lemma 2.4]) Suppose that I is stretched. Then we have the following.

(1) There exists v,y € I\Q such that I"*' = QI™ + (a™y) holds true for allm > 1.
(2) The map

]n-‘rl/Q[n i} In+2/Q[n+1

is surjective for all n > 1. Therefore o, > a,1 for alln > 1.
(3) ma"y C QI™ + I"*2 and hence L4(I"/QI" + I"™1) <1 for alln > 1.

We set
AN=Ar=Ao(I)={n>1]|QI" ' NnI"/QI" # (0)}
and |A| denotes the cardinality of the set A. Let
ny =ngo(l) =min{n >0 | I" C Q}.

It is easy to see that the inequality r; > n; holds true.
Then the following proposition is satisfied.

Proposition 14. Suppose that I is stretched. Then xi(ait,ast, -+ ,aqt;G) = |A| =
rr —ny.

The following result was essentially given by Sally and Rossi-Valla.

Corollary 15. ([9, 10]) Suppose that I is stretched, then the following conditions are
equivalent to each other.

(1) rr =ny,

(2) A=0,
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(3) the Hilbert series HS;(z) of I is given by

_ CalA/D) +{eod) — La(A/]) —nr + 12 + 3 acpey, 2"

HS[(Z) (1—Z)d

(4) G is Cohen-Macaulay.

We can get the following corollary for the case where the reduction number r; attains
almost minimal value n; + 1.

Corollary 16. ([8, Theorem 1.1]) Suppose that I is stretched, then the following condi-
tions are equivalent to each other.
(1) rr=nr—+ ].,
(2) Al =1,
(3) the Hilbert series HS[(z) of I is given by
Ca(A/T) +{eo(I) = La(A/T) = nr + 132 + 3o pcry nps 2"
(1—2)d

HS](Z) =

for some s > 0.
When this is the case, the following conditions also hold true.

(i) A= {s},

(id) er(I) = eo(I) = La(A/T) + (") — s +1,
(i) ex(I) = (1) — (7) for all2 < k <d,

(iv) aq_1(G) = s —d and L4([HL, Y (G)]s_a) = 1, and
(v) depthG =d — 1.

Corollary 17. ([8, Corollary 1.2]) Suppose that I is stretched and assume that r; < ny+1.
Then depthG > d — 1.
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CLASSIFYING SEVERAL SUBCATEGORIES OF THE CATEGORY OF
MAXIMAL COHEN-MACAULAY MODULES

SHUNYA SAITO

ABSTRACT. In this summary, we introduce the classification of several subcategories of a
torsion-free class of the module category over a commutative noetherian ring. More pre-
cisely, we classify Serre subcategories and torsion(-free) classes of a torsion-free class in
the sense of exact categories. This result extends Gabriel’s classification of Serre subcat-
egories of the module category to torsionfree classes. As an immediate consequence, we
classify the Serre subcategories and the torsion(-free) classes of the category of maximal
Cohen-Macaulay modules over a one-dimensional Cohen-Macaulay ring.

Key Words:  torsion-free classes; exact categories; Cohen-Macaulay modules.
2000 Mathematics Subject Classification: — 13C60, 13D02, 18E10.
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& —E M2 LT mod A CHBMER (1) A BEO B2 7. AHEL RISH LT, Spec RT
ROFEATT7TNVOEEERT. 72 R LOMEBE M X LT, Supp M T M DF (support)
FRL, AssM TM DERNTOEEEET.

1. 7—_OVE DR A 25850

COHEITIE, AREOTEREZEWNRTH 27 —~ILEBE O & G857 B & 7008 % N
T5. 7—~OVETIX, EREeINC X BIERe, HO%, &%, BEES %Y OBRIEND
5. ETRINODORETHL 2 X5 BHEE2EAT 3.

Definition 1. 7 —~ULE A DITERDE X 2 EZ 5.
(1) X PMEKTEHLS X, EEO ADETLH0 - A — B — C — 0IXHNLT
ACeceXROIEBeX B ZIZES.
(2) X DEBIHWRTHL B 1%, TED ADHEFERFI0 - A - B - C — 0IHL
TBeXRBIEFACcX iRDEZITED.
(3) XWTHALS X, EED ADFERERY0 A —-B—-C 0L TBeX
BHRBCeX D LEITESD.

The detailed version of this paper will be submitted for publication elsewhere.
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(4) X % THALSE, FEDADG f: X —» Y IIHLT, XY € X xold
KerfeX bt EIZED.

(5) X DRETHALZ L, EEDOADH f: X - VITHLT, XY € X &oi&
CokfeX haprEIZED.

(6) X BMETHALZ L, FEDOADGH f: X - YV IIHLT, X,V € X 251F
ImnfeXRhbEZEIZED.

INLOMHEEMAGDE S Z L THAR T —~OLBOH D E R ERTZ e TE 3.

Definition 2. 7 —~ULE A DINESRTE X & X 5.

(1) X %3 Serre BBRETH % LI, IEREHEITNER, BWTHL S L ZIZED.

(2) X bk=>3a3> -7 ET%%X@ TR EERIHRTHAL 2 £ 2ITE 5.

(B) XMW b=>a BTHB X, IEREETHES L EICES.

(4) X B304 FEBE (52X CKE BE7E) Th s ik, ReH, 1K TH
L2LEICES.

(5) X DIKE FASBPBETH % 2 1%, e, JLAKTHL 2 EZE

(6) X DICEBESBETH 5 21X, R R, IKTHLE S &I

(7) X WIERSPBETHZ 1%, BEILKTHL 2 2125 5.

(8) X W KEMSOETH 2 ik, MEILKTHL 2L 2ICES.

(9) X 2 CE FIEB7BTH 3 L1, RLLILKTHL 2 L &ICE

o DETEORERIIRD LS ICH/RTE S

\51

Serre
Fes gy - 5¢¢¢%¢év£b F—a v
§\§\§§
IK]QEEI / ICQF%'?J
KE@E@ \ IE BA / CEJ)JF'FJ
Al — R R _EOERAERMMEEDE modRKBﬁL"C&i, NS DERTEDZ L B

/\*Eéﬂf‘é?t
Theorem 3 ([2]). RZAfA—X—BHr $5. ZD¥ ZHIS

X — Supp X = U SuppX, Zr+—modyR:={M emodR|SuppM C Z}
Xex
BROEADOMICHWCH R ERGICE 52 5 ¢
e mod R @ Serre FiEOES.
e Spec R DRFMUEAEI TG DEE. T 2 THRERE Z C Spec RDYFFHKILE (specialization-
closed) TH % i3, fLEDp,q€ Spec RICHLTpe ZDDpCqibidge Z
LIRBEEIZED.
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2% D mod R D Serre #57B1& Spec R DFFRLE DA THEINS.
Theorem 4 ([7]). R —X - $5. ZD¥ ZHIS
X AssX = | J AssX, ® > modi®R:={M € mod R | Ass M C ®}

Xex
EROEA DN H WS R EHGNIEE S 2 5 ¢
o 7—~ L modRDF— 3> - 7V —HHDES.
e Spec R DREES,
DFEDmodRD+—> 2>« 7Y —FHiX Spec R DI EETHEINS.
Theorem 5 ([1, 6, 7]). RZA[#ir—X—Br T5.
(1) mod R DL X 123 L CREFAMATH 3.
o XX Serre kB TH 5.
e X I —a HTH5.
o XTIV A FENETH 3.
o XX ICEFE7ETH 5.
o XX CERAERTETH 5.
2% D, LD Spec R DRFRLEHTR TR G THEHINS.
(2) mod R DINEH 7 X 120 L TRIZFMETH 5.
e X Zb+r—ay -7VYV—HHTH3.
o XX IKEFASR B TH 5.
o XX IEPHER TETH 5.
2%, FEOEDTEIE Spec R DEDELSTHIEEINS.
DF D mod RDEDED Y 7 RIIRD X576 5 .

Serre
f—=>ay--79—% b= a VHH
U4 F
IKE FA ICE A

IE P

KEFf CEFA

\/

JERTRAL %
DA — 2 —B R L ONNEEE mod R OERTE D BB T 2 TR TH 5. X

T, ZhoDPEDr—ay - 7)) —HADIGREHENTS. 2o DETE D5
O3 — X —REPRAF — 2 ADIRICE L Tidzhezh [3) & [4 R XK.
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2. SEREOERTE DM
R % T, HMEEHE mod R 72 ¥ D 7 —~VE OB OV TH L T\ DICH LT,
Z DI T, MK Cohen-Macaulay IMEEDE cm R 2 ¥ DEERE (=7 —~LEODOHLKT
FAC 72887 ) OEAEICOWTHRELWV. ZDLDICETROMETEAT .

Definition 6. 7 — VB A DK THUZHTE X 2E X2 5. 2O E X OFRET
2H X, ADFEELH0—-A—-B—-C—->0THoTABCeXRB3bDTH5.

HFREREHNEEZD LT, X OHFTT7 —~LED & > kieEny —REW@ERZ
T 2N TEDL LKL, £RICT— VBRI X OTFRERLINCE %
z2Z8T, XDSerre B —>ay (- 7V—) HEEZZZLHHEKS.
Definition 7. 7 —~ULE A DILKTHU7ZE7E X & X OINERHTE S 252 5.
(1) SHPHATEHAL S L, FED X OFFEFTRIN0 - X =Y — Z = 0I1T/L
TX,Z2eSKHBEY ecSehsxEIZED.

(2) SHHFRBAWMRTHLZ L 1F, TED X DFFEREEIN0 X =Y =720
WCHLTY eSHEBIEXESERBLEIIED.

(3) X PHBRETHL D 2iE, EED X DFAETELIN0 - X Y — Z — 01TH
LTYeSHBIEZcSeRbEIITES.

(4) S X D Serre BBREITH 2 L1k, LKL FEMLINER, FABTHL % & 212

()

6) SHXDR—>a ETHBLIE, HALHABTHL S L X2 5.

ZOHEITHINT 2 FMRE, A —X—R R LONMEFE modROM—ay 71 —
OB DONETH S, FITEHIID modRD M—a> « 7Y —HHlX, SpecR®D
kG o xHOWTRD LS R TtidihEhizZ e 2wz 5 ¢

mod3* R:={M € mod R | Ass M C ®}.
FIF5ELE mod3® R D Serre T B b —a >« 7V I O DB I HDEREHNT
T RN TES.
Theorem 8 ([4]). R ZA[#ir—X —B¥ L, ® % Spec R DHNEAL T2, DL X
KBS

J.
DXDr=23> - TU—ETH2 L3, BREFFHIHRTHC 2 L Zi12

) & )

Sy

X AssX = | AssX, ¥ mody® R
Xex

BROES DRI HEWICH R RHEEIEE 52 5 ¢
e mody® R @ Serre Hi T DA
o O DFKLEAER G DEE. Z I THREE U C O 2455 LE (specialization-
closed) TH3LlE, FEDp,qe ML TpeUrDOpCqibidqed
RBHEEIZED.
DF D 5EEE mod3® R D Serre fiEIE & ORFRLEAT TS THEIN 3.
ZOEHIZBWVWT ® = Spec R & 54U, EH 3METLEINS. ZOEKTIDEMIT,
EH 3 OFEEEANDIRE Y B 5.
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Theorem 9 ([5]). R ZA[#ir—X —BE¥ L, ® % Spec R DHAEAL T2, DL X
mody® R DT Serre Tl L b — a VHIE—H T 5. L WCERE modi*RD T —
> a VHIX O ORIMULBAER TR T E NS,

Theorem 10 ([5]). R%Z 1 XjtA[#ir— X —BRE L, ¢ % Spec R DHHEAEL T 5. T
D & Z ARG
X = Ass X = U Ass X, U mod3 R
Xex

EROES ORI EWSH R EHSIEE S 2 5

emody*RObM—a - 7)) —HHOES.

e DDONEEL.
DFEDFELE Mo RO —>ay - 7V —HZd DMESTHEHINS.

COTEHIZBWT® =SpecR 2T, 1 KITOBEDER A4MEILENS. TOE
KT ZOEHZ, M 4D%EREANDINRIEEEZ 5. Kot 2 A Eor#ir — X —BRIZ
BAL T, ZOEMOKRHBIDBFILETS.

1 X7t Cohen-Macaulay BRIt LTI, #iK Cohen-Macaulay fIEDE cm R 1 mod R
Dh—va>-7Y—HERD, cmR=mod®, R ¥%3. = 2TMinRE R OH/NE
ATT7NVOEETHS. Lo TIIETOEMEZEDES I L TREG5.

Corollary 11. R % 1XJt Cohen-Macaulay3ge 3 5. Z D Z582E cm R DHT Serre
HolE, b—yarEBIUSr—vary - 7V SHE—KTS. TSI TEIZ
Min R DFSTERETHHEI N 5.
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A CLASSIFICATION OF T-STRUCTURES BY A LATTICE OF
TORSION CLASSES

ARASHI SAKAT (75 & 1)

ABSTRACT. We introduce the notion of ICE sequences to investigate ¢-structures on
the bounded derived category of the module categories modA over a finite dimensional
algebra A. We give a correspondence between bounded t-structures and ICE sequences.
Moreover we give a description of ICE sequences in modA in terms of the lattice consisting
of torsion classes in modA.

1. INTRODUCTION

Let A be a finite dimensional algebra over a field k. We denote by modA the category of
finitely generated right A-modules and D°(modA) the bounded derived category of modA.
It is one of the main subjects of representation theory of finite dimensional algebras to
study subcategories of modA and D¥(modA). For example, torsion classes are studied
actively, and correspond to intermediate ¢-structures on D?(modA) bijectively [6]. In this
note, we always assume that all subcategories are full and closed under isomorphisms.

We focus on t-structures on D?(modA). For subcategories U and V of D’(modA), we
denote by U * V the subcategory of D’(modA) consisting of objects X such that there
exists an exact triangle U — X — V — XU in D¥(modA) with U € Y and V € V.

Definition 1. [2, Définition 1.3.1] A pair of subcategories (U, V) of D’(modA) is a t-
structure on D’(modA) if it satisfies the following conditions:
(1) Hom(U,V) = 0.
(2) Db(modA) =U * V.
(3) XU CU.
We call U an aisle. A t-structure (U, V) is bounded if it satisfies
| =7u = D'(modA) = | ) =V
nez nez

For a t-structure (U,V) on D’(modA), we have U = LV, therefore a t-structure is
determined by its aisle. Hence we focus on aisles, and we call a subcategory of D°(modA)
an aisle if it is an aisle of a certain ¢-structure.

A subcategory X of D?(modA) is closed under extensions if it satisfies X * X C X.

Definition 2. A subcategory U of D®(modA) is a preaisle if U is closed under extensions
and positive shifts.

It is easy to check that an aisle of a t-structure is a preaisle. Actually, aisles are exactly
contravariantly finite preaisles:

The detailed version of this paper will be submitted for publication elsewhere.
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Proposition 3. [8, Proposition 1.3] The following are equivalent for a subcategory U of
D*(modA).
(1) U is an aisle.
(2) U is a coreflective preaisle, that is, U is a preaisle and the inclusion U — D°(modA)
has a right adjoint functor.
(3) U is a contravariantly finite preaisle closed under direct summands.

Proof. (1) < (2): This is well-known.
(2) < (2): This follows from [3, Corollary 4.5]. O

At first, we deel with preaisles. In [10], homology-determined preaisles are classified by
narrow sequences. We denote by H* the k-th cohomology functor.

Definition 4. A preaisle U of D*(modA) is homology-determined if for any X € D(modA),
we have X € U if and only if S~*(H*X) € U for any k € Z.

Note that if A is hereditary, then every aisle is homology-determined since every complex
X in D’(modA) is isomorphic to a direct sum @YX *(H*X). For homology-determined
preaisle U of D’(modA), we can consider a sequence { H U } ¢z of subcategories of modA.
In the next section, we give a characterization of the sequence.

2. AISLES AND ICE SEQUENCES

In this section, we introduce ICE sequences to study preaisles. We recall basic defini-
tions of subcategories of an abelian category.

Definition 5. Let A be an abelian category and C a subcategory of A.

(1) C is closed under extensions if for every short exact sequence
0—=+L—-+M-—=N=0

in A with L, N € C, we have M € C.

(2) Cis closed under quotients (resp. subobjects) in A if, for every object C' € C, every
quotient (resp. subobject) of C in A belongs to C.

(3) C is a torsion class (resp. torsion-free class) in A if C is closed under extensions
and quotients in A (resp. extensions and subobjects).

(4) C is closed under images (resp. kernels, cokernels) if, for every map ¢: C; — Cy
with C, Cy € C, we have Imp € C (resp. Kerp € C, Cokerp € C).

(5) C is a wide subcategory of A if C is closed under kernels, cokernels, and extensions.

(6) C is an ICE-closed subcategory of A if C is closed under images, cokernels and
extensions.

It is easy to check that torsion classes and wide subcategories are ICE-closed sub-
categories. Moreover, every torsion class in a wide subcategory (viewed as an abelian
category) is ICE-closed, see [5, Lemma 2.2]. In [7], Ingalls and Thomas introduced an
operation « which associates to a torsion class a wide subcategory. In [4, Proposition
4.2], the operation was generalized to ICE-closed subcategories. The following is shown
by the same argument of [7, Proposition 2.12].

- 103 -



Proposition 6. Let C be an ICE-closed subcategory of A. Define a subcategory of C by
aC={AeC|"(f:C— A)€C, ker f €C}.
Then aC is a wide subcategory of A.
Next we give a definition of ICE sequences. This is the key notion in this note.

Definition 7. A sequence {C(k)}rez of subcategories of modA is an ICE sequence if for
any k, the subcategory C(k) is an ICE-closed subcategory of modA and the subcategory
C(k+1) is a torsion class in a(C(k)).

Clealy, we have C(k + 1) C C(k) for any k € Z. Actually, ICE sequnces are the same
notion of narrow sequences introduced in [10, Definition 4.1], see [9, Proposition 4.2].
Combining this fact and the result [10, Theorem 4.11], we obtain the following result.

Theorem 8. [9, Theorem 4.5] There exist mutually bijective correspondences between

(1) the set of homology-determined preaisles in D®(modA).

(2) the set of ICE sequences in modA,
The map from (1) to (2) is given byU — {H*U}rez. The converse is given by {C(k) }rez —
{X € D’(modA) | H*X € C(k) for any k}.

Finally, we restrict the above result to aisles of bounded ¢-structures.

Definition 9. Let {C(k)}xrez be an ICE sequence in modA.

(1) {C(k)}rez is contravariantly finite if C(k) is contravariantly finite in modA for any
keZ.

(2) {C(k)}rez is full if there exist integers m < n such that C(m) = 0 and C(n) =
modA.

(3) For a positive integer n, we say that {C(k)}rez is of length n+1 if we have C(1) = 0
and C(—n) = modA.

Note that an ICE-closed subcategory of modA is contravariantly finite if and only if it is
coreflective by [3, Corollary 7.2]. If A is 7-tilting finite, then every ICE-closed subcategory
of modA is contravariantly finite, see [5, Proposition 4.20].

The following is the main result in this section.

Theorem 10. [9, Theorem 5.5, Corollary 5.6] There exist bijective correspondences be-
tween

(1) the set of contravariantly finite full ICE sequences in modA,
(2) the set of bounded t-structures on D*(modA) whose aisles are homology-determined.

Let n be a positive integer. Then the above restrict to the following.

(1) the set of contravariantly finite ICE sequences in modA of length n + 1,
(2) the set of (n+1)-intermediate t-structures on D*(modA) whose aisles are homology-
determined.

Thus we can construct t-structures on D?(modA) from ICE sequences in modA. In the
next section, we give a description of ICE sequences by a lattice-theoretical notion.
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3. A LATTICE OF TORSION CLASSES

In this section, we fix a positive integer n, and focus on (n+1)-intermediate t-structures.
We give a description of ICE sequences of length n + 1 in modA from the viewpoint of a
lattice consisting of torsion classes in modA. We denote by torsA the set of torsion classes
in modA, which forms a partially ordered set by inclusion. Moreover torsA is a complete
lattice since there are arbitrary intersections. We collect some definitions and results.

Definition 11. To 7,U € torsA, we associate the set
U, T]:={CetorsA|UCCCT}

called an 4nterval in torsA. To an interval [U,T], we associate a subcategory Hy, 7] =
T NU* called the heart of U, T]. We call an interval [U,T| a wide interval if the heart
is a wide subcategory of modA. We denote by Hasse(torsA) the Hasse quiver of torsA,
the quiver whose vertex set is torsA, and there is an arrow 7 — U in torsA if and only if
U C T holds and there is no C € torsA satisfyingtd CC C T.

Wide intervals are characterized as a lattice-theoretical property in torsA as follows:

Proposition 12. [1, Theorem 5.2] Let [U, T] be an interval in torsA. Then the following
conditions are equivalent:

(1) [U,T] is a wide interval.
(2) [U,T] is a meet interval, that is, it holds

U= Tﬂ{C € U, T]| there is an arrow T — C in Hasse(torsA)}.
The operation « is understood from the viewpoint of wide intervals:

Proposition 13. Let T be a torsion class in modA. Then the following statements hold.

(1) [1, Proposition 6.3] a7 equals to the heart of the interval [T N+aT,T].
(2) [5, Proposition 3.3] We set

T = Tﬂ{C € torsA | there is an arrow T — C in Hasse(torsA)}.
Then we have T~ =T N+aT and Hir-m =aT.

Thus we can understand « in terms of torsA. We introduce the following notion.

Definition 14. (1) We call an interval of the form [T, 7] a mazimal meet interval
in torsA. More generally, we call an interval [i’, 7’| contained in a wide interval
[U, T] in torsA a mazimal meet interval in U, T] if we have

u=T ﬂ{C € [U, T] | there is an arrow 7' — C in Hasse(torsA)}.

(2) We call a sequence {[Uy, T]}7_, of intervals in torsA a decreasing sequence of
mazximal meet intervals in torsA provided that [Uyy1, Tre1] 1S @ maximal meet
interval in [Uy, Ty] for any & = 0,...,n — 1 where we set Uy = 0 and Ty = modA.
We call n the length of the sequence.

Now we obtain a classification of (n + 1)-intermediate t-structures whose aisles are
homology-determined via ICE sequences and the lattice of torsion classes:
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Theorem 15. Let A be a 7-tilting finite algebra and torsA the lattice consisting of torsion
classes in modA. Then there are one-to-one correspondences between

(1) the set of (n+1)-intermediate t-structures on D*(modA) whose aisles are homology-

determined,
(2) the set of ICE sequences in modA of length n+ 1,
(3) the set of decreasing sequences of mazimal meet intervals in torsA of length n,
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RESOLVING SUBCATEGORIES OF DERIVED CATEGORIES

RYO TAKAHASHI

ABSTRACT. Let R be a commutative noetherian ring. Denote by D°(R) the bounded
derived category of finitely generated R-modules. In this article we classify the preaisles
of D°(R) containing R and closed under direct summands, when R is a complete intersec-
tion. This classification includes as restrictions the classification of thick subcategories
of the singularity category due to Stevenson, and the classification of resolving subcate-
gories of the module category due to Dao and Takahashi.

1. MAIN RESULT

Throughout this article, we assume that all subcategories are strictly full. First of all,
we introduce a setup to explain our main result.

Setup 1. Let (R, V) be a pair, where R and V satisfy either of the following two condi-
tions.

(1) R is a commutative noetherian ring which is locally a hypersurface, and V is the
singular locus of R.

(2) Risa quotient ring of the form S/(a) where S is a regular ring of finite Krull dimension
and @ = ay,...,a. is a regular sequence, and V is the singular locus of the zero
subscheme of a;z; + - - + a.z, € T'(X, Ox(1)) where X = P§ ' = Proj(S[zy, . ..,z.]).

Here, a commutative noetherian ring R is said to be locally a hypersurface if the local
ring R, is a hypersurface for every prime ideal p of R. When R is a local ring with
maximal ideal m, we say that R is a hypersurface if the m-adic completion Rof Ris a
quotient of a regular local ring by a principal ideal. A regular sequence on R is a sequence
x =um,...,T, of elements of R such that the residue class of z; in R/(x1,...,2; 1) is a
non-zerodivisor for each ¢ = 1,...,n and that (z1,...,x,) is not a unit ideal of R.

For a commutative noetherian ring R, we denote by mod R the category of finitely
generated R-modules, by DP(R) the bounded derived category of mod R, by DP*f(R)
the subcategory of DP(R) consisting of perfect complexes, and by Dg(R) the singularity
category of R, i.e.,

D (R) = D°(R)/ D*'(R).

Recall that a thick subcategory of a triangulated category is by definition a triangulated
subcategory closed under direct summands. Under the above setup, Stevenson [2] proved
the following classification theorem of thick subcategories.

The detailed version [3] of this article has been submitted for publication elsewhere.
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Theorem 2 (Stevenson). Let (R, V) be as in Setup 1. Then there are one-to-one corre-
spondences

thick

thick . . [ specialization-
. . | subcategories |
subcategories p = of DE(R) = closed
of Dsg(R) subsets of V

containing R

Recall that a resolving subcategory of mod R is defined to be a subcategory of mod R
containing R and closed under direct summands, extensions and kernels of epimorphisms.
Dao and Takahashi [1] gave a complete classification of the resolving subcategories of
mod R under the setup introduced above.

Theorem 3 (Dao-Takahashi). Let (R,V) be as in Setup 1. Then there is a one-to-one
correspondence

grade-

7‘650lvzng ®) | consistent specialization-
subcategories p = functions X closed
of mod R on Spec R subsets of V

Here, a grade-consistent function on Spec R is defined as an order-preserving map f :
Spec R — N which satisfies the inequality f(p) < gradep for each p € Spec R, where

gradep = inf{i € N | Exty(R/p, R) # 0}.

Recall that a preaisle (resp. precoaisle) of a triangulated category is defined as a sub-
category closed under extensions and positive (resp. negative) shifts. Mimicking the
definition of a resolving subcategory of mod R, we define a resolving subcategory of DP(R)
as a subcategory of D°(R) containing R and closed under direct summands, extensions
and cocones.

The main result of this article is the following theorem. This theorem provides a
classification of preaisles of DP(R) that satisfy some mild and natural conditions. Also,
the theorem includes both the classification of thick subcategories by Stevenson and the
classification of resolving subcategories by Dao and Takahashi.

Theorem 4. Let (R,V) be a pair as in Setup 1. Then there are one-to-one correspon-
dences

preaisles

of DP(R) ' orderT -
ni resolving preserving specialization-
containing -~ i (*N)
R and closed ( — subcategories p = maps « closed
under direct of D*(R) from Spec R subsets of V
to NU {oco}

summands

The restriction of the bijection (x) to the thick subcategories of DP(R) containing R is
identified with the bijection (a) in Theorem 2. The composition of the bijection (x) with
the map

X — respob(R) X
coincides with the bijection (b) in Theorem 3.
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Here, respspy X stands for the resolving closure of X in D°(R), that is, the smallest
resolving subcategory of DP(R) containing X

2. OUTLINE

This section is devoted to (roughly) explaining how to deduce Theorem 4.

We say that R is locally a Gorenstein ring if the local ring R, is Gorenstein for every
prime ideal p of R. When R is a local ring, we say that R is Gorenstein if R has finite
injective dimension as an R-module.

The following proposition is immediately obtained by using the fact that the functor
RHompg(—, R) gives a duality of D°(R) if R is locally a Gorenstein ring, and comparing
the definitions of a resolving subcategory and a precoaisle.

Proposition 5. Let R be a commutative noetherian ring. Suppose that R is locally a
Gorenstein ring. Assigning to each subcategory X of DP(R) the subcategory

RHompg (X, R) = {RHomg(X,R) | X € X}

of DP(R), one obtains a one-to-one correspondence

preaisles precoaisles

of Db.(R) of Db.(R) resolving

containing ~ containing _ beateaories
R and closed R and closed s DbgR
under direct under direct of D°(R)
summands summands

We say that R is locally a complete intersection if the local ring R, is a complete inter-
section for every prime ideal p of R. When R is a local ring with maximal ideal m, we
say that R is a complete intersection if the m-adic completion Rof Risa quotient of a
regular local ring by an ideal generated by a regular sequence. Denote by D*M(R) the sub-
category of DP(R) consisting of mazimal Cohen-Macaulay complezes, that is, complexes
C € D°(R) such that

depth Ry C, > dim R,
for all prime ideals p of R, where dim denotes Krull dimension. When R is a local ring
with residue field &, for each X € DP(R) we set

depthp X = inf{i € Z | Exth(k, X) # 0}.

The following two theorems are the most essential parts of our work. In the first
theorem, thickps(gy X stands for the thick closure of X in DP(R), that is, the smallest thick
subcategory of DP(R) containing X'. The assumption of locally a complete intersection in
the first theorem is necessary to deduce that each resolving subcategory of D?(R) contained
in D*M(R) is closed under exact triangles of maximal Cohen—Macaulay complexes. The
proof of the second theorem uses subtle arguments on Koszul complexes, and the notion
of an NE-locus, which is a certain Zariski-closed subset of Spec R.

Theorem 6. Let R be a commutative noetherian ring. Suppose that R is locally a complete
intersection.
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(1) There are mutually inverse bijections

resolving resolving
resolving subcategories subcategories
subcategories p =—= of D°(R) X of D°(R) 3,
of D°(R) ¥ contained contained
in DP*T(R) in DM(R)

where the maps ¢, are given by
¢(X) = (X ND**"(R), X ND™M(R))
for each element X of the left-hand side, and
YV, Z) = respppy (Y U Z)

for each element (Y, Z) of the right-hand side.
(2) There are mutually inverse bijections

resolving .
subcategories subcgzlfffciries thick
of D°(R) e - & ¢ subcategories
. of D°(R)
contained containing R of Dsg(R)
in DM(R) g

where the maps ¢,V are given by
gb(.)() = thiCka(R) X
for each element X of the left-hand side, and
YY) =YNDMR)
for each element Y of the right-hand side.

Theorem 7. Let R be any commutative noetherian ring. Then there are mutually inverse
bijections

resolving order-
subcategories 4 preserving
of D°(R) —= { maps from
contained v Spec R to
in DP*f(R) NU {0}

where the maps ¢, are given by
¢(X)(p) = sup{pdg, X,}
Xex
for each element X of the left-hand side and each prime ideal p of R, and
U(f) = {X € D°(R) | pdg, X, < f(p) for all p € Spec R}
for each element f of the right-hand side.
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Here, pd stands for projective dimension.
Taking the combination of Proposition 5 with Theorems 6 and 7, we obtain the following
theorem.

Theorem 8. Let R be a commutative noetherian ring which is locally a complete inter-
section. Then there are one-to-one correspondences

preaisles order-
of D*(R) , . .

Ny resolving preserving thick
containing ~ . ~ .
R and closed (= subcategories » = { maps from y x < subcategories
under direct of D*(R) Spec It to of Dsg(R)

NU {oo}

summands

Finally, combining Theorem 8 with Theorems 2 and 3 completes the proof of Theorem
4.
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PERIODIC DIMENSIONS OF MODULES AND ALGEBRAS

SATOSHI USUI

ABSTRACT. For an eventually periodic module, we obtain the degree n and the period p
of its first periodic syzygy. In this note, in order to study the degree n, we introduce the
notion of the periodic dimension of a module and report results on periodic dimensions
obtained so far.

1. INTRODUCTION

Throughout this note, let k be a field, and we assume that all rings are left Noetherian
semiperfect rings (that are associative and unital). By a module, we mean a finitely
generated left module.

Homological algebra [7] has been playing an important role in the representation theory
of rings, and one of the fundamental tools is a projective resolution of a module. So it is
natural to study the behavior of projective resolutions. In this note, we are concerned with
eventually periodic modules (i.e., modules whose minimal projective resolutions become
periodic in sufficiently large degrees) and study when their minimal projective resolutions
become periodic. For this, we will introduce the notion of the periodic dimension of a
module. From the definition, a module M is of finite periodic dimension if and only if
M is eventually periodic. In this case, the value of the periodic dimension equals the
degree of the first periodic syzygy of M. We first provide some of the basic properties of
periodic dimensions and then investigate the relationship between Gorenstein and periodic
dimensions. Moreover, motivated by a recent result of Dotsenko-Gélinas-Tamaroff [9], we
determine the bimodule periodic dimension of a finite dimensional eventually periodic
Gorenstein algebra.

2. EVENTUALLY PERIODIC MODULES

This section recalls the definition of eventually periodic modules and some related
results. Let R be a ring. For an R-module M and an integer i > 0, we denote by Q% (M)
the i-th syzygy of the R-module M. It is understood that Q%(M) = M.

Definition 1. An R-module M is called periodic if there exists an integer p > 0 such that
QO (M) = M as R-modules. The smallest p > 0 with this property is called the period
of M. We call M eventually periodic if there exists an integer n > 0 such that Q%(M) is
periodic.

We say that an R-module M is (n,p)-eventually periodic if M is eventually periodic
over R and satisfies that its n-th syzygy is the first periodic syzygy of period p. We call
a (0, p)-eventually periodic module a p-periodic module.

The detailed version of this paper will be submitted for publication elsewhere.
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Modules of finite projective dimension n are (n+1, 1)-eventually periodic. The following
example exhibits (n, p)-eventually periodic modules (with infinite projective dimension).

Example 2. Fix two integers n > 0 and p > 0, and consider the finite dimensional radical
square zero algebra A = kQ/ RQQ, where @ is the following quiver:

T~

n n—1 1 0 -1 -p+1

and Ry is the arrow ideal of the path algebra k(). We denote by S; the simple A-module
associated with the vertex i. A direct calculation shows that S; is (i, p)-eventually periodic
if 1 < i < n and is p-periodic if —p+ 1 < i < 0. In particular, S, is (n,p)-eventually
periodic.

The integers n and p associated with an (n, p)-eventually periodic module are studied
in the literature, for example [3, 6, 8, 10, 11]. We recall the following result of Avramov
3].

Theorem 3 ([3, Theorem 7.3.1]). Let R be a commutative local ring, and let M be an
R-module of finite complete intersection dimension. Then the following conditions are
equivalent.

(1) M is (n,p)-eventually periodic with n < depthR — depth,M + 1 and p=1 or 2.

(2) M has bounded Betti numbers.
Using [2, Lemma 1.2.6], one can check that any (n,p)-eventually periodic module M
over a commutative local ring R satisfies that depthR — depthpM < n. Thus, for any

(n, p)-eventually periodic R-modules satisfying the assumption of Theorem 3, we obtain
the following formula

(2.1) depthR — depthp M < n < depthR — depthy M + 1.

3. PERIODIC DIMENSIONS

In this section, we will introduce the notion of the periodic dimension of a module and
provide our main results. Throughout this section, let R denote a ring.

Observe that if M is a periodic module, then all its syzygies are periodic and have the
same period as M. Thus it is natural to introduce the following notion.

Definition 4. Let M be an R-module. Then we define the periodic dimension of M by
per.dimpM :=inf {n > 0 | Q}(M) is periodic } .

By definition, M is eventually periodic if and only if per.dimzM < oco. In this case,
per.dimp M equals the degree n of the first periodic syzygy Q% (M) of M. For instance,
if M has finite projective dimension, then per.dimpzM = proj.dimzM + 1. Also, if M is
of finite periodic dimension n, then we have

n—t if0<qi<n,

per.dim Qg (M) = {0 if i >n
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Recall from [1, 4] that an R-module X, where R is an arbitrary ring, is called totally
reflerive if X & X** and Exth(X, R) = 0 = Exth.,(X*, R) for all i > 0, where we set
(—)* := Hompg(—, R). The Gorenstein dimension G-dimpM of an R-module M is defined
to be the infimum of the length n of an exact sequence of R-modules

0O=-X, = = X1=>Xo—-M—-0

with each X; totally reflexive. The following proposition states the property of periodic
dimensions with respect to direct sums.

Proposition 5. For any finite family {rM;}ic; of R-modules, we have
per.dimy, @, M; < sup{per.dimpM; | i€ I}
The equality holds if R is left artin, and G-dimgM; < oo for all i € I.
The following is our first main result.

Theorem 6. Let M be an (n, p)-eventually periodic R-module of finite Gorenstein dimen-
sion r. Then we have r < n < r+ 1. If, furthermore, R is left artin, then the following
assertions hold.

(1) n=r if and only if V(M) has no non-zero projective direct summand.

(2) If Q5 Y (M) = X & Q for some R-module X without non-zero projective direct
summand and some projective R-module @Q, then r = n — 1 if and only if X =
QPN (M) as R-modules.

Remark 7. (1) Let M be an (n,p)-eventually periodic R-module of finite complete
intersection dimension, where R is a commutative local ring. Then, since we know
from [3, Theorems 8.7 and 8.8] that depthR—depth, M = G-dimzM, the obtained
bounds 7 < n < r+ 1 in this case are noting but (2.1).

(2) If R is a CM-finite Gorenstein artin algebra, then any R-modules satisfy the as-
sumption of the theorem. Here, CM-finite [5] means that there are only finitely
many pairwise non-isomorphic indecomposable totally reflexive R-modules, and
Gorenstein [4] means that the injective dimension of R is finite as a left and as a
right R-module.

In what follows, let A be a finite dimensional algebra over the filed k. We say that
A is eventually periodic if QR \op(A) is eventually periodic as a A ®; A°P-module for
some n > 0. In case n = 0, we call A a periodic algebra. The following is a result of
Dotsenko-Gélinas-Tamaroff [9].

Theorem 8 ([9, the proof of Theorem 6.3]). Let A be a monomial Gorenstein algebra.
Then per.dimyg, ropA is finite and at most inj.dimy A + 1, where inj.dim, A stands for the
injective dimension of the regular A-module A.

Motivated by the theorem, we first obtain the following observation.

Proposition 9. The following statements hold for a finite dimensional algebra A.

(1) If A is eventually periodic, then G-dimpg, ree A < 00 if and only if A is Gorenstein.
(2) If A is Gorenstein, then G-dimpg, aer A = inj.dim, A.
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As a consequence of Theorem 6, we then have the following second main result of this
note.

Theorem 10. Let A be a finite dimensional eventually periodic Gorenstein algebra. Then
we have

inj.dimy A < per.dimyg pop A < inj.dimyA + 1.

. 1 . . inj.dimp A
Moreover, per.dimyg, yop A = inj.dimy A if and only if Qg yos (A) has no non-zero pro-

jective direct summand.

We end this section by explaining that the bounds given in the theorem are the best
possible.

Proposition 11 ([12, Proposition 4.3]). Let A and T be finite dimensional algebras.
Assume that A is periodic and T' has finite global dimension d. Then the tensor product
A= A® T is a Gorenstein algebra with per.dim 4o 40p A = inj.dim 4 A.

Example 12. Let A be the finite dimensional monomial algebra given by the following
quiver with relations:

s (Cd-— d—1220 1-250 8%, iy for 2 <i < d.

A direct calculation shows that A is a Gorenstein algebra with per.dimyg, rop A = inj.dimy A+
1.
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