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Abstract. We study the relative homological algebra of posets with respect to the
intervals. We introduce our recent research on the properties of the supports of interval
approximations and interval resolution global dimension. We also provide necessary and
sufficient conditions on a poset to ensure that any representation is interval-decomposable
(i.e. a characterization of the case where interval resolution global dimension is equal to
0).
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1. Introduction

We refer the reader to [3] (arXiv:2308.14979) for details on the contents of this article.
Topological data analysis is a rapidly growing field applying the ideas of algebraic

topology for data analysis. One of its main tools is persistent homology [1], which can
compactly summarize the birth and death parameters of topological features (e.g. con-
nected components, rings, cavities, and so on) of data via the persistence diagram. This
allows us to analyze hidden structures in data. Algebraically, one part of the persistent
homology analysis can be formalized by using the so-called one-parameter persistence
modules, which are just (“pointwise”) finite dimensional modules over the incidence al-
gebra of a totally ordered set. In this point of view, one-parameter persistence modules
are guaranteed to decompose into the indecomposable modules called interval modules,
which provide a multiset of intervals that are encoded by the persistence diagram.

As a generalization, multi-parameter persistence modules are proposed, understood as
representations of n-dimensional grids, and are expected to provide richer information
than the one-parameter setting. When dealing with multi-parameter settings, however,
there are some difficulties with adapting the same techniques.

Recently, there has been an interest in the use of relative homological algebra in persis-
tence theory. Especially, the notion of right minimal approximations and resolutions by
interval-decomposable modules are developed, and the finiteness of the interval resolution
global dimension has been confirmed [2].

The aim of this article is to introduce the properties of right minimal approximations
and resolutions by interval-decomposable modules studied in [3].

The detailed version of this paper will be submitted for publication elsewhere.



2. Preliminaries

Let A be a finite dimensional algebra over a field k. We denote by modA the category of
finitely generated right A-modules. Throughout this article, we assume that all modules
are finitely generated. For morphisms f : X → Y and g : Y → Z of A-modules, we denote
their composition by gf : X → Z.

2.1. Approximations and resolutions. We recall the basic terminology of relative
homological algebra. We consider the full subcategory X := addX of modA for a fixed
finite collection X of (isomorphism classes of) indecomposable A-modules including all
the indecomposable projective modules.

Definition 1. For a morphism f : X →M of A-modules, we say that

(1) f is right minimal if any morphism g : X → X satisfying fg = f is an isomorphism.
(2) f is a right X -approximation of M if X ∈ X and HomA(Y, f) is surjective for any

Y ∈ X .
(3) f is a right minimal X -approximation of M if it is a right X -approximation which is

right minimal.
(4) A right minimal X-resolution of M is an exact sequence

· · · −→ Jm
gm−→ · · · g2−→ J1

g1−→ J0
f−→M −→ 0,

such that f is a right minimal (addX)-approximation of M , and for each 1 ≤ i, the
morphism gi is a right minimal (addX)-approximation of Im gi = Ker gi−1.

(5) If M has a right minimal X-resolution of the form

0 −→ Jm
gm−→ · · · g2−→ J1

g1−→ J0
f−→M −→ 0,

then we say that the X-resolution dimension of M is m and write X-res-dimM = m.
Otherwise, we say that the X-resolution dimension of M is infinity. We set

X-res-gldimA := sup{X-res-dimM |M ∈ modA}

and call X-resolution global dimension of A. Notice that it can be infinity.

2.2. Partially ordered set and its representations. Let P be a finite poset. We
recall that the Hasse diagram of P is a directed graph whose vertices are in bijection with
elements of P and there is an arrow x→ y for x, y ∈ P if x < y and there is no z ∈ P such
that x < z < y. The incidence algebra k[P ] of a poset P is defined to be the quotient of
the path algebra of the Hasse diagram of P modulo the two-sided ideal generated by all
the commutative relations. The module category mod k[P ] can be described in terms of a
functor category as follows. Firstly, we regard P as a category whose objects are elements
of P , and morphisms are defined by relations in P , i.e., there is a unique morphism a→ b
for a, b ∈ P if and only if a ≤ b. We denote by repk(P ) the category of (covariant) functors
from P to the category of finite dimensional vector spaces over k. For V in repk(P ), the
subset supp V := {a ∈ P | Va 6= 0} is called the support of V .
It is well-known that there is an equivalence of abelian categories between repk(P ) and

the module category mod k[P ] of the incidence algebra of P . In this sense, we identify
objects V of repk(P ) and k[P ]-modules, and the support of a k[P ]-module M is the subset



supp(M) = {a ∈ P |Mea 6= 0}, where ea is a primitive idempotent of k[P ] corresponding
to the element a ∈ P .
In our study, the following class of full subposets called interval is basic.

Definition 2. A full subposet of P is a subset P ′ ⊆ P equipped with the induced partial
order. Notice that it is completely determined by its elements. We say that

(1) P ′ is convex in P if, for any x, y ∈ P ′ and any z ∈ P , x < z < y implies z ∈ P ′,
(2) P ′ is an interval of P if P ′ is connected as a poset and is convex in P .

We denote by I(P ) the set of intervals of P .

The following special class of modules plays an important role in this article.

Definition 3. For an interval I of P , let kI be a k[P ]-module given as follows.

(2.1) (kI)a =

{
k if a ∈ I,

0 otherwise,
kI(a ≤ b) =

{
1k if a, b ∈ I,

0 otherwise.

An interval module is a k[P ]-module M such that M ∼= kI for some interval I ∈ I(P ).
Clearly, every interval module is indecomposable.

We denote by Ik,P the set of isomorphism classes of the interval k[P ]-modules, which
is in bijection with I(P ) by I 7→ kI . Notice that IP and IP,k are finite since so is P . Each
module in add IP,k is said to be interval-decomposable. In other words, a given k[P ]-module
M is interval-decomposable if and only if it can be written as

M ∼=
⊕

I∈I(P )

k
m(I)
I

for some non-negative integers m(I). We will write IP instead of Ik,P when the base field
k is clear.

Since IP contains all indecomposable projective k[P ]-modules by definition, one can
consider resolutions by interval modules. By interval covers over P (resp., interval res-
olutions over P ), we mean right minimal (add IP )-approximations (resp., IP -resolutions)
of k[P ]-modules. When the poset P is clear, we may omit it. In addition, we will write

int-res-dimM := IP -res-dimM and int-res-gldim k[P ] := IP -res-gldim k[P ],

and call them the interval resolution dimension of a module M and the interval resolution
global dimension of k[P ] respectively. It has been shown in [2, Proposition 4.5] that the
interval resolution global dimension is always finite. To show that, the next proposition
is a key.

Proposition 4. [2, Lemma 4.4 and its dual] The subcategory add IP is closed under both
submodules and quotients of indecomposable modules.

Then, we can apply [10, Theorem in §5](cf. [8]) and obtain the following.

Theorem 5. [2, Proposition 4.5] For any finite poset P , int-res-gldim(k[P ]) <∞.



3. Results

In this section, we will give three results on interval covers and interval resolution
dimensions (Theorems 6, 8, and 9). These results are motivated by topological data
analysis, and they would be interesting from the perspective of representation theory of
finite dimensional algebras.

3.1. Result 1. We show the following result.

Theorem 6. Let P be a finite poset and IP the set of isomorphism classes of interval
modules. For a given k[P ]-module M , we take its interval cover f : X =

⊕m
i=1 Xi → M ,

where all the Xi’s are interval modules. Then, the following holds.

(1) f is surjective.
(2) f |Xi

: Xi →M is injective for every i ∈ {1, . . . ,m}.
(3) suppX = suppM .

In particular, every Xi can be taken as an interval submodule of M .

An importance of Theorem 6 is that it provides one way to reduce the computational
burden for computing interval resolutions. We note that [5, Proposition 4.8] show Theo-
rem 6 in essentially the same way.

Example 7. We consider the D4-type quiver D4(b) displayed below:

1

��
2 3oo // 4.

Then, the incidence algebra is just a path algebra of type D4. The Auslander-Reiten
quiver is given by

0
1 0 0

0
0 1 1

1
1 1 0

0
1 1 1

1
1 1 1 M 0

0 1 0
1

0 1 0
1

0 0 0 ,

0
0 0 1

0
1 1 0

1
0 1 1

a1

b2

b1

b3

a2

a3

where all indecomposable modules except for M are interval, but M is

k
t[1 1]

��
k k2

[1 0]
oo

[0 1]
// k.

Looking at the Auslander-Reiten quiver, we find that an interval resolution of M is

0 −→ 0
1 1 1

t[b1,b2,b3]−−−−−→ 0
0 1 1 ⊕ 1

1 1 1 ⊕ 0
1 1 0

[a1,a2,a3]−−−−−→M −→ 0,



and hence

int-res-dimM = 1.

Consequently, the interval resolution global dimension for D4(b) is 1. One can also show
that any D4-type quiver has the interval resolution global dimension 1.

3.2. Result 2. We give a complete classification of posets whose modules are always
interval-decomposable. This result generalizes the one-parameter settings of persistent
homology.

Theorem 8. Let P be a finite poset and k[P ] the incidence algebra of P . Then, the
following conditions are equivalent.

(a) int-res-gldim k[P ] = 0.
(b) Every k[P ]-module is interval-decomposable.
(c) Each connected component of the Hasse diagram of P is one of An(a) for some ori-

entation a or Cm,ℓ displayed below, where the symbol ↔ is either → or ← assigned by
its orientation a:

An(a) : 1←→ 2←→ · · · · · · ←→ n,

Cm,ℓ :

1
α1 // · · ·

αm−1 // m
αm

��
0̂

α0

@@

β0

��

1̂

1′
β1 // · · ·

βℓ−1 // ℓ′

βℓ

@@

In particular, these conditions do not depend on the characteristic of the base field k.

We note that equivalences among (a) and (b) in the statement are trivial.

3.3. Result 3. Finally, we study a relationship between the interval resolution global
dimensions of different posets. Our result is the following.

Theorem 9. Let P be a finite poset and k[P ] the incidence algebra of P . For any full
subposet P ′ of P , we have

(3.1) int-res-gldim k[P ′] ≤ int-res-gldim k[P ].

For the usual global dimension, we do not have the above monotonicity in general.

Example 10. Let P and P ′ be posets given by

P : •

•
• •

•
• •

and P ′ :

•
• •

•
• •



respectively. Then, P ′ is a full subposet of P , which is obtained by removing the point
in the center. The global dimension of k[P ] is 2 but that of k[P ′] is 3 (over an arbitrary
field), see [7, Section 3].

On the other hands, we have int-res-gldim k[P ′] = 2 ≤ 3 = int-res-gldim k[P ] over a
field with two elements.

In the rest, we give a sketch of a proof of Theorem 9. The main ingredient for its proof
is a functor Θe defined as follows. Let A be a finite dimensional k-algebra. For a given
idempotent e ∈ A, we consider the idempotent subalgebra B := eAe. It is well-known
that the functors

Rese(−) := (−)e, Inde(−) := −⊗B eA, Coinde(−) := HomB(Ae,−),

respectively called the restriction, induction, and coinduction functors, provide a diagram

(3.2) modA modB.
Rese

Inde

Coinde

which gives an adjoint triple. Then, the identity 1M is associated to the map θM by

HomA(Inde(M),Coinde(M))

∈

HomB(M,M)
∼oo

∈
θM 1M ,�oo

and an A-module

Θe(M) := Im θM ⊆ Coinde(M).

It gives rise to a functor Θe called intermediate extension in [9, Proposition 4.6], and
prolongedment intermédiare in [4]. We have Rese ◦Θe

∼= 1modB.
Let P be a finite poset and P ′ a full subposet of P . In this setting, the incidence algebra

k[P ′] can be obtained as an idempotent subalgebra. In fact, we have an isomorphism
k[P ′] ∼= ek[P ]e of algebras, where e :=

∑
x∈P ′ ex. Due to the previous paragraph, we can

define the functor Θe : mod k[P ′]→ mod k[P ].
The following is a key observation on interval modules.

Proposition 11. The functor Θe sends interval modules to interval modules. More ex-
plicitly, for a given interval I ∈ I(P ′), we have Θe(kI) ∼= kconv(I), where conv(I) is the
smallest interval of P containing I.

Consequently, we find the exact functor Rese and the functor Θe provides the diagram

mod k[P ] Rese 11

∪

mod k[P ′]

Θe
rr

∪

add IP Rese|add IP 22 add IP ′ ,

Θe|add IP ′
rr



where IP (resp., IP ′) is the set of isomorphism classes of interval modules over P (resp.,
P ′). Then, we can directly compare interval resolutions via these functors and obtain the
following.

Proposition 12. For any module M ∈ k[P ′], we have the following inequality

(3.3) IP ′-res-dimM ≤ IP -res-dimΘe(M).

Now, we are ready to prove Theorem 9.

Proof of Theorem 9. Since M is an arbitrary module in (3.3), we obtain the desired in-
equality (3.1) by Proposition 12. □
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