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ABSTRACT. We introduce the notion of ICE sequences to investigate t-structures on
the bounded derived category of the module categories modA over a finite dimensional
algebra A. We give a correspondence between bounded t-structures and ICE sequences.
Moreover we give a description of ICE sequences in modA in terms of the lattice consisting
of torsion classes in modA.

1. INTRODUCTION

Let A be a finite dimensional algebra over a field k. We denote by modA the category of
finitely generated right A-modules and D?(modA) the bounded derived category of modA.
It is one of the main subjects of representation theory of finite dimensional algebras to
study subcategories of modA and D°(modA). For example, torsion classes are studied
actively, and correspond to intermediate ¢-structures on D’(modA) bijectively [6]. In this
note, we always assume that all subcategories are full and closed under isomorphisms.

We focus on t-structures on D°(modA). For subcategories U and V of D°(modA), we
denote by U * V the subcategory of D’(modA) consisting of objects X such that there
exists an exact triangle U — X — V — U in D’(modA) with U € Y and V € V.

Definition 1. [2, Définition 1.3.1] A pair of subcategories (U,V) of D’(modA) is a t-
structure on D’(modA) if it satisfies the following conditions:
(1) Hom(U,V) = 0.
(2) D*(modA) =U * V.
(3) SU C U.
We call U an aisle. A t-structure (U, V) is bounded if it satisfies

|J ="t = D¥(modA) = | ] ="
neZ nel
For a t-structure (U,V) on D°(modA), we have U = 1V, therefore a t-structure is
determined by its aisle. Hence we focus on aisles, and we call a subcategory of D°(modA)

an aisle if it is an aisle of a certain ¢-structure.
A subcategory X of D°(modA) is closed under extensions if it satisfies X * X C X.

Definition 2. A subcategory U of D’(modA) is a preaisle if U is closed under extensions
and positive shifts.

It is easy to check that an aisle of a t-structure is a preaisle. Actually, aisles are exactly
contravariantly finite preaisles:
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Proposition 3. [8, Proposition 1.3] The following are equivalent for a subcategory U of
D*(modA).
(1) U is an aisle.
(2) U is a coreflective preaisle, that is, U is a preaisle and the inclusion U — D®(modA)
has a right adjoint functor.
(3) U is a contravariantly finite preaisle closed under direct summands.

Proof. (1) < (2): This is well-known.
(2) & (2): This follows from [3, Corollary 4.5]. O

At first, we deel with preaisles. In [10], homology-determined preaisles are classified by
narrow sequences. We denote by H* the k-th cohomology functor.

Definition 4. A preaisle U of D’(modA) is homology-determined if for any X € D”(modA),
we have X € U if and only if X~*(H*X) € U for any k € Z.

Note that if A is hereditary, then every aisle is homology-determined since every complex
X in D°(modA) is isomorphic to a direct sum X *(H*X). For homology-determined
preaisle U of D°(modA), we can consider a sequence { H*U } ¢z of subcategories of modA.
In the next section, we give a characterization of the sequence.

2. AISLES AND ICE SEQUENCES

In this section, we introduce ICE sequences to study preaisles. We recall basic defini-
tions of subcategories of an abelian category.

Definition 5. Let A be an abelian category and C a subcategory of A.

(1) C is closed under extensions if for every short exact sequence
0O—=L—-M-—=N—=0

in A with L, N € C, we have M € C.

(2) Cis closed under quotients (resp. subobjects) in A if, for every object C' € C, every
quotient (resp. subobject) of C' in A belongs to C.

(3) C is a torsion class (resp. torsion-free class) in A if C is closed under extensions
and quotients in A (resp. extensions and subobjects).

(4) C is closed under images (resp. kernels, cokernels) if, for every map ¢: C; — Cy
with C,Cy € C, we have Imp € C (resp. Kerg € C, Cokerp € C).

(5) Cis a wide subcategory of A if C is closed under kernels, cokernels, and extensions.

(6) C is an ICE-closed subcategory of A if C is closed under images, cokernels and
extensions.

It is easy to check that torsion classes and wide subcategories are ICE-closed sub-
categories. Moreover, every torsion class in a wide subcategory (viewed as an abelian
category) is ICE-closed, see [5, Lemma 2.2]. In [7], Ingalls and Thomas introduced an
operation « which associates to a torsion class a wide subcategory. In [4, Proposition
4.2], the operation was generalized to ICE-closed subcategories. The following is shown
by the same argument of [7, Proposition 2.12].



Proposition 6. Let C be an ICE-closed subcategory of A. Define a subcategory of C by
aC={AecC|"(f:C = A)eC, ker f € C}.
Then oC is a wide subcategory of A.
Next we give a definition of ICE sequences. This is the key notion in this note.

Definition 7. A sequence {C(k)}rez of subcategories of modA is an ICE sequence if for
any k, the subcategory C(k) is an ICE-closed subcategory of modA and the subcategory
C(k + 1) is a torsion class in a(C(k)).

Clealy, we have C(k + 1) C C(k) for any k € Z. Actually, ICE sequnces are the same
notion of narrow sequences introduced in [10, Definition 4.1], see [9, Proposition 4.2].
Combining this fact and the result [10, Theorem 4.11], we obtain the following result.

Theorem 8. [9, Theorem 4.5] There exist mutually bijective correspondences between

(1) the set of homology-determined preaisles in D°(modA).
(2) the set of ICE sequences in modA,

The map from (1) to (2) is given byU — {H*U} ez The converse is given by {C(k) }rez —
{X € D’(modA) | H*X € C(k) for any k}.

Finally, we restrict the above result to aisles of bounded ¢-structures.

Definition 9. Let {C(k)}iez be an ICE sequence in modA.

(1) {C(k)}kez is contravariantly finite if C(k) is contravariantly finite in modA for any
ke Z.

(2) {C(k)}rez is full if there exist integers m < n such that C(m) = 0 and C(n) =
modA.

(3) For a positive integer n, we say that {C(k)}xez is of length n+1 if we have C(1) = 0
and C(—n) = modA.

Note that an ICE-closed subcategory of modA is contravariantly finite if and only if it is
coreflective by [3, Corollary 7.2]. If A is 7-tilting finite, then every ICE-closed subcategory
of modA is contravariantly finite, see [5, Proposition 4.20].

The following is the main result in this section.

Theorem 10. [9, Theorem 5.5, Corollary 5.6] There exist bijective correspondences be-
tween

(1) the set of contravariantly finite full ICE sequences in modA,
(2) the set of bounded t-structures on D’(modA) whose aisles are homology-determined.

Let n be a positive integer. Then the above restrict to the following.

(1) the set of contravariantly finite ICE sequences in modA of length n + 1,
(2) the set of (n+1)-intermediate t-structures on D’(modA) whose aisles are homology-
determined.

Thus we can construct t-structures on D°(modA) from ICE sequences in modA. In the
next section, we give a description of ICE sequences by a lattice-theoretical notion.



3. A LATTICE OF TORSION CLASSES

In this section, we fix a positive integer n, and focus on (n+1)-intermediate ¢-structures.
We give a description of ICE sequences of length n + 1 in modA from the viewpoint of a
lattice consisting of torsion classes in modA. We denote by torsA the set of torsion classes
in modA, which forms a partially ordered set by inclusion. Moreover torsA is a complete
lattice since there are arbitrary intersections. We collect some definitions and results.

Definition 11. To 7,U € torsA, we associate the set
U, T):={CetorsA | UCCCT}

called an interval in torsA. To an interval [U/,T], we associate a subcategory Hy, 7 =
T NU* called the heart of [U,T]. We call an interval [, T] a wide interval if the heart
is a wide subcategory of modA. We denote by Hasse(torsA) the Hasse quiver of torsA,
the quiver whose vertex set is torsA, and there is an arrow 7 — U in torsA if and only if
U C T holds and there is no C € torsA satisfyingd CC C T.

Wide intervals are characterized as a lattice-theoretical property in torsA as follows:

Proposition 12. [1, Theorem 5.2] Let [U,T] be an interval in torsA. Then the following
conditions are equivalent:

(1) [U,T] is a wide interval.
(2) [U,T] is a meet interval, that is, it holds

U= Tﬂ{C € [U,T]| there is an arrow T — C in Hasse(torsA)}.

The operation « is understood from the viewpoint of wide intervals:

Proposition 13. Let T be a torsion class in modA. Then the following statements hold.

(1) [1, Proposition 6.3] aT equals to the heart of the interval [T N+aT,T].
(2) [5, Proposition 3.3] We set

T = Tﬂ{C € torsA | there is an arrow T — C in Hasse(torsA)}.
Then we have T~ =T N+aT and Hy- 1 = oT .

Thus we can understand « in terms of torsA. We introduce the following notion.

Definition 14. (1) We call an interval of the form [T, 7] a mazimal meet interval
in torsA. More generally, we call an interval [, T'] contained in a wide interval
[U,T] in torsA a mazimal meet interval in U, T] if we have

uU=T m{C € [U,T] | there is an arrow 7' — C in Hasse(torsA)}.

(2) We call a sequence {[Uy, Te]}i_, of intervals in torsA a decreasing sequence of
mazximal meet intervals in torsA provided that [Uyy1, Try1] is a maximal meet
interval in [Uy, Tg] for any £ = 0,...,n — 1 where we set Uy = 0 and Ty = modA.
We call n the length of the sequence.

Now we obtain a classification of (n + 1)-intermediate t-structures whose aisles are
homology-determined via ICE sequences and the lattice of torsion classes:



Theorem 15. Let A be a T-tilting finite algebra and torsA the lattice consisting of torsion
classes in modA. Then there are one-to-one correspondences between

(1) the set of (n+1)-intermediate t-structures on D*(modA) whose aisles are homology-

determined,
(2) the set of ICE sequences in modA of length n + 1,
(3) the set of decreasing sequences of maximal meet intervals in torsA of length n,
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