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Abstract. We describe the moduli Mold3,4 of 4-dimensional subalgebras of the full
matrix ring of degree 3. We show that Mold3,4 has three irreducible components, whose
relative dimensions over Z are 5, 2, 2, respectively.
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1. Introduction

Let k be a field. We say that k-subalgebras A and B of M3(k) are equivalent (or A ∼ B)
if P−1AP = B for some P ∈ GL3(k). If k is an algebraically closed field, then there are
26 equivalence classes of k-subalgebras of M3(k) over k ([4]).

Definition 1 ([2, Definition 1.1], [3, Definition 3.1]). We say that a subsheaf A of OX-
algebras of Mn(OX) is a mold of degree n on a scheme X if Mn(OX)/A is a locally free
sheaf. We denote by rankA the rank of A as a locally free sheaf.

Proposition 2 ([2, Definition and Proposition 1.1], [3, Definition and Proposition 3.5]).
The following contravariant functor is representable by a closed subscheme of the Grass-
mann scheme Grass(d, n2):

Moldn,d : (Sch)op → (Sets)
X 7→

{
A A is a rank d mold of degree n on X

}
.

We consider the moduli Mold3,d of rank dmolds of degree 3 over Z. For d = 1, 2, 3, 6, 7, 8, 9,
we have the following theorem:

Theorem 3 ([4]). Let n = 3. If d ≤ 3 or d ≥ 6, then

Mold3,1 = SpecZ,
Mold3,2

∼= P2
Z × P2

Z,

Mold3,3 = Moldreg
3,3 ∪MoldS2

3,3 ∪MoldS3
3,3, where the relative dimensions of

Moldreg
3,3 ,MoldS2

3,3, and MoldS3
3,3 over Z are 6, 4, and 4, respectively,

Mold3,6
∼= Flag3 := GL3/{(aij) ∈ GL3 | aij = 0 for i > j},

Mold3,7
∼= P2

Z

⨿
P2
Z,

Mold3,8 = ∅,
Mold3,9 = SpecZ.

The detailed version of this paper will be submitted for publication elsewhere.



The cases d = 4, 5 remain. In this paper, we describe the moduli Mold3,4 of rank 4
molds of degree 3. We introduce several rank 4 molds of degree 3 on a commutative ring
R.

Definition 4 ([4]). For a commutative ring R, we define

(1) (B2 ×D1)(R) =


 ∗ ∗ 0

0 ∗ 0
0 0 ∗

 ∈ M3(R)

,

(2) N3(R) =


 a b c

0 a d
0 0 a

 a, b, c, d ∈ R

,

(3) S6(R) =


 a c d

0 a 0
0 0 b

 a, b, c, d ∈ R

,

(4) S7(R) =


 a 0 c

0 a d
0 0 b

 a, b, c, d ∈ R

,

(5) S8(R) =


 a c d

0 b 0
0 0 b

 a, b, c, d ∈ R

,

(6) S9(R) =


 a 0 c

0 b d
0 0 b

 a, b, c, d ∈ R

.

There are 6 equivalence classes of 4-dimensional subalgebras of M3(k) over an alge-
braically closed field k: (B2 ×D1)(k), N3(k), S6(k), S7(k), S8(k), and S9(k).

The following theorem is our main result in this paper.

Theorem 5 (Theorem 19, [4]). When d = 4, we have an irreducible decomposition

Mold3,4 = MoldB2×D1
3,4

⨿
MoldS7

3,4

⨿
MoldS8

3,4

such that irreducible components are all connected components. The relative dimensions

of MoldB2×D1
3,4 , MoldS7

3,4, and MoldS8
3,4 over Z are 5, 2, and 2, respectively. Moreover, both

MoldS7
3,4 and MoldS8

3,4 are isomorphic to P2
Z, and

MoldB2×D1
3,4 = MoldB2×D1

3,4 ∪MoldS6
3,4 ∪MoldS9

3,4 ∪MoldN3
3,4

is isomorphic to Flag3 ×P2
Z
Flag3 ×P2

Z
Flag3 = {(L1 ⊂ W2, L1 ⊂ W1, L2 ⊂ W1) ∈ Flag3 ×

Flag3 × Flag3}. In particular, Mold3,4 is smooth over Z.

Remark 6 ([1]). We need to say the relation between Moldd,d and the variety Algd of
algebras defined by Gabriel in [1]. Let V = ke1⊕ke2⊕· · ·⊕ked be a d-dimensional vector
space over a field k. For φ ∈ Homk(V ⊗k V, V ), put φ(ei ⊗ ej) =

∑n
l=1 c

l
ijel. We say that

φ determines an algebra structure on V with 1 if the multiplication ei · ej = clijel defines



an algebra V over k with 1. Then we define the variety Algd of d-dimensional algebras in
the sense of Gabriel by

Algd =

 φ ∈ Homk(V ⊗k V, V )
φ determines an
algebra structure

on V with 1

 ⊂ Ad3

k .

Then we can define a morphism Ψd : Algd → Moldd,d by

φ 7→ {φ(v ⊗−) ∈ Endk(V ) ∼= Md(k) | v ∈ V }.
If we could prove that Ud = {A ⊂ Md(k) | A is a d-dimensional tame algebra } is open in
Moldd,d for any d, then Ψ−1

d (Ud) = {A | d-dimensional tame algebra } would also be open
in Algd, which gives an affirmative answer to “Tame type is open conjecture”. Hence, we
believe that Moldn,d is an important geometric object. This is one of our motivations to
investigate Moldn,d.

2. Several Tools

In this section, we introduce several tools for describing Mold3,4. Let A be an associative
algebra over a commutative ring R. Assume that A is projective over R. Let Ae = A⊗RA

op

be the enveloping algebra of A. For an A-bimodule M over R, we can regard it as an Ae-
module. We define the i-th Hochschild cohomology group HHi(A,M) of A with coefficients
in M as ExtiAe(A,M).

Let A be the universal mold on Moldn,d. For x ∈ Moldn,d, denote by A(x) = A⊗OMoldn,d

k(x) ⊂ Mn(k(x)) the mold corresponding to x, where k(x) is the residue field of x. As
applications of Hochschild cohomology to the moduli Moldn,d, we have the following tools.

Theorem 7 ([3, Theorem 1.1]). For each point x ∈ Moldn,d,

dimk(x) TMoldn,d/Z,x = dimk(x) HH
1(A(x),Mn(k(x))/A(x)) + n2 − dimk(x)N(A(x)),

where N(A(x)) = {b ∈ Mn(k(x)) | [b, a] = ba− ab ∈ A(x) for any a ∈ A(x)}.

Theorem 8 ([3, Theorem 1.2]). Let x ∈ Moldn,d. If HH2(A(x),Mn(k(x))/A(x)) = 0,
then the canonical morphism Moldn,d → Z is smooth at x.

For a rank d mold A of degree n on a locally noetherian scheme S, we can consider a
PGLn,S-orbit {P−1AP | P ∈ PGLn,S} in Moldn,d ⊗Z S, where PGLn,S = PGLn ⊗Z S.
For x ∈ S, put A(x) = A ⊗OS

k(x), where k(x) is the residue field of x. By using
HH1(A(x),Mn(k(x))/A(x)), we have:

Theorem 9 ([3, Theorem 1.3]). Assume that HH1(A(x),Mn(k(x))/A(x)) = 0 for each
x ∈ S. Then the PGLn,S-orbit {P−1AP | P ∈ PGLn,S} is open in Moldn,d ⊗Z S.

These tools are useful for investigating Mold3,4. For each rank 4 molds of M3(R) over
a commutative ring R, we obtained the following table:



Table 1. Hochschild cohomology HH∗(A,M3(R)/A) for R-subalgebras A
of M3(R) (cf. [3, Table 2])

A d = rankA H∗ = HH∗(A,M3(R)/A)
tA N(A) dimTMold3,d/Z,A

(B2 ×D1)(R) =


 ∗ ∗ 0

0 ∗ 0
0 0 ∗

 4 H i = 0 for i ≥ 0 (B2 ×D1)(R) (B2 ×D1)(R) 5

N3(R) =


 a b c

0 a d
0 0 a

 4 H i =

{
R2 (i = 0)
Ri+1 (i ≥ 1)

N3(R) B3(R) 5

S6(R) =


 a c d

0 a 0
0 0 b

 4 H i = R for i ≥ 0 S9(R) S13(R) 5

S7(R) =


 a 0 c

0 a d
0 0 b

 4 H i =

{
R3 (i = 0)
0 (i ≥ 1)

S8(R) P2,1(R) 2

S8(R) =


 a c d

0 b 0
0 0 b

 4 H i =

{
R3 (i = 0)
0 (i ≥ 1)

S7(R) P1,2(R) 2

S9(R) =


 a 0 c

0 b d
0 0 b

 4 H i = R for i ≥ 0 S6(R) S14(R) 5

3. Description of Mold3,4

In this section, we describe Mold3,4. Let V be a free module of rank 3 over Z. Fix a
canonical basis {e1, e2, e3} of V over Z. We define schemes P∗(V ), P∗(V ), and Flag(V )
over Z as contravariant functors from the category of schemes to the category of sets in
the following way:

P∗(V )(X) =
{
W W is a rank 2 subbundle of OX ⊗Z V on X

}
,

P∗(V )(X) =
{
L L is a rank 1 subbundle of OX ⊗Z V on X

}
,

Flag(V )(X) =
{

(L,W ) ∈ (P∗(V )× P∗(V ))(X) L ⊂ W
}

for a scheme X.

Remark 10. If we consider the case over a field k, then P∗(V ), P∗(V ), and Flag over k are
regarded as

P∗(V ) = {W ⊂ V | W is a 2-dimensional subspace of V },
P∗(V ) = {L ⊂ V | L is a 1-dimensional subspace of V },

Flag(V ) = {(L,W ) ∈ P∗(V )× P∗(V ) | 0 ⊂ L ⊂ W ⊂ V },

respectively.

Let us consider rank 4 molds

(B2 ×D1)(Z) =


 ∗ ∗ 0

0 ∗ 0
0 0 ∗

 ∈ M3(Z)

 ,



S7(Z) =


 a 0 c

0 a d
0 0 b

 a, b, c, d ∈ Z

 ,

S8(Z) =


 a c d

0 b 0
0 0 b

 a, b, c, d ∈ Z


over Z. Let A = B2 ×D1, S7, or S8. Then HH1(A(k),M3(k)/A(k)) = 0 for any field k by
Table 1. The image of the morphism ϕA : PGL3 → Mold3,4 defined by P 7→ P−1A(Z)P
is open by Theorem 9.

Definition 11 ([4]). We define open subschemes of Mold3,4 by

MoldB2×D1
3,4 = ImϕB2×D1 ,

MoldS7
3,4 = ImϕS7 ,

MoldS8
3,4 = ImϕS8 .

Remark 12. Let A = B2 × D1, S7, or S8. Then HH2(A(k),M3(k)/A(k)) = 0 for any field
k by Table 1. By [3], the canonical morphism MoldA

3,4 → Z is smooth.

Theorem 13 ([4]). The subschemes MoldS7
3,4 and MoldS8

3,4 are open and closed in Mold3,4.

Moreover, MoldS7
3,4

∼= P∗(V ) and MoldS8
3,4

∼= P∗(V ).

Outline of proof. For simplicity, here we only consider the case over a field k. For
W ∈ P∗(V ), set

AW = {f ∈ Endk(V ) ∼= M3(k) | f(W ) ⊆ W and f |W is scalar } ⊂ M3(k).

Let us define a morphism

ψS7 : P∗(V ) → MoldS7
3,4

W 7→ AW .

We can verify that ψS7 is an isomorphism.
For L ∈ P∗(V ), set

AL = {f ∈ Endk(V ) ∼= M3(k) | f(L) ⊆ L and f : V/L→ V/L is scalar }.
Let us define a morphism

ψS8 : P∗(V ) → MoldS8
3,4

L 7→ AL.

We can verify that ψS8 is an isomorphism. □

Definition 14. We define

Q(V ) = Flag(V )×P∗(V ) Flag(V )×P∗(V ) Flag(V )

= {(L1,W2;L1,W1;L2,W1) | dimk Li = 1, dimkWi = 2}
= {(L1, L2,W1,W2) | L1 ⊂ W1, L1 ⊂ W2, L2 ⊂ W1}.



Let us define the projection π : Q(V ) → Flag(V ) by

(L1, L2,W1,W2) 7→ (L1,W1).

We can verify that π is a fiber bundle with fiber P1 × P1.

For (L1, L2,W1,W2) ∈ Q(V ), set

A(L1,L2,W1,W2) =

{
f ∈ M3(k)

f(Li) ⊂ Li, f(Wi) ⊂ Wi (i = 1, 2), and
L2

∼= W1/L1
∼= V/W2 as k[f ]-modules

}
.

Let us define a morphism

ψB2×D1 : Q(V ) → Mold3,4

(L1, L2,W1,W2) 7→ A(L1,L2,W1,W2).

Theorem 15 ([4]). The image of ψB2×D1 is open and closed in Mold3,4. Moreover, ψB2×D1

gives an isomorphism between Q(V ) and the closure MoldB2×D1
3,4 of MoldB2×D1

3,4 .

Outline of proof. It can be verified that ψB2×D1 is a monomorphism. By a long discus-
sion, we can also prove that ψB2×D1 is formally étale. Hence, ψB2×D1 gives an isomorphism

between Q(V ) and an open subscheme of Mold3,4 which coincides with MoldB2×D1
3,4 . □

Definition 16 ([4]). Let A = N3, S6, or S9. We define

MoldA
3,4 = {x ∈ Mold3,4 | A(x)⊗k(x) k(x) ∼ A(k(x))},

where k(x) is an algebraic closure of k(x).

We can also prove the following theorems.

Theorem 17 ([4]). For the closure MoldB2×D1
3,4 of MoldB2×D1

3,4 , we obtain

MoldB2×D1
3,4 = MoldB2×D1

3,4

⨿
MoldS6

3,4

⨿
MoldS9

3,4

⨿
MoldN3

3,4.

Theorem 18 ([4]). By the isomorphism MoldB2×D1
3,4

∼= Q(V ), we have

MoldB2×D1
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 6= L2,W1 6= W2},

MoldS6
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 = L2,W1 6= W2},

MoldS9
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 6= L2,W1 = W2},

MoldN3
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 = L2,W1 = W2}.

By using Theorem 18, let us describe a deformation of 4-dimensional subalgebras of

M3. We define a 2-dimensional closed subscheme Qst(V ) of Q(V ) ∼= MoldB2×D1
3,4 .

For simplicity, let us consider the case over a field k. Set Lst
1 = ke1 andW

st
1 = ke1⊕ke2.

Put ∗ = (Lst
1 ,W

st
1 ) ∈ Flag(V ). Then we have the following fiber product:

Qst(V ) → Q(V )
↓ ↓
∗ → Flag(V ).



Note that Qst(V ) ∼= P1
k × P1

k.

Let L2(s1) =

⟨ 1
−s1
0

⟩ and W2(s2) =

⟨ 1
0
0

 ,
 0

1
s2

⟩. Then

{(s1, s2) ∈ A2
k} ∼= (P1

k \ {∞})× (P1
k \ {∞})

gives an affine open subscheme of Qst(V ) by considering (Lst
1 , L2(s1),W

st
1 ,W2(s2)). We

write

A(s1, s2) =


 a+ s1b b c

0 a d
0 0 a+ s2d

 a, b, c, d ∈ k


for ψB2×D1(s1, s2) ∈ MoldB2×D1

3,4 .
Note that

A(s1, s2) : B2 ×D1 type if s1 6= 0, s2 6= 0,

A(0, s2) : S6 type if s2 6= 0,

A(s1, 0) : S9 type if s1 6= 0,

A(0, 0) : N3 type.

Summarizing the discussions above, we obtain the main theorem.

Theorem 19 ([4]). We have an irreducible decomposition

Mold3,4 = MoldB2×D1
3,4

⨿
MoldS7

3,4

⨿
MoldS8

3,4,

whose irreducible components are all connected components. Moreover, MoldB2×D1
3,4

∼=
Q(V ), MoldS7

3,4
∼= P2

Z, and MoldS8
3,4

∼= P2
Z over Z.

By considering the PGL3-orbits in Mold3,4 over a field k, we have:

Corollary 20 ([4]). Let k be an arbitrary field. Then there exist 6 equivalence classes of
4-dimensional subalgebras of M3(k) over k: (B2×D1)(k), N3(k), S6(k), S7(k), S8(k), and
S9(k).

Remark 21. Let S be a 4-dimensional subalgebra of M3(k) over a field k. Let A be one
of (B2 × D1)(k), N3(k), S6(k), S7(k), S8(k), or S9(k). If S ⊗k K is equivalent to A ⊗k K
for an extension field K of k, then S is equivalent to A over k by Corollary 20.
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