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Abstract. It is known that any projective crepant resolution of a three-dimensional
Gorenstein toric singularity can be described as the moduli space of representations
of a quiver associated to a dimer model for some stability parameter. The space of
stability parameters has the wall-and-chamber structure and we can track the variations
of projective crepant resolutions by observing such a structure. In this article, we consider
dimer models giving rise to projective crepant resolutions of a toric compound Du Val
singularity. We show that sequences of zigzag paths, which are special paths on a dimer
model, determine the wall-and-chamber structure of the space of stability parameters.

1. Introduction

The moduli space of representations of a quiver, introduced in [10], is defined as the GIT
quotient associated to a stability parameter. For some nice singularities, resolutions of
singularities can be described as moduli spaces of representations of a quiver. For example,
any projective crepant resolution of a three-dimensional Gorenstein quotient singularity
C3/G defined by the action of a finite subgroup G ⊂ SL(3,C) on C3 can be described
as the moduli space of representations of the McKay quiver of G (see [2, 14]). Also, any
projective crepant resolution of a three-dimensional Gorenstein toric singularity can be
described as the moduli space of representations of the quiver associated to a dimer model
(see [9]). It is known that the space of stability parameters associated to a quiver has the
wall-and-chamber structure, that is, it is decomposed into chambers separated by walls.
The moduli spaces associated to stability parameters contained in the same chamber
are isomorphic, but a stability parameter contained in another chamber would give a
different moduli space. Thus, it is important to detect the wall-and-chamber structure
of the space of stability parameters to understand the relationships among projective
crepant resolutions of the above singularities. The purpose of this article is to detect the
wall-and-chamber structure for a particular class of three-dimensional Gorenstein toric
singularities called toric compound Du Val (cDV) singularities. In particular, we will see
that the combinatorics of a dimer model associated to a toric cDV singularity control the
wall-and-chamber structure.

2. Preliminaries on dimer models and associated quivers

2.1. Dimer models. We first introduce dimer models and related notions which are
originally derived from theoretical physics (e.g., [4, 6]).

The detailed version of this paper will be submitted for publication elsewhere.



A dimer model Γ on the real two-torus T := R2/Z2 is a finite bipartite graph on T
inducing a polygonal cell decomposition of T. Since Γ is a bipartite graph, the set Γ0 of
nodes of Γ is divided into two subsets Γ+

0 ,Γ
−
0 , and edges of Γ connect nodes in Γ+

0 with
those in Γ−

0 . We denote by Γ1 the set of edges. We color the nodes in Γ+
0 white, and those

in Γ−
0 black throughout this article. A face of Γ is a connected component of T\Γ1. We

denote by Γ2 the set of faces. In the rest of this article, we assume that any dimer model
satisfies a certain nice condition called the consistency condition, see e.g., [8, Section 6]
for more details. For example, Figure 1 is a consistent dimer model on T, where the outer
frame is a fundamental domain of T.

Figure 1. An example of a dimer model

We say that a path on a dimer model is a zigzag path if it makes a maximum turn to
the right on a black node and a maximum turn to the left on a white node. For example,
the paths (displayed in thick lines) in Figure 2 are all zigzag paths on the dimer model
given in Figure 1.

Figure 2. Zigzag paths on the dimer model given in Figure 1

We fix two 1-cycles on T generating the homology group H1(T), and take a fundamental
domain of T along such two cycles. Since we can consider a zigzag path z on Γ as a 1-cycle
on T, we have the homology class [z] ∈ H1(T) ∼= Z2, which is called the slope of z. Note
that for a consistent dimer model Γ, any edge of Γ is contained in exactly two zigzag
paths and any slope is a primitive element. Then, for a consistent dimer model Γ, we
assign the lattice polygon called the zigzag polygon (cf. [8, Section 12]). Let [z] be the
slope of a zigzag path z on Γ. By normalizing [z] ∈ Z2, we consider it as an element of the
unit circle S1. Then, the set of slopes has a natural cyclic order along S1. We consider

the sequence
(
[zi]

)k
i=1

of slopes of zigzag paths on Γ such that they are cyclically ordered
starting from [z1], where k is the number of zigzag paths. We note that some slopes may
coincide in general. We set another sequence (wi)

k
i=1 in Z2 defined as w0 = (0, 0) and

wi+1 = wi + [zi+1]
′ (i = 0, 1, . . . , k − 1).

Here, [zi+1]
′ ∈ Z2 is the element obtained from [zi+1] by rotating 90 degrees in the anti-

clockwise direction. One can see that wk = (0, 0) since the sum of all slopes is equal to



zero. We call the convex hull of {wi}ki=1 the zigzag polygon of Γ and denote it by ∆Γ.
Note that there are several choices of an initial zigzag path z1, but the zigzag polygon is
determined uniquely up to unimodular transformations. By definition, we see that the
slope of a zigzag path is an outer normal vector of some side of ∆Γ, and the number
of zigzag paths having the same slope v ∈ Z2 coincides with the number of primitive
segments of the side of ∆Γ whose outer normal vector is v.

Example 1. We consider the dimer model in Figure 1 and its zigzag paths as in Figure 2.
Then, we have the cyclically ordered sequence of slopes(

(0,−1), (0,−1), (0,−1), (1, 1), (0, 1), (0, 1), (−1, 0)
)
,

where we take a Z-basis of H1(T) ∼= Z2 along the vertical and horizontal lines of the
fundamental domain of T. Thus, we have the zigzag polygon as in Figure 3.

Figure 3. The zigzag polygon of the dimer model given in Figure 1

On the other hand, any lattice polygon can be described as the zigzag polygon of a
consistent dimer model as follows.

Theorem 2 (see e.g., [5, 8]). For any lattice polygon ∆, there exists a consistent dimer
model Γ such that ∆ = ∆Γ.

2.2. Toric rings associated to dimer models. Let Γ be a consistent dimer model.
We next consider the cone σΓ over the zigzag polygon ∆Γ, that is, σΓ is the cone whose
section on the hyperplane at height one is ∆Γ.

Let N := Z3 be a lattice and M := HomZ(N,Z) be the dual lattice of N. We set NR :=
N⊗ZR and MR := M⊗ZR. We denote the standard inner product by ⟨ , ⟩ : MR×NR → R.
For the vertices ṽ1, . . . , ṽn ∈ Z2 of ∆Γ, we let vi := (ṽi, 1) ∈ N (i = 1, . . . , n). The cone σΓ

over ∆Γ is defined as
σΓ := R≥0v1 + · · ·+ R≥0vn ⊂ NR.

Then, we consider the dual cone

σ∨
Γ := {x ∈ MR | ⟨x, vi⟩ ≥ 0 for any i = 1, . . . , n}.

Using this cone, we can define the toric ring (toric singularity) RΓ associated to Γ as

RΓ := C[σ∨
Γ ∩M] = C[ta11 ta22 ta33 | (a1, a2, a3) ∈ σ∨

Γ ∩M],

which is Gorenstein in dimension three. We note that any three-dimensional Gorenstein
toric ring can be described with this form. Precisely, let σ be a strongly convex rational
polyhedral cone in NR which defines a three-dimensional Gorenstein toric ring R. Then,
it is known that, after applying an appropriate unimodular transformation (which does
not change the associated toric ring up to isomorphism) to σ, the cone σ can be described
as the cone over a certain lattice polygon ∆R. We call the lattice polygon ∆R the toric



diagram of R. By Theorem 2, there exists a consistent dimer model Γ such that ∆Γ = ∆R

for any three-dimensional Gorenstein toric ring R, in which case we have R = RΓ.

2.3. Quivers associated to dimer models. Let Γ be a dimer model. As the dual of Γ,
we obtain the quiver QΓ associated to Γ, which is embedded in T, as follows. We assign a
vertex dual to each face in Γ2 and an arrow dual to each edge in Γ1. We fix the orientation
of any arrow so that the white node is on the right of the arrow. For example, Figure 4 is
the quiver associated to the dimer model in Figure 1. We simply denote the quiver QΓ by
Q unless it causes any confusion. Let Q = (Q0, Q1) be the quiver associated to a dimer
model, where Q0 is the set of vertices and Q1 is the set of arrows. Let hd(a), tl(a) ∈ Q0

be respectively the head and tail of an arrow a ∈ Q1. A path of length r ≥ 1 is a finite
sequence of arrows γ = a1 · · · ar with hd(ai) = tl(ai+1) for i = 1, . . . , r − 1. We define
tl(a) = tl(a1), hd(a) = hd(ar) for a path γ = a1 · · · ar. A relation in Q is a C-linear
combination of paths of length at least two having the same head and tail. We especially
consider relations in Q defined as follows. For each arrow a ∈ Q1, there exist two paths
γ+
a , γ

−
a such that hd(γ±

a ) = tl(a), tl(γ±
a ) = hd(a) and γ+

a (resp. γ−
a ) goes around the white

(resp. black) node incident to the edge dual to a clockwise (resp. counterclockwise), see
e.g., [12, Figure 6]. We define the set of relations JQ := {γ+

a − γ−
a | a ∈ Q1} and call the

pair (Q,JQ) the quiver with relations associated to Γ.

0
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3

4

Figure 4. The quiver associated to the dimer model given in Figure 1

We then introduce representations of a quiver with relations. A representation of
(Q,JQ) consists of a set of C-vector spaces {Mv | v ∈ Q0} together with C-linear maps
φa : Mtl(a) → Mhd(a) satisfying the relations JQ, that is, φγ+

a
= φγ−

a
for any a ∈ Q1. Here,

for a path γ = a1 · · · ar, the map φγ is defined as the composite φa1 · · ·φar of C-linear
maps. (Note that in this article, a composite fg of morphisms means we first apply f then
g.) In the rest of this article, we assume that the dimension vector of any representation
M = ((Mv)v∈Q0 , (φa)a∈Q1) of (Q,JQ) is 1 := (1, . . . , 1), that is, 1 = (dimC Mv)v∈Q0 . For
representations M,M ′ of (Q,JQ), a morphism from M to M ′ is a family of C-linear maps
{fv : Mv → M ′

v}v∈Q0 such that φafhd(a) = ftl(a)φ
′
a for any arrow a ∈ Q1. We say that

representations M and M ′ are isomorphic, if fv is an isomorphism of vector spaces for all
v ∈ Q0. A representation N of (Q,JQ) is called a subrepresentation of M if there is an
injective morphism N → M .

Next, we introduce moduli spaces parametrizing quiver representations satisfying a
certain stability condition. We consider the weight space

Θ(Q) :=
{
θ = (θv)v∈Q0 ∈ ZQ0 |

∑
v∈Q0

θv = 0
}



and let Θ(Q)R := Θ(Q)⊗Z R. We call an element θ ∈ Θ(Q)R a stability parameter.
Let M be a representation of (Q,JQ) of dimension vector 1. For a subrepresentation

N of M , we define θ(N) :=
∑

v∈Q0
θv(dimC Nv), and hence θ(M) = 0 in particular. For a

stability parameter θ ∈ Θ(Q)R, we introduce θ-stable representations as follows.

Definition 3 (see [10]). Let θ ∈ Θ(Q)R. We say that a representation M is θ-semistable
(resp. θ-stable) if θ(N) ≥ 0 (resp. θ(N) > 0) for any non-zero proper subrepresentation
N of M . We say that θ is generic if every θ-semistable representation is θ-stable.

By [10, Proposition 5.3], for a generic parameter θ ∈ Θ(Q)R, one can construct the fine
moduli space Mθ(Q,JQ, 1) parametrizing isomorphism classes of θ-stable representations
of (Q,JQ) with dimension vector 1 as the GIT (geometric invariant theory) quotient.
In the following, we let Mθ = Mθ(Q,JQ, 1) for simplicity. This moduli space gives a
projective crepant resolution of a three-dimensional Gorenstein toric singlarity as follows.

Theorem 4 (see [7, Theorem 6.3 and 6.4], [9, Corollary 1.2]). Let Γ be a consistent dimer
model, and Q be the associated quiver. Let RΓ be the three-dimensional Gorenstein toric
ring associated to Γ. Then, for a generic parameter θ ∈ Θ(Q)R, the moduli space Mθ is
a projective crepant resolution of SpecRΓ. Moreover, any projective crepant resolution of
SpecRΓ can be obtained as the moduli space Mθ for some generic parameter θ ∈ Θ(Q)R.

It is known that the space Θ(Q)R of stability parameters has a wall-and-chamber struc-
ture. Namely, we define an equivalence relation on the set of generic parameters so that
θ ∼ θ′ if and only if any θ-stable representation of (Q,JQ) is also θ′-stable and vice versa,
and this relation gives rise to the decomposition of stability parameters into finitely many
chambers which are separated by walls. Here, a chamber is an open cone in Θ(Q)R con-
sisting of equivalent generic parameters and a wall is a codimension one face of the closure
of a chamber. Note that any generic parameter lies on some chamber (see [9, Lemma 6.1]),
and Mθ is unchanged unless a parameter θ moves in the same chamber of Θ(Q)R.

3. Wall-and-chamber structures for toric cDV singularities

In the following, we detect the wall-and-chamber structure of Θ(Q)R for the quiver Q
associated to a dimer model giving rise to projective crepant resolutions of a toric com-
pound Du Val singularity. Compound Du Val (cDV) singularities, which are fundamental
pieces in the minimal model program, are singularities giving rise to Du Val (or Kleinian,
ADE) singularities as hyperplane sections. It is known that toric cDV singularities can
be classified into the following two types (e.g., see [3, footnote (18)]):

(cAa+b−1) : C[x, y, z, w]/(xy − zawb),

(cD4) : C[x, y, z, w]/(xyz − w2),

where a, b are integers with a ≥ 1 and a ≥ b ≥ 0. Note that the former one is a cDV
singularity of type cAa+b−1 and the latter one is of type cD4. Since these are three
dimensional Gorenstein toric rings, they can also be described as the form explained in
Subsection 2.2. In particular, we can take the toric diagram of the toric cDV singularities
of type cAa+b−1 as the trapezoid, which will be denoted by ∆(a, b), whose vertices are
(0, 0), (a, 0), (b, 1), and (0, 1). For example, Figure 3 shows ∆(3, 2). By Theorem 2, there



exists a consistent dimer model whose zigzag polygon is ∆(a, b), see [11, Subsection 1.2],
[12, Section 5] for the precise construction. In general, such a dimer model is not unique,
thus we choose one of them and denote the chosen one by Γa,b. By construction, the dimer
model Γa,b has n := a+ b faces. We label one of the faces with 0, and label the face right
next to k with k+1 (mod n) for k = 0, 1, . . . , n− 1. Also, we will use these labels as the
names of vertices of the associated quiver Q.

We here focus on the toric cAn−1 singularity Ra,b := C[x, y, z, w]/(xy − zawb) where
n := a + b, and the associated dimer model Γa,b. Let Q be the quiver obtained as
the dual graph of Γa,b. By Theorem 4, the quiver Q gives rise to projective crepant
resolutions of SpecRa,b as moduli spaces. By the definition of the zigzag polygon, we
have the set {u1, . . . , un} of zigzag paths on Γa,b such that [uk] is either (0,−1) or (0, 1)
for k = 1, . . . , n, and a = #{k | [uk] = (0,−1)}, b = #{k | [uk] = (0, 1)}. We rearrange
u1, . . . , un if necessary, and construct the sequence (u1, . . . , un) of the zigzag paths so that
uk consists of the edges shared by the faces k − 1 and k (mod n) for any k = 1, . . . , n.
Also, we define a total order < on {u1, . . . , un} as un < un−1 < · · · < u2 < u1.

By [12, Lemma 5.2], we see that any pair of zigzag paths (ui, uj) on Γa,b divide the
two-torus T into two parts (see Figure 5). We denote the region containing the face 0
by R−(ui, uj), and the other region by R+(ui, uj). By abuse of notation, we also use
the notation R±(ui, uj) for the set of vertices of Q contained in R±(ui, uj). Since we
essentially use one of R±(ui, uj), we let R(ui, uj) := R+(ui, uj).

R
+(ui, uj)R

−(ui, uj) R
−(ui, uj)

ui uj

Figure 5

For the quiver Q associated to Γa,b, any θ ∈ Θ(Q)R satisfies θ0 = −
∑

v ̸=0 θv. When we

consider Θ(Q)R, we employ the coordinates θv with v ̸= 0. Then, the wall-and-chamber
structure of Θ(Q)R can be determined by zigzag paths of the dimer model Γa,b as follows.

Theorem 5 (see [12, Theorems 6.11, 6.12, and Corollary 6.13]). Let the notation be the
same as above. Then, there exists a one-to-one correspondence between the following sets:

(a) the set of chambers in Θ(Q)R,

(b) the set
{
Zω = (uω(1), . . . , uω(n)) | ω ∈ Sn

}
of sequences of zigzag paths,

such that under this correspondence, if a chamber C ⊂ Θ(Q)R corresponds to a sequence
Zω, then for any k = 1, . . . , n− 1, we have the following:

(1) We see that Wk := {θ ∈ Θ(Q)R |
∑

v∈Rk
θv = 0} is a wall of C, where Rk :=

R(uω(k), uω(k+1)) is the region determined by the zigzag paths uω(k), uω(k+1) (see
Figure 5).



(2) Any parameter θ ∈ C satisfies
∑

v∈Rk
θv > 0 (resp.

∑
v∈Rk

θv < 0) if uω(k) <
uω(k+1) (resp. uω(k+1) < uω(k)).

(3) Suppose that C ′ is the chamber separated from C by the wall Wk. Let θ ∈ C
and θ′ ∈ C ′. If [uω(k)] = −[uω(k+1)], then Mθ and Mθ′ are related by a flop. If
[uω(k)] = [uω(k+1)], then we have Mθ

∼= Mθ′.

(4) The action of the adjacent transposition sk ∈ Sn swapping k and k + 1 on Zω

induces a crossing of the wall Wk in Θ(Q)R. In particular, the chambers in ΘR(Q)
can be identified with the Weyl chambers of type An−1.

For the case cD4, we have similar results as shown in [12, Theorem 8.1], although some
modifications are required. Note that the homological minimal model program [13] also
detects the wall-and-chamber structure of Θ(Q)R, whereas our method provides a more
combinatorial way to observe it.

In addition, it is known that the projective crepant resolution Mθ can also be described
as the toric variety associated to the toric fan induced from a triangulation of ∆(a, b) (see
e.g., [1, Chapter 11]). For the sequence Zω corresponding to a chamber C ⊂ Θ(Q)R, there
is a certain way to obtain the triangulation of ∆(a, b) giving rise to the projective crepant
resolution Mθ with θ ∈ C, see [12, Subsection 6.1] for more details.

Example 6 (The suspended pinch point (cf. [9, Example 12.5])). We consider the dimer
model Γ shown in the left of Figure 6. We can see that the zigzag polygon of Γ is ∆(2, 1).
We also consider the zigzag paths u1, u2, u3 shown in the right of Figure 6. In particular,
the slopes of these zigzag paths are [u1] = [u2] = (0,−1), and [u3] = (0, 1). We fix a total
order u3 < u2 < u1.

0

1

2

0

1

2

u1 u2

u3

Figure 6. The dimer model Γ whose zigzag polygon is ∆(2, 1) (left), the
zigzag paths u1, u2, u3 on Γ (right).

Let Q be the quiver associated to Γ. Then the space of stability parameters is

Θ(Q)R = {θ = (θ0, θ1, θ2) | θ0 + θ1 + θ2 = 0}.
By Theorem 5, we have the wall-and-chamber structure of Θ(Q)R as shown in Figure 7.
For example, the sequence (u3, u2, u1) corresponds to the chamber C described as

C = {θ ∈ Θ(Q)R | θ1 > 0, θ2 > 0}.
Indeed, since R(u3, u2) = {2} and u3 < u2, any parameter in C satisfies the inequality
θ2 > 0. Also, since R(u2, u1) = {1} and u2 < u1, any parameter in C also satisfies the
inequality θ1 > 0. A crossing of the wall θ2 = 0 of C corresponds to a swapping of u3 and
u2. Also, a crossing of the wall θ1 = 0 of C corresponds to a swapping of u2 and u1.



θ1

θ2

(u3, u2, u1)

(u3, u1, u2)

(u1, u3, u2)

(u1, u2, u3)

(u2, u1, u3)

(u2, u3, u1)

Figure 7
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