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In this talk, R is a commutative complete Cohen-Macauly local
ring with algebraic residue field k.

@ All modules are " finitely generated” R-modules.

@ C is the category of maximal Cohen-Macaulay (MCM)
modules.

C = {M | Extj(k, M) = 0 for i < dimR}

Remark 1

@ Since R is complete, C is a Krull-Schmidt category.



We consider the categories:

finitel ted
o mod(C) := {F:C — Ap| 7 Presemed -
contravariant additive functors

e mod(C) := {F € mod(C)|F(R) = 0}.
For VF € mod(C), 30 - L - M — N — 0 such that

0 — Homg( ,L) — Homg( , M) — Homg( ,N) - F — 0

is exact in mod(C).

Auslander '86.

mod(C) and mod(C) are abelian categories.



Remark 2

We denote by C the stable category of C. The objects of C are the
same as those of C, and the morphisms

Homg (M, N) := Homg(M, N)/{M — P — N with P free}.

@ The category mod(C) is equivalent to mod(C).
mod(C) — mod(C); F+— Fou,

where ¢ : C — C.

@ For VF € mod(C) with
Homg( , M) — Homg( ,L) — F — 0, we have an exact
sequence Homg( , M) — Homg( ,L) — F — 0.

In the rest of this slide, we denote mod(C) instead of mod(C).



We denote by Sp(C) the set of isomorphism classes of the
indecomposable MCM R-modules except R and 0.

Sp(C) := {the indecomp. MCM R-modules except R and 0}/ =

Definition 1 (Krause '97)

The assignments
X : P(Sp(C)) — mod(C), ~ :mod(C) — PB(Sp(C))
are defined by

2 (X) :={F € mod(C) | F(X) =0 for VX € X}
~(F) := {M € Sp(C) | F(M) = 0 for VF € F}.



Remark 3
In this talk, we consider only finitely generated (pure-injective)

modules. Therefore C is not closed under arbitrary coproducts. In
other words, C (C) is not compactly generated. The studies in

[1, 2, 3, 4, 5] have considered categories that are compactly
generated. In fact, they consider infinitely generated modules.

Lemma 2

For the assignments ¥ and =, the following statements hold.
QX CY=X(X)DX()).
@ FCG=(F) 2+(9)
Q@ X C~HyoX(X).
Q F C X o~v(F). Moreover v(F) = ~ o X o v(F).
@ VX, X(X) is a Serre subcategory in mod(C).

Proof.
(5) evx : mod(C) — AB; F — F(X) is exact. O



Suppose that R is Gerenstein. The assignment X +— ~ o X(X)
is a Kuratowski closure operator. That is,

@ YoX(0) =0,

Q@ X CyoX(X),

Q@ YoX(XUY)=70XE(X)UvyoX())
@ Yo X(yoX(X))=rvo0X(X)

hold for VX, Y € B (Sp(C)).

The assertions (i), (ii), and (iv) follow from the definition and the

lemma above. We give (the sketch of) the proof (iii):



Remark 4
Let R be a Gerenstein local ring. Then Homg(—, M) € mod(C)
for VM € C.

2 (X):={F € mod(C) | F(X) =0 for VX € X}
Y(F) :={M € Sp(C) | F(M) = 0 for VF € F}.

(Proof of (iii)) yoX(X UY) =~v0X(X)U~vyoX(Y))
The inclusion D follows from (X U Y) = X(X) N Z(Y).
To show C,

@ take M € v o X(X U Y). Note that M is indecomposable.

@ Assume that M € v o Z(X) U~y o X(Y). Then
3F € X(X),G € X(I) such that F(M) # 0, G(M) # 0.

We construct the functor H € (X U Y) such that H(M) # 0
using F and G.



2 (X):={F € mod(C) | F(X) =0 for VX € X}

Construct H € (X U Y) s.t. HM) # 0
@ By Yoneda's Lemma,
3f : Homg(—, M) — F, 3g: Homgz(—,M) — G.
e Taking pushout diagram in mod(C):

Homgp(—,M) —Im f—0

l

Img

l

0

o SinceImf € £X(X), Imge (YY), He Z(XUY).
@ The exact sequence
Homg(—,M) - Im f Im g — H — 0 shows H(M) # 0.
O

O~ T <—



Corollary 3

Let R be -Gerenstein. The assignment X +— v o X(X) defines a
topology on Sp(C): a subset X of Sp(C) is closed if and only if
v o E(X) = X.

Remark 5

For a locally coherent category ¢, A bijective correspondence
between closed subsets in Sp(¥) and Serre subcategories in
mod(¥) is given in [1, 2]:

X = E(X), F(F).

In our setting, for a Serre subcategory F € mod(C),
F # X o~(F) in general.



Example 4
Let R = k[[x,y]]/(x?). The indecomposable MCM R-modules are

R, I =(x)Rand I, = (x,y")R for n > 0.
Since v(Homg(—, In)) = 0,
¥ o y(Homg(—, 1)) = (@) = mod(C)-

However S(Homg(—, I4)) # mod(C).

@ Since KGdim Homg(—,1,) =1,
KGdim S(Homg(—,I,)) = 1.

o Note that KGdim Homg(—,1) = 2.

@ Hence Homg(—, 1) € S(Homg(—, I,)), so that
S(Homg(—, 1)) # mod(C).



Remark 6

By using the lemma below, one can show that
v o X(X) = {X}
for VX € Sp(C). Hence Sp(C) is T1-space.

Lemma 5

Let X, Y € Sp(C) with X 2 Y. Suppose that Homg(X, Y) # 0.
Then'Y &€ ~v o X(X).



Proposition 7

Let M € Sp(C). M is an isolated point, that is {M} is open, iff
there exists an Auslander-Reiten (AR) sequence ending in M.

Proof.
(«<=) Take the functor Sm obtain from the AR-sequence. Then
~(Sm) = Sp(C)\{M}, which is closed.
(=) It follows from the fact that X which appears in
Homg(—, X) — F — 0 is finitely generated.

Corollary 6

Let R be an isolated singularity. Then the topology of Sp(C) is
discrete.



Cantor-Bendixson rank

Definition 7 (Cantor-Bendixson rank)

T is a topological space.
@ If x € T is an isolated point, then CB(x) = 0.

@ Put 7/ C T is a set of the non-isolated point. Define the
induced topology on T”. Set

70 =7 71 = 7'(0)', coo R — 70

We define CB(x) = n if x € T(M\7(n+1)
o If 3n such that 70"+1) = @ and 7 # @, then CB(T) = n.
o If 7 := T # @, then CB(T) = oco.



Example 8

Let R be a DVR (e,g. R = k[[x]]). Then CB(SpecR) =1
concerning the Zariski topology. Note that SpecR = {(0), m}.
(0) is an isolated point since D(f) = {(0)} for some f € R\{0}.
Thus SpecR’ = {m} = SpecR(W, and m is isolated in the
induced topology.

Corollary 9
Let R be an isolated singularity. Then CB(Sp(C)) = 0.

Proof.
Sp(C) is a discrete topology, O



Definition 10 (CM, -finite [Kobayashi, et al. 2020])

We say that a Cohen—Macaulay local ring R is CM_ -finite if there
exist only finitely many isomorphism classes of indecomposable
MCM modules that are not locally free on the punctured spectrum.

Example 11
The following rings are CM 4 -finite.
@ A ring which is an isolated singularity. (Thus a ring which is
of finite CM-representation type.)
@ A hypersurface ring which is of countable CM-representation
type.
Here we say that R is of finite (countable) CM-representation type

if there exists only finitely (countably) many isomorphism classes
of indecomposable MCM modules.



CB-rank of CM, -finite representation type i

Theorem B
If R is CM4-finite then CB(Sp(C)) < 1.

(Proof)

We denote by Cyp the subset of Sp(C) consisting of modules that
are locally free on the punctured spectrum and put
C+ :=Sp(C)\Co.

@ For VM € Cp, M is an isolated point since M admits an
AR-sequence. Thus CB(Cp) = 0.

@ On the other hand, for VM € C4, M is not isolated.



CB-rank of CM, -finite representation type ii

@ Since R is CM-finite, C4 is a finite set. Hence, for
VM € C,,

finite
Vm:i= ) ~oZ(X)
X #£M
Xecl,
is closed in Sp(C).
@ Thus
[C+]1(")[SP(C)\Vm] = {M}
is open in C+ N Sp(C).
@ Therefore CB(Sp(C)) < 1.



Thank you for your attention.



