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Abstract. In this article, we develop an elementary theory of partially additive rings
as a foundation of F1-geometry. Our approach is so concrete that an analog of classical
algebraic geometry is established very straightforwardly.

As applications, we construct (1) a kind of affine group scheme GLn whose value at
a commutative ring R is the group of n× n invertible matrices over R and at F1 is the
n-th symmetric group, and (2) a projective space Pn as a kind of scheme and count the
number of points of Pn(Fq) for q = 1 or q = pn a power of a rational prime.

Key Words: Partially additive ring, Field with one element, Affine group scheme.

2020 Mathematics Subject Classification: Primary 14A23; Secondary 14L17.

1. Introduction

In his 1957 paper [5], J.Tits observed that the correspondence of geometries over a
field k and the Chevalley groups over k developed in that paper specializes, when k is
the hypothetical “field of characteristic one”, to the correspondence of finite complexes
and the Weyl groups of those Chevalley groups. In the early 1990s, Manin, based on
the ‘beautiful ideas of Deninger and Kurokawa’, proposed to use this hypothetical field
of characteristic one to solve the Riemann hypothesis. Since then, there have been many
attempts to establish a foundation for these ideas, but it seems that the project has not
been settled down yet.

In this paper, we develop an elementary theory of partially additive rings and based
on it, we also develop a kind of scheme theory. As such, Deitmar’s F1-schemes [2] and
Lorscheid’s blue schemes [3] are relevant to our theory. Deitmar’s theory of F1-schemes
is a direct analog of the classical scheme theory, where a commutative (multiplicative)
monoid is used in place of a commutative ring. Lorscheid’s theory of blue schemes is based
on the theory of blueprints. A blueprint is a generalization of a commutative ring with
identity in which addition is replaced by a congruence on a semiring N[A], the monoid-
semiring of a commutative monoid A. A Partially additive ring, defined in this paper (
and in [4]), is a special case of a blueprint developed in [3]. It is a part of blueprint
which is the direct partially-additive analog of the non-additive setting of Deitmar and
it can be thought of as an interpolation between commutative rings and commutative
monoids. It is so concrete that an analog of classical algebraic geometry is established
very straightforwardly. As applications, we construct a kind of affine group scheme GLn

whose value at a commutative ring R is the group of n × n invertible matrices over R
and at F1 is the n-th symmetric group, and we construct a projective space Pn as a kind

The detailed version of this paper has been submitted to mathematics arXiv [4].



of scheme and count the number of points of Pn(Fq) for q = 1 or q = pn a power of a
rational prime.

2. Partially additive algebra

In this section we summarize definitions of the notions in partially additive algebra.
The definition of a partial monoid given below is due to G.Segal.

Definition 1. A partial monoid is a set A, a distinguished element 0 ∈ A, a subset A2

of A× A and a map +: A2 → A such that

(1) A× {0} ∪ {0} ⊆ A2 and a+ 0 = a = 0 + a, for any a ∈ A.
(2) (a, b) ∈ A2 if (b, a) ∈ A2 and a+ b = b+ a, for any a, b ∈ A.
(3) (a, b) ∈ A2 and (a+ b, c) ∈ A2 if and only if (b, c) ∈ A2 and (a, b+ c) ∈ A2, for any

a, b, c ∈ A.

For example, any based set is considered as a partial monoid by giving it a trivial
structure — only the base point 0 can be added to other elements. For another example,
a commutative monoid (thus a commutative group) is a partial monoid where A2 is taken
to be the whole set A× A.

Definition 2. Let A,B be partial monoids. A map f : A → B is a homomorphism of
partial monoids if

(1) f(0) = 0 and
(2) for all a, b ∈ A, (a, b) ∈ A2 implies (f(a), f(b)) ∈ B2 and f(a+ b) = f(a) + f(b).

Definition 3. A partial ring is a partial monoid with a bilinear, associative and com-
mutative product · : A × A → A and a multiplicative identity 1 ∈ A. More explicitly, a
partial ring is a partial monoid with a product · : A×A → A such that, for all a, b, c ∈ A,

(1) 0 · a = 0,
(2) if (a, b) ∈ A2 then (a · c, b · c) ∈ A2 and (a+ b) · c = a · b+ a · c,
(3) (a · b) · c = a · (b · c),
(4) a · b = b · a, and
(5) 1 · a = a.

If every element except for 0 of a partial ring is invertible, we call it a partial field.

For example, any commutative monoid with an absorbing element 0 is a partial ring
in which only 0 can be added to other elements, and any commutative semiring (thus a
commutative ring) with identity is a partial ring. A commutative group with an absorbing
element 0 adjoined and a field are examples of a partial field.

Definition 4. Let A and B be partial rings. A homomorphism of A → B is a homo-
morphism of partial monoids f : A → B which is compatible with the multiplications in
A and B.

For example, if A and B are commutative monoids with an absorbing element, con-
sidered as partial rings, then a homomorphism A → B as partial rings is nothing but
a homomorphism A → B as commutative monoids. For another example, if A and B
are commutative rings with identity considered as partial rings, then a homomorphism



A → B as partial rings is nothing but a homomorphism A → B as commutative rings.
Thus we have full embeddings of categories CMon0 → PRing and CRing → PRing,
where CMon0,PRing and CRing denote the category of commutative monoids with ab-
sorbing element, of partial rings and of commutative rings with identity. In the rest of
this paper, a commutative monoid with absorbing element and a commutative ring with
identity are considered as a partial ring via this embedding.

In the rest of this paper, A is a partial ring.

Definition 5. An A-module is a partial monoid M with an action of A which is bilinear,
associative and unital. More explicitly, an A-module is a partial monoid M and a map
· : A×M → M such that

(1) for any a ∈ A, the map M → M given by m 7→ a ·m is a homomorphism of partial
monoids,

(2) for any m ∈ M, the map A → M given by a 7→ a ·m is a homomorphism of partial
monoids,

(3) (a · b) ·m = a · (b ·m) for any a, b ∈ A and m ∈ M,
(4) 1 ·m = m for any m ∈ M.

For example, a based set M with an action of a commutative monoid A on it is an A-
module. For another example, an A-module in the usual sense, where A is a commutative
ring, is an A-module in our sense.

Definition 6. Let M and N be A-modules. A homomorphism of A-modules is a
homomorphism of partial monoids f : M → N which is compatible with the actions of A
on M and N.

Let M be an A-module and S ⊆ A be a multiplicative subset. As usual, let m
s
denote

the equivalence class of (s,m) ∈ S×M under the equivalence relation (s,m) ∼ (t, n) ⇐⇒
∃u ∈ S s.t. usn = utm. If we put

S−1M =
{m

s

∣∣∣m ∈ M, s ∈ S
}
, and

(S−1M)2 =

{(
m

s ,

n

s

)∣∣∣∣ (m,n) ∈ M2

}
,

then S−1M is an A-module in a natural manner. (The definition of (S−1M)2 may seem
too easy at first look, but it can do, since we can make a common denominator.)

Definition 7. An A-submodule of A is called an ideal of A. An ideal I is a prime ideal
if A \ I is multiplicatively closed.

3. Examples

In this section, partial rings and A-modules of major interests are listed.
Partial rings.

• Partial rings of order 2
If A = {0, 1} is a partial ring, operations other than 1 + 1 are determined by the
axioms. There are three possibilities of 1+1, namely, 1+1 = 0, 1 and ‘undefined’.
If 1 + 1 = 0, A = F2, the field of two elements. If 1 + 1 = 1, A = B, a “Boolean”



semiring. If 1 + 1 is undefined, we denote this partial ring by F1. All these three
are partial fields.

• Let 〈x1, . . . , xn〉 be the commutative monoid generated freely by n indeterminates
x1, . . . , xn with an absorbing element 0 adjoined.

• Let S be a set of elements of N[x1, . . . , xn]. We denote by F1〈x1, . . . , xn|S〉 the
smallest partial subring of N[x1, . . . , xn] which contains 〈x1, . . . , xn〉 and any sub-
sum of an element of S can be calculated in it.

• As a special case of the previous example, we consider the case where S consists
of a single element x1 + · · ·+ xn. In this case, we can show that

F1〈x1, . . . , xn|x1 + · · ·+ xn〉 = { subsum of (x1 + · · ·+ xn)
r | r ∈ N}

and any two elements α, β ∈ F1〈x1, . . . , xn|x1 + · · · + xn〉 are summable in this
partial ring if the sum α+β taken in N[x1, . . . , xn] is contained in F1〈x1, . . . , xn|x1+
· · ·+ xn〉. This partial ring represents the summable n-tupples, as there exists an
isomorphism of A-modules

HomPRing(F1〈x1, . . . , xn|x1 + · · ·+ xn〉, A) ∼= An

for any partial ring A.of partial rings.

A-modules.

• Direct product

An = {(a1, . . . , an) | a1, . . . , an ∈ A},
(An)2 = {(a1, . . . , an; b1, . . . , bn) | (ai, bi) ∈ A2, ∀i}.

• Summable n-tuples

An = {(a1, . . . , an) | a1 + · · ·+ an can be calculated in A},

(An)2 =

{
(a1, . . . , an; b1, . . . , bn)

∣∣∣∣∣
n∑

i=1

(ai + bi) can be calculated in A

}
.

• “Hyper summable” n-tuples

A(m) = {(a1, . . . , am) ∈ Am | (c1a1, . . . , cmam) ∈ Am ∀ci ∈ A},
(A(m))2 = {(a1, . . . , am; b1, . . . , bn) | (a1 + b1, . . . , an + bn) ∈ A(m)}.

4. Congruences

In this section, we summarize some facts about congruences on a partial ring. Congru-
ence is one of the main points where the analogy between partial algebras and classical
commutative algebras does not go smoothly. This inconsistency is explained simply by
stating the fact that congruences on a partial ring does not correspond bijectively with
ideals in that partial ring. But since the congruence is one of the main tools to construct
a new partial algebra from another, we need to establish the theory of congruences on a
partial ring.

Recall from [1] that an equivalence relation on an object X of a category C with small
limits is a subobject R of X ×X such that the injection HomC(C,R) → HomC(C,X) ×
HomC(C,X) induced by the monomorphism R → X × X gives rise to an equivalence



relation on the set HomC(C,X) for all object C of C. An equivalence relation R is called
effective if it is a kernel pair of a morphism in C. In this paper the word congruence
will be used as a synonym of effective equivalence relation.

If C = CRing, the following are true:

(1) Every equivalence relation is a congruence.
(2) A congruence R on a ring A gives rise to an ideal I(R) = {a− b | (a, b) ∈ C} of A

and, conversely, an ideal J of A gives rise to a congruence C(J) = {(a, b) | a− b ∈
J} on A. This establishes a bijective correspondence between congruences on A
and ideals of A.

On the other hand, if C = PRing , the following are true:

(1) An equivalence relation R is a congruence if and only if R2 = (R×R)∩ (A×A)2.
(2) For a congruence R on a ring A, let I(R) be the ideal of A defined by

I(R) = {a ∈ A | (a, 0) ∈ R}.

Conversely, for an ideal J of A, let C(J) be the smallest congruence on A which
contains J × J. This establishes a two way correspondence

C : (ideals of A) ⇄ (congruences on A) : I

We have CI(R) ⊆ R and J ⊆ IC(J) for any congruence R on A and for any ideal
J of A. Thus we have a bijective correspondence between the congruences of the
form C(J) and the ideals of the form I(R).

5. Partial schemes

Let X be the set of the prime ideals of A. For any a ∈ A, let D(a) denote the set of
prime ideals of A which does not contain a. Since D(a) ∩D(b) = D(ab) for any a, b ∈ A,
D(a)’s for all a ∈ A constitute a base for a topology on XA, with which we make XA a
topological space.

For any open set U ⊆ XA, we put SU = {s ∈ A|s /∈ P, ∀P ∈ U} and O′
A(U) = S−1

U A.
Then O′

A(U) is a presheaf of partial rings on XA. Let OA denote the sheafification of O′
A.

We put SpecA = (XA,OA).

Definition 8. An affine partial scheme is a partial-ringed space (X,OX) which is
isomorphic to SpecA for some partial ring A. A partial scheme is a partial-ringed space
(X,OX) which is locally isomorphic to an affine partial scheme.

Proposition 9. Let SpecA = (X,OX).

(1) X is quasi-compact.
(2) We have a natural monomorphism A → OX(X).
(3) If A is a partial field, A ∼= OX(X).

For a proof, see [4].



6. Projective space Pn as a partial scheme

Let B be a partial ring given by B = F1〈y0, . . . , yn | y0 + · · · + yn〉. Let Ai be the
0-th part of the localization of B by the multiplicative set {xr

i | r ∈ N}. It is readily

seen that Ai consists of subsums of
(

y1
yi
+ · · ·+ yn

yi

)r

.
If Ai,j denotes the localization of Ai

by the multiplicative set
{(

xj

xi

)r

| r ∈ N
}

,
we have that Ai,j = Aj,i. This allows us to

patch affine pieces Xi = SpecAi together to get a partial scheme, which we denote by
Pn
B. If {i1, . . . , ik} ⊆ {0, 1, . . . , n} is a k-element set, let Ai1,...,ik denote the 0-th part of

the localization of B by the multiplicative set generated by xi1 , . . . , xik . Then we have an
isomorphism Xi1 ∩ · · · ∩Xik

∼= SpecAi1,...,ik . Let F be a partial field. Assume that there
exists a finite subset E of F such that for any a1, . . . , ar ∈ E, (1, a1, . . . , ar) ∈ Fr+1 and
elements in F \E is not summable with 1. If the cardinal of E is κ(F ), we have that the
number of F -valued points of Xi1 ∩ · · · ∩ Xik , i.e. that of homomorphisms from Ai1,...,ik

to F is (κ(F )− 1)kκ(F )n−k. So we can calculate the number of F -valued points of Pn
B as

#Pn
B(F ) =

n∑
k=0

(−1)k
(
n+ 1

k

)
(κ(F )− 1)kκ(F )n−k

=

{
κ(F )n + · · ·+ κ(F ) + 1 if κ(F ) 6= 1
(n+ 1)κ(F )n = n+ 1 if κ(F ) = 1.

Since κ(Fq) = q including the case q = 1, we have that

#Pn
B(Fq) =

{
qn + · · ·+ q + 1 if q = pd is a power of a prime p
n+ 1 if q = 1.

Since n + 1 is the number of vertices of an n-simplex, this result can be thought of as a
supportive evidence for a part of the conjecture of Tits [5].

7. Linear algebra of A-modules

Let φ : Am → An be a homomorphism of A-modules. If ej (1 ≤ j ≤ m) and
fi (1 ≤ i ≤ n) denote the elementary vectors of M and N respectively, then φ deter-
mines an n × m matrix α = (aij), where φ(ej) =

∑n
i=1 aijfi. For any (c1, . . . , cm) ∈

Am, we have (c1e1, . . . , cmem) ∈ (Am)m. Since φ is a homomorphism, this implies that
(c1φ(e1), . . . , cmφ(em)) ∈ (An)m. This implies that (c1ai1, . . . cmaim) ∈ A2 for all i =
1, . . . , n, so that for a matrix α = (aij) determined by a homomorphism Am → An, we
have (ai1, . . . , aim) ∈ A(m) for all i = 1, . . . , n. Conversely, a matrix α with this property
determines a homomorphism Am → An in an obvious way.

Proposition 10. There exists a bijection between the set of homomorphisms Am → An

and the set of n×m matrices whose rows are in A(m). A(m) is naturally isomorphic to the
A-module dual of Am.

Let Mn,m(A) denote the set of n×m matrices whose rows are in A(m). Unfortunately,
Mn,m(A) is not a functor of A, since the correspondence A 7→ A(n) is not functorial.
We remedy this defect by considering An as a functorial approximation to A(n) and use
An in place of A(n). A supporting evidence that we can use An as an approximation to



A(n) is that these two A-modules coincide for an important class of partial rings such as
commutative monoids with absorbing element and commutative rings with identity. This
observation leads to the following definition:

In this paper we say that a partial ring A is good if An = A(n).

Now, let M ′
n,m(A) denote the set of n × m matrices whose rows are in Am. Since an

element of M ′
n,m(A) is not “genuine” matrices, i.e. does not correspond to an A-module

homomorphism, M ′
n(A) = M ′

n,n(A) is only a non-commutative partial magma, while
Mn(A) = Mn,n(A) is a (genuine) monoid by the usual matrix product. Similarly, if we
put GL′

n(A) = GLn(A) ∩ M ′
n(A), where GLn(A) is the group of invertible matrices in

Mn(A), then GL′
n(A) is only a non-commutative partial group. A definition of partial

group is given in [4].

8. Main result

Let PGrp and Grp denote the category of partial groups and groups, respectively. We
will give a definition of a good partial ring in the talk. Commutative monoids with
absorbing element 0 and commutative rings with identity are examples of good partial
rings.

Theorem 11. There exists a representable functor GL′
n : PRing → PGrp which enjoys

the following properties:

(1) its restriction to the category of good partial rings factors as ι ◦ GLn, where ι is
the canonical inclusion Grp → PGrp.

(2) If A is a commutative rings with identity, then GL′
n(A) = GLn(A) is the group of

n-th general linear group with entries in A, and
(3) GL′

n(F1) = GLn(F1) = Sn is the n-th symmetric group.

Proof. Let N[xij, yij (1 ≤ i, j ≤ n)] be the semiring of polynomials of 2n2 indeterminates
xij, yij (1 ≤ i, j ≤ n). Consider n × n matrices X = (xij), Y = (yij), Z = XY = (zij)
and W = Y X = (wij). Let K be the subset of N[xij, yij (1 ≤ i, j ≤ n)] consisting of 4n
elements

xi = xi1 + · · ·+ xin (1 ≤ i ≤ n),
yi = yi1 + · · ·+ yin (1 ≤ i ≤ n),
zi = zi1 + · · ·+ zin (1 ≤ i ≤ n) and
wi = wi1 + · · ·+ win (1 ≤ i ≤ n).

We put G′ = F1〈xij, yij (1 ≤ i, j ≤ n)|K〉. Let Q be the smallest congruence on G′ which
contains 2n2 pairs (zij, δij) and (wij, δij) (1 ≤ i, j ≤ n). Then we put G = G′/Q.
Next, let N = N[xij, yij, x

′
ij, y

′
ij (1 ≤ i, j ≤ n)] be the semiring of polynomials of 4n2

indeterminates xij, yij, x
′
ij, y

′
ij (1 ≤ i, j ≤ n). Consider n× n matrices

X = (xij), Y = (yij), Z = XY = (zij),W = Y X = (wij),

X ′ = (x′
ij), Y

′ = (y′ij), Z
′ = X ′Y ′ = (z′ij),W

′ = Y ′X ′ = (w′
ij),

S = XX ′ = (sij), T = Y ′Y = (tij), U = ST = (uij), V = TS = (vij).

We put

L = {xi, yi, zi, wi, x
′
i, y

′
i, z

′
i, w

′
i, si, ti, ui, vi|1 ≤ i ≤ n},



where ∗i denotes the sum of i-th row of a matrix indicated by the capital of the same
letter ∗. We put H ′ = F1〈xij, yij, x

′
ij, y

′
ij (1 ≤ i, j ≤ n)|L〉. Let R be the smallest congru-

ence on H ′ which contains 6n2 pairs (zij, δij), (wij, δij), (z
′
ij, δij), (w

′
ij, δij), (uij, δij) and

(vij, δij) (1 ≤ i, j ≤ n). Then we put H = H ′/R. A partial cogroup structure on G is given
by a series of partial ring homomorphisms, for the details of which we refer the reader to
[4]. □
Remark 12. Above theorem suggests that analogies between the symmetric group and the
general linear group can be unified to a single statement about a single object GLn. It
also shows that if we have an intermediate good partial ring A between F1 and Fq, where
q = pd is a power of a prime p, there exists an intermidiate group GLn(A). It is proved
that commutative submonoids with absorbing element and subfields of Fq exhausts the
intermediate partial rings between F1 and Fq. Anyway, a more detailed investigation is
needed in this direction.
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