
TILTING COMPLEXES OVER BLOCKS COVERING CYCLIC BLOCKS

YUTA KOZAKAI

Abstract. Let p be a prime number, k an algebraically field of characteristic p, G̃ a
finite group, and G a normal subgroup of G̃ having a p-power index in G̃. Moreover let
B be a block of kG and B̃ the unique block of kG̃ covering B. In this note, we show that
the set of isomorphism classes of basic tilting complexes over B is isomorphic to that of B̃
as partially ordered sets under some kinds of assumptions. Moreover, as an application,
we give the result that the block B̃ of kG̃ covering a cyclic block is tilting-discrete block.

1. Introduction

In representation theory of finite groups, there is a well-known and important conjecture
called Broué’s abelian defect group conjecture.

Conjecture 1. Let k be an algebraically closed field of characteristic p > 0, G a finite
group, B a block of the group algebra kG with defect group D, and b the Brauer cor-
respondent of B in kNG(D). If D is abelian, then the block B is derived equivalent to
b.

There are many cases that Broué’s abelian defect group conjecture holds. Also, it is
known that Broué’s abelian defect group conjecture does not hold generally without the
assumption that the defect group D is abelian. However even if the defect group D is not
abelian, it is thought that the similar statement holds in some situations and that how
we may state the non-abelian version conjecture. The one situation we are interested in
is as follows: G̃ is a finite group with a normal subgroup G of p-power index in G̃ and G
has a cyclic Sylow p-subgroup P . In fact, it is expected that the principal block B0(kG̃)
of kG̃ is derived equivalent to that B0(NG̃(P )) of kNG̃(P ) (for example see [5]). To solve

this, it is essential to find a suitable tilting complex over B0(kG̃), but it is not easy. On
the other hand, the study on tilting complexes over the principal block B0(kG) is well
known and they have some kinds of good properties because the block B0(kG) is a cyclic
block, which implies that it is a Brauer tree algebra (for example, see [1]). Based on these,
we try to compare tilting complexes over B0(kG̃) and those over B0(kG), and to give a
classification of that over B0(kG̃).

2. Silting theory

Let Λ be a finite dimensional algebra over an algebraically closed field. In [2], the set of
isomorphism classes of basic silting complexes over Λ has a partially ordered set structure.
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Definition 2. [2] Let Λ be a finite dimensional algebra over an algebraically closed field.
For silting complexes P and Q of Kb(proj Λ), we define a relation ≥ between P and Q as
follows;

P ≥ Q :⇔ HomKb(proj Λ)(P,Q[i]) = 0 (∀i > 0).

Then the relation ≥ gives a partial order on silt Λ, where silt Λ means the set of isomor-
phism classes of basic silting complexes over Λ.

Here, we remark that any silting complex over B is a tilting complex over B for any
block algebra B of a finite group since it is symmetric algebra (for example, see [2, Example
2.8]). Hence, for a block algebra B of a finite group, the set of isomorphism classes of
basic tilting complexes over B has a partially ordered set structure too. We denote this
partially ordered set by tiltB.

We recall the definition of mutations for silting complexes of Kb(proj Λ) [2, Definition
2.30, Theorem 3.1].

Definition 3. Let P be a basic silting complex of Kb(proj Λ) and decompose it as P =
X ⊕M . We take a triangle

X
f−→ M ′ → Y →

with a minimal left (addM)-approximation f of X. Then the complex µ−
X(P ) := Y ⊕M

is a silting complex in Kb(proj Λ) again. We call the complex µ−
X(P ) a left mutation

of P with respect to X. If X is indecomposable, then we say that the left mutation is
irreducible. We define the (irreducible) right mutation µ+

X(P ) dually. Mutation will mean
either left or right mutation.

Remark 4. If B is a block algebra of finite group, then, for any tilting complex P = X⊕M
over Λ, the complex µϵ

X(P ) is a tilting complex again where ϵ means + or −.

The following result is very important to study of partially ordered structure of the sets
of silting complexes.

Theorem 5 ([2, Theorem 2.35]). For any silting complexes P and Q over Λ, the following
conditions are equivalent:

(1) Q is an irreducible left mutation of P ;
(2) P is an irreducible right mutation of Q;
(3) P > Q and there is no silting complex L satisfying P > L > Q.

We recall the definition of tilting-discrete algebras.

Definition 6. We say that an algebra (which is not necessarily a symmetric algebra) Λ
is a tilting-discrete algebra if for all ℓ > 0 and any tilting complex P over Λ, the set

{T ∈ tilt Λ | P ≥ T ≥ P [ℓ]}
is a finite set.

Tilting-discrete algebras have the following nice property.

Theorem 7 ([3, Theorem 3.5]). If Λ is a tilting-discrete algebra, then Λ is a strongly
tilting connected algebra, that is, for any tilting complexes T and U , the complex T can
be obtained from U by either iterated irreducible left mutation or iterated irreducible right
mutation.



3. Block theory

3.1. Block theory. In this section, let k be an algebraically closed field of characteristic
p > 0. We denote by G a finite group, and by kG the trivial module of kG, that is, a one-
dimensional vector space on which each element in G acts as the identity. We recall the
definition of blocks of group algebras. The group algebra kG has a unique decomposition

kG = B1 × · · · × Bn

into a direct product of subalgebras Bi each of which is indecomposable as an algebra.
Then each direct product component Bi is called a block of kG. For any indecomposble
kG-module M , there exists a unique block Bi of kG such that M = MBi and MBj = 0
for all j ∈ {1, . . . , n} − {i}. Then we say that M lies in the block Bi or that M is a
Bi-module. Also we denote by B0(G) the principal block of kG, that is, the unique block
of kG which does not annihilate the trivial kG-module kG.

First, we recall the definition of defect groups of blocks of finite groups and their
properties.

Definition 8. Let B be a block of kG. A minimal subgroup D of G which satisfies
the following condition is uniquely determined up to conjugacy in G: the B-bimodule
epimorphism

B ⊗kD B → B (b1 ⊗kD b2 7→ b1b2)

is a split epimorphism. We call the subgroup a defect group of the block B.

The following results are well known (for example, see [1]).

Proposition 9. For the principal block B0(G) of kG, its defect group is a Sylow p-
subgroup of G.

Blocks with cyclic defect groups are called cyclic blocks. The cyclic blocks have good
properties.

Proposition 10. For a block B of kG and a defect group D of B, the following are
equivalent:

(1) D is a non-trivial cyclic group;
(2) B is of finite representation type and is not semisimple;
(3) B is a Brauer tree algebra.

We introduce the induced modules, induced complexes and covering blocks.

Definition 11. Let H be a subgroup of G. For a kH-module U , we denote by IndG
HU :=

U ⊗kH kG the induced module of U from H to G. Also, for a complex X = (X i, di),
we denote by IndG

HX the complex (X i ⊗kH kG, di ⊗kH kG). This induces a functor from
Kb(proj kH) to Kb(proj kG).

Definition 12. Let G be a normal subgroup of G̃ and B̃ a block of kG̃. We say a block
B of kG is covered by B̃ or B̃ covers B if there exists a non-zero B̃-module Ũ such that
Ũ has a non-zero summand lying in B as a kG-module.



Let G be a normal subgroup of a finite group G̃. In general, for indecomposable kG-

module U , the induced module IndG̃
GU is not indecomposable. Moreover, for a block B of

kG, there are several blocks of kG̃ covering the block B. However, in case where G is a
normal subgroup of a finite group G̃ and has a p-power index, the following propositions
hold.

Proposition 13 ([4, Green’s indecomposability theorem]). If G is a normal subgroup of
a finite group G̃ of p-power index, then for any indecomposable kG-module V the induced

kG̃-module IndG̃
GV is an indecomposable kG̃-module.

Proposition 14 ([6, Corollary 5.5.6]). Let G be a normal subgroup of G̃, and B a block
of G. If the index of G in G̃ is a p-power, then there exists a unique block of kG̃ covering
B.

Remark 15. Let G be a normal subgroup of a finite group G̃ of a p-power index, B a
block of kG, and B̃ the unique block of kG̃ covering B. Then by Propositions 13 and 14,
for any indecomposable complex X of Kb(proj B), we can easily show that the induced

complex IndG̃
GX is an indecomposable complex of Kb(proj B̃).

4. Main Results

In this section, we give our main results. Let G be a normal subgroup of G̃ with index
in G̃ a p-power. First we give the tilting-discreteness of B̃ and an isomorphism between
tiltB and tilt B̃ as partially ordered sets, where B is a block of kG with some properties
and B̃ is a unique block covering B.

Theorem 16. Let G̃ be a finite group, G a normal subgroup such that the index |G̃ : G|
is a p-power, k an algebraically closed field of characteristic p > 0, B a block of kG, and
B̃ the unique block of kG̃ covering B. Assume B satisfies the following conditions:

(i) Any indecomposable B-module is G̃-invariant,
(ii) B is a tilting-discrete algebra,
(iii) Any algebra derived equivalent to B has a finite number of two-term tilting complexes.

Then B̃ is a tilting-discrete algebra. Moreover the induction functor IndG̃
G : Kb(projB) →

Kb(proj B̃) induces an isomorphism between tiltB and tilt B̃ as partially ordered sets,
here tiltB and tilt B̃ mean the set of all tilting complexes over B and B̃ respectively.

As an application of above theorem, we can apply it to the case where we state in the
introduction, that is, the case G̃ has a normal subgroup G with a p-power index in G̃ and
with a cyclic Sylow p-subgroup. In fact, in this setting, the assumptions in Theorem 16
are satisfied automatically. Hence we get the following theorem.

Theorem 17. Let G̃ be a finite group having G as a normal subgroup with index in G̃ a
p-power. Let B be a block of the finite group G with cyclic defect group and B̃ the unique
block of kG̃ covering B. Then the following hold.

(1) B̃ is a tilting-discrete algebra.

(2) The induction functor IndG̃
G : tiltB → tilt B̃ induces an isomorphism of partially

ordered sets.
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