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Abstract. A quasi-hereditary algebra is a finite dimensional algebra together with a
partial order on its set of isomorphism classes of simple modules which satisfies certain
conditions. In this research, for a given algebra A, we study that how many partial
orders make A to be quasi-hereditary. In particular, we classify such orders for path
algebras of Dynkin type A. This proceeding is based on a paper [7].

1. Introduction

Quasi-hereditary algebras were defined in [11] as an algebraic axiomatization of the
theory of rational representations of semi-simple algebraic groups. They were generalized
to the concept of highest weight categories soon after in [2] as a tool to study highest weight
theories which arise in the representation theories of semi-simple complex Lie algebras and
reductive groups. There are many examples of such algebras, Schur algebras, algebras of
global dimension at most two, incidence algebras and many more.

A quasi-hereditary algebra is a finite dimensional algebra together with a partial order
on its set of isomorphism classes of simple modules which satisfies certain conditions. In
the examples above, the partial order predated (and motivated) the theory, so the choice
was clear (see [4]). However, there are instances of quasi-hereditary algebras having many
possible choices of the partial order. So one may wonder about all the possible orders. In
this research, we will study such all possible choices of orders.

Throughout this paper, let K be a field, A a finite dimensional K-algebra. We denote
by modA the category of finitely generated right A-modules and denote by {S(i) | i ∈ I}
a complete set of isomorphism classes of simple A-modules with an indexing set I. Let
P (i) and I(i) be the projective cover and the injective envelop of S(i), respectively. For
an A-module M , we denote by [M : S(i)] the Jordan-Hölder multiplicity of S(i) in M .
Standard modules and costandard modules are fundamental concepts to define and

study quasi-hereditary algebras.

Definition 1. Let � be a partial order on I. A standard module ∆(i) with weight i ∈ I
is the largest factor module of P (i) such that each composition factor S(j) satisfies j � i.
Dually, a costandard module ∇(i) with weight i ∈ I is the largest submodule of I(i) such
that each composition factor S(j) satisfies j � i. We write ∆ = {∆(i) | i ∈ I} and
∇ = {∇(i) | i ∈ I}.

Let Θ be a class of A-modules. We denote by F(Θ) the subcategory of modA consisting
of all A-modules which have a Θ-filtration, that is, a moduleM with a chain of submodules
Mn ⊂Mn−1 ⊂ · · · ⊂M1 ⊂M0 = M such that Mi/Mi−1 ∈ Θ.

The detailed version of this paper is [7].



Definition 2. [6] A partial order � on I is adapted to A if it satisfies that, for an A-
module M with its top S(i) and its socle S(j), where i and j are incomparable by �,
there exists k ∈ I such that i� k and j � k and [M : S(k)] 6= 0.

For example, any total order on I is adapted to A. In general, the standard, and the
costandard modules will change when we refine the order. Dlab and Ringel [6] introduced
adapted orders on I in order to consider refinements of partial orders. Namely, if �2 is
a refinements of �1, then ∆1(i) = ∆2(i) (also ∇1(i) = ∇2(i)) holds for any i ∈ I, where
∆j(i) is a standard module with weight i ∈ I associated to �j.
We define quasi-hereditary algebras.

Definition 3. [2, 6] Let � be a partial order on I. A pair (A,�) is quasi-hereditary if it
satisfies the following statements.

(1) � is adapted to A.
(2) [∆(i) : S(i)] = 1 for any i ∈ I.
(3) A ∈ F(∆).

Quasi-hereditary algebras were introduced by Scott in [11] by using the existence of
certain chain of ideals of A. In [2], Cline, Parshall and Scott gave a characterization
of quasi-hereditary algebras by using highest weight categories and the existence of ∇-
filtrations of injective modules. In their work, the order � on I was not assumed to be
adapted, and the definition of quasi-hereditary algebras needs axioms which are different
from the above.

For a partial order � on I, it is known by Conde [3] that if a pair (A,�) satisfies the
axiom of quasi-hereditary algebras in [2], then the order � is adapted to A. Therefore
assuming � to be adapted gives no restriction comparing with the definition in [2, 11].

For example, if A has global dimension at most two, then A is quasi-hereditary with
some partial order. Any directed algebra is a quasi-hereditary algebra with some partial
order. It is known that any quasi-hereditary algebra has finite global dimension.

We end this introduction to state the following characterization of hereditary algebras
from the viewpoint of quasi-hereditary algebras.

Proposition 4. [5] Let A be a finite dimensional K-algebra. Then (A,�) is quasi-
hereditary for any adapted order � on I if and only if A is quasi-hereditary.

2. Quasi-hereditary structures

To define quasi-hereditary structures on A, we need some notations. For an A-module
T , let T⊥ be a subcategory of modA consisting of X such that ExtiA(T,X) = 0 for all
i > 0. Dually, we define ⊥T .

AnA-module T is called a tilting module if T has finite projective dimension, ExtiA(T, T ) =
0 for all i > 0, and there exists an exact sequence with Ti ∈ addT

0→ A→ T0 → · · · → Tℓ → 0.

We denote by tiltA the set of isomorphism classes of basic tilting A-modules. This set is
a partially ordered set by T1 ≤tilt T2 if and only if T⊥

1 ⊆ T⊥
2 , see [8].



Theorem 5. [10] Let (A,�) be a quasi-hereditary algebra. For each i ∈ I, there exists a
unique indecomposable A-module T (i) and short exact sequences

0→ ∆(i)→ T (i)→ X(i)→ 0, 0→ Y (i)→ T (i)→ ∇(i)→ 0,

where X(i) belongs to F(∆(j) | j � i, j 6= i) and Y (i) belongs to F(∇(j) | j � i, j 6= i)
such that

(1) T =
⊕

i∈I T (i) is a tilting A-module satisfying addT = F(∆) ∩ F(∇).
(2) F(∆) = ⊥T and F(∇) = T⊥ hold.

We say that the tilting module T in the above theorem the characteristic tilting module
of (A,�). We have the following lemma.

Lemma 6. Let (A,�1) and (A,�2) be quasi-hereditary algebras with basic characteristic
tilting modules T1, T2, respectively. We denote by ∆j the standard modules associated to
�j for j = 1, 2. The following statements are equivalent.

(1) ∆1(i) = ∆2(i) for any i ∈ I.
(2) F(∆1) = F(∆2).
(3) T1 ' T2.

We are ready to define quasi-hereditary structures.

Definition 7. Let (A,�1) and (A,�2) be quasi-hereditary algebras with basic character-
istic tilting modules T1, T2, respectively.

(1) We write �1 ∼ �2 if T1 ' T2 holds.
(2) We denote by qh.strA the set of all equivalence classes of adapted orders to A

defining A to be quasi-hereditary algebra modulo ∼ above, that is,

qh.strA := {� | � is an adapted order on I, (A,�) is quasi-hereditary}/ ∼
We say that each element of qh.strA a quasi-hereditary structure of A. We denote
by [�1] ∈ qh.strA the quasi-hereditary structure represented by �1.

(3) We write [�1] ≤qh [�2] if T1 ≤tilt T2 holds. This gives a partial order on qh.strA.

Note that for a quasi-hereditary structure [�], F(∆) = ⊥F(∇) and F(∆)⊥ = F(∇)
hold [11]. Using this and Theorem 5, for quasi-hereditary structures [�1], [�2] ∈ qh.strA,
we have that [�1] ≤qh [�2] if and only if F(∇1) ⊂ F(∇2) if and only if F(∆2) ⊂ F(∆1).
By Lemma 6, (qh.strA,≤qh) is a subposet of (tiltA,≤tilt). We study this partially

ordered set. We first give some known results about qh.strA.

Theorem 8. [4] Let (A,�) be a quasi-hereditary algebra. Assume that there is a duality
F : mod A → mod A such that F (S(i)) ' S(i) for any i ∈ I and F 2 ' id. Then we
have |qh.str(A)| = 1.

Since any refinement of an adapted order is also adapted, we have the following lemma.

Lemma 9. We have |qh.strA| ≤ |I|!.
Proof. Let [�] ∈ qh.strA and �′ a total order which is a refinement of �. Then by the
discussion [6, page 4] (see also [7, Lemma 2.3]), ∆(i) = ∆′(i) holds for any i ∈ I. Namely,
� ∼ �′ holds. Therefore any quasi-hereditary structure is represented by a total order.
We have the assertion. □



There exists an algebra such that the above inequality is an equality.

Example 10. [7, Example 2.26] Let Cn be a quiver such that the set of vertices is I =
{1, 2, . . . , n} and there is a unique arrow from i to j whenever i > j. In particular, the
underlying graph of Cn is a complete graph. It is easy to see that any adapted order toKCn
is a total order on I, and two distinct total orders on I induce different quasi-hereditary
structures on KCn. Therefore |qh.str(KCn)| = n! holds.

More precisely, one can show that (qh.str(KCn),≤qh) is isomorphic to the symmetric
group Sn of rank n with the weak (Bruhat) order as partially ordered sets.

3. Quasi-hereditary structures of the path algebras of equioriented
quivers of type A

Let An = 1 → 2 → · · · → n − 1 → n be an equioriented An quiver. In this section,
we see that (qh.str(KAn),≤qh) is isomorphic to (tilt(KAn),≤tilt) as partially ordered sets.
By definition, taking characteristic tilting module is an injective morphism of posets from
(qh.str(KAn),≤qh) to (tilt(KAn),≤tilt). To see that this is surjective, we use another
description of tilting KAn-modules via binary trees.
Binary trees can be defined inductively as follows. A binary tree T is either the empty

set or a tuple T = (r, L,R) where r is a singleton set, called the root of T , and L and R
are two binary trees. The empty set has no vertex but has one leaf. The set of leaves of
T = (r, L,R) is the disjoint union of the set of leaves of L and R. The size of the tree is
its number of vertices (equivalently the number of leaves minus 1).

The followings are the binary trees of size 1, 2 and 3:

• binary tree of size 1:

• binary tree of size 2:

• binary tree of size 3:

For each binary tree, there exists a unique labeling of its vertices, called a binary search
tree, as follows.

Definition 11. A binary search tree of size n is a binary tree with n vertices labeled by
I = {1, 2, . . . , n} with the following rule:

• if a vertex v is labeled by k ∈ I, then the vertices of the left subtree of v are labeled
by integers less than k, and the vertices of the right subtree of v are labeled by
integers superior to k.



This procedure is sometimes called the in-order traversal of the tree or simply as the
in-order algorithm (recursively visit left subtree, root and right subtree).

Example 12. The binary search trees of size 3 are as follows.
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We denote these binary search trees from left to right by Ti(i = 1, 2, . . . , 5).

Since any binary tree admits a unique labeling of vertices making it to be a binary
search tree, we always consider binary search trees.

Definition 13. For a binary search tree T of seize n, we define an order �T on I =
{1, 2, . . . , n} by i�T j if and only if i labels a vertex of a subtree of a vertex labeled by j.

The following is one of main results of this study.

Theorem 14. [7] Let An = 1→ 2→ · · · → n− 1→ n be an equioriented An quiver and
I = {1, 2, . . . , n}. There exist bijections between the following three sets.

(1) The set of binary trees of size n.
(2) The set tilt(KAn).
(3) The set qh.str(KAn).

In particular, we have that |qh.str(KAn)| is equal to the Catalan number cn = 1
n+1

(
2n
n

)
.

The bijection between (1) and (2) was shown by [1, Theorem 5.2], see also [9]. A
bijection from (1) to (3) is given by T 7→ �T. The point is that this map is well-defined
and surjective. Therefore the natural map from qh.str(KAn) to tilt(KAn) is bijective. In
particular, (qh.str(KAn),≤qh) is isomorphic to (tilt(KAn),≤tilt) as partially ordered sets.
Note that each indecomposable KAn-module is determined by its composition factors.

For a given binary search tree T, we have the composition factors of standard (resp.
costandard) KAn-modules ∆T(i) (resp. ∇T(i)) associated to �T as follows.

Lemma 15. [7] Let T be a binary search tree and ∆(i) (resp. ∇(i)) the standard (resp.
costandard) module associated to �T. We denote by T (i) the indecomposable direct sum-
mand of the characteristic tilting module of (A,�T) as in Theorem 5.

(1) A simple module S(j) is a composition factor of ∆T(i) (resp. ∇T(i)) if and only
if j labels a vertex in the right (resp. left) subtree of a vertex labeled by i.

(2) A simple module S(j) is a composition factor of T (i) if and only if j labels a vertex
in either a left or a right subtree of a vertex labeled by i.

Example 16. Let T1, . . . ,T5 be binary trees of size 3 as Example 12. For simplicity, we
write �Ti

= �i. We denote by Ti the characteristic tilting modules of (KAn,�i). For
each Ti, we have

• �1 = {3�1 2�1 1}, T1 = P (1)⊕ P (2)⊕ P (3).
• �2 = {2�2 3�2 1}, T2 = P (1)⊕ S(2)⊕ P (2).
• �3 = {2�3 1�3 3}, T3 = (P (1)/S(3))⊕ S(2)⊕ P (1).



• �4 = {1�4 2�4 3}, T4 = S(1)⊕ (P (1)/S(3))⊕ P (1).
• �5 = {1�5 2, 3�5 2}, T5 = S(1)⊕ P (1)⊕ S(3).

We have cover relatons T4 ≤tilt T3 ≤tilt T2 ≤tilt T1 and T4 ≤tilt T5 ≤tilt T1.

4. Concatenations of quivers and quasi-hereditary structures

Definition 17. Let Q1, Q2 be quivers and vi ∈ Qi
0 a sink. A concatenation of Q1 and Q2

at v1 and v2 is a quiver Q such that

• Q0 = (Q1
0 \ {v1}) t (Q2

0 \ {v2}) t {v}
• Q1 = Q1

1 tQ2
1, where we identify v = v1 = v2.

If vi ∈ Qi
0 is a source, we similarly define a concatenation at v.

Let Q be a concatenation of Q1 and Q2 at v. For a partial order � on Q0, we have
partial orders �|Q1

0
on Q1

0 and �|Q2
0
on Q2

0. Let 1 = 2 and 2 = 1. Conversely, we construct

a partial order on Q0 from partial orders on Qℓ
0. Let �ℓ be partial orders on Qℓ

0 for
ℓ = 1, 2. Then we have a partial order � = �(�1,�2) on Q0 as follows: for i, j ∈ Q0,
i� j if one of the following two statements holds:

(1) i, j ∈ Qℓ
0 and i�ℓ j holds for some ℓ,

(2) i ∈ Qℓ
0, j ∈ Qℓ

0, i�
ℓ v and v �ℓ j hold.

We have the following theorem.

Theorem 18. [7] Let Q be a concatenation of Q1 and Q2. Let A be a factor algebra of
KQ and Ai := A/〈eu | u ∈ Q0 \Qi

0〉 for i = 1, 2. Then we have an isomorphism of posets

qh.str(A) −→ qh.str(A1)× qh.str(A2),

given by [�] 7→
(
[�|Q1

0
], [�|Q2

0
]
)
. The converse map is given by (�1,�2) 7→ �(�1,�2).

Example 19. Let Q be a quiver 1 → 2 ← 3. This Q is a concatenation of Q1 = 1 → 2
and Q2 = 2 ← 3 at 2. We have qh.str(KQ1) = {[1 � 2], [2 � 1]} and qh.str(KQ2) =
{[2� 3], [3� 2]}. So |qh.str(KQ)| = 4 and we have

qh.str(KQ) = {[1� 2� 3], [1� 2, 3� 2], [2� 1, 2� 3], [3� 2� 1]}.

Clearly, each path algebra of quivers of type An can be obtained by iterated concate-
nations of equioriented An quivers. So we can classify quasi-hereditary structures of such
algebras.

Corollary 20. Let Q be a quiver of type An obtained by iterated concatenations of
Q1, Q2, . . . , Qℓ such that each Qi is an equioriented quiver of type Ani

for some ni ∈ Z≥1.
Then there is a bijection

qh.str(KQ) −→
ℓ∏

i=1

qh.str(KAni
)

given by [�] 7→
(
[�|Qi

0
]
)ℓ
i=1

.



The bijection in Theorem 18 enables us to calculate characteristic tilting modules.
Let Q be a concatenation of Q1 and Q2 at a sink v. Let A be a factor algebra of KQ

and Aℓ := A/〈eu | u ∈ Q0 \ Qℓ
0〉 for ℓ = 1, 2. Fix two quasi-hereditary structures [�ℓ] ∈

qh.str(Aℓ) and denote by T ℓ(i) an indecomposable direct summands of the characteristic
tilting module T ℓ of (Aℓ,�ℓ) as in Theorem 5 for i ∈ Qℓ

0. We denote by � = �(�1,�2) the
partial order on Q0 as in Theorem 18. Let T (i) be an indecomposable direct summands of
the characteristic tilting module T of (A,�). Since v is a sink of Q2, there is an injective
morphism S(v) → T 2(v) by Theorem 5. Since Aℓ is a factor algebra of A, we regard an
Aℓ-module as an A-module by a natural way.

Theorem 21. Under the notation as above, for i ∈ Q1
0, let m be the length of an S(v)-

socle of T 1(i). Then the push-out U(i) of T 2(v)⊕m ← S(v)⊕m → T 1(i) is isomorphic to
T (i).

Example 22. Consider Example 19. Put � = (1�2�3) which is an image of ([1�2], [2�
3]) by the map in Theorem 18. Then T 1(1) = S(1) and T 1(2) = P 1(1) are indecomposable
direct summands of the characteristic tilting module of (KQ1, [1�2]). Also, T 2(2) = S(2)
and T 2(3) = P 2(3) are indecomposable direct summands of the characteristic tilting
module of (KQ2, [2� 3]). By the above theorem, we have T (1) = S(1), T (2) = P (1) and
T (3) = I(2).
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