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Abstract. In topological data analysis, in contrast to the case of one-parameter persis-
tent homology, two-parameter persistent homology presents algebraic difficulties due to
its wild representation type. We consider approximations of two-parameter persistence
modules: (1) In a previous work, we defined interval approximations using “compression”
to essential vertices of intervals together with Möbius inversion. (2) Another idea is to
consider homological approximations of persistence modules using interval resolutions.
In this work, we first study (2) in the general setting of finite posets and show the follow-
ing: the interval resolution global dimension is finite for finite posets, and that it can be
computed using the Auslander-Reiten translates of the interval representations. Then,
in the commutative ladder case, we provide a formula linking the two notions of approx-
imation by a suitable modification of (1). This is an extended abstract summarizing the
results of the detailed version [arXiv:2207.03663].
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1. Introduction

In the field of data analysis, one recent development is the rapidly growing subfield
called “topological data analysis”, which applies ideas from (algebraic) topology for data
analysis. One of its main tools is persistent homology [6], which has found applications
in various fields of study. Persistent homology is able to describe the topological features
(connected components, holes, voids, etc.) of data, and in a multiscale way by providing
information of “birth” and “death” parameter values, with respect to one parameter of the
data. Algebraically, persistent homology is described as a persistence module, which can
be formalized as a representation of an An-type quiver, and the topological features are
encoded as a choice of generators for an indecomposable decomposition of the persistence
module. The indecomposable decomposition is given by interval representations, with the
endpoints giving the “birth” and “death” parameter values.

However, coming from motivations in data analysis, there is a need to deal with mul-
tiple parameters, leading to multiparameter persistent homology [5]. In this case, the
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underlying parameter space is an n-dimensional commutative grid for n parameters, and
the corresponding algebra is of wild representation type for large enough parameter space.

Thus there many attempts to overcome the difficulties in the multiparameter setting,
such as by using a suitable generalization of the intervals. The full version [2] of this work
studies relative homological algebra with respect to the interval modules, and also gives
a more detailed review of the literature. Here, we summarize the results of [2].

2. Background

Throughout, k is a field, vectk is the category of finite dimensional k-vector spaces, and
P is a finite poset. We first recall the following definitions.

Definition 1.

(1) The segment from p ∈ P to q ∈ P is [p, q] := {x ∈ P | p ≤ x ≤ q}
(2) P is said to be connected if for any p, q ∈ P , there exists a sequence p =

r0, r1, . . . , rℓ = q of elements with ri−1 and ri comparable for each i ∈ {1, . . . , `}.
(3) A subset S ⊆ P is convex if [p, q] ⊆ S for any p, q ∈ S.
(4) A subset S ⊆ P is an interval if it is convex and the subposet induced by S is

connected.

We denote by A := kP the incidence algebra of P over k. Alternatively, we can consider
the Hasse diagram of P as a quiver Q, and let R be the two-sided ideal of the path algebra
of kQ generated by all commutativity relations. With this, we can identify the incidence
algebra with the path algebra of the bound quiver (Q,R). We let modA be the category
of finitely generated left A-modules.
Note that a poset P can be considered as a category with a unique morphism p → q

whenever p ≤ q. A pointwise finite dimensional (pfd) persistence module over P is a
functor M : P → vectk. Furthermore, mod kP can be identified with the category of
pfd persistence modules over P . We freely identify persistence modules over P , modules
over the incidence algebra kP , and representations of the bound quiver (Q,R). In what
follows, by persistence module we mean pfd persistence module.

Definition 2. Let P be a poset and A = kP .

(1) For an interval I of P , the A-module VI is defined by VI(i) = k (i ∈ I0), VI(i ≤
j) = 1k (i, j ∈ I0) and 0 otherwise, is called an interval module over A. An
A-module M is called interval-decomposable if M is isomorphic to a finite direct
sum of interval modules.

(2) We denote by I(P ) a set of representatives of all interval modules, with one rep-
resentative chosen from each isomorphism class. If P is clear we write I.

(3) We denote by I(P ) the set of all interval-decompoable modules. If P is clear we
omit it and write I.

We introduce our main poset of interest.

Definition 3 (2D commutative grid). For m,n ∈ N := {1, 2, . . .}, the poset ~Gm,n is
defined by

~Gm,n = ({1, . . . ,m},≤)× ({1, . . . , n},≤)



and called the m× n commutative 2D grid. That is, the partial order defined by (i, j) ≤
(k, `) if and only if i ≤ k and j ≤ `.

In topological data analysis, the interval(-decomposable) modules play a central role in
one-parameter persistent homology, as they are used to express the “birth” and “death”
of topological features. In case of P = ~Gm,n, A-modules are called 2-parameter (or 2D)
persistence modules, and can be used to study the evolution of topological features varying
across two parameters. We are interested in approximating 2D persistence modules using
interval-decomposable persistence modules.

It is known that each interval I of ~Gm,n has a “staircase” form (see the discussion in
Section 4.1 of [1]): a full subposet induced by a set of the form

I = {(j, i) | i ∈ {s, s+ 1, . . . , t}, j ∈ {bi, bi + 1, . . . , di}}

for some 1 ≤ s ≤ t ≤ n and some 1 ≤ bi ≤ di ≤ m for each s ≤ i ≤ t such that

bi+1 ≤ bi ≤ di+1 ≤ di

for all i ∈ {s, . . . , t− 1}. We adopt the notation of [1] writing

I =
t⊔

i=s

[bi, di]i

to denote the interval above. In this notation, each [bi, di]i is the “slice” of the staircase
at height i.

Example 4. Below is an example of an interval I (filled-in points and arrows) of ~G6,4,
displaying posets using their Hasse diagrams. This interval is denoted as [5, 6]1 ⊔ [3, 5]2 ⊔
[3, 4]3. The corresponding interval module VI is given to its right.

(2.1) I :

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ • • ◦ ◦

◦ ◦ • • • ◦

◦ ◦ ◦ ◦ • •

VI :

0 0 0 0 0 0

0 0 k k 0 0

0 0 k k k 0

0 0 0 0 k k

1

1
1

1
1

1
1

Next, we recall some definitions from relative homological algebra. Throughout the
definitions below, P is a finite poset, A = kP and M is a persistence module over P .

(1) A right interval approximation of M is a morphism f ∈ HomA(X,M) with X ∈ I
such that for any g ∈ HomA(Y,M) with Y ∈ I there exists some h ∈ HomA(Y,X)
such that g = fh. This is equivalent to saying that f induces an epimorphism

HomA(−, f) : HomA(−, X)|I → HomA(−,M)|I .

Note that since I contains all finitely generated projectives, it can be checked that
a right interval approximation is guaranteed to be surjective.

(2) An interval resolution of M is an exact sequence

· · · → Xn
fn−→ · · · → X1

f1−→ X0
f0−→ M → 0



such that f0 is a right interval approximation of M , and for each i ≥ 1, fi is a
right interval approximation of Im fi = Ker fi−1.

(3) A morphism f ∈ HomA(X,M) is said to be right minimal if every morphism
g : X → X with f = fg is an automorphism.

(4) A morphism f : X → M is said to be a right minimal interval approximation of
M if it is a right interval approximation that is right minimal.

(5) A minimal interval resolution of M is an exact sequence

· · · → Xn
fn−→ · · · → X1

f1−→ X0
f0−→ M → 0

such that f0 is a right minimal interval approximation of M , and for each i ≥ 1,
fi is a right minimal interval approximation of Im fi = Ker fi−1.

(6) If there exists an interval resolution of M of the form

0 → Xn
fn−→ · · · → X1

f1−→ X0
f0−→ M → 0

for some n ≥ 0, we say that interval resolution dimension of M is at most n, and
write int-dimM ≤ n. Otherwise we say that interval resolution dimension of M
is infinity.

(7) If int-dimM ≤ n and int-dimM ̸≤ n − 1, then we say that interval resolution
dimension of M is equal to n, and denote it by int-dimM = n.

(8) Finally, we define

int-gldimA := sup{int-dimM | M ∈ modA}

and call it the interval resolution global dimension of A.

Now, we let

G :=
⊕

I∈I(P)

I, and Λ := End(G).

Since each indecomposable projective module and each indecomposable injective module is
isomorphic to some interval in I(P), G is a generator-cogenerator. Since G is a generator,
it is well-known (see for example [4, Proposition 4.17(1)(2)]) that

(2.2) int-dimM = pdΛHomA(G,M)

where pdΛ is the projective dimension of Λ-modules. Since G is a generator-cogenerator,
we obtain the following equality from Erdmann–Holm–Iyama–Schröer [7, Lemma 2.1]:

(2.3) int-gldim kP = gldimΛ− 2.

3. Results

Proposition 5. For any finite poset P, int-gldim kP < ∞.

The proof of Proposition 5 is provided below. First, the following can be shown.

Lemma 6. Let M be an interval module of A = kP, and N a submodule of M . Then,
N is interval-decomposable.

Then, we extract the following immediate corollary from known results.



Corollary 7 (Corollary of [11, Theorem in §5], cf. [8, Lemma 2.2]). Let B be an artin
algebra, and X a finitely generated B-module. Assume that for each indecomposable direct
summand X ′ of X, all submodules of X ′ are in addX, then EndB(X) is left strongly
quasi-hereditary, and its global dimension is finite.

We remark that the finiteness of the global dimension of EndB(X) also follows from
Corollary 2.4.1(1) together with Theorem 3.3 of [9]. The fact that it is left strongly
quasi-hereditary can be shown using [9, Corollary 2.4.1(1)] with [13, Theorem 3.22].

Proof of Proposition 5. This follows immediately by applying Corollary 7 with

X := G =
⊕

I∈I(P)

I, and B := Λ = End(G).

Note that each indecomposable direct summand X ′ of X is simply an interval module,
and by Lemma 6 each submodule of X ′ is interval-decomposable and thus is in addX. □

Proposition 8. For any finite poset P,

int-gldim kP = max
I∈I

int-dim(τVI),

where τ is the Auslander–Reiten translation.

Proof. Since Λ is not semisimple, we have

int-gldim kP = gldimΛ− 2

= max{pd (HomA(G, VI)/ rad(G, VI)) | I ∈ I, rad(G, VI) ̸= 0} − 2

= max{pd rad(G, VI) + 1 | I ∈ I, rad(G, VI) ̸= 0} − 2

= max{pd rad(G, VI)− 1 | I ∈ I, rad(G, VI) ̸= 0}

where the first equality is Eq. (2.3). For VI is not projective, there exists an almost
split sequence of the form 0 → τVI → EI → VI → 0, yielding an exact sequence 0 →
HomA(G, τVI) → HomA(G,EI) → rad(G, VI) → 0 of Λ-modules, showing that

pd rad(G, VI) ≤ max{pdHomA(G,EI), pdHomA(G, τVI) + 1}.

Applying, we obtain

int-gldim kP ≤ max{pdHomA(G,EI)− 1, pdHomA(G, τVI)} | I ∈ I}
= max{int-dimEI − 1, int-dim τVI | I ∈ I}
≤ int-gldim kP .

where the second line follows from Eq. (2.2).
By Proposition 5, int-gldim kP = d for some positive integer d, and hence there exists

some I ∈ I such that either int-dimEI − 1 = d or int-dim τVI = d. In the former
case, we have int-dimEI = d + 1 > int-gldim kP = max{int-dimX | X ∈ mod kP}, a
contradiction. Therefore, d is the maximum of {int-dim τVI | I ∈ I}. □

We use Proposition 8 in computational experiments, and obtain some conjectures about
the value of int-gldim for the 2D commutative grids.



Example 9. Let k = F2, the finite field with 2 elements, and A = k ~Gm,n (m,n ≥ 2). In
the table below, the row labelled n and column labelled m contains the value (or a lower

bound) of int-gldim k ~Gm,n obtained by numerical computation.

2 3 4 5 6 7 8 9 10
2 0 1 2 2 2 2 2 2 2
3 1 2 3 4 4 4
4 2 3 4 5 ≥6 ≥6
5 2 4 5
6 2 4 ≥6
7 2 4 ≥6

We conjecture that for the row n = 2, the value of int-gldim k ~Gm,2 is 2 for all m ≥ 4.

We further conjecture that for each fixed row n, the value of int-gldim k ~Gm,n eventually
stabilizes to some fixed constant C(n), and that this happens for m ≥ n+ 2.

The commutative ladder ~Gm,2 case
From here on, we consider only the commutative ladder, that is, the m×2 commutative

grid ~Gm,2 (or symmetrically, ~G2,n).

Let us fix some notation and let I = [xi, xj]1 ⊔ [yk, yl]2 be an interval of ~Gm,2. Thus,
1 ≤ k ≤ i ≤ l ≤ j ≤ n, and I is illustrated by its Hasse diagram

(3.1)

yk · · · yi · · · yl

xi · · · xl · · · xj

Given a persistence module M of ~G2,n, we “compress” M using I in the following way.
Let SI be the subposet of I with the following Hasse diagram:

(3.2)

yk yi yl

xi xj

Note that SI is not a full subposet of I, since for example yi < yl in I but yi ̸< yl in SI .
Viewing posets as categories, we define the inclusion functor ξ(I) : SI → ~G2,n, one for
each I ∈ I. We then define Rξ(I)(M) := M ◦ ξ(I), which is M restricted (“compressed”)
to SI .

Definition 10 (Compressed multiplicity). The compressed multiplicity with respect to ξ
of VI in M is

cξM(I) := dRξ(I)(M)(Rξ(I)(VI)),

the multiplicity of Rξ(I)(VI) as a direct summand of Rξ(I)(M).



Note that there are other ways of “compressing” M , which can be set by changing the
choice of the functor ξ(I) (and SI). In fact, the definition here is a modification of the
compressed multiplicity introduced in [3], where the functor is defined as an inclusion
of the full subposet of a set of “essential vertices” of I. As another example, when the
functor is defined using the inclusion of I ↪→ ~G2,n as is, one recovers the generalized rank
invariant of Kim and Memoli [10] (see [3] for a detailed discussion).

The following theorem relates the compressed multiplicity cξM in terms of a formula
involving only the multiplicities of the intervals in an interval resolution of M .

Theorem 11. Let M be a persistence module over ~G2,n with an interval resolution

(3.3) 0 → Xr
fr−→ · · · → X1

f1−→ X0
f0−→ M → 0,

with each term Xi a direct sum of interval modules VJ as Xi
∼=

⊕
J∈I V

d
(i)
J

J . Then,

cξM(I) =
∑
I⊆J∈I

r∑
i=0

(−1)id
(i)
J .

Proof. See the detailed version [2] for a proof. □

The set of intervals I(~Gm,2) can be given a poset structure with partial order defined by
I ≤ J if and only if I is a subposet of J . Following previous works [10, 3], we use Möbius

inversion [12] of cξM viewed as a function on the elements of I(~Gm,2), to obtain another
invariant for persistence modules.

Definition 12 (Interval approximation). The interval approximation δξM with respect to

ξ of M is the Möbius inversion of cξM :

δξM(J) :=
∑

S⊆Cov(J)

(−1)#ScξM(
∨

S)

for all J ∈ I, where Cov(J) is the set of “cover elements” of J , and
∨

S is the join of the

elements of S (see [3] for a detailed discussion of the poset structure of I(~Gm,n)).

Applying Möbius inversion to Theorem 11, we immediately obtain the following.

Corollary 13. Let M be a persistence module over ~G2,n with an interval resolution as in
Theorem 11. Then we have

δξM(J) =
r∑

i=0

(−1)id
(i)
J

for all J ∈ I.

This links the two notions of “approximation”: one is combinatorial via Möbius inver-
sion (δξM), and the other is coming from relative homological algebra (the multiplicities
of the intervals in an interval resolution of M).
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