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Combinatorics of quasi-hereditary structures

Yuta Kimura

Quasi-hereditary algebras were introduced by Cline, Parshall and Scott [1] as a tool to study highest
weight theories which arise in the representation theories of semi-simple complex Lie algebras and reduc-
tive groups. There are many examples of such algebras, Schur algebras, algebras of global dimension at
most two, incidence algebras and many more.

A quasi-hereditary algebra is an Artin algebra together with a partial order on its set of isomorphism
classes of simple modules which satisfies certain conditions. In the examples above, the partial order
predated (and motivated) the theory, so the choice was clear (see [3]). However, there are instances of
quasi-hereditary algebras having many possible choices of the partial ordering. So one may wonder about
all the possible orderings. In this talk we will study such all possible choices of ordering.

We explain our results. Let A be an Artin algebra and I a set indexing the isomorphism classes of
simple A-modules. For each partial order � on I, we have standard modules {∆(i) | i ∈ I}. A pair (A,�)
is called a quasi-hereditary algebra if A is a ∆-filtered module. In this case, it is known that (I,�) is an
“admissible” partial order [2]. Therefore, for two admissible partial orders �,�′ on I, we write � ∼ �′

if ∆(i) ' ∆′(i) for any i ∈ I, where ∆,∆′ are standard modules with respect to �,�′, respectively. We
denote by qh.str(A) the equivalence classes of admissible partial orders on I by ∼, and call each element
of qh.str(A) a quasi-hereditary structure.

We see that �1 ∼ �2 if and only if characteristic tilting modules T1 of (A,�1) and T2 of (A,�2)
are isomorphic. This implies that qh.str(A) admits a partial order induced from that of tilting modules
introduced by Happel and Unger. We have the following theorem.

Theorem 1. Let A be a path algebra of an equioriented quiver of type An over a field. Then there exist
explicit bijections between

(1) qh.str(A),
(2) Binary trees with n vertices, and
(3) Isomorphism classes of tilting A-modules.

For two finite acyclic quivers Q1, Q2 with sinks v1, v2, respectively, let Q be a quiver obtained by
concatenating Q1 and Q2 at v1 = v2. We see that qh.str(kQ) ' qh.str(kQ1) × qh.str(kQ2). This gives
an explicit description of kQ for a Dynkin quiver Q of type An. Moreover, this isomorphism enables us
to count up the number of quasi-hereditary structures of path algebras of Dynkin type D,E6,E7,E8. If
time permits, we see when qh.str(kQ) becomes a lattice.

This talk is based on joint work with M. Flores and B. Rognerud [4].
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CONNECTEDNESS OF QUASI-HEREDITARY STRUCTURES

Yuichiro Goto

Quasi-hereditary algebras, introduced by Cline, Parshall and Scott, are generalization of hereditary
algebras [1]. Moreover Dlab and Ringel showed the following theorem.

Theorem 1 ([2] Theorem 1). Let A be a finite dimensional algebra. Then A is hereditary if and only if
A is quasi-hereditary for all total orders.

In view of the above, we consider quasi-hereditary structures, which are defined below, for a given
algebra. We will use permutations instead of total orders to indicate difference of two orders.

LetK be an algebraically closed field and fix a finite dimensional K-algebra A with pairwise orthogonal
primitive idempotents e1, . . . , en. Let Sn be the symmetric group on n letters and σ ∈ Sn. We say that
σ gives a quasi-hereditary structure of A if eσ−1(1), . . . , eσ−1(n) with this order make A quasi-hereditary.
We write this quasi-hereditary algebra by (A, σ) and the standard and costandard modules by ∆σ(i) and
∇σ(i), respectively.

For a quasi-hereditary algebra (A, σ), we say that this is ith-twistable, if the pair (A, σiσ) is also
quasi-hereditary, where σi ∈ Sn is the adjacent transposition (i, i + 1). Let X be a certain property
defined for elements of Sn. If σ, τ ∈ Sn have the property X, and if there is a decomposition

τσ−1 = σil · · ·σi1
into adjacent transpositions where all σik · · ·σi1σ also have the property X for 1 ≤ k ≤ l, then we say
that σ and τ are connected with respect to X.

The contents of this talk are as follows. We first consider conditions on standard or costandard modules
equivalent to the fact that a given quasi-hereditary algebra is ith-twistable. This is summarized below.

Theorem 2 ([3]). Let e ∈ Sn be the unit. A quasi-hereditary algebra (A, e) is ith-twistable if and only
if one of the following conditions holds:

(Ei): Ei = 0 and ∆(i+ 1) has a submodule isomorphic to ∆(i)Hi ,
where Ei = dim Ext1A(∆(i),∆(i+ 1)) and Hi = dim HomA(∆(i),∆(i+ 1)).

(Ei): Ei = 0 and ∇(i+ 1) has a factor module isomorphic to ∇(i)Hi

where Ei = dim Ext1A(∇(i+ 1),∇(i)) and Hi = dim HomA(∇(i+ 1),∇(i)).

Moreover, if a quasi-hereditary algebra (A, e) satisfies Ei = 0 and Ei = 0, then (A, σi) is also quasi-
hereditary with ∆σi = ∆, ∇σi = ∇.

Next, we show the connectedness of permutations with respect to giving quasi-hereditary structures,
and this is the main result of this talk.

Theorem 3 ([3]). Any two permutations are connected with respect to giving quasi-hereditary structures.

By this result, once we know that there are two permutations giving quasi-hereditary structures, then
permutations in some sense lying between them give also quasi-hereditary structures.
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Approximation by interval-decomposables and
interval resolutions of 2D persistence modules

Hideto Asashiba (Shizuoka Univ., KUIAS, OCAMI), Emerson G. Escolar (Kobe Univ.),
Ken Nakashima (Okayama Univ.), Michio Yoshiwaki (OCAMI)

This talk is based on [1]. Throughout, k is a field, P is a finite poset, and A := kP is the incidence
algebra (or incidence category) of P. We denote by modA the category of finitely generated left A-
modules. A subset I ⊆ P is said to be an interval if it is connected and convex. For an interval I, the
A-module VI is defined by VI(i) = k (i ∈ I0), VI(i ≤ j) = 1k and 0 otherwise, is called an interval
module over A. An A-module M is called interval-decomposable if M is isomorphic to a finite direct sum
of interval modules. We denote by I and I the set of all intervals and the set of all interval-decompoable
modules, respectively.

In topological data analysis, the interval(-decomposable) modules play a central role in one-parameter
persistent homology, as they are used to express the “birth” and “death” of topological features. In case
that P = ({1, . . . ,m},≤) × ({1, . . . , n},≤), an m × n commutative 2D grid, A-modules are called 2D
persistence modules, and can be used to study the evolution of topological features varying across two
parameters. We are interested in approximating 2D persistence modules using interval-decomposables.

For any finite poset P and any kP-module M , we can consider homological approximations relative

to intervals as follows [2]. Let · · · → Xn
fn−→ · · · → X1

f1−→ X0
f0−→ M → 0 be a minimal I-resolution of

M . Analogous to the global dimension, the interval global dimension int-gldimA of A = kP is defined.
We show the following results that hold in general, not just for the 2D commutative grid.

Proposition 1. For any finite poset P, int-gldim kP <∞.

Proposition 2. int-gldim kP = maxI∈I int-dim(τVI), where τ is the Auslander–Reiten translation.

We use Proposition 2 in computational experiments, and obtain some conjectures about the value of
int-gldim for the 2D commutative grids.

Next, we recall another notion of approximation using intervals. The compressed multiplicity is defined
as cM (I) := dRI(M)(RI(VI)), the multiplicity of RI(VI) as a direct summand of RI(M), where RI is some
restriction functor defined using I. The following relates the compressed multiplicities to the multiplicities.

Proposition 3. Let M be interval-decomposable. For each I ∈ I, dM (VI) =
∑
S⊆cov(I)(−1)#ScM (

∨
S).

For A-modules M not necessarily interval-decomposable, by regarding the right hand side (denoted by
δM (VI)), which may be negative, as multiplicities in the split Grothendieck group of modA, we obtain a
notion of approximation of M by interval-decomposables.

In a previous work, RI was defined using an inclusion of the source and sink vertices of I. However, the
resulting invariant does not seem to have good homological properties. Here, in them×2 commutative grid
case, we use a modified version of RI and obtain the following linking the two notions of approximation.

Proposition 4. Let P be the m × 2 commutative grid, and let each Xi in an I-resolution 0 → Xℓ
fℓ−→

· · · → X1
f1−→ X0

f0−→M → 0 be decomposed as Xi
∼=

⊕
I∈I V

r
(i)
I (M)

I . Then δM (VI) =
∑ℓ
i=0(−1)ir

(i)
I (M).

References

[1] H. Asashiba, E.G. Escolar, K. Nakashima, M. Yoshiwaki. Approximation by interval-decomposables and interval reso-
lutions of persistence modules. arXiv:2207.03663, 2022.
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Characterization of 4-dimensional non-thick irreducible representations

Kazunori Nakamoto and Yasuhiro Omoda

In this talk, we deal with characterization of 4-dimensional non-thick irreducible representations of an
arbitrary group. Let V be a finite-dimensional vector space over a field k.

Definition 1 (cf. [1] and [2]). Let ρ : G → GL(V ) be a representation of a group G. We say that ρ is
m-thick if for any subspaces V1, V2 of V with dimk V1 = m and dimk V2 = dimk V −m there exists g ∈ G
such that (ρ(g)V1) ∩ V2 = 0. If ρ is m-thick for any 0 < m < dimk V , then we say that ρ is thick.

Roughly speaking, m-thick representations ρ : G → GL(V ) have enough transitivity of the group
action of G on the set of m-dimensional vector subspaces of V . In [1], we obtained several results on thick
representations. Irreducibility is equivalent to 1-thickness. Any thick representations are irreducible. For
a representation ρ : G→ GL(V ) with dimk V ≤ 3, ρ is thick if and only if it is irreducible. If dimk V ≥ 4,
then there exist many examples of non-thick irreducible representations. In [2], we have classified the
(finite-dimensional) thick representations of complex connected simple Lie groups over C.

Here let us give an example of a non-thick irreducible representation. We denote by Sn the symmetric
group of degree n. We regard GL(V )n and Sn as subgroups of GL(V ⊕n) by (A1, . . . , An) · (v1, . . . , vn) =
(A1v1, . . . , Anvn) and σ · (v1, . . . , vn) = (vσ−1(1), . . . , vσ−1(n)) for (A1, . . . , An) ∈ GL(V )n, σ ∈ Sn and

(v1, . . . , vn) ∈ V ⊕n, respectively. Then the semidirect product GL(V )n ⋊ Sn is defined as a subgroup of
GL(V ⊕n). The inclusion ρV,n : GL(V )n ⋊ Sn → GL(V ⊕n) gives a representation of GL(V )n ⋊ Sn.

Theorem 2. Let n ≥ 2 and dimk V ≥ 2. The representation ρV,n : GL(V )n ⋊ Sn → GL(V ⊕n) is a
non-thick irreducible representation. More precisely, ρV,n is neither n-thick nor dimk V -thick.

The following theorem gives us another way of constructing non-thick representations.

Theorem 3. Let τ1 : G→ GL(V1) and τ2 : G→ GL(V2) be finite-dimensional representations of a group
G over a field k. If dimk V1 ≥ 2 and dimk V2 ≥ 2, then τ1 ⊗ τ2 : G → GL(V1 ⊗k V2) is not 2-thick. In
particular, τ1 ⊗ τ2 is not thick.

Let us consider 4-dimensional non-thick irreducible representations. Our main theorem is the following:

Theorem 4. Let ρ : G → GL(V ) be a 4-dimensional non-thick irreducible representation of a group G.
Then ρ is equivalent to one of the following two cases:

(1) the composition G
ϕ→ GL(W )2⋊S2

ρW,2→ GL(W⊕W ) with dimkW = 2, where φ : G→ GL(W )2⋊
S2 is a group homomorphism

(2) a representation ρ′ : G→ GL(V1⊗k V2) with dimk V1 = dimk V2 = 2 which is equivalent to τ1⊗τ2
as projective representations, where τi : G→ PGL(Vi) is a projective representation for i = 1, 2.

The detail will be given in [3].
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Relative stable equivalences of Morita type for the principal blocks of finite groups

Naoko Kunugi and Kyoichi Suzuki

Broué[1] introduced the notion of stable equivalences of Morita type for blocks of finite groups, that is,
stable equivalences induced by bimodules which are projective as left and as right modules. He showed
that we can construct a stable equivalence of Morita type between the principal (p-)blocks of two finite
groups having a common Sylow p-subgroup by gluing Morita equivalences for the principal blocks of the
centralizers of all the nontrivial p-subgroups. Linckelmann[3] investigated properties of stable equivalences
of Morita type and gave an equivalent condition for a stable equivalence of Morita type to be in fact
a Morita equivalence. When we want to construct a Morita equivalence between two principal blocks
of finite groups, we may construct a stable equivalence of Morita type by using Broue’s gluing method
and lift it to a Morita equivalence by using Licnkelmann’s result. In fact, Morita equivalences has been
confirmed in some cases in this way, for example see [4] and [2].

We consider the principal blocks of two finite groups having a common Sylow p-subgroup with a
nontrivial central p-subgroup Z. In this case, we cannot use Broué’s gluing method, and hence we may
not construct a stable equivalence of Morita type. On the other hand, Wang-Zhang[5] introduced the
notion of relative stable equivalences of Morita type for blocks of finite groups, which is a generalization of
stable equivalences of Morita type. In this talk, we investigate stable equivalences of Morita type relative
to the group Z × Z for the principal blocks.
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Tilting complexes over blocks covering cyclic blocks

Yuta Kozakai

Let p be a prime number, k an algebraically field of characteristic p, G̃ a finite group, and G a normal
subgroup of G̃ having a p-power index in G̃. Moreover let B be a block of kG and B̃ the unique block
of kG̃ covering B. For Λ ∈ {B, B̃}, we denote by 2-tilt Λ the set of isomorphism classes of basic 2-term
tilting complexes over Λ, and by tilt Λ the set of isomorphism classes of basic tilting complexes over Λ.
In [1], it is shown that the set tilt Λ has a structure of partially ordered set, and the classification of
tilting complexes by using this partial order is one of the themes of the representation theory of finite
dimensional algebras.

On the other hand, in [2] R. Koshio and the author proved that if B satisfies the following conditions,

then the induction functor IndG̃G(−) := kG̃ ⊗kG − : Kb(proj B) → Kb(proj B̃) induces an isomorphism

between 2-tilt B and 2-tilt B̃:

• any indecomposable B-module is IG̃(B)-invariant,
• the block B is τ -tilting finite.

We can naturally expect that the induction functor IndG̃G(−) := kG̃ ⊗kG − : Kb(proj B) → Kb(proj B̃)

induces an isomorphism between tilt B and tilt B̃ as partially ordered sets under some assumptions.
In this talk, we give a condition for the functor to induce the isomorphism between tilt B and tilt B̃.
Moreover, we focus on the case of B having a cyclic defect group.
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On IE-closed subcategories

Arashi Sakai

Given a finite dimensional algebra Λ, it is fundamental to study subcategories of the category modΛ
of finitely generated right Λ-modules. We consider IE-closed subcategories, subcategories closed under
taking Images and Extensions. The class of IE-closed subcategories is very large as it contains all torsion
classes, torsion-free classes, wide subcategories, and ICE-closed subcategories introduced in [3]. The aim
of this talk is giving two results concerning IE-closed subcategories.

The notion of torsion classes is one of the most important objects in the representation theory of finite
dimensional algebras. In [1], it is shown that functorially finite torsion classes are classified by support
τ -tilting modules, a generalization of tilting modules. In [2], the concept of τ -tilting finite algebras is
introduced. We say that a finite dimensional algebra Λ is τ -tilting finite if the set of functorially finite
torsion classes in modΛ is a finite set. It is equivalent to the condition that every torsion class in modΛ
is functorially finite. The first result is the characterization of τ -tilting finiteness by using IE-closed
subcategories:

Theorem 1. [4] Let Λ be a finite dimensional algebra. The following are equivalent.

(1) Λ is τ -tilting finite.
(2) The set of IE-closed subcategories of modΛ is a finite set.
(3) Every IE-closed subcategory of modΛ is functorially finite.

We focus on the classification of functorially finite IE-closed subcategories. The classification result
in [1] of functorially finite torsion classes is obtained from taking Ext-projectives of a given functorially
finite torsion class. Since IE-closed subcategories can not be recovered from only Ext-projectives, we
consider also Ext-injectives. We introduce twin rigid modules, a pair of rigid (i.e. any self-extensions
are vanished) modules satisfying some conditions, and obtain the second result. It is obtained from
taking Ext-projectives and Ext-injectives of a given functorially finite IE-closed subcategory under the
assumption that Λ is hereditary.

Theorem 2. [4] Let Λ be a finite dimensional hereditary algebra. Then there exist bijective correspon-
dences between the set of functorially finite IE-closed subcategories of modΛ and the set of isomorphism
classes of basic twin rigid Λ-modules.
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On τ-tilting finiteness of group algebras

Takuma Aihara and Taro Sakurai

τ -tilting theory, which deals with problems of support τ -tilting modules, was introduced by Adachi–
Iyama–Reiten as a generalization of tilting theory [1]. The greatest advantage of the theory is to be
compatible with mutation theory. Moreover, the theory has connections with many topics of mathematics.

In this talk, we discuss τ -tilting theory for group algebras. In particular, one explores when a group
algebra is τ -tilting finite (i.e., there exist only finitely many support τ -tilting modules). We also consider
influence of τ -tilting finiteness on group algebras.
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Symmetric cohomology and symmetric Hochschild cohomology
of cocommutative Hopf algebras

Ayako Itaba, Yuta Shiba and Katsunori Sanada

Let G be a group and X a G-module. Motivated by topological geometry, Staic [3] defined the
symmetric cohomology HS•(G,X) of a group G by constructing an action of the symmetric group S•+1

on the standard resolution C•(G,X) which gives the group cohomology H•(G,X). In [4], Staic proved
that the secondary cohomology group HS2(G,X) is corresponding to extensions of groups which satisfies
some conditions. Moreover, Staic studied the injectivity of the canonical map HS•(G,X) −→ H•(G,X)
induced by the inclusion CS•(G,X) ↪→ C•(G,X). Recently, Coconet-Todea [1] defined the symmetric
Hochschild cohomology of twisted group algebras which is a generalization of group algebras.

This talk is about the symmetric cohomology and the symmetric Hochschild cohomology for cocom-
mutative Hopf algebras as another generalization of group algebras. This talk is based on [2]. Let k be a
field and A a cocommutative Hopf algebra over k. First, we define the symmetric cohomology HS•(A,M)
of A with coefficients in any left A-module M by constructing an action of the symmetric group S•+1 on
the standard non-homogeneous complex C•(A,M) which gives the Hopf algebra cohomology H•(A,M).
Similarly, we define the symmetric Hochschild cohomology HHS•(A,M) of A with coefficients in any A-
bimodule M by constructing an action of the symmetric group S•+1 on the standard non-homogeneous
complex C•

e(A,M) which gives the Hochschild cohomology HH•(A,M). Next, we give an isomorphism
between symmetric cohomology and symmetric Hochschild cohomology, which is a symmetric version of
the classical result about cohomology of groups by Eilenberg-MacLane and cohomology of Hopf algebras
by Ginzburg-Kumar.

Theorem 1 ([2, Theorem 4.5]). Let A be a cocommutative Hopf algebra and M an A-bimodule. Then,
for each n ≥ 0, there is an isomorphism HHSn(A,M) ∼= HSn(A, adM) as k-vector spaces, where adM is
a left A-module acting by the left adjoint action.

Moreover, to consider the condition that symmetric cohomology coincides with classical cohomology,
we investigate the projectivity of a resolution which gives symmetric cohomology.
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Characterization of eventually periodic modules and its applications

Satoshi Usui

This talk is based on [3]. The singularity category Dsg(R), introduced by Buchweitz [1], of a left
Noetherian ring R is defined to be the Verdier quotient Db(R-mod)/perf(R) of the bounded derived
category Db(R-mod) of R-modules by the full subcategory perf(R) consisting of complexes that are
quasi-isomorphic to bounded complexes of projective R-modules. It is well known that an R-module M
has finite projective dimension if and only if M ∼= 0 in Dsg(R), where we consider M as the stalk complex
M concentrated in degree 0. From this point of view, studying homological properties of R-modules with
infinite projective dimension captured by Dsg(R) is natural.

Recall that a module M over a left artin ring R is called eventually periodic if its minimal projective
resolution has infinite length and eventually becomes periodic. Recently, it was proved by the speaker
[2] that, when R is a finite dimensional Gorenstein algebra, an R-module M is eventually periodic if

and only if the Tate cohomology ring Êxt
•
R(M,M) has a non-zero invertible homogeneous element of

positive degree. Here, Êxt
•
R(M,M) stands for the graded ring

⊕
i∈Z Êxt

i

R(M,M) with Êxt
i

R(M,M) :=
HomDsg(R)(M,M [i]) given by Yoneda product.

In this talk, we first extend the above result to the case of left artin rings. Then, as applications, we
show that eventual periodicity of finite dimensional algebras is preserved under singular equivalence of
Morita type with level, introduced by Wang [4]. Here, a finite dimensional algebra is called eventually
periodic if it is eventually periodic as a bimodule over itself. Moreover, we give a necessary and sufficient
condition for a finite dimensional connected Nakayama algebra to be eventually periodic.
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The spectrum of Grothendieck monoid: a new approach to classify Serre subcategories

Shunya Saito

Classifying nice subcategories of an abelian category or a triangulated category is quite an active sub-
ject which has been studied in the representation theory of algebras. A typical and classical example is
Gabriel’s classification of Serre subcategories. For a commutative noetherian ring R, Gabriel [1] estab-
lished the bijection between Serre subcategories of the category modR of finitely generated R-modules
and specialization-closed subsets of the spectrum SpecR of R. So far, the classification of Serre subcate-
gories has focused on the case of abelian categories such as the above example. In this talk, I will propose
a strategy to classify Serre subcategories of an exact category by using the Grothendieck monoid.

The Grothendieck monoid M(E) is a monoid version of the Grothendieck group, which is defined for
each exact category E . The following theorem is the starting point of this talk.

Theorem 1. For an exact category E, there are bijections between the following sets:

(1) The set of Serre subcategories of E.
(2) The set Face(M(E)) of faces of the Grothendieck monoid M(E).
(3) The set MSpecM(E) of prime ideals of the Grothendieck monoid M(E).

Here a non-empty subset F of a commutative monoid M is a face if for all x, y ∈ M , we have that
x+ y ∈ F if and only if x, y ∈ F . A subset p of M is a prime ideal if M \ p is a face of M .

The second set Face(M(E)) can be computed purely algebraically, and its computation is much easier
than examining the whole structure of the exact category E . I will give concrete examples of classifying
Serre subcategories of exact categories related to a finite dimensional algebra by using this result.

The third set MSpecM(E) has a topology, which is a natural analogue of the Zariski topology on the
spectrum SpecR of a commutative ring R. This observation gives the following theorem.

Theorem 2. Consider the following conditions for commutative noetherian rings R and S.

(1) R ∼= S as rings.
(2) M(modR) ∼= M(modS) as monoids.
(3) MSpecM(modR) ∼= MSpecM(modS) as topological spaces.
(4) SpecR ∼= SpecS as topological spaces.

Then the implications “(1) ⇒ (2) ⇒ (3) ⇒ (4)” hold.

It is surprisingly enough because the Grothendieck monoid M(modR) loses a lot of information and
the Grothendieck group K0(modR) never recovers the topology of SpecR.

This talk is based on a preprint [2]
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Noncommutative conics
in Calabi-Yau quantum projective planes I

Haigang Hu, Masaki Matsuno and Izuru Mori

Throughout this talk, we fix an algebraically closed field k of characteristic 0. By Sylvester’s theorem, it
is elementary to classify commutative quadric hypersurfaces in Pd−1, namely, every quadric hypersurface
in Pd−1 is isomorphic to Proj k[x1, · · · , xd]/(x21 + · · · + x2j ) for some j = 1, · · · , d. The ultimate goal of

our project is to classify noncommutative quadric hypersurfaces in quantum Pd−1.

Definition 1. A d-dimensional quantum polynomial algebra is a noetherian connected graded algebra
S such that

(1) gldimS = d <∞,

(2) ExtqS(k, S) = 0 if q 6= d, and ExtdS(k, S)
∼= k, and

(3) HS(t) = 1/(1− t)d.

A d-dimensional quantum polynomial algebra S is a noncommutative analogue of the commutative
polynomial algebra k[x1, · · · , xd], so the noncommutative projective scheme Projnc S associated to S in
the sense of [1] is regarded as a quantum Pd−1. It is reasonable to define a noncommutative quadric
hypersurface in a quantum Pd−1 as Projnc S/(f) where f ∈ S2 is a regular central element.

In this talk, we will study in the case d = 3. For every 3-dimensional quantum polynomial algebra S,
there exists a 3-dimensional Calabi-Yau quantum polynomial algebra S′ such that Projnc S ∼= Projnc S

′,
so we may restrict ourselves to the Calabi-Yau case in this talk. The aim of this talk is to classify the
homogeneous coordinate algebras A = S/(f).

Since there are infinitely many isomorphism classes of 3-dimensional Calabi-Yau quantum polynomial
algebras S up to isomorphism of graded algebras, classification of A = S/(f) is highly nontrivial. The
following is the main result of this talk.

Theorem 2 ([2]). Let S be a 3-dimensional Calabi-Yau quantum polynomial algebra, 0 6= f ∈ Z(S)2,
and A = S/(f).

(1) If A is commutative, then A is isomorphic to one of the following algebras:

k[x, y, z]/(x2), k[x, y, z]/(x2 + y2), k[x, y, z]/(x2 + y2 + z2).

(2) If A is not commutative, then A is isomorphic to S(a,b,c)/(αx2 + βy2 + γz2) where

S(a,b,c) := k〈x, y, z〉/(yz + zy + ax2, zx+ xz + by2, xy + yx+ cz2)

for some (a, b, c) ∈ A3, (α, β, γ) ∈ P2.
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Noncommutative conics
in Calabi-Yau quantum projective planes II

Haigang Hu, Masaki Matsuno, Izuru Mori

This is a continuation of M. Matsuno’s talk. Throughout this talk, let k be an algebraically closed
field of characteristic 0. In this talk, we explain how we classify noncommutative conics in Calabi-Yau
quantum projective planes, and give the complete classification result of these noncommutative conics.
We begin by repeating the following definition.

Definition 1. A noncommutative quadric hypersurface in a (Calabi-Yau) quantum Pd−1 is the non-
commutative projective scheme Projnc S/(f) for some d-dimensional (Calabi-Yau) quantum polynomial
algebra S and for some regular central element f ∈ Z(S)2. In particular, when d = 3, we say that
ProjncS/(f) is a noncommutative conic.

For the homogeneous coordinate algebra A = S/(f) of a noncommutative quadric hypersurface, there
is a unique regular central element f ! ∈ Z(A!)2 such that S! = A!/(f !). We define C(A) := A![(f !)−1]0.

Smith and Van den Bergh showed that CMZ(A) ∼= Db(modC(A)) in [2]. Thought it is not clear whether
A ∼= A′ implies that C(A) ∼= C(A′) from the definition, we have the following result.

Theorem 2. [1] Let S, S′ be 3-dimensional Calabi-Yau quantum polynomial algebras, 0 6= f ∈ Z(S)2, 0 6=
f ′ ∈ Z(S′)2, and A = S/(f), A′ = S′/(f ′). Then

A ∼= A′ ⇒ ProjncA
∼= ProjncA

′ ⇒ C(A) ∼= C(A′).

The calculation of C(A) associated to a noncommutative conic is hard, actually we failed to calculate
it directly. However, we find that we can determine C(A) using geometric method, calculating the point
variety EA of A, and we will show that there are 9 isomorphism classes of C(A).

List of C(A)
M2(k), k〈u, v〉/(uv + vu, u2 − 1, v2), k〈u, v〉/(uv + vu, u2, v2),

k4, k[u]/(u2)× k2, (k[u]/(u2))×2, k[u]/(u3)× k, k[u]/(u4), k[u, v]/(u2, v2).

We also show that there are at most 9 isomorphism classes of A above by the help of classification of
(commutative) pencils of conics. Combining with Theorem 2, we have the following main result.

Theorem 3. [1] There are 9 isomorphism classes of noncommutative conics ProjncA in Calabi-Yau
quantum P2’s.
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Twisted Segre products and noncommutative quadric surfaces

Kenta Ueyama

The Segre product of graded algebras plays an important role in algebraic geometry and commuta-
tive algebra. The main reason is that the Segre product gives a homogeneous coordinate ring of the
product of projective varieties. In this talk, with the aim of contributing to the further development of
noncommutative algebraic geometry, we introduce the notion of the twisted Segre product A◦ψB of (not
necessarily commutative) Z-graded algebras A and B with respect to a twisting map ψ : B⊗A→ A⊗B.
Note that if ψ is the flip map, i.e., ψ(b⊗ a) = a⊗ b for all a ∈ A and b ∈ B, then A ◦ψ B coincides with
the usual Segre product of A and B.

We first discuss the following theorem.

Theorem 1. Let A and B be noetherian Koszul AS-regular algebras, and let ψ : B ⊗ A → A ⊗ B be a
twisting map. Assume that the twisted Segre product A ◦ψ B is noetherian. Then the noncommutative
projective scheme qgrA ◦ψ B has finite global dimension.

Since noetherian Koszul AS-regular algebras are noncommutative analogues of standard graded polyno-
mial rings, the above theorem can be regarded as a noncommutative analogue of the fact that Pn−1×Pm−1

is smooth.
We then discuss the following theorem.

Theorem 2. Let A = k[u, v], B = k[x, y] be standard graded polynomial rings in two variables, and let
ψ : B ⊗A→ A⊗B be a twisting map. Assume that ψ is diagonal. Then the following statements hold.

(1) The twisted Segre product A ◦ψ B is a noncommutative quadric surface, i.e., there exist a 4-
dimensional noetherian Koszul AS-regular algebra S with Hilbert series HS(t) = (1− t)−4 and a
regular normal homogeneous element f ∈ S of degree 2 such that A ◦ψ B ∼= S/(f). In particular,
A ◦ψ B is a 3-dimensional noetherian Koszul AS-Gorenstein algebra and qgrA ◦ψ B has finite
global dimension.

(2) There exists an equivalence of triangulated categories

CMZ(A ◦ψ B) ∼= Db(mod k × k),

where CMZ(A◦ψB) is the stable category of graded maximal Cohen-Macaulay modules over A◦ψB
and Db(mod k × k) is the bounded derived category of finite dimensional modules over k × k.

It turns out that A◦ψB appearing in the above theorem has a nice property similar to the usual Segre
product A ◦B ∼= k[X,Y, Z,W ]/(XW − Y Z), which is the homogeneous coordinate ring of P1 × P1.

This talk is based on joint work [1] with Ji-Wei He (Hangzhou Normal University).
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On Generalized Nakayama-Azumaya’s Lemma

Masahisa SATO

Before we talk a topic of the title, we would like to announce formally that the Ware problem is
affirmative [3] as it was reported in [4]. (cf. It had been reported that this problem was negative in [2].)

Let R be an associative ring and J(R) its Jacobson radical. The following Nakayama-Azumaya’s
Lemma is well known.

Nakayama-Azumaya’s Lemma LetM be a finitely generated right R-module. IfM satisfiesMJ(R) =
M , then M = 0.

Our main theorem is a generalization of this lemma.

Generalized Nakayama-Azumaya’s Lemma Let M be a direct summand of a direct sum of finitely
generated right R-modules. If M satisfies MJ(R) =M , then M = 0.

In the case M is a projective module, Nakayama-Azumaya’s Lemma holds by [1]. This is the special
case for the above result by taking R for all finitely generated modules.

In this sense, Generalized Nakayama-Azumaya’s Lemma unifies the above two known results for finitely
generated modules and projective modules.

Generalized Nakayama-Azumaya’s Lemma is shown by the following two-step investigation.
First step is to show the following equivalent properties [5].

Proposition Generalized Nakayama-Azumaya’s Lemma holds if and only if there are no non-zero right
module M (called NAS-module) which satisfies the following properties.

(1) There is an ascending chain M1 ⊂ M2 ⊂ · · · of finitely generated submodules of M such that
Mi ⊂Mi+1J(R) for any i ∈ N and M =

⋃
i∈N

Mi. Consequently, M =MJ(R).

(2) Let f :
⊕
i∈N

Mi →M be the homomorphism given by f((xi)) =
∑
i∈N

xi for any (xi) ∈
⊕
i∈N

Mi. Then

there is a homomorphism g : M →
⊕
i∈N

Mi such that fg = 1M .

(3) Mi ∩ g(M) =Mi ∩ ker f = 0 for any i ∈ N.

Next step is to show the non-existence of a module (called WNAS-module) which satisfies the properties
(1) and (2) [6].

As one of applications of Generalized Nakayama-Azumaya’s Lemma, we can show the existence of
maximal submodules of some kinds of module M [6].

Theorem Let M be a non-zero direct summand of a direct sum of finitely generated right R-modules,
then M has a maximal submodule.

Remark In the above theorem, the assumption that M is a direct summand is necessary. In fact,
there is a commutative uniserial ring R with J(R)2 = J(R) 6= 0 such that its unique maximal ideal J(R)
has no maximal submodules [4].
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A new framework of partially additive algebraic geometry

Shingo Okuyama

Introduction. In his 1957 paper[1], J.Tits observed that the correspondence of geometries over a field
k and the Chevalley groups over k developed in that paper specializes, when k is the hypothetical “field
of characteristic one”, to the correspondence of finite complexes and the Weyl groups of those Chevalley
groups. In the early 1990s, Manin, based on the ‘beautiful ideas of Deninger and Kurokawa’, proposed to
use this hypothetical field of characteristic one to solve the Riemann hypothesis. Since then, there have
been many attempts to establish a foundation for these ideas, but it seems that the project has not been
settled down yet.

In this talk, we develop an elementary theory of partially additive rings as a foundation of F1-geometry.
Our approach is so concrete that an analog of classical algebraic geometry is established very straightfor-
wardly. As applications, (1) we construct a kind of affine group scheme GLn whose value at a commutative
ring R is the group of n×n invertible matrices over R and at F1 is the n-th symmetric group, and (2) we
construct a projective space Pn as a kind of scheme and count the number of points of Pn(Fq) for q = 1
or q = pn a power of a rational prime. Concerning the existing theories, our framework may be viewed as
an interpolation of special cases of Connes-Consani’s F1-schemes[1] by special cases of Lorscheid’s blue
schemes[2].

Definitions. A partial monoid is a set A, a subset A2 of A × A and a map +: A2 → A such that +
is unital, commutative, and associative. For example, any based set is considered as a partial monoid
by giving it a trivial structure — only the base point 0 can be added to other elements. For another
example, a commutative monoid (thus a commutative group) is a partial monoid where A2 is taken to
be the whole set A×A. A partial ring is a partial monoid with a bilinear, associative and commutative
product · : A×A→ A and identity 1 ∈ A. For example, any commutative monoid with absorbing element
0 is a partial ring in which only 0 can be added to other elements, and any commutative semiring (thus
a commutative ring) with identity is a partial ring. If A is a partial ring, an A-module, an ideal and
a prime ideal is defined as in the usual commutative algebra, respectively. The set of prime ideals of
a partial ring A is given the Zariski topology to make a topological space X and we can define a sheaf
OX of partial rings on X. Then SpecA = (X,OX) is the affine partial scheme of A. Then a partial
scheme is defined to be a locally partial-ringed space that is locally an affine partial scheme.

Main result. Let PRing,PGrp, and Grp denote the category of partial rings, partial groups, and groups,
respectively. We will give a definition of a good partial ring in the talk. Commutative monoids with
absorbing element 0 and commutative rings with identity are examples of good partial rings.

Theorem 1. There exists a representable functor GLn : PRing → PGrp which enjoys the following
properties:

(1) its restriction to the category of good partial rings factors through Grp.
(2) GLn(A) is the group of n-th general linear group with entries in A, if A is a commutative rings

with 1, and
(3) GLn(F1) = Sn is n-th symmetric group.

The reader will find details of this talk in the preprint [arXiv:2206.06084].

Reference

1. A. Connes and C. Consani, Schemes over F1 and zeta functions, Compositio Mathematica (2010), 1383–1415.
2. O. Lorscheid, The geometry of blueprints: Part I: Algebraic background and scheme theory, Advances in Mathematics

(2012), 1804–1846.
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COVERING THEORY OF SILTING OBJECTS

Takahiro Honma

The covering technique has been playing an important role in representation theory of finite dimen-
sional algebras over an algebraically closed field K. By using this technique, we can reduce problems
of the module category of an algebra Λ to the more easier category called an orbit category. The orbit
category C/G is constructed by a category C with an action of a group G. In the original setting, covering
theory was not possible to apply to general linear categories. This restriction was removed in [2, 3], and
covering theory can be applied for several categories such as derived categories, singular categories, and
Gorenstein defect categories.

In this talk, we apply the covering technique to silting theory. Silting theory is a generalization of
tilting theory that deals with the equivalence of triangulated categories. As a previous study, tilting
theory using the covering technique has been studied by Asashiba, who showed that the covering functor
preserves the tilting subcategory. Our aim is to extend this claim to silting and also we consider the
structure of silting subcategories(objects).

Reference

1. H. Asashiba, A covering technique for derived equivalence, J. Algebra 19 (1997) 382–415

2. H. Asashiba, R. Hafezi and R. Vahed, Gorenstein versions of covering techniques for linear categories and their appli-

cations, J. Algebra 507 (2018), 320–361.
3. R. Bautista and S. Liu, Covering theory for linear categories with application to derived categories, J. Algebra 406

(2014), 173–225.

Graduate School of Mathematics,
Tokyo University of Science
1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 JAPAN

Email: 99cfqqc9@gmail.com

–17–



The Grothendieck monoid of an extriangulated category

Haruhisa Enomoto

This talk is based on joint work with Shunya Saito (Nagoya University). The Grothendieck group is the
classical and basic invariant for both a triangulated category and an exact category. For exact categories,
the Grothendieck monoid, a natural monoid version of the Grothendieck group, has been recently studied
by several authors [1, 2, 6].

In the representation theory of algebras, we often consider extension-closed subcategories of a tri-
angulated category which are not exact nor triangulated. An extriangulated category introduced by
Nakaoka–Palu [5] is a convenient framework to consider such subcategories. Extriangulated categories
unify both exact categories and triangulated categories, and have the notion of conflations, which gen-
eralize conflations (short exact sequences) in an exact category and triangles in a triangulated category.
We can naturally define the Grothendieck monoid M(C) of an extriangulated category C using conflations.
In this talk, we give several results about it.

The first result is about the classifications of several classes of subcategories, which extends [6] and [7]
respectively.

Theorem 1. Let C be an extriangulated category. Then we have the following two bijections.

(1) A bijection between the set of Serre subcategories of C and the set of faces of M(C).
(2) A bijection between the set of dense 2-out-of-3 subcategories and the set of cofinal subtractive

submonoids of M(C).

The second result is about the localization of an extriangulated category. For a nice subcategory N of
an extriangulated category C, Nakaoka–Ogawa–Sakai [4] constructed the exact localization C/N , which
generalizes the Verdier quotient of a triangulated category and the Serre quotient of an abelian category.
We show that under some conditions, this commutes with the Grothendieck monoid :

Theorem 2. Let C be an extriangulated category and N a subcategory of C satisfying some conditions.
Then we have an isomorphism of monoids

M(C/N ) ∼= M(C)/MN ,

where the right hand side is the monoid quotient by MN := {[N ] | N ∈ N}. This can be applied to the
Verdier quotient of a triangulated category, the stable category of a Frobenius category, and the Serre
quotient of an abelian category.

As a toy example, we consider an intermediate subcategory of the derived category D(A) of an abelian
category A, which is a subcategory C closed under extensions and direct summand satisfying A ⊆ C ⊆
A[1] ∗ A. We show that an intermediate subcategory is precisely a subcategory of the form F [1] ∗ A for
a torsionfree class F of A, and then compute its Grothendieck group, classify Serre subcategories, and
study the exact localization.

Reference

1. A. Berenstein, J. Greenstein, Primitively generated Hall algebras, Pacific J. Math. 281 (2016), no. 2, 287–331.
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A bijection between silting subcategories and bounded hereditary cotorsion pairs

Takahide Adachi, Mayu Tsukamoto

Silting subcategories were introduced in ([5]) to study bounded t-structures and later studied in ([2])
from the viewpoint of mutation theory. It is known that silting subcategories are closely related to
algebraic t-structures and simple-minded collections for finite dimensional algebras ([6]). On the other
hand, Bondarko ([4]) and Pauksztello ([9]) independently introduced co-t-structures as an analog of t-
structures. Bondarko ([4]) and Mendoza–Santiago–Sáenz–Souto ([7]) gave the following result.

Theorem 1 ([4, 7]). Let D be a triangulated category. Then there exist mutually inverse bijections
between the set of silting subcategories of D and the set of bounded co-t-structures of D.

The aim of this talk is to generalize Theorem 1 to extriangulated categories introduced by Nakaoka–
Palu ([8]) as a simultaneous generalization of a triangulated category and an exact category. To give
a generalization of Theorem 1, we introduce the notion of silting subcategories in an extriangulated
category. The following theorem is a main result of this talk.

Theorem 2 ([1]). Let C be an extriangulated category. Then there exist mutually inverse bijections
between the set of silting subcategories of C and the set of bounded hereditary cotorsion pairs in C.

For a triangulated category D, we can naturally regard D as an extriangulated category and bounded
co-t-structures of a triangulated category D coincide with bounded hereditary cotorsion pairs in an
extriangulated category D. Hence Theorem 1 follows from Theorem 2.

Let A be an artin algebra with finite global dimension. Then we can naturally regard modA as an
extriangulated category and tilting A-modules coincide with silting objects of an extriangulated category
modA. Thus Theorem 2 also recovers the following result.

Corollary 3 ([3]). Let A be an artin algebra with finite global dimension. Then T 7→ ⊥T gives a
bijection between the set of isomorphism classes of basic tilting A-modules and the set of contravariantly
finite resolving subcategories of modA, and T 7→ T⊥ gives a bijection between the set of isomorphism
classes of basic tilting A-modules and the set of covariantly finite coresolving subcategories of modA.
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7. O. Mendoza, V. Santiago, C. Sáenz, V. Souto, Auslander–Buchweitz context and co-t-structures, Appl. Categ. Structures

21 (2013), 417–440.
8. H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom.
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Dimitrov–Haiden–Katzarkov–Kontsevich complexities for singularity categories

Ryo Takahashi

In 2014, Dimitrov, Haiden, Katzarkov and Kontsevich [2] introduced the notions of complexities and
entropies for a triangulated category. In less than a decade since then, a lot of works on these notions
have been done; see [3, 4, 5, 6, 7, 8, 9, 12] for instance. Let us recall the definitions.

Definition 1 (Dimitrov–Haiden–Katzarkov–Kontsevich). Let T be a triangulated category.

(1) Let A,B ∈ T and t ∈ R. We denote by δt(A,B) the infimum of the sums
∑r
i=1 e

nit, where r
runs through the nonnegative integers, and n1, . . . , nr run through the integers such that there
exists a series

{Bi−1 → Bi → A[ni]⇝ }ri=1

of exact triangles in T with B0 = 0 and Br containing B as a direct summand. The function

R 3 t 7→ δt(A,B) ∈ R≥0 ∪ {∞}
is called the (Dimitrov–Haiden–Katzarkov–Kontsevich) complexity of B relative to A.

(2) Let F : T → T be an exact functor and t ∈ R. The entropy ht(F ) of F is defined by

ht(F ) = lim
n→∞

1

n
log δt(G,F

n(G)),

where G is a split generator of T , i.e., G is an object of T whose thick closure coincides with T .

Let R be a commutative noetherian local ring. Let Dsg(R) be the singularity category of R, which is a
triangulated category introduced by Buchweitz [1] and Orlov [10]. In this talk, we explore complexities
for Dsg(R). More specifically, we shall consider the following question.

Question 2. Let G be a split generator of Dsg(R). Then does it hold that

δt(G,X) = 0

for all X ∈ Dsg(R) and t 6= 0 ?

The contents of this talk will basically come from [11].
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Categorical entropy of the Frobenius pushforward functor

Hiroki Matsui

This talk is based on the ongoing joint work with Ryo Takahashi.
For a categorical dynamical system, i.e., a pair (T ,Φ) of a triangulated category T and an exact

endofunctor Φ : T → T , Dimitrov, Haiden, Katzarkov and Kontsevich [1] introduced an invariant hTt (Φ)
which is called the categorical entropy of Φ as a categorical analogue of the topological entropy. The
categorical entropy hTt (Φ) is a function in one real variable t with values in R∪ {−∞} and measures the
complexity of the exact endofunctor Φ.

For a commutative noetherian local ring with positive characteristic p, the ring endomorphism F :
R → R, which is called the Frobenius endomorphism, is defined by F (a) = ap. Assume further that
F : R → R is module finite. The Frobenius endomorphism F induces two exact endofunctors: the
Frobenius pushforward

RF∗ = F∗ : Db(R) → Db(R)

on the bounded derived category Db(R) of finitely generated R-modules and the Frobenius pullback

LF ∗ : Dperf(R) → Dperf(R)

on the derived category Dperf(R) of perfect R-complexes. Both these functors are main tools to study
singularities in positive characteristics.

For the Frobenius pullback, Majidi-Zolbanin and Miasnikov [2] considered the full subcategory Dperf
m (R)

of Dperf(R) consisting of perfect complexes with finite length cohomologies, and computed the categorical

entropy h
Dperf

m (R)
t (LF ∗):

Theorem 1. [2, Corollary 2.6] Let R be a d-dimensional commutative complete noetherian local ring
with positive characteristic p. Then the equality

h
Dperf

m (R)
t (LF ∗) = d log p

holds.

In this talk, we study the Frobenius pushforward F∗ and consider its categorical entropy h
Db(R)
t (F∗).

The main result of this talk is the following:

Theorem 2. Let R be a d-dimensional commutative noetherian local ring with positive characteristic p.
Then the equality

h
Db(R)
t (F∗) = d log p+ log[F∗(k) : k]

holds, where k denotes the residue field of R.

We will also discuss the relation between the categorical entropy h
Db(R)
t (φ∗) of the pushforward functor

along a local ring endomorphism φ : R→ R and the local entropy hloc(φ) of φ which has been introduced
in [3].
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The reduction number of stretched ideals

Kazuho Ozeki

The homological property of the associated graded ring of an ideal is an important problem in com-
mutative algebra. In this talk we explore the almost Cohen-Macaulayness of the associated graded ring
of stretched m-primary ideals.

Throughout this talk, let A be a Cohen-Macaulay local ring with maximal ideal m and d = dimA > 0.
For simplicity, we may assume the residue class field A/m is infinite. Let I be an m-primary ideal in A
and let

R = R(I) := A[It] ⊆ A[t] and R′ = R′(I) := A[It, t−1] ⊆ A[t, t−1]

denote, respectively, the Rees algebra and the extended Rees algebra of I. Let

G = G(I) := R′/t−1R′ ∼=
⊕
n≥0

In/In+1

denote the associated graded ring of I. Let Q = (a1, a2, · · · , ad) ⊆ I be a parameter ideal in A which
forms a reduction of I. We set

nI = nQ(I) := min{n ≥ 0 | In+1 ⊆ Q} and rI = rQ(I) := min{n ≥ 0 | In+1 = QIn},
respectively, denote the index of nilpotency and the reduction number of I with respect to Q. Then it
is easy to see that the inequality rI ≥ nI always holds true. Let `A(N) denote, for an A-module N , the
length of N .

The notion of stretched Cohen-Macaulay local rings was introduced by J. Sally [2]. Thereafter, in 2001,
Rossi and Valla [1] gave the notion of stretched m-primary ideals. We say that the m-primary ideal I is
stretched if the following two conditions

(1) Q ∩ I2 = QI and
(2) `A(I

2 +Q/I3 +Q) = 1

hold true for some parameter ideal Q in A which forms a reduction of I (c.f. [1]). We notice that the
first condition is naturally satisfied if I = m so that this extends the classical definition of stretched local
rings given in [2].

Sally [2] (for the case where I = m), and Rossi-Valla [1] showed that the equality rI = nI holds true
if and only if the associated graded ring G is Cohen-Macaulay in the case where I is stretched. Thus
stretched m-primary ideals whose reduction number attends to minimal value enjoy nice properties.

The purpose of this talk is to explore the almost Cohen-Macaulayness of associated graded ring of
stretched m-primary ideal I in the case where the reduction number attains almost minimal value. As
an application, we give almost Cohen-Macaulayness of the associated graded ring of stretched m-primary
ideals with reduction number at most four as follows.

Corollary 1. Suppose that I is stretched and assume that I5 = QI4 (i.e. rI ≤ 4), then G is almost
Cohen-Macaulay (i.e. depthG ≥ d− 1).
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Geometry 42 (2001), 103–122.

2. J. D. Sally, Stretched Gorenstein rings, J. Lond. Math. Soc. (2), 20 (1979), 19–26.

Department of Mathematical Sciences
Faculty of Science
Yamaguchi University
1677-1 Yoshida, Yamaguchi 753-8512, Japan

Email: ozeki@yamaguchi-u.ac.jp

–22–



Higher versions of morphisms represented by monomorphisms

Yuya Otake

Throughout this talk, let R be a two-sided noetherian ring. We assume that all modules are finitely gen-
erated right ones. It is a natural and classical question to ask when a given homomorphism of R-modules
is stably equivalent to another homomorphism satisfying certain good properties. A homomorphism
f : X → Y of R-modules is said to be represented by monomorphisms if there is an R-homomorphism
t : X → P with P projective such that

(
f
t

)
: X → Y ⊕ P is a monomorphism. This notion has been

introduced by Auslander and Bridger [1], and played an important role in the stable module theory they
developed. Recently, Kato [6] gave various characterizations of the morphisms represented by monomor-
phisms.

The notion of n-torsionfree modules was also introduced by Auslander and Bridger [1], and played
a central role in the theory they developed. For example, for an R-module M , Auslander and Bridger
figured out the relationship between the grade of the Ext module ExtiR(M,R) and the torsionfreeness of
the syzygy ΩiM . The structure of n-torsionfree modules has been well-studied; see [1, 2, 3, 4, 5, 7]. In
this talk, we introduce and study a new class of morphisms which includes morphisms represented by
monomorphisms. As an application, we give a common generalization of several results due to Auslander
and Bridger that describe relationships between torsionfreeness and the grades of Ext modules.
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On the openness of loci over Noetherian rings

Kaito Kimura

Let R be a commutative noetherian ring, and P a property of commutative local rings. There is a
topology on Spec(R), which is called the Zariski topology. The set of prime ideals p of R such that the
local ring Rp satisfies P is called the P-locus of R. It is a natural question to ask when the P-locus is open
in the Zariski topology for a given P. This question has been studied for a long time by many people.

Nagata [6] produced the following condition, which is called the Nagata criterion: if the P-locus of
R/p contains a nonempty open subset of Spec(R/p) for all prime ideals p of R, then the P-locus of R is
an open subset of Spec(R). It is well-known fact that the Nagata criterion holds for the regular, complete
intersection, Gorenstein, and Cohen–Macaulay properties and Serre’s conditions; see [1, 5, 6].

Let M be a finitely generated R-module, and Q a property of modules over a commutative local ring.
The set of prime ideals p of R such that the module Mp over the local ring Rp satisfies Q is called the
Q-locus of M (over R). The same question can be asked for the Q-locus of M . The Cohen–Macaulay
locus of a module over an excellent ring is open [2]. Furthermore, the Gorenstein locus of a module over
an acceptable ring is open [4], and so is the finite injective dimension locus of a module over an excellent
ring [7].

In this talk, we consider the openness of the Q-locus of a module in the case where Q is each of the
finite injective dimension property, the Gorenstein property, the Cohen–Macaulay property, the maximal
Cohen–Macaulay property, and Serre’s condition. We give a module version of the Nagata criterion for
properties of modules, and show that it holds for the properties appearing above.
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A characterization of standard derived equivalences
of diagrams of dg categories and their gluing

Hideto Asashiba and Shengyong Pan

Throughout this talk k is a commutative ring, and I is a small category. A dg category (a short form
of differential graded category) is a k-category A whose morphism spaces A(x, y) are (cochain) complexes
of k-modules, and whose compositions A(y, z) × A(x, y) → A(x, z) are chain maps of complexes. We
denote by k-dgCAT the 2-category of light (namely usual) dg categories, dg functors between them,
and dg natural transformations between those dg functors. The 2-category k-DGCAT has the same
objects and 1-morphisms as k-dgCAT, but its 2-morphisms are the derived transformations between
its 1-morphisms. Finally, k-dgCat (resp. k-DGCat) denotes the full 2-subcategory of k-dgCAT (resp.
k-DGCAT) consisting of the small dg categories. We formulate a diagram of dg categories and dg
functors as a colax functor X from I to k-dgCat. We can also regard X as a set of dg categories X(i)’s
with an action of I, hence as a generalization of a dg category with a group action when I is a group
viewed as a category with only one object ∗. For a 2-category C, the colax functors from I to C also
form a 2-category Colax(I,C) with suitably defined 1-morphisms and 2-morphisms.

For a colax functor X in Colax(I, k-dgCat), a dg category
∫
X can be constructed by “gluing” all dg

categories X(i)’s together, which is called the Grothendieck construction of X, which is nothing but the
orbit category X(∗)/G when I is a group G.

Let Cdg(k) be the dg category of the complexes over k. Then a contravariant dg functor from a small
dg category A to Cdg(k) is called a (right) dg A-module. They form a (light) dg category Cdg(A) whose
morphisms are the derived transformations between these objects as dg functors. By taking the 0-cocycle,
we obtain the category C(A) := Z0(Cdg(A)) of dg A-modules, which is known to be a (light) Frobenius
category. Similarly by taking the 0-homology, we obtain the homotopy category H(A) := H0(Cdg(A)) of
A, or alternatively by taking the stable category we obtain the same one H(A) := C(A), which is known

to be a (light) triangulated category. Finally, the derived category D(A) of A is defined as the quotient
of H(A) by formally inverting the quasi-isomorphisms, which is known to be a (2-moderate) triangulated
category. The correspondence A 7→ Cdg(A) can be extended to a pseudofunctor Cdg : k-DGCat →
k-DGCAT. Similarly, we obtain pseudofunctors C : k-dgCAT → k-FRB, H : k-dgCat → k-TRI, and
D : k-dgCat → k-TRI2. For a colax functor X : I → k-dgCat, we can define its dg category of dg
modules Cdg(X), category of dg modules C(X), homotopy category H(X), and derived category D(X)
as the composite Cdg(X) := Cdg ◦X and so on.

We obtained the following characterization of “standard derived equivalences” between diagrams of
dg categories. Note that we do not need k-flatness assumption unlike a result by Keller [2].

Theorem 1. Let X,X ′ ∈ Colax(I, k-dgCat). Then the following are equivalent:

(1) There exists a 1-morphism (F, ψ) : Cdg(X ′) → Cdg(X) in Colax(I, k-dgCAT) such that the left

derived functor L(F, ψ) : D(X ′) → D(X) is an equivalence in Colax(I, k-TRI2).
(2) There exists a quasi-equivalence (E, φ) : X ′ → T for some tilting colax functor T for X.

The following gives a sufficient condition for the Grothendieck constructions to be derived equivalent.

Theorem 2. Let X,X ′ ∈ Colax(I, k-dgCat). If there exists a quasi-equivalence (E, φ) : X ′ → T for
some tilting colax functor T for X, then

∫
X and

∫
X ′ are derived equivalent.
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Localization of triangulated categories with respect to extension-closed subcategories

Yasuaki Ogawa

In this talk, we develop a framework for localization theory of triangulated categories C with respect
to an extension-closed subcategory N which is not necessarily thick [4]. The obtained “exact” functor

Q : C → C̃N to the quotient category provides a unification of the Verdier quotient and some cohomological
functors, e.g., the heart of t-structures, the abelian quotient by 2-cluster tilting subcategories and a more
general phenomenon, the heart of cotorsion pairs. To deal with the triangulated structure on C and

(abelian) exact structures on C̃N in the same manner, we formulate the results through Nakaoka-Palu’s

extriangulated structures [2]. Our construction of the exact functor Q : C → C̃N is divided in two steps:

- Relative theory [1]: There exists a weaken structure (C,EN , sN ) relative to the triangulated
category C which is determined by N .

- Localization [3]: Then, N becomes a “thick” subcategory in (C,EN , sN ), which enables us to
define the quotient category of C by N .

Thus, in general, our resulting category C̃N is an extriangulated category. Furthermore, we provide

necessary and sufficient conditions for N to make C̃N to be triangulated and abelian. Our results are
summarized as follows.

Theorem 1. Let C be a triangulated category and regard it as a natural extriangulated category (C,E, s).
Assume that a full subcategory N of C is closed under direct summands, isomorphisms and extensions.

(1) The subcategory N is thick with respect to the relative structure (C,EN , sN ). Moreover, we have

an extriangulated localization (Q,µ) : (C,EN , sN ) → (C̃N , ẼN , s̃N ).
(2) The subcategory N is thick in the triangulated category (C,E, s) if and only if the resulting category

C̃N is triangulated. In this case, the localization (Q,µ) is nothing but the Verdier quotient.
(3) Suppose that N is functorially finite. Then, N satisfies Cone(N ,N ) = C in the triangulated

category (C,E, s) if and only if the resulting category C̃N is abelian. Furthermore, the functor

Q : (C,E, s) → C̃N from the original triangulated category is cohomological.

N extension-closed thick Cone(N ,N ) = C
C̃N extraingulated triangulated abelian
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Différ. Catég. 60 (2019), no. 2, 117–193.
3. H. Nakaoka, Y. Ogawa, A. Sakai, Localization of extriangulated categories, arXiv:2103.16907v2

4. Y. Ogawa, Localization of triangulated categories with respect to extension-closed subcategories, arXiv:2205.12116

Center for Educational Research of Science and Mathematics
Nara University of Education
Takabatake-cho, Nara, 630-8528, JAPAN

Email: ogawa.yasuaki.gh@cc.nara-edu.ac.jp

–26–



Projective objects in the category of discrete modules over a profinite group

Ryo Kanda

This talk is based on a joint work with Alexandru Chirvasitu [CK19].
It is known that ModR and QCohX are both Grothendieck categories, where ModR is the category

of (left) modules over a ring R and QCohX is the category of quasi-coherent sheaves on a scheme X.
In particular, they both have exact direct limits (and hence exact direct sums) and enough injectives.
ModR also has exact direct products and enough projectives, while it is known that none of these holds
for QCohX when X is a non-affine divisorial noetherian scheme ([Kan19]).

We consider a similar question concerning the category of discrete modules over a profinite group. Our
main result is the following:

Theorem 1 ([CK19]). Let G be a profinite group. Then the following conditions are equivalent:

(1) The category of discrete G-modules has enough projectives.
(2) The category of discrete G-modules has exact direct products.
(3) G is a finite group.
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