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Abstract. This paper studies the eventual periodicity of an algebra by using the Tate-
Hochschild cohomology ring. First, we deal with eventually periodic algebras and show
that they are not necessarily Gorenstein algebras. Secondly, we characterize the eventual
periodicity of a Gorenstein algebra as the existence of an invertible homogeneous element
of the Tate-Hochschild cohomology ring of the algebra, which is our main result. Finally,
we provide a construction method of eventually periodic Gorenstein algebras.

1. Introduction

The Tate-Hochschild cohomology of an algebra was introduced by Wang [19] based on
the notion of Tate cohomology defined by Buchweitz [7]. It was proved in [19] that the
Tate-Hochschild cohomology carries a structure of a graded commutative algebra. There
are studies on the ring structure of the Tate-Hochschild cohomology, such as [9, 16, 17, 18].
Recently, Dotsenko, Gélinas and Tamaroff proved in [9, Corollary 6.4] that, for a monomial

Gorenstein algebra Λ, the Tate-Hochschild cohomology ring ĤH
•
(Λ) is isomorphic to

ĤH
≥0
(Λ)[χ−1], where ĤH

≥0
(Λ) stands for the subring consisting of the non-negative part

of ĤH
•
(Λ) and χ is an invertible homogeneous element of positive degree. Moreover, the

author also showed in [17, Corollary 3.4] that the same isomorphism holds for a periodic
algebra. In both cases, the invertible element χ was obtained from the fact that any
minimal projective resolution of the given algebra eventually becomes periodic.

In this paper, we first deal with eventually periodic algebras (i.e. algebras Λ with the
n-th syzygy Ωn

Λe(Λ) periodic for some n ≥ 0). It will be revealed that eventually periodic
algebras are not necessarily Gorenstein (see Example 4), although it is known that periodic
algebras are all Gorenstein. Secondly, we give a necessity and sufficiency condition for a
Gorenstein algebra to be eventually periodic, which is our main result (see Theorem 7).
Finally, using tensor product of algebras, we provide one of the constructions of eventually
periodic Gorenstein algebras.

This paper is organized as follows. In Section 2, we recall basic facts on Tate cohomology
and Gorenstein algebras. In Section 3, we give examples of eventually periodic algebras
and prove our main result. In Section 4, we establish a way to construct eventually
periodic Gorenstein algebras.

The detailed version of this paper will be submitted for publication elsewhere.



2. Preliminaries

Throughout this paper, let k be an algebraically closed field. We write ⊗k as ⊗. By
an algebra Λ, we mean a finite dimensional associative unital k-algebra. All modules are
assumed to be finitely generated left modules. For an algebra Λ, we denote by Λ-mod
the category of Λ-modules, by Λ-proj the category of projective Λ-modules, by gl.dimΛ
the global dimension of Λ and by Λe the enveloping algebra Λ ⊗ Λop. Remark that we
can identify Λe-modules with Λ-bimodules. For a Λ-module M , we denote by inj.dimΛM
(resp. proj.dimΛM) the injective (resp. projective) dimension of M . By a complex X•,
we mean a chain complex

X• = · · · → Xi+1

dXi+1−−→ Xi → · · · .

For a complex X• and an integer i, we denote by Ωi(X•) the cokernel CokdXi+1 of the

differential dXi+1 and by X•[i] the complex given by (X•[i])j = Xj−i and dX[i] = (−1)idX .

2.1. Tate cohomology rings. In this subsection, we recall some facts on Tate coho-
mology rings and Tate-Hochschild cohomology rings. Let Λ be an algebra. Recall that
the singularity category Dsg(Λ) of Λ is defined to be the Verdier quotient of the bounded
derived category Db(Λ-mod) of Λ-mod by the bounded homotopy category Kb(Λ-proj) of
Λ-proj. Let M and N be Λ-modules and i an integer. Following [7], we define the i-th
Tate cohomology group of M with coefficients in N by

Êxt
i

Λ(M,N) := HomDsg(Λ)(M,N [i]),

where M and N are viewed as complexes concentrated in degree 0. We call Êxt
i

Λe(Λ,Λ)

the i-th Tate-Hochschild cohomology group of Λ and denote it by ĤH
i
(Λ).

Let T be a triangulated category with shift functor [1]. For an object X of T , one
can endow End•

T (X) :=
⊕

i∈Z HomT (X,X [i]) with a structure of a graded ring. The
multiplication is given by the Yoneda product

⌣: HomT (X,X [i])⊗ HomT (X,X [j]) → HomT (X,X [i+ j])

sending α⊗ β to α[j] ◦ β. If T = Dsg(Λ) and X = M ∈ Λ-mod, then we obtain a graded

algebra Êxt
•
Λ(M,M) := End•

Dsg(Λ)(M) and call it the Tate cohomology ring of M , which

is called the stabilized Yoneda Ext algebra of M by Buchweitz [7]. It was proved by Wang

[19] that the Tate-Hochschild cohomology ring ĤH
•
(Λ) := Êxt

•
Λe(Λ,Λ) of any algebra Λ

is a graded commutative algebra.

2.2. Singularity categories of Gorenstein algebras. The aim of this subsection is
to recall facts on the singularity category of a Gorenstein algebra from [7]. Let Λ be
an algebra. Recall that the stable category Λ-mod of Λ-modules is the category whose
objects are the same as Λ-mod and morphisms are given by

HomΛ(M,N) := HomΛ(M,N)/P(M,N),

where P(M,N) is the space of morphisms factoring through a projective module. We
denote by [f ] the element of HomΛ(M,N) represented by a morphism f : M → N . There



exists a canonical functor F : Λ-mod → Dsg(Λ) making the following square commute:

Λ-mod //

��

Db(Λ-mod)

��
Λ-mod

F // Dsg(Λ)

where the two vertical functors are the canonical ones, and the upper horizontal functor
is the one sending a module M to the complex M concentrated in degree 0. Further, the
functor F satisfies F ◦ΩΛ

∼= [−1] ◦ F , where ΩΛ is the syzygy functor on Λ-mod (i.e. the
functor sending a module M to the kernel of a projective cover of M). On the other hand,
let APC(Λ) be the homotopy category of acyclic complexes of projective Λ-modules. Then
taking the cokernel Ω0(X•) = CokdX1 of the differential dX1 for a complex X• defines a
functor Ω0 : APC(Λ) → Λ-mod satisfying Ω0 ◦ [−1] ∼= ΩΛ ◦ Ω0.

Recall that an algebra Λ is Gorenstein if inj.dimΛΛ < ∞ and inj.dimΛeΛ < ∞. Since
the two dimensions coincide (see [20, Lemma A]), we call a Gorenstein algebra Λ with
inj.dimΛΛ = d a d-Gorenstein algebra. In the rest of this subsection, let Λ denote a
Gorenstein algebra. We call a Λ-module M Cohen-Macaulay if ExtiΛ(M,Λ) = 0 for all
i > 0. It is clear that projective Λ-modules are Cohen-Macaulay. We denote by CM(Λ)
the category of Cohen-Macaulay Λ-modules. It is well-known that CM(Λ) is a Frobenius
exact category whose projective objects are precisely projective Λ-modules, so that the
stable category CM(Λ) carries a structure of a triangulated category (see [7, 12]). In
particular, the syzygy functor ΩΛ on Λ-mod gives rise to the inverse of the shift functor
Σ on CM(Λ). We end this subsection with the following result due to Buchweitz.

Theorem 1 ([7, Theorem 4.4.1]). Let Λ be a Gorenstein algebra. Then there exist equiv-
alences of triangulated categories

APC(Λ)
Ω0 // CM(Λ)

ιΛ // Dsg(Λ),

where the equivalence ιΛ is given by the restriction of F : Λ-mod → Dsg(Λ) to CM(Λ).

2.3. Tate cohomology over Gorenstein algebras. This subsection is devoted to re-
calling another description of Tate cohomology over a Gorenstein algebra. Throughout,
let Λ denote a d-Gorenstein algebra unless otherwise stated. Thanks to Theorem 1, we
can associate to any Λ-module M an object T• = TM

• in APC(Λ), uniquely determined
up to isomorphism, satisfying that Ω0(T•) ∼= M in Dsg(Λ). Thus the triangle equivalence
ιΛ : CM(Λ) → Dsg(Λ) induces an isomorphism

Êxt
i

Λ(M,M) ∼= HomΛ(Ω0(T•),Σ
iΩ0(T•))

for all i ∈ Z. We identify Êxt
•
Λ(M,M) with End•

CM(Λ)(Ω0(T•)) via this isomorphism.
Recall that, for an algebra Λ, the Gorenstein dimension G-dimΛM of a Λ-module M is

defined by the shortest length of a resolution of M by Λ-modules X with X ∼= X∗∗ and
ExtiΛ(X,Λ) = 0 = ExtiΛe(X∗,Λ) for all i > 0, where we set (−)∗ := HomΛ(−,Λ) (see [1]
for its original definition). The next proposition is easily obtained from the results in [3]
applied to the case of Gorenstein algebras: (1), (2) and (3) follow from [3, Theorems 3.1
and 3.2], [3, Lemma 2.4 and Theorem 3.1] and [3, Theorem 5.2], respectively.



Proposition 2. Let M be a module over a d-Gorenstein algebra Λ. Then the following
statements hold.

(1) The Gorenstein dimension G-dimΛM of M satisfies G-dimΛM ≤ d and is equal
to the smallest integer r ≥ 0 for which Ωr

Λ(M) is Cohen-Macaulay.

(2) There exists a diagram T•
θ−→ P•

ε−→ M satisfying the following conditions:

(i) T• ∈ APC(Λ) and P•
ε−→ M is a projective resolution of M .

(ii) θ : T• → P• is a chain map with θi an isomorphism for any i ≫ 0.

(3) ExtiΛ(M,M) ∼= Êxt
i

Λ(M,M) for all i > G-dimΛM .

We call such a diagram as in Proposition 2 (2) a complete resolution of M (see [3] for
its definition in a general setting). A complete resolution is unique in the sense of [3,
Lemma 5.3] (when it exists).

3. Tate-Hochschild cohomology for eventually periodic Gorenstein
algebras

In this section, we first define eventually periodic algebras and provide examples of
them. We then prove our main result.

3.1. Eventually periodic algebras. As mentioned above, let us first define the eventual
periodicity of algebras and provide examples of eventually periodic algebras.

Definition 3. Let Λ be an algebra. A Λ-module M is called periodic if Ωp
Λ(M) ∼= M in

Λ-mod for some p > 0. The smallest such p is said to be the period of M . We say that
M ∈ Λ-mod is eventually periodic if Ωn

Λ(M) is periodic for some n ≥ 0. An algebra Λ
is called periodic (resp. eventually periodic) if Λ ∈ Λe-mod is periodic (resp. eventually
periodic).

From the definition, periodic algebras are eventually periodic algebras. Periodic alge-
bras have been studied for a long time (see [10]). We know from [11, Lemma 1.5] that
periodic algebras are self-injective algebras (i.e. 0-Gorenstein algebras). On the other
hand, it follows from the proof of [9, Corollary 6.4] that monomial Gorenstein algebras
are eventually periodic algebras. It also follows from the formula gl.dimΛ = proj.dimΛeΛ
(see [13, Section 1.5]) that algebras of finite global dimension are eventually periodic
algebras. As will be seen in Example 4 below, not all eventually periodic algebras are
Gorenstein algebras.

Example 4. (1) Let Λ1 be the algebra given by a quiver with relation

1
α // 2
β

oo αβα = 0,

Then Λ1 is a monomial algebra that is not Gorenstein. Using Bardzell’s result [4],
we see that Λ1 is an eventually periodic algebra having Ω2

Λe
1
(Λ1) as its first periodic

syzygy.

(2) Let Λ2 be the algebra given by a quiver with relation

1α 88
β // 2 α2 = 0



Then the algebra Λ2 is monomial 1-Gorenstein and hence eventually periodic. As
in (1), one sees that Ω2

Λe
2
(Λ2) is the first periodic syzygy of Λ2.

We note that the algebras in [8, Example 4.3] are eventually periodic algebras.

3.2. Main Result. This subsection is devoted to showing our main result. We prove it
after two propositions below. Before the first one, we prepare some terminology. Recall
that we write Ωi(X•) = CokdXi+1 for a complex X• and i ∈ Z. For a module M over a
Gorenstein algebra Λ, its complete resolution T• → P• → M is called periodic if there
exists an integer p > 0 such that Ωi(T•) ∼= Ωi+p(T•) in Λ-mod for all i ∈ Z. We call the
least such p the period of the complete resolution. We now prove that eventually periodic
modules over a Gorenstein algebra have periodic complete resolutions.

Proposition 5. Let Λ be a Gorenstein algebra and M a Λ-module. If there exists an
integer n ≥ 0 such that Ωn

Λ(M) is periodic of period p, then M admits a periodic com-
plete resolution of period p. Further, the period of the periodic complete resolution is
independent of the choice of periodic syzygies.

Using the proposition, we are able to characterize eventually periodic modules by means
of Tate cohomology rings. Recall that the Yoneda product of the Tate cohomology ring

Êxt
•
Λ(M,M) is denoted by ⌣.

Proposition 6. Let Λ be a Gorenstein algebra and M a Λ-module. Then the following
are equivalent.

(1) M is eventually periodic.

(2) The Tate cohomology ring Êxt
•
Λ(M,M) has an invertible homogeneous element of

positive degree.

Proposition 6 enables us to obtain the main result of this paper.

Theorem 7. Let Λ be a Gorenstein algebra. Then the following are equivalent.

(1) Λ is an eventually periodic algebra.

(2) The Tate-Hochschild cohomology ring ĤH
•
(Λ) has an invertible homogeneous ele-

ment of positive degree.

In this case, there exists an isomorphism ĤH
•
(Λ) ∼= ĤH

≥0
(Λ)[χ−1] of graded algebras,

where the degree of an invertible homogeneous element χ equals the period of the periodic
syzygy Ωn

Λe(Λ) of Λ for some n ≥ 0.

Proof. We know from [2, Proposition 2.2] that if Λ is a Gorenstein algebra, then so is the
enveloping algebra Λe. Hence the former statement follows from Proposition 6 applied
to Λ ∈ Λe-mod. On the other hand, suppose that the Gorenstein algebra Λ satisfies
that Ωn

Λe(Λ) is periodic for some n ≥ 0. By the proof of Proposition 6, there exists

an invertible homogeneous element χ ∈ ĤH
•
(Λ) whose degree equals the period of the

periodic Λe-module Ωn
Λe(Λ). Then the graded commutativity of ĤH

•
(Λ) yields the desired

isomorphism of graded algebras (cf. the proof of [17, Corollary 3.4]). □
We end this subsection with the following three remarks.



Remark 8. From the definition of singularity categories, an algebra Λ has finite projective
dimension as a Λe-module if and only if its Tate-Hochschild cohomology ring is the zero
ring (cf. [7, Section 1]). Thus Theorem 7 provide a new result if and only if a given
Gorenstein algebra has infinite global dimension.

Remark 9. Applying Theorem 7 to monomial Gorenstein algebras and to periodic alge-
bras, one obtains [9, Corollary 6.4] and [17, Corollary 3.4], respectively.

4. Construction of eventually periodic Gorenstein algebras

In this section, we aim at establishing a way of constructing eventually periodic Goren-
stein algebras. Before that, we prepare for two propositions which will be used latter.

Proposition 10. Any periodic Λ-module M over a d-Gorenstein algebra Λ is Cohen-
Macaulay.

The second implies that, for an eventually periodic Gorenstein algebra Λ, the smallest
integer n ≥ 0 satisfying that Ωn

Λe(Λ) is periodic has a lower bound.

Proposition 11. Let Λ be a d-Gorenstein algebra. Assume that there exists an integer
n ≥ 0 such that Ωn

Λe(Λ) is periodic. Then the least such integer n satisfies n ≥ d. In
particular, an equality holds if and only if there exists a simple Λ-module S such that
ExtnΛ(S,Λ) ̸= 0.

Now, we recall some facts on projective resolutions for tensor algebras. Let Λ and Γ

be algebras and P•
εΛ−→ Λ and Q•

εΓ−→ Γ projective resolutions as bimodules. Then the

tensor product P•⊗Q•
εΛ⊗ εΓ−−−−→ Λ⊗Γ is a projective resolution of the tensor algebra Λ⊗Γ

over (Λ ⊗ Γ)e (see [15, Section X.7]). Here, we identify (Λ ⊗ Γ)e with Λe ⊗ Γe. It also
follows from [6, Lemma 6.2] that if both P• → Λ and Q• → Γ are minimal, then so is
P• ⊗Q• → Λ⊗ Γ.

From now on, we assume that Λ is a periodic algebra of period p and that Γ is an algebra
of finite global dimension n. Set A := Λ ⊗ Γ. Since periodic algebras are self-injective
algebras, it follows from [6, Lemma 6.1] that we have inj.dimA = inj.dimΛ+ inj.dimΓ =
0+ n = n as one-sided modules. Thus A is an n-Gorenstein algebra. Note that the same
lemma also implies that the enveloping algebra Ae is a (2n)-Gorenstein algebra. The
following result shows that the algebra A has an eventually periodic minimal projective
resolution.

Proposition 12. Let Λ and Γ be as above. Then A = Λ ⊗ Γ is an eventually periodic
n-Gorenstein algebra having Ωn

Ae(A) as its first periodic syzygy.

Remark 13. Proposition 2 enables us to get G-dimAeA ≤ 2n = inj.dimAeAe and hence

HHi(A) ∼= ĤH
i
(A) for all i > 2n. On the other hand, the i-th syzygy Ωi

Ae(A) of A is
Cohen-Macaulay for any i ≥ n by Propositions 10 and 12. Again, Proposition 2 yields
that G-dimAeA ≤ n. One of the advantages of this observation is that there exists an

isomorphism HHi(A) ∼= ĤH
i
(A) for all i > n.

Remark 14. It follows from Theorem 7 and the proof of Proposition 12 that the Tate-

Hochschild cohomology ring ĤH
•
(A) of A is of the form ĤH

≥0
(A)[χ−1], where the degree

of χ divides the period p of Λ. We hope to address the degree of χ in a future paper.



We end this section with the following two examples. Note that the tensor algebra A
in Example 16 can be found in [6, Example 6.3].

Example 15. For an integer n ≥ 0, let Γn be the algebra given by a quiver with relations

0
α0 // 1 // · · · // n− 1

αn−1 // n αi+1αi = 0 for i = 0, . . . , n− 2.

Then we have gl.dimΓn = n. By Proposition 12, any periodic algebra Λ gives us an
eventually periodic n-Gorenstein algebra A = Λ ⊗ Γn with Ωn

Ae(A) the first periodic
syzygy of A.

Example 16. Let Λ = k[x]/(x2) and let Γ be the algebra Γ1 defined in Example 15.
Thanks to Bardzell’s minimal projective resolution, we see that Λ is a periodic algebra
whose period is equal to 1 if char k = 2 and to 2 otherwise. On the other hand, the tensor
algebra A = Λ⊗ Γ is given by the following quiver with relations

1α 88
β // 2 γff α2 = 0 = γ2 and βα = γβ.

Thus we see that A is a (non-monomial) eventually periodic Gorenstein algebra whose

first periodic syzygy is Ω1
Ae(A). Now, we compute dimk ĤH

i
(A) for all i ∈ Z. It follows

from [13, Section 1.6] that the Hochschild cohomology ring HH•(Γ) is of the form

HH•(Γ) = k.

According to [5, Section 5], the Hochschild cohomology ring HH•(Λ) is as follows:

HH•(Λ) =

{
k[a0, a1]/(a

2
0) if char k = 2;

k[a0, a1, a2]/(a
2
0, a

2
1, a0a1, a0a2) if char k ̸= 2,

where the index i of a homogeneous element ai denotes the degree of ai. On the other
hand, by [14, Lemma 3.1], there exists an isomorphism of graded algebras

HH•(A) ∼= HH•(Λ)⊗ HH•(Γ) = HH•(Λ).

It follows from Remark 13 that HHi(A) ∼= ĤH
i
(A) for all i > 1. Since ĤH

∗
(A) ∼=

ĤH
∗+p

(A) with the period p of Λ by Remark 14, we have, for any integer i,

dimk ĤH
i
(A) =

{
2 if char k = 2;

1 if char k ̸= 2.
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