LARGE TILTING OBJECTS INDUCED BY CODIMENSION FUNCTIONS AND HOMOMORPHIC IMAGES OF COHEN–MACAULAY RINGS

TSUTOMU NAKAMURA

ABSTRACT. In the derived category of a commutative noetherian ring, we explicitly construct a (co)silting object associated with an sp-filtration satisfying some condition. Then we discuss when the (co)silting object is (co)tilting.

1. INTRODUCTION

This report is based on joint work with Michal Hrbek and Jan Štovíček [4].

Throughout, let R be a commutative noetherian ring. We denote by $\mathbf{D}(R)$ the unbounded derived category of R. A map $\Phi : \mathbb{Z} \to 2^{\operatorname{Spec} R}$ is called an *sp-filtration* of Spec R if $\Phi(n)$ is specialization closed and $\Phi(n) \supseteq \Phi(n+1)$ for every $n \in \mathbb{Z}$. An spfiltration Φ is called *non-degenerate* if $\bigcup_{n \in \mathbb{Z}} = \operatorname{Spec} R$ and $\bigcap_{n \in \mathbb{Z}} \Phi(n) = \emptyset$. Alonso Tarrío, Jeremías López, and Saorín [1] showed that there is a bijection between the sp-filtrations Φ of Spec R and the compactly generated t-structures $(\mathcal{U}_{\Phi}, \mathcal{V}_{\Phi})$ in $\mathbf{D}(R)$. Moreover, Šťovíček and Pospíšil [6] showed that the sp-filtrations Φ of Spec R also bijectively correspond to the compactly generated co-t-structures $(\mathcal{X}_{\Phi}, \mathcal{Y}_{\Phi})$ in $\mathbf{D}(R)$ and there exists a t-structure of the form $(\mathcal{Y}_{\Phi}, \mathcal{Z}_{\Phi})$ for each Φ . If Φ is non-degenerate, then $(\mathcal{Y}_{\Phi}, \mathcal{Z}_{\Phi})$ and $(\mathcal{U}_{\Phi}, \mathcal{V}_{\Phi})$ are induced, respectively, by some silting object T and some cosilting object C in the sense of [5]. See [4, §2] for more details.

Although we know the existence of T and C, this fact has been shown in an abstract way. In this report, we explicitly construct a silting object and a cosilting object inducing the t-structures $(\mathcal{Y}_{\Phi}, \mathcal{Z}_{\Phi})$ and $(\mathcal{U}_{\Phi}, \mathcal{V}_{\Phi})$, respectively, provided that Φ is a slice sp-filtration; see Section 2. We also discuss when such (co)silting objects are (co)tilting; see Section 3.

2. SLICE SP-FILTRATIONS

Let Φ be an sp-filtration of Spec R. We call Φ a *slice* sp-filtration of Spec R if it is non-degenerate and

$$\dim(\Phi(n) \setminus \Phi(n+1)) \le 0$$

for all $n \in \mathbb{Z}$. Note that the above inequality means that there is no strict inclusion of prime ideals in $\Phi(n) \setminus \Phi(n+1)$.

To each sp-filtration Φ , we assign a function $f_{\Phi} : \operatorname{Spec} R \to \mathbb{Z} \cup \{-\infty, \infty\}$ given by

$$\mathsf{f}_{\Phi}(\mathfrak{p}) := \sup\{n \in \mathbb{Z} \mid \mathfrak{p} \in \Phi(n)\} + 1$$

The detailed version of this paper will be submitted for publication elsewhere.

Tsutomu Nakamura was partly supported by Grant-in-Aid for JSPS Fellows JP20J01865.

for each $\mathfrak{p} \in \operatorname{Spec} R$. By definition, \mathfrak{f}_{Φ} is an order-preserving function, that is, $\mathfrak{p} \subseteq \mathfrak{q}$ implies $\mathfrak{f}_{\Phi}(\mathfrak{p}) \leq \mathfrak{f}_{\Phi}(\mathfrak{q})$. We remark that the assignment $\Phi \mapsto \mathfrak{f}_{\Phi}$ gives rise to a bijection from the sp-filtrations of Spec R to the order-preserving functions Spec $R \to \mathbb{Z} \cup \{-\infty, \infty\}$. Then the non-degeneracy of an sp-filtration Φ is equivalent to that the function $\mathfrak{f}_{\Phi} : \operatorname{Spec} R \to \mathbb{Z} \cup \{-\infty, \infty\}$ restricts to a function $\operatorname{Spec} R \to \mathbb{Z}$. In fact, a non-degenerate sp-filtration Φ is a slice sp-filtration if and only if its corresponding function \mathfrak{f}_{Φ} is strictly increasing, that is, $\mathfrak{p} \subsetneq \mathfrak{q}$ implies $\mathfrak{f}_{\Phi}(\mathfrak{p}) < \mathfrak{f}_{\Phi}(\mathfrak{q})$.

Let $\mathfrak{p} \in \operatorname{Spec} R$. We denote by $\Gamma_{\mathfrak{p}}$ the \mathfrak{p} -torsion functor $\varinjlim_{n\geq 1} \operatorname{Hom}_R(R/\mathfrak{p}^n, -)$: Mod $R \to \operatorname{Mod} R$. Moreover, we denote by $\widehat{R_{\mathfrak{p}}}$ the \mathfrak{p} -adic completion of $R_{\mathfrak{p}}$. Note that $\widehat{R_{\mathfrak{p}}}$ admits a dualizing complex $D_{\widehat{R_{\mathfrak{p}}}}$ such that $H^0(D_{\widehat{R_{\mathfrak{p}}}}) \neq 0$ and $H^i(D_{\widehat{R_{\mathfrak{p}}}}) = 0$ for i < 0.

Theorem 1. Let Φ be a slice sp-filtration of Spec R. In $\mathbf{D}(R)$,

$$T_{\Phi} := \bigoplus_{\mathfrak{p} \in \operatorname{Spec} R} \Sigma^{f_{\Phi}(\mathfrak{p})} \mathbf{R} \Gamma_{\mathfrak{p}} R_{\mathfrak{p}}$$

is a silting object and

$$C_{\Phi} := \prod_{\mathfrak{p} \in \operatorname{Spec} R} \Sigma^{\operatorname{ht}(\mathfrak{p}) - f_{\Phi}(\mathfrak{p})} D_{\widehat{R}_{\mathfrak{p}}},$$

is a cosilting object.

Theorem 1 is proved in [4, §§4–5], where it is also proved that the silting object T_{Φ} induces the t-structure $(\mathcal{Y}_{\Phi}, \mathcal{Z}_{\Phi})$ and the cosilting object C_{Φ} induces the t-structure $(\mathcal{U}_{\Phi}, \mathcal{V}_{\Phi})$.

The two objects T_{Φ} and C_{Φ} can be related in the following way: If E is an injective cogenerator of Mod R, then $\mathbf{R}\operatorname{Hom}_R(T_{\Phi}, E)$ is a cosilting object inducing the t-structure $(\mathcal{U}_{\Phi}, \mathcal{V}_{\Phi})$. In other words, $\mathbf{R}\operatorname{Hom}_R(T_{\Phi}, E)$ and C_{Φ} are *equivalent* as cosilting objects; see [4, §2].

3. Cohen-Macaulay homomorphic images

Our explicit construction of T_{Φ} and C_{Φ} enables us to discuss when they are tilting and cotilting, respectively, in the sense of [5]. A necessity condition is that f_{Φ} : Spec $R \to \mathbb{Z}$ is a *codimension function*, i.e., $f(\mathfrak{q}) - f(\mathfrak{p}) = 1$ whenever $\mathfrak{p} \subsetneq \mathfrak{q}$ and \mathfrak{p} is maximal under \mathfrak{q} . Existence of a codimension function implies that R is catenary, and hence not every commutative noetherian ring can admit a codimension function. If f_{Φ} is a codimension function, then we call Φ a *codimension filtration* of Spec R.

Theorem 2. Assume that R is a homomorphic image of a Cohen–Macaulay ring of finite Krull dimension. Let Φ be a codimension filtration of Spec R, which exists under the assumption. Then T_{Φ} is a tilting object and C_{Φ} is a cotilting object in $\mathbf{D}(R)$.

Kawasaki [2] proved that existence of a dualizing complex D for R implies that R is a homomorphic image of a Gorenstein ring of finite Krull dimension. Since D is a cotilting object in the bounded derived category $\mathbf{D}^{b} \pmod{R}$, Kawasaki's result essentially characterizes homomorphic images of Gorenstein rings in terms of cotilting objects. Replacing "Gorenstein" by "Cohen–Macaulay", we suggest the next question, where we assume that R is a commutative noetherian ring of finite Krull dimension and Φ is a codimension filtration of Spec R: If T_{Φ} (resp. C_{Φ}) is tilting (resp. cotilting), then is R a homomorphic image of a Cohen-Macaulay ring of finite Krull dimension?

We can affirmatively answer this question when R is a local ring of Krull dimension at most 2. Our approach partly uses another work [3] of Kawasaki. See [4, §7] for more details.

References

- Leovigildo Alonso Tarrío, Ana Jeremías López, and Manuel Saorín, Compactly generated t-structures on the derived category of a Noetherian ring, J. Algebra 324 (2010), no. 3, 313–346.
- [2] Takesi Kawasaki, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc. 354 (2002), no. 1, 123–149.
- [3] Takesi Kawasaki, Finiteness of Cousin cohomologies, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2709–2739.
- [4] Michal Hrbek, Tsutomu Nakamura, and Jan Štovíček, *Tilting complexes and codimension functions over commutative noetherian rings*, in preparation.
- [5] Chrysostomos Psaroudakis and Jorge Vitória, *Realisation functors in tilting theory*, Math. Z. 288 (2018), no. 3-4, 965–1028.
- [6] Jan Štovíček and David Pospíšil, On compactly generated torsion pairs and the classification of co-tstructures for commutative noetherian rings, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6325–6361.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF TOKYO 3-8-1 KOMABA MEGURO-KU TOKYO 153-8914, JAPAN Email address: ntsutomu@ms.u-tokyo.ac.jp